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Eigenvalues are defined for any element of an algebra of observables and do not require a representation

in terms of wave functions or density matrices. A systematic algebraic derivation based on moments is

presented here for the harmonic oscillator, together with a perturbative treatment of anharmonic systems. In

this process, a collection of inequalities is uncovered which amount to uncertainty relations for higher-order

moments saturated by the harmonic-oscillator excited states. Similar saturation properties hold for

anharmonic systems order by order in perturbation theory. The new method, based on recurrence relations

for moments of a state combined with positivity conditions, is therefore able to show new physical features.
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I. INTRODUCTION

The usual derivation of eigenvalues in model systems of

quantum mechanics seems to suggest that spectral proper-

ties are a direct consequence of boundary conditions

imposed on wave functions. However, boundary conditions

are a property of representations of an algebra of observ-

ables A (with a unit I), while the spectrum of an operator

does not refer to a representation: For any algebra element

â ∈ A, it can be defined as the set of all λ ∈ C such that

â − λI does not have an inverse in A. The main purpose of

this article is to show that it is not only possible to define

the spectrum directly for an algebra but also to compute it

without using a specific representation.

While this statement may seem formal, there are several

useful implications for physical considerations. In particu-

lar, (i) the algebraic derivation works for all possible

representations of the algebra, (ii) it applies equally to

pure states and mixed states, and (iii) it is available in

systems of nonassociative quantum mechanics that cannot

be represented on a Hilbert space [1–3]. The latter arena has

recently led to a new upper bound on the magnetic charge

of elementary particles [4] and is therefore physically

meaningful. Here, we demonstrate the new method used

in the latter result for standard associative systems, in which

we rederive known spectra but find new identities for

moments of eigenstates that can be interpreted as saturation

conditions of higher-order uncertainty relations. This result

helps to demonstrate a relationship between excited states

and generalized coherent states.

Our starting point is the algebraic definition of a state as a

(normalized) positive linear functional on the �-algebra A
of observables, that is a linear map h·i∶A → C with

hâ†âi ≥ 0 for all â ∈ A (and hIi ¼ 1). (We denote the

�-relation by a †, following standard physics notation in

quantum mechanics.) Physically, the positivity condition

implies not only that fluctuations hâ2i − hâi2 ≥ 0 of self-

adjoint algebra elements are positive, but also, and slightly

less obviously, that observations are subject to uncertainty

relations; see for instance [5]: Any positive state obeys the

Cauchy-Schwarz inequality

hâ†âihb̂†b̂i ≥ jhâ†b̂ij2 ð1Þ

from which uncertainty relations can be derived by making

suitable choices for â and b̂.
The �-relation on A may be abstractly defined, or given

by the usual adjoint if A is represented on a Hilbert space.

For basic generators x̂i of A, such as positions and

momenta, one can parametrize a state by its basic expect-

ation values hx̂ii and central moments

Δðxa11 � � � xann Þ ¼ hðx̂1 − hx̂1iÞa1 � � � ðx̂n − hx̂niÞaniWeyl ð2Þ

using completely symmetric (or Weyl) ordering. Coupled

equations of motion for basic expectation values and

moments follow from an extension of Ehrenfest’s theorem.

For instance, for canonical ðxiÞ ¼ ðq; pÞ with ½q̂; p̂� ¼ iℏI,
in addition to

dhq̂i
dt

¼ h½q̂; Ĥ�i
iℏ

;
dhp̂i
dt

¼ h½p̂; Ĥ�i
iℏ

ð3Þ

we have

dΔðq2Þ
dt

¼ dðhq̂2i − hq̂i2Þ
dt

¼ h½q̂2; Ĥ�i
iℏ

− 2hq̂i dhq̂i
dt

ð4Þ

for the position varianceΔðq2Þ ¼ ðΔqÞ2. As usual, the time

dependence in Ehrenfest-type equations may reside in the
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states used to compute expectation values (Schrödinger

picture) or in the operators (Heisenberg picture). To be

specific, we take the former viewpoint because it helps to

avoid addressing mathematical questions about suitable

topologies on the algebra that would be required to

define a time derivative of operators. Depending on the

Hamiltonian, the right-hand sides of (3) and (4) can be

expanded in moments and usually involve asymptotic

series of terms (unless the Hamiltonian is quadratic in

basic operators).

This formulation is especially useful for canonical

effective theories [6] and semiclassical expansions because

the condition Δðxa11 � � � xann Þ ¼ Oðℏða1þ���þanÞ=2Þ provides a
general definition of semiclassical (but possibly non-

Gaussian) states and allows tractable approximations of

the equations of motion order by order in ℏ. In the present

paper, as another new conceptual insight, we show that

interesting properties that can be obtained in this way are

not restricted to semiclassical ones: Harmonic and pertur-

bative eigenvalues can be derived as well, together with

relationships between their moments.

Uncertainty relations play a crucial role in this context,

as can be seen by the simple example of the ground state of

the harmonic oscillator with Hamiltonian

Ĥ ¼ 1

2m
p̂2 þ 1

2
mω2q̂2: ð5Þ

Using moments, the ground-state energy can be derived

from two conditions, namely that (i) the moments be time

independent for a stationary state, and (ii) the standard

uncertainty relation be saturated. Indeed, in this case the

second-order moments obey a closed set of evolution

equations

dΔðq2Þ
dt

¼ 2
ΔðqpÞ
m

; ð6Þ

dΔðqpÞ
dt

¼ 1

m
Δðp2Þ −mω2

Δðq2Þ; ð7Þ

dΔðp2Þ
dt

¼ −2mω2
ΔðqpÞ: ð8Þ

Condition (i) implies ΔðqpÞ ¼ 0 and Δðp2Þ ¼
m2ω2

Δðq2Þ. Condition (ii) then determines Δðq2Þ ¼
ℏ=ð2mωÞ and Δðp2Þ ¼ 1

2
mωℏ. Therefore, the energy

expectation value in such a state [with hq̂i ¼ 0 ¼ hp̂i
by condition (i)],

hĤi ¼ 1

2m
Δðp2Þ þ 1

2
mω2

Δðq2Þ ¼ 1

2
ℏω; ð9Þ

agrees with the ground-state energy. It is not necessary to

compute the full ground-state wave function in order to find

the energy. However, the question of how to compute the

energy eigenvalues of excited states using moments is more

difficult: Their eigenstates are not Gaussian and therefore

do not saturate the standard uncertainty relation.

For the ground state of the harmonic oscillator, the

condition that Heisenberg’s uncertainty relation be satu-

rated can be replaced by a lesson from the variational

principle. The expectation value of the Hamiltonian is

minimized in the ground state. Since (9) is linear in

second-order moments, which take values in a region

bounded by the uncertainty relation, the expectation value

is minimized at the boundary allowed by this relation.

Saturation therefore need not be assumed but can be

derived from a fundamental principle. But again, for

excited states such a derivation based on moments seems

to be more complicated because one would somehow have

to restrict the moments to belong to a wave function

orthogonal to the ground state and all lower-excited states.

However, orthogonality relations are not available for

states at the algebraic level. Our procedure will instead

lead to certain higher-order uncertainty relations that,

regarding energy eigenstates, split the state space into

subsets much like the usual orthogonality conditions do

for wave functions.

For some time and in a slightly different context,

moments have been known to be useful for numerical

approximations of eigenvalues of excited states [7–10].

(See also [11,12] for recent work.) Here, we use some of the

same relations between moments of eigenstates, but in a

different way. As a result, our constructions have a more

fundamental flavor because they can serve as new defi-

nitions of eigenvalues and eigenstates in the algebraic

perspective, even while they do provide new computational

schemes as well. We are aware of at least two examples for

settings in which our constructions may be useful: In

canonical quantum gravity, the problem of time [13–15]

often makes explicit constructions of physical Hilbert

spaces and wave functions untractable, while moment

methods have been shown to present certain computational

advantages [16–19]. And in nonassociative quantum

mechanics, which plays a role in models with magnetic

monopoles [20] or of certain flux compactifications in

string theory [21–25], operators on wave functions (and

therefore the usual definition of eigenvalues) are in general

unavailable [23,26–29], but moments may still be

used [4,30,31].

The main new result we will be able to uncover here

for associative systems is a saturation property for any

harmonic-oscillator eigenstate. (For a detailed nonassocia-

tive example, see [32].) As part of our procedure, we

impose a set of inequality constraints involving the

moments, so as to ensure that they belong to an actual

state (a positive linear functional). These constraints

include the standard uncertainty principle as well as a

series of inequalities involving higher moments. Upon

imposing these conditions, we find that some of them
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are not only satisfied but also saturated by a harmonic-

oscillator eigenstate. This feature is reminiscent of the

saturation of Heisenberg’s uncertainty relation by the

ground state. As a related result, we show that excited

states of the harmonic oscillator are (limits of) generalized

coherent states as defined by Titulaer and Glauber [33]. In

an extension to anharmonic oscillators, we confirm that

such saturation properties continue to hold order by order in

perturbation theory by the anharmonicity.

At present, it is not clear how feasible it would be to

extend this method to nonharmonic systems beyond

perturbation theory. As an alternative, still algebraic pro-

cedure, we therefore show how eigenvalues can be derived

from convergence conditions for certain recurrence rela-

tions derived from positivity and boundedness conditions

of expectation values. The positivity of states used in this

construction is also the origin of uncertainty relations, but

in the alternative procedure we do not directly impose

uncertainty relations and therefore do not obtain new

saturation properties. However, the algebraic derivation

of eigenvalues and eigenstates is more tractable in this case

and applies not only to the harmonic example presented

here but also to the standard hydrogen problem [32].

Finally, our appendix presents an instructive finite-

dimensional example given by a fermionic system.

II. EIGENVALUES FROM MOMENTS

In the standard presentation of the problem, using wave

functions, eigenvalues λ and eigenstates ψλ of a given

operator Ĥ are determine by a single equation,

Ĥψλ ¼ λψλ: ð10Þ

This equation immediately implies that that all expectation

values of the form

hÔðĤ − λIÞiλ ¼ hψλjÔðĤ − λIÞψλi ¼ 0 ð11Þ

vanish for any operator Ô such that ψλ is in the domain of

Ô†. In our derivation, operators Ô polynomial in basic

operators q̂ and p̂ will be found to be sufficient. Even with

this restriction, an algebraic derivation of eigenvalues is not

obvious and requires two ingredients: (i) A way of

organizing infinitely many equations implied by (11) for

sufficiently many choices of Ô, and (ii) the imposition of a

condition that the expectation value in (11) indeed refers to

an admissible, that is, positive state.

In this section we present two methods for the same

system that differ in how both (i) and (ii) are addressed. In

our first derivation, we rewrite (11) as a system of

recurrence relations for moments of an eigenstate and

impose positivity through (generalized) uncertainty rela-

tions. In an alternative derivation in Sec. II C we use

generating functions and impose positivity more indirectly

through continuity and boundedness conditions on a

suitably defined object.

A. Notation

Equation (11) immediately implies that eigenstates of a

self-adjoint Ĥ are stationary:

dhÔiλ
dt

¼ h½Ô; Ĥ�iλ
iℏ

¼ hÔðĤ − λIÞiλ − hÔ†ðĤ − λIÞi�λ
iℏ

¼ 0: ð12Þ

For the harmonic oscillator, this equation applied to q̂ and p̂
implies that hq̂i ¼ 0 and hp̂i ¼ 0. Instead of using central

moments as in the Introduction, we can therefore work

directly with bare moments and zero basic expectation

values. We define

T̂m;n ≔ ðq̂mp̂nÞWeyl ð13Þ

where q̂ and p̂ are the canonical position and momentum

operators, m and n are non-negative integers, and the

subscript indicates, as before, that the product is taken in

completely symmetric ordering. Note that through the

commutation relation ½q̂; p̂� ¼ iℏ, products of the form

T̂m;nT̂m0;n0 can always be rewritten as sums over individual

T̂m00;n00 of order mþ nþm0 þ n0 or less. See [34] for an

explicit statement of the relevant reordering identity.

Given a particular state, we define the bare moments

(about the origin) as

Tm;n ≔ hT̂m;ni: ð14Þ

The collection of all such moments for a given state

provides a complete description of the state in the sense

that given the moments, it is possible (in principle) to

reconstruct the wave function. However, the moments are

not completely free. They must satisfy certain inequalities,

such as Heisenberg’s uncertainty relation, as well as a

number of other constraints involving higher moments. A

necessary and sufficient condition for a collection of

moments fTm;ng to correspond to a genuine quantum state

has been given in [35]. More recently, a similar result has

been developed from a different perspective in [36],

providing a generalized uncertainty principle that imposes

inequality constraints on higher moments. These results are

key for our further constructions.

Consider the column vector, ξ̂J, consisting of all oper-

ators T̂m;n up to order mþ n ¼ 2J, where J is an integer or

half-integer. The generalized uncertainty principle states

that the ðJ þ 1Þð2J þ 1Þ × ðJ þ 1Þð2J þ 1Þ dimensional

square matrix MJ ¼ hξ̂J ξ̂J†i is positive semidefinite,

MJ ¼ hξ̂J ξ̂J†i ≥ 0 ð15Þ
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where the expectation value is taken element by element.

Prior to taking the expectation value, the matrix elements

are products of the form T̂m;nT̂m0;n0 . As mentioned above,

these products can be rewritten as linear combinations of

individual Tm00;n00 . The elements ofMJ are thus functions of

the moments. Since MJ ≥ 0 implies non-negativity of its

principal minors, the generalized uncertainty principle

yields a set of inequalities involving the moments.

As discussed in [37], it is useful to bring this matrix to

block diagonal form

MJ →

0

B

B

B

B

B

@

A0

A1

. .
.

A2J

1

C

C

C

C

C

A

ð16Þ

where An is an nþ 1 by nþ 1 matrix that contains

moments up to order 2n. This can be achieved by

repeatedly applying the following identity

L

�

A C†

C B

�

L† ¼
�

A 0

0 B − CA−1C†

�

ð17Þ

to MJ, where

L ¼
�

1 0

−CA−1 1

�

: ð18Þ

This identity holds whenever the matrix on the left-hand

side of Eq. (17) is Hermitian. We then have that MJ ≥ 0 if

and only if An ≥ 0 for all n ≤ 2J. The generalized

uncertainty principle may thus be rephrased as

An ≥ 0 for all n ≥ 0: ð19Þ

If the state under consideration is known to be an

eigenstate of a Hamiltonian, Ĥ, then we can obtain an

additional set of constraints. For all m, n ≥ 0 we have

hT̂m;nðĤ − λIÞiλ ¼ 0 ð20Þ

where λ is the eigenvalue of the state h·iλ under consid-

eration. In order to rewrite this set of equations as a

collection of constraints on the moments, we express Ĥ

in terms of the T̂m;n and reorder the product T̂m;nĤ into a

sum over individual T̂m0;n0 . Equation (20) then implies

recurrence relations for Tm;n which depend on the system

under consideration.

B. Application to the harmonic oscillator

We now show how the considerations outlined above can

be used to find the eigenvalues of the harmonic-oscillator

Hamiltonian. The idea is to use (20) to solve for the

moments in terms of the eigenvalue λ and then apply (15) to

obtain information concerning the allowed values of λ (as

yet unspecified). This combination is the basis of our new

method.

1. Recurrence relations

For the sake of mathematical clarity, we use the

Hamiltonian Ĥ ¼ ðp̂2 þ q̂2Þ=2. The usual parameters

given by the mass m and frequency ω can be reintroduced

by a suitable canonical transformation of q, p if we also

understand Ĥ as the energy divided by ω. Our q and p then

both have units of
ffiffiffi

ℏ
p

, such that Tm;n has units of ℏ
ðmþnÞ=2.

Imposing (20) results in the following relations between the

moments:

Tmþ2;n þ Tm;nþ2 ¼ 2λTm;n þ
nðn − 1Þ

4
ℏ2Tm;n−2

þmðm − 1Þ
4

ℏ
2Tm−2;n; ð21Þ

nTmþ1;n−1 ¼ mTm−1;nþ1 ð22Þ

which hold for all m, n ≥ 0. Two constraints are obtained

because (20)—defined without symmetric ordering of the

product T̂m;nĤ—has both real and imaginary parts. From

(22), starting with m ¼ 0 or n ¼ 0, we find that the

moments are zero unless both m and n are even. For even

and nonzero m ¼ 2j and n ¼ 2k, we then define Sj;k such

that

T2j;2k ¼
ð2jÞ!ð2kÞ!

j!k!
Sj;k: ð23Þ

For these coefficients, (22) implies the simple relation

Sjþ1;k ¼ Sj;kþ1; ð24Þ

which in turn implies that Sj;k depends only on jþ k. There

are, therefore, dimensionless coefficients bj depending

only on a single integer, such that

T2j;2k ¼
ð2jÞ!ð2kÞ!

j!k!
ℏ
jþkbjþk: ð25Þ

For convenience, it is useful to define a second set of

coefficients, aj, such that

bjþk ¼
ðjþ kÞ!

ð2jþ 2kÞ! ajþk; ð26Þ

or

BOJOWALD, GUGLIELMON, and VAN KUPPEVELD PHYS. REV. D 103, 126005 (2021)

126005-4



T2j;2k ¼
ð2jÞ!ð2kÞ!ðjþ kÞ!
j!k!ð2jþ 2kÞ! ℏ

jþkajþk: ð27Þ

For instance,

T2j;0 ¼ ℏ
jaj ð28Þ

and

T2j;2 ¼ ℏ
jþ1

ajþ1

2jþ 1
ð29Þ

have more compact coefficients than the equivalent expres-

sions in terms of bj.

As a consequence of (21), the remaining coefficients, al,
are subject to a difference equation in a single independent

variable:

alþ1 ¼
λℏ−1ð2lþ 1Þ

lþ 1
al þ

ð2lþ 1Þð2lÞð2l − 1Þ
8ðlþ 1Þ al−1:

ð30Þ

Given the two initial values a0 ¼ 1 (as a consequence of

normalization of the state, T0;0 ¼ 1) and a1 ¼ λ=ℏ (as a

consequence of 2ℏa1 ¼ T2;0 þ T0;2 ¼ 2hĤiλ ¼ 2λ), (30)

determines all orders of moments in terms of the parameter

λ. It is clear from the recurrence and its initial values that al
is a polynomial in λ of degree l. It has only even terms for l

even, and only odd terms for l odd.

In terms of bl, the recurrence relation is slightly simpler,

ðlþ 1Þblþ1 −
λ

2ℏ
bl −

1

16
lbl−1 ¼ 0; ð31Þ

and can be solved via the generating function fðxÞ ¼
P

∞
l¼0 blx

l subject to the differential equation

�

1 −
1

16
x2
�

f0ðxÞ ¼ 1

2

�

λ

ℏ
þ 1

8
x

�

fðxÞ ð32Þ

and initial conditions fð0Þ ¼ b0 ¼ 1, f0ð0Þ ¼ b1 ¼ 1
2
λ.

The solution,

fðxÞ ¼ ð1þ x=4Þλ=ℏ−1=2
ð1 − x=4Þλ=ℏþ1=2

; ð33Þ

has the Taylor expansion

fðxÞ ¼
X

∞

l¼0

�

−x

4

�

l ðl − λ=ℏ − 1=2Þ!
ð−λ=ℏ − 1=2Þ!l!

× 2F1ðλ=ℏþ 1=2;−l; λ=ℏþ 1=2 − l;−1Þ ð34Þ

and determines the bl in terms of hypergeometric

functions.

2. Positivity

We now apply the generalized uncertainty principle (15)

to these moments. Note that MJ ≥ 0 implies that M0
J ≥ 0,

where M0
J is a matrix formed by deleting from MJ any

number of rows and their corresponding columns.

Equivalently, M0
J may be defined as the matrix formed

by deleting entries from ξ̂J to form a new vector ξ̂0J and then
taking

M0
J ¼ hξ̂0J ξ̂0†Ji: ð35Þ

In particular, consider the matrix M0
J formed by taking ξ̂0J

to contain only operators of the form ℏ
−m=2T̂m;0 and

ℏ
−m=2T̂m−1;1 up to m ¼ 2J. While ξ̂J has

NJ ¼ ðJ þ 1Þð2J þ 1Þ ð36Þ

components, ξ̂J
0 has

N0
J ¼ 4J þ 1 ¼ NJ − Jð2J − 1Þ ð37Þ

components. (The number N0
J is by definition given by one

plus twice the maximum number 2J of factors of q̂ included

in T̂m;0 for a given ξ̂J. It also equals N0
J ¼ NJ − NJ−1.)

Therefore, M0
J ≠ MJ if and only if J ≥ 1.

For example, for J ¼ 0 we have M0
0 ¼ 1, not implying

any nontrivial uncertainty relation. For J ¼ 1=2, we have

M0
1=2 ¼ M1=2 ¼

�

0

B

B

@

1 q̂=
ffiffiffi

ℏ
p

p̂=
ffiffiffi

ℏ
p

q̂=
ffiffiffi

ℏ
p

q̂2=ℏ q̂ p̂ =ℏ

p̂=
ffiffiffi

ℏ
p

p̂ q̂ =ℏ p̂2=ℏ

1

C

C

A

�

ð38Þ

where the expectation value is taken element by element. A

suitable minor of M0
1=2 being positive semidefinite,

det

� hq̂2i hq̂p̂i
hp̂q̂i hp̂2i

�

¼T2;0T0;2−

�

T1;1þ
1

2
iℏ

��

T1;1−
1

2
iℏ

�

¼T2;0T0;2−T2
1;1−

ℏ
2

4
≥0; ð39Þ

is equivalent to Heisenberg’s uncertainty relation. Taking

J ¼ 1 as another example (the simplest case in which

M0
J ≠ MJ), we have

ξ̂01 ¼

0

B

B

B

B

B

B

B

@

1

T̂1;0=
ffiffiffi

ℏ
p

T̂0;1=
ffiffiffi

ℏ
p

T̂2;0=ℏ

T̂1;1=ℏ

1

C

C

C

C

C

C

C

A

ð40Þ

which gives
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M0
1 ¼

�

0

B

B

B

B

B

B

B

B

@

1 T̂1;0=
ffiffiffi

ℏ
p

T̂0;1=
ffiffiffi

ℏ
p

T̂2;0=ℏ T̂1;1=ℏ

T̂1;0=
ffiffiffi

ℏ
p

T̂1;0T̂1;0=ℏ T̂1;0T̂0;1=ℏ T̂1;0T̂2;0=ℏ
3=2 T̂1;0T̂1;1=ℏ

3=2

T̂0;1=
ffiffiffi

ℏ
p

T̂0;1T̂1;0=ℏ T̂0;1T̂0;1=ℏ T̂0;1T̂2;0=ℏ
3=2 T̂0;1T̂1;1=ℏ

3=2

T̂2;0=ℏ T̂2;0T̂1;0=ℏ
3=2 T̂2;0T̂0;1=ℏ

3=2 T̂2;0T̂2;0=ℏ
2 T̂2;0T̂1;1=ℏ

2

T̂1;1=ℏ T̂1;1T̂1;0=ℏ
3=2 T̂1;1T̂0;1=ℏ

3=2 T̂1;1T̂2;0=ℏ
2 T̂1;1T̂1;1=ℏ

2

1

C

C

C

C

C

C

C

C

A

�

ð41Þ

where as before the expectation value is taken element by

element.

In order to derive the generic structure ofM0
J, we use the

relations

T̂k;0T̂l;1 ¼ T̂kþl;1 −
1

2
ikℏT̂kþl−1;0; ð42Þ

T̂k;1T̂l;1 ¼ T̂kþl;2 þ
1

2
iðl − kÞℏT̂kþl−1;1

þ 1

4
klℏ2T̂kþl−2;0; ð43Þ

which follow from the general ordering equations given in

[34] (or [37]). For fixed J, we can express the nonconstant

components of ξ̂J
0
≕ ξ̂0 as

ξ̂n
0 ¼ ℏ−n=4 ·

�

T̂n=2;0 if n even

ℏ1=4T̂ðn−3Þ=2;1 if n odd
ð44Þ

where 2 ≤ n ≤ 4J þ 1. Excluding (for now) the first row

and column of M̂J
0 which contain at most one factor of T̂m;n

and therefore do not require any reordering, this operator-

valued matrix has the components

M̂mn
0 ¼ ξ̂m

0ξ̂n
0† ¼ ℏ

−ðmþnÞ=4 ·

8

>

>

>

>

>

<

>

>

>

>

>

:

T̂ðmþnÞ=2;0 if m;n even

ℏ
1=4T̂ðm−3Þ=2;1T̂n=2;0 if moddandn even

ℏ
1=4T̂m=2;0T̂ðn−3Þ=2;1 if m evenandnodd

ℏ1=2T̂ðm−3Þ=2;1T̂ðn−3Þ=2;1 if m;nodd

¼ ℏ
−ðmþnÞ=4 ·

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

T̂ðmþnÞ=2;0 if m;neven

ℏ
1=4T̂ðmþn−3Þ=2;1 þ 1

4
inℏ5=4T̂ðmþn−5Þ=2;0 if moddandn even

ℏ1=4T̂ðmþn−3Þ=2;1 −
1
4
imℏ5=4T̂ðmþn−5Þ=2;0 if m evenandnodd

ℏ
1=2T̂ðmþn−6Þ=2;2 þ n−m

4
iℏ3=2T̂ðmþn−8Þ=2;1 þ ðm−3Þðn−3Þ

16
ℏ
5=2T̂ðmþn−10Þ=2;0 if m;nodd

ð45Þ

Taking expectation values and setting all Tm;n ¼ 0 unless m and n are even, we obtain

Mmn
0 ¼ ℏ

−ðmþnÞ=4 ·

8

>

>

>

>

>

<

>

>

>

>

>

:

TðmþnÞ=2;0 if m; n even

1
4
inℏ5=4Tðmþn−5Þ=2;0 if m odd andn even

− 1
4
imℏ

5=4Tðmþn−5Þ=2;0 if m even and n odd

ℏ
1=2Tðmþn−6Þ=2;2 þ 1

16
ðm − 3Þðn − 3Þℏ5=2Tðmþn−10Þ=2;0 if m; n odd

ð46Þ

Some components M0
mn are zero for certain values of m and n, which can be seen by refining the parametrization

such that m ¼ 4qþ α and n ¼ 4rþ β with integer q and r and 0 ≤ α; β ≤ 3. For fixed q and r, we obtain the 4 × 4

block
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ℏ
qþrM0

4qþα;4rþβ

¼

0

B

B

B

B

B

B

B

@

T2ðqþrÞ;0 −iqℏT2ðqþr−1Þ;0 0 0

irℏT2ðqþr−1Þ;0 T2ðqþr−1Þ;2 þ ðq− 1
2
Þðr− 1

2
Þℏ2T2ðqþr−2Þ;0 0 0

0 0 ℏ
−1T2ðqþrþ1Þ;0 −iðqþ 1

2
ÞT2ðqþrÞ;0

0 0 iðrþ 1
2
ÞT2ðqþrÞ;0 ℏ−1T2ðqþrÞ;2 þ qrℏT2ðqþr−1Þ;0

1

C

C

C

C

C

C

C

A

ð47Þ

where rows and columns are arranged according to the values of α and β. (The full 4 × 4-blocks appear in M0
J only for

q ≥ 1 and r ≥ 1, while parts of these blocks make up the first three rows and columns of M0
J.) Using (28) and (29), we

obtain the blocks

ℏ
qþrM0

4qþα;4rþβ

¼

0

B

B

B

B

B

B

B

@

aqþr −iqaqþr−1 0 0

iraqþr−1 ð2ðqþ rÞ− 1Þ−1aqþr þ ðq− 1
2
Þðr− 1

2
Þaqþr−2 0 0

0 0 aqþrþ1 −iðqþ 1
2
Þaqþr

0 0 iðrþ 1
2
Þaqþr ð2ðqþ rÞ þ 1Þ−1aqþrþ1 þ qraqþr−1

1

C

C

C

C

C

C

C

A

ð48Þ

If J ¼ 1, for instance, we have the matrix

M0
1 ¼

0

B

B

B

B

B

B

B

@

1 0 0 a1 0

0 a1
1
2
i 0 0

0 − 1
2
i a1 0 0

a1 0 0 a2 ia1

0 0 0 −ia1
1
3
a2 þ 1

4

1

C

C

C

C

C

C

C

A

: ð49Þ

It is block-diagonalized by identifying C† in (17) with the

vector C†

1 ¼ ð0; 0; a1; 0Þ:

L1M
0
1L

†

1 ¼

0

B

B

B

B

B

B

B

@

1 0 0 0 0

0 a1
1
2
i 0 0

0 − 1
2
i a1 0 0

0 0 0 a2 − a21 ia1

0 0 0 −ia1
1
3
a2 þ 1

4

1

C

C

C

C

C

C

C

A

: ð50Þ

Its determinant is equal to

detðL1M
0
1L

†

1Þ

¼ 1

4
ðλ=ℏþ 1=2Þ2ðλ=ℏ − 1=2Þ2ðλ=ℏþ 3=2Þðλ=ℏ − 3=2Þ

ð51Þ

using the solution a2 ¼ 3
2
ðλ2=ℏ2 þ 1=4Þ of the recurrence

relation (30).

3. Eigenvalues

For any J, we may block diagonalize M0
J as in Eq. (16),

except that each A0
n will be a 2 × 2 matrix since we are

working with the reduced matrix, M0
J. We then have

detðA0
nÞ ≥ 0 ð52Þ

for all n. For a fixed n, this inequality is a constraint

involving moments up to order 2n. All of these moments

can in turn be written in terms of λ using (27) and (30).

From explicit computations, we infer the general result

dn ¼ detðA0
nÞ ¼

1

4n−1

Y

n

k¼1

ðλ=ℏ − αkÞðλ=ℏþ αkÞ ð53Þ

where αk ¼ ð2k − 1Þ=2 are the odd half-integer multiples.

[The polynomial (51) is equal to d1d2.] Considered as a

function of λ, this expression has nodes at the αk up to some

maximum k that depends on the particular value of n.
Between nodes, the function is nonzero, and it alternates in

sign depending on the value of n. In particular, because

dnþ1 ¼ 1
4
dnðλ2=ℏ2 − α2kÞ implies sgndnþ1 ¼ −sgndn if

jλj=ℏ < αn, sending n → nþ 1 causes the sign to alternate.

This behavior combined with the non-negativity of detðA0
nÞ

implies that the only allowable values for λ occur at the

nodes. We can exclude negative values of λ by appealing to

the non-negativity of the first leading principal minor of A0
1

(which in this case is a 1 × 1 “block” consisting simply of

λ), which gives the constraint λ ≥ 0. We thus have that the

only possible values for λ are
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λ ¼ 1

2
ℏ;

3

2
ℏ;

5

2
ℏ;… ð54Þ

in agreement with the well-known eigenvalues of the

harmonic-oscillator Hamiltonian (divided by ω).

Since eigenvalues occur at the nodes of positivity

conditions, all excited states obey saturation conditions

of higher-order uncertainty relations. We will explore these

relations further in Sec. III, but first give an alternative

moment-based derivation of eigenvalues because we have

found it to be difficult to construct a general analytic proof

of our crucial equation (53).

C. Alternative derivation

We now present an alternative algebraic derivation of

eigenvalues and eigenstates of the harmonic oscillator that

appears to be more tractable but does not give as direct

access to saturation properties as the previous method. We

still impose the two main conditions stated at the beginning

of this section, Eq. (11) combined with positivity of states,

but do so in an alternative way. The recurrence relations for

moments will be replaced by recurrence relations for

coefficients of a suitable generating function, and positivity

will be evaluated by means of boundedness and continuity

of a certain expectation value of a 1-parameter family of

operators.

Given an energy eigenstate of the harmonic oscillator

with eigenvalue λ, consider the function

LλðγÞ ¼ hexp ðð1þ γÞq̂2=ℏÞiλ: ð55Þ

For fixed λ, this function of γ is well defined for γ ≤ −1

because exp ðð1þ γÞq̂2=ℏÞ is then an algebra element that

quantizes a bounded function, with Lλð−1Þ ¼ 1 by nor-

malization and limγ→−∞ LλðγÞ ¼ 0. (Any positive state is

continuous [38].) Positivity of the state also implies that

LλðγÞ increases monotonically. We will show that these

properties, implied by boundedness and positivity, can

replace the uncertainty relations used in the preceding

section in an algebraic derivation of eigenvalues. This

method can also be applied to nonharmonic systems,

including the standard hydrogen problem [32].

1. Recurrence relations

The moment expansion

LλðγÞ ¼
X

∞

j¼0

ℏ
−jhq̂2jiλ

ð1þ γÞj
j!

¼
X

∞

j¼0

aj
ð1þ γÞj

j!
ð56Þ

is readily obtained from the Taylor series of the

exponential function, followed by the identification

ℏ−jhq̂2ji ¼ ℏ−jT2j;0 ¼ aj according to (28). Using the

recursion relation (30) for the aj we obtain the differential

equation

3Lλ þ 3ð9þ 9γ þ 4λ=ℏÞL0
λ þ 8ð2þ λ=ℏ

þ γð6þ 3γ þ λ=ℏÞÞL00
λ þ 4γð1þ γÞð2þ γÞL000

λ ¼ 0

ð57Þ

where primes indicate derivatives by γ. Motivated by the

behavior of LλðγÞ as γ → −∞, we rewrite this function as

LλðγÞ ¼
X

∞

n¼0

αn;sð−γÞ−n−s ð58Þ

where the constant s takes into account a possible rootlike

pole at γ → −∞. The αn;s are then subject to the relation

8ðnþ sÞðnþ s − λ=ℏÞαn;s
− ð1þ 2nþ 2sÞðð3þ 6nþ 6s − 4λ=ℏÞαnþ1;s

− ð3þ 2nþ 2sÞαnþ2;sÞ ¼ 0:

Inserting n ¼ −1 and requiring that this sequence of

numbers terminates before n ¼ 0 in backwards recurrence

implies s ¼ 1
2
. With this knowledge we can rewrite L as

LλðγÞ ¼
X

∞

n¼0

Anð−γÞ−n−
1
2 ð59Þ

where An ¼ αn;1=2. The preceding recurrence relation then

turns into

ð1þ 2nÞð1þ 2n − 2λ=ℏÞAn

− 2ð1þ nÞðð3þ 3n − 2λ=ℏÞAnþ1 − ð2þ nÞAnþ2Þ ¼ 0:

ð60Þ

In the large-n limit, Eq. (60) simplifies to

4An − 6Anþ1 þ 2Anþ2 ¼ 0. Therefore, for very large n,
An ≈ c1 þ 2nc2. If c1 ≠ 0 or c2 ≠ 0, this asymptotic behav-

ior is problematic as it would cause

LλðγÞ≈
X

M−1

n¼0

Anð−γÞ−n−
1
2

þ
X

∞

n¼M

ðc1ð−γÞ−n−
1
2 þ 2nc2

�

−γÞ−n−1
2

�

¼
X

M−1

n¼0

Anð−γÞ−n−
1
2 − ð−γÞ12−M

�

c1

1þ γ
þ 2Mc2

2þ γ

�

ð61Þ

to diverge on values of γ, γ ¼ −1 and γ ¼ −2, where it

ought to be between zero and one.
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Therefore, both c1 and c2 have to be strictly zero: after a

certain n all the An should vanish. Let N be the lowest

integer such that AN ¼ 0. (Such an N always exists because

the normalization condition Lλð−1Þ ¼ 1 cannot be satisfied

if all An are zero.) We then obtain the consistency equation

ð2N − 1Þð2N − 1 − 2λ=ℏÞAN−1 ¼ 0 ð62Þ

from inserting n ¼ N − 1 in (60). By definition AN−1 is

nonzero. Combined with the fact thatN is an integer greater

than zero, we find the familiar spectrum (54).

2. Coefficients

Based on this result, the coefficients introduced in (59)

seem to be more tractable in the eigenvalue problem

compared with our original aj. These sets are strictly

related to each other, but not in a simple way. Using

Cauchy’s formula to invert (59), we first write

An ¼
ð−1Þnþ1

2π

I

jzj¼1

LλðzÞzn−
1
2dz

¼ ið−1Þnþ1
X

∞

j¼0

aj

2πj!

Z

2π

0

ð1þ eiθÞjeiðnþ1=2Þθdθ

¼ i
X

∞

j¼0

aj

πj!
Bð−1; nþ 1=2; jþ 1Þ ð63Þ

using also (58), where B is the incomplete beta function.

In order to check convergence, we write ð1þ eiθÞj ¼
2jeijθ=2 cosðθ=2Þj and show that the second factor can be

approximated as cosðθ=2Þj ≈ expð−jθ2=8Þ. It is straight-

forward to confirm that these two expressions match to

second order of a Taylor expansion in θ around θ ¼ 0. The

local maxima of the difference of cosðθ=2Þj and

expð−jθ2=8Þ are at some θmax such that

0 ¼ ∂θðcosðθ=2Þj − expð−jθ2=8ÞÞθ¼θmax

¼ j

4
ðθmax expð−jθ2max=8Þ − 2 tanðθmax=2Þ cosðθmax=2ÞjÞ

or

cosðθmax=2Þj ¼
θmax=2

tanðθmax=2Þ
expð−jθ2max=2Þ:

Therefore, the difference is bounded by

Δj ≔ sup
θ∈½−π;π�

j cosðθ=2Þj − expð−jθ2=8Þj

¼ j cosðθmax=2Þj − expð−jθ2max=8Þj

¼
�

1 −
θmax=2

tanðθmax=2Þ

�

expð−jθ2max=8Þ:

This expression goes to zero for large j because of the

exponential factor, unless θmax → 0 in which case the first

factor in Δj approaches zero. We conclude that the differ-

ence of the two functions cosðθ=2Þj and expð−jθ2=8Þ
converges to zero in L∞½−π; π� when j goes to infinity.

Now, writing

ð1þ eiθÞj ≤ 2j expð−jθ2=8þ ijθ=2Þ þ 2jeijθ=2Δj

in the incomplete beta function and using

ð−1Þn
R

π
−π expðiðnþ ðjþ 1Þ=2ÞθÞdθ ≤ 2π, we have

B

�

−1;nþ1

2
;jþ1

�

¼ð−1Þn
2

Z

π

−π

ð1þeiθÞjeiðnþ1=2Þθdθ

≤
ð−1Þn
2

Z

∞

−∞

2j expð−jθ2=8þ ijθ=2Þeiðnþ1=2Þθdθþ2jπΔj

¼
ffiffiffiffiffiffi

2π
p

ð−1Þn 2j
ffiffi

j
p exp

�

−
ð1þ jþ2nÞ2

2j

�

þ2jπΔj:

ð64Þ

The first term goes to zero for fixed n and large j. From the

recursion relation for the aj, we then see that the series (63)

for An has to converge as well, as the numerator grows at

most exponentially with j, while the denominator contains

a j!.
Conversely, we have

aj ¼
�

dj

dγj
LλðγÞ

��

�

�

�

γ¼−1

¼
X

∞

n¼0

An

�

dj

dγj
ð−γÞ−n−1

2

��

�

�

�

γ¼−1

¼ ð−1Þj
X

∞

n¼0

An

�

−n −
1

2

�ðjÞ
ð65Þ

where xðnÞ is the nth Pochhammer polynomial. As we have

seen, only a finite number of the An are nonzero, and

therefore this sum is clearly well defined.

3. Probability density

The alternative method based on (55) allows a more

direct derivation of the probability density of eigenstates

compared with reconstruction from the moments of

Sec. II B.

In order to reconstruct the probability density of the Nth

energy level, we first solve the recurrence relation for the

coefficients An. Once N is fixed for a given eigenstate, we

know that the Nth coefficient, AN , is the highest nonzero

one. Its exact value will be fixed later by normalization.

Running through the recursion relation (60) with the known

eigenvalue λ ¼ ℏðN þ 1
2
Þ, we can then work backward,

starting with n ¼ N − 1, until we reach the 0th coefficient

MOMENTS AND SATURATION PROPERTIES OF EIGENSTATES: … PHYS. REV. D 103, 126005 (2021)

126005-9



A0 using (60) for n ¼ 0. After that, the recurrence termi-

nates automatically: For n ¼ −1 in (60), we obtain A−1 ¼ 0

because of an overall factor of (1þ n) in the second part of
(60), and for n ¼ −2 we obtain A−2 ¼ 0 because A−1 is

zero, as just shown, and there is a factor of (nþ 2) in front

of the A0 ¼ Anþ2 in this case. All coefficients of orders less

than −2 then vanish because the recurrence is of second

order. As an example, we consider N ¼ 4 and find

A3 ¼ −
12

7
A4;

A2 ¼
6

5
A4;

A1 ¼ −
12

35
A4;

A0 ¼
3

5
A4:

The coefficients An then determine the function LλðγÞ, in
which we can impose normalization by requiring

Lλð−1Þ ¼ hIiλ ¼ 1. Continuing with our example of

N ¼ 4, we find

Lλ4
¼ 35þ 60γ þ 42γ2 þ 12γ3 þ 3γ4

8ð−γÞ9=2 : ð66Þ

The probability density then requires an inversion

of the integral that defines the expectation value taken

in LλðγÞ.

In order to do so, we first note that the Hamiltonian

commutes with the parity operator, such that the probability

density of any eigenstate has to be even. We therefore

write

LλðγÞ ¼ 2

Z

∞

0

exp

�

1þ γ

ℏ
x2
�

PλðxÞdx ð67Þ

in order to introduce the probability density PλðxÞ.
Substituting u ¼ x2 and t ¼ −ð1þ γÞ=ℏ, where all expres-
sions are well defined if ReðtÞ > 0, we obtain

Lλð−1 − ℏtÞ ¼
Z

∞

0

e−tu
Pλð

ffiffiffi

u
p Þ
ffiffiffi

u
p du: ð68Þ

The probability density is therefore obtained by an inverse

Laplace transform, for which we can use Mellin’s inverse

formula (with a suitable δ):

PλðxÞ ¼
x

2πi
lim
T→∞

Z

δþiT

δ−iT

etx
2

Lλð−1 − ℏtÞdt

¼
X

N

n¼0

x

2πi
lim
T→∞

Z

δþiT

δ−iT

etx
2

Anð1þ ℏtÞ−n−1
2dt

¼
X

N

n¼0

Ann!ð2xÞ2n expð−x2=ℏÞ
ffiffiffi

π
p ð2nÞ!ℏnþ1

2

: ð69Þ

Proceeding again for our example of N ¼ 4, we have

Pλ4
ðxÞ ¼ expð−x2=ℏÞ

ffiffiffiffiffiffi

πℏ
p

�

3

8
−
12

8

2x2

ℏ
þ 42

8

4x4

3ℏ2
−
60

8

8x6

15ℏ3
þ 35

8

16x8

105ℏ4

�

¼ expð−x2=ℏÞ
24

ffiffiffiffiffiffi

πℏ
p

�

3 − 12
x2

ℏ
þ 4

x4

ℏ

�

2

¼ expð−x2=ℏÞ
ffiffiffiffiffiffi

πℏ
p

244!
H4

�

x
ffiffiffi

ℏ
p

�

2

¼ jψ4ðxÞj2: ð70Þ

The method introduced in the present subsection is more

efficient than the moment method, and perhaps more

powerful because it provides a more direct route to

probability densities of eigenstates. However, the key

definition (55) of the function LλðγÞ was made with the

benefit of knowing that the operator expðð1þ γÞq̂2=ℏÞ
should be useful, based on the known form of wave

functions for harmonic-oscillator eigenstates. While this

alternative method is fully algebraic, just like the moment

method, it is not completely independent of standard

derivations of eigenstates.

We note at this point that other algebraic derivations

of eigenvalues and eigenstates of the harmonic oscillator

exist in the literature, such as [39]. However, they

are based on ladder operators in Hilbert space and

therefore require representations of the algebra of

observables.

III. SATURATION OF INEQUALITIES

An interesting result that emerges from the solutions in

Sec. II B is a saturation property of the first n eigenstates

that obey dn ¼ 0, and therefore saturate the generalized

uncertainty relation detðA0
nÞ ≥ 0 given in (53). For n ¼ 1,

this condition is just the well-known statement that the

harmonic-oscillator ground state saturates Heisenberg’s

uncertainty relation. For each n > 1, we have an inequality

involving higher moments that is saturated by the first n

eigenstates. (This saturation property is different from the

one found in [40]. Moreover, it sharpens a saturation

property found in [37], which is true for all energy

eigenstates of the harmonic oscillator.) Motivated by this

finding, we return to the full generalized uncertainty

principle and analyze its behavior for the harmonic oscil-

lator eigenstates, as well as related properties.
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A. Principal minors and pure states

As is evident from our derivations in the previous

section, we need to make use of only a submatrix of

MJ, corresponding to moments in ξ̂J
0 with at most one

insertion of a momentum operator. [A related computa-

tional fact is that MJ has an eigenvalue zero with degen-

eracyD ¼ Jð2J − 1Þ.] Computational experiments indicate

that the remaining conditions do not impose additional

restrictions on the allowed values of λ, which is consistent

with the fact that (54) is the full set of harmonic-oscillator

eigenvalues.

Still, for an application of the method without prior

knowledge of the spectrum, it would be of interest to

understand these features in more detail. In particular, it

remains unclear to us how a suitable subset of independent

inequalities can be selected from the generalized uncer-

tainty principle that would be sufficient for determining all

eigenstates of a given Hamiltonian.

The observation that the matrices M0
J suffice to find all

relevant conditions on eigenvalues can be interpreted as

follows: For pure states, the moments Tm;0 ¼ hq̂mi allow

one to reconstruct the norm of the wave function according

to the Hamburger problem, while the additional moments

Tn;1 ¼ hq̂np̂i with a single momentum operator can be

used to determine the phase; see for instance [6,41]. The

other moments are therefore not independent parameters if

the state is known to be pure. (They would be independent

for mixed states.) The observation that M0
J suffices to find

all conditions on eigenvalues, at least for the harmonic

oscillator, can therefore be interpreted as saying that mixed

states cannot provide eigenstates in this case.

B. Saturation from ladder operators

With hindsight, it is possible to obtain a saturation result

for energy eigenstates of the harmonic oscillator by means

of the usual ladder operators,

â ¼ 1
ffiffiffiffiffiffi

2ℏ
p ðq̂þ ip̂Þ; â† ¼ 1

ffiffiffiffiffiffi

2ℏ
p ðq̂ − ip̂Þ: ð71Þ

(We still assume m ¼ 1 and ω ¼ 1.) Let â be the lowering

operator and take

f̂ ¼ ân þ â†n; ĝ ¼ ân − â†n: ð72Þ

If a state jψi is a linear combination of the first n
eigenstates of the harmonic oscillator, then

f̂jψi ¼ −ĝjψi, which implies hf̂†f̂ihĝ†ĝi ¼ hf̂†ĝihĝ†f̂i.
Thus, the Cauchy-Schwarz inequality

hf̂†f̂ihĝ†ĝi ≥ jhf̂†ĝij2 ð73Þ

is saturated. Explicit expressions for given n imply higher-

order uncertainty relations, which must then also be

saturated by the first n energy eigenstates of the harmonic

oscillator.

The first three inequalities obtained in this way are as

follows. The nth inequality is saturated by any linear

combination of the first n harmonic-oscillator eigenstates.

For n ¼ 1,

hq̂2ihp̂2i ≥ ℏ
2=4þ hq̂ p̂i2Weyl ð74Þ

for n ¼ 2,

ðhp̂4i þ hq̂4i − 2hp̂2q̂2iWeyl þ ℏ
2Þ
�

hp̂2q̂2iWeyl þ
ℏ
2

4

�

≥ ℏ
2ðhp̂2i þ hq̂2iÞ2 þ ðhp̂q̂3iWeyl − hp̂3q̂iWeylÞ2 ð75Þ

and for n ¼ 3,

�

1

9
hq̂6i − 2

3
hp̂2q̂4iWeyl þ hp̂4q̂2iWeyl þ ℏ

2hq̂2i þ ℏ
2hp̂2i

��

1

9
hp̂6i − 2

3
hp̂4q̂2iWeyl þ hp̂2q̂4iWeyl þ ℏ

2hp̂2i þ ℏ
2hq̂2i

�

≥ ℏ
2

�

ℏ
2

3
þ 1

2
hp̂4i þ 1

2
hq̂4i þ hp̂2q̂2iWeyl

�

2

þ
�

1

3
hp̂5q̂iWeyl þ

1

3
hp̂q̂5iWeyl −

10

9
hp̂3q̂3iWeyl

�

2

: ð76Þ

Except for n ¼ 1, there is no obvious relationship with

minors of the matrices M0
J introduced in (35), which were

found to be relevant for eigenstates in our previous analysis.

C. Generalized coherent states

The saturation property of the harmonic-oscillator

ground state, which by definition satisfies âψ ¼ 0, is

maintained by coherent states defined by
ffiffiffiffiffiffi

2ℏ
p

âψ ¼ αψ

with a complex number α ¼ hq̂i þ ihp̂i. Similarly, satu-

ration properties of higher-order uncertainty relations

obeyed by the first n − 1 excited states, all subject to the

condition ânψ ¼ 0, can be maintained by generalized

coherent states, for which

ð
ffiffiffiffiffiffi

2ℏ
p

âÞnψ ¼ αnψ : ð77Þ

We will first show that these generalized coherent states

indeed obey higher-order uncertainty relations.

As in the case of α ¼ 0 in the preceding subsection, we

introduce two new operators, f̂ ≔ ð2ℏÞn=2ðân þ â†nÞ − αn

MOMENTS AND SATURATION PROPERTIES OF EIGENSTATES: … PHYS. REV. D 103, 126005 (2021)

126005-11



and ĝ ≔ ð2ℏÞn=2ðân − â†nÞ − αn. In a state ψ that satisfies

(77), we again obtain f̂ψ ¼ −ĝψ and therefore

hf̂†f̂ihĝ†ĝi ¼ hf̂†ĝihĝ†f̂i ¼ jhf̂†ĝij2 ð78Þ

saturating (73) as before.

The form of these uncertainty relations saturated by a

generalized coherent state depends on the parameter

α ¼ hq̂i þ ihp̂i. For instance, for n ¼ 1, we do not directly

obtain the standard uncertainty relation but rather compute

hf̂†f̂i ¼ h4q̂2 − 2ðαþ α�Þq̂þ jαj2i
¼ 4ðΔqÞ2 þ hq̂i2 þ hp̂i2; ð79Þ

hĝ†ĝi ¼ 4ðΔpÞ2 þ hq̂i2 þ hp̂i2; ð80Þ

hf̂†ĝi ¼ 4ihq̂ p̂i − 2ðαhq̂i þ iα�hp̂iÞ þ jαj2

¼ iCqp − 2ℏ − hq̂i2 − hp̂i2; ð81Þ

with the covariance Cqp ¼ ΔðqpÞ. The saturated uncer-

tainty relation obtained immediately from (78) then takes

the form

ðΔqÞ2ðΔpÞ2 − C2
qp

þ 1

4
ðhq̂i2 þ hp̂i2ÞððΔqÞ2 þ ðΔpÞ2 − ℏÞ ¼ 1

4
ℏ
2: ð82Þ

This equation is equivalent to saturation of the standard

uncertainty relation because ðΔqÞ2 ¼ ℏ=2 ¼ ðΔpÞ2 in a

coherent state such that (77) holds with n ¼ 1.

It is possible to evaluate the condition for generalized

coherent states explicitly in terms of energy eigenstates,

following the usual procedure for n ¼ 1. We will denote

these states as jα; ki, anticipating the presence of a second

(integer) parameter k because the condition (77) does not

uniquely determine a state for n > 1 even if α has been

fixed. Using the energy eigenstates jmi as a basis, we first
compute, for integer 0 ≤ l < k, the inner products

hknþ ljα; ki ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðknþ lÞ!
p ððâ†Þknþlj0iÞ†jα; ki

¼ 1

ð2ℏÞkn=2
αkn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðknþ lÞ!
p h0jâljα; ki

¼ αkn

ð2ℏÞkn=2

ffiffiffiffiffi

l!
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðknþ lÞ!
p hljα; ki

≕ αkn

ffiffiffiffiffi

l!
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðknþ lÞ!
p Cl ð83Þ

with k independent constants Cl (which are related to one

another only by normalization). We then write

jα; ki ¼
X

∞

m¼0

hmjα; kijmi

¼
X

k−1

l¼0

Cl

ffiffiffiffiffi

l!
p X

∞

n¼0

αkn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðknþ lÞ!
p jknþ li

¼
X

k−1

l¼0

Cl

ffiffiffiffiffi

l!
p

αl

X

∞

n¼0

ðαâ†Þknþl
ðknþ lÞ! j0i: ð84Þ

The infinite series
P

∞
n¼0ðαâ†Þknþl=ðknþ lÞ! in this last

expression is related to the exponential function applied to

multiples of αâ†, but it is not a single such function because
n in the usual series is replaced here by knþ l. The series

encountered here therefore makes use of only a subset of

the expansion terms of a single exponential function. Using

the basic kth root of unity uk ¼ e2πi=k, it is possible to write
our series as a superposition of exponential functions,

X

∞

n¼0

ðαâ†Þknþl
ðknþ lÞ! ¼

1

k

X

k−1

j¼0

u
−jl
k expðujkαâ†Þ ð85Þ

in which coefficients have been chosen so as to make

unwanted terms cancel out. Indeed,

X

k−1

j¼0

u
−jl
k expðujkαâ†Þ ¼

X

∞

N¼0

1

N!

�

X

k−1

j¼0

u
jðN−lÞ
k

�

ðαâ†ÞN ð86Þ

implies the desired Eq. (85) because

X

k−1

j¼0

u
jðN−lÞ
k ¼

�

k if N −l¼ kn for some integern

0 otherwise
ð87Þ

thanks to properties of roots of unity, uk.
We can therefore continue our derivation of jα; ki and

write

jα; ki ¼
X

k−1

l¼0

Cl

ffiffiffiffiffi

l!
p

αl
1

k

X

k−1

j¼0

u
−jl
k expðujkαâ†Þj0i

¼ 1

k
e
1
2
jαj2

X

k−1

j¼0

Djjujkαi ð88Þ

with the standard coherent states jβi ¼ e−
1
2
jβj2 expðβâ†Þj0i

and new constants

Dj ¼
X

k−1

l¼0

ffiffiffiffiffi

l!
p

αl
u
−jl
k Cl: ð89Þ

Multiplying the parameter α ¼ hq̂i þ ihp̂i of a standard
coherent state with a power of a basic root of unity uk in the

superposed coherent states jujkαi of (88) rotates the peak

position ðhq̂i; hp̂iÞ in phase space by a multiple of a fixed
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angle 2π=k. According to (88), a generalized coherent state
jα; ki is therefore a superposition of k standard coherent

states with peaks ðhq̂i; hp̂iÞ placed at equal distances on a

circle of radius jαj. The kth eigenstate of the harmonic

oscillator is the limit of such a state in which these peaks

approach one another at the center, for suitable Cl. Using

[42], these generalized coherent states are the same as those

introduced by Titulaer and Glauber in [33]; see also [43].

However, to the best of our knowledge, the relation to

saturated uncertainty relations and energy eigenstates

is new.

IV. ANHARMONIC OSCILLATORS

We now demonstrate that the methods developed in

Sec. II can be used to find perturbed eigenvalues

for an anharmonic oscillator. Here we take

H ¼ 1
2
ðq2 þ p2Þ þ ϵq4.

A. Moment method

Using the same techniques as for the harmonic oscillator

(but now setting ℏ ¼ 1), we obtain the following recurrence

relations for the moments:

Tmþ2;n þ Tm;nþ2 −
nðn − 1Þ

4
Tm;n−2 −

mðm − 1Þ
4

Tm−2;n − 2λTm;n

þ ϵ

�

2T̂mþ4;n − 3nðn − 1ÞTmþ2;n−2 þ
1

8
nðn − 1Þðn − 2Þðn − 3ÞTm;n−4

�

¼ 0 ð90Þ

and

mT̂m−1;nþ1 ¼ nT̂mþ1;n−1

þ ϵð4nT̂mþ3;n−1 − nðn − 1Þðn − 2ÞTmþ1;n−3Þ:
ð91Þ

Setting n ¼ 0 in (90) and n ¼ 1 in (91) while shifting m
to mþ 1, and combining to eliminate Tm;2 gives

ðmþ 2Þ
ðmþ 1ÞTmþ2;0 − 2λTm;0 −

mðm − 1Þ
4

Tm−2;0

þ 2ϵ
ðmþ 3Þ
ðmþ 1ÞTmþ4;0 ¼ 0: ð92Þ

Then using (91) with n shifted to nþ 1 and m to m − 1

results in

Tm−2;nþ2 ¼
ðnþ 1Þ
ðm − 1ÞTm;n

þ ϵ

�

4
ðnþ 1Þ
ðm − 1ÞTmþ2;n −

ðnþ 1ÞðnÞðn − 1Þ
ðm − 1Þ Tm;n−2

�

:

ð93Þ

We now assume an expansion for the moments in powers

of ϵ

Tm;n ¼
X

k

T
ðkÞ
m;nϵ

k ð94Þ

and similarly for the eigenvalues,

λ ¼
X

k

λðkÞϵ
k: ð95Þ

Using Eqs. (92)–(95), we can solve order by order for the

moments in terms of the λðkÞ.
For the odd moments, we first note that, at zeroth order,

all of them are zero (as we know well from the harmonic

oscillator):

T
ð0Þ
odd;odd ¼ T

ð0Þ
odd;even ¼ T

ð0Þ
even;odd ¼ 0: ð96Þ

Then setting m ¼ 0 and n ¼ 1 in (91) gives T
ð1Þ
1;0 ¼ 0.

Using this and (92) with m odd gives T
ð1Þ
odd;0 ¼ 0. Taking

n ¼ 0 in (91) gives Tm;1 ¼ 0 at all orders in ϵ. Combining

these two results with (93) implies that the rest of the odd

moments vanish:

T
ð1Þ
odd;odd ¼ T

ð1Þ
odd;even ¼ T

ð1Þ
even;odd ¼ 0: ð97Þ

We can apply this argument repeatedly to find that the odd

moments vanish at all orders in ϵ.

Using the recurrence relations following the procedure

detailed in Sec. II, we find to first order in ϵ

detðA0
1Þ ¼

�

λð0Þ −
1

2

��

λð0Þ þ
1

2

�

−
1

4
ϵλð0Þð12λ2ð0Þ − 8λð1Þ þ 3Þ þOðϵ2Þ; ð98Þ

detðA0
2Þ ¼

1

4

�

λð0Þ −
3

2

��

λð0Þ −
1

2

��

λð0Þ þ
1

2

��

λð0Þ þ
3

2

�

−
1

32
ϵλð0Þð80λ4ð0Þ − 32ðλð1Þ þ 4Þλ2ð0Þ

þ 40λð1Þ þ 3Þ þOðϵ2Þ: ð99Þ

At zeroth order in ϵ, we recover our results for the

harmonic oscillator. Setting λð0Þ ¼ 1=2, we find
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detðA0
1Þ ¼ ϵ

�

λð1Þ −
3

4

�

þOðϵ2Þ; ð100Þ

detðA0
2Þ ¼ ϵ

�

3

8
−
1

2
λð1Þ

�

þOðϵ2Þ: ð101Þ

Positivity of these determinants then yields λð1Þ ≥ 3=4 and

λð1Þ ≤ 3=4. Hence, λð1Þ ¼ 3=4. Performing the same proc-

ess with detðA0
2Þ and detðA0

3Þ using λð0Þ ¼ 3=2 yields

λð1Þ ¼ 15=4. Thus we have

E0 ¼
1

2
þ 3

4
ϵþOðϵ2Þ; ð102Þ

E1 ¼
3

2
þ 15

4
ϵþOðϵ2Þ ð103Þ

in agreement with the results from ordinary perturbation

theory.

Note that at first order in ϵ, the energy eigenstates

saturate the inequalities just as they did for the harmonic

oscillator. Computations at higher order indicate that

similar saturation results hold at each order in perturbation

theory, although for higher orders in ϵ, one must go to

higher n in order for detðA0
nÞ ≥ 0 to be saturated.

B. Commutator method

An alternative route to perturbated eigenvalues, which

may sometimes be more feasible, proceeds by applying

suitable commutator relationships. Following [7], we can

derive recurrence relations for moments of energy

eigenstates: We have hnj½Ĥ; Ŵ�jni ¼ 0 for any operator

Ŵ, with eigenstates jni of Ĥ ¼ 1
2
m−1p̂2 þ Vðq̂Þ. Choosing

Ŵ1 ¼ q̂k−2 and Ŵ2 ¼ q̂k−1p̂, respectively, for some fixed

k, we obtain

½Ĥ;Ŵ1� ¼−iℏ
k−2

m
q̂k−3p̂−ℏ

2
ðk−2Þðk−3Þ

2m
q̂k−4; ð104Þ

½Ĥ; Ŵ2� ¼−2iℏðk− 1Þq̂k−2ðĤ−Vðq̂ÞÞ

−ℏ
2
ðk− 1Þðk− 2Þ

2m
q̂k−3p̂þ iℏq̂k−1V 0ðq̂Þ: ð105Þ

We combine these two equations (set equal to zero) and

(divided by iℏ) write

0 ¼ −2ðk − 1ÞEnhq̂k−2in þ 2ðk − 1Þhq̂k−2Vðq̂Þin

− ℏ
2
ðk − 1Þðk − 2Þðk − 3Þ

4m
hq̂k−4in þ hq̂k−1V 0ðq̂Þin:

ð106Þ

For a quartic anharmonicity, such that

VðqÞ ¼ 1
2
mω2q2 þ ϵq4, we have

0 ¼ −2ðk − 1ÞEnhq̂k−2in

− ðk − 1Þðk − 2Þðk − 3Þ ℏ
2

4m
hq̂k−4in

þmω2khx̂kin þ 2ϵðkþ 1Þhq̂kþ2in: ð107Þ

Starting with k ¼ 1, the first four recurrence steps are

0 ¼ mω2hq̂in þ 4ϵhq̂3in; ð108Þ

0 ¼ −2En þ 2mω2hq̂2in þ 6ϵhq̂4in; ð109Þ

0 ¼ −4Enhq̂in þ 3mω2hq̂3in þ 8ϵhq̂5in; ð110Þ

0 ¼ −6Enhq̂2in −
3ℏ2

2m
þ 4mω2hq̂4in þ 10ϵhq̂6in: ð111Þ

Assuming ϵ to be small and expanding hq̂kin ¼
P

∞
j¼0hq̂kin;jϵj, we have hq̂in;0 ¼ 0 from (108), which

implies hq̂3in;0 ¼ 0 from (110), such that hq̂in;1 ¼ 0

from (108).

For even powers, hq̂2in;0 ¼ En=mω2 from (109) and

hq̂4in;0 ¼ 3
2
E2
n=m

2ω4 þ 3
8
ℏ
2=m2ω2 from (111). This value

then appears in hq̂2in;1 ¼ −3hx̂4in;0=mω2 from (109). We

obtain some of the moments including p̂ from (104) and

(105). Setting k ¼ 4 in (104) shows that hq̂ p̂þp̂ q̂in ¼ 0

in all energy eigenstates. Setting k ¼ 2 in (105) and not

using Ĥjni ¼ En implies

hp̂2in ¼ mhq̂V 0ðq̂Þin ¼ m2ω2hq̂2in þ 4mϵhq̂4in; ð112Þ

the final equality for our anharmonic oscillator. Using the

results for low orders of q moments, we have

hp̂2in;0 ¼ m2ω2hq̂2in;0 ¼ mEn; ð113Þ

hp̂2in;1 ¼ m2ω2hq̂2in;1 þ 4mhq̂4in;0 ¼ mhq̂4in;0: ð114Þ

To first order in ϵ, we therefore compute

hq̂2in ¼ hq̂2in;0 þ ϵhq̂2in;1 þOðϵ2Þ

¼ En

mω2
−

9ϵ

8m3ω6
ð4E2

n þ ℏ
2ω2Þ þOðϵ2Þ; ð115Þ

hp̂2in ¼ hp̂2in;0 þ ϵhp̂2in;1 þOðϵ2Þ

¼ mEn þ
3ϵ

8mω4
ð4E2

n þ ℏ
2ω2Þ þOðϵ2Þ: ð116Þ

The uncertainty relation implies

hq̂2inhp̂2in ¼
E2
n

ω2
−

3ϵEn

4m2ω6
ð4E2

n þ ℏ
2ω2Þ þOðϵ2Þ ≥ ℏ

2

4
:

ð117Þ
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At zeroth order in ϵ, this implies En ≥
1
2
ℏω. If we use an ϵ

expansion of En ¼
P

∞
j¼0 En;jϵ

j at this stage, we obtain

En ≥
1

2
ℏωþ 3

4

ϵℏ2

m2ω2
þOðϵ2Þ: ð118Þ

The present formulas indicate that neither the moments

nor the uncertainty relations and bounds on eigenvalues are

analytic in ω, such that we cannot take a ω → 0 limit for a

single quartic potential.

V. DISCUSSION

We have presented a new method that allowed us to

rederive known results about energy eigenvalues using only

properties of the algebra of observables. The results are

therefore representation independent, and the method can

be applied to systems that do not have a Hilbert-space

representation, for instance owing to violations of associa-

tivity. Even in standard, associative quantum mechanics,

we have been able to derive new results related to how

excited states saturate higher-order uncertainty relations, as

well as connections between excited states and generalized

coherent states.

As stated at the beginning of Sec. II, an algebraic

derivation of eigenvalues imposes two conditions,

Eq. (11) as well as positivity of a state. The first condition,

assuming some fixed eigenvalue λ, implies recurrence

relations for moments of an eigenstate, or for expectation

values of polynomials of basic operators. Depending on

how these relations are set up, they may pose various

challenges to finding sufficiently general solutions. In

particular, if anharmonicity is introduced, independent

recurrence relations in this system are more strongly

coupled to one another, complicating the solution process.

Such difficulties can be addressed in two ways: First, a

perturbative treatment may use solutions known for a less-

coupled system to introduce approximate corrections for

the more coupled one. We have demonstrated this option

for anharmonic oscillators, which also by general methods

require perturbation theory or numerical methods for a

determination of eigenvalues. Secondly, it may be possible

to rearrange the recurrence relations in a more suitable form

that makes them solvable. There is no systematic method

for decoupling recurrence relations with nonconstant coef-

ficients, as we are dealing with here. However, it may be

possible to take some inspiration from other known proper-

ties of the given system and introduce convenient generat-

ing functions through expectation values of suitable

operators. Here, we have demonstrated this method

for the same harmonic oscillator used for the first method,

but its broader applicability has already been shown

by a successful application to the standard hydrogen

problem [32].

At the current stage of developments, the general range

of applicability of algebraic methods to derive eigenvalues

is far from being completely circumscribed. In addition to

reorganizing recurrence relations by means of suitable

expectation values as generating functions, we mention

the possibility of using ladder-type operators for non-

harmonic systems. Since our harmonic-oscillator example

in Sec. III showed how properties of ladder operators may

be related to saturation properties similar to those we found

with our first method, such algebraic derivations may have

a range of applicability beyond strictly harmonic or

perturbative anharmonic systems, but a detailed extension

requires further work.

We finally discuss the possibility that not only the

tractability but even the overall applicability of our methods

may be limited, depending on the Hamiltonian Ĥ whose

eigenvalues are to be determined. To see this, we go back to

the starting point of our method, given by the algebraic

definition (11), or

hÂðĤ − λIÞiλ ¼ 0; ð119Þ

for an eigenstate jiλ with eigenvalue λ, which has to be

satisfied for all algebra elements Â. In particular, the

definition is tailored to strict eigenstates which are normal-

izable since hIiλ must be finite for the equation to be

meaningful for all Â (including Â ¼ I). The method can

therefore be used only for eigenvalues in the discrete part of

the spectrum of Ĥ.

If we try to work out the algebraic conditions for

eigenstates in simple cases which are known to imply

continuous spectra, we can easily find inconsistencies. For

instance, taking Ĥ ¼ p̂ as the momentum operator of a

particle on the real line and Â ¼ q̂ in (119), we obtain the

equation

Imhq̂ðp̂ − λIÞi ¼ 1

2i
h½q̂; p̂�i ¼ 1

2
ℏ ð120Þ

while the eigenvalue condition for λ would require the left-

hand side to equal zero.

For the free-particle Hamiltonian, Ĥ ¼ p̂2, we obtain

hp̂2i − λ ¼ 0 from (119) with Â ¼ I, and

Imhq̂ p̂ðp̂2 − λIÞi ¼ 1

2i
h½q̂; p̂3� − λ½q̂; p̂�i

¼ 1

2
ℏð3hp̂2i − λÞ ¼ 0 ð121Þ

from Â ¼ q̂ p̂. Combining these two equations, only λ ¼ 0

is allowed, such that hp̂2i ¼ 0. However,

Imhq̂ðp̂2 − λIÞi ¼ 1

2i
h½q̂; p̂2�i ¼ ℏhp̂i ¼ 0 ð122Þ

then implies ðΔpÞ2 ¼ 0, which is not consistent with

Heisenberg’s uncertainty relation.
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It is not surprising that an algebraic method for comput-

ing eigenvalues fails for operators that have a continuous

spectrum in an irreducible representation on a separable

Hilbert space (spanned by a countable basis) because the

corresponding eigenfunctions require a generalized inter-

pretation as distributions. However, it is possible for an

operator to have a continuous spectrum with normalizable

eigenfunctions if the Hilbert space is not separable or if the

representation is not irreducible. (The set of eigenvalues by

itself does not uniquely determine whether it is discrete or

continuous because the real line can be equipped with

discrete or continuous topologies.)

Since the algebraic condition for the spectrum is repre-

sentation independent, an algebra that has a continuous

family of inequivalent irreducible representations, or one

that can be represented on a nonseparable Hilbert space

may lead to a continuous set of eigenvalues for normal-

izable eigenstates. In this case, (119) would be well defined

even if it permits a continuous range of values for λ. As an

example, consider a particle moving on a circle. The

corresponding algebra can be generated by three basic

operators, p̂, Ŝ and Ĉ, with relations ½p̂; Ŝ� ¼ −iℏĈ,

½p̂; Ĉ� ¼ iℏŜ and ½Ĉ; Ŝ� ¼ 0. (The operators Ŝ and Ĉ
quantize the sine and cosine of the angle.) This linear

algebra has the Casimir element K̂ ¼ Ŝ2 þ Ĉ2 which we

may require to equal K̂ ¼ I as a further relation in the

generated algebra. Our Hamiltonian is Ĥ ¼ p̂.
The condition hp̂n−1ðĤ − λÞi ¼ 0 for n ≥ 1 implies that

hp̂ni ¼ λn ¼ hp̂in, and therefore all central p moments

hðp̂ − hp̂iÞni ¼ 0 vanish. More generally, it follows that

hÂðp̂ − hp̂iÞi ¼ hÂðĤ − λÞi ¼ 0 for all Â. All generalized
uncertainty relations are therefore identically satisfied

because the lower bound in the Cauchy-Schwarz inequality

(1), without loss of generality applied to an operator b̂ that

contains at least one factor of p̂ − hp̂i, is always zero for

eigenstates. For any real λ, there is therefore an eigenstate

with this eigenvalue.

This result is in agreement with Hilbert-space represen-

tations of the algebra, which are not unique up to unitary

equivalence. Its inequivalent irreducible representations are

labeled by a real number 0 ≤ ϵ < 1, such that the momen-

tum spectrum in the representation determined by ϵ is

Zþ ϵ. The direct sum of all inequivalent irreducible

representations is a reducible representation of the algebra

on a nonseparable Hilbert space. In this reducible repre-

sentation, which contains all inequivalent irreducible ones,

the spectrum of p̂ contains all real numbers λ as eigen-

values, but it is still discrete because eigenfunctions of p̂ are

normalizable.

We have obtained the same result in our algebraic

derivation, which is representation-independent and there-

fore implicitly takes into account all irreducible represen-

tations. Comparing with our first example of a continuous

spectrum (the standard momentum operator for a particle

on the real line), we see that the algebraic treatment

correctly recognizes the important distinction between a

continuous and discrete spectrum: For a continuous spec-

trum (particle on the real line), the algebraic equations have

no consistent solution owing to a lack of normalizability of

eigenfunctions. For a discrete spectrum (particle on a

circle), the algebraic equations show that all real numbers

may consistently be realized as eigenvalues. This distinc-

tion is subtle in algebraic form because it is usually based

on properties of Hilbert-space representations, in particular

on normalizability of eigenfunctions.

As these examples demonstrate, the spectrum cannot

always be fully analyzed based on the algebraic condition

(119), unless it is strictly discrete. As a consequence, it

remains an open question how the continuous spectrum

could be defined in nonassociative quantum mechanics.
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APPENDIX: EIGENVALUES IN A FERMIONIC

SYSTEM

It is instructive to compute eigenvalues in a fermionic

system which has a finite-dimensional Hilbert space in its

standard representation, making use only of the defining

Grassmann algebra. For a finite number of fermions we

have a finite-dimensional Hilbert space, in which our

general method can easily be illustrated. This simplicity

comes at the expense of requiring a careful discussion of

anticommutation relations.

The single degree of freedom ξ included in the system we

use here is subject to anticommutation relations

½ξ̂†; ξ̂�þ ¼ ℏ; ½ξ̂; ξ̂�þ ¼ 0 ¼ ½ξ̂†; ξ̂†�þ: ðA1Þ

It generates a four-dimensional unital �-algebra with

vector-space basis given by I, ξ̂, ξ̂† and ˆξ† ξ̂. As a

Hamiltonian, we choose

Ĥ ¼ 1

2
ωðξ̂†ξ̂ − ξ̂ξ̂†Þ ¼ ωξ̂†ξ̂ −

1

2
ℏωI ¼ ωξ̂ξ̂† þ 1

2
ℏωI:

ðA2Þ

1. Hilbert-space representation

For comparison, we briefly summarize the standard

representation on a two-dimensional Hilbert space.

Commutators of ξ̂ and ξ̂† with Ĥ show that we can use

the former as ladder operators: we have ½ξ̂; Ĥ� ¼ ℏωξ̂. We

define j−i such that ξ̂j−i ¼ 0, and jþi as ξ̂†j−i ¼
ffiffiffi

ℏ
p

jþi.
These two states are the only independent ones since
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ffiffiffi

ℏ
p

ξ̂†jþi ¼ ðξ̂†Þ2j−i ¼ 0. The eigenstates of Ĥ are then

given by j�i with eigenvalues

E� ¼ � 1

2
ℏω: ðA3Þ

The action of the ladder operators, ξ̂jþi ¼
ffiffiffi

ℏ
p

j−i and

ξ̂†j−i ¼
ffiffiffi

ℏ
p

jþi, follows from normalization of j�i and

jjξ̂jþijj2 ¼ hξ̂†ξ̂iþ ¼ 1

ω

�

Eþ þ 1

2
ℏω

�

¼ ℏ; ðA4Þ

jjξ̂j−ijj2 ¼hξ̂ξ̂†i− ¼ 1

ω

�

−E− −
1

2
ℏω

�

¼ ℏ: ðA5Þ

A general state can be written as

jr; si ¼ cos rj−i þ eis sin rjþi; ðA6Þ

parametrizing all normalized states up to a phase.

Expectation values in these states are given by

hξ̂iðr; sÞ ¼ 1

2

ffiffiffi

ℏ

p
sinð2rÞeis ¼ hξ̂†iðr; sÞ�; ðA7Þ

hξ̂†ξ̂iðr; sÞ ¼ ℏ sin2 r; ðA8Þ

hξ̂ξ̂†iðr; sÞ ¼ ℏ cos2 r: ðA9Þ

States are subject to uncertainty relations, which will

play a major role in our new method. Define u ¼ Δξ̂v and

w ¼ Δξ̂†v for some state v, where Δξ̂ ¼ ξ̂ − hξ̂iv with

hξ̂iv ¼ hvjξ̂vi, and compute

hujui ¼ hΔξ̂†Δξ̂i ¼ Δðξ†ξÞ þ 1

2
ℏ; ðA10Þ

hwjwi ¼hΔξ̂Δξ̂†i ¼ −Δðξ†ξÞ þ 1

2
ℏ; ðA11Þ

hujwi ¼hΔξ̂†Δξ̂†i ¼ 0 ðA12Þ

with the (graded) covariance

Δðξ†ξÞ ¼ 1

2
ðhξ̂†ξ̂ − ξ̂ξ̂†i − hξ̂i�hξ̂i þ hξ̂ihξ̂i�Þ

¼ 1

2
hξ̂†ξ̂ − ξ̂ξ̂†i − hξ̂i�hξ̂i: ðA13Þ

Expanding Δξ̂†Δξ̂ in order to express equations such as

(A10) in terms of Δðξ†ξÞ requires anticommutation rela-

tions not only between ξ̂ and ξ̂† as provided by the original

Grassmann algebra but also between these operators and

their expectation values. The equations shown here assume

the convention that hξ̂i and hξ̂†i are Grassmann numbers

which anticommute with each other and with ξ̂ and ξ̂†.

[This convention is consistent with equations such as

hξ̂ξ�i ¼ ξξ� used in relating Δξ̂†Δξ̂ to Δðξ†ξÞ.]
The Cauchy-Schwarz inequality implies

0 ¼ jhujwij2 ≤ hujuihwjwi ¼ −Δðξ†ξÞ2 þ 1

4
ℏ
2 ðA14Þ

and therefore

jΔðξ†ξÞj ≤ 1

2
ℏ: ðA15Þ

Both eigenstates of Ĥ saturate this inequality.

2. Algebra

Let us now proceed algebraically. We introduce a phase-

space version of the fermion system by defining two

Grassmann numbers, ξ ¼ hξ̂i and ξ� ¼ hξ̂†i. Any operator

in the algebraA defines a function on the space of states on

the algebra by evaluation, Aðh·iÞ ≔ hÂi. The equation

fhÂi; hB̂igþ ¼ h½Â; B̂�þi
iℏ

ðA16Þ

therefore defines a bracket on the space of states, which can

be extended to arbitrary functions on states by using the

(graded) Leibniz identity. Applied to our basic operators ξ̂

and ξ̂†, this bracket implies standard relations with anti-

Poisson brackets

fξ�; ξgþ ¼ −i; fξ; ξgþ ¼ 0 ¼ fξ�; ξ�gþ ðA17Þ

for basic expectation values. The bracket can be extended to

an anti-Poisson bracket on moments of ξ̂ and ξ̂† by using

the Leibniz rule. As already stated, the basic expectation

values anticommute with ξ̂ and ξ̂†.

There is only one nonzero moment:

Δðξ†ξÞ ¼ 1

2
hΔξ̂†Δξ̂ − Δξ̂Δξ̂†i ¼ hΔξ̂†Δξ̂i − 1

2
ℏ

¼ −hΔξ̂Δξ̂†i þ 1

2
ℏ; ðA18Þ

using Δξ̂ ≔ ξ̂ − ξ and ½Δξ̂†;Δξ̂�þ ¼ ℏ. The dynamics now

follows from the usual derivation given by a commutator

with the Hamiltonian:

_ξ ¼ h½ξ̂; Ĥ�i
iℏ

¼ −iωξ ðA19Þ

implies ξðtÞ ¼ ξ0 expð−iωtÞ, or rðtÞ ¼ r0, sðtÞ ¼ s0 − ωt

in the parameerization of (A6). Also, Δðξ̄ξÞðtÞ ¼ Δðξ̄ξÞð0Þ
because Δðξ̄ξÞ ¼ ω−1Ĥ − jξj2 depends only on Ĥ and

constants.

Assume now that we have an eigenstate of Ĥ with

eigenvalue λ. In this state,
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0 ¼ hĤ − λIi ¼ ωhξ̂†ξ̂i − 1

2
ℏω − λ

¼ −ωhξ̂ξ̂†i þ 1

2
ℏω − λ; ðA20Þ

0 ¼hξ̂ðĤ − λIÞi ¼
�

1

2
ℏω − λ

�

ξ; ðA21Þ

0 ¼hξ̂†ðĤ − λIÞi ¼ −

�

1

2
ℏωþ λ

�

ξ�; ðA22Þ

0 ¼ hξ̂†ξ̂ðĤ − λIÞi ¼
�

1

2
ℏω − λ

�

hξ̂†ξ̂i

¼
1
4
ℏ
2ω2 − λ2

ω
; ðA23Þ

0 ¼ hξ̂ξ̂†ðĤ − λIÞi ¼ −

�

1

2
ℏωþ λ

�

hξ̂ξ̂†i

¼ −

1
4
ℏ
2ω2 − λ2

ω
ðA24Þ

using the first equation in the last step of (A23)

and (A24). The last equation implies λ� ¼ � 1
2
ℏω. For

λ− ¼ − 1
2
ℏω, (A21) implies ξ ¼ 0 and (A23) implies

hξ̂†ξ̂i ¼ 0, so that hξ̂ξ̂†i ¼ ℏ from (A20). For λþ ¼ 1
2
ℏω,

(A22) implies ξ� ¼ 0 and (A24) implies hξ̂ξ̂†i ¼ 0, so that

hξ̂†ξ̂i ¼ ℏ from (A20).

In this example, we have managed to compute all

eigenvalues of the Hamiltonian using only the (anti)com-

mutator relationships. If we try the standard method of

ladder operators in a system with an infinite-dimensional

Hilbert space, it is well known that we need normalizability

conditions in order to derive discrete eigenvalues. These

conditions are available only for wave functions in the

Hilbert space but do not have an analog in the algebra of

observables. The main body of this paper shows how the

newmethods of using moments and uncertainty relations can

produce the correct discrete spectra without an explicit

normalizability condition even in systems with an infinite-

dimensional Hilbert space.
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