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Summary 

 

The rodent hippocampus constructs statistically independent representations across 

environments (“global remapping”) and assigns individual neuron firing fields to locations within 

an environment in an apparently random fashion, processes thought to contribute to the role of 

the hippocampus in episodic memory. This random mapping implies that it should be challenging 

to predict hippocampal encoding of a given experience in one subject based on the encoding of 

that same experience in another subject. Contrary to this prediction, we find that by constructing 

a common representational space across rats in which neural activity is aligned using geometric 

operations (rotation, reflection, and translation; “hyperalignment”), we can predict data of “right” 

trials (R) on a T-maze in a target rat based on 1) the “left” trials (L) of the target rat, and 2) the 

relationship between L and R trials from a different source rat. These cross-subject predictions 

relied on ensemble activity patterns including both firing rate and field location, and outperformed 

a number of control mappings, such as those based on permuted data that broke the relationship 

between L and R activity for individual neurons, and those based solely on within-subject 

prediction. This work constitutes proof-of-principle for successful cross-subject prediction of 

ensemble activity patterns in the hippocampus, and provides new insights in understanding how 

different experiences are structured, enabling further work identifying what aspects of experience 

encoding are shared vs. unique to an individual. 
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Introduction 

 

A fundamental challenge faced by any memory system is how related experiences should be 

organized – storing the details of each individual experience preserves potentially valuable 

details, but is storage-inefficient and hampers generalization, whereas treating all experiences as 

the same risks ignoring potentially important differences1. For instance, learning the common 

spatial features of different floors in the same building makes it possible to predict the layout of a 

not-yet-visited floor (“similar to the others”); at the same time, each floor also has unique features, 

such as the location of a specific colleague’s office, that do not generalize. Thus, memory systems 

need to balance pattern-completion (treating a new observation the same as a previous one) and 

pattern-separation (keeping similar observations as distinct). 

 

The rodent hippocampus is a model system for studying the neural basis of these processes. 

Strikingly, the hippocampus can construct statistically independent representations across 

environments (“global remapping”)2–5 and assigns individual neuron firing fields to locations within 

an environment in an apparently random fashion6,7. Similarly, “engram” studies suggest that the 

population of neurons allocated to a given experience is determined by a competition based on 

randomly fluctuating excitability levels among eligible neurons8. Although there are also examples 

of hippocampal cells whose firing properties are tied to a particular stimulus feature (e.g. reward9) 

and therefore transfer across different environments, the received wisdom is that those cells that 

do change their firing fields between environments or across different regions of the same 

environment, do so randomly10. 

 

Remapping studies to date have been limited to within-subject comparisons, but it is possible in 

principle that what appears random within a single subject in fact obeys a common rule that is 

shared across subjects. Consider how two related experiences such as running the left (L) and 

right arms (R) of a T-maze may be encoded in a population of hippocampal neurons (Figure S1). 

The correlation between L and R activity on a cell-by-cell basis may be zero, but still obey an 

underlying structure. For instance, cells that tend to fire at the start of L may be more likely to fire 

at the end of R (Figure S1A), or more realistically, how place fields shift between L and R depends 

on both their location, firing rate, and relationship to other cells  (Figure S1B). If such a rule were 

to exist, it should be possible to predict, across subjects, what R activity of a target subject looks 

like, based on (1) that subject’s L activity and (2) the relationship between L and R activity found 

in a different “source” subject. Although there is no way to predict how two different subjects 

encode a given experience L (especially when sampling randomly from different numbers of 

neurons that are not uniquely identifiable across subjects as in e.g. C. elegans), the relationship 

between how two different experiences L and R are represented may be conserved across 

subjects. 

 

Such a representational geometry has been demonstrated in a number of brain regions in human 

cognitive neuroscience studies that use fMRI11–14, but cross-subject prediction of this kind has not 

yet been applied to ensemble recording data in the rodent hippocampus. If (re)mapping in the 

rodent hippocampus were to show a shared representational geometry, this would not only 

challenge a long-held dogma about the randomness of place cell allocation, but potentially also 

https://paperpile.com/c/qO38j9/EsOL
https://paperpile.com/c/qO38j9/GL5w+DVQm+zjoM+AwTQ
https://paperpile.com/c/qO38j9/uHn9+ki2W
https://paperpile.com/c/qO38j9/9pqA
https://paperpile.com/c/qO38j9/QCTQ
https://paperpile.com/c/qO38j9/jYLu
https://paperpile.com/c/qO38j9/9FZo+bOtd+J9Lj+rHXv
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open up novel lines of research that can elucidate the algorithmic basis of memory assignment 

and generalization in a wide variety of settings, while creating a bridge between rodent neural 

data and human fMRI work. 

 

Results 

 

The overall goal of this study is to determine if we can predict how hippocampal place cells in a 

“target” subject encode a particular experience based on two ingredients: (a) knowledge of how 

the target subject encodes a distinct but related experience, and (b) how a different, “source” 

subject encodes the same two experiences. To make this prediction possible, we first align the 

data from source and target subjects in a common representational space, as we describe below. 

 

We operationalize this overall idea using data from T-maze tasks, in which rats run along the left 

and right arms of the maze to form the two related experiences under study. Specifically, we can 

describe hippocampal activity on this task as two subject-specific matrices with time as the 

horizontal dimension, and neuron as the vertical dimension (Figure 1A, leftmost column); one 

matrix describing the average activity for left trials (L), and another matrix for right trials (R; see 

Figure S2A for a description of how this input data is obtained). We aim to predict the R matrix in 

the target subject, based on (a) the target’s L matrix and (b) the source’s L and R matrices. Note 

that the left and right arms differ in a number of respects other than spatial location, so we use 

these terms here as descriptive labels, rather than as an interpretation about the nature of their 

neural encoding (see Discussion). We first apply principal component analysis (PCA) to each 

subject’s data, so that neural activity during L and R trials can be visualized as trajectories in a 

subject-specific reduced space (Step 1 in Figure 1A).  

 

 

 
Figure 1: Workflow and example for cross-subject prediction using the hypertransform. (A) Our 

objective is to predict place cell activity on the right arm (R) of a T-maze in a “target” subject, based on 

(i) place cell activity in the left arm (L) in the target subject, and (ii) L and R place cell activity in a 

different, “source” subject. These input data are shown in the top left panel: both the source and target 

subjects have two matrices each that describe, for each recorded neuron, how its activity varies during 
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left and right trials. Neurons are ordered according to their peak firing time on the R arm. Note that 

although the number of time bins is the same across subjects, the number of recorded cells may be 

different. Therefore, the first step of the analysis workflow is to apply principal component analysis 

(PCA), resulting in neural activity trajectories for left and right trials (red and blue, respectively) in each 

subject’s own PCA space. Three principal components are shown here for display purposes, but in the 

main analysis 10 PCs were used. Next, these neural activity trajectories are mapped into a common 

space using a “hyperalignment” procedure that minimizes the Euclidean distance between the L and R 

trajectories across subjects (step 2, see Methods for details and Figure S1 for schematics). In this 

common space, a Procrustean transformation15 (HT in step 3) is derived that maps L to R trajectories 

for the “source” subject (step 3), which can then be applied to the L trajectory of the “target” subject 

(step 4) to obtain its predicted R trajectory in the common space (step 5). This predicted R trajectory is 

then projected back to the “target” PCA space using the inverse of the matrix used in step 2 (step 6) 

and expanded back into the target’s original neuron space (step 7). Finally, the predicted R neural 

activity is compared to the actual R activity to yield an error measure (step 8). The diagonal pattern 

apparent in the predicted data indicates similarity between actual and predicted R, although differences 

are also visible. (B) Close-up of example target L and R activity matrices (“Actual”, neurons ordered by 

temporal fields on R) with example predicted R activity derived from a different source session. Each 

matrix column describes ensemble neural activity for a single time bin, and maps to a corresponding 

point on a neural activity trajectory in common space (top panels). The hypertransform (HT) is a 

mapping from L to R activity that operates on these (aligned) ensemble activity vectors. As a result, the 

R prediction for any given cell is not only based on that cell’s L activity alone, but also depends on the 

activity of the other cells at that time; see Figure 2 for further examples and a more detailed explanation. 

 

Next, the key step for cross-subject prediction employs a procedure from human cognitive 

neuroscience, “hyperalignment”11,16, that projects each subject’s idiosyncratic neural activity into 

a common space that minimizes the Euclidean distance between neural activity trajectories (Step 

2 in Figure 1A; see also Figure S1A for a schematic). Working in this common space, we can 

identify the relationship between L and R activity in the source subject, and express this 

relationship as a transformation matrix (“hypertransform”) which can be applied to the target 

subject’s L trials to obtain a predicted R trajectory 𝑅̂. This predicted trajectory is then projected 

back to the target-specific neural space to obtain a prediction which is compared to the actual 

data (final step in Figure 1A). Figure 1B shows in more detail an example prediction alongside 

the actual target activity for a different session; note the overall correspondence between 

predicted and actual activity (see Figure 2 for more examples). 

 

https://paperpile.com/c/qO38j9/j4b6
https://paperpile.com/c/qO38j9/9FZo+V8V0


 

4 

 
Figure 2: Example target L and R activity matrices with hyperaligned predictions. Two example target 

L and R activity matrices (“Actual”, neurons ordered by time of maximum activity on R) with hyperaligned 

predictions obtained from three source sessions (“Predicted”) following the procedure in Figure 1. In 

general, for each session, the predicted and actual activity are clearly related, as is apparent from the 

overall diagonal pattern in the Predicted matrices indicating agreement with the Actual R data (we quantify 

this in insets of Figures 3 and 4 and associated analyses). However, clear deviations from the actual data 

are also visible, for instance in predicting fields that do not exist in the actual data (red arrows; compare 

actual and predicted R), and predicting fields in incorrect locations (appearing away from the diagonal, e.g. 

white arrow for source session 2). Comparing between different source sessions (1, 2, 3) the predictions 

derived from all source sessions share an overall similarity, but there are also differences, typically in the 

specific locations of predicted place fields in a subset of neurons (compare the two white arrows, for 

instance). A further point to note is that even for some cells that do not have a field on L, we can correctly 

predict where this cell will have a field on R (gray rectangles in lower panel). In general, this occurs because 

the hyperalignment step rotates, reflects and translates the source and target data to minimize the distance 

between them, such that neurons that change similarly across subjects become aligned. In more detail, we 

can ask, how is it that even though the L activity is the same at different time points, the predicted R is 

different over time? This occurs because the mapping from L to R at each time point depends on the activity 

of all the other cells in L at that time point. Next, how is it that for a given time point, even though the L 

activity is the same for two different cells, the predicted R is different for those cells? This occurs because 

different cells have different loadings on the principal components that are hyperaligned. In other words, 

cross-subject prediction does not apply a fixed rule to the activity of a single cell, but rather applies a 

mapping that depends on the activity of the other cells in the ensemble. 
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If a given subject encodes L and R trials independently, then it should not be possible to use one 

subject’s neural activity for L and R to predict anything about how another subject encodes R 

trials based on its L trials. On the other hand, if there is some shared structure between subjects 

in how L and R trials are encoded, then cross-subject prediction should perform better than 

chance. To test this idea, we compare the prediction of a target subject’s R trials to shuffled 

controls. In the first, “row shuffle”, we obtain a distribution of chance predictions for each source-

target pair, based on breaking the relationship between L and R trials in the source subject by 

randomly permuting the rows of the R matrix (see Figure S2B for a schematic). Based on this 

chance distribution, we define three metrics: (1) a z-score of the actually observed error compared 

to chance, (2) the difference between the actually observed prediction error per cell and the mean 

of the chance prediction error, and (3) the proportion of chance prediction errors that were lower 

than the observed error. 

 

We used two different data sets: the first, “Carey'' data set17,18 is from a T-maze where L and R 

arms were deliberately furnished with distinct surface colors and textures. In contrast, the second, 

“Gupta'' data set19,20 used a T-maze whose arms had similar surfaces. Starting with the Carey 

data, we found that the hypertransform (HT) prediction of R trials in the target subject was better 

than chance overall for all metrics used (Figure 3, top and middle rows; green “HT'' bars; z-score: 

p < 0.001 for Wilcoxon signed rank test vs. 0; raw error: p < 0.001). Cross-subject prediction of R 

activity was better than chance even when the R data was withheld entirely from the 

hyperalignment step (see Methods for details on the withholding procedure; Figure 4A, top row; 

p < 0.001 for HT vs. 0), when L and R activity was expressed as tuning curves in space rather 

than in time (Figure 4C, middle row; p < 0.001 for HT vs. 0), and when putative interneurons were 

removed (Figure S3A). We found similar results for the Gupta data, with the HT prediction 

consistently better than chance (Figure 3, bottom row; p < 0.001 for HT vs. 0). These results 

demonstrate that the relationship between L and R trials is not random across subjects. 

 

https://paperpile.com/c/qO38j9/1lse+U4E0
https://paperpile.com/c/qO38j9/634b+hVrT
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Figure 3: Cross-subject prediction of R trials of a “target” subject based on how a “source” 

subject encodes L and R trials outperforms prediction based on shuffled source data. For each 

source-target pair in the Carey data, we computed a z-score of the actual observed error between 

predicted and actual R trials (based on the hypertransform procedure, “HT”) compared to a shuffled 

distribution in which the R rows of the source subject were randomly permuted (see Figure S2B and 

Methods for details). Thus, lower z-scores indicate lower error and therefore better prediction than 

chance. Across all source-target pairs, this z-scored error varied depending on the pair used (column 

A, top row), but was lower than chance overall, as indicated by a shift in the z-score histogram relative 

to 0 (“HT” green bars in column A, middle row; median: -3.10 +/- 0.54, SEM across unique source-

target pairs, p < 0.001 for Wilcoxon signed rank test vs. 0). Cross-subject predictions based on the L-

R transform in common space (“hypertransform”) outperformed predictions based on the L-R transform 

in PCA space (“PCA” blue bars in column A, middle row, inset; see Methods for details; HT < PCA: 

99.62% of source-target pairs, p < 0.001 for binomial test) in terms of raw error between predicted and 

actual R trials (median of HT raw error: 443.73 +/- 62.44, PCA: 1409.14 +/- 204.22, split-half: 130.99 

+/- 46.72, red triangle in inset; mean squared error per cell, see Methods for details). Next, we applied 

the same analysis to a different data set (“Gupta”, bottom row, in which the L and R maze arms were 
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more similar to each other than in the “Carey” data), and found that the hypertransform prediction was 

again significantly better than chance (“HT”; median: -2.59 +/- 1.44, p < 0.001, bottom row) and better 

than PCA-only (HT < PCA: 79.58% of source-target pairs, p < 0.001; column A, bottom row, inset; 

median of HT raw error: 115.26 +/- 142.05, PCA: 121.42 +/- 208.23, split-half: 37.39 +/- 10.01). 

Columns B and C use the same layout as column A, but using different metrics to describe prediction 

accuracy. B uses the raw error (between predicted and actual R neural activity; lower error/negative 

indicates better prediction) compared to the mean of the shuffle distribution, and C uses the proportion 

of the shuffle distribution with smaller error than the actually observed error (lower proportions indicate 

better prediction). For the raw error measure, the HT prediction was better than chance in both the 

Carey data (column B middle row; median: -652.87 +/- 486.05, p < 0.001 for HT vs. 0; red line indicates 

split-half prediction) and the Gupta data (B bottom row; median: -594.62 +/- 735.37, p < 0.001 for HT 

vs. 0).  See also Figure S3 for a comparison of different normalization methods. 

 

To test if the hyperalignment step of the prediction procedure is important, rather than some other 

part of the workflow, we repeated the analysis with the hyperalignment step left out (i.e. we applied 

the L-R transform obtained from the source subject’s PCA space to the target subject’s PCA 

space, “PCA-only”; see Methods for details). The HT-based prediction outperformed the PCA-

only prediction both for the Carey data (blue “PCA” bars in Figure 3A inset, middle row; p < 0.001, 

binomial test) and the Gupta data (bottom row; p < 0.001, binomial test), although for the Gupta 

data the difference was noticeably smaller (we investigate this further below). Again, the HT 

predictions outperformed PCA-only predictions when spatial tuning curves were used (Figure 4C) 

and with putative interneurons removed (Figure S3A); to facilitate visualization of the results in 

the analyses that follow, we used the interneuron-removed data. Although the HT prediction still 

outperformed PCA-only when target-R data was withheld entirely, the HT prediction was much 

better (i.e. closer to split-half prediction) if at least one trial of target R was included for alignment 

(Figure 4A and B; insets). Crucially however, R data cannot be predicted better than chance even 

when it is included in the alignment step when in fact no underlying L-R relationship exists, as we 

verify below with simulated data. 
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Figure 4: Better-than-chance cross-subject predictions can be observed even when the to-be-

predicted target data was withheld, and spatial turning curves were used. A: Histogram of three cross-

subject prediction metrics: z-scores of actual observed error compared to the distribution of shuffle 

predictions (left column), raw prediction error compared to the mean of the shuffle distribution (middle), 

proportion of the shuffle distribution whose error was smaller than actual observed error (right). For all 

metrics, lower numbers indicate better cross-subject predictions. Even when the R activity of the target 

subject, which is the activity to be predicted, is withheld from the hyperalignment procedure, the 

hypertransform (HT) prediction is significantly better than chance (median: -6.03 +/- 0.84, SEM across 

unique source-target pairs, p < 0.001 for Wilcoxon signed rank test vs. 0; left column) and better than PCA-

only (HT < PCA: 70.77% of source-target pairs, p < 0.001 for binomial test; left column, inset; median of HT 

raw error: 1962.93 +/- 209.86, PCA: 2505.85 +/- 287.00, split-half: 114.05 +/- 17.48, red triangle in inset). 

B: Histogram of three cross-subject prediction metrics as in A. Different from A, one randomly-chosen trial 
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of target R was used for alignment, with the average of rest R trials withheld as the activity to be predicted. 

The HT prediction is again better than chance (median: -3.03 +/- 0.51, p < 0.001 for HT vs. 0; left column) 

and significantly better than PCA-only (HT < PCA: 91.92% of source-target pairs, p < 0.001; left column, 

inset). Note that the HT prediction was substantially improved by including one trial of target R data (median 

of HT raw error: 809.73 +/- 374.22, PCA: 1698.19 +/- 345.25, split-half: 108.83 +/- 110.81). C: Histogram 

of three cross-subject prediction metrics as in A and B for neural activity matrices calculated as a function 

of locations (turning curves; TC) instead of time (see Figure S2 and Methods for details) were used. The 

cross-subject predictions are significantly better compared to shuffles (median: -2.97 +/- 0.46, p < 0.001 for 

HT vs. 0; left column) and significantly better than PCA-only (HT < PCA: 100% of source-target pairs, p < 

0.001; left column, inset; median of HT raw error: 499.05 +/- 50.22, PCA: 1469.76 +/- 170.06, split-half: 

83.86 +/- 64.48), suggesting time and location yield similar results (compare with  Figure 3). 

 

A possible trivial explanation for the better-than-chance cross-subject prediction is that rats 

represent experiences in L and R similarly, so that a simple duplicate of L activity forms a 

reasonable prediction of R activity. To test if L-R correlations at the cell-by-cell level (i.e. row-wise 

correlations, Figure S2C) underlie the cross-subject prediction results in Figure 3, we compared 

cross-subject predictions based on the hypertransform (L-R mapping in common space) with 

those based on the identity transform: a within-subject prediction that simply takes a duplicate of 

the L trajectory in common space and uses it as the prediction for R. For the Carey data set, the 

cross-subject HT prediction was significantly better than that based on the identity transform (ID; 

left panel in Figure 5A; p < 0.001, binomial test), demonstrating that the better-than-chance 

prediction of R is not due to cell-by-cell correlations with L activity. In contrast, for the Gupta data, 

the HT prediction did not outperform the identity prediction (right panel in Figure 5A), suggesting 

that the better-than-chance cross-subject prediction for this data set (Figure 3, bottom row) can 

be attributed to row-wise correlations between L and R activity. 
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Figure 5: Cross-subject prediction outperforms within-subject prediction only in the absence of 

cell-by-cell correlations. A: Comparison of cross-subject prediction error (“hypertransform”, green 

bars; HT) with within-subject prediction error (“identity transform”; blue bars, ID) for two different data 

sets. In the “Carey” data (left panel) the left and right arms of the maze had different texture and color 

patterns; in the “Gupta” data (right panel) the two maze arms were identical. For the Carey data, cross-

subject prediction was significantly better than within-subject prediction (HT < ID: 100% of unique 

source-target pairs, p < 0.001 for binomial test) whereas for the Gupta data, this difference was not 

significant. B: Cell-by-cell correlations of firing rates between L and R arms (i.e. row-wise correlations 

of the L and R matrices in Figure S2C), were significantly higher in the Gupta data compared to the 

Carey data (Gupta: median r = 0.21 +/- 0.27, SEM across subjects, Carey: median r = -0.02 +/- 0.12, 

Wilcoxon rank sum test, p < 0.001). Cell-by-cell correlations in the Carey data were not significantly 

different from 0 (p = 0.44 for Wilcoxon signed rank test vs. 0). C: Population vector (PV) correlations 

between ensemble activity at each time point and every other time point, i.e. column-wise correlations 

of the L and R activity matrices, averaged across sessions. Both Carey and Gupta data sets show high 

correlations around the diagonal, indicating an overall autocorrelation in time; however, the Gupta data 

additionally shows high off-diagonal correlations between L and R which are barely visible in the Carey 

data. D: Quantification of the median PV correlation between L and R (i.e. the values along the diagonal 

of the lower left quadrant in C). For Gupta data, this correlation is remarkably high (median r = 0.95 +/- 

0.16) whereas for Carey data, it is significantly lower (median r = 0.09 +/- 0.10, p < 0.001 for Wilcoxon 

rank sum test) but significantly different from 0 (p < 0.001 for Wilcoxon signed rank test vs. 0), consistent 

with previous reports of global remapping2,4. The above results explain why the HT is not needed for 

Gupta data to achieve better than chance predictions (as shown in Figure 3, bottom row): L and R 

activity is sufficiently similar such that the L trajectory alone in either PCA or common space can predict 

R activity. 

 

https://paperpile.com/c/qO38j9/zjoM+GL5w
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To test this idea, we investigated the correlation structure between the L and R firing rate matrices 

using two different measures: the cell-by-cell (row-wise) correlation, averaged across all cells, 

and the column-wise population vector (PV) correlation (averaged across sessions, see Figure 

S2 for schematic; note that in order to compute these measures, putative interneurons were 

removed from the data; see Figure S3A and Methods). The cell-by-cell firing rate correlations 

between L and R arms were significantly more correlated in the Gupta data compared to Carey 

data (Gupta: median r = 0.21 +/- 0.27, Carey: median r = -0.02 +/- 0.12, SEM across subjects; p 

< 0.001, Wilcoxon rank sum test; Figure 5B). Similarly, PV correlations in the Gupta data showed 

high off-diagonal values between L and R, which were barely visible in the Carey data (Figure 

5C-D). The low correlation values observed in the Carey data are consistent with those previously 

reported and characterized as global remapping2,4, whereas the Gupta correlations are strikingly 

high, indicating the presence of “symmetric” cells with similar firing patterns on the L and R arms. 

High L-R correlations in the Gupta data imply that the cross-subject (hypertransform) method 

cannot outperform the already very good prediction based on within-subject correlations, whereas 

for the nearly uncorrelated Carey data, there is room for cross-subject prediction to improve. 

 

Importantly, the comparison between the two data sets suggests that the cross-subject prediction 

on Carey data is not the result of within-subject correlations -- because, if it were, then the HT 

prediction would be similar to the ID prediction. So, if cross-subject prediction for the Carey data 

is not simply a consequence of within-subject correlations between L and R, what is the prediction 

based on? In other words, can we identify what features of the L-R relationship are generalizable 

across subjects without appearing as within-subject correlations between L and R activity? To 

address this question, we generated synthetic neural activity matrices using 1-D Gaussians with 

three parameters: time, peak firing rate (FR) and width. Specifically, three simulated data sets 

captured different potential place cell properties: (1) each neuron has an independent probability 

of having a firing field on L and R, and all parameters are randomly and independently chosen for 

L and R (ind-ind, top row in Figure 6A), (2) if a neuron has a firing field on L, it does not have a 

field on R (and vice versa), and the parameters of the field are chosen randomly (x-or, second 

row) and (3) each neuron has an independent probability of having a field on L and R, but if a cell 

has a field in both, all three parameters are the same (ind-same-all, third row). For all these 

scenarios, we generated synthetic data matching the number of recording sessions and the 

number of neurons recorded in the Carey data, and applied exactly the same analysis procedure. 

 

The independent (ind-ind) simulation serves as a crucial sanity check to verify that our cross-

subject prediction procedure cannot exploit shared structure where none exists; as expected, 

cross-subject prediction was not different from chance in this scenario (Figure 6A, right column; 

p = 0.92 for Wilcoxon signed rank test vs. 0). In contrast, both x-or and ind-same-all showed 

better-than-chance cross-subject prediction (both p < 0.001). If the x-or or ind-same-all rules are 

potential explanations for better-than-chance predictions in Carey data, we should see zero cell-

by-cell correlations and low PV correlations between L and R in these two simulations as observed 

in the Carey data (Figure 5B-D). However, the x-or scenario shows negatively correlated PV 

correlations inconsistent with the Carey data (Figure 6B-C; r = -0.17). The ind-same-all rule 

shows both high cell-by-cell correlations (Figure 6D; r = 0.25) and high PV correlations (r = 0.41), 

which is again inconsistent with the Carey data, but more in line with the Gupta data (compare 

https://paperpile.com/c/qO38j9/zjoM+GL5w
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Figure 5B-D). In further simulations, we separately investigated the role of each parameter of the 

1-D gaussian place fields (time, FR and width) as a potential explanation for cross-subject 

prediction; only when the same time is shared across L and R are the cross-subject predictions 

better than chance (ind-same-time, top row in Figure S4; p < 0.001). However, as in the main 

analysis (Figure 5B) the cell-by-cell correlations are inconsistent with those observed in the Carey 

data. Thus, although both rules like x-or and same-time can support cross-subject prediction, the 

cell-by-cell correlations in the Carey data are different and therefore these simple rules cannot be 

the full explanation. 

 

 
Figure 6: Simulations demonstrate that representational geometry, but not simple rules such 

as exclusive-or and firing rate correlations, result in cross-subject prediction while being 

consistent with the data. A: Example L and R activity matrices (left column) and histogram of z-

scores of cross-subject prediction compared to the distribution of shuffle predictions (right column; 

z-scores lower than zero indicate better-than-chance predictions) of four simulated data sets: (1) 

neurons have a fixed, independent probability (0.5) of having a 1-D Gaussian place field on L and/or 

R, with the three parameters of time, peak firing rate (FR) and width randomly and independently 

chosen for L and R (ind-ind, top row), (2) neurons only have a field on either L or R but not both, 

and parameters of the field are chosen randomly  as in (1) (x-or, second row), (3) neurons have a 

fixed independent probability of having L and R fields as in (1) but with the additional constraint that 

neurons with both L and R fields must have the same three parameters (ind-same-all, third row) 

and (4) the activity on L is simulated by assigning each neuron an independent probability of having 

a field whose parameters are randomly chosen, then the activity on R is obtained by applying a L-R 

transform (hypertransform, HT) from the Carey data to the simulated L activity (sim. HT, last row). 

As expected, in the ind-ind (independent) case, cross-subject prediction is not possible (z-score vs. 

chance, median: -0.01 +/- 0.03, SEM across unique source-target pairs, p = 0.70 for Wilcoxon signed 

rank test vs. 0). In contrast, x-or, ind-same-all and sim. HT all show better-than-chance cross-

subject predictions (median: -1.26 +/- 0.30 for x-or, median: -2.62 +/- 0.06 for ind-same-all, median: 

-5.23 +/- 0.04 for sim. HT, all p < 0.001 for Wilcoxon signed rank test vs. 0), indicating that if there 

is a non-random L-R relationship in the underlying data, the hypertransform procedure can exploit 



 

13 

it. Note that although this synthetic example shows substantially negative predicted firing rates, 

negative firing rates, when they did occur, tended to be much smaller for predictions using actual 

data. B: Population vector (PV; column-wise) correlations between ensemble activity at each time 

point and every other time point of the L and R activity matrices. Only ind-same-all shows high off-

diagonal correlations between L and R, resembling the Gupta data set in which L and R arms were 

identical and firing activity on both arms is highly correlated (compare with Figure 5C). In x-or, off-

diagonal correlations are slightly negative. C: Quantification of the median PV correlation between 

L and R (i.e. the values along the diagonal of the lower left quadrant in B). PV correlations between 

L and R in ind-ind are zero, but L and R are positively correlated in ind-same-all (median r = 0.40 

+/- 0.01) since for every time point in L where there is a field, the same ensemble activity appears 

at the same time point in R with probability 0.5. X-or shows a negative correlation (median r = -0.18 

+/- 0.02) because for every time point in L where there is a field, the same ensemble activity would 

deterministically be absent in R, and vice versa. None of these simple rules are consistent with the 

PV correlation found in the Carey data; however, sim. HT does show similar correlations as the data 

(median r = 0.04 +/- 0.03 for sim. HT and median r = 0.09 +/- 0.10 for Carey). D: Cell-by-cell (row-

wise) correlations of L and R show that ind-same-all is more correlated than the data, whereas sim. 

HT yields similar correlations (median r = 0.04 +/- 0.02 for sim. HT and  median r = -0.02 +/- 0.12 

for Carey). Thus, taken across panels C and D, simple rules (x-or and ind-same-all) are inconsistent 

with the data, but the representational geometry embodied in the sim. HT yields correlations that 

are similar to the data. See also Figure S4 for further simulations. 

 

If these predetermined rules cannot be the source of cross-subject prediction in the Carey data, 

what can? We first sought to rule out a number of possible low-level explanations, verifying that 

differences between source and target sessions in running speed (Figure S5B) and average firing 

rates (Figure S5B) do not explain cross-subject prediction performance. Plotting cross-subject 

prediction error as a function of time did not highlight any particular areas as being especially well 

or poorly predicted (Figure S6C) ruling out explanations based on shared cues such as the choice 

point or the existence of a reward site at the end of each arm. One more subtle possibility is a 

single-cell mapping rule such as a cell with a field at the start of L being mapped to the end of R; 

however, no obvious field mapping pattern between L and R was observed for both actual and 

predicted data (Figure S7), consistent with the low population vector correlations in the data 

(Figure 5C-D). 

 

Is there another possibility? The hyperalignment procedure we used to derive the L-R transform 

(“hypertransform”) was originally developed to capture so-called representational geometry: a 

shared rule that specifies how differences in the ensemble neural response to a set of stimuli may 

be preserved across subjects even though each subject may encode a given stimulus quite 

differently11. To test if such a geometry is consistent with the data, we created another synthetic 

data set in which the activity on L is simulated by assigning each neuron an independent 

probability of having a 1-D gaussian place field whose parameters are randomly chosen, and the 

activity on R is obtained by applying the L-R transform (hypertransform, HT) from the Carey to 

the simulated L activity (sim. HT, bottom row in Figure 6A, see Methods). Not only did sim. HT 

show significant better-than-chance cross-subject predictions on the simulated data (p < 0.001) 

but the cell-by-cell (r = 0.04) and PV correlations (r = 0.04) were similar to the Carey data. Thus, 

unlike the simple x-or and same-parameter simulated scenarios, and unlike single-cell mapping 

rules, a shared representational geometry is consistent with the correlations observed in the data. 

https://paperpile.com/c/qO38j9/9FZo
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The hypertransform capitalizes on a geometric relationship between ensemble activity patterns, 

which can be difficult to relate back to the properties of any individual cell. However, some insight 

can be obtained by separating (1) mean firing rate relationships between L and R regardless of 

their specific firing locations (e.g. “cells with high rates on L tend to have high rates in R”, as 

suggested by the data in Lee et al. 201921), and (2) specific firing locations regardless of mean 

firing rate differences (e.g. “a cell that was co-active with cells ABC on L will be co-active with 

cells DEF on R”). To determine the contributions of mean firing rate relationships, we applied 

different firing rate normalization methods to each cell’s L and R activity independently (note that 

normalizing each cell’s L and R joint activity is not appropriate because it introduces an artificial 

anticorrelation between L and R that the hypertransform will exploit). L2 normalization preserved 

a significant but smaller amount of cross-subject prediction compared to the unnormalized data 

(Figure S3B), while Z-scoring firing rates abolished cross-subject prediction (i.e. did not 

outperform chance level, see the caption of Figure S3C for our interpretation of this difference). 

Reduced cross-subject prediction after firing rate normalization shows that firing rate relationships 

between L and R are an important component of the prediction. To determine the contributions of 

specific firing locations, we performed an additional shuffle that circularly shifted the R activity by 

a different random amount for each cell (see Figure S2 and Methods). The full (non-shuffled) 

cross-subject prediction outperformed this circular shuffle both for the Carey data (Figure 7, 

middle row; p < 0.001 for Wilcoxon signed rank test vs. 0) and the Gupta data (bottom row; p < 

0.001 for HT vs. 0). Taken together, these analyses demonstrate that both single-cell firing rate 

and firing location relationships contribute to cross-subject prediction. 

 

https://paperpile.com/c/qO38j9/hzVg
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Figure 7: Cross-subject hypertransform (HT) outperforms temporally shuffled source data. For each 

source-target pair in the Carey data, we computed a z-score of the actual observed error between predicted 

and actual R trials (based on HT) compared to a shuffled distribution in which each R row of the source 

subject was circularly shifted independently by a randomly chosen length (see Figure S2B and Methods for 

details). Lower z-scores indicate lower error and therefore better prediction than chance. Across all source-

target pairs, this z-scored error varied depending on the pair used (column A, top row), but was lower than 

chance overall, as indicated by a shift in the z-score histogram relative to 0 (“HT'' green bars in column A, 

middle row; median: -0.44 +/- 0.29, SEM across unique source-target pairs, p < 0.001 for Wilcoxon signed 

rank test vs. 0). Next, the same analysis was applied to a different data set (“Gupta'', bottom row, in which 

the L and R maze arms were more similar to each other than in the “Carey” data), and found that the HT 

prediction was again significantly better than chance (“HT”; median: -3.20 +/- 1.13, p < 0.001, bottom row). 

Column B and C use the same layout as column A, but using different metrics to describe prediction 

accuracy. B uses the raw error (between predicted and actual R neural activity; lower error/negative indicate 

better prediction) compared to the mean of the shuffle distribution, and C uses the proportion of the shuffle 

distribution with smaller error than the actually observed error (lower proportions indicate better prediction). 

For the raw error measure, the HT prediction was better than chance in both the Carey data (column B 
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middle row; median: -14.12 +/- 12.27, p < 0.001 for HT vs. 0 and the Gupta data (B bottom row; median: -

206.13 +/- 119.78, p < 0.001 for HT vs. 0). See also Figures S5-7 for additional information. 

 

Discussion 

 

We have shown that it is possible to predict across subjects, better than chance, how a given 

experience will be encoded in the hippocampus. In particular, we describe how a "target" subject 

represents the right arm of a T-maze (R), given (1) how that same subject represents the left arm 

(L) of the same maze, (2) the relationship between L and R activity in a different "source" subject, 

by aligning neural activity from both subjects in a common space. In a true predictive version of 

the analysis, where the R activity of the target subject is withheld from the alignment step, we can 

still predict R activity better than chance, suggesting this activity is not merely random but has a 

geometric relationship to L activity that generalizes across subjects. Control analyses based on 

within-subject prediction and a comparison of the properties of various simulated data sets and 

shuffles with the real data suggests that this cross-subject prediction is unlikely to be the result of 

trivial relationships such as cells with symmetric firing fields, fixed field mapping rules like the start 

of the L being mapped to the end of R, or simple rules such as exclusive-or. Thus, our results 

imply that the hippocampal encoding of different locations in space, commonly reported to be 

random within subjects2–4,6,7, in fact has a shared structure between subjects. 

 

There have long been indications in the literature that the space of possible neural activity patterns 

in the hippocampus is constrained in a number of ways, perhaps most obviously by a continuous 

attractor-type structure that enforces a single, coherent “hill of activity” to exist within a map (chart) 

at a time22. A different example is how the encoding of a novel experience is constrained by 

internally generated activity preceding that experience (“preplay”)23,24, and most recently, the 

demonstration that the formation of new place fields in response to optogenetic stimulation is 

predictable from activity prior to the stimulation25. Our findings are congruent with these overall 

notions, but add a new dimension in its ability to test and reveal structure shared between 

subjects. This approach is attractive because it provides rigorous, quantifiable tests of how 

generalizable a given model of neural activity is, and because it can provide insights into what is 

shared and what is unique between subjects. Related work using calcium imaging of CA1 neurons 

has successfully decoded location and other task variables in one animal even when the decoder 

is trained on data from another animal26,27. Our approach is similar in that it also uses cross-

subject prediction, but addresses a different question in that we seek to predict not the decoded 

location of the animal in task space given a common experience, but the actual neural activity 

pattern corresponding to a related but different experience. 

 

Unlike in the rodent literature, a substantial number of human fMRI and ECoG studies have used 

cross-subject prediction11–13,28,29. Particularly effective are procedures that do not only align across 

subjects anatomically (e.g. by mapping each subject to a reference brain) but functionally, i.e. by 

finding structure in how related experiences are represented, even though across subjects the 

same experience may be represented very differently. Haxby et al. (2011)11 refer to such shared 

structure as “representational geometry”, an idea implemented here as a rotation and translation 

(Procrustes transformation) in ensemble neural activity. Because this notion is abstracted away 

https://paperpile.com/c/qO38j9/GL5w+DVQm+zjoM+uHn9+ki2W
https://paperpile.com/c/qO38j9/QWoP
https://paperpile.com/c/qO38j9/L7ht+IGhg
https://paperpile.com/c/qO38j9/HMTL
https://paperpile.com/c/qO38j9/oBl9+UVNU
https://paperpile.com/c/qO38j9/9FZo+bOtd+J9Lj+8Bzp+sfuD
https://paperpile.com/c/qO38j9/9FZo
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from the raw data and describes a relatively general class of relationships, the question arises 

what specific features of the data make cross-subject prediction possible. In particular, can this 

abstract geometric concept be reduced to a simpler set of rules? Hypertransform predictions do 

not appear to be reducible to single-cell rules, but rather are based on a mapping in ensemble 

activity space (i.e. how a given L cell’s activity changes between L and R depends on what cells 

are co-active with it). This idea is illustrated by the examples in Figure 2, and supported more 

formally by (1) comparison of correlations in the data with simulations (Figure 6), and (2) 

outperforming both row (firing rate) and shift (firing location) shuffles. We note that the contribution 

of firing location differences is smaller compared to firing rate differences, as shown by comparing 

the middle rows of Figure 3 and Figure 7, and by the inability to outperform row shuffles when 

data is z-scored (Figure S3C; this tends to introduce noise that masks underlying regularities); 

nevertheless, these analyses demonstrate a contribution of both to an underlying ensemble-level 

regularity. 

 

What circuit-level or hippocampal input properties are involved in this shared geometry? One 

possibility is suggested by the relationship between grid cells and place cells: Dordek et al. 

(2016)30 showed that applying nonnegative principal component analysis (PCA) to ensemble 

activity of place cells yields grid cell-like activity patterns. In addition, grid cell firing patterns were 

known to remain intact but realign linearly (and differently for different subjects) during global 

remapping31. This suggests that our hypertransform procedure may rely on a common coding 

strategy that transforms grid cell activity from one (part of an) environment to another in a 

predictable manner (e.g. by aligning to a geometric axis in the environment), a possibility 

supported by recent work32,33. Similarly, a related possible cause of a shared representational 

geometry is input from the head direction (HD) system, which is expected to be “similarly different” 

across animals for the initial parts of the left and right trials in our data. Specifically, whatever HD 

cells are active for “left” trials would explicitly not be active for “right” trials due to the ring attractor 

organization of the HD system34. Although the hippocampal place cells in our data set do not 

behave in this literal exclusive-or pattern expected for head direction cells (we do not see negative 

left-right cell-by-cell correlations in Figure 5B), similarities in head direction across identically 

oriented compartments result in overlapping place cell maps compared to differently oriented 

compartments35,36, suggesting that a common head direction cell input may contribute to the 

cross-subject relationship between left and right trials in our hippocampal data (if not masked by 

symmetric cells as in the Gupta data set). If this is indeed the case, then our cross-subject 

hypertransform method would be able to predict, say, the place map of compartment oriented 

along the 45° axis in Grieves et al. (2018)36 based on the 135° compartment and the relationship 

between the 45°-135° compartments in a different subject, whereas in the Spiers et al. (2013)35 

experiment, where the compartments all share the same orientation, it would be difficult to 

outperform the identity prediction. 

 

In general, hippocampal representational similarity is shaped by many factors including not only 

the geometry of the environment as mentioned above, but also the identity of specific cues and 

their spatial configuration, the passage of time, and the animal’s internal understanding of the 

task structure10,37. In the two data sets we examined here, left and right trials are associated not 

only with different locations in space, but also with different head directions (at least for the part 

https://paperpile.com/c/qO38j9/2Z33
https://paperpile.com/c/qO38j9/69O3
https://paperpile.com/c/qO38j9/NGWN+PwJS
https://paperpile.com/c/qO38j9/HVJx
https://paperpile.com/c/qO38j9/dkOt+Rbfe
https://paperpile.com/c/qO38j9/Rbfe
https://paperpile.com/c/qO38j9/dkOt
https://paperpile.com/c/qO38j9/jYLu
https://paperpile.com/c/qO38j9/MHGe
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immediately after the choice point), different room cues, and different textures and rewards (for 

the Carey data). Based on these data we do not yet know which of these factors are subject-

specific versus generalizable across subjects -- in other words, to what extent these factors 

contribute to cross-subject prediction. Future studies that systematically manipulate these factors 

while holding the others constant will reveal under what conditions cross-subject predictions, 

including those for experiences the subject has not yet had, can be obtained. More generally, 

uncovering the ways in which hippocampal activity is non-random can ultimately inform how 

processes such as generalization and structure learning are realized in neural circuits. 
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Figure Legends 

 

Figure 1: Workflow and example for cross-subject prediction using the hypertransform. (A) 

Our objective is to predict place cell activity on the right arm (R) of a T-maze in a “target” subject, 

based on (i) place cell activity in the left arm (L) in the target subject, and (ii) L and R place cell 

activity in a different, “source” subject. These input data are shown in the top left panel: both the 

source and target subjects have two matrices each that describe, for each recorded neuron, how 

its activity varies during left and right trials. Neurons are ordered according to their peak firing time 

on the R arm. Note that although the number of time bins is the same across subjects, the number 

of recorded cells may be different. Therefore, the first step of the analysis workflow is to apply 

principal component analysis (PCA), resulting in neural activity trajectories for left and right trials 

(red and blue, respectively) in each subject’s own PCA space. Three principal components are 

shown here for display purposes, but in the main analysis 10 PCs were used. Next, these neural 

activity trajectories are mapped into a common space using a “hyperalignment” procedure that 

minimizes the Euclidean distance between the L and R trajectories across subjects (step 2, see 

Methods for details). In this common space, a Procrustean transformation15 (HT in step 3) is 

derived that maps L to R trajectories for the “source” subject (step 3), which can then be applied 

to the L trajectory of the “target” subject (step 4) to obtain its predicted R trajectory in the common 

space (step 5). This predicted R trajectory is then projected back to the “target” PCA space using 

the inverse of the matrix used in step 2 (step 6) and expanded back into the target’s original 

neuron space (step 7). Finally, the predicted R neural activity is compared to the actual R activity 

to yield an error measure (step 8). The diagonal pattern apparent in the predicted data indicates 

similarity between actual and predicted R, although differences are also visible. (B) Close-up of 

example target L and R activity matrices (“Actual”, neurons ordered by temporal fields on R) with 

example predicted R activity derived from a different source session. Each matrix column 

describes ensemble neural activity for a single time bin, and maps to a corresponding point on a 

neural activity trajectory in common space (top panels). The hypertransform (HT) is a mapping 

from L to R activity that operates on these (aligned) ensemble activity vectors. As a result, the R 

prediction for any given cell is not only based on that cell’s L activity alone, but also depends on 

the activity of the other cells at that time; see Figure 2 for further examples and a more detailed 

explanation. 
 

Figure 2: Example target L and R activity matrices with hyperaligned predictions. Two 

example target L and R activity matrices (“Actual”, neurons ordered by time of maximum activity 

on R) with hyperaligned predictions obtained from three source sessions (“Predicted”) following 

the procedure in Figure 1. In general, for each session, the predicted and actual activity are clearly 

related, as is apparent from the overall diagonal pattern in the Predicted matrices indicating 

agreement with the Actual R data (we quantify this in insets of Figures 3 and 4 and associated 

analyses). However, clear deviations from the actual data are also visible, for instance in 

predicting fields that do not exist in the actual data (red arrows; compare actual and predicted R), 

and predicting fields in incorrect locations (appearing away from the diagonal, e.g. white arrow for 

source session 2). Comparing between different source sessions (1, 2, 3) the predictions derived 

from all source sessions share an overall similarity, but there are also differences, typically in the 

specific locations of predicted place fields in a subset of neurons (compare the two white arrows, 

https://paperpile.com/c/qO38j9/j4b6


 

20 

for instance). A further point to note is that even for some cells that do not have a field on L, we 

can correctly predict where this cell will have a field on R (gray rectangles in lower panel). In 

general, this occurs because the hyperalignment step rotates, reflects and translates the source 

and target data to minimize the distance between them, such that neurons that change similarly 

across subjects become aligned. In more detail, we can ask, how is it that even though the L 

activity is the same at different time points, the predicted R is different over time? This occurs 

because the mapping from L to R at each time point depends on the activity of all the other cells 

in L at that time point. Next, how is it that for a given time point, even though the L activity is the 

same for two different cells, the predicted R is different for those cells? This occurs because 

different cells have different loadings on the principal components that are hyperaligned. In other 

words, cross-subject prediction does not apply a fixed rule to the activity of a single cell, but rather 

applies a mapping that depends on the activity of the other cells in the ensemble. 
 

Figure 3: Cross-subject prediction of R trials of a “target” subject based on how a “source” 

subject encodes L and R trials outperforms prediction based on shuffled source data. For 

each source-target pair in the Carey data, we computed a z-score of the actual observed error 

between predicted and actual R trials (based on the hypertransform procedure, “HT”) compared 

to a shuffled distribution in which the R rows of the source subject were randomly permuted. Thus, 

lower z-scores indicate lower error and therefore better prediction than chance. Across all source-

target pairs, this z-scored error varied depending on the pair used (column A, top row), but was 

lower than chance overall, as indicated by a shift in the z-score histogram relative to 0 (“HT” green 

bars in column A, middle row; median: -3.10 +/- 0.54, SEM across unique source-target pairs, p 

< 0.001 for Wilcoxon signed rank test vs. 0). Cross-subject predictions based on the L-R transform 

in common space (“hypertransform”) outperformed predictions based on the L-R transform in PCA 

space (“PCA” blue bars in column A, middle row, inset; see Methods for details; HT < PCA: 

99.62% of source-target pairs, p < 0.001 for binomial test) in terms of raw error between predicted 

and actual R trials (median of HT raw error: 443.73 +/- 62.44, PCA: 1409.14 +/- 204.22, split-half: 

130.99 +/- 46.72, red triangle in inset; see Methods for details). Next, we applied the same 

analysis to a different data set (“Gupta”, bottom row, in which the L and R maze arms were more 

similar to each other than in the “Carey” data), and found that the hypertransform prediction was 

again significantly better than chance (“HT”; median: -2.59 +/- 1.44, p < 0.001, bottom row) and 

better than PCA-only (HT < PCA: 79.58% of source-target pairs, p < 0.001; column A, bottom 

row, inset; median of HT raw errorl: 115.26 +/- 142.05, PCA: 121.42 +/- 208.23, split-half: 37.39 

+/- 10.01). Columns B and C use the same layout as column A, but using different metrics to 

describe prediction accuracy. B uses the raw error (between predicted and actual R neural 

activity; lower error/negative indicate better prediction) compared to the mean of the shuffle 

distribution, and C uses the proportion of the shuffle distribution with smaller error than the actually 

observed error (lower proportions indicate better prediction). For the raw error measure, the HT 

prediction was better than chance in both the Carey data (column B middle row; median: -652.87 

+/- 486.05, p < 0.001 for HT vs. 0; red line indicates split-half prediction) and the Gupta data (B 

bottom row; median: -594.62 +/- 735.37, p < 0.001 for HT vs. 0). 

 

Figure 4: Better-than-chance cross-subject predictions can be observed even when the to-

be-predicted target data was withheld, and spatial turning curves were used. A: Histogram 
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of three cross-subject prediction metrics: z-scores of actual observed error compared to the 

distribution of shuffle predictions (left column), raw prediction error compared to the mean of the 

shuffle distribution (middle), proportion of the shuffle distribution whose error was smaller than 

actual observed error (right). For all metrics, lower numbers indicate better cross-subject 

predictions. Even when the R activity of the target subject, which is the activity to be predicted, is 

withheld from the hyperalignment procedure, the hypertransform (HT) prediction is significantly 

better than chance (median: -6.03 +/- 0.84, SEM across unique source-target pairs, p < 0.001 for 

Wilcoxon signed rank test vs. 0; left column) and better than PCA-only (HT < PCA: 70.77% of 

source-target pairs, p < 0.001 for binomial test; left column, inset; median of HT raw error: 1962.93 

+/- 209.86, PCA: 2505.85 +/- 287.00, split-half: 114.05 +/- 17.48, red triangle in inset). B: 

Histogram of three cross-subject prediction metrics as in A. Different from A, one randomly-

chosen trial of target R was used for alignment, with the average of rest R trials withheld as the 

activity to be predicted. The HT prediction is again better than chance (median: -3.03 +/- 0.51, p 

< 0.001 for HT vs. 0; left column) and significantly better than PCA-only (HT < PCA: 91.92% of 

source-target pairs, p < 0.001; left column, inset). Note that the HT prediction was substantially 

improved by including one trial of target R data (median of HT raw error: 809.73 +/- 374.22, PCA: 

1698.19 +/- 345.25, split-half: 108.83 +/- 110.81). C: Histogram of three cross-subject prediction 

metrics as in A and B for neural activity matrices calculated as a function of locations (turning 

curves; TC) instead of time (see Figure S2 and Methods for details) were used. The cross-subject 

predictions are significantly better compared to shuffles (median: -2.97 +/- 0.46, p < 0.001 for HT 

vs. 0; left column) and significantly better than PCA-only (HT < PCA: 100% of source-target pairs, 

p < 0.001; left column, inset; median of HT raw error: 499.05 +/- 50.22, PCA: 1469.76 +/- 170.06, 

split-half: 83.86 +/- 64.48), suggesting time and location yield similar results (compare with  Figure 

3). 

 

Figure 5: Cross-subject prediction outperforms within-subject prediction only in the 

absence of cell-by-cell correlations. A: Comparison of cross-subject prediction error 

(“hypertransform”, green bars; HT) with within-subject prediction error (“identity transform”; blue 

bars, ID) for two different data sets. In the “Carey” data (left panel) the left and right arms of the 

maze had different texture and color patterns; in the “Gupta” data (right panel) the two maze arms 

were identical. For the Carey data, cross-subject prediction was significantly better than within-

subject prediction (HT < ID: 100% of unique source-target pairs, p < 0.001 for binomial test) 

whereas for the Gupta data, this difference was not significant. B: Cell-by-cell correlations of firing 

rates between L and R arms (i.e. row-wise correlations of the L and R matrices in Figure S2C), 

were significantly higher in the Gupta data compared to the Carey data (Gupta: median r = 0.21 

+/- 0.27, SEM across subjects, Carey: median r = -0.02 +/- 0.12, Wilcoxon rank sum test, p < 

0.001). Cell-by-cell correlations in the Carey data were not significantly different from 0 (p = 0.44 

for Wilcoxon signed rank test vs. 0). C: Population vector (PV) correlations between ensemble 

activity at each time point and every other time point, i.e. column-wise correlations of the L and R 

activity matrices, averaged across sessions. Both Carey and Gupta data sets show high 

correlations around the diagonal, indicating an overall autocorrelation in time; however, the Gupta 

data additionally shows high off-diagonal correlations between L and R which are barely visible 

in the Carey data. D: Quantification of the median PV correlation between L and R (i.e. the values 

along the diagonal of the lower left quadrant in C). For Gupta data, this correlation is remarkably 
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high (median r = 0.95 +/- 0.16) whereas for Carey data, it is significantly lower (median r = 0.09 

+/- 0.10, p < 0.001 for Wilcoxon rank sum test) but significantly different from 0 (p < 0.001 for 

Wilcoxon signed rank test vs. 0), consistent with previous reports of global remapping2,4. The 

above results explain why the HT is not needed for Gupta data to achieve better than chance 

predictions (as shown in Figure 3, bottom row): L and R activity is sufficiently similar such that the 

L trajectory alone in either PCA or common space can predict R activity. 

 

Figure 6: Simulations demonstrate that representational geometry, but not simple rules 

such as exclusive-or and firing rate correlations, result in cross-subject prediction while 

being consistent with the data. A: Example L and R activity matrices (left column) and 

histogram of z-scores of cross-subject prediction compared to the distribution of shuffle 

predictions (right column; z-scores lower than zero indicate better-than-chance predictions) of 

four simulated data sets: (1) neurons have a fixed, independent probability (0.5) of having a 1-D 

Gaussian place field on L and/or R, with the three parameters of time, peak firing rate (FR) and 

width randomly and independently chosen for L and R (ind-ind, top row), (2) neurons only have 

a field on either L or R but not both, and parameters of the field are chosen randomly  as in (1) 

(x-or, second row), (3) neurons have a fixed independent probability of having L and R fields as 

in (1) but with the additional constraint that neurons with both L and R fields must have the same 

three parameters (ind-same-all, third row) and (4) the activity on L is simulated by assigning each 

neuron an independent probability of having a field whose parameters are randomly chosen, then 

the activity on R is obtained by applying a L-R transform (hypertransform, HT) from the Carey 

data to the simulated L activity (sim. HT, last row). As expected, in the ind-ind (independent) 

case, cross-subject prediction is not possible (z-score vs. chance, median: -0.01 +/- 0.03, SEM 

across unique source-target pairs, p = 0.70 for Wilcoxon signed rank test vs. 0). In contrast, x-or, 

ind-same-all and sim. HT all show better-than-chance cross-subject predictions (median: -1.26 

+/- 0.30 for x-or, median: -2.62 +/- 0.06 for ind-same-all, median: -5.23 +/- 0.04 for sim. HT, all 

p < 0.001 for Wilcoxon signed rank test vs. 0), indicating that if there is a non-random L-R 

relationship in the underlying data, the hypertransform procedure can exploit it. Note that although 

this synthetic example shows substantially negative predicted firing rates, negative firing rates, 

when they did occur, tended to be much smaller for predictions using actual data. B: Population 

vector (PV; column-wise) correlations between ensemble activity at each time point and every 

other time point of the L and R activity matrices. Only ind-same-all shows high off-diagonal 

correlations between L and R, resembling the Gupta data set in which L and R arms were identical 

and firing activity on both arms is highly correlated (compare with Figure 5C). In x-or, off-diagonal 

correlations are slightly negative. C: Quantification of the median PV correlation between L and 

R (i.e. the values along the diagonal of the lower left quadrant in B). PV correlations between L 

and R in ind-ind are zero, but L and R are positively correlated in ind-same-all (median r = 0.40 

+/- 0.01) since for every time point in L where there is a field, the same ensemble activity appears 

at the same time point in R with probability 0.5. X-or shows a negative correlation (median r = -

0.18 +/- 0.02) because for every time point in L where there is a field, the same ensemble activity 

would deterministically be absent in R, and vice versa. None of these simple rules are consistent 

with the PV correlation found in the Carey data; however, sim. HT does show similar correlations 

as the data (median r = 0.04 +/- 0.03 for sim. HT and median r = 0.09 +/- 0.10 for Carey). D: Cell-

by-cell (row-wise) correlations of L and R show that ind-same-all is more correlated than the 

https://paperpile.com/c/qO38j9/zjoM+GL5w
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data, whereas sim. HT yields similar correlations (median r = 0.04 +/- 0.02 for sim. HT and  

median r = -0.02 +/- 0.12 for Carey). Thus, taken across panels C and D, simple rules (x-or and 

ind-same-all) are inconsistent with the data, but the representational geometry embodied in the 

sim. HT yields correlations that are similar to the data. 

 

Figure 7: Cross-subject hypertransform (HT) outperforms temporally shuffled source data. 

For each source-target pair in the Carey data, we computed a z-score of the actual observed error 

between predicted and actual R trials (based on HT) compared to a shuffled distribution in which 

each R row of the source subject was circularly shifted independently by a randomly chosen 

length. Lower z-scores indicate lower error and therefore better prediction than chance. Across 

all source-target pairs, this z-scored error varied depending on the pair used (column A, top row), 

but was lower than chance overall, as indicated by a shift in the z-score histogram relative to 0 

(“HT'' green bars in column A, middle row; median: -0.44 +/- 0.29, SEM across unique source-

target pairs, p < 0.001 for Wilcoxon signed rank test vs. 0). Next, the same analysis was applied 

to a different data set (“Gupta'', bottom row, in which the L and R maze arms were more similar 

to each other than in the “Carey” data), and found that the HT prediction was again significantly 

better than chance (“HT”; median: -3.20 +/- 1.13, p < 0.001, bottom row). Column B and C use 

the same layout as column A, but using different metrics to describe prediction accuracy. B uses 

the raw error (between predicted and actual R neural activity; lower error/negative indicate better 

prediction) compared to the mean of the shuffle distribution, and C uses the proportion of the 

shuffle distribution with smaller error than the actually observed error (lower proportions indicate 

better prediction). For the raw error measure, the HT prediction was better than chance in both 

the Carey data (column B middle row; median: -14.12 +/- 12.27, p < 0.001 for HT vs. 0 and the 

Gupta data (B bottom row; median: -206.13 +/- 119.78, p < 0.001 for HT vs. 0).  
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STAR Methods 

 

RESOURCE AVAILABILITY 

 

Lead contact 

 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact, Matthijs A. A. van der Meer (mvdm@dartmouth.edu). 

 

Materials availability 

 

This study did not generate new unique reagents. 

 

Data and Code Availability 

 

The code used in this study is available from Zenodo (https://doi.org/10.5281/zenodo.5076221) 

and GitHub (https://github.com/vandermeerlab/hc_hyperalign/tree/v1.0.0). The “Carey” data set 

used in this study is publicly available from DataLad 

(http://datasets.datalad.org/?dir=/workshops/mind-2017/MotivationalT) and the Gupta data is 

available from A. David Redish (redish@umn.edu) on request. 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

 

Four male Long–Evans rats, aged 4–8 months at the start of behavioral training, were used in the 

first of two data sets used in this study (“Carey” data), and four male Fisher-Brown-Norway hybrid 

rats, aged 7–10 months at the start of recording sessions were used in the second data set 

(“Gupta” data). Full subject details are described in van der Meer et al. (2017)17 and Carey et al. 

(2019)18Gupta et al. (2010)19 and Gupta et al. (2012)20 for the Gupta data. 

 

METHOD DETAILS 

 

Behavioral task 

 

We used two different data sets containing ensemble recordings of hippocampal CA1 neurons in 

rats performing T-maze tasks. 

 

In the Carey data set, rats performed daily sessions on a T-maze where they had free choice 

between left and right arms. Rats were alternately food- and water-restricted across days; the left 

arm resulted in food reward (five 45 mg pellets), the right arm resulted in water reward (~0.2 ml 

sucrose solution). Rats ran 15-20 discrete trials per recording session, with no less than 5 trials 

for the least preferred choice (left or right). 

 

In the Gupta data set, rats performed daily sessions on a continuous Multiple-T maze with free 

choice between left and right arms. Food pellet reward (four 45 mg pellets) was available either 

mailto:mvdm@dartmouth.edu
https://doi.org/10.5281/zenodo.5076221
https://github.com/vandermeerlab/hc_hyperalign/tree/v1.0.0
http://datasets.datalad.org/?dir=/workshops/mind-2017/MotivationalT
mailto:redish@umn.edu
https://paperpile.com/c/qO38j9/1lse
https://paperpile.com/c/qO38j9/U4E0
https://paperpile.com/c/qO38j9/634b
https://paperpile.com/c/qO38j9/hVrT
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by choosing left only, right only, or alternating between left and right; which reward schedule was 

in effect was determined pseudorandomly at the start of daily recording sessions. In addition, the 

reward schedule switched approximately halfway throughout the session. 

 

Criteria for inclusion of data 

 

Only sessions with at least 40 simultaneously recorded neurons were included, leaving 19 of 24 

total sessions for analysis (range: 50-178 neurons per session) of the Carey data set and 14 of 

42 total sessions for analysis (range: 41-101 neurons per session) of the Gupta data set. 

 

Both data sets consist of left (L) and right (R) trials from the choice point to the first reward site; 

the analyses in this study are concerned with how the relationship between L and R trials is 

encoded in hippocampal ensemble activity. To avoid the possibility that neural activity on a 

common trajectory shared between L and R is the main predictor of L and R relationship, data 

from the central stem of the maze was excluded. 

 

Data preprocessing 

 

Preparation of input data. Both data sets were preprocessed to obtain two types of neural activity 

matrices that form the starting point for all analyses (Figure S2). The first and main data type is 

the “Q-matrix”, which describes binned firing rate over time for simultaneously recorded neurons 

[nNeurons x nTimeBins] and is used in all main analyses. The second data type is the “TC-matrix” 

(place turning curves) matrices of dimension [nNeurons x nSpaceBins] for Figure 4 and S5).    

 

Since both data sets contain different numbers of L and R trials within a session, trials were first 

subsampled so that an equal number of L and R trials were used. Next, because trials differed in 

length because of variations in running speed, all trials were truncated to the last 2.4 seconds 

(the median time between passing the choice point and reaching the reward site) so that only 

after-choice-point data was used. 

 

To obtain Q-matrices for L and R trials, binned firing rate matrices (time bin width: 50 ms) were 

created for individual trials, smoothed with a window size = 1 s, σ = 50 ms Gaussian kernel, and 

then averaged across trials within each session. 

 

To obtain TC-matrices for L and R trials, spike firing data with only running speed > 5 cm/s data 

were averaged for each place bin (~3 cm per bin) across each session, then smoothed with a 

window size = 11 bins, σ = 1 bin Gaussian kernel. Only data from the last 41 place bins were 

included so that only after-choice-point data was used. 

 

Criterion for exclusion of interneurons (analyses used in Figure 5 and Figure S3). Neurons with 

mean firing rate > 10 Hz across the entire recording session were classified as putative 

interneurons. These were excluded for the correlation analysis in Figure 5, because otherwise 

variations in firing rates between putative interneurons and projection neurons would dominate 

the population vector correlations (described below). In Figure S3A we verify that inclusion of 
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interneurons was not required for the main results, and noted that source sessions whose cross-

subject predictions were consistently worse than the others (for instance, row 2 of R1 in Figure 

3A, top row) were sessions without putative interneurons. 

 

Normalization (analyses used in Figure S3). Normalization of the input data was conducted by 

dividing the L2-norm of each row (neuron) or z-scoring each row of data matrices, independently 

for the L and R parts of the input data matrices. Although it may seem intuitive to normalize each 

entire row of the input data (i.e. L and R data together), this actually introduces an artificial 

anticorrelation between the L and R parts of the matrix, such that even on data where no 

relationship exists between L and R, a relationship is introduced by normalization. Thus, we 

avoided normalization across L and R when testing cross-subject prediction. Note that 

normalization was only performed on data with putative interneurons removed (Figure S3). 

 

Hypertransform analysis procedure 

 

Overview. The overall objective of the hypertransform procedure is to predict R data in a “target” 

subject based on (1) the target subject L data, and (2) the L and R data of a different “source” 

subject (see Figure 1 for a complete description and schematic). Each step of the procedure is 

described in detail below. 

 

Each recording session was used as source and paired with all sessions from all other subjects 

to form cross-subject source-target pairs (260 unique source-target session pairs for the Carey 

data and 142 pairs for the Gupta data). 

 

PCA. After preprocessing the data as described above, principal component analysis (PCA; svd 

function in MATLAB R2018b) was applied to concatenated L and R neural data matrices to reduce 

to the same dimensionality because (1) there were unequal numbers of neurons recorded across 

sessions, and (2) to aid in generalization across sessions. Ten principal components (PCs), 

accounting for approximately 95% of the variance (Figure S6D) were then used to project L and 

R matrices into neural activity trajectories in each subject’s own PCA space. 

 

Hyperalignment. Hyperalignment is a procedure that maps neural activity from a number (>1) of 

input sessions into a common space. It does so by iteratively finding the set of Procrustes 

transformations (one for each input session) that minimize the Euclidean distance between input 

trajectories in the common space based on rotation, reflection and translation (and scaling, in 

some implementations; we did not use scaling in this study). This procedure is commonly used to 

align fMRI activity trajectories in subject-specific spaces into a common representational space 

(Haxby et al. 2011)11. In our specific version of this procedure, we aligned L and R neural 

trajectories in the PCA spaces from a source subject and a target subject into a common space 

by using the hyperalign function in hypertools16 (matlab version). This results in two matrices, one 

for each subject, that map each subject’s PCA space into the common space.  

 

Hypertransform. In this common space, another Procrustes transformation was derived to find the 

mapping between the L and R neural trajectories of the source subject (as above, scaling was 

https://paperpile.com/c/qO38j9/9FZo
https://paperpile.com/c/qO38j9/V8V0


 

27 

disabled). This transformation (hypertransform, HT) was then applied to the target subject’s L 

trajectory to yield a predicted R trajectory. Note that this transformation is not only subject-specific 

but source-target-pair-specific since the common space is unique for each source-target pair 

used. 

 

Projection back into neural space. Next, the inverse of the subject-specific hyperalignment matrix 

(projecting from PCA to common space) was applied to project the predicted R trajectory back to 

the target subject’s PCA space. Principal components obtained earlier were used to reconstruct 

the predicted R trajectory in the PCA space into the predicted R data matrix (Q or TC) for the 

target subject. 

 

Shuffles and associated metrics. The prediction error for a specific source-target pair is calculated 

by summing squared errors between predicted and actual R data matrices of the target subject 

and dividing by the number of neurons. This error is compared against a chance distribution by 

permuting (shuffling) the rows of the R data matrix of the source subject (but keeping the L matrix 

intact; row shuffle, see Figure S2B) and repeating the hypertransform procedure. This shuffle 

breaks any relationship between L and R activity at the cell-by-cell level. For example, if the 

relationship between L and R firing activity is random, then permuting the source R data matrix in 

this manner will make no difference in the ability to predict the target R data matrix. As a result, 

for random data (such as our “independent” simulation in top row of Figure 6A), shuffled predicted 

errors should not be different from the actual observed predicted error. Note that row shuffles can 

create idiosyncratic principal components not present in the original data, affecting the extent to 

which source and target sessions can be aligned. Because hyperalignment (when used on two 

sessions, as in this study) “anchors” to the source session, asymmetries in the z-scored error 

relative to shuffle can arise, i.e. source-target and target-source can have numerically different z-

scores.  

 

Next, the shift shuffle preserves the mean firing rates of L and R for each neuron, but breaks the 

temporal relationship between L and R by circularly shifting each row of the source R matrix 

independently by a length randomly chosen from [1, number of total bins] (while keeping the L 

matrix intact; Figure S2B). If cross-subject prediction based on the true data outperforms this 

shuffle, then the specific firing fields matter, above and beyond mean firing rate relationships 

between L and R.  

 

For each shuffling method, 1000 shuffles were conducted for each source-target pair, resulting in 

1000 shuffled prediction errors which were compared to the prediction error observed for the true 

data using three metrics: (1) z-scoring the actually observed error relative to the distribution of 

shuffle predictions (lower z-scores indicate better prediction), (2) raw error compared to the mean 

error of the shuffle distribution (lower observed error indicates better prediction), and (3) 

proportion of the shuffle distribution whose error was smaller than actual observed error (lower 

proportion indicate better prediction). 

 

Identity transform (used in Figure 5). To test if a better-than-chance cross-subject prediction is 

simply due to the similarity of L and R neural activity within the target subject, a within-subject 
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prediction is obtained by using a duplicate of target subject’s L trajectory in the common space 

as the predicted R trajectory, i.e. making the L-R transformation equal to the identity 

transformation. This predicted trajectory was then used to reconstruct the predicted target 

subject’s R data matrix as in the hypertransform procedure. 

 

Split-half prediction (used in Figure 3 and Figure 4 insets). To compare the accuracy of cross-

subject hypertransform prediction to the best possible prediction given the variability in the target 

R data, we obtained a split-half prediction by averaging across a randomly-chosen half of right 

trials from the target session, resulting in a “lower bound” prediction error. 

 

Variation: withheld data (used in Figure 4). To determine the importance of including the data to 

be predicted (target R) in the hyperalignment step, we performed a number of analysis variations 

withholding different amounts of R data. In the first variation (Figure 4A), we withhold all target R 

data. Specifically, only source and target L were hyperaligned into the common space, in which 

the source R data was projected from the PCA space using the source matrix obtained from L 

alignment between the two subjects. The source L-R transformation and the predicted R matrix 

were then obtained as in the default hypertransform procedure. (Replacing the target R data 

matrix with zeros before hyperalignment yielded similar results to complete withholding, so we 

report only complete withholding results.). 

 

In the second variation, a randomly-chosen single right trial from the target session was used for 

hyperalignment, and the average of the remaining trials were withheld as target R to be predicted 

(Figure 4B). The rest of the procedure follows the above hypertransform procedure. The split-half 

prediction in this procedure was obtained from half of the withheld trials. 

 

Variation: PCA only (used in Figure 3 and Figure 4). To test whether a relationship between L and 

R already exists in subject-specific PCA spaces, we modified the hypertransform procedure as 

follows: instead of aligning neural activity trajectories in the common space through 

hyperalignment, a L to R linear (Procrustes) transformation was derived from the source subject’s 

PCA space and directly applied to the L trajectory in target subject’s PCA space to obtain the 

predicted R trajectory. This predicted trajectory was then used to reconstruct the predicted target 

subject’s R data matrix as in hypertransform procedure. 

 

Simulations 

 

As a first step towards understanding the possible explanation for cross-subject prediction, 

simulated neural activity matrices were generated using 1-D Gaussians with three parameters: 

time (the time bin where a neuron has its maximal firing activity; randomly chosen from [1, 48] out 

of 48 time bins), peak firing rate (FR; randomly chosen from [10, 20] Hz) and width (randomly 

chosen from [2, 7] bins standard deviation). Several scenarios were created to test the possibility 

that different potential place cell properties may account for the observed cross-subject prediction: 
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- ind-ind: Neurons have a fixed, independent probability (0.5) of having a 1-D Gaussian 

place field on L and/or R, with the three parameters of time, peak firing rate (FR) and 

width randomly and independently chosen for L and R. 

- x-or: Neurons only have a field on either L or R but not both, and parameters of the field 

are chosen randomly  as ind-ind 

- ind-same-all: Neurons have a fixed independent probability of having L and R fields as in 

ind-ind but with the additional constraint that neurons with both L and R fields must have 

the same three parameters. 

- sim. HT: The activity on L is simulated by assigning each neuron an independent 

probability of having a field whose parameters are randomly chosen, then the activity on 

R is obtained by applying L-R transform (hypertransform, HT) from real data (Carey) to 

the simulated L activity. 

- ind-same-time: Similar to ind-same-all, neurons have a fixed independent probability of 

having L and R fields as in ind-ind, but if when a cell has fields in both, one of the three 

parameters: time is the same for L and R, and FR and width are independently chosen. 

- ind-same-FR: Similar to ind-same-all, neurons have a fixed independent probability of 

having L and R fields as in ind-ind, but if when a cell has fields in both, one of the three 

parameters: FR is the same for L and R, and time and width are independently chosen. 

- ind-same-width: Similar to ind-same-all, neurons have a fixed independent probability 

of having L and R fields as in ind-ind, but if when a cell has fields in both, one of the three 

parameters: width is the same for L and R, and time and FR are independently chosen. 

 

For each simulation scenario, we generated a matching number of sessions (19) as in Carey data 

and a matching number of neurons within each session as a dataset. To avoid the possibility that 

one particular randomly generated dataset biases the results, 100 datasets were created and all 

statistics were averaged across datasets to match the real data. 

 

For each of the 100 datasets in sim. HT, a randomly chosen session from the Carey data was 

used to hyperalign with simulated L activity (R activity was replaced with zeros first). The 

hypertransform obtained from the real session was then applied to the simulated L trajectory in 

the common space to obtain a simulated R trajectory. This simulated trajectory was then used to 

reconstruct the simulated R activity as in hypertransform procedure. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

 

All statistics were performed in MATLAB (The Mathworks, 2018b). 

 
Correlation analysis of neural and simulated data 

 

All correlation coefficients were computed using the MATLAB corrcoef function. 

 

Cell-by-cell (row-wise) correlations.For each cell (a row in the neural data matrix), a correlation 

coefficient between L and R was computed (see schematic in Figure S2). Whitening noise 

(matrices of same size as L and R, in which each element is a number sampled from Uniform(0, 
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10-5)) was added so that a coefficient can be computed when there is no activity on either L and 

R trials, which would otherwise result in zero variance. 

 

Population vector (PV; column-wise) correlations. L and R data matrices were (horizontally) 

concatenated, and a correlation coefficient was computed between each time point (a column) 

and all other columns of the L and R concatenated matrix (see schematic in Figure S2). Higher 

off-diagonal values (the values along the diagonal of the lower left quadrant) of this concatenated 

matrix indicate higher correlated ensemble neural activity between L and R. 

 

For both cell-by-cell and PV correlations, results were combined across subjects by appending 

all cells and sessions into a pooled data set regardless of what subject they came from. 

 

Comparison of the hypertransform prediction to control predictions 

 

Comparison to shuffles. For the hypertransform prediction error (between predicted and actual 

neural activity) of each source-target pair, a number of measures were computed: a z-score 

against the shuffled distribution, the proportion of shuffles with lower error, and the raw error 

compared to the mean of the shuffle errors. Note that raw errors were normalized by dividing by 

the number of neurons in the target session so that the prediction accuracy does not depend on 

the number of neurons being predicted. These measures are shown for each individual source-

target pair as an element in a matrix such as one in Figure 3 (top row). Then, results across all 

source-target pairs are combined and plotted as a histogram; all summary statistics (median +/- 

SEM  across all unique source-target subject pairs) and significance tests (Wilcoxon signed-rank 

tests against zero) are performed on this pooled data. 

 

Comparison to PCA-only (Figure 3 and S4) and identity (Figure 5) predictions. For each source-

target pair,  the hypertransform prediction error is compared to the ones obtained from PCA-only 

and identity predictions (described in Identity transform and Variation: PCA only sections 

respectively). Then, results across all source-target pairs are combined and plotted as a 

histogram; all summary statistics (percentage of unique source-target subject pairs whose HT 

predictions are better) and significance tests (binomial test) are performed on this pooled data. 

 

Identification of place fields 

 

For Figure S7 only, we identified neurons as having a place field if three consecutive bins had a 

firing rate >5 Hz,on either the left arm (L), the right arm (R), or both. Only neurons with fields on 

both arms (6.98% of all neurons) are included in the analysis investigating the systematic mapping 

between L and R in Carey data set and in hypertransform (HT) predictions (Figure S7). 
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Supplementary Information 

 

 

Figure S1: Schematic of hyperalignment applied to hippocampal place cell activity. (A) Schematic 

example of shared structure in place cells of two subjects on the left (L; locations A, B, C) and right arms 

(R; locations D, E, F) of a T-maze (left column). Individual neurons of different subjects (indexed by 1, 2, 3) 

have idiosyncratic place field locations for example, neuron 1 of subject 1 has place fields in A and F, 

whereas neuron 1 of subject 2 has fields in C and E (note that for visualization purposes, these neurons 

have place fields on both arms, but this is not a requirement for our analysis.) The ensemble neural activity 

during L and R runs can be plotted in a subject-specific neural space whose x-axis is the firing rate (FR) of 

neuron 1, y-axis is the FR of neuron 2, etc. (middle column; red line indicates trajectory of L and blue 

indicates R). Although subjects have different trajectories of L and R in their individual neural spaces, the 

trajectories for the two subjects can be made to line up by a rotation of the axes (e.g. rotate the x-axis of 

subject 1 to line up with subject 2’s y-axis). Hyperalignment finds the subject-specific transformation that 

minimizes the Euclidean distances of trajectories between subjects, and projects those neural activity 

trajectories into a common space (right column). In this common space, axes are shared between subjects, 

and trajectories of different subjects are now aligned to each other. Note that the common relationship 

between L and R in this example follows an unrealistically simple, fixed spatial mapping rule (the neuron 

firing at the start of L always fires at the end of R etc.), unlike what the real data suggests (Figure 5C, Figure 

S7). (B): Minimal example of shared structure across subjects with essentially uncorrelated cell-by-cell and 
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column-wise correlations that is more consistent with the data. The rule for simulating this example is as 

follows: neurons with high firing rates circularly shift their place fields to the left, whereas half of low-firing-

rate neurons shift their fields to the right (arrows) and the other half stay fixed (left column, subject-specific 

neural space). Hyperalignment successfully captures this relationship by rotating, reflecting and translating 

subject 2’s data in neural activity space to minimize the distance to subject 1’s data. As a result of this step, 

neurons with similar co-activity patterns, and neurons whose activity changes in a similar way across 

subjects (regardless of where their firing fields might be) become aligned in common space: the two high-

firing neurons align across subjects, as do the two low-firing neurons that don’t change, and the two low-

firing neurons that do (right column, common space; note that subject 2’s subject-specific data can be 

recovered by inverting the transformation into common space). The shared structure in the actual data, 

which has many more neurons and more varied firing patterns, is more complex, and mapped in PCA 

space; this example, which does not use PCA, is intended to provide a visual illustration of how cross-

subject activity patterns can exist in the absence of single-cell or population vector correlations.  
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Figure S2: Data preprocessing and analysis schematics. A: Data preprocessing. Neural ensemble 

activity for left (L) and right trials (R) in each recording session was shaped into two types of input data 

matrices: the Q-matrix, which describes binned firing rate over time for simultaneously recorded neurons 

(dimension [nNeurons x nTimeBins]), used in the main analyses, and the TC-matrix (spatial tuning curves, 

dimension [nNeurons x nSpaceBins]). Trials were subsampled to obtain an equal number of L and R trials 

were used, and truncated to the last 2.4 seconds (the median time taken from the choice point to the end 

of a trial). Times when the animal was deemed to be stationary were excluded from analysis. B: Illustrations 

of the row shuffling procedure used in the main analysis (Figure 3) and shift shuffling procedure used in 

Figure 7. To obtain a distribution of chance cross-subject predictions, the analysis steps illustrated in Figure 

1 were applied, except that for the “source” subject, the relationship between L and R activity was disrupted 

by either randomly permuting the rows of the R matrix (row shuffles) or circularly shifting each row of R 

matrix independently by a randomly chosen length (shift shuffles). C: Illustration of the correlation analyses 

used in Figures 5-6. Cell-by-cell correlations are obtained by row-wise correlating L and R activity for each 

cell, and then averaging across all cells.  Population vector correlations are obtained by column-wise 

correlating activity at each time or location with activity at every other time or location. This yields one 

correlation matrix per session, which are then averaged across sessions.  
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Figure S3: Cross-subject prediction is preserved when removing putative interneurons and 

normalizing L and R independently by L2-norm, but abolished when independently z-scoring L and 

R firing rates. A: Example L and R activity matrices with putative interneurons (mean firing rate > 10 Hz) 

removed, and corresponding cross-subject prediction z-score histograms compared to the distribution of 

shuffled predictions (z-scores lower than zero indicate better-than-chance prediction) for both temporal (Q) 

and spatial (TC) tuning curves. Both Q and TC show significantly better-than-chance cross-subject 

prediction (Q median: -0.42 +/- 0.46, SEM across unique source-target pairs, p < 0.01 for Wilcoxon signed 

rank test vs. 0; TC median: -0.34 +/- 0.43, p < 0.001 for HT vs. 0), indicating high-firing rate interneurons 

are not required for cross-subject prediction. B: Same layout as A, but L and R activity matrices were 

obtained by removing interneurons and dividing separately each L and R row by its L2-norm (vector length). 

Both Q and TC again show significantly better-than-chance prediction (Q median: -0.26 +/- 0.29, p < 0.001 

for HT vs. 0; TC median: -0.43 +/- 0.32, p < 0.001 for HT vs. 0). C:  Same layout as A, but L and R activity 

matrices were obtained by removing interneurons and z-scoring separately each L and R row. Unlike the 

L2-norm case, normalization by z-scoring does not show better-than-chance prediction; we speculate that 

this may be related to the relatively marginal performance of the L2-normed data compared to unnormalized 

data (compare panels A and B) combined with the tendency for the z-scoring especially to assign very 

large values to isolated pixels with a small but non-zero firing rate, introducing noise. Note that for both L2-

norm and z-scoring cases, independently normalizing L and R activity (L separately from R), rather than 

normalizing L and R together (normalizing the entire row), avoids introducing artifactual anti-correlations 

between L and R which would be exploited by the cross-subject prediction algorithm even for independent 

data.  
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Figure S4: Simulations show that either the same place field firing time, peak firing rate, or place 

field width alone cannot account for cross-subject prediction in the Carey data. A: Example L and R 

activity matrices (left column) and histogram of z-scores of cross-subject prediction compared to the 

distribution of shuffle predictions (z-scores lower than zero indicate better-than-chance predictions; right 

column) of three simulated data sets. All three data sets are generated by assigning each neuron a fixed, 

independent probability (0.5) of having a field on L and/or R, but when a cell has fields in both, one of the 

three parameters of its 1-D Gaussian place field (ind-same-time, ind-same-FR (firing rate) or ind-same-

width) is the same for L and R; the other two are randomly and independently chosen. Ind-same-time 

shows better-than-chance cross-subject predictions (median: -2.33 +/- 0.06, SEM across unique source-

target pairs, p < 0.001 for Wilcoxon signed rank test vs. zero) but ind-same-FR and ind-same-width do 

not, indicating cross-subject predictions cannot be better than chance when time points of fields are 

unrelated between L and R. B: Population vector (PV; column-wise) correlations between ensemble activity 

at each time point and every other time point of the L and R activity matrices. C: Quantification of the median 

PV correlation between L and R (i.e. the values along the diagonal of the lower left quadrant in B). Ind-

same-time shows highly positive correlation (median r = 0.35 +/- 0.01) since for every location of L where 

there are fields, there would some chance that some (although random) amount of ensemble activity would 

appear on the same location of R. In contrast, L and R in ind-same-FR and ind-same-width are nearly 

uncorrelated since no prediction of ensemble activity of one location on L can be made based on the same 

location of R (see also ind-ind in Figure 5). The ind-same-time case is potentially consistent with the 

Carey data as measured by PV correlations. D: Cell-by-cell (row-wise) correlations of L and R. Here, the 

ind-same-time correlations are higher than in the Carey data (median r = 0.23 +/- 0.02 vs. median r = -

0.02 +/- 0.12 for Carey), indicating that this scenario does not accurately capture the source of cross-subject 

prediction in the data.  
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Figure S5: Differences in running speeds and firing rates between source-target subject pairs do 

not explain better-than-chance cross-subject hypertransform (HT) predictions. A: Average running 

speed across time points on both left trials (L) and right trials (R) for each subject (left column). There are 

significant differences between L and R (F(1, 14745) = 48.99, p < 0.001), between subjects (F(3, 14745) = 

1406.95, p < 0.001) and the interaction of both (F(3, 14745) = 448.37, p < 0.001) in running speed. Given this 

variability in speed, we tested whether differences in average running speed between source and target 

sessions were related to prediction accuracy (HT z-score matrix in Figure 3A, top row), reasoning that more 

similar speeds may enable better predictions. Contrary to this expectation, we did not find a significant 

correlation between absolute running speed differences and prediction accuracy (r = -0.01, p = 0.97; the 

specific quantity computed was |speedsource-speedtarget|).  Since there is an interaction between L/R 

and subject, we also calculated spd-diffsession = |speedLsession-speedRsession| for each session 

and a specific quantity |spd-diffsource-spd-difftarget| for each source-target pair, capturing how 

similar (or different) L/R speed differences are between source-target pairs (right column). Again, we did 

not find L/R speed differences significantly correlate with the prediction accuracy (r = -0.05, p = 0.38). B: 

Average firing rates (FR) across time points and neurons on both left trials (L) and right trials (R) for each 

subject (left column). There are also significant differences between L and R (F(1, 181624) = 16.13, p < 0.001), 

between subjects (F(3, 181624) = 178.16, p < 0.001) and the interaction of both (F(3, 181624) = 132.31,p < 0.001). 

Again, we repeated the analysis in A and did not find significant correlations between the prediction 

accuracy and the absolute difference in average FR between source-target pairs (r = 0.06, p = 0.30), and 

between the prediction accuracy and the absolute L and R difference in FR between source-target pairs (r 

= -0.06, p = 0.32).  
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Figure S6: Cross-subject hypertransform (HT) prediction is not due to particular time points such 

as the start or end of the trial. A: Average firing rates (FR) across neurons for each time point for both 

left trials (L) and right trials (R) in the Carey dataset. B: Comparison of average firing rate across neurons 

over time with average predicted firing rate. Although FR of both L and R varied across time points, we did 

not find any time point at which FR is substantially high or low, which could potentially be exploited by the 

HT prediction, for example a high activity at the start of L is always mapped to the end of R. Similarly, the 

predicted R activity and its difference with actual R also show varying patterns but not a particular time point 

is highlighted. C: Z-scores of cross-subject prediction errors (normalized within each session) as a function 

of time, averaged across sessions. Errors varied across time but did not highlight particular time points, 

indicating that cross-subject prediction is not disproportionately due to certain time points such as the end 

of the trial. D: Explained variance as a function of the number of principal components (PCs). In our 

hypertransform procedure, 10 PCs were used, which accounts for ~95% of the variance of data. 

 

 

  



 

38 

 
Figure S7: No obvious single-cell mapping between left (L) and right (R) trials for both actual and 

predicted data. To investigate if there is a systematic mapping between in L and R in actual data and 

hypertransform (HT) predictions, we plotted temporal field indices of L and R for neurons which have fields 

on both (6.98% of all neurons) on a matrix where x-axis are temporal field indices of L and y-axis are indices 

of R (see Methods for how fields were detected). If a neuron has a temporal field on the end of L and a field 

on the start of R, it is counted as 1 on the bottom right corner of the matrix, and total counts are divided by 

the number of neurons included. We did not observe a  simple rule characterizing mapping in temporal 

fields between L and R in actual data; for example, it is not the case that neurons at the end of  L are 

systematically being mapped to the start of R. Other than some subtle identity predictions (along the 

diagonal), we did not find an obvious single-cell mapping between L and predicted R, indicating that the HT 

prediction captures ensemble-level relationships rather than single cell relationships. 
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