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ABSTRACT
Epidemic simulations require the ability to sample contact networks from various random graph
models. Existing methods can simulate city-scale or even country-scale contact networks, but they
are unable to feasibly simulate global-scale contact networks due to high memory consumption.
NiemaGraphGen (NGG) is a memory-efficient graph generation tool that enables the simulation of
global-scale contact networks. NGG avoids storing the entire graph in memory and is instead
intended to be used in a data streaming pipeline, resulting in memory consumption that is
orders of magnitude smaller than existing tools. NGG provides a massively-scalable solution for
simulating social contact networks, enabling global-scale epidemic simulation studies.

Subjects Software and Workflows, Bioinformatics, Statistics and Probability

STATEMENT OF NEED
The ability to simulate epidemics enables the evaluation of the effectiveness of molecular
epidemiological tools [1] as well as the inference of critical public health information, such
as the time of zoonosis of SARS-CoV-2 [2]. Epidemic simulation frameworks such as FAVITES
simulate a random contact network, a random transmission network spread along the
contact network, a viral phylogeny constrained by the transmission network, and a random
viral sequence evolutionary process (e.g. single gene/protein, whole genome) along the
phylogeny [3]. The spread of viral pathogens is driven by social contact networks [4], and
the structure of the underlying contact network across which a virus transmits is heavily
influenced by the mode of disease transmission, necessitating a proper match between
pathogen and network model when designing epidemic simulation experiments [5]. As a
result, epidemic simulation frameworks such as FAVITES require the flexibility to simulate
contact networks under a wide selection of network models.

The two most popular existing tools for simulating networks under various stochastic
models are NetworkX [6], which is available as a Python package, and iGraph [7], which is
available as a C library with R, Python, and Mathematica interfaces. While these tools
support random network generation, they place an emphasis on the analysis and
manipulation of networks, and as a result, they require loading the entire network in
memory. This is feasible for community-level or even city-scale epidemic simulations, but
when simulating global-scale pandemics such as COVID-19, the memory consumption
becomes prohibitively large.

Tools such as EpiSims [8], EpiSimdemics [9], and EpiFast [10] provide efficient solutions
for simulating transmission networks along a given contact network, but they do not
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si m ul at e t h e c o nt a ct n et w o r k it s elf. F o r si m ul ati n g c o nt a ct n et w o r k s, c u P P A [ 1 1 ] a n d

c u P P A- H a s h [ 1 2 ] p r o vi d e G P U- a c c el e r at e d s ol uti o n s f o r m a s si v el y- p a r all eli z e d si m ul ati o n of

ult r a-l a r g e s c al e-f r e e n et w o r k s u n d e r t h e C o p y M o d el [ 1 3 ], b ut t h e y d o n ot s u p p o rt t h e

si m ul ati o n of c o nt a ct n et w o r k s u n d e r ot h e r g r a p h m o d el s. W hi c h i s a c riti c al f e at u r e f o r

e pi d e mi ol o gi st s h o pi n g t o fi n e-t u n e si m ul ati o n s t o t h e c o nt a ct p att e r n s of a gi v e n o ut b r e a k

o r p o p ul ati o n of i nt e r e st.

I M P L E M E N T A TI O N
Ni e m a G r a p h G e n ( N G G) i s a m e m o r y- e ffi ci e nt u n di r e ct e d g r a p h g e n e r ati o n t o ol t h at e n a bl e s

t h e si m ul ati o n of gl o b al- s c al e c o nt a ct n et w o r k s. N G G i s i nt e n d e d t o b e u s e d i n

d at a- st r e a mi n g e pi d e mi c si m ul ati o n pi p eli n e s a n d t h u s a v oi d s st o ri n g t h e e nti r e c o nt a ct

n et w o r k i n m e m o r y, r e s ulti n g i n f a st e r r u nti m e a s w ell a s m e m o r y c o n s u m pti o n t h at i s

o r d e r s of m a g nit u d e s m all e r t h a n e xi sti n g t o ol s ( Fi g u r e  1 ).

N G G i s w ritt e n i n C + + a n d h a s n o d e p e n d e n ci e s b e y o n d a m o d e r n C + + c o m pil e r ( a n d

o pti o n all y t h e c o m m a n d li n e m a k e t o ol f o r c o n v e ni e n c e). W h e n N G G i s c o m pil e d, a s e p a r at e

e x e c ut a bl e i s p r o d u c e d f o r e a c h m o d el. N G G i s al s o a v ail a bl e vi a a D o c k e r c o nt ai n e r o n

D o c k e r H u b ( ni e m a s d/ ni e m a g r a p h g e n ). N G G c u r r e ntl y s u p p o rt s t h e f oll o wi n g st o c h a sti c a n d

d et e r mi ni sti c m o d el s: B a r a b á si – Al b e rt [ 1 4 ], B a r b ell, C o m pl et e, C y cl e, E m pt y,

E r d ő s – R é n yi [ 1 5 ], N e w m a n – W att s – St r o g at z [1 6 ], P at h, a n d Ri n g L atti c e.

B y d ef a ult, N G G u s e s 4- b yt e u n si g n e d i nt e g e r s t o r e p r e s e nt n o d e s i n t h e n et w o r k, w hi c h

s u p p o rt s n et w o r k s wit h u p t o 2 3 2 − 1 ≈   4. 3 billi o n n o d e s, b ut u s e r s c a n u s e 2- b yt e ( u p t o

2 1 6 − 1 = 6 5, 5 3 5 n o d e s) o r 1- b yt e ( u p t o 2 8 − 1 = 2 5 5 n o d e s) u n si g n e d i nt e g e r s t o r e d u c e

m e m o r y c o n s u m pti o n, o r t h e y c a n u s e 8- b yt e u n si g n e d i nt e g e r s ( u p t o 2 6 4 − 1 ≈ 1 8

q ui ntilli o n n o d e s) t o s u p p o rt l a r g e r n et w o r k s at t h e c o st of hi g h e r m e m o r y c o n s u m pti o n.

B y d ef a ult, N G G o ut p ut s n et w o r k s i n t h e t a b- d eli mit e d e d g e li st f o r m at u s e d b y

F A VI T E S [ 3 ]. O ut p ut fil e s i n t hi s f o r m at c a n t h e n b e u s e d a s i n p ut fil e s wit hi n F A VI T E S,

w hi c h will t h e n b e a bl e t o si m ul at e a t r a n s mi s si o n n et w o r k, vi r al p h yl o g e n y, a n d s e q u e n c e s

al o n g t h e gi v e n c o nt a ct n et w o r k. H o w e v e r, f o r ult r a-l a r g e si m ul ati o n st u di e s, pl ai n-t e xt

e d g e li st r e p r e s e nt ati o n s of n et w o r k s m a y r e s ult i n e xt r e m el y l a r g e fil e s. T o a d d r e s s t hi s

N G G al s o i m pl e m e nt s a p r o p ri et a r y c o m p a ct bi n a r y o ut p ut f o r m at t h at u s e s e x a ctl y 2 b | E | +

1 b yt e s t o r e p r e s e nt a n et w o r k wit h | E | e d g e s i n w hi c h n o d e s a r e r e p r e s e nt e d u si n g b - b yt e

u n si g n e d i nt e g e r s. B ot h s u p p o rt e d o ut p ut f o r m at s a r e hi g hl y st r u ct u r e d a n d c a n t h u s b e

c o m p r e s s e d r e a s o n a bl y w ell u si n g st a n d a r d c o m p r e s si o n t o ol s ( e. g. g z i p ). F A VI T E S d o e s n ot

c u r r e ntl y s u p p o rt t hi s c o m p a ct bi n a r y f o r m at, s o c o nt a ct n et w o r k s o ut p ut i n t hi s bi n a r y

f o r m at will n ot b e u s a bl e a s i n p ut fil e s i n t h e c u r r e nt v e r si o n of F A VI T E S ( v 1. 2. 8), b ut

s u p p o rt f o r t hi s bi n a r y f o r m at will b e i m pl e m e nt e d i nt o F A VI T E S i n t h e n e a r f ut u r e. C o d e

e x a m pl e s f o r l o a di n g c o nt a ct n et w o r k s i n N G G’ s o ut p ut f o r m at s c a n b e f o u n d i n t h e N G G

Git H u b Wi ki ( htt p s:// git h u b. c o m/ ni e m a s d/ Ni e m a G r a p h G e n/ wi ki ).

M e m o r y- e ffi ci e n t g r a p h s a m pli n g
I n t hi s s u b s e cti o n, w e di s c u s s t h e m e m o r y- e ffi ci e nt g r a p h s a m pli n g al g o rit h m s

i m pl e m e nt e d wit hi n N G G. M o st m o d el s i m pl e m e nt e d i n N G G a r e s a m pl e d i n 𝒪( 1) m e m o r y.

C o m pl e t e g r a p h
T h e c o m pl et e g r a p h, i n w hi c h e v e r y n o d e h a s a n e d g e t o e v e r y ot h e r n o d e, i s t ri vi al t o

s a m pl e i n 𝒪( 1) m e m o r y ( Al g o rit h m  1).

Gi g a b y t e , 2 0 2 2, D OI: 1 0. 4 6 4 7 1 / gi g a b y t e. 3 7 2 / 1 1
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Path graph
The path graph, in which n nodes are connected in a linear path, is trivial to sample in 𝒪(1)
memory (Algorithm 2).

Barbell graph
The barbell graph, which consists of two complete graphs with n1 nodes (Algorithm 1)
connected by a path graph with n2 nodes (Algorithm 2), can be sampled in 𝒪(1) memory
(Algorithm 3).

Cycle graph
The cycle graph, which consists of a single n-node cycle, is trivial to sample in 𝒪(1) memory:
it is simply a path graph (Algorithm 2) with a single additional edge connecting the start
and end nodes (Algorithm 4).
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Ring lattice graph
The ring lattice graph, in which every node has an edge to each of its k neighbors (where k
must be even), is essentially a generalization of the cycle graph. Specifically, Cycle (n) is
equivalent to RingLattice (n, 2). The ring lattice graph can be sampled in 𝒪(1) memory
(Algorithm 5).

Erdős–Rényi model
The Erdős–Rényi model is a random graph model for generating networks, and it has two
parameters: the total number of nodes in the network (n) and the probability that any of the
(n2) possible edges is included (p). A naive algorithm can be used to sample graphs under the
model in 𝒪(1) memory (Algorithm 6).

However, the time complexity of the naive algorithm is 𝒪(n2), making it unsuitable for
ultra-large large networks. Instead, an alternative algorithm can also be implemented in
𝒪(1) memory (Algorithm 7), which is faster than the naive algorithm when the expected
number of edges (p(n2)) is relatively low (i.e., the network is relatively sparse) [17], as is the
case with social contact networks.

Barabási–Albert model
The Barabási–Albert model is a random graph model for generating scale-free networks,
and it has two parameters: the total number of nodes in the network (n) and the number of
edges to attach from new nodes to existing nodes (m). An algorithm exists to sample graphs
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u n d e r t h e m o d el i n 𝒪( n m ) m e m o r y. G r a p h s s a m pl e d u n d e r B a r a b a si Al b e rt (n , m ) will h a v e

e x a ctl y m (n − m ) e d g e s, wit h e x a ctl y m t a r g et s s el e ct e d d u ri n g e a c h it e r ati o n of t h e

s a m pli n g al g o rit h m. T h u s, w h e n i m pl e m e nti n g t h e s a m pli n g al g o rit h m, m e m o r y f o r r e p e at

a n d t a r g et s c a n b e r e s e r v e d u p-f r o nt t o a v oi d a r r a y r e si zi n g o p e r ati o n s d u ri n g t h e

al g o rit h m ( Al g o rit h m  8).

N e w m a n – W a t t s – S t r o g a t z m o d el
T h e N e w m a n – W att s – St r o g at z m o d el, a n e xt e n si o n of t h e W att s – St r o g at z m o d el [ 1 8 ], i s a

r a n d o m g r a p h m o d el f o r g e n e r ati n g c o n n e ct e d n et w o r k s wit h s m all- w o rl d p r o p e rti e s.

U nli k e t h e W att s – St r o g at z m o d el, w hi c h m a y yi el d i n di s c o n n e ct e d g r a p h s, t h e

N e w m a n – W att s – St r o g at z m o d el i s g u a r a nt e e d t o yi el d c o n n e ct e d g r a p h s. T h e

N e w m a n – W att s – St r o g at z m o d el b e gi n s b y s a m pli n g Ri n g L atti c e (n , k ), a n d f o r e a c h e d g e (u ,

v ) i n i n t h e i niti al ri n g l atti c e, a n e w “ s h o rt c ut ” e d g e ( u , w ) i s a d d e d wit h p r o b a bilit y p . T hi s

m oti v at e s a n ai v e s a m pli n g al g o rit h m ( Al g o rit h m  9).

H o w e v e r, t h e n ai v e al g o rit h m r e q ui r e s all e d g e s of t h e g r a p h t o b e st o r e d i n m e m o r y,

w hi c h r e s ult s i n p r o hi biti v el y l a r g e m e m o r y r e q ui r e m e nt s f o r ult r a-l a r g e n et w o r k s. A n

alt e r n ati v e m e m o r y- e ffi ci e nt al g o rit h m c a n b e d e vi s e d. T h e r e a r e n n o d e s, a n d i n t h e

o ri gi n al ri n g l atti c e, e a c h n o d e h a s k e d g e s. T h e r ef o r e, t h e i niti al ri n g l atti c e g r a p h h a s n k ∕ 2

u n di r e ct e d e d g e s, m e a ni n g w e s a m pl e f r o m B e r n o ulli (p ) e x a ctl y n k ∕ 2. T h e t ot al n u m b e r of

s u c c e s sf ul B e r n o ulli t ri al s i s t h u s a si n gl e s a m pli n g f r o m Bi n o mi al (n k ∕ 2, p ). F u rt h e r, e a c h

n o d e h a s n − k − 1 p o s si bl e n e w e d g e s t h at c a n b e a d d e d d u ri n g t h e “ s h o rt c ut ”- a d di n g st e p;
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https://doi.org/10.46471/gigabyte.37


N. M o s hi ri

t h e s e e d g e s c a n b e r e p r e s e nt e d b y a m at ri x wit h n r o w s ( r e p r e s e nti n g u ) a n d n − k − 1

c ol u m n s ( r e p r e s e nti n g w ):

0 ∶

1 ∶

2 ∶

…

i ∶

…

⎡
⎢
⎢
⎢
⎢
⎢
⎢

⎣

k /2 + 1 k /2 + 2  … ( n − k /2 − 1) m o d n

k /2 + 2 k /2 + 3  … ( n − k /2 − 0) m o d n

k /2 + 3 k /2 + 4  … ( n − k /2 + 1) m o d n

…  …  … …

k /2 + i …  … ( n − k /2 + i − 1) m o d n

…  …  … …

⎤
⎥
⎥
⎥
⎥
⎥
⎥

⎦

( 1)

If (u , v ) i s s el e ct e d, t h e n (v , u ) c a n n ot b e s el e ct e d b e c a u s e t h e g r a p h i s u n di r e ct e d. T h u s,

w e c a n di s r e g a r d t h e b ott o m- ri g ht p o rti o n of t h e m at ri x. W e c a n t h e n r e p r e s e nt e a c h c ell of

t h e m at ri x wit h it s c o r r e s p o n di n g i n d e x i n a n a r r a y r e p r e s e nt ati o n. F o r e x a m pl e, f o r n = 7

a n d k = 2 ( X d e n ot e s “ di s r e g a r d e d ”):

0 ∶

1 ∶

2 ∶

3 ∶

4 ∶

5 ∶

6 ∶

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

2 3 4 5

3 4 5 6

4 5 6 0

5 6 0 1

6 0 1 2

0 1 2 3

1 2 3 4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

→

0 ∶

1 ∶

2 ∶

3 ∶

4 ∶

5 ∶

6 ∶

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

2 3 4 5

3 4 5 6

4 5 6 X

5 6 X  X

6 X  X  X

X  X  X  X

X  X  X  X

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

→

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

0 1 2 3

4 5 6 7

8 9 1 0 X

1 1 1 2 X  X

1 3 X  X  X

X  X  X  X

X  X  X  X

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

( 2)

Wit h t hi s r e p r e s e nt ati o n, s a m pli n g “ s h o rt c ut ” e d g e s c a n b e r e d u c e d t o a n e ffi ci e nt

al g o rit h m: r a n d o ml y s el e ct a c oll e cti o n of Bi n o mi al (n k ∕ 2, p ) i nt e g e r s f r o m

U nif o r m ( 0, n (n − k − 1)
2 − 1) wit h o ut r e pl a c e m e nt, t h e n m a p f r o m t h e s el e ct e d i nt e g e r s t o t h ei r

c o r r e s p o n di n g c ell s i n t h e m at ri x, a n d fi n all y m a p f r o m c ell s i n t h e m at ri x t o e d g e s ( u , w ).

D e fi n e a “f ull ” r o w t o b e a r o w wit h o ut a n y X s y m b ol s (i. e., n o di s r e g a r d e d c ell s), a n d

d e fi n e a n “ e m pt y ” r o w t o b e a r o w t h at o nl y c o nt ai n s X s y m b ol s (i. e., all c ell s w e r e

di s r e g a r d e d). T h e l a st c ol u m n i n t h e fi r st r o w c o nt ai n s n o d e n − k ∕ 2 − 1, a n d t h e l a st c ol u m n

i n t h e l a st f ull r o w h a s n o d e n − 1, s o t h e r e a r e ( n − 1) − (n − k ∕ 2 + 1) + 1 = k ∕ 2 + 1 n o n- e m pt y

r o w s: 0 t h r o u g h k ∕ 2. T h u s, f o r r o w s 0 t h r o u g h k ∕ 2 (i. e., t h e f ull r o w s of t h e m at ri x), w e c a n

i m a gi n e t h e f oll o wi n g r e p r e s e nt ati o n i n w hi c h c ell s a r e fill e d wit h t h e c o r r e s p o n di n g i n d e x

of t h e a r r a y r e p r e s e nt ati o n of t h e m at ri x:

0 ∶

1 ∶

2 ∶

…

i ∶

…

k /2 ∶

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

0 1  … n − k − 2

n − k − 1 n − k … 2( n − k − 1) − 1

2( n − k − 1) 2( n − k − 1) + 1  … 3( n − k − 1) − 1

… …  … …

i(n − k − 1) i(n − k − 1) + 1  … ( i + 1)( n − k − 1) − 1

… …  … …
k
2 (n − k − 1) k

2 (n − k − 1) + 1  … ( k
2 + 1)( n − k − 1) − 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

( 3)

R o w k ∕ 2 + 1 h a s e x a ctl y 1 e m pt y c ell, r o w k ∕ 2 + 2 h a s e x a ctl y 2 e m pt y c ell s, et c.

T h u s, t h e  fi r st r o w t h at i s c o m pl et el y e m pt y (i. e., n − k − 1 e m pt y c ell s) i s r o w

k ∕ 2 + ( n − k − 1) = n − k ∕ 2 − 1. T h u s, t h e r e m ai ni n g p o rti o n of t h e m at ri x f r o m w hi c h

Gi g a b y t e , 2 0 2 2, D OI: 1 0. 4 6 4 7 1 / gi g a b y t e. 3 7 6 / 1 1
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“ s h o rt c ut s ” c a n b e s a m pl e d c a n b e r e p r e s e nt e d a s f oll o w s ( X d e n ot e s “ di s r e g a r d e d ”, a n d Y

d e n ot e s “ n ot di s r e g a r d e d ”):

k /2 + 1 ∶

k /2 + 2 ∶

…

n − k /2 − 2 ∶

⎡
⎢
⎢
⎢

⎣

Y  Y  Y … Y  X

Y  Y  Y … X  X

…  …  …  …  …  …

Y  X  X … X  X

⎤
⎥
⎥
⎥

⎦

( 4)

T hi s i s si m pl y a ( n − k − 2)- di m e n si o n al s q u a r e m at ri x wit h a t ri a n gl e i n t h e u p p e r-l eft.

W e c a n n o w u s e t h e s e fi n di n g s t o d e fi n e a n e ffi ci e nt al g o rit h m t h at o nl y h a s t o k e e p t h e

“ s h o rt c ut ” e d g e s i n m e m o r y, r at h e r t h a n all e d g e s ( Al g o rit h m  1 0).

B e n c h m a r ki n g e x p e ri m e n t
T o b e n c h m a r k n et w o r k g e n e r ati o n r u nti m e a n d m e m o r y c o n s u m pti o n, w e u s e d N et w o r k X,

i G r a p h, a n d N G G t o si m ul at e 1 0 r e pli c at e n et w o r k s of v a ri o u s si z e s, a n d w e u s e d t h e G N U

t i m e c o m m a n d li n e t o ol t o m e a s u r e t ot al r u nti m e a n d p e a k m e m o r y u s a g e. W e c h o s e t o

e x pl o r e C o m pl et e, E r d ő s – R é n yi, B a r a b á si – Al b e rt, a n d N e w m a n – W att s – St r o g at z g r a p h s i n

Gi g a b y t e , 2 0 2 2, D OI: 1 0. 4 6 4 7 1 / gi g a b y t e. 3 7 7 / 1 1
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t hi s b e n c h m a r ki n g e x p e ri m e nt d u e t o t h ei r p o p ul a rit y i n m o d eli n g s o ci al c o nt a ct n et w o r k s

i n e pi d e mi ol o gi c al st u di e s.

I n a d diti o n t o t h e n u m b e r of n o d e s i n t h e n et w o r k ( n ), t h e E r d ő s – R é n yi, B a r a b á si – Al b e rt,

a n d N e w m a n – W att s – St r o g at z m o d el s h a v e a d diti o n al p a r a m et e r s t h at c o nt r ol s t h e

e x p e ct e d  d e g r e e ( E d ) of t h e n et w o r k; t h e c h oi c e of E d = 4 0 w a s m a d e a r bit r a ril y, a n d t h e

s a m e t r e n d w a s o b s e r v e d f o r E d = 1 0 a n d E d = 2 0. All t o ol s a r e si n gl e-t h r e a d e d,

a n d  all  r u n s  w e r e e x e c ut e d s e q u e nti all y o n a n 8- c o r e 2. 0 G H z I nt el X e o n C P U wit h 8 G B of

m e m o r y.

T h e r e s ult s of t h e b e n c h m a r ki n g e x p e ri m e nt c a n b e f o u n d i n Fi g u r e  1 . i G r a p h w a s

e x cl u d e d f r o m t h e N e w m a n – W att s – St r o g at z si m ul ati o n s b e c a u s e i G r a p h d o e s n ot s u p p o rt

s a m pli n g f r o m t h e N e w m a n – W att s – St r o g at z m o d el. F u rt h e r m o r e, N et w o r k X w a s u n a bl e t o

r u n t o c o m pl eti o n o n l a r g e r n et w o r k si z e s d u e t o m e m o r y r e q ui r e m e nt s t h at e x c e e d e d t h e 8

G B m e m o r y of t h e b e n c h m a r ki n g m a c hi n e. I n all s c e n a ri o s, N G G w a s t h e f a st e st a n d l e a st

m e m o r y-i nt e n si v e of t h e t h r e e t o ol s. Wit h r e s p e ct t o C o m pl et e g r a p h s, N G G i s m a r gi n all y

f a st e r t h a n N et w o r k X a n d i G r a p h, a n d t h e p e a k m e m o r y u s a g e of N G G i s o r d e r s of

m a g nit u d e s m all e r t h a n b ot h N et w o r k X a n d i G r a p h, wit h t h e g a p wi d e ni n g a s n et w o r k si z e

g r o w s. Wit h r e s p e ct t o E r d ő s – R é n yi g r a p h s, N G G i s ∼ 4 × f a st e r t h a n N et w o r k X a n d ∼ 1. 5 ×

f a st e r t h a n i G r a p h, a n d it s p e a k m e m o r y u s a g e i s o r d e r s of m a g nit u d e s m all e r t h a n b ot h

t o ol s, wit h t h e g a p a g ai n wi d e ni n g a s n et w o r k si z e g r o w s. Wit h r e s p e ct t o B a r a b á si – Al b e rt

g r a p h s, N G G i s ∼ 4 × f a st e r t h a n N et w o r k X a n d ∼ 1. 5 × f a st e r t h a n i G r a p h, a n d it s p e a k

m e m o r y u s a g e i s c o n si st e ntl y ∼ 2 0 × s m all e r t h a n N et w o r k X a n d ∼ 3 × s m all e r t h a n i G r a p h.

Wit h r e s p e ct t o N e w m a n – W att s – St r o g at z g r a p h s, N G G i s ∼ 3 × f a st e r t h a n N et w o r k X, a n d it s

p e a k m e m o r y u s a g e i s ∼ 1 0 0 × s m all e r t h a n N et w o r k X, wit h t h e g a p wi d e ni n g a s n et w o r k

si z e g r o w s. I m p o rt a ntl y, a si d e f r o m t h e B a r a b á si – Al b e rt a n d N e w m a n – W att s- St r o g at z

m o d el s, all n et w o r k m o d el s i m pl e m e nt e d i n N G G h a v e c o n st a nt m e m o r y u s a g e r e g a r dl e s s

of n et w o r k si z e.

C O N C L U SI O N S
W e i nt r o d u c e Ni e m a G r a p h G e n ( N G G), a m e m o r y- e ffi ci e nt g r a p h g e n e r ati o n t o ol t h at

e n a bl e s t h e si m ul ati o n of gl o b al- s c al e c o nt a ct n et w o r k s. W e b e n c h m a r k e d N G G a g ai n st t h e

t w o m o st p o p ul a r n et w o r k si m ul ati o n t o ol s, N et w o r k X a n d i G r a p h, a n d w e s h o w e d t h at

N G G w a s c o n si st e ntl y f a st e st a n d h a d o r d e r s of m a g nit u d e l o w e r m e m o r y c o n s u m pti o n

t h a n t h e ot h e r t o ol s (t y pi c all y c o n st a nt wit h r e s p e ct t o n et w o r k si z e).

A V AI L A BI LI T Y O F S O U R C E C O D E A N D R E Q UI R E M E N T S
• P r oj e ct n a m e: Ni e m a G r a p h G e n ( N G G)

• P r oj e ct h o m e p a g e: htt p s:// git h u b. c o m/ ni e m a s d/ Ni e m a G r a p h G e n

• D o c k e r H u b p a g e: htt p s:// h u b. d o c k e r. c o m/ r/ ni e m a s d/ ni e m a g r a p h g e n

• O p e r ati n g s y st e m( s): Pl atf o r m i n d e p e n d e nt

• P r o g r a m mi n g l a n g u a g e: C + +

• Ot h e r r e q ui r e m e nt s: C + + 1 1 o r hi g h e r

• Li c e n s e: G N U G P L v 3. 0

• R RI D: S C R _ 0 2 1 9 3 6
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Figure 1. Benchmarking results. Total runtime (left) and peak memory usage (right) for NetworkX, iGraph, and
NGG for various network models and sizes. Each point is the average of 10 replicates, and error bars (which are
smaller than themarker sizes) represent 95% confidence intervals. All tools are single-threaded, and all runswere
executed sequentially on an 8-core 2.0 GHz Intel Xeon CPU with 8 GB of memory.
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Figure 2. An executable Code Ocean compute capsule for NiemaGraphGen that can be launched on a cloud
workstation. https://doi.org/10.24433/CO.4009211.v1

DATA AVAILABILITY
The data sets supporting the results of this article, along with all relevant scripts and
commands, are available in the following GitHub repository:
https://github.com/niemasd/NiemaGraphGen-Paper.

The same data and scripts can be found in the following portable Code Ocean
environment (Figure 2) [19]. Snapshots of the code is also available in the GigaScience
GigaDB repository [20].
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