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ABSTRACT

Comparing patterns of performance and kinematics across behavior,
development and phylogeny is crucial to understand the evolution
of complex musculoskeletal systems such as the feeding apparatus.
However, conveying 3D spatial data of muscle orientation throughout
a feeding cycle, ontogenetic pathway or phylogenetic lineage is
essential to understanding the function and evolution of the skull
in vertebrates. Here, we detail the use of ternary plots for displaying
and comparing the 3D orientation of muscle data. First, we
illustrate changes in 3D jaw muscle resultants during jaw closing
taxa the American alligator (Alligator mississippiensis). Second,
we show changes in 3D muscle resultants of jaw muscles across
an ontogenetic series of alligators. Third, we compare 3D
resultants of jaw muscles of avian-line dinosaurs, including extant
(Struthio camelus, Gallus gallus, Psittacus erithacus) and extinct
(Tyrannosaurus rex) species to outline the reorganization of jaw
muscles that occurred along the line to modern birds. Finally, we
compare 3D resultants of jaw muscles of the hard-biting species
in our sample (A. mississippiensis, T. rex, P. erithacus) to illustrate
how disparate jaw muscle resultants are employed in convergent
behaviors in archosaurs. Our findings show that these visualizations
of 3D components of jaw muscles are immensely helpful towards
identifying patterns of cranial performance, growth and diversity.
These tools will prove useful for testing other hypotheses in functional
morphology, comparative biomechanics, ecomorphology and
organismal evolution.

KEY WORDS: Archosaur, Ternary diagram, Biomechanics,
3D visualization, Orientation

INTRODUCTION

Recent advances in imaging and computational methods are
enabling researchers to capture three-dimensional (3D)
morphology at high resolutions. Researchers are ushering in a
renaissance of imaging approaches in areas such as astronomy
(Cohen et al., 2003; Preusker et al., 2015; Korsun et al., 2016),
biochemistry (Liithy et al., 1992; Zemla, 2003; Arnold et al., 2006),
and archaeology and anthropology (Hughes et al., 2005; Lee et al.,
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2007; Carlson et al., 2011; Du Plessis et al., 2015). Similarly,
biological sciences are greatly enhanced by morphological studies
incorporating large amounts of high-resolution 3D data.
Morphologists frequently model diverse morphological systems in
entomology (Klaus et al., 2003; Friedrich and Beutel, 2008),
physiology (Witmer et al., 1999; Schachner et al., 2013; Tsai
and Holliday, 2015; Stephenson et al., 2017), neuroanatomy
(Evans et al., 2009; Lautenschlager et al., 2012; Kawabe et al.,
2013) and skeletal tissue biomechanics (Grosse et al., 2007,
Cuff et al, 2015) using high-resolution data. Modeling
musculoskeletal systems in 3D is now enabling researchers to
investigate the underlying biomechanics of behaviors, such as
feeding (Gans et al., 1985; Zusi, 1987; Witmer and Rose, 1991,
Hoese and Westneat, 1996; Herrel et al., 1999; Dumont et al., 2005;
Dawson et al., 2011; Snively et al., 2013; Sellers et al., 2017; Bates
and Falkingham, 2018; Cost et al., 2020) and locomotion
(Hutchinson, 2004; Charles et al., 2016; Manafzadeh and Padian,
2018), using computational and imaging methods such as finite
element analysis (e.g. Keyak et al., 1993; Rayfield, 2007; Santana
etal., 2010), XROMM (e.g. Brainerd et al., 2010; Baier et al., 2013)
and multibody dynamics (e.g. Moazen et al., 2009; Curtis et al.,
2010; Snively et al., 2015).

Shared among many biomechanical studies is the measurement
and visualization of the magnitudes (e.g. Newtons) and orientations
of forces (e.g. x, y, z), often across time (z). Biologists often
report the most biomechanically and ecologically important
portions of forces, such as the vertical (orthal) component of bite
force or vertical component of ground-reaction force. Additionally,
we also often disregard component forces in the transverse or axial
planes, in part as a product of the historical focus on mammalian
feeding and locomotor systems where muscles largely act in
parasagittal planes (e.g. Maynard Smith and Savage, 1959;
Dullemeijer, 1956; Cartmill, 1974, 1985) relative to the systems
in other vertebrates. But also, pragmatically, it is simply challenging
to visualize all force components simultaneously or in a fashion
understandable by readers in traditional publishing. Thus, the
complicated 3D nature of musculoskeletal anatomy remains
difficult to convey in two-dimensional (2D) publications and
other media (e.g. Greaves, 1982; Sinclair and Alexander, 1987,
Bimber et al., 2002; Lockwood et al., 2002; Holliday and Witmer,
2007; Vincent et al., 2007; Huber et al., 2008; Sustaita, 2008;
Holliday, 2009; Kolmann and Huber, 2009; Pfaller et al., 2011,
Figueirido et al., 2013; Holliday et al., 2013; Cost et al., 2020). The
solution has been to decompose multidimensional measurements
into more simplified plots that are designed specifically for 2D
publishing including iterative columns, box plots and line graphs.
This, in turn, causes higher-order questions of behavior, ontogeny
and phylogeny to be even more challenging to analyze and
disseminate. One solution is to project 3D force components in a
ternary diagram. Ternary diagrams have a long history of
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List of symbols and abbreviations

3D three-dimensional

2D two-dimensional

CT computed tomography

mMAMEM  m. adductor mandibulae externus medialis
mAMEP  m. adductor mandibulae externus profundus
mAMES  m. adductor mandibulae externus superficialis
mAMP m. adductor mandibulae posterior

mDM m. depressor mandibulae

mEM m. ethmomandibularis

mPTd m. pterygoideus dorsalis

mPSTs m. pseudotemporalis superficialis

mPSTp m. pseudotemporalis profundus

PCSA physiological cross-sectional area

STL stereolithographic

XROMM  x-ray reconstruction of moving morphology
Xins X insertion

Xor X origin

Yins y insertion

Yor y origin

Zine Z insertion

Zor z origin

uCT microcomputed tomography

use in geology, chemistry and physics, wherein the relative
contributions of three variables to a whole are studied. For
example, phases of matter (Othmer and Tobias, 1942), soil
composition (Norton, 1966), vertebrate limb proportions (Gatesy
and Middleton, 1997, 2008; Middleton and Gatesy, 2000) and
ventilation kinematics (Capano et al., 2019) have made use of
ternary diagrams in the past.

Here, we use ternary diagrams to provide examples of how
jaw muscle resultants (a summation vector composed of the
contributing forces applied to a muscle across multiple planes and
directions) of archosaurs (crocodylians, dinosaurs, and birds) change
over time using three case studies of behavior, ontogeny and
phylogeny. First, within a single individual, the 3D nature of the
cranial musculature requires that muscle forces and resultants must
vary with gape (Herring and Herring, 1974; Dumont and Herrel,
2003) during a feeding bout. We demonstrate how ternary plots
enable researchers to visualize the changes in orientations
through one open-to-close phase of a feeding cycle in Alligator
mississippiensis. Second, archosaurs have a wide diversity of
cranial morphologies and feeding ecologies that change during
ontogeny (see Fig. 1; Erickson et al., 2003; Yanega and Rubega,
2004; Grigg and Kirshner, 2015). Here, we show that ternary plots
are able to track the trajectory of muscle orientation change through
ontogeny in alligators. Third, comparisons across geological time
reveal broad patterns among Archosauria including repeated
evolution of large body size (Turner and Nesbitt, 2013),
convergent evolution of feeding ecologies (Burton, 1974) and
relatively hard biting in diverse clades (e.g. Carril et al., 2015; Sellers
et al., 2017; Bates and Falkingham, 2018, Cost et al., 2020). We
plotted the orientations of jaw muscles across a sample of living
and extinct dinosaurs to illustrate their morphological disparity
and, as a proof of concept, to demonstrate how ternary diagrams
can be used to compare related taxa across time. Finally, we also
compare the jaw muscle resultants of hard-biting species to
demonstrate how convergence in behavior can occur using very
different jaw muscle configurations. We show that ternary diagrams
are particularly useful for conveying components of jaw muscle

resultants at different scales of organization, enabling comparisons
of higher-order biomechanical data across behavior, ontogeny and
phylogeny. More broadly, ternary diagrams can represent complex
3D structures or forces in a 2D space such that anatomical
relationships and physiological parameters are retained as
comparable data.

MATERIALS AND METHODS

Specimens and imaging

The skulls of four extant taxa (American alligator, Alligator
mississippiensis: MUVCALO00S, MUVCAL024, MUVCALO031,
MUVCAL612, MUVCAL622, MUVCAL700; Common ostrich,
Struthio camelus: OUVC10659; Domestic chicken, Gallus
gallus: MUVCAV003; and Grey parrot, Psittacus erithacus:
MUVCAV042, MUVCAV092) and one extinct taxon
(Tyrannosaurus rex: BHI3033) were scanned using computed
tomography (CT) or micro-computed tomography (uCT; Table 1).
Specimens of alligator (MUVCALO31), chicken (MUVCAV003)
and parrot (MUVCAV042) were unCT scanned at the Truman VA
Biomolecular Imaging Center, in Columbia, MO (Siemens Inveon
MicroCT, Siemens Medical Solutions USA Inc., Malvern, PA,
USA). The largest alligator specimen (MUVCAL008) was CT
scanned at the University of Missouri School of Medicine
Department of Radiology (Siemens Somatom Definition Scanner,
Siemens Medical Solutions USA Inc., Malvern, PA, USA). All
other alligator specimens (MUVCAL024, MUVCALG612,
MUVCAL622, MUVCAL700) were CT scanned at the
University of Missouri School of Veterinary Medicine (GE
LightSpeed VCT CT scanner, GE Medical, Milwaukee, WI,
USA; Sellers et al, 2017). A second parrot specimen
(MUVCAV092) was pCT scanned at the University of Missouri
Department of Geological Sciences X-ray Microanalysis Core
(Zeiss Xradia 510 Versa 3D x-ray microscope, Carl Zeiss
Microscopy, LLC, Pleasanton, CA, USA). A 1/6-scale model of
T. rex (BHI 3033) was scanned at OhioHealth O’Bleness Memorial
Hospital, Athens, OH (General Electric LightSpeed Ultra Multislice
CT scanner, Milwaukee, WI, USA; Cost et al., 2020).

Jaw muscles of interest (m. adductor mandibulae externus
medialis, mMAMEM; m. adductor mandibulae externus profundus,
mAMEP; m. adductor mandibulae externus superficialis, nAMES;
m. adductor mandibulae posterior, mAMP; m. pterygoideus
dorsalis, mPTd; m. pseudotemporalis superficialis, mPSTs;
m. pseudotemporalis profundus, mPSTp; m. ethmomandibularis,
mEM; m. depressor mandibulae, mDM) were identified through
physical dissection and processed diffusible iodine contrast-
enhanced CT (DiceCT; Fig. 2; Holliday et al., 2013; Gignac and
Erickson, 2016). Scans were rendered and segmented using Avizo
v9.5 (Thermo Fisher Scientific, Waltham, MA, USA; Fig. 3A).
Defects were repaired, segmenting artifacts were removed, and a
constant universal axis was applied to all models in Geomagic
Studio 2013 (3D Systems, Rock Hills, SC, USA). Axes were
oriented such that the x-axis corresponded to the mediolateral axis,
the y-axis to the dorsoventral axis and the z-axis to the rostrocaudal
axis. Models were then imported into Strand7 (Strand7 Pty Ltd,
Sydney, NSW, AUS) where muscle attachment areas were
identified and mapped on 3D finite element model (Fig. 3B and
Fig. 4). Finite element analysis (FEA) software was used for muscle
mapping to facilitate incorporation of muscle reconstruction data
into subsequent analyses following the methods of Grosse et al.
(2007) and Davis et al. (2010). Muscle maps (Fig. 4) were estimated
from direct observations of material (dissections, DiceCT; see
Fig. 2), interpretations of osteological correlates and the literature,

2

)
(@)}
9
je
(2]
©
-+
c
Q
£
—
()
o
x
NN
Y
(©)
‘©
c
—
>
(®)
-_




RESEARCH ARTICLE Journal of Experimental Biology (2022) 225, jeb243216. doi:10.1242/jeb.243216

O
Alligator mississippiensis

ﬁ
Archosauria O )
Tyrannosaurus rex
#
Theropoda

Struthio camelus
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ﬁ

Neognathae

ﬁ
Psittacus erithacus

Fig. 1. Phylogenetic tree showing archosaurs used in case studies presented in this paper. Columns show skulls presented in this study in (L to R) left
lateral, left oblique and ventral views.

when necessary (Baumel et al., 1993; Holliday and Witmer, 2007;  dissection or extant phylogenetic bracketing of taxa, as in 7. rex

Holliday, 2009). (Witmer, 1995; Sellers et al., 2017; Cost et al., 2020). Muscle
parameters such as pennation angles were estimated as falling
Modeling muscle orientation and force within known ranges for alligators and birds, and osteological

Muscle resultants were computed from physiological cross- correlates of representative fossils informed PCSA estimates in
sectional area (PCSA) estimations, areas of muscle attachments 7. rex (Cost et al., 2020). Three-dimensional muscle orientations

and the centroids of the attachments (Fig. 3C). Physiological were calculated from the centroid of one attachment to the centroid a
cross-sectional areas of muscles were determined by physical of the opposite attachment. The centroids and muscle areas were |19
o

(a'a]

Table 1. Scan parameters of specimens used in this study ©
Taxon Specimen number Scan resolution (um) Skull length (mm) Scanner used -'q&)'
Alligator mississippiensis MUVC AL 031 0.083% 48 Siemens INVEON164 SPECT/CT e
MUVC AL 622 0.160%x0.5 99 GE LightSpeed VCT e

MUVC AL 612 0.2502x0.5 203 GE LightSpeed VCT L

MUVC AL 024 0.430%x0.625 269 GE LightSpeed VCT g'

MUVC AL 700 0.510%x0.5 333 GE LightSpeed VCT L

MUVC AL 008 0.570° 454 Siemens Somatom Definition Scanner Y=

Gallus gallus MUVC AV 003 0.0923 68 Siemens INVEON164 SPECT/CT 2
Struthio camelus OuUVvC10659 0.0362x0.1 184 General Electric LightSpeed Ultra Multislice [y
Psittacus erithacus MUVC AV 042 0.063% 66 Siemens INVEON164 SPECT/CT E
MUVC AV 092 0.063% 66 Zeiss Xradia 510 Versa 3D -]

Tyrannosaurus rex BHI 3033 0.625° 1470 General Electric LightSpeed Ultra Multislice 2
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Adductor mandibula
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dorsalis
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posterior
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Adductor mandibulae ]
externus medialis Pterygoideus
dorsalis
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", Pterygoideus
dorsalis

Adductor mandibulae
externus profundus
Pterygoideus
dorsalis
Adductor mandibulae

externus medialis \

Adductor mandibulae
Adductor mandibulae externus Superﬁcialis\_'r
externus superficialis | 43

Adductor mandibulae””
posterior

Fig. 2. Muscles pictured in situ in diffusible iodine contrast-enhanced computed tomography (DiceCT). (A—C) Grey parrot (Psittacus erithacus;
MUVCAV092) and (D-E) alligator (Alligator mississippiensis; MUVCALO31) are used to show muscles of the cranium discussed in this study. Muscles include
m. adductor mandibulae externus superficialis (NAMES), m. adductor mandibulae externus medialis (INAMEM), m. adductor mandibulae externus profundus
(mAMEP), m. adductor mandibulae posterior (MAMP) and m. pterygoideus dorsalis (mPTd). Images are shown in axial (A,D), sagittal (B,E), and transverse (C,F)
planes; the legend for the planes in each taxon is shown at the top.
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representation
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Fig. 3. lllustrated description of ternary
diagram construction. (A) Computed
tomography (CT), or microcomputed
tomography (uCT) where appropriate, data
is collected. Data are then segmented

(B) and reconstructed, smoothed, and
meshed to create a finite element model
(FEM; C). Muscles are attached to the
finished FEM and the coordinates of the
centroids of attachment areas are
determined. The centroids are employed to
determine a muscle resultant vector
between the two attachment centroids of a
muscle; one on the mandible, the other on
the cranium. (D) The resultant vectors are
then decomposed into rostrocaudal,
mediolateral and dorsoventral components.
The resultant vector can be described in
terms of what proportion of the total each
component accounts for, in which the
dorsoventral component accounts for 47%
of the resultant vector, the mediolateral
component accounts for 13% and the
rostrocaudal component accounts for 40%.
(E) The resulting point in space is then
plotted on a ternary diagram using the
components detailed above. (F) The final
product of this process results in multiple
points representing the 3D orientations of
muscle resultants plotted in 2D space that
enable researchers to view and appreciate
the region in 3D space which muscles
occupy.

3D model

N

S

Components in ternary space

)

&

Full model representation

in ternary space

calculated from stereolithographic (STL) models using the script
Area_Centroid_From_STL (Davis et al., 2010; Santana et al.,
2010).

Data transformation and how to read ternary diagrams
Ternary diagrams are used to represent three-variable systems in
which the sum of the variables is a constant. Here, the three relative
positional components (x, y, z) of a vector sum to 1, representing the
contribution of each orthogonal direction to the total vector.
To calculate relative contributions for a muscle vector, a 3D vector
representing coordinates of a muscle’s origin (Xor, Vor, Zor) and
insertion (Xins, Vins» Zins) 18 first calculated by subtracting origin
coordinates from insertion coordinates (Eqn 1):

(X07y0720) = (xins — XoryVins — Yor; Zins — Zor)~ (1)

The resulting vector is normalized to a unit vector by dividing each
element by the vector’s magnitude (Eqn 2):

X0 Yo Z0 (2)
\/x,% +y2+2 \/xg +y2+2 \/xg +y2+2

The relative proportions of (x, y, z) are then calculated as (Eqn 3):

X2 y2 ZZ

!
= . 3
(.7,2) (x2+y2+22’x2+y2+22’x2+y2+22> ©

These relative proportions (x’, y’, z'), which sum to 1, represent
the contributions of the mediolateral (x"), dorsoventral ('), and
rostrocaudal (z") components of each muscle’s 3D orientation. For
example, consider the vector v shown in Fig. 3D. This vector
represents an arbitrary muscle with its origin at (3.6, 6.9, 6.3) and its

(x,y,z) =
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A A. mississippiensis S. camelus

Muscle key

mPSTs mPPt

mPSTp mDM

mPTd mLPT
mPTv mEM

mPM

Fig. 4. Muscle maps of models used to analyze muscle resultants in this study. Oblique (top), left lateral (middle), and ventral (bottom) views of muscle
mapped models are shown. Models are arranged taxonomically: (A) Alligator mississippiensis, (B) Tyrannosaurus rex, (C) Struthio camelus, (D) Gallus gallus and
(E) Psittacus erithacus. Models are hosted on OSF: https:/osf.io/E3V7U/. mMAMES, m. adductor mandibulae externus superficialis; mMAMEM, m. adductor
mandibulae externus medialis; mMAMEP, m. adductor mandibulae externus profundus; mAMP, m. adductor mandibulae posterior; mPSTs, m. pseudotemporalis
superficialis; mPSTp, m. pseudotemporalis profundus; mPTd, m. pterygoideus dorsalis; mPTv, m. pterygoideus ventralis; mPM, m. pseudomasseter; mPPt, m.
protractor pterygoideus; mDM, m. depressor mandibulae; mLPT, m. levator pterygoideus; mEM, m. ethmomandibularis.

insertion at (1.1, 2.1, 1.9). The calculation of v from muscle The relative proportions of (x, y, z) are then calculated in Eqn 6:

attachment centroids is shown in Eqn 4: e
o - - = (— _ _ x/7 /7 A —2. ’
(1.1 -3.6, 2.1 — 6.9, 1.9 - 6.3) = (-2.5, —4.8, —4.4). (4) &.V.7) ((_2 T e
The unit vector of v is calculated in Eqn 5: ey
V257 + (487 + (—44) \/(-2.5) + (—4.8) + (~4.4)° (—4.4)
14 (=2.5)" + (—4.8)" + (—4.4)2) = (013, 0.47, 0.40).
— = (—0.36, —0.69, —0.63). o

V(=257 + (~4.8) + (—4.4)°
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Fig. 3E shows a ternary diagram with a point representing this
(5)  vector. The lengths of the colored lines are proportional to the
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proportions of the vector. This vector represents a muscle with a low
mediolateral component; as such, the point is far from the corner
labeled ‘ML’ (Fig. 3E, bottom left) and the corresponding yellow
line is short. The dorsoventral and rostrocaudal components are
several times that of the mediolateral component, and the
dorsoventral component is a bit higher, so the point is slightly
closer to the corner labeled ‘DV’ (top) than to the corner labeled
‘RC’ (bottom-right). Ternary diagrams were used to represent the
component vectors of all of the jaw muscles in two dimensions, with
size of the point scaled to each muscle’s force (Fig. 3F). All
calculations and plots were solved and created, respectively, in R (v.
3.5.1; https:/www.r-project.org/) using the custom-written and
freely available R package MuscleTernary (https:/github.com/
Middleton-Lab/MuscleTernary), which extends the R packages
ggtern (v. 3.0.0; Hamilton and Ferry, 2018) and ggplot2 (v. 3.1.1;
https:/CRAN.R-project.org/package=ggplot2).

Case studies

We demonstrate this approach using three case studies that explore
jaw muscle resultants over three scales of time: during biting,
through ontogeny, and across phylogeny. To visualize changes in
muscle orientation between high and low gapes during an orthally
biting feeding behavior, we plotted muscle parameters in ternary
space for two specimens (1 juvenile, 1 adult) of 4. mississippiensis
by manipulating the mandibles to 5 deg and 30 deg of gape. A gape
of 5 deg allows the animal to exert near its peak bite force, and at
30 deg, the jaws are at more extreme separation. Ternary coordinates
for these models can be found in Table S1. To visualize changes in
muscle orientation through ontogeny, we plotted the muscle
parameters in ternary space for individuals of 4. mississippiensis
ranging from juvenile (head length=4.9 cm) to adult (head
length=45.4 cm). Ternary coordinates for these models can be
found in Table S2. To visualize changes in muscle orientation across
a phylogeny, three avian taxa and one non-avian dinosaur were
plotted in ternary space and the patterns of muscle orientation were
analyzed and their differences described. Non-avian theropod and

avian taxa were constructed with a gape of 20 deg. This value was
chosen because it was the lowest gape determined to be of optimal
performance in theropods by Lautenschlager (2015). Muscle
resultants were plotted in ternary space (Table S3) to show
patterns within the dinosaur lineage.

RESULTS

Behavior: jaw muscle resultants and gape in

Alligator mississippiensis

As gape decreases in A. mississippiensis, muscle insertion points on
the lower jaw rotate caudoventrally and cause most muscles to
exchange dorsoventral for rostrocaudal orientations (Fig. 5). If the
jaws rotate symmetrically about the two quadratoarticular joints in an
orthal jaw closing bite, the mediolateral component of most jaw
closing muscles necessarily increases. The dorsoventral components
of certain muscles (MAMES, mAMEM, mAMEP and mAMP) are
reoriented mediolaterally as gape decreases during a bite. In ternary
space, this is represented by points moving away from the top of the
triangle and toward the bottom left corner. The pseudotemporalis
muscles mPSTs and mPSTp are reoriented more rostrocaudally and
dorsoventrally, respectively, at a low gape. The resultant of mPTd
decreased rostrocaudally and increased mediolaterally and
dorsoventrally as the gape decreased. In this instance, the point in
ternary space moves away from the bottom right corner and toward
the top and left, settling in the middle area of the ternary plot (Fig. 5).
The jaw opening muscle mDM becomes more dorsoventrally
oriented as the jaw is closed and does not reorient mediolaterally.

Ontogeny: jaw muscle resultants and growth in

A. mississippiensis

Overall, temporal muscles in individual alligators become less
dorsoventral throughout ontogeny (Fig. 6). A rostrocaudal increase
in muscle orientation is most appreciable in the external temporal
muscles (mMAMES, mAMEP and mAMEM). Rostrocaudal
increases in temporal muscle orientations move the corresponding
point in ternary space toward the lower right region of the ternary

Normalized force

A B ® 005
Skull length=4.8 cm Skull length=45.4 cm @ 0.0
DV DV
100 100 @ o
= > Gape
2 2}
80 ‘ 80 ® Low A High
= z -
0/ \ 60 o 60 Skull length=45.4 cm
e e
o O
40 / \10 Skull length=4.8 cm
% ¢ & — 2 "
o 20 9 20
2
)00 ‘ 5 00 ‘ o Muscle
£ K S S S \wa % o S S ES \@% mAMEM  ® mAMEP
@®mAMES  ®mAMP
®mDM @ mPSTp
mPSTs ® mPTd
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Fig. 6. Ontogenetic changes in muscle orientation in A. mississippiensis
(MUVCALO008, MUVCAL024, MUVCALO031, MUVCAL612, MUVCAL622 and
MUVCAL700). Changes over a growth series of A. mississippiensis are
represented in ternary space with points representing muscle belly orientation.
Points are depicted ranging from lighter to darker red colors which represent
smaller to larger individuals, respectively. Orientations of temporal muscles in
A. mississippiensis become more rostrocaudal or mediolateral as alligators
mature and become larger. Musculus pterygoideus dorsalis does not follow a
linear path throughout ontogeny, but largely retains a highly rostrocaudal
orientation as individuals grow from hatchling to adult. Muscle abbreviations as
in Fig. 4.

plot. The muscle mPSTs increases the mediolateral and rostrocaudal
components but still retains a highly dorsoventral orientation
whereas mPSTp increases the dorsoventral component and loses
some rostrocaudal orientation. The other large adductor muscle,
mAMP, experiences a slight ontogenetic decrease in its dorsoventral
component and corresponding increase in its rostrocaudal
component. The point representing mAMP therefore moves away
from the top of the ternary plot and closer to the bottom right corner
as animals increase in size. However, this change is not large, and
mAMP largely retains its juvenile orientation overall as an adult.
Musculus pterygoideus dorsalis (mPTd) retains and increases its
rostrocaudal orientation; however, the changes associated with
ontogenetic development are not as great as in the temporal muscles.
The point for mPTd moves farther into the bottom right corner of the
ternary diagram in this instance. The least change over ontogeny is
seen in mAMP and mPTd. These two muscles retain large
dorsoventral (mAMP) and rostrocaudal (mPTd) orientations.
Musculus depressor mandibulae (mDM) does not change its
orientation throughout ontogeny, remaining nearly equally
dorsoventrally (~47.5%) and rostrocaudally (~47.5%) oriented
with very small mediolateral components (<5%).

Phylogenetic patterns of jaw muscle resultants

The effects of evolutionary changes on jaw muscle resultants are
illustrated here in ternary space using a non-avian dinosaur (7. rex;
Fig. 7B) and three avians (S. camelus, G. gallus and P. erithacus,
Fig. 7C-E); adult alligator is also presented here as an outgroup
(Fig. 7A). The temporal muscles (NAMEP, mAMES, mAMEM,
mPSTs, mPSTp) as well as mAMP of 7. rex are largely
dorsoventrally oriented (Fig. 7B). The mPTd of T. rex is mixed,
with contributions from all directions causing the resultant to reside
nearer the center of the plot. In the paleognath S. camelus (Fig. 7C),
the temporal muscles are almost entirely rostrocaudally oriented, but
all possess dorsoventral aspects as well. Unique to S. camelus
among other avian taxa sampled here, the resultant for mPSTp is
centrally located in ternary space. The mPTd of S. camelus is largely
rostrocaudal with a small dorsoventral component.

The temporal and pterygoideus muscles of the neognath G. gallus
are largely rostrocaudally oriented but also possess dorsoventral
components relatively greater than those observed in S. camelus
(Fig. 7D). The orientations of mAMEP, mAMES, and mAMP
possess very limited mediolateral components whereas mAMEM,
mPSTs, and mPSTp exhibit more dorsoventral orientation at the
expense of rostrocaudal orientation. This is shown through the
resultants residing in the upper central area of the ternary. The mPTd
possesses the most evenly distributed orientation in G. gallus. The
muscle orientations of P. erithacus, another neognath, are different
from G. gallus (Fig. 7E). Psittacus possesses rostrocaudally oriented
temporal muscles but also exhibits more mediolateral muscle
resultant components. Additionally, P. erithacus possesses a parrot-
specific muscle mEM which is extremely dorsoventrally oriented.
Musculus depressor mandibulae is highly dorsoventral across all
avian taxa sampled. A small mediolateral component is also present.
The muscle orientations of the temporal muscles contain appreciable
mediolateral components, especially in mAMES and mAMEP.
In P. erithacus, mPTd is highly dorsoventrally and mediolaterally
oriented. The rostrocaudal component of mPTd in P. erithacus is
relatively comparable to G. gallus and T. rex as well.

Muscle orientation in hard biting taxa

This case study considers the hardest biting fossil and extant taxa
(T rex and A. mississippiensis). A third taxon, P. erithacus, also
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Fig. 7. Diversity in jaw muscle orientation among a non-avian theropod dinosaur (Tyrannosaurus rex BHI 3033) and avian theropod dinosaurs (Struthio
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comparison of hard-biting taxa. (B) T. rex temporal muscles are highly dorsoventrally oriented, whereas avian temporal muscles are generally more rostrocaudally
oriented. The muscle mPTd retains a mainly rostrocaudal orientation in S. camelus (C), but is appreciably mediolateral in G. gallus (D), P. erithacus (E) and

T. rex (B). Muscle abbreviations as in Fig. 4.

produces relatively high bite forces compared with other birds (e.g.
Sustaita and Hertel, 2010; Carril et al., 2015). The three taxa
produce high bite forces with different cranial configurations:
A. mississippiensis possesses a dorsoventrally short, mediolaterally
wide skull whereas 7. rex and P. erithacus both possess
dorsoventrally tall and mediolaterally wide skulls.

Despite possessing a dorsoventrally short skull, A. mississippiensis
temporal muscles possess appreciable dorsoventral and mediolateral
components (Fig. 7A). The temporal muscles are relatively weaker
than mPTd and mAMP (see Figs 5 and 6), and these two muscles
possess extensive rostrocaudal and dorsoventral components,
respectively. The force of mPTd and mAMP together constitute
approximately 35% of the total bite force produced by
A. mississippiensis (Sellers et al., 2017). T. rex and P. erithacus
also both exhibit very few mediolateral muscle components except
in mPTd (Fig. 7B,E). The temporal muscles are largely dorsoventral
and rostrocaudal in 7. rex and P. erithacus, respectively. The
exceptions to large rostrocaudal components in P. erithacus are in
mPTd, which exhibits a highly dorsoventral and appreciable
mediolateral orientation and the extremely dorsoventral mEM
(Fig. 7E). In T. rex, the mPTd has a greater rostrocaudal orientation
than any other muscle. The dorsoventral components of mPTd are
relatively greater than the dorsoventral components of mPTd in
P. erithacus compared with those of 7. rex.

DISCUSSION

Behavior: jaw muscle resultants and gape in

A. mississippiensis

Movement of the mandibles with respect to the cranium during
feeding translates muscle insertions relative to their origins,
leading to differing muscle orientations at different gape angles.

As some muscle orientations are less effective at producing a
given mandibular movement (e.g. jaw adduction), the gape angle
can influence a system’s ability to generate forces in a given
direction (e.g. Eng et al., 2009; Lautenschlager, 2015). The results
of the gape case study in 4. mississippiensis confirm the general
pattern that jaw closing muscles studied here increased their
mediolateral components as gape decreased. Increases in
mediolateral components decreases the relative vertical force that
mAMEM contributes to bite force whereas mPTd relatively
increases its contributions to bite force because it is not reoriented
mediolaterally.

Additionally, in both the juvenile and adult, mAMP retained
much of its dorsoventral components (more in the juvenile than the
adult). As gape decreased, the dorsoventral component of mPTd
increased. Sellers et al. (2017) determined that over one-third of
total bite force is derived from the individual muscle forces of mPTd
and mAMP. Retention of the dorsoventral components of the
muscles enables these muscles to maintain high vertical bite forces
even at low gapes. These results show that the decrease in
dorsoventral components in many of the temporal muscles is
potentially compensated for at low gapes by the increase in mPTd
dorsoventral orientation.

Ontogeny: jaw muscle resultants and growth in

A. mississippiensis

Morphological changes of the skull are known to impact the feeding
performance and ecology of the alligator (Erickson et al., 2003;
Sellers et al., 2017). These morphological changes manifest as the
skulls of alligators flatten considerably during their thousand-fold
ontogenetic increase in body size (Dodson, 1975; Busbey, 1997,
Monteiro et al., 1997; Brochu, 2001; Piras et al., 2014). Compared
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with the rest of the skull, the braincase and skull roof of adult
alligators are more mediolaterally positioned relative to the jaw
joints and mandibles than the same structures in juveniles (Mook,
1921a,b; Tordansky, 1973; Monteiro et al., 1997), which displaces
the cranial attachments of temporal muscles mediolaterally. The
ramus of the quadrate also shifts caudolaterally (Mook, 1921a,b;
Tordansky, 1973; Monteiro et al., 1997), which gives some muscles
a more rostrocaudal orientation in addition to the mediolateral
dimension. As expected, shape changes in the skull cause a range of
shifts in the resultants of some jaw muscles like the temporal
muscles. However, changes over ontogeny are less evident in the
pterygoideus muscles. Similarities in mAMP and mPTd throughout
ontogeny likely reflect the integral roles that these two muscles play
in increasing the bite force of alligators throughout the gape cycle
regardless of specimen age.

Phylogenetic patterns of jaw muscle resultants

The phylogenetic results are presented as a small-scale proof-of-
concept that could be elaborated upon in future comparative
studies across Archosauria. This study shows that jaw muscle
resultants vary considerably across taxa but that ternary plots offer
new ways to visually compare these differences and make
predictions about evolutionary transformations, such as those
along the lines to extant birds from non-avian theropod dinosaurs.
Not only does the increased encephalization and expanded
braincase (Balanoff et al., 2016; Fabbri et al., 2017) likely alter
resultants of temporal muscles across the clade, but changes in the
linkages and shapes of the palatal elements (Huxley, 1867; Bock,
1964, 1999; Gussekloo and Zweers, 1999) and the origin of avian-
style powered kinesis likely altered the organization of palatal
muscles.

Muscle resultants in 7. rex are highly dorsoventrally oriented and
possess few mediolateral or rostrocaudal components. Although not
tested, this muscle morphology seems similar to what we envision
in many other non-avian dinosaurs like Allosaurus spp. Birds,
however, exhibit muscle resultants that are more rostrocaudal and, in
neognathe taxa, possess some mediolateral components in the non-
temporal mPTd. In G. gallus there are also mediolateral components
evident in mAMEM, mPSTs, and mPSTp. Holliday (2006) and
Holliday and Witmer (2008) described the lateral expansion of
the braincase and reduction of the temporal region in birds as
major features driving the evolution of the feeding apparatus of
birds. This combination of braincase inflation and kinesis requires
that the temporal muscles not only have a more dorsoventral
than mediolateral orientation, but also more rostrocaudally
oriented forces. This is driven by the derived propulsive nature
of kinesis present in neognathe birds, particularly parrots as
shown here, relative to other avian taxa. The translation of muscle
resultants to a more rostrocaudal orientation is likely related
to the evolution of powered, propulsive cranial kinesis in
neognathe birds.

Differences between paleognathe and neognathe birds are subtler
than those between sampled non-avian and avian theropods. The
temporal muscles, though, are fairly similar in their rostrocaudal
orientations. The trends described in this proof-of-concept study are
shown with a small sample size; however, we are confident that an
increase in sample size will only serve to bolster these trends in the
dinosaur to bird evolutionary line.

Muscle orientation in hard biting taxa
Our final case study indicates that species that can generate high bite
forces can do so using variable muscle resultant orientations. The

ternary diagrams in this section also illustrate how ecomorphs might
converge in function despite disparate cranial shapes. Numerous
vertebrate species have evolved increased bite forces in order to
dispatch prey (e.g. A. mississippiensis, T. rex) or to husk tough food
items (e.g. P. erithacus), and in these cases, we expect the skulls to
have increased vertical components of jaw muscle resultants, as
vertical forces are more optimally in line with orthal forces driven
into food items.

The highly vertical muscle orientations found here in diverse
adductor muscles of A. mississippiensis (mMAMP), T. rex (nAMEP,
mAMEM, mAMES, mPSTs, mPSTp and mAMP) and P. erithacus
(mPTd, mEM) show that hard biting archosaurs employ different
biomechanical strategies to generate relatively high bite forces.
As in gape (Fig. 5), mPTd in A. mississippiensis increases its
dorsoventral component as gape decreases, contributing a larger
dorsoventral component at low gape. A. mississippiensis produces
high bite forces using one highly dorsoventrally oriented muscle
(mAMP) and one rostrocaudally oriented muscle (mPTd) that
increases its dorsoventral orientation at low gapes. This
reorientation of mPTd appears to compensate for the decreases in
dorsoventral orientations in other muscles.

Dorsoventral bite force production of 7. rex is largely the result of
the temporal muscles (MAMEP, mAMEM, mAMES, mPSTs,
mPSTp and mAMP). This dorsoventral orientation of high force
producing muscles is in line with expectations for hard-biting
taxa mentioned previously. P. erithacus, however, employs a
pterygoideus muscle (mPTd) and a parrot-specific muscle (mEM)
to produce high bite forces. The temporal muscles of P. erithacus
contribute less overall force to the bite force of the animal as these
muscles (MAMEP, mAMES, and mAMP) are oriented more
rostrocaudally.

Conclusions

Ternary diagrams are a powerful means of conveying complex
muscle orientation data in comparative contexts across behavior,
ontogeny, and phylogeny. All of our case studies provide solid proof-
of-concept work that lays a solid foundation for future studies using
ternary diagrams to visualize and interpret complex biomechanical
data and concepts. We identify trends in muscle orientation changes
across gape in juvenile and adult specimens as well as ontogenetic
changes within the same lineage (4. mississippiensis). Decreases in
gape during biting in A4. mississippiensis change the resultant
orientation of muscles in both juvenile and adult specimens to a more
mediolateral orientation. Over ontogeny in A. mississippiensis,
however, the orientations of the muscles shift rostrocaudally and
mediolaterally. In the dinosaur-avian lineage, muscle resultant
orientations were shifted rostrocaudally and mediolaterally along
the dinosaur-to-bird axis. More dinosaur taxa are needed to better
illustrate this pattern. This case study shows that future comparison
studies across lineages of extinct and extant taxa can be conducted
in a meaningful way that incorporates complex and informative
2D visualizations of 3D muscle systems. Finally, we showed that
among archosaurs, hard-biting taxa generate high bite forces
using disparate arrangements of jaw muscles. Data like these will
enable us to follow the evolutionary changes that resulted in different
anatomical solutions to functional demands. Future studies can make
use of these types of ecomorphological variables to study the
convergence of bones and muscles across guilds of animals. Studies
that estimate ancestral states and evaluate the tempo of adaptive
radiations of animals that modify the feeding apparatus (e.g. cichlids)
could also benefit from using ternary diagrams to present data and
results.
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