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1. Introduction and main results

1.1. Systems of real quadratic equations

Let q1, . . . , qm : Rn −→ R be quadratic forms,

qi(x) = 〈Qix, x〉 for i = 1, . . . , m,

where Qi are n × n symmetric matrices and

〈x, y〉 =
n∑

i=1
ξiηi for x = (ξ1, . . . , ξn) and y = (η1, . . . , ηn)

is the standard scalar product in Rn.
Let α1, . . . , αm be real numbers. We want to find out when the system of equations

qi(x) = αi for i = 1, . . . , m (1.1)

has a solution x ∈ Rn. Such systems of equations appear in various contexts, see, for 
example, [6], [12], [13]. If the number m of equations is fixed in advance, one can decide 
in polynomial time whether the system has a solution [1], [8], [4]. The same is true if the 
number n of variables is fixed in advance, in which case a polynomial time algorithm to 
test feasibility exists even if qi are polynomials of an arbitrary degree, see, for example, 
[5].

If m and n are both allowed to grow, the problem becomes computationally hard. 
Unless the computational complexity hierarchy collapses, there is no polynomial time 
algorithm to test the feasibility of (1.1). Furthermore, it is not known whether the fea-
sibility problem belongs to the complexity class NP. In other words, it is not known 
whether one can present a polynomial size certificate for the system (1.1) to have a solu-
tion when it is indeed feasible (note that using repeated squaring of the type xn+1 = x2

n, 
one can construct examples of feasible systems for which no solution has a polynomial 
size description).

In fact, testing the feasibility of an arbitrary system of real polynomial equations can 
be easily reduced to testing the feasibility of a system (1.1). First, we gradually reduce 
the degree of polynomials by repeatedly introducing new variables and equations of the 
type ξij −ξiξj = 0, which allows us to replace the product ξiξj of old variables by a single 
new variable ξij , and hence eventually reduce a given polynomial system to a system

qi(x) = 0 for i = 1, . . . , m,

where qi are quadratic, not necessarily homogeneous, polynomials. Then we introduce 
another variable τ and replace the above system by a system of homogeneous quadratic 
equations
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τ2qi

(
τ−1x

)
= 0 for i = 1, . . . , m

with one more quadratic constraint τ2 = 1.
We are also interested in systems of homogeneous equations

qi(x) = 0 for i = 1, . . . , m, (1.2)

in which case we want to find out whether the system has a non-trivial solution x �= 0. 
The problem is also computationally hard. We briefly sketch how an efficient algorithm 
for testing the existence of a non-trivial solution in (1.2) would produce an efficient 
algorithm for testing the feasibility of (1.1). Given a system (1.1), by introducing a new 
variable τ , as above we replace (1.1) by a system of homogeneous quadratic equations, 
where we want to enforce τ �= 0. This is done by introducing yet another variable σ and 
the equation

R2τ2 −
(
ξ2

1 + . . . + ξ2
n

)
= σ2

binding all variables together, so that if τ = 0 then all other variables are necessarily 0. 
Here R is meant to be a very large constant and in fact, it can be treated as infinitely 
large, with computations in the ordered field of rational functions in R, the trick first 
introduced in [9].

In this paper, we present computationally simple sufficient criteria for (1.1), respec-
tively (1.2), to have a solution, respectively a non-trivial solution. We start with by now 
a standard procedure of semidefinite relaxation.

1.2. Positive semidefinite relaxation

For an n × n real symmetric matrix X, we write X � 0 to say that X is positive 
semidefinite.

Given (1.1), we consider the following system of linear equations

trace(QiX) = αi for i = 1, . . . , m where X � 0 (1.3)

in n × n positive semidefinite matrices X. Unlike (1.1), the system (1.3) is convex and 
efficient algorithms are available to test its feasibility, see [13] for a survey. Clearly, if 
x = (ξ1, . . . , ξn) is a solution to (1.1) then the matrix X = (xij) defined by xij = ξiξj

is a positive semidefinite solution to (1.3). If m ≤ 2, then the converse is true: if the 
system (1.3) has a solution then so does (1.1), see, for example, Section II.13 of [2]. For 
m ≥ 3 the system (1.3) may have solutions while (1.1) may be infeasible. For example, 
the system of quadratic equations

ξ2
1 = 1, ξ2

2 = 1 and ξ1ξ2 = 0
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does not have a solution, whereas the 2 ×2 identity matrix I is the solution to its positive 
semidefinite relaxation. One corollary of our results is that such examples are, in some 
sense, “atypical”.

Our goal is to find a computationally simple criterion when a solution to (1.3) implies 
the existence of a solution to (1.1).

Let X be a solution to (1.3). Since X � 0, we can write X = TT ∗ for an n × n matrix 
T . Then

trace(QiX) = trace(QiTT ∗) = trace(T ∗QiT ).

Let us define matrices

Q̂i = T ∗QiT for i = 1, . . . , m (1.4)

and the corresponding quadratic forms q̂i : Rn −→ R,

q̂i(x) = 〈Q̂ix, x〉 = qi(Tx) for i = 1, . . . , m. (1.5)

If x ∈ Rn is a solution to the system

q̂i(x) = αi for i = 1, . . . , m (1.6)

then y = Tx is a solution to (1.1). We note that

αi = trace Q̂i for i = 1, . . . , m. (1.7)

It may happen that the system (1.1) has a solution while (1.6) does not, but if X and 
hence T are invertible, the systems (1.1) and (1.6) are equivalent. Furthermore, if there 
are no invertible X � 0 satisfying (1.3), then the affine subspace defined by the equations 
trace(QiX) = αi intersects the cone of positive semidefinite matrices at a proper face, 
and the system (1.1) can be effectively reduced to a system of quadratic equations in 
fewer variables, cf., for example, Section II.12 of [2]. Summarizing, a solution X to (1.3)
allows us to replace (1.1) by a similar system, where the right hand sides αi are the 
traces of the quadratic forms in the left hand side.

Ultimately, we are interested in finding out when the system (1.6) of quadratic equa-
tions with additional conditions (1.7) has a solution x ∈ Rn.

1.3. Reduction to an orthonormal basis and the main result

Before we state our main result, some remarks are in order. As agreed, we consider the 
system (1.1) where αi = trace qi. Without loss of generality, we assume that the quadratic 
forms qi and hence their matrices Qi are linearly independent. For an invertible m × m

matrix M = (μij), let us define new forms
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q̃i =
m∑

j=1
μijqj for i = 1, . . . , m

and new right hand sides

α̃i =
m∑

j=1
μijαj for i = 1, . . . , m.

Then the system (1.1) has a solution if and only if the system

q̃i(x) = α̃i for i = 1, . . . , m

has a solution. Hence, ideally, a criterion for the system (1.1) to have a solution should 
depend not on the forms q1, . . . , qm per se (or their matrices Q1, . . . , Qm) but on the 
subspace span (q1, . . . , qm) in the space of quadratic forms (equivalently, on the subspace 
span (Q1, . . . , Qm) in the space of n × n real symmetric matrices).

We consider the standard inner product in space of n × n real matrices:

〈X, Y 〉 = trace X∗Y.

In particular, for symmetric matrices X = (ξij) and Y = (ηij) we have

〈X, Y 〉 = trace XY =
∑

1≤i,j≤n

ξijηij

and the space of n × n symmetric matrices becomes a Euclidean space.
We will be using the following observation. Let L be a subspace in the space of n × n

symmetric matrices and let A1, . . . , Am be an orthonormal basis of L, so that

〈Ai, Aj〉 = trace AiAj =
{

1 if i = j,

0 if i �= j.

Then the matrix A2
1 + . . .+A2

m does not depend on a choice of an orthonormal basis and 
hence is an invariant of the subspace L. Indeed, if B1, . . . , Bm is another orthonormal 
basis of L, then

Bi =
m∑

j=1
μijAj for i = 1, . . . , m

and some orthogonal matrix M = (μij) and hence

m∑
i=1

B2
i =

m∑
i=1

⎛⎝ ∑
μij1μij2Aj1Aj2

⎞⎠ =
∑ (

m∑
i=1

μij1μij2

)
Aj1Aj2 =

m∑
j=1

A2
j .
1≤j1,j2≤m 1≤j1,j2≤m
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For an n × n real symmetric matrix Q, we denote by ‖Q‖op the operator norm of Q, 
that is, the largest absolute value of an eigenvalue of Q.

We prove the following main result.

Theorem 1.1. There is an absolute constant η > 0 such that the following holds. Let 
Q1, . . . , Qm, m ≥ 3, be linearly independent n × n symmetric matrices and let qi :
Rn −→ R for i = 1, . . . , m be the corresponding quadratic forms,

qi(x) = 〈Qix, x〉 for i = 1, . . . , m.

Suppose that ∥∥∥∥∥
m∑

i=1
A2

i

∥∥∥∥∥
op

≤ η

m

for some (equivalently, for any) orthonormal basis A1, . . . , Am of the subspace span(Q1,

. . . , Qm). Then the system of quadratic equations

qi(x) = trace Qi for i = 1, . . . , m

has a solution x ∈ Rn.

We prove a similar result for systems of homogeneous quadratic equations, where we 
are interested in finding a non-trivial solution.

Theorem 1.2. There is an absolute constant η > 0 such that the following holds. Let 
Q1, . . . , Qm, m ≥ 3, be n × n real symmetric matrices such that

trace Qi = 0 for i = 1, . . . , m,

and let qi : Rn −→ R,

qi(x) = 〈Qix, x〉 for i = 1, . . . , m,

be the corresponding quadratic forms. Suppose that∥∥∥∥∥
m∑

i=1
A2

i

∥∥∥∥∥
op

≤ η

m

for some (equivalently, for any) orthonormal basis A1, . . . , Am of the subspace span(Q1,

. . . , Qm). Then the system (1.2) of equations has a solution x �= 0.

Remark 1.3. Our proofs of Theorems 1.1 and 1.2 work for η = 10−6, however, we made 
no effort to optimize this constant.
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Note that the operator norm of the matrix 
∑m

i=1 A2
i is its largest eigenvalue. Thus, the 

criterion appearing in Theorems 1.1 and 1.2 is algebraic like the problem itself. Despite 
that, the proofs of these theorems rely on analytic tools: introduction of the Gaussian 
measure, the Fourier transform asymptotic, and the measure concentration. We discuss 
this in more detail in Section 2.

1.4. Discussion

1.4.1. Computational complexity
Given matrices Q1, . . . , Qm, one can compute an orthonormal basis A1, . . . , Am of 

span (Q1, . . . , Qm), using, for example, the Gram-Schmidt orthogonalization process. 
Then one can check the inequality for the operator norm of A2

1 + . . . + A2
m. These are 

standard linear algebra problems that can be solved in polynomial time. However, we 
don’t know how to find a solution x in polynomial time or whether a solution x with a 
polynomial size description even exists when the conditions of Theorems 1.1 and 1.2 are 
satisfied.

1.4.2. The case of random matrices
Let Q1, . . . , Qm be independent symmetric random matrices with entries above the 

diagonal being independent normal random variables of expectation 0 and variance 1
and the diagonal entries being normal of expectation 0 and variance 2. In other words, 
up to the scaling factor of 

√
n, the matrices Q1, . . . , Qm are sampled independently from 

the Gaussian Orthogonal Ensemble (GOE).
We assume that m ≤ n. As n grows, with high probability we have (we ignore low-

order terms)

‖Qi‖op ≈ 2
√

n and 〈Qi, Qi〉 ≈ n2 for i = 1, . . . , m,

see, for example, Section 2.3 of [14].
Let A1, . . . , Am be the orthonormal basis of span (Q1, . . . , Qm) obtained by the Gram 

- Schmidt orthogonalization from Q1, . . . , Qm. Then, up to a normalizing factor, each Ai

is also sampled from GOE, so we have

‖Ai‖op ≈ 2√
n

for i = 1, . . . , m,

with high probability. Hence∥∥∥∥∥
m∑

i=1
A2

i

∥∥∥∥∥
op

≤
m∑

i=1
‖Ai‖2

op ≈ 4m

n
.

Hence if m ≤ √
ηn/2, with high probability the conditions of Theorems 1.1 and 1.2 are 

satisfied. Similar behavior can be observed for other models of random symmetric ma-
trices with independent entries sampled from a distribution with expectation 0, variance 
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1 and sub-Gaussian tail. Informally, for the conditions of Theorems 1.1 and 1.2 to hold, 
we want n to be substantially larger than m and the subspace span (Q1, . . . , Qm) to be 
sufficiently generic.

1.4.3. The metric geometry of the cone of positive semidefinite matrices
As before, we consider the space Symn of n × n symmetric matrices as a Euclidean 

space. Let S+ ⊂ Symn be the convex cone of positive semidefinite matrices. From Sec-
tion 1.4.2, we deduce the following metric property of S+: There is an absolute constant 
γ > 0 such that if A ⊂ Symn is an affine subspace of codimension m ≤ γ

√
n sam-

pled at random from the uniform (Haar) probability measure on the Grassmannian of 
codimension m subspaces containing the identity matrix In, then A contains a positive 
semidefinite matrix of rank 1 with probability approaching 1 as n grows.

We don’t know if the estimates of Theorem 1.1 and Sections 1.4.2 and 1.4.3 are 
optimal, or, for example, whether we can make m in Section 1.4.2 and codim A in Sec-
tion 1.4.3 proportional to n instead of 

√
n. There is a vast literature on the average

characteristics of the set of solutions for systems of real polynomial equations, see, for 
example, [7], [11] and reference therein, but much less appears to be known regarding 
solvability of such systems with high probability.

1.4.4. Solving positive semidefinite relaxation
Suppose we want to apply Theorem 1.1 to test the solvability of the original system 

(1.1), where we do not necessarily have αi = trace qi. We begin by looking for a solution 
X to the positive semidefinite program (1.3). If there is no solution X, we conclude 
that the system (1.1) has no solutions. If there is a solution X � 0 with rank X ≤ 1, 
we conclude that the system (1.1) has a solution. The difficulty arises when we find a 
solution X � 0 but with rank X > 1. It is known that if there is a solution X � 0, then 
there is a solution X � 0 with an additional constraint

rank X ≤
⌊√

8m + 1 − 1
2

⌋
.

Any extreme point of the set of solutions to (1.3) satisfies this condition, see, for example, 
Section II.13 of [2]. Curiously, if we are to use Theorem 1.1 to ascertain the existence of 
a solution, it makes sense to try to find an X � 0 not on the boundary, but as close as 
possible to the “middle” of the set of solutions of (1.3) because we want the transformed 
matrices Q̂i given by (1.4) to be as generic as possible. For example, one can look for X
with the maximum von Neumann entropy

n∑
j=1

λj ln 1
λj

,

where λ1, . . . , λn are the eigenvalues of X, see, for example, [15]. Finding such an X

is a convex optimization problem and hence can be solved efficiently. Informally, if the 
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number m of equations is rather small compared to the number n of variables, if the 
matrices Q1, . . . , Qm of equations in (1.1) are sufficiently generic, and if the solutions X
to the positive semidefinite relaxation (1.3) can be found deep enough the cone of S+
positive semidefinite matrices, then the system (1.1) will have a solution.

We note that in the homogeneous case one should also be careful about working with 
the positive semidefinite relaxation. Namely, if X � 0 is a solution to the system of 
equations

trace(QiX) = 0 for i = 1, . . . , m, (1.8)

we factor X = TT ∗, define Q̂i by (1.4) and define q̂i by (1.5), then to deduce the existence 
of a non-trivial solution to the system (1.2) from the existence of a non-trivial solution 
to the system

q̂i(x) = 0 for i = 1, . . . , m,

we must require T and hence X to be invertible. If there are no invertible X � 0 satisfying 
(1.8), we reduce (1.2) to a system of homogeneous quadratic equations in fewer variables, 
see Section 1.2.

In the rest of the paper, we prove Theorems 1.1 and 1.2. Although the statements are 
real algebraic, our proofs use analytic methods, in particular, the Fourier transform.

2. Outline of the proof

In what follows, we denote the imaginary unit by 
√

−1, so as to use i for indices.
Let Q1, . . . , Qm be n × n real symmetric matrices and let I be the n × n identity 

matrix. For real τ1, . . . , τm, we consider the matrix

Q(t) = I −
√

−1
m∑

i=1
τiQi for t = (τ1, . . . , τm) .

Since the eigenvalues λ1(t), . . . , λn(t) of the linear combination 
∑m

i=1 τiQi are real, we 
have

det Q(t) =
n∏

i=1

(
1 −

√
−1λi(t)

)
�= 0 for all t ∈ Rm.

Therefore, we can pick a branch of

− 1
2

det Q(t),

which we select so that at t = 0 we get 1.
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It is also more convenient to rescale and define quadratic forms by

q(x) = 1
2 〈Qx, x〉.

Our proof of Theorem 1.1 hinges on the analysis of the Fourier transform of the function 
F (t) := det− 1

2 Q(t), t ∈ Rm. Namely, we prove the following result.

Theorem 2.1. Let Q1, . . . , Qm be n × n real symmetric matrices, let

qi(x) = 1
2 〈Qix, x〉 for i = 1, . . . , m,

be the corresponding quadratic forms and let α1, . . . , αm be real numbers. Suppose that

∫
Rm

∣∣∣∣∣ − 1
2

det
(

I −
√

−1
m∑

i=1
τiQi

)∣∣∣∣∣ dt < +∞ (2.1)

and that ∫
Rm

− 1
2

det
(

I −
√

−1
m∑

i=1
τiQi

)
exp

{
−

√
−1

m∑
i=1

αiτi

}
dt �= 0. (2.2)

Then the system (1.1) of equations has a solution x ∈ Rn.

We prove a similar result for homogeneous systems.

Theorem 2.2. Let Q1, . . . , Qm and q1, . . . , qm be as in Theorem 2.1 and assume, addi-
tionally, that m < n. Suppose that

∫
Rm

− 1
2

det
(

I −
√

−1
m∑

i=1
τiQi

)
dt �= 0,

where the integral converges absolutely. Then the system (1.2) of equations has a solution 
x �= 0.

We prove Theorems 2.1 and 2.2 in Section 3. Theorems 1.1 and 1.2 are deduced from 
Theorems 2.1 and 2.2 respectively. Since the proofs are very similar, below we discuss 
the plan of the proof of Theorem 1.1 only.

First, we note that we can replace matrices Q1, . . . , Qm by an orthonormal set of 
matrices A1, . . . , Am and quadratic forms qi by quadratic forms

ai(x) = 1 〈Aix, x〉 for i = 1, . . . , m.
2
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We let

αi = 1
2 trace Ai

and consider an equivalent system

ai(x) = αi for i = 1, . . . , m

of quadratic equations, see Section 1.3.
Using Theorem 2.1, we conclude that it suffices to prove that

∫
Rm

− 1
2

det
(

I −
√

−1
m∑

i=1
τiAi

)
exp

{
−

√
−1

m∑
i=1

αiτi

}
dt �= 0, (2.3)

where the integral converges absolutely. Up to a scaling normalization factor, we rewrite 
the integral in polar coordinates as follows.

Let Sm−1 ⊂ Rm be the unit sphere endowed with the Haar probability measure. For 
w ∈ Sm−1, w = (ω1, . . . , ωm), we define the matrix

A(w) =
m∑

i=1
ωiAi.

Up to a non-zero scaling factor, in polar coordinates the integral (2.3) can be written as

∫
Sm−1

⎛⎝ +∞∫
0

τm−1
− 1

2
det

(
I −

√
−1τA(w)

)
exp

{
−

√
−1τ

2 trace A(w)
}

dτ

⎞⎠ dw. (2.4)

The rest of the proof relies on an analysis of this integral. As a first step, we show that 
the contribution of the tail of the inside integral in (2.4) is negligible. Namely, we prove 
in Lemma 5.1 that for any w ∈ Sm−1, we have

+∞∫
5

√
m

τm−1

∣∣∣∣∣ − 1
2

det
(
I −

√
−1τA(w)

)∣∣∣∣∣ dτ ≤ 1
20m

mm/2e−3m. (2.5)

In particular, this proves that the integral (2.4) converges absolutely and that the inte-
grals (2.4) and (2.3) are equal, up to a scaling factor that is the surface area of the unit 
sphere Sm−1 ⊂ Rm.

This allows us to consider the integration over the interval [0, 5
√

m] in the inner 
integral in (2.4). To analyze this integral, denote by λ1(w), . . . , λn(w) the eigenvalues of 
A(w). A simple calculation yields
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− 1
2

det
(
I −

√
−1τA(w)

)
exp

{
−

√
−1τ

2 trace A(w)
}

= exp

⎧⎨⎩1
2

∞∑
k=2

(τ
√

−1)k

k

n∑
j=1

λk
j (w)

⎫⎬⎭ ,

see the derivation in (5.1). Note that the summation starts from k = 2. This is achieved 
due to the first step in the argument allowing us to set αi = 1

2 trace Ai. Moreover, ∑n
j=1 λ2

j (w) = 1 for all w ∈ Sm−1 due to orthonormality of the matrices A1, . . . , Am.
Next, we divide the points w ∈ Sm−1 into tame and wild. For a tame point, we show 

that the term corresponding to k = 2 in the expression above is dominating which would 
mean that the expression above is close to exp

{
− τ2

4

}
. To prove it, we need to control ∑n

j=1 λk
j (w) for all k ≥ 3. However, as we show below, a control for k = 3, 4 turns out 

to be sufficient. More precisely, we classify a point w ∈ Sm−1 as tame if∣∣∣∣∣∣
n∑

j=1
λ3

j (w)

∣∣∣∣∣∣ ≤ 1
25m3/2 and

n∑
j=1

λ4
j (w) ≤ 1

625m2 .

The second inequality here is a bound on the 4-Schatten norm of A(w): ‖A(w)‖S4 ≤
1/(625m2). In contrast to it, the first inequality bounds the third moment of the eigen-
values, and not the 3-Schatten norm, as we have to exploit the cancellation of positive 
and negative eigenvalues.

In Lemma 5.2, we prove that if w ∈ Sm−1 is tame, then

�
5

√
m∫

0

τm−1
− 1

2
det

(
I −

√
−1τA(w)

)
exp

{
−

√
−1τ

2 trace A(w)
}

dτ

≥ 1
2

5
√

m∫
0

τm−1 exp
{

−τ2

4

}
dτ ≈ 2m−2Γ

(m

2

)
.

(2.6)

We note that the value of (2.6) is much larger than the tail estimate (2.5). Moreover, 
in Lemmas 4.1 and 4.2 we bound the expectations

E

⎛⎝ n∑
j=1

λ3
j (w)

⎞⎠2

≤ 120η

m(m + 2)(m + 4) and E
n∑

j=1
λ4

j (w) ≤ 3η

(m + 2)m. (2.7)

This is the point where the quantity 
∥∥∑m

i=1 A2
i

∥∥
op reveals itself. It turns out that both 

expectations above can be controlled in terms of this operator norm alone.
It follows then by the Markov inequality that a random w ∈ Sm−1 is tame with 

probability at least 7/8, and hence tame points w ∈ Sm−1 contribute significantly to the 
integral (2.4).
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It remains to show that the contribution of wild points w ∈ Sm−1 cannot offset the 
contribution of tame points.

This relies on a concentration inequality for the 4-Schatten norm of matrices A(w)
on the unit sphere Sm−1, which we derive in Lemma 4.4. This inequality is leveraged 
against the deterioration of the bounds on the eigenvalues of A(w) which occurs for the 
wild points. To this end, we partition the set of wild points into a number of subsets 
according to the size of ‖A(w)‖S4 , and apply the concentration inequality to prove that 
the contribution of the points in each layer to the integral (2.4) is negligible.

This argument is carried out in Section 6.
In Sections 4 and 5, we do some preliminary work: we prove bounds (2.7) as well as 

some other useful bounds on the eigenvalues of A(w) in Section 4. In Section 5 we derive 
(2.5) and show that a similar integral over the interval [0, 5

√
m] can be controlled by 

‖A(w)‖op, which is in turn bounded in terms of ‖A(w)‖S4 .

3. Proofs of Theorems 2.1 and 2.2

3.1. Enter Gaussian measure

We consider the standard Gaussian measure in Rn with density

1
(2π)n/2 e−‖x‖2/2 where ‖x‖ =

√
ξ2

1 + . . . + ξ2
n for x = (ξ1, . . . , ξn) .

Considering a quadratic form q(x) = 〈Qx, x〉 as a random variable, we observe that

E q = trace Q,

so that the equation q(x) = trace Q “holds on average”.
The proof of Theorems 2.1 and 2.2 is based on a Fourier transform formula.

Lemma 3.1. Let Q1, . . . , Qm be n × n real symmetric matrices and let

qi(x) = 1
2 〈Qix, x〉 for i = 1, . . . , m,

be the corresponding quadratic forms. Then for any real α1, . . . , αm and any real σ > 0, 
we have

1
(2π)n/2

∫
Rn

exp
{

−σ2

2

m∑
i=1

(qi(x) − αi)2

}
e−‖x‖2/2 dx

= 1
σm(2π)m/2

∫ − 1
2

det
(

I −
√

−1
m∑

i=1
τiQi

)
exp

{
−

√
−1

m∑
i=1

αiτi

}
e−‖t‖2/2σ2

dt.
Rm
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Proof. As is well-known, for a positive definite matrix Q and the corresponding form

q(x) = 1
2 〈Qx, x〉

we have

1
(2π)n/2

∫
Rn

e−q(x) dx =
− 1

2
det Q.

Consequently, for t ∈ Rm, t = (τ1, . . . , τm), in a sufficiently small neighborhood of 0, we 
have

1
(2π)n/2

∫
Rn

exp
{

m∑
i=1

τiqi(x)
}

e−‖x‖2/2 dx =
− 1

2
det

(
I −

m∑
i=1

τiQi

)
.

Since both sides of the formula are analytic in τ1, . . . , τm ∈ C for �τ1, . . . , �τm in a small 
neighborhood of 0, we conclude that the above formula holds for all such τ1, . . . , τm and 
that, in particular,

1
(2π)n/2

∫
Rn

exp
{

√
−1

m∑
i=1

τiqi(x)
}

e−‖x‖2/2 dx =
− 1

2
det

(
I −

√
−1

m∑
i=1

τiQi

)

for all real τ1, . . . , τm.
Therefore,

1
(2π)n/2

∫
Rn

exp
{

√
−1

m∑
i=1

τi (qi(x) − αi)
}

e−‖x‖2/2 dx

=
− 1

2
det

(
I −

√
−1

m∑
i=1

τiQi

)
exp

{
−

√
−1

m∑
i=1

αiτi

} (3.1)

for all real τ1, . . . , τm.
Next, we use a well-known formula: for σ > 0 and any real (or complex) α, we have

1
σ

√
2π

+∞∫
−∞

exp
{√

−1ατ
}

exp
{

− τ2

2σ2

}
dτ = exp

{
−α2σ2

2

}
.

Integrating both sides of (3.1) for i = 1, . . . , m over τi ∈ R with density

1
σ

√
2π

exp
{

− τ2
i

2σ2

}
,

we get the desired formula. �
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Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. By Lemma 3.1, for all σ > 0, we have

σm

∫
Rn

exp
{

−σ2

2

m∑
i=1

(qi(x) − αi)2

}
e−‖x‖2/2 dx =

(2π)
n−m

2

∫
Rm

− 1
2

det
(

I −
√

−1
m∑

i=1
τiQi

)
exp

{
−

√
−1

m∑
i=1

αiτi

}
e− ‖t‖2

2σ2 dt.

(3.2)

As σ −→ +∞, the right hand side of (3.2) converges to

(2π)
n−m

2

∫
Rm

− 1
2

det
(

I −
√

−1
m∑

i=1
τiQi

)
exp

{
−

√
−1

m∑
i=1

αiτi

}
�= 0.

Suppose that the system (1.1) has no solutions x ∈ Rn. We intend to obtain a contra-
diction by showing that the left hand side of (3.2) converges to 0 as σ −→ +∞.

Let

γ = (2π)
n−m

2

∫
Rm

∣∣∣∣∣ − 1
2

det
(

I −
√

−1
m∑

i=1
τiQi

)∣∣∣∣∣ dt < +∞.

Let us choose a ρ > 0, to be adjusted later. Then

σm

∫
x∈Rn: ‖x‖>ρ

exp
{

−σ2

2

m∑
i=1

(qi(x) − αi)2

}
e−‖x‖2/2 dx

≤ e−ρ2/4σm

∫
x∈Rn: ‖x‖>ρ

exp
{

−σ2

2

m∑
i=1

(qi(x) − αi)2

}
e−‖x‖2/4 dx

≤ e−ρ2/4σm

∫
Rn

exp
{

−σ2

2

m∑
i=1

(qi(x) − αi)2

}
e−‖x‖2/4 dx

=e−ρ2/42n/2σm

∫
Rn

exp
{

−σ2

2

m∑
i=1

(2qi(x) − αi)2

}
e−‖x‖2/2 dx

=e−ρ2/42n/2σm

∫
Rn

exp
{

− (2σ)2

2

m∑
i=1

(
qi(x) − αi

2

)2
}

e−‖x‖2/2 dx

=e−ρ2/42n/22−m(2σ)m

∫
exp

{
− (2σ)2

2

m∑
i=1

(
qi(x) − αi

2

)2
}

e−‖x‖2/2 dx.
Rn
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From Lemma 3.1,

(2σ)m

∫
Rn

exp
{

− (2σ)2

2

m∑
i=1

(
qi(x) − αi

2

)2
}

e−‖x‖2/2 dx

≤ (2π)
n−m

2

∫
Rm

∣∣∣∣∣ − 1
2

det
(

I −
√

−1
m∑

i=1
τiQi

)∣∣∣∣∣ dt = γ.

Summarizing,

σm

∫
x∈Rn: ‖x‖>ρ

exp
{

−σ2

2

m∑
i=1

(qi(x) − αi)2

}
e−‖x‖2/2 dx

≤ e−ρ2/42n/22−mγ.

Given ε > 0, we choose ρ(ε) > 0 such that

e−ρ2(ε)/42n/22−mγ ≤ ε

2 ,

so that for all σ > 0 we have

σm

∫
x∈Rn: ‖x‖>ρ(ε)

exp
{

−σ2

2

m∑
i=1

(qi(x) − αi)2

}
e−‖x‖2/2 dx ≤ ε

2 . (3.3)

If the system (1.1) has no solution then for some δ(ε) > 0, we have

m∑
i=1

(qi(x) − αi)2 ≥ δ(ε) provided ‖x‖ ≤ ρ(ε)

and hence

σm

∫
x∈Rn: ‖x‖≤ρ(ε)

exp
{

−σ2

2

m∑
i=1

(qi(x) − αi)2

}
dx

≤ σmρn(ε)νn exp
{

−σ2δ(ε)
2

}
,

where νn is the volume of the unit ball in Rn. Therefore, there is σ0(ε) > 0 such that for 
all σ > σ0(ε), we have

σm

∫
n

exp
{

−σ2

2

m∑
i=1

(qi(x) − αi)2

}
dx ≤ ε

2 . (3.4)

x∈R : ‖x‖≤ρ(ε)
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Combining (3.3) and (3.4), we conclude that the limit of the left hand side of (3.2) is 0
as σ −→ +∞, which is the desired contradiction. �

The proof of Theorem 2.2 is similar.

Proof of Theorem 2.2. Seeking a contradiction, suppose that the only solution to the 
system is x = 0. Then for some δ > 0 we have

m∑
i=1

q2
i (x) ≥ δ for all x ∈ Rn such that ‖x‖ = 1. (3.5)

From Lemma 3.1, for any σ > 0, we have

σm

∫
Rn

exp
{

−σ2

2

m∑
i=1

q2
i (x)

}
e−‖x‖2/2 dx

=(2π)
n−m

2

∫
Rm

− 1
2

det
(

I −
√

−1
m∑

i=1
τiQi

)
e− ‖t‖2

2σ2 dt.

(3.6)

From (3.5), the left hand side of (3.6) is bounded above (we use polar coordinates) by

ωnσm

+∞∫
0

exp
{

−δσ2τ2

2

}
τn−1e−τ2/2 dτ,

where ωn is the surface area of the unit sphere in Rn. Using the substitution ξ = στ , we 
rewrite the integral as

ωnσm−n

+∞∫
0

exp
{

−δξ2

2

}
ξn−1e−ξ2/2σ2

dξ

and observe that it converges to 0 as σ −→ +∞ (recall that m < n). On the other hand, 
the right hand side of (3.6) converges to

(2π)
n−m

2

∫
Rm

− 1
2

det
(

I −
√

−1
m∑

i=1
τiQi

)
�= 0,

which is the desired contradiction. �
In the rest of the paper, we deduce Theorem 1.1 from Theorem 2.1 and Theorem 1.2

from Theorem 2.2.
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4. Controlling eigenvalues

4.1. Preliminaries

In the space of n × n real matrices we consider the standard inner product, see Sec-
tion 1.3. The corresponding Euclidean norm is called the Hilbert-Schmidt or Frobenius
norm:

‖A‖HS =
√

〈A, A〉 =
√

trace(A∗A).

If, in addition, A is symmetric with eigenvalues λ1, . . . , λn, we have

‖A‖HS =

√√√√ n∑
j=1

λ2
j

while for the operator norm we have

‖A‖op = max
j=1,...,n

|λj |.

We will also consider the 4-Schatten norm defined by

‖A‖S4 =

⎛⎝ n∑
j=1

λ4
j

⎞⎠1/4

.

This is indeed a norm in the space of n ×n symmetric matrices, see, for example, Chapter 
1 of [14]. In particular, we will use that

| ‖A‖S4 − ‖B‖S4 | ≤ ‖A − B‖S4 . (4.1)

Also, we observe that for a symmetric matrix A with eigenvalues λ1, . . . , λn, we have

n∑
j=1

λ4
j ≤

(
max

j=1,...,n
λ2

j

) n∑
j=1

λ2
j ,

from which it follows that

‖A‖S4 ≤ ‖A‖1/2
op ‖A‖1/2

HS . (4.2)

Suppose that B is a positive semidefinite symmetric matrix with eigenvalues 
λ1, . . . , λn. Then
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‖B‖2
HS =

n∑
j=1

λ2
j ≤

(
max

j=1,...,n
λj

) n∑
j=1

λj = ‖B‖op (trace B) .

We will apply the inequality in the following situation: Let A1, . . . , Am be an orthonormal 
set of symmetric matrices, so that

〈Ai, Aj〉 = trace(AiAj) =
{

1 if i = j,

0 if i �= j.

Then the matrix

B =
m∑

i=1
A2

i

is symmetric positive semidefinite and hence we have∥∥∥∥∥
m∑

i=1
A2

i

∥∥∥∥∥
2

HS

≤ m

∥∥∥∥∥
m∑

i=1
A2

i

∥∥∥∥∥
op

. (4.3)

We also remark that 〈A, B〉 ≥ 0 for any two n × n symmetric positive semidefinite 
matrices.

We will use the following inequality. Let A1, . . . , Am be an orthonormal set of n × n

symmetric matrices and let B be another n × n, not necessarily symmetric, real matrix. 
Then

〈Ai, B〉 = trace(AiB) for i = 1, . . . , m

are the coordinates of the orthogonal projection of B onto span (A1, . . . , Am) and hence

m∑
i=1

trace2(AiB) ≤ ‖B‖2
HS. (4.4)

Finally, we will need moments of a random vector w ∈ Sm−1, w = (ω1, . . . , ωm). 
Namely, for integer α1, . . . , αm ≥ 0, we have

Eωα1
1 · · · ωαm

m = 0 provided at least one αi is odd (4.5)

and

Eωα1
1 · · · ωαm

m =
Γ
(

m
2
)∏m

i=1 Γ
(
βi + 1

2
)

Γm
( 1

2
)

Γ
(
β1 + . . . + βm + m

2
) provided αi = 2βi are even,

see, for example, [3]. In particular, we will use the following values:
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Eω2
i ω2

j = 1
m(m + 2) for 1 ≤ i �= j ≤ m,

Eω4
i = 3

m(m + 2) for i = 1, . . . , m,

Eω2
i ω2

j ω2
k = 1

m(m + 2)(m + 4) for distinct 1 ≤ i, j, k ≤ m,

Eω2
i ω4

j = 3
m(m + 2)(m + 4) for 1 ≤ i �= j ≤ m and

Eω6
i = 15

m(m + 2)(m + 4) for i = 1, . . . , m.

(4.6)

In what follows, we fix an orthonormal set A1, . . . , Am of n × n symmetric matrices. 
For a random w ∈ Sm−1, w = (ω1, . . . , ωm), sampled from the Haar probability measure 
in Sm−1, we define

A(w) =
m∑

i=1
ωiAi

and let λ1(w), . . . , λn(w) be the eigenvalues of A(w). Here is our first estimate.

Lemma 4.1. We have

E

⎛⎝ n∑
j=1

λ3
j (w)

⎞⎠2

≤ 120
(m + 2)(m + 4)

∥∥∥∥∥
m∑

i=1
A2

i

∥∥∥∥∥
op

.

Proof. We have

n∑
j=1

λ3
j (w) = trace

(
m∑

i=1
ωiAi

)3

=
∑

(i,j,k) distinct

ωiωjωk trace(AiAjAk)

+
∑

(i,j): i�=j

ω2
i ωj trace(A2

i Aj) +
∑

(i,j): i�=j

ωiω
2
j trace(AiA

2
j )

+
∑

(i,j): i�=j

ω2
i ωj trace(AiAjAi) +

m∑
i=1

ω3
i trace A3

i

=
∑

(i,j,k) distinct

ωiωjωk trace(AiAjAk) + 3
∑

(i,j): i�=j

ω2
i ωj trace(A2

i Aj) +
m∑

i=1
ω3

i trace A3
i .

Using (4.5) and (4.6), we write

E

⎛⎝ n∑
j=1

λ3(w)

⎞⎠2

= T1 + 27T2 + 15T3 + 18T4 + 9T5

m(m + 2)(m + 4) ,



A. Barvinok, M. Rudelson / Advances in Mathematics 403 (2022) 108391 21
where

T1 =
∑

(i,j,k) distinct
(i1,j1,k1) is a permutation of (i,j,k)

trace(AiAjAk) trace(Ai1Aj1Ak1)

T2 =
∑

(i,j): i�=j

trace2(A2
i Aj)

T3 =
m∑

i=1
trace2(A3

i )

T4 =
∑

(i,j): i�=j

trace(A2
i Aj) trace(A3

j ) and

T5 =
∑

(i,j,k) distinct

trace(A2
i Aj) trace(A2

kAj).

Next, we bound T1, T2, T3, T4 and T5.
Applying (4.4) with B = AjAk, we obtain

m∑
i=1

trace2(AiAjAk) ≤ ‖AjAk‖2
HS = trace(AkA2

jAk) = trace(A2
jA2

k)

and hence

∑
(i,j,k) distinct

trace2(AiAjAk) ≤
∑

(j,k): j �=k

trace(A2
jA2

k) ≤
∥∥∥∥∥

m∑
i=1

A2
i

∥∥∥∥∥
2

HS

.

By the Cauchy - Schwarz inequality, for every permutation σ of {1, 2, 3}, we obtain∣∣∣∣∣∣
∑

(i1,i2,i3) distinct

trace (Ai1Ai2Ai3) trace
(
Aiσ(1)Aiσ(2)Aiσ(3)

)∣∣∣∣∣∣
≤

∑
(i,j,k) distinct

trace2(AiAjAk) ≤
∥∥∥∥∥

m∑
i=1

A2
i

∥∥∥∥∥
2

HS

and hence

|T1| ≤ 6

∥∥∥∥∥
m∑

i=1
A2

i

∥∥∥∥∥
2

HS

.

Applying (4.4) with B = A2
i , we conclude that

m∑
trace2(A2

i Aj) =
m∑

trace2(AjA2
i ) ≤ ‖A2

i ‖2
HS
j=1 j=1
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and hence

|T2| ≤
m∑

i=1

∥∥A2
i

∥∥2
HS ≤

∥∥∥∥∥
m∑

i=1
A2

i

∥∥∥∥∥
2

HS

,

where the last inequality follows since the matrices A2
1, . . . , A2

m are symmetric positive 
semidefinite and hence

〈A2
i , A2

j 〉 ≥ 0 for all i, j.

Applying the Cauchy - Schwarz inequality, we obtain

| trace A3
i | = |〈Ai, A2

i 〉| ≤ ‖Ai‖HS‖A2
i ‖HS = ‖A2

i ‖HS (4.7)

and hence

|T3| ≤
m∑

i=1
‖Ai‖2

HS ≤
∥∥∥∥∥

m∑
i=1

A2
i

∥∥∥∥∥
2

HS

.

To bound T4 and T5 we combine some of the previously obtained estimates.
Applying the Cauchy - Schwarz inequality, (4.4) with B =

∑m
i=1 A2

i and (4.7), we 
obtain ∣∣∣∣∣∣

m∑
j=1

m∑
i=1

trace(A2
i Aj) trace(A3

j )

∣∣∣∣∣∣ =

∣∣∣∣∣∣
m∑

j=1
trace

(
Aj

m∑
i=1

A2
i

)
trace(A3

j )

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
m∑

j=1
trace2

(
Aj

m∑
i=1

A2
i

)∣∣∣∣∣∣
1/2 ∣∣∣∣∣∣

m∑
j=1

trace2(A3
j )

∣∣∣∣∣∣
1/2

≤
∥∥∥∥∥

m∑
i=1

A2
i

∥∥∥∥∥
HS

⎛⎝ m∑
j=1

∥∥A2
j

∥∥2
HS

⎞⎠1/2

≤
∥∥∥∥∥

m∑
i=1

A2
i

∥∥∥∥∥
2

HS

.

Therefore, using (4.7), we get

|T4| =

∣∣∣∣∣∣
m∑

j=1

m∑
i=1

trace(A2
i Aj) trace(A3

j ) −
m∑

i=1
trace2(A3

i )

∣∣∣∣∣∣ ≤ 2

∥∥∥∥∥
m∑

i=1
A2

i

∥∥∥∥∥
2

HS

.

It remains to bound T5. We have
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T5 =
m∑

j=1

∑
(i,k):

i�=j,k �=j

trace(A2
i Aj) trace(A2

kAj) −
m∑

j=1

∑
i: i�=j

trace2(A2
i Aj)

=
m∑

j=1

⎛⎝ ∑
i: i�=j

trace(A2
i Aj)

⎞⎠2

− T2.

Since

0 ≤ T2 ≤
∥∥∥∥∥

m∑
i=1

A2
i

∥∥∥∥∥
2

HS

,

we have

|T5| ≤ max

⎧⎪⎨⎪⎩
m∑

j=1

⎛⎝∑
i:i�=j

trace(A2
i Aj)

⎞⎠2

,

∥∥∥∥∥
m∑

i=1
A2

i

∥∥∥∥∥
2

HS

⎫⎪⎬⎪⎭ .

Now,

⎛⎝ ∑
i: i�=j

trace(A2
i Aj)

⎞⎠2

=
(

− trace(A3
j ) +

m∑
i=1

trace(A2
i Aj)

)2

= trace2(A3
j ) − 2 trace(A3

j )
m∑

i=1
trace(A2

i Aj) +
(

m∑
i=1

trace(A2
i Aj)

)2

= trace2(A3
j ) − 2 trace(A3

j ) trace
(

Aj

m∑
i=1

A2
i

)
+ trace2

(
Aj

m∑
i=1

A2
i

)

and hence

m∑
j=1

⎛⎝∑
i:i�=j

trace(A2
i Aj)

⎞⎠2

=
m∑

j=1
trace2(A3

j ) − 2
m∑

j=1
trace(A3

j ) trace
(

Aj

m∑
i=1

A2
i

)
+

m∑
j=1

trace2

(
Aj

m∑
i=1

A2
i

)

By (4.7), we get

m∑
trace2(A3

j ) ≤
m∑

‖A2
j‖2

HS ≤
∥∥∥∥∥

m∑
A2

i

∥∥∥∥∥
2

.

j=1 j=1 i=1 HS
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Then, from the Cauchy - Schwarz inequality, (4.7) and (4.4) with B =
∑m

i=1 A2
i , we get∣∣∣∣∣∣

m∑
j=1

trace(A3
j ) trace

(
Aj

m∑
i=1

A2
i

)∣∣∣∣∣∣
≤

⎛⎝ m∑
j=1

trace2(A3
j )

⎞⎠1/2 ⎛⎝ m∑
j=1

trace2

(
Aj

m∑
i=1

A2
i

)⎞⎠1/2

≤
∥∥∥∥∥

m∑
i=1

A2
i

∥∥∥∥∥
2

HS

and from (4.4)

m∑
j=1

trace2

(
Aj

m∑
i=1

A2
i

)
≤

∥∥∥∥∥
m∑

i=1
A2

i

∥∥∥∥∥
2

HS

.

Thus

|T5| ≤ 4

∥∥∥∥∥
m∑

i=1
A2

i

∥∥∥∥∥
2

HS

.

Summarizing,

E

⎛⎝ n∑
j=1

λ3
j (w)

⎞⎠2

≤ 120
m(m + 2)(m + 4)

∥∥∥∥∥
m∑

i=1
A2

i

∥∥∥∥∥
2

HS

≤ 120
(m + 2)(m + 4)

∥∥∥∥∥
m∑

i=1
A2

i

∥∥∥∥∥
op

,

where the last inequality follows by (4.3). �
Next, we bound the 4th moment of the eigenvalues.

Lemma 4.2. We have

E

⎛⎝ n∑
j=1

λ4
j (w)

⎞⎠ ≤ 3
m + 2

∥∥∥∥∥
m∑

i=1
A2

i

∥∥∥∥∥
op

.

Proof. Using (4.5) and (4.6), we write

E

⎛⎝ n∑
j=1

λ4
j (w)

⎞⎠ = E trace
(

m∑
i=1

ωiAi

)4

= E

⎛⎝ ∑
ω2

i ω2
j trace(AiAjAiAj)

⎞⎠ + E

⎛⎝ ∑
ω2

i ω2
j trace(A2

i A2
j)

⎞⎠

(i,j): i�=j (i,j): i�=j
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+E

⎛⎝ ∑
(i,j): i�=j

ω2
i ω2

j trace(AiA
2
jAi)

⎞⎠ + E

(
m∑

i=1
ω4

i trace(A4
i )
)

= T1 + 2T2 + 3T3

m(m + 2)
,

where

T1 =
∑

(i,j): i�=j

trace(AiAjAiAj),

T2 =
∑

(i,j): i�=j

trace(A2
i A2

j ) and

T3 =
m∑

i=1
trace(A4

i ).

We bound T1, T2 and T3.
Applying the Cauchy - Schwarz inequality, we get

|T1| =

∣∣∣∣∣∣
∑

(i,j): i�=j

trace(AiAjAiAj)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

(i,j): i�=j

〈AjAi, AiAj〉

∣∣∣∣∣∣
≤

∑
(i,j): i�=j

‖AjAi‖HS‖AiAj‖HS =
∑

(i,j): i�=j

trace(A2
i A2

j) = T2.

On the other hand,

T2 =
∑

(i,j): i�=j

trace(A2
i A2

j ) = trace
(

m∑
i=1

A2
i

)2

−
m∑

i=1
trace(A4

i ) =

∥∥∥∥∥
m∑

i=1
A2

i

∥∥∥∥∥
2

HS

− T3.

Therefore,

|T1 + 2T2 + 3T3| ≤ |T1| + 2T2 + 3T3 ≤ 3T2 + 3T3 = 3

∥∥∥∥∥
m∑

i=1
A2

i

∥∥∥∥∥
2

HS

The proof now follows by (4.3). �
Next, we prove some uniform bounds.

Lemma 4.3. For all w ∈ Sm−1, we have
(1)

‖A(w)‖op ≤
∥∥∥∥∥

m∑
A2

i

∥∥∥∥∥
1/2

and

i=1 op
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(2) n∑
j=1

λ4
j (w) ≤

∥∥∥∥∥
m∑

i=1
A2

i

∥∥∥∥∥
op

.

Proof. Repeatedly applying the Cauchy - Schwarz inequality, for any vector x ∈ Rn such 
that ‖x‖ = 1, we obtain

|〈A(w)x, x〉| =

∣∣∣∣∣
m∑

i=1
ωi〈Aix, x〉

∣∣∣∣∣ ≤
(

m∑
i=1

〈Aix, x〉2

)1/2

≤
(

m∑
i=1

〈Aix, Aix〉
)1/2

=
〈(

m∑
i=1

A2
i

)
x, x

〉1/2

≤
∥∥∥∥∥

m∑
i=1

A2
i

∥∥∥∥∥
1/2

op

,

and Part (1) follows. Note that here we did not use that A1, . . . , Am is an orthonormal 
set.

To prove Part (2), we bound

n∑
j=1

λ4
j (w) ≤

(
max

j=1,...,n
λ2

j (w)
) n∑

j=1
λ2

j (w) = ‖A(w)‖2
op ‖A(w)‖2

HS.

Using that A1, . . . , Am is an orthonormal set, we obtain

‖A(w)‖2
HS = trace(A2(w)) =

m∑
i,j=1

ωiωj trace(AiAj) =
m∑

i=1
ω2

i = 1. (4.8)

The proof now follows by Part (1). �
Finally, we need a concentration inequality on the unit sphere Sm−1 for the 4-Schatten 

norm of A(w).

Lemma 4.4. For δ ≥ 0, we have

P

⎧⎪⎨⎪⎩w ∈ Sm−1 : ‖A(w)‖S4
≥

⎛⎝ 3
m + 2

∥∥∥∥∥
m∑

i=1
A2

i

∥∥∥∥∥
op

⎞⎠1/4

+ δ

⎫⎪⎬⎪⎭
≤ exp

⎧⎨⎩− δ2(m − 1)
2 ‖
∑m

i=1 A2
i ‖1/2

op

⎫⎬⎭ .

Proof. We apply a measure concentration inequality on the sphere Sm−1. Let

dist(x, y) = arccos〈x, y〉
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be the geodesic distance between two points x, y ∈ Sm−1 and let f : Sm−1 −→ R be a 
1-Lipschitz function, so that

|f(x) − f(y)| ≤ dist(x, y) for all x, y ∈ Sm−1.

Then for c = E f and δ > 0 we have

P
{

w ∈ Sm−1 : f(w) ≥ c + δ
}

≤ exp
{

−δ2(m − 1)
2

}
,

see, for example, Section 5.1 of [10].
Let us define a function g : Rm −→ R by

g(x) = ‖A(x)‖S4 , where A(x) =
m∑

i=1
ξiAi for x = (ξ1, . . . , ξm) .

Then from (4.1) and Part 2 of Lemma 4.3, for all x, y ∈ Sm−1, we have

|g(x) − g(y)| ≤ ‖A(x) − A(y)‖S4 = ‖A(x − y)‖S4 ≤
∥∥∥∥∥

m∑
i=1

A2
i

∥∥∥∥∥
1/4

op

‖x − y‖

≤
∥∥∥∥∥

m∑
i=1

A2
i

∥∥∥∥∥
1/4

op

dist(x, y).

Therefore, for the expectation c = E g on the unit sphere Sm−1, we have

P
{

w ∈ Sm−1 : g(w) ≥ c + δ
}

≤ exp

⎧⎨⎩− δ2(m − 1)
2 ‖
∑m

i=1 A2
i ‖1/2

op

⎫⎬⎭ for δ ≥ 0.

By Lemma 4.2 and the Hölder inequality, we get

c = E

⎛⎝ n∑
j=1

λ4
j (w)

⎞⎠1/4

≤

⎛⎝E
n∑

j=1
λ4

j (w)

⎞⎠1/4

≤

⎛⎝ 3
m + 2

∥∥∥∥∥
m∑

i=1
A2

i

∥∥∥∥∥
op

⎞⎠1/4

,

and the proof follows. �
5. Estimating integrals

Recall that we have an orthonormal set A1, . . . , Am of n × n symmetric real matrices. 
For w ∈ Sm−1, w = (ω1, . . . , ωm), we define the matrix
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A(w) =
m∑

i=1
ωiAi.

As follows by (4.8), we have

‖A(w)‖HS = 1.

In this section, we consider the integral

+∞∫
0

τm−1
− 1

2
det

(
I −

√
−1τA

)
exp

{
−

√
−1τ

2 trace A

}
dτ,

where A is an n × n symmetric matrix satisfying ‖A‖HS = 1 and possibly some other 
constraints. In particular, we will be interested in the situation when

‖A‖op = O

(
1√
m

)
.

We will be comparing this integral with

+∞∫
0

τm−1 exp
{

−τ2

4

}
dτ = 2m−1Γ

(m

2

)
∼
(

2
e

)m/2

mm/2.

First, we bound the tail.

Lemma 5.1. Let A be an n × n real symmetric matrix such that

‖A‖HS = 1 and ‖A‖op ≤ 1
10

√
m

.

Then for m ≥ 2,

+∞∫
5

√
m

τm−1

∣∣∣∣∣ − 1
2

det
(
I −

√
−1τA

)∣∣∣∣∣ dτ <
1

20m
mm/2e−3m.

Proof. Let λ1, . . . , λn be the eigenvalues of A, so that

n∑
j=1

λ2
j = 1 and |λj | ≤ α√

m
for j = 1, . . . , n

(we will choose α = 0.1 at the end). Then
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∣∣∣∣∣ − 1
2

det
(
I −

√
−1τA

)∣∣∣∣∣ =
n∏

j=1

∣∣1 −
√

−1τλj

∣∣− 1
2 =

n∏
j=1

(
1 + λ2

jτ2)− 1
4 .

Let

ξj = λ2
jτ2 for j = 1, . . . , n.

Since the minimum of the log-concave function 
∏n

j=1(1 + ξj) on the convex polyhedron 
defined by the equation

n∑
j=1

ξj = τ2

and inequalities

0 ≤ ξj ≤ α2τ2

m
and j = 1, . . . , n

is attained at its vertex where all but possibly one coordinate are either 0 or α2τ2/m, 
we have

n∏
j=1

(
1 + λ2

jτ2)− 1
4 ≤

(
1 + α2τ2

m

)α2−m

4α2

.

Hence

+∞∫
√

m
2α

τm−1

∣∣∣∣∣ − 1
2

det
(
I −

√
−1τA

)∣∣∣∣∣ dτ ≤
+∞∫

√
m

2α

τm−1
(

1 + α2τ2

m

)α2−m

4α2

dτ

= mm/2

αm

+∞∫
1/2

sm−1(1 + s2)
α2−m

4α2 ds ≤ mm/2

αm

+∞∫
1/2

(1 + s2)
m−1

2 (1 + s2)
α2−m

4α2 (2s) ds

= mm/2

αm

+∞∫
1/2

(1 + s2)
−m(1−2α2)−α2

4α2 (2s) ds

= mm/2

αm

4α2

(1 − 2α2)m − 3α2

(
4
5

) (1−2α2)m−3α2

4α2

Substituting α = 0.1, we get
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+∞∫
5

√
m

τm−1

∣∣∣∣∣ − 1
2

det
(
I −

√
−1τA

)∣∣∣∣∣ dτ ≤ mm/210m 0.04
0.98m − 0.03

(
4
5

)(24.5)m−0.75

<
1

20m
10mmm/2

(
4
5

)(24.5)m

<
1

20m
mm/2e−3m. �

Next, we estimate the integral on the initial interval.

Lemma 5.2. Let A be an n × n real symmetric matrix such that

‖A‖HS = 1 and ‖A‖op ≤ 1
10

√
m

and let λ1, . . . , λn be the eigenvalues of A. Then, for m ≥ 1,

(1) We have

5
√

m∫
0

τm−1

∣∣∣∣∣ − 1
2

det
(
I −

√
−1τA

)∣∣∣∣∣ dτ

≤ exp

⎧⎨⎩625m2

8

n∑
j=1

λ4
j

⎫⎬⎭
5

√
m∫

0

τm−1 exp
{

−τ2

4

}
dτ.

(2) Suppose, in addition, that∣∣∣∣∣∣
n∑

j=1
λ3

j

∣∣∣∣∣∣ ≤ 1
25m3/2 and

n∑
j=1

λ4
j ≤ 1

625m2 .

Then

�
5

√
m∫

0

tm−1
− 1

2
det (I −

√
−1τA) exp

{
−

√
−1τ

2 trace A

}
dτ

≥ 1
2

5
√

m∫
0

τm−1 exp
{

−τ2

4

}
dτ.

Proof. Since in the interval 0 ≤ τ ≤ 5
√

m, we have

|τλj | ≤ 1
2 for j = 1, . . . , n,

we can expand
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− 1
2

det
(
I −

√
−1τA

)
exp

{
−

√
−1τ

2 trace A

}

= exp

⎧⎨⎩−1
2

n∑
j=1

ln(1 −
√

−1τλj) −
√

−1τ

2

n∑
j=1

λj

⎫⎬⎭
= exp

⎧⎨⎩1
2

∞∑
k=2

(τ
√

−1)k

k

n∑
j=1

λk
j

⎫⎬⎭
= exp

{
h(τ) +

√
−1g(τ)

}
,

(5.1)

where

h(τ) =
∞∑

s=1
(−1)s τ2s

4s

n∑
j=1

λ2s
j and g(τ) =

∞∑
s=1

(−1)s τ2s+1

4s + 2

n∑
j=1

λ2s+1
j .

We have

n∑
j=1

λ2
j = ‖A‖2

HS = 1

and for s ≥ 1, we have

n∑
j=1

λ
2(s+1)
j ≤

(
max

j=1,...,n
λ2

j

) n∑
j=1

λ2s
j ≤ 1

100m

n∑
j=1

λ2s
j .

Consequently, for 0 ≤ τ ≤ 5
√

m, we have

n∑
j=1

(τλj)2(s+1) ≤ τ2

100m

n∑
j=1

(τλj)2s ≤ 1
4

n∑
j=1

(τλj)2s.

Hence the terms of h(τ) alternate in sign and decrease in the absolute value, from which 
we deduce that

−τ2

4 ≤ h(τ) ≤ −τ2

4 + τ4

8

n∑
j=1

λ4
j for 0 ≤ τ ≤ 5

√
m. (5.2)

Part (1) now follows from the upper bound in (5.2).
To prove Part (2), we bound g(τ) assuming that∣∣∣∣∣∣

n∑
j=1

λ3
j

∣∣∣∣∣∣ ≤ α

m3/2 and
n∑

j=1
λ4

j ≤ β

m2
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(we substitute α = 1/25 and β = 1/625 at the end). For s ≥ 2, we have

n∑
j=1

|λj |2s+1 ≤
(

max
j=1,...,n

|λj |
)2s−3

·
n∑

j=1
λ4

j ≤ β

102s−3ms+ 1
2

.

Therefore, in the interval 0 ≤ τ ≤ 5
√

m, we have

∣∣∣∣∣∣
n∑

j=1
(τλj)3

∣∣∣∣∣∣ ≤ 125α and

∣∣∣∣∣∣
n∑

j=1
(τλj)2s+1

∣∣∣∣∣∣ ≤ 625β

22s−3 for s ≥ 2.

Therefore, in the interval 0 ≤ τ ≤ 5
√

m, we have

|g(τ)| ≤ 125α

6 +
∞∑

s=2

625β

(4s + 2)22s−3 ≤ 125α

6 + 1250β

30 .

Substituting

α = 1
25 and β = 1

625 ,

we conclude that

|g(τ)| ≤ 5
6 + 1

15 = 27
30 <

π

3 for all 0 ≤ τ ≤ 5
√

m.

The proof now follows from the lower bound in (5.2). �
The last lemma of this section contains some estimates for our benchmark integral.

Lemma 5.3. For m ≥ 2, we have
(1)

+∞∫
0

τm−1 exp
{

−τ2

4

}
dτ ≥ mm/2

√
π

m

(
2
e

)m/2

and

(2) +∞∫
5

√
m

τm−1 exp
{

−τ2

4

}
dτ

≤
√

2π 2mmm/2 exp
{

−25(m − 1)
}

.

m − 1 8
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Proof. We have

+∞∫
0

τm−1 exp
{

−τ2

4

}
dτ = 2m−1

+∞∫
0

s
m−2

2 exp{−s} ds = 2m−1Γ
(m

2

)
.

To prove Part (1), we use the standard inequality

Γ(x) ≥
√

2πxx− 1
2 e−x for x ≥ 1.

To prove Part (2), we bound

+∞∫
5

√
m

τm−1 exp
{

−τ2

4

}
dτ = 2mmm/2

+∞∫
5/2

sm−1 exp
{

−ms2} ds

≤ 2mmm/2
+∞∫

5/2

exp
{

−(m − 1)
(
s2 − ln s

)}
ds

≤ 2mmm/2
+∞∫

5/2

exp
{

− (m − 1)s2

2

}
ds = 2mmm/2

√
m − 1

+∞∫
5

√
m−1
2

exp
{

−τ2

2

}
dτ

≤
√

2π

m − 12mmm/2 exp
{

−25(m − 1)
8

}
,

where in the last inequality we use the standard Gaussian probability tail estimate

1√
2π

+∞∫
a

e−τ2/2 dτ ≤ e−a2/2 for a ≥ 0. �

6. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. We choose

η = 10−6.

Let A1, . . . , Am be an orthonormal basis of the subspace span (Q1, . . . , Qm) in the 
space of n × n symmetric matrices and let

ai(x) = 〈Aix, x〉 for i = 1, . . . , m

be the corresponding quadratic forms. Since the quadratic forms q1, . . . , qm are linear 
combinations of the forms a1, . . . , am and vice versa, the system
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qi(x) = trace Qi for i = 1, . . . , m

has a solution if and only if the system

ai(x) = trace Ai for i = 1, . . . , m

has a solution x. To establish the existence of a solution of the latter system, we use 
Theorem 2.1, for which we consider the integral

∫
Rm

− 1
2

det
(

I −
√

−1
m∑

i=1
τiAi

)
exp

{
−

√
−1
2

m∑
i=1

τi trace Ai

}
dt. (6.1)

Our goal is to prove that the integral (6.1) converges absolutely to a non-zero value.
Let Sm−1 ⊂ Rm be the unit sphere endowed with the Haar probability measure. For 

w ∈ Sm−1, w = (ω1, . . . , ωm), let

A(w) =
m∑

i=1
ωiAi.

Then by (4.8) and Lemma 4.3 for every w ∈ Sm−1, we have

‖A(w)‖HS = 1 and ‖A‖op =
√

η

m
<

1
10

√
m

.

It follows from Lemma (5.1) that

+∞∫
0

τm−1

∣∣∣∣∣ − 1
2

det
(
I −

√
−1τA(w)

)∣∣∣∣∣ dτ < +∞.

Hence the integral (6.1) indeed converges absolutely and, up to a non-zero factor (the 
surface area of the sphere Sm−1) can be written as an absolutely converging integral

E

⎛⎝ +∞∫
0

− 1
2

det
(

I −
√

−1
m∑

i=1
τA(w)

)
exp

{
−

√
−1τ

2 trace A(w)
}

dτ

⎞⎠ (6.2)

where the expectation is taken with respect to the Haar measure on Sm−1. Hence our 
goal is to prove that the integral (6.2) is non-zero. We intend to prove that the real part 
of the integral is positive.

Let λ1(w), . . . , λn(w) be the eigenvalues of A(w). By Lemma 4.1,

E

⎛⎝ n∑
j=1

λ3
j (w)

⎞⎠2

≤ 120η

m(m + 2)(m + 4) <
3

25000m3 .
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Therefore, by the Markov inequality,

P

⎧⎨⎩w :

∣∣∣∣∣∣
n∑

j=1
λ3

j (w)

∣∣∣∣∣∣ >
1

25m3/2

⎫⎬⎭ ≤ 3
40

. (6.3)

By Lemma 4.2,

E

⎛⎝ n∑
j=1

λ4
j (w)

⎞⎠ ≤ 3η

m(m + 2) <
3

106m2 .

Hence, using the Markov inequality again, we get

P

⎧⎨⎩w :
n∑

j=1
λ4

j (w) >
1

625m2

⎫⎬⎭ ≤ 3
1600 . (6.4)

We represent Sm−1 as a disjoint union

Sm−1 = Ω0 ∪ Ω1 ∪ Ω2,

where

Ω0 =

⎧⎨⎩w ∈ Sm−1 :

∣∣∣∣∣∣
n∑

j=1
λ3

j (w)

∣∣∣∣∣∣ ≤ 1
25m3/2 and

n∑
j=1

λ4
j (w) ≤ 1

625m2

⎫⎬⎭ ,

Ω1 =

⎧⎨⎩w ∈ Sm−1 :

∣∣∣∣∣∣
n∑

j=1
λ3

j (w)

∣∣∣∣∣∣ >
1

25m3/2 and
n∑

j=1
λ4

j (w) ≤ 1
625m2

⎫⎬⎭ and

Ω2 =

⎧⎨⎩w ∈ Sm−1 :
n∑

j=1
λ4

j (w) >
1

625m2

⎫⎬⎭ .

From (6.3) and (6.4), we have

P (Ω0) ≥ 7
8

and hence from Part (2) of Lemma 5.2,

�
∫

Ω0

⎛⎜⎝ 5
√

m∫
0

− 1
2

det
(

I −
√

−1
m∑

i=1
τA(w)

)
exp

{
−

√
−1τ

2 trace A(w)
}

dτ

⎞⎟⎠ dw

≥ 7
16

5
√

m∫
τm−1 exp

{
−τ2

4

}
dτ,

(6.5)
0
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where dw is the Haar measure in Sm−1.
From (6.3), we have

P (Ω1) ≤ 3
40

and hence Part (1) of Lemma 5.2 yields

∫
Ω1

⎛⎜⎝ 5
√

m∫
0

τm−1

∣∣∣∣∣ − 1
2

det
(
I −

√
−1τA(w)

)∣∣∣∣∣ dτ

⎞⎟⎠ dw

≤ 3
40 exp

{
1
8

} 5
√

m∫
0

τm−1 exp
{

−τ2

4

}
dτ

< 0.1
5

√
m∫

0

τm−1 exp
{

−τ2

4

}
dτ.

(6.6)

For integer k ≥ 1, let

Ωk
2 =

{
w ∈ Sm−1 : k

5
√

m
< ‖A(w)‖S4 ≤ k + 1

5
√

m

}
.

Then from Part (2) of Lemma 4.3, we have

Ω2 =
5(ηm)1/4⋃

k=1

Ωk
2 .

By Lemma 4.4, taking into account that η = 10−6, we get

P
(
Ωk

2
)

≤ P

{
w ∈ Sm−1 : ‖A(w)‖S4 ≥

(
3η

m(m + 2)

)1/4

+ k

6
√

m

}

≤ exp
{

−k2(m − 1)
72√

ηm

}
.

In view of Part (1) of Lemma 5.2,

∫
Ωk

2

⎛⎜⎝ 5
√

m∫
0

τm−1

∣∣∣∣∣ − 1
2

det
(
I −

√
−1τA

)∣∣∣∣∣ dτ

⎞⎟⎠ dw

≤ exp
{

(k + 1)4

8 − k2(m − 1)
72√

ηm

} 5
√

m∫
τm−1 exp

{
−τ2

4

}
dτ.
0
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Since

k ≤ 5(ηm)1/4,

we have

(k + 1)4

8 ≤ 2k4 ≤ 50k2(ηm)1/2

and

(k + 1)4

8 − k2(m − 1)
72√

ηm
≤ k2√

m

20 − 6k2√
m < −5k2.

Hence

∫
Ω2

⎛⎜⎝ 5
√

m∫
0

τm−1

∣∣∣∣∣ − 1
2

det
(
I −

√
−1τA

)∣∣∣∣∣ dτ

⎞⎟⎠ dw

<

( ∞∑
k=1

exp
{

−5k2}) 5
√

m∫
0

τm−1 exp
{

−τ2

4

}
dτ

< 0.01
5

√
m∫

0

τm−1 exp
{

−τ2

4

}
dτ.

(6.7)

Summarizing, from (6.5), (6.6) and (6.7), we get∣∣∣∣∣∣∣E
5

√
m∫

0

− 1
2

det
(

I −
√

−1
m∑

i=1
τA(w)

)
exp

{
−

√
−1τ

2 trace A(w)
}

dτ

∣∣∣∣∣∣∣
>

1
4

5
√

m∫
0

τm−1 exp
{

−τ2

4

}
dτ

and hence by Lemma 5.1, the absolute value of the expectation (6.2) is at least

1
4

5
√

m∫
0

τm−1 exp
{

−τ2

4

}
− 1

20m
mm/2e−3m.

Then by Lemma 5.3, the absolute value of the expectation (6.2) is at least
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mm/2

(√
π

16m

(
2
e

)m/2

−
√

π

m − 12m exp
{

−25(m − 1)
8

}
− 1

20m
e−3m

)
,

which is positive for m ≥ 3. �
Proof of Theorem 1.2. The proof is identical, except we use Theorem 2.2 instead of 
Theorem 2.1. �
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