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1. Introduction and main results
1.1. Systems of real quadratic equations
Let ¢1,...,qmn : R — R be quadratic forms,
¢i(z) = (Qiz,x) for i=1,...,m,

where Q; are n X n symmetric matrices and

<$ay>:Z§z7]z for x:(gla'”agn) and y:(nlaann)
i=1

is the standard scalar product in R".
Let a1,. .., a;, be real numbers. We want to find out when the system of equations

gi(x)=ca; for i=1,....m (1.1)

has a solution x € R". Such systems of equations appear in various contexts, see, for
example, [6], [12], [13]. If the number m of equations is fixed in advance, one can decide
in polynomial time whether the system has a solution [1], [8], [4]. The same is true if the
number n of variables is fixed in advance, in which case a polynomial time algorithm to
test feasibility exists even if ¢; are polynomials of an arbitrary degree, see, for example,
[5].

If m and n are both allowed to grow, the problem becomes computationally hard.
Unless the computational complexity hierarchy collapses, there is no polynomial time
algorithm to test the feasibility of (1.1). Furthermore, it is not known whether the fea-
sibility problem belongs to the complexity class NP. In other words, it is not known
whether one can present a polynomial size certificate for the system (1.1) to have a solu-
tion when it is indeed feasible (note that using repeated squaring of the type z,41 = 22,
one can construct examples of feasible systems for which no solution has a polynomial
size description).

In fact, testing the feasibility of an arbitrary system of real polynomial equations can
be easily reduced to testing the feasibility of a system (1.1). First, we gradually reduce
the degree of polynomials by repeatedly introducing new variables and equations of the
type &i; —&:€; = 0, which allows us to replace the product §;£; of old variables by a single
new variable &;;, and hence eventually reduce a given polynomial system to a system

gi(x)=0 for i=1,...,m,

where ¢; are quadratic, not necessarily homogeneous, polynomials. Then we introduce
another variable 7 and replace the above system by a system of homogeneous quadratic
equations
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TQQi(T_lm) =0 for i=1,....m

with one more quadratic constraint 72 = 1.
We are also interested in systems of homogeneous equations

gi(z) =0 for i=1,...,m, (1.2)

in which case we want to find out whether the system has a non-trivial solution = # 0.
The problem is also computationally hard. We briefly sketch how an efficient algorithm
for testing the existence of a non-trivial solution in (1.2) would produce an efficient
algorithm for testing the feasibility of (1.1). Given a system (1.1), by introducing a new
variable 7, as above we replace (1.1) by a system of homogeneous quadratic equations,
where we want to enforce 7 # 0. This is done by introducing yet another variable o and
the equation

R — (G +...+&) =07

binding all variables together, so that if 7 = 0 then all other variables are necessarily 0.
Here R is meant to be a very large constant and in fact, it can be treated as infinitely
large, with computations in the ordered field of rational functions in R, the trick first
introduced in [9].

In this paper, we present computationally simple sufficient criteria for (1.1), respec-
tively (1.2), to have a solution, respectively a non-trivial solution. We start with by now
a standard procedure of semidefinite relaxation.

1.2. Positive semidefinite relaxation

For an n x n real symmetric matrix X, we write X > 0 to say that X is positive
semidefinite.
Given (1.1), we consider the following system of linear equations

trace(@Q;X) =a; for i=1,....,m where X=0 (1.3)

in n x n positive semidefinite matrices X. Unlike (1.1), the system (1.3) is convex and
efficient algorithms are available to test its feasibility, see [13] for a survey. Clearly, if
z = (&1,...,&) is a solution to (1.1) then the matrix X = (z;;) defined by z;; = &¢;
is a positive semidefinite solution to (1.3). If m < 2, then the converse is true: if the
system (1.3) has a solution then so does (1.1), see, for example, Section II1.13 of [2]. For
m > 3 the system (1.3) may have solutions while (1.1) may be infeasible. For example,
the system of quadratic equations

&§=1, &=1 and £&=0
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does not have a solution, whereas the 2 x 2 identity matrix I is the solution to its positive
semidefinite relaxation. One corollary of our results is that such examples are, in some
sense, “atypical”.

Our goal is to find a computationally simple criterion when a solution to (1.3) implies
the existence of a solution to (1.1).

Let X be a solution to (1.3). Since X > 0, we can write X = TT™ for an n X n matrix
T. Then

trace(Q; X) = trace(Q;TT™) = trace(T*Q;T).

Let us define matrices

—

Qi :T*QiT for i= 1,...,m (14)
and the corresponding quadratic forms ¢; : R — R,
gi(z) = <62\1x,33> =¢q(Tz) for i=1,...,m. (1.5)

If x € R™ is a solution to the system

~

gi(z)=a; for i=1,...,m (1.6)
then y = Tz is a solution to (1.1). We note that
Q; :trace@ for i=1,...,m. (1.7)

It may happen that the system (1.1) has a solution while (1.6) does not, but if X and
hence T are invertible, the systems (1.1) and (1.6) are equivalent. Furthermore, if there
are no invertible X > 0 satisfying (1.3), then the affine subspace defined by the equations
trace(@;X) = «; intersects the cone of positive semidefinite matrices at a proper face,
and the system (1.1) can be effectively reduced to a system of quadratic equations in
fewer variables, cf., for example, Section II1.12 of [2]. Summarizing, a solution X to (1.3)
allows us to replace (1.1) by a similar system, where the right hand sides «; are the
traces of the quadratic forms in the left hand side.

Ultimately, we are interested in finding out when the system (1.6) of quadratic equa-
tions with additional conditions (1.7) has a solution = € R".

1.83. Reduction to an orthonormal basis and the main result

Before we state our main result, some remarks are in order. As agreed, we consider the
system (1.1) where a; = trace ¢;. Without loss of generality, we assume that the quadratic
forms ¢; and hence their matrices @; are linearly independent. For an invertible m x m
matrix M = (p;;), let us define new forms
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CL:ZMJ‘% for i=1,....,m

and new right hand sides
a; = Z,uijozj for = 1,...,m.

Then the system (1.1) has a solution if and only if the system

has a solution. Hence, ideally, a criterion for the system (1.1) to have a solution should

depend not on the forms ¢, ...,y per se (or their matrices Q1,...,Qm) but on the
subspace span (q1, . . ., gm ) in the space of quadratic forms (equivalently, on the subspace
span (Q1, ..., Q) in the space of n X n real symmetric matrices).

We consider the standard inner product in space of n X n real matrices:
(X,Y) =trace X"Y.
In particular, for symmetric matrices X = (§;;) and Y = (n;;) we have

(X,Y) = trace XY = Z &ij"ij

1<ij<n

and the space of n X n symmetric matrices becomes a FKuclidean space.
We will be using the following observation. Let £ be a subspace in the space of n x n

symmetric matrices and let Aq,..., A,, be an orthonormal basis of £, so that
1 ifi=yj,
(A;, Aj) = trace A;Aj; = J
0 ifi#j.

Then the matrix A? + ...+ A2, does not depend on a choice of an orthonormal basis and
hence is an invariant of the subspace L. Indeed, if By,..., B,, is another orthonormal
basis of £, then

Bizz,uijAj for i:l,...,m

and some orthogonal matrix M = (u;;) and hence

Z}B? = 2 S mippipAn A, | = Y (Z Nmﬁ%) Aj Aj, = ZIAE
1= 1= J:

1<g1,52<m 1<j1,j2<m \i=1
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For an n x n real symmetric matrix @, we denote by ||Q||op the operator norm of @,
that is, the largest absolute value of an eigenvalue of Q.
We prove the following main result.

Theorem 1.1. There is an absolute constant n > 0 such that the following holds. Let
Q1,-.-,Qm, m > 3, be linearly independent n x n symmetric matrices and let q; :
R™ — R fori=1,...,m be the corresponding quadratic forms,

gi(z) = (Qizx,x) for i=1,...,m.

Suppose that

m
Sa) <2
; m
i=1 op
for some (equivalently, for any) orthonormal basis Ay, ..., Ay, of the subspace span(Q1,

..y Qm). Then the system of quadratic equations
gi(x) =traceQ; for i=1,...,m
has a solution x € R™.

We prove a similar result for systems of homogeneous quadratic equations, where we
are interested in finding a non-trivial solution.

Theorem 1.2. There is an absolute constant n > 0 such that the following holds. Let
Q1,...,Qm, m >3, be n X n real symmetric matrices such that

trace@Q; =0 for i=1,...,m,
and let g; : R — R,
gi(z) = (Qiz,x) for i=1,...,m,

be the corresponding quadratic forms. Suppose that

m
Sa) <2
; m
i=1 op
for some (equivalently, for any) orthonormal basis Ay, ..., Ay, of the subspace span(Q1,

..y Qm). Then the system (1.2) of equations has a solution x # 0.

Remark 1.3. Our proofs of Theorems 1.1 and 1.2 work for n = 1075, however, we made
no effort to optimize this constant.
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Note that the operator norm of the matrix y ., A? is its largest eigenvalue. Thus, the
criterion appearing in Theorems 1.1 and 1.2 is algebraic like the problem itself. Despite
that, the proofs of these theorems rely on analytic tools: introduction of the Gaussian
measure, the Fourier transform asymptotic, and the measure concentration. We discuss
this in more detail in Section 2.

1.4. Discussion

1.4.1. Computational complexity

Given matrices Q1,...,Qn, one can compute an orthonormal basis Aq,..., A, of
span (Q1, - . .,Qm), using, for example, the Gram-Schmidt orthogonalization process.
Then one can check the inequality for the operator norm of A% + ... + A2 . These are
standard linear algebra problems that can be solved in polynomial time. However, we
don’t know how to find a solution x in polynomial time or whether a solution x with a
polynomial size description even exists when the conditions of Theorems 1.1 and 1.2 are
satisfied.

1.4.2. The case of random matrices

Let Qq,...,Q., be independent symmetric random matrices with entries above the
diagonal being independent normal random variables of expectation 0 and variance 1
and the diagonal entries being normal of expectation 0 and variance 2. In other words,
up to the scaling factor of y/n, the matrices Q1, ..., Q@ are sampled independently from
the Gaussian Orthogonal Ensemble (GOE).

We assume that m < n. As n grows, with high probability we have (we ignore low-
order terms)

1Qillop = 2vn and (Q;, Q) ~n?® for i=1,...,m,

see, for example, Section 2.3 of [14].

Let A4,..., Ay, be the orthonormal basis of span (Q1, ..., Q) obtained by the Gram
- Schmidt orthogonalization from @1, ..., Q. Then, up to a normalizing factor, each A;
is also sampled from GOE, so we have

[Aillop ~

S

with high probability. Hence

ZA? < ZHAngp Sl
=1 i=1

Hence if m < ,/mn/2, with high probability the conditions of Theorems 1.1 and 1.2 are
satisfied. Similar behavior can be observed for other models of random symmetric ma-

op

trices with independent entries sampled from a distribution with expectation 0, variance
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1 and sub-Gaussian tail. Informally, for the conditions of Theorems 1.1 and 1.2 to hold,
we want n to be substantially larger than m and the subspace span (Q1,...,Qm) to be
sufficiently generic.

1.4.3. The metric geometry of the cone of positive semidefinite matrices

As before, we consider the space Sym,, of n x n symmetric matrices as a Euclidean
space. Let &4 C Sym,, be the convex cone of positive semidefinite matrices. From Sec-
tion 1.4.2, we deduce the following metric property of Sy: There is an absolute constant
~v > 0 such that if 4 C Sym,, is an affine subspace of codimension m < v/n sam-
pled at random from the uniform (Haar) probability measure on the Grassmannian of
codimension m subspaces containing the identity matrix I,,, then A contains a positive
semidefinite matrix of rank 1 with probability approaching 1 as n grows.

We don’t know if the estimates of Theorem 1.1 and Sections 1.4.2 and 1.4.3 are
optimal, or, for example, whether we can make m in Section 1.4.2 and codim A in Sec-
tion 1.4.3 proportional to n instead of \/n. There is a vast literature on the average
characteristics of the set of solutions for systems of real polynomial equations, see, for
example, [7], [11] and reference therein, but much less appears to be known regarding
solvability of such systems with high probability.

1.4.4. Solving positive semidefinite relaxation

Suppose we want to apply Theorem 1.1 to test the solvability of the original system
(1.1), where we do not necessarily have a; = trace ¢;. We begin by looking for a solution
X to the positive semidefinite program (1.3). If there is no solution X, we conclude
that the system (1.1) has no solutions. If there is a solution X > 0 with rank X < 1,
we conclude that the system (1.1) has a solution. The difficulty arises when we find a
solution X > 0 but with rank X > 1. It is known that if there is a solution X > 0, then
there is a solution X > 0 with an additional constraint

\/m—lJ.

rank X < {
2

Any extreme point of the set of solutions to (1.3) satisfies this condition, see, for example,
Section I1.13 of [2]. Curiously, if we are to use Theorem 1.1 to ascertain the existence of
a solution, it makes sense to try to find an X > 0 not on the boundary, but as close as
possible to the “middle” of the set of solutions of (1.3) because we want the transformed
matrices @Z given by (1.4) to be as generic as possible. For example, one can look for X
with the maximum von Neumann entropy

n
1
E )\] In )\—,
i=1 7

where A1,..., A\, are the eigenvalues of X, see, for example, [15]. Finding such an X
is a convex optimization problem and hence can be solved efficiently. Informally, if the
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number m of equations is rather small compared to the number n of variables, if the
matrices @1, ..., Qm of equations in (1.1) are sufficiently generic, and if the solutions X
to the positive semidefinite relaxation (1.3) can be found deep enough the cone of Si
positive semidefinite matrices, then the system (1.1) will have a solution.

We note that in the homogeneous case one should also be careful about working with
the positive semidefinite relaxation. Namely, if X > 0 is a solution to the system of
equations

trace(@Q; X) =0 for i=1,...,m, (1.8)

we factor X = TT*, define @: by (1.4) and define ¢; by (1.5), then to deduce the existence
of a non-trivial solution to the system (1.2) from the existence of a non-trivial solution
to the system

gi(z)=0 for i=1,...,m,

we must require 7" and hence X to be invertible. If there are no invertible X > 0 satisfying
(1.8), we reduce (1.2) to a system of homogeneous quadratic equations in fewer variables,
see Section 1.2.

In the rest of the paper, we prove Theorems 1.1 and 1.2. Although the statements are
real algebraic, our proofs use analytic methods, in particular, the Fourier transform.

2. Outline of the proof

In what follows, we denote the imaginary unit by +/—1, so as to use ¢ for indices.
Let Q1,...,Q.;, be n x n real symmetric matrices and let I be the n x n identity
matrix. For real 7y, ..., 7, we consider the matrix

Q(t) ZI—\/:ZTiQi for t=(m1,...,7m).
i=1

Since the eigenvalues A1 (t),..., A, (t) of the linear combination ) ;" 7;Q; are real, we
have

det Q(t) = [ (1 = vV=1Xi(t)) #0 forall teR™
i=1

Therefore, we can pick a branch of

1

det’ Q(t),

which we select so that at ¢t = 0 we get 1.
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It is also more convenient to rescale and define quadratic forms by

(@) = 5(Qe.2).

Our proof of Theorem 1.1 hinges on the analysis of the Fourier transform of the function
1
F(t) :==det™2 Q(t), t € R™. Namely, we prove the following result.

Theorem 2.1. Let Q1,...,Qm be n X n real symmetric matrices, let

qi(z) = %(Qﬂ:,x) for i=1,...,m,

be the corresponding quadratic forms and let aq, ..., oy, be real numbers. Suppose that
_% m

/ det <I —v=1 ZTiQi> dt < +oo (2.1)
i=1

]Rm
and that
/ det (I | ZTZ-QZ) exp {—\/—1 Zam} dt #0. (2.2)
Rm i=1 =1

Then the system (1.1) of equations has a solution x € R"™.
We prove a similar result for homogeneous systems.

Theorem 2.2. Let Q1,...,Q. and q1,...,qm be as in Theorem 2.1 and assume, addi-
tionally, that m < n. Suppose that

/ det (I— J-Tin@) dt +0,
=1

Rm

where the integral converges absolutely. Then the system (1.2) of equations has a solution

x # 0.

We prove Theorems 2.1 and 2.2 in Section 3. Theorems 1.1 and 1.2 are deduced from
Theorems 2.1 and 2.2 respectively. Since the proofs are very similar, below we discuss
the plan of the proof of Theorem 1.1 only.

First, we note that we can replace matrices @1,...,Q, by an orthonormal set of
matrices A1, ..., A, and quadratic forms ¢; by quadratic forms

ai(z) = =(Ajz,z) for i=1,...,m.

DN | =
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We let
1
i = = t Al
« 2 race

and consider an equivalent system

of quadratic equations, see Section 1.3.
Using Theorem 2.1, we conclude that it suffices to prove that

Rm

where the integral converges absolutely. Up to a scaling normalization factor, we rewrite
the integral in polar coordinates as follows.

Let S™~! € R™ be the unit sphere endowed with the Haar probability measure. For
w€S™ L w=(w,...,wn), we define the matrix

m
i=1
Up to a non-zero scaling factor, in polar coordinates the integral (2.3) can be written as

/ 707'7”1 dgt% (I — V=17A(w)) exp {— \/?T trace A(w)} dr | dw. (2.4)

gm—1 0

The rest of the proof relies on an analysis of this integral. As a first step, we show that
the contribution of the tail of the inside integral in (2.4) is negligible. Namely, we prove
in Lemma 5.1 that for any w € S™~!, we have

+oo 1

1 1
/Tm_l det (I —v-1rA(w))| dr < QO—mmm/Qe_gm. (2.5)
5vm

In particular, this proves that the integral (2.4) converges absolutely and that the inte-
grals (2.4) and (2.3) are equal, up to a scaling factor that is the surface area of the unit
sphere S™~1 c R™.

This allows us to consider the integration over the interval [0,5y/m] in the inner
integral in (2.4). To analyze this integral, denote by Aj(w),..., A\, (w) the eigenvalues of
A(w). A simple calculation yields
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det (I —v—1rA(w))exp {— \/?T trace A(w)}

see the derivation in (5.1). Note that the summation starts from k = 2. This is achieved
due to the first step in the argument allowing us to set «; = %trace A;. Moreover,
> i1 A3(w) =1 for all w € S™! due to orthonormality of the matrices Ay, ..., Ap,.
Next, we divide the points w € S™~! into tame and wild. For a tame point, we show
that the term corresponding to k£ = 2 in the expression above is dominating which would
mean that the expression above is close to exp {774—2 . To prove it, we need to control

2?21 )\;‘f(w) for all k > 3. However, as we show below, a control for k¥ = 3,4 turns out
to be sufficient. More precisely, we classify a point w € S™ ! as tame if

" 1 - 1
3 4
]Ezl A (w)| < ST and jgil)\j(w) < o

The second inequality here is a bound on the 4-Schatten norm of A(w): ||A(w)|ls, <
1/(625m?). In contrast to it, the first inequality bounds the third moment of the eigen-
values, and not the 3-Schatten norm, as we have to exploit the cancellation of positive
and negative eigenvalues.

In Lemma 5.2, we prove that if w € S™~! is tame, then

5vm .

R / 71 det (I —V-17A(w)) exp {—\/?T trace A(w)} dr
0
5v/m

1 2
> 3 / Tm_lexp{%} dr ~2m7°T (%)

0

(2.6)

We note that the value of (2.6) is much larger than the tail estimate (2.5). Moreover,
in Lemmas 4.1 and 4.2 we bound the expectations

- 2 120 n 5
E ;Ai(w) < m(m+2)?m+4) and E;/\?(w) < m 2.7)

This is the point where the quantity ||, A?HOp reveals itself. It turns out that both
expectations above can be controlled in terms of this operator norm alone.

It follows then by the Markov inequality that a random w € S™~! is tame with
probability at least 7/8, and hence tame points w € S™~! contribute significantly to the
integral (2.4).
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It remains to show that the contribution of wild points w € S™~! cannot offset the
contribution of tame points.

This relies on a concentration inequality for the 4-Schatten norm of matrices A(w)
on the unit sphere S™!, which we derive in Lemma 4.4. This inequality is leveraged
against the deterioration of the bounds on the eigenvalues of A(w) which occurs for the
wild points. To this end, we partition the set of wild points into a number of subsets
according to the size of ||A(w)||s,, and apply the concentration inequality to prove that
the contribution of the points in each layer to the integral (2.4) is negligible.

This argument is carried out in Section 6.

In Sections 4 and 5, we do some preliminary work: we prove bounds (2.7) as well as
some other useful bounds on the eigenvalues of A(w) in Section 4. In Section 5 we derive
(2.5) and show that a similar integral over the interval [0,51/m] can be controlled by
| A(w)|lop, which is in turn bounded in terms of ||A(w)]s,.

3. Proofs of Theorems 2.1 and 2.2
3.1. Enter Gaussian measure

We consider the standard Gaussian measure in R™ with density

1
_(27T)n/26—\|w\|2/2 where |jz|| =+\/&+...+& for z=(&,...,&).

Considering a quadratic form ¢(z) = (Qxz, z) as a random variable, we observe that
E q = trace @,

so that the equation g(x) = trace Q “holds on average”.
The proof of Theorems 2.1 and 2.2 is based on a Fourier transform formula.

Lemma 3.1. Let Q4,...,Q., be n X n real symmetric matrices and let

qi(z) = %(Qm,x) for i=1,...,m,

be the corresponding quadratic forms. Then for any real aq, ..., and any real o > 0,
we have
1 / expd~ S (aulo) — a)? b e P2
(2m)n/2 2 =
R~ =
1 -3 i i 26 2
- /= 0, = Lol /20
OIS / det (I v—1 ;7'le> exp { V-1 201171} e dt.
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Proof. As is well-known, for a positive definite matrix ) and the corresponding form

) = 5(@r )

we have
1 -3
—q() —
CORE / e dr = det Q.
Rn
Consequently, for t € R™, ¢t = (71,...,Tm), in a sufficiently small neighborhood of 0, we
have
_ % m
—lll?/2 g, — _ 0.
on n/2 / exp {anl }e dx = det (I ZT1Q1> .
R» =1
Since both sides of the formula are analytic in 7, ..., 7, € C for ®71q,...,R7,, in a small
neighborhood of 0, we conclude that the above formula holds for all such 7, ..., 7, and

that, in particular,

(2 in/Q /eXP {\/_ZTQ }e‘|$|2/2 dx = det§ (I - \/—_127'1'621‘)
R" i=1

for all real 7y,..., 7.
Therefore,

(277;1/2 /exp{\/_ZTl qi(x )}e|a:|2/2 dx

R (3.1)

= det <I — \/—_lirin) exp {—V—_li&m}
i—1 im1

for all real 7y,..., 7.
Next, we use a well-known formula: for ¢ > 0 and any real (or complex) «, we have

ﬁ_/ eXp{\/_ozT}eXp{ i } dT—eXp{ “22"2}.

Integrating both sides of (3.1) for i = 1,...,m over 7; € R with density

1 72
o/2n P 202 "

we get the desired formula. O
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Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. By Lemma 3.1, for all ¢ > 0, we have

0'2 - 2 _ 2
Um/eXP{QZ(Qi(x)ai) }@ 1eIE/2 oy =

R~ =1

/ dgti (I —v-1 ZTZ'Q1‘> exp {—\/—120@7’1} e~ 37 dt.
i=1 i=1

]Rm

(2m) ="

As 0 — +00, the right hand side of (3.2) converges to

(2m) 3" / det’ (1 -V ij n@) exp {—V—_l i am} #0.
i=1

RrR™ i=1

Suppose that the system (1.1) has no solutions € R™. We intend to obtain a contra-
diction by showing that the left hand side of (3.2) converges to 0 as ¢ — +00.

Let
v=en [

Rm

1

det’ (I ~V-1 i n@-)
i=1

dt < 4o0.

Let us choose a p > 0, to be adjusted later. Then

02 m 2 B 5
o / eXp{‘jZ(qz‘(x)—ai) }e I21°/2 g

z€R™: ||z[>p

=1
2
e*P2/4O_m / exp {_%

z€R": ||z[>p

2 m
—p*/4ym _ () — )2 ol /e
e Pty /exp{ 5 Z(qz(x) ;) }e dz

Bn i=1

m

IN

(qi(z) — Oéi)Q} eIl gy

=1

IA

2 m
= # Agn/2gm /exp {—% Z (2gi(z) — Ozi)g} e #1772 gy

R» =1
20)2 & i\ 2
:e—p2/42n/20m /exp {_( g) Z (qz(x) _ %) }e—|x|2/2 de
o i=1

=P /Agn/29m (95 )m /exp {— (2;) Z (%(x) - %)2} e 71772 gy,
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From Lemma 3.1,

(20)™ / exp {— (2;)2 i (%(:c) - %)2} e I7IP/2 gy

R i=1

< (2m)2" /

Rm

det (I — \/—_1%7'le>
i=1

N[

dt = .

Summarizing,

- eXp{_a;Z(ql‘(x)—Oéi)Q}@_l”'Q/Qd:c

zeR™: ||z||>p =1

< e—p2/42n/22—m7.

Given € > 0, we choose p(e) > 0 such that

@)

6*92(6)/4271/2277”‘7 S 27

so that for all o > 0 we have

- exp{‘?f)@i(x)—%')2}6_'””'2/2 o <5 (3

=1
2€R": flz]|>p(e)

N}

If the system (1.1) has no solution then for some §(¢) > 0, we have
(i) = ai)® = 8(c) provided || < p(e)

i=1

and hence

0'2 i 2
o™ / Py~ (¢i(x) — o) dx
2€R™: f|z[|<p(e) '

=1
25
< e {-242),

where v, is the volume of the unit ball in R™. Therefore, there is o¢(€) > 0 such that for
all ¢ > o¢(€), we have

0'2 i 2 €
g / exp{—EZ(qi(z)—ai) } de < —. (3.4)

2€R™: |zl <p(e) =t
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Combining (3.3) and (3.4), we conclude that the limit of the left hand side of (3.2) is 0
as 0 — 400, which is the desired contradiction. O

The proof of Theorem 2.2 is similar.

Proof of Theorem 2.2. Seeking a contradiction, suppose that the only solution to the
system is = 0. Then for some ¢ > 0 we have

qu(x) > ¢ forall x€R™ suchthat |z|=1. (3.5)
i=1

From Lemma 3.1, for any o > 0, we have

2 m )
Um/exp{—C%z:qf(at)}e_'m| /2 dg
i=1

]Rn

—m -1 m . R
=(m) b / det2 (I B \/__1271‘@1) e‘%’f dt.
i=1

Rm™

From (3.5), the left hand side of (3.6) is bounded above (we use polar coordinates) by

+o0 5 5 9
wpo™ / exp{ 027 }7"1672/2 dr,
0

where wy, is the surface area of the unit sphere in R™. Using the substitution £ = o7, we

rewrite the integral as

+oo 52
wnam_"/exp{—%}f"‘le_fzﬂﬁ df

0

and observe that it converges to 0 as 0 — 400 (recall that m < n). On the other hand,
the right hand side of (3.6) converges to

(2r) 7" / det (I - ﬁf}@-) £0,
=1

Rm

which is the desired contradiction. O

In the rest of the paper, we deduce Theorem 1.1 from Theorem 2.1 and Theorem 1.2
from Theorem 2.2.
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4. Controlling eigenvalues
4.1. Preliminaries
In the space of n x n real matrices we consider the standard inner product, see Sec-

tion 1.3. The corresponding Euclidean norm is called the Hilbert-Schmidt or Frobenius
norme:

lAllas = (A, A) = /trace(A*A).

If, in addition, A is symmetric with eigenvalues Ay, ..., \,, we have

n

PR

Jj=1

[Allrs =

while for the operator norm we have

[Allop = max [X;].
j=1,....,n

s

We will also consider the 4-Schatten norm defined by

1/4

[Alls, = { D A)
j=1

This is indeed a norm in the space of n xn symmetric matrices, see, for example, Chapter
1 of [14]. In particular, we will use that

| [[Alls, = [[Bllss | < A= Blls,- (4.1)

Also, we observe that for a symmetric matrix A with eigenvalues A1, ..., A,, we have

4 2 2
S s (mex 8) 20
j=1 J=1
from which it follows that

1Alls, < IAN21AlHS - (4.2)

op

Suppose that B is a positive semidefinite symmetric matrix with eigenvalues
ALy -3 An. Then
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n n
| Bllis = Z)\i < (J_Hllaxn )\j> Z/\j = || B|lop (trace B).
j=1

j=1
We will apply the inequality in the following situation: Let Ay, ..., A,, be an orthonormal
set of symmetric matrices, so that
1 ifi=y,
<Ai,Aj> = trace(AiAj) = J
0 ifi+j.

Then the matrix

B= iAf
i=1

is symmetric positive semidefinite and hence we have

2
< m
HS

(4.3)

3 a2
=1

3 a2
=1

op

We also remark that (A, B) > 0 for any two n X n symmetric positive semidefinite
matrices.

We will use the following inequality. Let Ay, ..., A,, be an orthonormal set of n x n
symmetric matrices and let B be another n x n, not necessarily symmetric, real matrix.
Then

(A;, B) = trace(A;B) for i=1,...,m

are the coordinates of the orthogonal projection of B onto span (41, ..., A,,;) and hence
m
> trace’(4;B) < ||B|ls. (4.4)
i=1
Finally, we will need moments of a random vector w € S™ 1 w = (wi,...,Wn).
Namely, for integer oy, ..., a, > 0, we have
Ew* - -wy™ =0 provided at least one «; is odd (4.5)
and

m m o1
Ewit  wim = Pl( 2 ) [, I (ﬂZ + 2) — provided «a; =2f; are even,
Im (DT (B +... 4 B+ 2)

see, for example, [3]. In particular, we will use the following values:
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9 1

Ew?:* for ¢=1,...,m,
m(m + 2)
1 _— .
Ew?w?w,% :m(m+2)(m+4) for distinct 1 <14,k <m, (4.6)
3
Ewiw? = f 1<i#35< d
w; w; o p— ) or <i#j<m an
1
Ewl = > for i=1,...,m.

N

m(m+2)(m +4)

In what follows, we fix an orthonormal set Aq,..., A, of n X n symmetric matrices.
For a random w € S™~ ! w = (wy, . ..,wm), sampled from the Haar probability measure
in S™~ ! we define

A(w) = zm: wiAi
i=1

and let Aj(w),..., A\, (w) be the eigenvalues of A(w). Here is our first estimate.

Lemma 4.1. We have

2

g 120
e ;A?(“’) = et 2)m+ )

3 a2
=1

op

Proof. We have

n m 3
Z A} (w) = trace (Z WiAi> = Z wiw;wy, trace(A; A; A,)
Jj=1 i=1 (i,5,k) distinct
+ ) wlwjtrace(A7A;) + Y wiw? trace(A; A3)
(4,5): i#j (i,5): i#]

m
+ Z wiw; trace(A; A;A;) + Z w? trace A?
(4,5): i#]j i=1
m
= Z wiwjwy, trace(A; A;Ag) +3 Z wiw; trace(AZA;) + Z w? trace A2,
(i,5,k) distinct (,§): i3] =1

Using (4.5) and (4.6), we write

2
- T, + 27T + 15T + 18Ty + 97
E Z}\g(w) _ 1+ 2+ 3+ 4+ 915
= m(m + 2)(m + 4)

)
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where

T = Z trace(A;A; Ay) trace(A;, Aj, Ak, )

(i,7,k) distinct
(21,41,k1) is a permutation of (4,7,k)

T, = Z trace?(AZA;)
(4,0): i35
15 = Z trace?(A?)

T, = Z trace(A7A;) trace(A?) and
(4,4): i3]
T5 = Z trace(A7 A;) trace( A7 A;).

(¢,7,k) distinct

Next, we bound T3, T5, T5, Ty and Ts.
Applying (4.4) with B = A Ay, we obtain

> trace®(AiA;Ap) < ||A;Ak||fs = trace(AyAZAy) = trace(A3A3)

i=1

and hence

Z trace?(A; A Ay) < Z trace A2A2
(i,7,k) distinct (7,k): j#k

ZA2

HS

By the Cauchy - Schwarz inequality, for every permutation o of {1,2,3}, we obtain

Z trace (141‘1/11'2 Azd) trace (Aia(l)Aio@) Aia(s))
(il,ig,ig) distinct
< Z trace? (AiA;A) <
(2,3,k) distinct HS
and hence
m 2
T < 6(> A7
1=1 HS
Applying (4.4) with B = A2, we conclude that
Ztrace (AZA; Ztrace (A;A7) < ||A?||3s

Jj=1



22 A. Barvinok, M. Rudelson / Advances in Mathematics 403 (2022) 108391

and hence
- 2
Tl < 3 (14 lls < )
i=1 HS
where the last inequality follows since the matrices A%,..., A2, are symmetric positive
semidefinite and hence
<A?,A?) >0 forall 4,j.
Applying the Cauchy - Schwarz inequality, we obtain
| trace A7| = [(A;, A7) < || Aillns]| A llus = |47 ||ns (4.7)
and hence
T5] < Z 14]Is < ZAQ
i=1 HS

To bound T, and T5 we combine some of the previously obtained estimates.
Applying the Cauchy - Schwarz inequality, (4.4) with B = " | A? and (4.7), we
obtain

m o m

Z Ztraee (AZ A;) trace( A3 Ztrace <A ZA2> trace A3)

j=1i=1

1/2 1/2

i trace? (Aj i Af) Z trace? (A;’)
j=1 =1 Jj=1

IN

1/2
/ m 2

>4
i=1

IA

> 42

HS \J=1

3z
=1

HS

Therefore, using (4.7), we get

|Ty| = iitr&ce A Aj) trace A3 Ztrace A3 < 2

j=11i=1

m 2

2
24
i=1

HS

It remains to bound T5. We have
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m

Ts = Z Z trace(A7A;) trace( AL A; Z Z trace® (A7 A;)

Jj=1 (i,k): j=14: i#j
i£] k]
2
= Z Z trace(A74;) | — T»
j=1 \i: i#j
Since
HS
we have
m m 2
|T5] < max Z Z trace(A7A;) ZA?
Jj=1 \ui#j i=1 HS
Now,
2 . 9
Z trace(A74;) | = <— trace(A?) + Ztrace(A?Aﬂ)
it i#g i=1
m 2
= trace? (Ag’) — 2trace(A Z trace(A7 A; (Z trace(A?A; ))
i=1
= trace? (A;’) -2 trace(A;’) trace (Aj Z Af) + trace? (Aj Z A?)
i=1 i=1

and hence

2

zm: Z trace(A7A;)

J=1 \isi#j
= ZtraceZ(A;?) -2 Z trace(A?) trace <Aj Z Af) + X:trace2 <Aj Z Af)
j=1 j=1 i=1 j=1 i=1

By (4.7), we get

m 2

2
24
i=1

HS

m m
S trace®(43) < 3 [Aks <
j=1 j=1

23
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Then, from the Cauchy - Schwarz inequality, (4.7) and (4.4) with B =", A?, we get

Z trace(A?) trace (Aj Z Af)
j=1 i=1
1/2 1/2

i trace? (A?) zm: trace? <Aj i A?)
j=1 j=1 i=1

m

ZA2

HS

and from (4.4)

i trace? (Aj i A?)
j=1 i=1

HS
Thus
m 2
Tl < 4|3 4
i=1 HS
Summarizing,
2 2
= 120 - 120
3 (w < A? T REY A\
250 < e ymrn |54 S mromed Z
1= i= op
where the last inequality follows by (4.3). O
Next, we bound the 4th moment of the eigenvalues.
Lemma 4.2. We have
n 3 m
4 2
.Z )\j (w)] = m+2 Z Ai
j=1 i=1 op

Proof. Using (4.5) and (4.6), we write

n m 4
Z )\?(w) =E trace (Z wiAi>
i=1 i=1

=E Z w? w trace(A;4;4;4;) | +E Z w? w trace( AZA?)
(4,9): i#j (4,9): i#3
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+E Z w? w trace( AlA?Ai) +E (wa trace(Af))
(i-4): i#] i=1

Ty + 2T, + 375

 m(m+2)

)

where

T = Z trace(A;A;A;A;),

(i,4): i#]
T, = Z trace(A?A?) and
(i,5): i#7
m
Ts = Ztrace(A?).
i=1

We bound T, Ts and T5.
Applying the Cauchy - Schwarz inequality, we get

|T1‘ = Z traCG(AZ'AinA]') = Z <AjAZ', AZA]>
(4,9): i#j (4,9): i#j
< > 4jAilusllAiA lus = ) trace(A7AY) =T
(1,9): i#j (4,9): i#j

On the other hand,

m 2
2
24
i=1

2 m
T, = Z trace(A2 = trace (Z A2> - Ztrace(Af) = —T;.
(i,9): i#] =1 HS
Therefore,
m 2
Ty + 2T, + 3T3| < |Ty| + 275 + 3Ty < 3Ty + 3T = 3||)_ A7
=1 llus

The proof now follows by (4.3). O
Next, we prove some uniform bounds.

Lemma 4.3. For all w € S™~ 1, we have
(1)
1/2

[A(w)|lop < and

ZA2

op
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(2) n
Z /\;l»(w) <

op

Proof. Repeatedly applying the Cauchy - Schwarz inequality, for any vector x € R™ such

that ||z|| = 1, we obtain
m m 1/2 " 1/2
[(Aw)z,z)| =D wildiz,z)| < (Z(A,;x,:z:>2> < <Z<Aiz,Aix>>
i=1 i=1 i=1
m 1/2 1/2
i=1 op
and Part (1) follows. Note that here we did not use that Aq,..., A, is an orthonormal

set.
To prove Part (2), we bound

§:A4 < (xR )}jAZ = 1 AGw)I2, 1A

Using that Aj, ..., A,, is an orthonormal set, we obtain
m
| A(w)||4g = trace(A%(w Z w;w; trace(A4;4;) = Zw? =1. (4.8)
i,j=1 i=1

The proof now follows by Part (1). O

Finally, we need a concentration inequality on the unit sphere S~ for the 4-Schatten
norm of A(w).

Lemma 4.4. For § > 0, we have

1/4
+6

m

>4

=1

3
P mel | A(w > | ——
wes™ 1 Awls, > |

op

B % (m —1)
m 1/2
2|30, A2

Proof. We apply a measure concentration inequality on the sphere S™~ 1. Let

dist(z, y) = arccos(z, y)
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be the geodesic distance between two points 2,y € S™ ! and let f : S~ ! — R be a
1-Lipschitz function, so that

If(z) — f(y)| < dist(z,y) forall z,yeS™ %

Then for c = E f and § > 0 we have

P {weSm_lr flw) > c—l—é} < exp{—%}’

see, for example, Section 5.1 of [10].
Let us define a function g : R™ — R by

g(x) = ||A(z)|ls,, where A(z)= Z{iAi for x=(&,...,&m).
i=1

Then from (4.1) and Part 2 of Lemma 4.3, for all z,y € S™~!, we have

1/4

l9(z) —g(y)| < [[Az) = A()lls, = [[A(z —y)lls, < llz =yl

>
i=1

op
1/4

< dist(z, y).

>4
=1

op

Therefore, for the expectation ¢ = E g on the unit sphere S™~1, we have

2 (m—1
P{weSmflz g(w) 26—!—5} < exp _Enm—z)l/Q for 6§ >0.
2112252 Al
By Lemma 4.2 and the Holder inequality, we get
1/4 1/4 1/4
_ 4 4
7j=1 j=1 i=1 op
and the proof follows. O
5. Estimating integrals
Recall that we have an orthonormal set Ay, ..., A, of n x n symmetric real matrices.

For w € S™ 1 w = (w1,...,wn), we define the matrix
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m
A(w) = ZwiAi.
i=1
As follows by (4.8), we have
[A(w)lms = 1.

In this section, we consider the integral

+o0

/ rm-t d(;ti (I — \/*17’14) exp { _217 trace A} dr,

where A is an n X n symmetric matrix satisfying ||A||ps = 1 and possibly some other
constraints. In particular, we will be interested in the situation when

|Allp = O (\/—%) .

We will be comparing this integral with

“+o0
2 m/2
m—1 T m—1 m 2 m/2
T — gm-1p (—) ~(Z .
/7’ exp{ 1 } dr > (e) m
0
First, we bound the tail.

Lemma 5.1. Let A be an n X n real symmetric matrix such that

1
Algs =1 and ||Allgy < ——.
Alus =1 and Al < 5

Then for m > 2,

+00 1
T2 1
/ 71| det (I — \/—17’A) dr < —m™/2e73m,
20m
5y/m
Proof. Let Aq,..., )\, be the eigenvalues of A, so that
Z/\j =1 and [N\| < —= for j=1,...,n

vm

=1

(we will choose av = 0.1 at the end). Then
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= et | I ESU

Jj=1 Jj=1

det’ (I - v/~1rA)

Let

§j:/\572 for 7=1,....n

Since the minimum of the log-concave function H;Zl(l + &;) on the convex polyhedron
defined by the equation

n
> &G="
Jj=1

and inequalities

a27_2

0 <¢ < and j7=1,...,n

m

is attained at its vertex where all but possibly one coordinate are either 0 or a?72/m,
we have

2
n 2.2\ “iaZ
[1(1+2372) i<<1+“>4 .
m

Jj=1
Hence
(I —m

)a dr

det (I \/7714)

dr < (

5\5

N
R

“+o0
m/2 _ m/
m m—
= / 11 4 62) % 2)%57 (25) ds
1/2 1/2
+oo
m/2 —m(1—2a2)—a?
- /<1+52>f“fa = (26) ds
1/2

9 9 (172(12)77»73042
. mm/ 4o 4 102
am (1-2a2)m—3a2 \5

Substituting o = 0.1, we get
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oo _1 (24.5)m—0.75
.04 4

[ e (1= T ar < wmerom O ()

e ) )

(24.5)m
1 4 1 .
10™ m/2 [ * m/2 73m.
< 0om " (5) < 2om™ ¢ -
Next, we estimate the integral on the initial interval.

Lemma 5.2. Let A be an n X n real symmetric matrix such that

1
A =1 Allgp < ——=

and let Ay, ..., )\, be the eigenvalues of A. Then, for m > 1,

(1) We have

1

de?ti (I — \/—17’A) dr

5v/m
/ 7_mfl
0

625m? 2
< exp 8m ZA? / Tm_lexp{—%} dr.
j=1

(2) Suppose, in addition, that

- 1 1
3 4
E Aj| < ST and E N < o
j:l 1

Then

3
o
~
3
|
—
[oN
@ |
T b
—
~
I
ﬁ
—_
\‘
=
[©]
M
e}
—
|
\]
-
—
2
@]
@]
b
——
U
\‘

Proof. Since in the interval 0 < 7 < 5y/m, we have

—

ITA;| < = for j=1,...,n,

[\]

we can expand
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1

deTt5 (I — \/—_17'A) exp {—

—1r
trace A}

= exp ——Zlnl—\/_T)\ \/_TZ/\

where

We have
DN =lAllfs =1
j=1
and for s > 1, we have
n

- 2(s+1) 2 . 2s 1 2s
207 = (e 22) o0 < g Yo

Jj=1 Jj=1

A\

Consequently, for 0 < 7 < 5,/m, we have

n

\2(s
>_ (™) = 100m

j=1 ]:1 =

3

Hence the terms of h(7) alternate in sign and decrease in the absolute value, from which
we deduce that

)
)
I

3

T T T 4
— < hn) < ——+§Z)\- for 0 < 7 < 5¢m. (5.2)

Part (1) now follows from the upper bound in (5.2).
To prove Part (2), we bound g(7) assuming that

3 a — 4 B
DN < op oemd DA< 5
j=1
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(we substitute o = 1/25 and 8 = 1/625 at the end). For s > 2, we have

n

25—3
Zl)‘PSH < max |\, ) .i)(% < L
J - j=1,...,n J J = 102373ms+%'

Jj=1

Therefore, in the interval 0 < 7 < 54/m, we have

- - s 6254
Z(mjﬁ < 125a and Z )2t saeg for s>2.

IA

Therefore, in the interval 0 < 7 < 5y/m, we have

125 6250 125 125083
< < .
lg(r)] = +SZ Is+2)2%3 = 6 30
Substituting
1 1
S d -
a=g5 and f=ro0
we conclude that
5 1 27 T
< -4 == — forall 0<71<5ym.
|9(7')|_6+15 30< 3 or a <7 <5m

The proof now follows from the lower bound in (5.2). O
The last lemma of this section contains some estimates for our benchmark integral.

Lemma 5.3. For m > 2, we have

(1)

2 9 m/2
/Tm 1exp{——} dr > m™/? 1(—) and
m \ e
0
2
(2) oo 72
/ m lexp{—z} dr
5v/m
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Proof. We have

+00 9 +oo
/ 7 Lexp {_TZ} dr =2m~! / s"T exp{—s} ds =2m"'T (%) .
0 0

To prove Part (1), we use the standard inequality

1

I(x) > V2ra® 2™ for z2>1.

To prove Part (2), we bound

+oo 9 +o0
/ 7™ Lexp {_TZ} dr = 2"m™/? / s™ Lexp {—msQ} ds
5y/m 5/2
+oo
< 2mm™m/? / exp {—(m —1) (s> — Ins)} ds
5/2
+ +
< gm,,m/2 /00 { (m—1)s? } d 2mmm/2 - { 7'2} d
>~ m expy ———————— § = ——— expq —— T
2 vm—1 2
5/2 5T

IN

[ 2 25(m —1
™ 2mmm/2 exp{ — (m ) ,
m—1 8

where in the last inequality we use the standard Gaussian probability tail estimate
+oo
1

- 77’2/2 d < 7(12/2 f >0
e T e or a . O
V2T / - -

a

6. Proofs of Theorems 1.1 and 1.2
Proof of Theorem 1.1. We choose
n =105,

Let Ay,..., A, be an orthonormal basis of the subspace span (Q1,...,Qm) in the
space of n X n symmetric matrices and let

a;(x) = (Az,z) for i=1,....m

be the corresponding quadratic forms. Since the quadratic forms ¢, ..., ¢, are linear
combinations of the forms aq,...,a, and vice versa, the system
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qi(z) = traceQ; for i=1,...,m
has a solution if and only if the system
a;(z) =trace A; for i=1,...,m

has a solution z. To establish the existence of a solution of the latter system, we use
Theorem 2.1, for which we consider the integral

/ d(;t§ (I — -1 ZTZ'AZ'> exp {2_1 Zn trace Ai} dt. (6.1)
i=1

R™ 1=1

Our goal is to prove that the integral (6.1) converges absolutely to a non-zero value.
Let S™~! Cc R™ be the unit sphere endowed with the Haar probability measure. For
weS™ 1 w=(wi,...,wn), let

A(w) = i OJZ‘AZ‘.
i=1

Then by (4.8) and Lemma 4.3 for every w € S™ 1, we have

_ _/n 1
lA)las =1 and  [|Aflop = /> < oV

It follows from Lemma (5.1) that

+oo

/ 7_m—l

0

dr < +oo.

det. (1 =TrA(w)

Hence the integral (6.1) indeed converges absolutely and, up to a non-zero factor (the
surface area of the sphere S™~1) can be written as an absolutely converging integral

+oo 1

E / det’ <I - \/——lzm: TA(U))) exp {— \/?T trace A(w)} dr (6.2)
A i=1

where the expectation is taken with respect to the Haar measure on S™~!. Hence our
goal is to prove that the integral (6.2) is non-zero. We intend to prove that the real part
of the integral is positive.

Let Ai(w),..., Ap(w) be the eigenvalues of A(w). By Lemma 4.1,

2
120n 3

E A3 < < :
; i S L mT D < 250008
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Therefore, by the Markov inequality,

. 3

By Lemma 4.2,

3n 3
E[> XNw) | < <

m(m + 2) 106m2’
Hence, using the Markov inequality again, we get

" 1 3
P : 24 < ) 6.4
w ; 1) > sz (S T600 (6-4)

We represent S™! as a disjoint union
sm1 = Qo U Q1 Uy,

where

n 1 n 1
— -1, 3 4
Qo=qweS" " jg_l Aj(w)]| < 2Emi2 and JE_I Aj(w) < GoEmzZ

. 1 - 1
— m—1, 3 4
Q=KwesS™ ! ZR:A4(w) > !
o J 625m2
From (6.3) and (6.4), we have
7
P () > 3
and hence from Part (2) of Lemma 5.2,
svm .
-3 V=1
9%/ / det’ (I— \/—].ZTA(U))) exp{— 3 TtraceA(w)} dr | dw
Q \ 0 =1
(6.5)

5vm

7 72
> m—1 _
> 16 / T exp{ 1 } dr,

0
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where dw is the Haar measure in S™~1.
From (6.3), we have

P(Q) < —
@) < 5

and hence Part (1) of Lemma 5.2 yields

5/m L
/ /Tm—l det’ (I —v=TrA(w))| dr | dw
0 0
5ym
< 3 1 / m—1 2 d
3 ep I
S 406 P 3 T exp T
0
NG

2
< 0.1 / TMIexp{Z} dr.
0

For integer k > 1, let

k k+1
05 = sty — A < =1
j={ue = < M)l < 2]

Then from Part (2) of Lemma 4.3, we have
5(nm)t/*
0= |J .
k=1
By Lemma 4.4, taking into account that = 1075, we get

3 V4 g
P(2}) < P {wegmlz A, > () o

(m+2 6y/m

In view of Part (1) of Lemma 5.2,

5v/m .
/ /Tm_l det2 (I—\/—lTA) dr | dw
a5 \ 0

4 2 svm 2
< exp (k+1) _k (m—1) / 7™ Lexp T g
- 8 72./Mm 4 '

0

}
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Since
k < 5(nm)'/,
we have
4
(k+1) < 2kt < 50K (m)V/?
and
1 4 2 -1 2
(k—l—)_k‘(m )gkﬁ—6k2\/ﬁ<—5k2.
8 72 /mm 20
Hence
5¢/m .
/ /T"H det (I —/=1rA)| dr | dw
Q \ 0
0 5vm 2
< (Zexp{—5k2}> /Tm_lexp{—%} dr (6.7)
k=1 )
5y/m ,
m—1 T
< 0.01 / T exp{—z} dr.
0

Summarizing, from (6.5), (6.6) and (6.7), we get

5vm

E / det (I V=1 imm)) exp { \/?T traceA('w)} dr

0

(S

5vm

1 2
- / Tm_lexp{—%} dr
0

and hence by Lemma 5.1, the absolute value of the expectation (6.2) is at least

=~

5v/m

1 2 1
1 / 7™ Lexp {_TZ} — —QOmmm/zefg'm.

0

Then by Lemma 5.3, the absolute value of the expectation (6.2) is at least
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m/2
m/2 L 2 _ L2m _25(m — 1) _ 1 —3m
T\ 16m <e> Vm—1 eXp{ 8 20m° ’

which is positive for m > 3. O

Proof of Theorem 1.2. The proof is identical, except we use Theorem 2.2 instead of
Theorem 2.1. O
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