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Abstract  

Widespread testing and isolation of infected patients is a cornerstone of viral outbreak 
management, as underscored during the ongoing COVID-19 pandemic. Here, we report a large-
area and label-free testing platform that combines surface-enhanced Raman spectroscopy and 
machine learning for the rapid and accurate detection of SARS-CoV-2. Spectroscopic signatures 
acquired from virus samples on metal-insulator-metal nanostructures, fabricated using 
nanoimprint lithography and transfer printing, can provide test results within 25 minutes. Not only 
can our technique accurately distinguish between different respiratory and non-respiratory viruses, 
but it can also detect virus signatures in physiologically relevant matrices such as human saliva 
without any additional sample preparation. Furthermore, our large area nanopatterning approach 
allows sensors to be fabricated on flexible surfaces allowing them to be mounted on any desired 
surface or used as wearables. We envision that our versatile and portable label-free spectroscopic 
platform will offer an important tool for virus detection and future outbreak preparedness.   

Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a betacoronavirus belonging to 
the family of Coronaviridae, is implicated in the current COVID-19 pandemic. While a significant 
effort has been directed towards vaccination, prevention, and treatment of the disease, the 
importance of rapid diagnosis is still important for public health strategies for future variants. Use 
cases for rapid diagnosis methods include detecting symptomatic patients or at risk 
presymptomatic individuals in an endemic setting, confirmatory tests, testing patients with prior 
exposure or surveillance at sites with prior exposure or potential future exposure (1). Moreover, a 
rapidly mutating (2) virus-like the SARS-CoV-2 requires a versatile detection scheme capable of 
detecting a broad range of mutant strains. Thus, a rapid, inexpensive, widely deployable, and label-
free diagnostic platform with a high degree of sensitivity is required for managing current and 
future pandemics.   



The currently available detection schemes like real-time quantitative polymerase chain 
reaction (RT-qPCR), Enzyme-linked immunosorbent assay (ELISA), and antigen tests face 
challenges in solutions for population-wide testing due to limitations in sensitivity, intricate sample 
processing methods, challenging specimen storage/transportation requirements and shortage of 
COVID-19 tests (3). 

Considerable efforts have been directed towards the development of various biosensors for 
the detection of viruses (4, 5).  However, most of the sensors require functionalizing the detector 
probe with antibodies specific to a virus, making them unsuitable for identifying other kinds of 
viruses or mutants. Moreover, knowledge about predefined labels required for the design of such 
sensors is a huge disadvantage for surveillance of new emerging viruses. Raman spectroscopy, 
which relies on the inelastic scattering of light to quantify the unique vibrational modes of 
molecules, has enabled accurate label-free fingerprinting of individual viral components (6). 
Moreover, structural and chemical alterations in the genome and the capsid proteins are reflected 
as changes in the vibrational features (6, 7), as shown by a prior investigation that reported the 
distinguishable Raman signatures of intact, intermediate and disrupted echovirus 1 particle (7).  

However, spontaneous Raman scattering does not provide the necessary sensitivity to 
detect a low viral titer. Surface-enhanced Raman spectroscopy (SERS) (8), which intensifies a 
weak Raman signal arising from biological samples adsorbed on noble metal nanostructures, 
combines the high molecular specificity with near single-molecule sensitivity (9) and enables 
spectroscopic quantification of multiple pathogen concentrations in small volumes (10). An 
important point to consider is that even though adding metal nanostructures enables amplification 
of the Raman scattering signals, the similar composition of viral transport media like saliva, nasal 
swab, or cells used to culture viruses can interfere with the actual viral signature. Thus, further 
analysis using machine learning enables a more robust, sensitive, and specific detection scheme 
removing hindrance from the presence of unwanted biological signatures (11–13).  

Here, we present a new platform for ultrasensitive and rapid detection of SARS-CoV-2 by 
exploiting SERS signatures recorded on highly reproducible plasmonically active nanopatterned 
rigid and flexible substrates in a label-free manner. For enhancement of the weak Raman signal 
from the SARS-CoV-2 virus, we develop novel nanomanufacturing paradigms for large-area rigid 
and flexible SERS substrates patterned by nanoimprint lithography (NIL) coupled with transfer 
printing. The plasmonic nanostructures are composed of a Field-Enhancing Metal-Insulator 
Antenna (FEMIA) architecture, with multiple alternate stacks of silver and silica (similar to metal-
insulator-metal plasmonic nanoantennas). Such an arrangement has its primary resonance 
frequency close to the laser excitation ensuring maximum Raman signal amplification. The entire 
scheme of our detection technique is summarized in Figure 1. With an experimental limit of 
detection of 500 nM, we were able to directly read strong signatures of the viral fusion protein of 
SARS-CoV-2 and H1N1 in the purified form from the SERS spectra. Further, using principal 
component analysis (PCA) and random forest classification, we could identify four different kinds 



of “enveloped” RNA viruses with an accuracy greater than 83%. Using our platform on a flexible 
substrate, we were able to detect SARS-CoV-2 in a complex body fluid like saliva. Sensing on a 
flexible FEMIA substrate allows mounting the sensor on curved and flexible surfaces and 
wearables for rapid identification of the virus in a variety of situations.       

 

Figure 1: Summary of the detection scheme. SERS signals are collected from samples consisting of 
different types of respiratory and non-respiratory viruses placed on a nano manufactured 2D array of 
FEMIA. PCA and random forest classification applied on the SERS spectra allow us to distinguish and 
identify different viral samples.                   

Results 

Fabrication of FEMIA on rigid and flexible substrate 

Precisely fabricated plasmonic nanostructures, arranged in a regular fashion with well-defined 
periodicity and predictable spatial localization of near-field enhancement, is the key for achieving 
a reproducible and measurable SERS signal. Such well-defined nanostructures can be achieved 
using advanced nanofabrication techniques like X-ray lithography, ion-beam lithography, extreme 
UV/deep UV lithography, etc., but are often expensive and require sophisticated instrumentation. 
In contrast, nanoimprint lithography (NIL) creates a large area of well-defined nanopatterns in a 
parallel fashion, with a high degree of reproducibility and high throughput (14, 15). 



First, we simulated the FEMIA to assess the near-field enhancing capability of the 
nanostructure and select the optimal number of metal and silica layers for testing of the virus 
samples. A 3D geometry raises the location of the ‘hotspots’ above the substrate, allowing greater 
accessibility to the localized near-field, leading to a larger interaction with the analyte molecules 
(16, 17). Along with matching the excitation to the plasmon resonance frequency of the 
nanostructure, a careful design to allow maximum interaction between nanostructures is necessary 
to achieve a significant level of SERS sensitivity. We carried out electromagnetic simulation using 
finite element analysis (details in Materials and Methods in Supporting Information) to see the 
location of the hotspots and determine an estimate of the resonance properties of the nanostructure. 
Figure 2A(i) plots the near field distribution (log10|E/Eo|2; E is the total electric field, Eo is the 
excitation) near the dipolar resonance (780 nm) of the FEMIA nanostructure (scheme of the 
simulation is provided in the Supporting Information, Figure S1). Enhanced near-field is observed 
at the corners and the sidewall of the FEMIA near the junction of the silver and the silica layer. 
Except for the bottom corners, where the nanostructure lies on a substrate, the rest of the spatial 
locations of the electromagnetic near-field are accessible to the analyte molecule. A closer look at 
the plasmon resonance positions for the nanostructures in the visible range reveals two dominant 
peaks for the FEMIA composed of 5 layers and 7 layers, whereas a single layer and 3-layer FEMIA 
has a single dominant resonance (Supporting Information Figure S2). A plot of the charge 
distribution of the 5-layer FEMIA reveals a higher energy multipolar resonance (Figure 2A(ii) left 
panel) and a lower energy dipolar resonance (Figure 2A(ii) right panel). The near IR dipolar 
resonance for the FEMIA is close to the laser wavelength used for SERS in our study. 



 

Figure 2: Overview of the sensor substrate fabrication and detection of antigen. (A) (i) Plot of the electric field 
enhancement of a simulated 5-layer FEMIA nanostructure (at 780 nm; near to the laser frequency used in the 
experiment) shows increased near field at the corners and the side wall. Scale bar 100 nm. (ii) Surface charge 
distribution of the nanostructure at two resonance peaks (590 nm and 760 nm). (B) Schematic of process steps for 
transfer of the field-enhancing metal-insulator antenna (FEMIA) on a flexible elastomer substrate. (C) SEM cross 
section view of a 5-layer FEMIA; the inset shows an enlarged view of a single nanostructure. (D) Transferred pattern 
on the elastomer substrate. The red bounding box marks the region with the pattern. (E) SEM image of the top view 
of the 5-layer FEMIA on an elastomer. (F) Raman spectra of 500 nM spike protein (S) and hemagglutinin protein 
(HA) found on the surface of SARS-CoV-2 and influenza H1N1 virus, respectively. The prominent peaks are marked 
in the figure. The inset shows the structures for HA (black box; PDB ID: 1RU7) (18) and S protein (green box; PDB 
ID: 6VSB) (19). Trp and Phe refer to tryptophan and phenylalanine. Grey shaded region represents the standard 
deviation.          

 For the fabrication of the nanostructure, we used a combination of spin coating, imprinting, 
oxygen plasma and e-beam evaporation (Figure 2B) (20), which revealed a large area (8 mm by 8 
mm) of FEMIA nanostructures on Si wafer (Figure 2B(i)). The detailed steps are schematically 
represented in the Supporting Information (Figure S3). For transfer of the patterns to flexible 
substrates, we spin coated polymethylglutarimide (PMGI) on the fabricated nanostructures (Figure 
2B(ii)) on a germanium coated (Ge) Si wafer, followed by etching of the Ge allowing the resist 
supported nanostructures to float in a water bath. The floating nanostructures were then scooped 
from the water bath using a PDMS film (Figure 2B(iii)). We used a water-soluble tape to peel off 



the nanostructures from the PDMS film (Figure 2B(iv) & (v)). Final transfer to the elastomer was 
possible by exposing it to oxygen plasma and pressing the tape with the nanostructures against the 
elastomer (Figure 2B(vi)). The detailed steps for transfer to elastomer are available in the 
Supporting Information (Figure S4). Figure 2C shows that the patterns are uniform over a large 
area.  Figures 2D and 2E show the photograph and SEM images of the pattern on the elastomer, 
respectively.  Such a technique of transfer printing prevents exposure of Ag film to oxygen plasma 
leaving the SERS activity intact and unaffected by oxidation.  

 We evaluated the optical characteristics of the fabricated nanostructures to carefully select 
the array periodicities and the number of layers (details in the supporting information). Based on 
the reflectance measurement (Figure S5), numerical simulations (Figure S6) and SERS 
enhancement with a standard Raman reporter 4‐nitrothiophenol (4‐NTP) (Figure S7), we have 
chosen a 5-layer sample with an array periodicity of 400 nm for the rest of our experiments.  

Performance of FEMIA for Detection of Antigen 

Next, we use the FEMIA substrate to detect purified spike protein (S) and hemagglutinin protein 
(HA) found on the surface of SARS-CoV-2 and influenza A H1N1 virus, respectively. Vaccines 
are targeted at the S protein (21) and the HA protein (22), which are glycoproteins that mediate 
the attachment of the viruses to the host cell receptors ACE2 and sialic acid, respectively. Thus, 
identification of the envelope protein is necessary for diagnosis and drug development. Figure 2F 
plots the Raman spectra of500 nM of S and HA protein. The S protein sample which is composed 
of 1288 amino acids as compared to 565 of HA, shows a stronger Raman signature for the same 
concentration. Various prominent peaks like 1048 cm-1, 1138 cm-1, 1328 cm-1, 1621 cm-

1(tryptophan) (23, 24), 1189 cm-1 (amide III) (25), 1525 cm-1(Amide II) (26), 1655 cm-1, 1667 

cm-1 (Amide I) (26), 1441 cm-1, 1589 cm-1(glycine) (24) etc. (band assignment in the Supporting 
Information, table S1) are present in the spectra. Especially prominent in the spectrum of the S 
protein are the peaks for glycine present in the S2 subunit (21) and aromatic amino acid tryptophan 
at 1048 cm-1 (23), which has been associated with the coronavirus family.  

Although visual inspection provides a moderate level of distinction between the two 
proteins, to understand the most significant spectral features that enable identification of the 
purified protein, SERS spectra obtained from the S and HA protein are subjected to principal 
component analysis (PCA) using Orange data mining software (27). Operating without any a 
priori knowledge of the sample composition, PCA projects the spectral data onto a set of linearly 
uncorrelated (orthogonal) directions (that are called principal components), such that the variance 
in the original data is captured using only a few PCs (28). PC loadings plot (Supporting 
Information, Figure S8(A)) of the first 4 PCs shows that the peaks corresponding to amide III, 
tryptophan, and glycine are the important features responsible for the classification of the two 



proteins, which shows significant clustering in the radial visualization plot (Supporting 
Information, Figure S8(B)).           

Classification and Identification of Different RNA Viruses 

An enveloped virus is a cocktail of various molecular components like nucleic acid, capsid, and 
proteins. Since the surface protein component could be easily distinguished using SERS signatures 
on the FEMIA, we next explore whether viruses with a more complex structure can be 
distinguished using our platform. In our study, we have considered 4 different viruses - SARS-
CoV-2, H1N1 A, which are known to cause respiratory illness, and Marburg and Zika virus, which 
cause hemorrhage and fever, respectively. The samples used in our study are viral lysate solutions 
bought commercially. In order to form the viral lysate, live viruses are allowed to infect cells and 
are replicated in a culture. The cells are then lysed, and the supernatant containing the virus is 
collected and treated with radiation, heat, or chemicals to ensure viral inactivity. In our experiment, 
drops of lysates with different viruses are allowed to air-dry on the FEMIA substrate before SERS 
measurement (Figure 3A).  SEM image of a dried drop of the lysate containing SARS-CoV-2 
confirms the presence of the virus near the FEMIA nanostructures (Supporting Information Figure 
S9).  Zoomed-in image of the region where the analyte is deposited on the substrate shows small 
particles (either single virus or clusters) in the range of 100 -200 nm consistent with the size range 
of SARS-CoV-2 (29), while they are absent in the region without the analyte (Supporting 
Information Figure S9).  Figure 3B plots the SERS spectra collected from the lysates containing 
the different viruses. The control sample is composed of the cell lysates from the same cell line 
but without any infection. Although signatures related to protein, nucleic acid, and lipid are visible 
in the spectra, the subtle differences between various samples are indistinguishable by gross visual 
inspection (band assignment in the Supporting Information Table S2). For an unsupervised visual 
analysis of the entire spectral data set obtained from SERS acquisition on different viral lysates on 
the FEMIA, the dataset is first subjected to PCA. Figure 3C, which plots the PC loadings showing 
various prominent features corresponding to the protein and nucleic acids that differentiate 
between the various samples enabling clustering of the dataset based on the type of the virus. The 
PC scores displayed in a multi-dimensional radial visualization plot using Orange data mining 
software show a clear separation of the spectral data based on the type of virus contained in the 
lysate (Figure 3D). It is interesting to note that both SARS-CoV-2 and H1N1 A, which causes 
similar respiratory illness, occupy nearby clusters. Despite having the base media the same for all 
samples, which led to a slight overlap of the cluster corresponding to the control sample with 
others, a clear separation between various classes is observed. Thus, PCA enables amplifying 
subtle differences in spectral data. 



Figure 3:  Virus detection on the SERS substrate using unsupervised machine learning. (A) Schematic of the 
sample details and measurement scheme. Cell lysates infected with the virus are dropped on the FEMIA substrate 
and allowed to dry. (B) Raman spectra of the cell lysates containing different RNA viruses. The control sample is 
composed of uninfected cell lysate. Shaded regions represent the standard deviation. The spectra are vertically offset 
for easier visualization.  (C) PC loadings plot of the entire data set consisting of spectra from the four different viral 
samples and control. The prominent features are marked with a dotted line- black, green, and red lines indicate the 
protein, lipid, and nucleic acid peaks (D) Radial visualization plot of the PC scores showing data from different 
samples cluster together. Each dot corresponds to a SERS spectrum. 

While principal component-based visualization offers a satisfactory tool for preliminary data 
exploration, a supervised algorithm is required for the classification and identification of spectral 
data from an unknown sample. In our study, we employ a random forest algorithm for multiclass 
classification of the virus spectral dataset. In a random forest classifier, which is based on an 
ensemble of decision trees, a set of decision trees from a randomly selected subset of the training 
set is created. The final class of the test object is decided based on votes from the different decision 
trees (Figure 4A). For the classification of viral samples, we have trained a multiclass random 
forest classifier with a training set (randomly chosen two-third of the dataset) composed of 100 



decision trees (N). The performance of the model is tested by calculating the out-of-bag 
classification error on the test dataset (the rest one-third of the dataset) (Supporting Information 
Figure S10). To make the model more robust, the random selection of training data and model 
training and classification are performed 200 times.  From the 200 iterations, we observe that the 
classification accuracy for predicting an unknown viral sample is very high, ranging from 83 to 
95% (Figure 4B). The performance of the classifier is calculated using the confusion matrix 
(Figure 4C), which plots the percentage of the test data being assigned to a particular class as 
compared to its true label. The sensitivity, precision, and specificity for the classification of the 
SARS-CoV-2 sample are calculated from the confusion matrix to be 85.4%, 88.7%, and 97.3%, 
respectively. Further, to see whether the accuracy of classification can be improved by grouping 
the viruses into similar groups, we have performed a binary random forest classification by 
assigning the dataset related to SARS-CoV-2 and H1N1 A to one class (the virus causing 
respiratory illness) and Marburg and Zika virus to another class (viruses that do not cause 
respiratory illness). The training data consists of two-third of the dataset as before and the number 
of trees is kept the same. The accuracy for the prediction is 99% (Figure 4D).  

To check how well the model performs in predicting datasets related to SARS-CoV-2 in 
comparison to the other viruses, we employed a binary classification where the dataset related to 
SARS-CoV-2 is considered in one class as opposed to the rest. We found the classification 
accuracy to be 92-94% (Supporting Information Figure S11). From the receiver operating 
characteristic (ROC) curve for the two types of binary classification, it is evident that our platform 
performs very well in distinguishing respiratory vs non-respiratory viruses (area under the curve, 
AUC -1) as well as SARS-CoV-2 vs. other viruses (AUC -0.98) (Figure 4E). Further limit of 
detection measurements for SARS-CoV-2 are provided in the Supporting Information (Figure 
S12).   

 

   



 

Figure 4:  Virus detection on FEIMA using supervised machine learning. (A) Schematic of the random forest 
algorithm. (B) Classification accuracy for control, SARS-CoV-2, H1N1 A, Marburg, and Zika sample using multi-
class random forest classifier. The black box represents the median value. (C) Confusion matrix showing the 
percentage of a sample getting classified into various classes. (D) Classification accuracy using binary random forest 
classification for SARS-CoV-2 and H1N1 A (respiratory) samples in one class and the other viruses (Zika and 
Marburg) in the non-respiratory class. (E) ROC curve for the performance of the binary classifications.      

Detection in Pooled Human Saliva on Flexible substrate 

Detection of SARS-CoV-2 in the respiratory specimen like nasopharyngeal and oropharyngeal 
swabs are the current gold standards for diagnostic tests. Aside from being relatively invasive, this 
method requires trained operators and close contact with the patient during specimen collection, 
increasing the risk of transmission.  Another method recently being used is detecting the virus in 
saliva specimens (30–32), which can be stored in the ambient for 48 hours and is found to be more 
suitable for diagnosis of mild and asymptomatic cases (23, 33, 34). To check the performance of 
our platform in detecting SARS-CoV-2 in physiological fluids, we spiked pooled human saliva 
with the cell lysate containing the virus in a 1:1 ratio (Figure 5A). Our control sample has the 
saliva spiked with the pristine cell lysate in the same ratio. We dropped the two samples on the 
FEMIA nanostructures fabricated on an elastomer substrate, as discussed earlier. Raman 
acquisition is performed with lower power and 50x objective to prevent damage to the substrate. 
Various prominent protein and nucleic acid signatures are visible in the SERS spectra (Figure 5B) 
with no clear difference between the two spectra that can be directly derived visually.  Saliva is 
composed of proteins, immunoglobulins, enzymes, mucins, and nitrogenous products making the 
analyte extremely complex. Thus, we employ random forest analysis to see if the subtle difference 
in composition due to the presence of the virus can be amplified in such a multi-component matrix. 



Similar analysis pipeline is employed as before with training data as two-third of the entire dataset, 
same number of trees and 100 iterations. We see that high classification accuracy of ca. 86.8% is 
achieved in this case (Figure 5C). The ROC for the model is plotted in Figure 5D with an AUC of 
0.94, which implies that the model performs very well in differentiating the virus-containing saliva 
sample from the control sample. The ability to deploy FEMIA nanostructures and perform COVID 
detection on flexible substrates points to the possibility of deploying sensors on curved and widely 
present substrates in the human environment, such as fabrics and wearables.   

 

Figure 5:  Detection of virus in pooled human saliva on a flexible substrate. (A) Scheme of the experiment. Inset 
shows a photographic image of the flexible substrate with the nanostructures at the center. (B) Raman spectra of the 
saliva spiked with SARS-CoV-2 containing cell lysate and the control acquired on FEMIA on a flexible substrate. 
The spectra are vertically offset for easier visualization. (C) Classification accuracy using binary random forest 
classification for the saliva samples. The black box represents the median value. (D) ROC curve for the performance 
of the model. 

Conclusion 



The sensing platform we report here has the capability to be built into an inexpensive mass testing 
technology with a positive result in less than 25 minutes. Although rapid antigen testing can 
provide marginally faster results (15 mins), the accuracy is limited. Moreover, unlike an antigen 
test, our technique does not require antibody functionalization, thus can be potentially used to 
detect other viruses with minimal system modification. Also, our method uses the vibrational 
signatures of not only the surface proteins but also the lipid and genomic content of the virus 
present in the Raman spectra and, hence, offers a robust platform for virus detection and 
surveillance. The large area nano manufactured flexible sensor surface can be mounted on any 
surface like doorknobs, cylinders, building entrance, etc., to enable on-site rapid testing with a 
handheld Raman setup. The capability of having the entire sensing area on a flexible substrate 
enables the fabrication of sensor patches that can be placed on face masks or skin for continuous 
surveillance. 

Other advantages of our approach, as demonstrated in this proof-of-concept study, involve 
minimal sample preparation requiring no extensive laboratory training, operation with a very low 
sample volume (2.5 µl), and the possibility for remote collection and storage. We were able to 
classify four different viruses with a prediction accuracy of 83% or higher.  The viral titer of the 
SARS-CoV-2 sample (109 copies/ml) used in our experiment is similar to the ones found in patients 
severely infected with the disease (35), indicating that such a technique can be an alternate 
diagnostic scheme. For detecting asymptomatic cases where the viral titer can be as low as 103 
copies/ml, further refinement of the SERS substrate is necessary to lower the detection limit. Our 
sensing platform also performed well in spiked multicomponent media like the pooled saliva, 
which simulates patient samples, indicating that detection is also possible using our method in 
physiological fluids in a non-invasive manner. Ongoing studies in our laboratories focus on testing 
our technique with real patient samples to assess its potential in the field. Another important 
objective is to evaluate the feasibility of this method in distinguishing between various mutants of 
the SARS-CoV-2. We envision that this platform, when combined with a portable Raman 
spectrometer, could be utilized to create a sensing device for rapid and on-site mass testing of 
viruses and pathogens.  
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Details of the Finite Element Electromagnetic Simulation Model 
 
 

 
Figure S1: Conceptual scheme of simulation. The direction of polarization and the propagation of the incident 
field is shown by the green and black arrow, respectively. 
 
Absorption characteristics of the FEMIA  

An approximate location of the plasmon resonance for the FEMIA with different number of 
layers can be identified from the absorption coefficient.    

 
Figure S2: Absorption of a 2-dimensional array of FEMIA nanostructures with a single layer of silver (1 layer). 1 
layer of silica sandwiched between 2 layers of silver (3 layer); 2 layer of silica sandwiched between 3 layers of 



silver with layers alternating (5 layer); 3 layer of silica sandwiched between 4 layers of silver with layers alternating 
(7 layer).      
 
FEMIA fabrication on rigid (Si) substrate 
 
 

 
 
Figure S3: Schematic of the detailed steps for fabrication of FEMIA nanostructures on Si wafer. 
 
FEMIA transfer on flexible substrate 
 

 



Figure S4: Schematic of the detailed steps for transfer of FEMIA nanostructures on flexible substrates 
 
Optical Performance of FEMIA 

Our normalized experimental reflectance measurement (details in Materials and Methods) closely 
agrees with the simulation and demonstrates two localized surface plasmon resonance (LSPR) 
peaks for the 5-layer and 7-layer samples (Figure S5). From the resonance positions in the 
simulation, it can be derived that the peaks in the reflectance spectra represent the localized surface 
plasmon resonance (1, 2).   

 

Figure S5: Experimental reflectance spectra of the FEMIA with different layers on silicon. 
 
Dependence of plasmon resonance on array periodicity 

An important point to note in the optical characterization is the array periodicity. When the 
nanostructures are placed further apart (numerically), the dipolar resonance becomes weaker.  
Thus, considering a realistic dimension from the fabrication point of view we have chosen a 
periodicity of 400 nm in our experiments. 

 



 
Figure S6: Absorption of an infinite 2-dimensional array of 5-layer FEMIA for different array periodicities, i.e., 
center to center distance of 1260 nm and 660 nm. 
 
Enhancement Test with 4-NTP 
 

The SERS signal enhancing capabilities of the different samples are assessed using 4‐
nitrothiophenol (4‐NTP), a standard Raman reporter. An aqueous solution of 500 µM 4-NTP is 
dropped on FEMIA substrates with different layers. Raman spectra acquired from the dried drop 
using a 785 nm laser demonstrate strong signatures of the 4-NTP molecule (3). The 5-layer 
FEMIA, which provides the maximum enhancement (Figure 3B) at 785 nm laser excitation as 
compared to the other samples, is considered for our study. We chose a 785 nm laser for the rest 
of the study, considering it lies in the tissue transparent region, causing minimal damage to 
biological samples, along with offering a low fluorescence background while maintaining a 
sufficient signal-to-noise ratio (4).  

 



Figure S7: Raman spectra of 500 µM 4-NTP acquired on different FEMIA substrates and a plain silicon wafer 
(control). Some of the prominent Raman peaks corresponding to 4-NTP are marked with an arrow. ϑ indicates 
stretching, and δ indicates bending. The inset shows the chemical structure of the molecule. 

Table S1: Peak assignment of the prominent peaks in the Raman spectra of HA and S protein 

Raman shift (cm-1) Assignment 

1048, 1138, 1328, 1586, 
1621 

Tryptophan   

1104, 1615 Phenylalanine 

1155 C-N stretching 

1189, 1258 Amide III 

1441, 1589 Glycine 

1453 C-H stretching of glycoprotein 

1567 valine 

1525 Amide II 

1655, 1667 Amide I 

 
 
 
PCA on SERS spectra of HA and S protein 

 



Figure S8: (A) The first four principal components obtained from the entire date set of HA and S protein. The 
prominent features are represented by the dotted lines. (B) Radial visualization plot of the most relevant PC scores 
demonstrating the clustering of the two types of proteins.  
 
 
A dried drop of viral lysate on FEMIA 
 

 
Figure S9:  SEM image showing a dried drop of cell lysate infected with SARS-CoV-2 (left panel) on the FEMIA. 
Zoomed-in image of the region with the analyte (middle panel) and without the analyte (right panel). The virus 
particles are false-colored orange for better visualization. 
 
 
Table S2: Peak assignment of the prominent peaks in the Raman spectra of the cell lysates containing the virus 
 

Raman shift (cm-1) Assignment 

1004 Phenylalanine 

1076 lipids 

1123 C-N (protein) 

1138, 1622 tryptophan 

1156 C-N (protein) 

1246, 1280 Amide III 

1347 guanine 

1367 lipid 

1465 adenine 

 
 

 



 

 
Figure S10: Evaluation of classification error vs. the number of decision trees shows that the error falls below 10 % 
with the inclusion of 100 trees.  
  
 

 
Figure S11: Classification accuracy for binary random forest classification with SARS-CoV-2 sample in one class 
and the other viruses (H1N1 A, Zika, and Marburg) in the other class.   
 
LOD measurement for SARS-CoV-2 
For the LOD measurement, the cell lysate containing the virus is diluted with pristine cell lysates 
to make solutions of virus concentration ranging from 104 copies/ml to 109 copies/ml. The same 
technique as before is followed for measurement and data acquisition. Partial Least Square 



regression with leave-one-spectra-out cross-validation is applied on the acquired data set. Eight 
spectra are averaged into one in the data set along with the application of outlier rejection (5). 
From the figure below saturation is observed below 105 copies/ml, while the model performs better 
for higher concentrations.  
 

 
Figure S12: PLS prediction of SARS-CoV-2 concentrations. Blue represents actual concentration, and orange 
represents predicted concentration 

Materials and Methods 

Fabrication of FEMIA arrays on a rigid (silicon wafer) substrate 

We fabricated the array of metal insulator metal (MIM) nanostructures by nanoimprint lithography 
(NIL). Briefly, we spin-coated a layer of the NIL resist (mr-I 7030, micro resist technology) with 
a thickness of 350 nm on top of a silicon wafer. We imprinted the nanopatterns using a commercial 
low-cost Si master stamp (LightSmyth grating) and a Nanonex Advanced Nanoimprint Tool NX-
B200 with a pressure of 350 psi at 130 °C. After imprinting, we stripped away the residue of the 
resist using an oxygen (O2) plasma at 60 W for 2 minutes. Our FEMIA nanostructures have 
multiple, i.e., 1, 3, 5, or 7 MIM layers. Each layer has silver (Ag, 20 nm), silicon dioxide (SiO2 ,10 
nm), and silver (Ag, 20nm) which were deposited by e-beam evaporation. We also deposited 2 nm 
of chromium (Cr) between the silicon wafer and Ag and in between each layer of Ag and SiO2 and 
SiO2 and Ag as well as to improve adhesion. After deposition, we sonicated the sample in acetone 
to dissolve the mr-I 7030 and generate a large area array (8 mm by 8 mm) of FEMIA nanostructures 
on top of the Si wafer. 

Fabrication of FEMIA arrays on a flexible (elastomer) substrate 

We thermally evaporated a thin film of germanium (Ge) with a thickness of 100 nm on a Si wafer 
as the sacrificial layer. We created arrays of multiple FEMIA nanostructures on top of the Ge 



coated wafer using the same approach described in the previous section. We spin coated a layer of 
polymethylglutarimide (PMGI SF6, Kayaku Advanced Materials) as a carrying film to transfer the 
arrays of FEMIA nanostructures. We dissolved the Ge sacrificial layer in water and picked up the 
film using a mm-scale thick piece of PDMS. After the film was completely dried, we peeled off 
the film from the PDMS using water-soluble tape (3M 5414). We activated the surfaces of the 
bottom of the FEMIA nanostructures (SiO2) and elastomer (Dragon Skin™) by O2 plasma. We 
bonded the FEMIA and elastomer by pressing both surfaces together and removing the tape and 
PMGI in water and alkaline developer (MF 26A, Kayaku Advanced Materials). 

Previous studies of transfer printing with irreversible bonding require exposing the nanostructures 
to oxygen (O2) plasma or molecular crosslinking (6, 7), hence not suitable for SERS since they 
tend to oxidize surfaces of Ag, thereby reducing the electrical field enhancement (8). Here, for the 
first time, we transfer-printed a large area of Ag-based FEMIA nanostructures on an elastomer 
without compromising e-field enhancement or Raman activity. A key innovation lies in the use of 
a 100 nm thick germanium (Ge) layer deposited on the silicon wafer, which acts as a sacrificial 
layer and creates a large area of FEMIA nanostructures on the Ge coated wafer by NIL and multi-
layered e-beam evaporation. After lift-off, we have utilized polymethylglutarimide (PMGI) as a 
carrying film to release the FEMIA nanostructures from the wafer and protect the nanostructures 
from oxidation during the plasma process. The advantage of PMGI over other polymer films (e.g., 
polymethyl methacrylate) is that we can remove PMGI in an alkaline developer, where organic 
solvents easily swell any elastomer (9). 

Simulation details 

For the numerical simulation, we have used finite element analysis (COMSOL Inc., Burlington, 
MA, USA). We have used a periodic boundary condition to simulate infinitely repeating FEMIA 
nanostructures in 2 dimensions. We have considered a constant dielectric constant value of 2.09 
for the silica layer and a frequency-dependent dielectric constant for the silver layer (10). We have 
considered dynamic meshing where the maximum and minimum size for the FEMIA nanostructure 
is 50 nm and 0.5 nm, respectively and λ/6 (λ - wavelength of incident light) for the rest. The 
boundary conditions at the input and output ports were assigned as a perfectly matched layer. The 
dimensions for the FEMIA were considered as measured in SEM, i.e, the thickness of silver and 
silica were 20 nm and 10 nm, respectively. We considered the shape of the nanostructure as conical 
(with rounded edges), having a bottom radius of 130 nm, and the center-to-center distance between 
adjacent nanostructures was 660 nm. In an actual fabrication, it is difficult to achieve sharp edges 
of the FEIMA. Thus, the simulation model is considered to have rounded edges to prevent the 
inclusion of additional enhancement in our numerical calculation due to the “lightning-rod effect” 
at sharp corners (11). 

Reflectance measurement 



Reflection spectra were acquired by a USB 4000 spectrometer (Ocean Optics) and a tungsten 
halogen lamp (LS-1) (Ocean Optics).  The spectra were averaged over 3 measurements and 
normalized.  

Raman measurement 

We used an XploRA PLUS Raman microscope (HORIBA Instruments Inc., Edison, NJ, USA) for 
the Raman measurements. For the 4-NTP study, the Raman scattered signal was acquired through 
a 100x Olympus objective for 1 s and averaged 3 times, 10% power. For the purified protein study, 
a 100x Olympus objective was used for 0.5 s and averaged 20 times, 25% power. Laser power was 
about 1 µW. For the 4-NTP study, signals were collected from 64 spatially distinct spots from a 
single substrate. For the other analytes (protein, cell lysates and saliva samples), signals were 
collected from 64 spatially distinct spots on two different substrates. 

For the viral samples, the acquisition parameters were: 100x Olympus objective, 0.5 s acquisition 
time, 30 accumulations, 25% power, 128 spectra for each sample. 

For the saliva samples: 50x Olympus objective, 0.5 s acquisition time, 30 accumulations, 25% 
power, 128 spectra for each sample. 

For all the samples 2.5 µl of the solution was used. A thermoelectrically cooled charge-coupled 
device camera (1024 × 256OE Syncerity, HORIBA Instruments Inc., Edison, NJ, USA) collects 
the scattered spectra. We have calibrated the Raman shift with silicon. 

Samples details  

4-NTP was bought from Sigma-Aldrich, St. Louis, MO. 

HA protein was bought from HA protein from Sino Biological A/WSN/1933 (Cat# 11692-V08H), 
S protein BEI Resources 

Following virus samples and control cell lysates were bought from BEI Resources 

Influenza A Virus, A/New York/18/2009 (H1N1) (107 copies/ml) 

SARS-Related Coronavirus 2 (47), Isolate USA-WA1/2020 (109 copies/ml) 

Zika virus, PRVABC59 (1010 copies/ml) 

Marburg Marburgvirus, H. sapiens-tc/AGO/2005/Angola-200501379 (1011 copies/ml) 

All samples have cell lysate from Cercopithecus aethiops kidney epithelial cells (Vero E6) as the 
base media. 



Control - Vero 6 cell lysate from BEI Resources 

Human pooled saliva - Innovative Research 

All measurements were performed after drying the analyte drop on the substrate in the ambient, 
which permits physical adsorption of the analytes to the nanostructured substrate. No chemical 
functionalization was performed for specific binding of the analyte.   

The virus samples were handled in BSL-2 laboratory conditions. After the measurement, the 
samples were discarded in a 10% bleach solution. 

 Random Forest Analysis 

For random forest analysis, the number of spectra was made equal for all classes. This equalization 
was done by first getting a minimum number of spectra from each class and then by randomly 
picking a minimum number of spectra from other classes. This method ensured that the random 
forest results were not biased to any class. Thereafter, the TreeBagger built-in Matlab function was 
used to perform classification-based random forest with sample replacement and curvature-based 
predictor selection. After that, the out-of-bag prediction was used to predict classes. Since the 
initial spectra selection from different classes were at random, we repeated the analysis 200 times 
to ensure robustness in our prediction, and the final classification results included all the iterations.  

Data Analysis 

The Raman spectra collected were subjected to a background subtraction via a polynomial fitting 
algorithm (12). We have applied a 5th Savitzky Golay filter with frame length 21 on the resultant 
spectra. This was followed by peak normalization with the maximum intensity value. We used 
Matlab 2019b for the spectral pre-processing. 

TP - true positive, TN - true negative, FP - false positive, FN - false negative. 

Precision: TP/(TP+FP); Recall/Sensitivity: TP/(TP+FN); Specificity: TN/(TN+FP). 

For our multiclass classification, accuracy is defined as the percentage of correctly classified 
spectra in each class for each iteration.  

PCA 

The pre-processed data were subjected to PCA using Orange data mining software (13). Operating 
without any a priori knowledge of the sample composition, PCA projects the spectral data onto a 
set of linearly uncorrelated (orthogonal) directions (that are called principal components), such 
that the variance in the original data is captured using only a few PCs. The radial visualization plot 
maps the PC scores onto a two-dimensional space to permit analysis of inter- vs. intra-class 



variance of the different analytes. We employed the VizRank algorithm in the Orange data mining 
software to select the PCs based on their ability to obtain informative projections of the class-
labeled data.  
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