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Threshold and infrared divergences are studied as possible mechanisms of particle production and are
compared to the usual decay process in a model quantum field theory from which generalizations are
obtained. A spectral representation of the propagator of the decaying particle suggests that decay, threshold,
and infrared singularities while seemingly different phenomena are qualitatively related. We implement a
nonperturbative dynamical resummation method to study the time evolution of an initial state. It is manifestly
unitary and yields the asymptotic state and the distribution function of produced particles. Whereas the
survival probability in a decay process falls off as e, for threshold and infrared divergent cases it falls off

instead as e=V*/" and =2, respectively, with T', A o (coupling)?, whereas 1/¢* o (coupling)*. Despite the
different decay dynamics, the asymptotic state is qualitatively similar: a kinematically entangled state of the
daughter particles with a distribution function which fulfills the unitarity condition and is strongly peaked at
energy conserving transitions but broadened by the “lifetime” 1/I";7* for usual decay and threshold
singularity, whereas it scales with the anomalous dimension A for the infrared singular case. Threshold and
infrared instabilities are production mechanisms just as efficient as particle decay. If one of the particles is in a
dark sector and not observed, the loss of information yields an entanglement entropy determined by the
distribution functions and increases upon unitary time evolution.
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I. INTRODUCTION

Most particles in the standard model decay, quarks and
gluons are confined, and charged particles interacting with
gauge fields are dressed by a cloud of soft massless gauge
fields. Therefore, of all the particles in the standard model
perhaps only neutrinos and photons appear as asymptotic
single particle states in the S-matrix. The dressing of
charged particles by massless gauge bosons results in
infrared divergences in radiative corrections as a conse-
quence of the emission and absorption of the soft gauge
quanta. Understanding these infrared phenomena and the
infrared finiteness of the S-matrix has been [1-9] and
continues to be [10-17] the focus of a substantial body of
work motivated by precision calculations of physical
observables for collider experiments [18-20]. Infrared
phenomena also play a fundamental role in quantum
aspects of gravity as a consequence of emission and
absorption of gravitons [21,22].

*boyan @pitt.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2022/105(5)/056012(23)

056012-1

Prior to the discovery of the Higgs boson, early work
[23,24] recognized that the S-matrix approach to describing
particle decay breaks down when the mass of the particle
approaches the multiparticle threshold [23-26]. In particu-
lar, Refs. [23-26] recognized a singularity in the self-
energy of the particle as its mass approaches the threshold
from below, and as a consequence the particle no longer
appears as an asymptotic state in the S-matrix.

Notably this situation is similar to the case of infrared
singularities in gauge theories that arise because the mass of
the charged particle coincides with the multiparticle thresh-
old suggesting that, perhaps, threshold and infrared singu-
larities, although quantitatively different, are manifestations
of similar phenomena suggesting a generalized decay of the
particle.

A. Motivations and objectives

Extensions beyond the standard model posit the exist-
ence of new particles as possible explanations of the origin
of dark matter in cosmology. Some of these extensions
introduce light or ultralight particles [27-33], and an
important question in these models is to identify and
assess the production mechanism for these dark matter
candidates. A recent study [34] revealed certain univer-
sality of infrared phenomena in the sense that infrared
divergences associated with emission and absorption of
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massless quanta feature similar dynamics and asymptotic
states in bosonic, fermionic, and (Abelian) gauge theories.
This study also revealed that the infrared divergences
could be an effective production mechanism of soft
massless particles, and was extrapolated to the realm of
production of light dark matter or dark radiation during a
radiation dominated cosmology [35]. In this article we
extend the study of Ref. [34] to compare and contrast the
dynamics of decay, threshold, and infrared divergences to
identify hitherto unexplored production mechanisms that
could be relevant in early universe cosmology and also,
perhaps, of some phenomenological interest in particle
physics.

As windows beyond the standard model open to explore
possible explanations of dark matter and/or dark radiation,
our study is motivated by its possible impact in identifying
and assessing alternative production mechanisms available
in the dark sector, but also to explore fundamental aspects
of the dynamics of particle decay, threshold, and infrared
divergences that could be of a more overarching phenom-
enological and theoretical interest.

B. Objectives

Our objectives in this study are the following: (i) to
compare and contrast the dynamical aspects of particle decay
and threshold and infrared divergences within a model
quantum field theory and draw more general conclusions
on the time evolution of initial toward asymptotic states;
(i1) to understand threshold and infrared singularities as
possible production mechanisms and to explore a qualitative
similarity between these seemingly different phenomena;
(ii1) to understand the time evolution that leads from the
initial to the final asymptotic state and to characterize the
properties of the latter; and (iv) to understand that for
threshold and infrared divergences the usual decay rates
vanish, and therefore understanding the time evolution of
initial states will clarify the dynamics of relaxation toward
equilibrium in these cases.

Our study does not address the important issues of the
infrared finiteness of the S-matrix, a far broader subject of
much current interest [17-20]. It is much more narrowly
focused on understanding the time evolution of states and
the emerging asymptotic states in the case of threshold and
infrared divergences. A reassessment [36] of the Lehmann,
Symanzik, and Zimmermann reduction formula for asymp-
totic states beginning with a finite time analysis and
extending it to the infinite time limit has highlighted the
subtleties of this limit.

Our study in this article may provide complementary
further insights into asymptotic theory in cases in which
threshold and infrared divergences substantially modify the
asymptotic long time dynamics, and may contribute to the
fundamental understanding of the asymptotic states emerg-
ing from these processes.

C. Brief summary of results

We study decay, threshold, and infrared phenomena
within a simple model of a real scalar field ® coupled
to two other scalar fields of different masses that effectively
captures the different phenomena by varying the various
masses. The Kallen-Lehmann representation of the propa-
gator of the @ field including radiative corrections illus-
trates how decay, threshold, and infrared phenomena,
although seemingly disparate are qualitatively related.
Furthermore, it clearly shows the breakdown of a Breit-
Wigner approximation as the mass of the particle
approaches threshold.

A dynamical resummation method [34,37] is imple-
mented to study the time evolution of an initial single
particle state of the ® field toward the final asymptotic state
in all cases. This method is manifestly unitary and
complementary to the dynamical renormalization group
[38,39]. It not only yields the time evolution of the initial
state but also describes the emergence of the asymptotic
state during the evolution and its properties.

We find that whereas the time evolution of the survival
probability of a single particle state in a typical decay
process is e T in the cases of threshold and infrared
singularities the usual decay rate vanishes; however, we
find that the survival probability of the initial state indeed
decays: in the case of threshold divergence it evolves as

e‘\/’/7 and for infrared divergences as o< =2, Whereas I'
and the anomalous dimension A are of O(¢?) with g the
coupling, the relaxation timescale r* o< 1/¢g* as a conse-
quence of the threshold singularity.

We find that despite the different time evolution, the
asymptotic state is qualitatively similar: a kinematically
entangled state of the daughter particles with pair corre-
lations. We obtain the probabilities of these pairs, show that
they satisfy the unitarity condition and identify them as the
distribution function of the produced particles which are
obtained in each case. Although these are peaked at energy
conserving transitions, they are much narrower in the case
of threshold divergences as a consequence of a longer
“lifetime” of the initial state and feature a scaling behavior
with the anomalous dimension A in the case of infrared
divergences.

A corollary of this result is that threshold and infrared
singularities are just as efficient production mechanisms
as decay.

These asymptotic states are very different from those
postulated in quantum electrodynamics [3,5,8,16] as solu-
tions to the infrared problem, but are unambiguously
obtained from the unitary time evolution of an initial state.
We argue that the pair correlations in the asymptotic state, in
other words the entanglement of the daughter particles,
imply the same distribution function for each, which we
obtain from the time evolution in all cases. If either one of
the daughter particles is not measured for example in the
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“invisible decay” into a dark matter particle, the information
loss leads to an entanglement entropy, which is shown to
grow during the time evolution from the initial to the
asymptotic state.

II. KALLEN-LEHMANN SPECTRAL
REPRESENTATION

We consider a model of a massive real scalar field ®
coupled to two other real scalar fields, y; and y,, to
illustrate the main phenomena within a simpler setting, with
the objective of drawing more general conclusions. Such a
model has previously been investigated within the context
of threshold singularities in Refs. [24,26]. It is described by
the following Lagrangian density:

1 1 1 1
E zia”q)a”(D—Equ)z +§8”)(18M1 —Em%)(%

1 1
+50000 =5 m3y3 — APy 1y (2.1)

This Lagrangian density provides a simple arena to study
the main aspects of our focus in this article: (i) if
M < (m; + m,), a single ® particle is stable; (i) when
M > (m; + m,), a ® particle is unstable and decays into a
pair of y, y, partticles; (iii) when M = (m; + m,), the
mass of the @ particle is exactly at threshold, and this case
is a manifestation of the threshold singularity, studied
originally in Ref. [24]; and (iv) infrared singularity when
M = m;, my, = 0 arising from the emission and absorption
of massless quanta. In this case again the mass of the
particle @ coincides with the multiparticle threshold. This
latter case features the same infrared singularities as that of
a charged field coupled to a massless field studied in
Ref. [34] within a bosonic model with Lagrangian density

L= O”CD"'(?ﬂ(I) - M*®T® + %8“;(8#;( — 1O dy. (2.2)
In this model the infrared singularity emerges in the self-
energy of the @ field as a consequence of the emission and
absorption of massless quanta @ <> ®y. In Ref. [34] it is
shown that the infrared behavior of this model is similar to
that of a Dirac fermion Yukawa coupled to a massless scalar
(a renormalizable theory), and in turn is similar to the
infrared divergence of the fermionic self-energy in quantum
electrodynamics. Hence, the Lagrangian (2.1) furnishes a
simple quantum field theory that allows one to study all
four cases: (i) stable, (ii) unstable, (iii) threshold singularity,
and (iv) infrared divergence within the same model by
adjusting the masses appropriately. Figure 1 depicts the
interaction vertex in the theory described by (2.1), and
Fig. 2 shows the one-loop self-energy of the field ® in the
theory described by (2.2) which features an infrared
divergence. This self-energy is the same as that obtained
from (2.1) replacing y; — ®; y» = x.

e,
v,
.
v,
v,
,,
"

FIG. 1. Interaction vertex in the theory defined by the Lagran-
gian density (2.1).

FIG. 2. One-loop self-energy of the @ field in the theory
defined by the Lagrangian density (2.2).

The Lagrangian density (2.1) describes a superrenorma-
lizable theory; however, because we are interested in
infrared and long time phenomena which we expect to
be insensitive to the ultraviolet behavior of the theory, this
model is expected to capture the long time dynamics
reliably. This expectation is confirmed by the study of
Ref. [34] where infrared phenomena and long time dynam-
ics were shown to be the same for a superrenormalizable
and a renormalizable model. Furthermore, in Ref. [37] it
has been shown that ultraviolet divergences contribute to
very early transients that do not affect the long time
dynamics and can be safely absorbed into a renormalization
of the initial amplitude. This is a consequence of the wide
separation of timescales between the ultraviolet early
transients and the long time infrared phenomena. Taken
together the results of these previous studies serve as
anchors that allow us to draw more general conclusions
on the long time dynamics from the simple model described
by Eq. (2.1).

We begin by studying the Kallen-Lehmann spectral
representation [40] of the single ® particle propagator
including a Dyson resummation of the one-loop self-energy
shown in Fig. 2. The propagator is given by

1
P2 —M?* - X(P?) +ie’

G(P?) = (2.3)

the self-energy is calculated in dimensional regularization
in dimension D = 4 — ¢, and introducing a renormalization
scale u we find

7 7
=l

1(P*/M?), (2.4)

where
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o 2 MZ
A= du~e? L= g +In(4x) —In {F} (2.5)

with yr the Euler-Mascheroni constant and

1 m2 m2_m2
2\ 2 1 2
I(P)—A IH[W+ M2 X

P2
- Wx(l —x)— ié] dx; e—->0t. (2.6)

Separating the real and imaginary parts of the self-energy

I(P?) = Zg(P?) + ix,(P?), (2.7)
we find
P? o
(P =——sL+—0 [ 1
WP) = =G T
2 2 2 p2
X VZQ—I— IMZ 2x—Wx(l—x) dx, (2.8)

/12 (ml + m2)2
ZI(PZ) = —TT (4”)2 |:(1 - P2
« <1 _ (my —my)?
P2
Subtracting the real part of the self-energy at P> = M3 at

which the real part of the inverse propagator vanishes,
namely

)} 1/2@)(P2 — (my 4+ my)?).

(2.9)

Tp(P?) = Zg(P? = M32) + Sg(P?), (2.10)

where

M3 = M?* + 3R(P* = M3), (2.11)

and to leading order in the coupling replacing M — M, in
the expression for the real and imaginary parts of the self-
energy (2.8), it follows that

1

G(P?) = = .
(P) P2 — M2 — Ex(P?) —i%;(P?) + ie

(2.12)

The Kallen-Lehmann spectral function is given by [40]

o(P?) = —%ImG(PZ)

71 _21(P2)+€
TR [P M2 —ER (PP [~ (PY) + e (2.13)

it contains the information on the asymptotic properties of
the quanta of the real scalar field @, and it obeys the sum rule

/ o(P?)dP* = 1. (2.14)

A single particle pole below threshold, namely for
P? < (my + m,)?, for which %,;(P?) = 0, yields

0,(P?) = Z8(P* — M2), (2.15)

where

_O9%R(PY)

Zl=1 .
OP? P=M?

(2.16)

The wave function renormalization constant yields the
amplitude of the single particle pole and determines
the overlap between the bare single particle state and
the asymptotic renormalized state of a stable particle that
has been dressed by quantum fluctuations. Therefore,
when the single particle pole is below threshold, the
particle is stable and

o(P?) = Z8(P* = M3) + 6.(P?), (2.17)

where 6,(P?) is the contribution from the multiparticle
continuum above threshold. In this case the sum rule
(2.14) yields

Z—I—/ o(P*)dP? =1,
P

2
T

P =(m+my),  (2.18)

whereas if the particle decays and the single particle pole
is embedded in the continuum, there is no single particle
pole below threshold and the sum rule (2.14) yields

/oo o(P2)dP? = 1; (2.19)

2
T

namely it is saturated by the continuum “background” and
the single particle quanta of the @ field are not asymptotic
states.

III. DECAY, THRESHOLD, AND INFRARED
SINGULARITIES

A. Decay and threshold singularities

In order to discuss both cases of decay and threshold
singularities we consider the simpler case of equal masses
m; = my, =m when the two particle threshold is at
P? = 4m?; furthermore, it is convenient to introduce the
dimensionless variables
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P? 4m?
- _27 r= 5 s
MP Mp

g= (47;}\417)2; A(s,r) = \/IQ—AE (3.1)

In terms of these variables the spectral density becomes

N

gA(s,r)O(s—r)+€

26(s,1)= :
Myo(s.r) [s—1—gD(s,r)]>+[rgA(r,s)O(s—r) +¢€]*
xe—0t, (3.2)
where
B 1+ A(s,r) 1+A(1,r)
D(s,r)=A(s,r) ln{1 —A(s,r)} —A(lL,r) ln[l — A(l,r)]
(3.3)

We study the cases r > 1 (stable particle) and r < 1
(unstable decaying particle) separately to highlight both
differences and similarities.

1. Case I: Stable particle 4m* > Mf, r>1)

In this case the propagator features an isolated single
particle pole at s = 1 below the two particle threshold at
r>1and for s <r

M3o6(s,r) = Z(r)d(s — 1); s<r (3.4)
with Z~! given by Eq. (2.16) for which we find
1
Z(r> = < ’
[+ gl( + 5(r)atan(z) - 1
o(r) =vVr—1. (3.5)

The full spectral density in this case when the particle pole
is below the two particle threshold is given by
M2o(s,r) = Z(r)5(s — 1)

gA(s, r)O(s —r)

+ [s =1 —=gD(s,r)]> + [xgA(r,s)O(s — r)]*"

(3.6)

For r > 1 the particle is present as an asymptotic state with
probability Z(r) < 1. However, we note that as M2 — 4m?,
namely as the position of the single particle pole
approaches the threshold from below, or » — 1 from above,
the residue at the isolated pole below threshold vanishes as

4m?

1 M%_l

Z(r)—

_ , 3.7
r—1 1+\/QT—1 g ( )

0.6
0.5
Z 5(s-1)

0.4

0.3

Mp2 o(s)

0.2

0.1

00||||||||||| PR S I I O A

05 06 07 08 09 1.0 11 12 13 14 15 16 17 1.8 19 20
S

FIG. 3. M%,a(s) for r = 1.1, 1.2, 1.3 and g = 0.01 describing a
stable particle with an isolated pole below threshold. s =
P2 /Mp;r = 4m* /M5,

with a square root singularity, and very sharply in weak
coupling, obviously this behavior is strongly nonperturba-
tive. Furthermore, we find that while the continuum
contribution to the spectral density vanishes at threshold,
it becomes sharply peaked near threshold as » — 1 from
above (or M %, — 4m? from below). Figure 3 displays the
spectral density for r > 1, namely the case of a stable
particle described by an isolated pole below threshold.

Defining the contribution from the two particle con-
tinuum above threshold as

C(r) = / " M2o(s. r)ds, (3.8)

we have confirmed numerically that the sum rule (2.18)

Z(r)+C(r)=1 (3.9)
is fulfilled. As r — 1 from above, the residue at the pole
vanishes, but the continuum contribution saturates the sum
rule. Figure 4 shows Z(r) and C(r), and it clearly displays
that Z(r) vanishes sharply and C(r) rises sharply as M7, —
4m? from below (r — 17), in agreement with the sum rule
(3.8) which can be confirmed from the figure.

Precisely at M% = 4m?* when the mass shell coincides
with the multiparticle threshold, there is a singularity in the
sense that the amplitude of the single particle pole vanishes
and the spectral density at P> = 4m? diverges in such a way
as to maintain the sum rule. This behavior has been
described as a threshold singularity [24]. What is clear in
the case when M% = 4m? is that the single particle “dis-
solves” into the continuum and is not an asymptotic state
since its residue, namely the overlap of the bare and
asymptotic state vanishes. However, the particle does not
“decay” in the usual manner because the imaginary part of
the self-energy vanishes at P? = M3 = 4m?; hence, the
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r

FIG. 4. Z(r)and C(r) vs r = 4m*/M?3, for g = 0.01. The sum
rule Z(r) + C(r) = 1 is confirmed numerically.

“decay rate” I' « X;(P* = M%)/M, vanishes identically
when M2 = 4m?.

2. Case II: Unstable particle le >4m? (r < 1)

In this case the particle “pole” moves off the physical
sheet into the second (or higher) Riemann sheet, becoming
a decaying resonant state which is not an asymptotic state in
the S-matrix. The spectral density only has support above
the two particle threshold

gA(s, r)O(s =)
[s =1 —gD(s,r)]*> + [mgA(r, s)O(s — r)]*’
(3.10)

Mf,a(s, r) =

where D(s, r) is given by Eq. (3.3). It is displayed in Fig. 5
for r =10.3, 0.6, 0.96 for g = 0.05, a moderately large
coupling to exhibit the behavior as the position of the
resonance approaches the threshold from above as com-
pared with the cases where it is far above threshold.

]

4l
B - r=0.6
1 JQ
| --"‘I"' ] N

0.0 0.5 1.0 1.5 2.0
S

\
!
i
|
i
|
t

FIG. 5. M2%o(s) vs s = P*/M?3, for an unstable, decaying
particle with M%, > 4m? (r < 1) for r = 0.3, 0.6, 0.96; g =0.05.

In this case the sum rule (3.9) is saturated by the
contribution above threshold since there is no support
below threshold, and we have confirmed numerically in
all cases that C(r) = 1 with C(r) given by Eq. (3.8).

When the distance between threshold and the position of
the resonance (pole) is much larger than the width I', the
propagator and the spectral density may be very well
approximated by a Breit-Wigner Lorentzian function in
the narrow width approximation,

Zy, 4
M? )= 3.11
po'bw(s r) 7 [S _ 1]2 +7/2 ( )
with
vy = gnZy,A(l, 1), (3.12)

where the wave function renormalization Z,,, is given by
(2.16) but now above threshold, with M3 > 4m? and given
by

Ziw =1 _gr{ZA(ll,r)]nE tiéll:ﬂ i —Ai(l r>}'

&3.13)

We note that in contrast to the case when M% < 4m?, in this
case as M3 — 4m? from above it is straightforward to
confirm that Z,, remains finite in agreement with the
conclusion in Ref. [24]. However, when the particle is
unstable, Z;,, does not have the interpretation of the
amplitude of the renormalized single particle state in the
asymptotic state. It is clear from Eq. (3.11) that the Breit-
Wigner approximation of the spectral density is only
reliable for very weak coupling as it does not obey the
sum rule C(r) = 1 since Zy,, # 1.

When the position of the resonance (pole) is far away
from threshold and for a narrow width, the propagator may
be approximated by a Breit-Wigner distribution which in
the narrow width approximation becomes

Z
G(P?) = L : 3.14
(%) [P? — M2+ iM T ( )
with Z,,, given by Eq. (3.13) and
>, (P? = M?
= —wau, (3.15)
M,

to leading order in the weak coupling g, we can set Z,, = 1
and recognize I as the decay rate at rest obtained from the
lowest order S-matrix approach, namely
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['=nagM,|1- (3.16)

The long time dynamics of the retarded propagator is
obtained from the Fourier transform of the Breit-Wigner
propagator (3.14), namely

d .
Gru(t) = l/ PO Gpyeint; 10, (3.17)
27
yielding
o—iEpt
Gret(t) = Zyy 2Ep e—l“l,t/Z;
M
E,=\/P*+M>; F”:E_pr (3.18)
p

from which we interpret Z,,, not as the amplitude of the
single particle in the asymptotic state but as the weight of
the resonance contribution to the spectral density as evident
from Eq. (3.11).

As Fig. 5 clearly shows, when Mf, — 4m? from above
(r = 1 from below), although I" — 0, the spectral density
can no longer be described as a narrow width Breit-Wigner
Lorentzian and the resonance cannot be described as a
complex pole in the second (or higher) Riemann sheet. In
this limit we find that as s — 11 and for weak coupling

1
gr*\/s — 1 '

M3o(s,1) (3.19)

displaying a square root singularity at threshold in agreement
with Fig. 5. In this case the narrow width Breit-Wigner
approximation is neither valid nor useful to describe the
resonance near threshold as the spectral density diverges as
the threshold is approached. However, this singularity
notwithstanding, we confirmed numerically the sum rule
C(1) = 1, but the interpretation of a finite Z,, as a wave
function renormalization associated with the resonance is no
longer useful as a description of the asymptotic state.

As M f, — 4m? from below the single particle state is no
longer an asymptotic state; however, its amplitude does not
decay in time with the usual exponential decay law because
the decay rate I' — 0 when the pole coincides with the two
particle threshold. Furthermore, as is clear from Fig. 5 and
from Eq. (3.19) the Breit-Wigner approximation breaks
down as M, — 4m? from above and the time evolution of
the resonant state is not an exponential as in the case (3.18)
but a more complicated function determined by the square
root branch cut beginning at threshold. This time evolution
will be studied in detail in the next section.

B. Infrared singularity

The infrared singularity is associated with the emission
and absorption of a massless particle by a massive one.
Such is the case, for example, in quantum electrodynamics
where the one-loop fermion self-energy features an infrared
divergence on the fermion mass shell. Whereas in gauge
theories care must be taken to maintain gauge invariance
and satisfy Ward identities, the simpler model of a charged
scalar field in interaction with a neutral massless field,
described by the Lagrangian density (2.2) features the same
infrared divergence [34]. In turn, we can study the infrared
divergence within the framework of the model described by
(2.1) by taking m; = M, m, = 0. However, in order to
display the emergence of the infrared singularity more
clearly, let us consider the case m, = 0; m; = m, and we
will explore the limit M, — m where the infrared diver-
gence becomes manifest.

In this case, in terms of the variables s; g introduced in
Eq. (3.1) along with the ratio

R=" (3.20)
MP
the spectral density is given by
"iols) 905 —R) +¢ |
! [s = 1= 1(s.R)]? + [gn(*5%)O(s — R) + ¢]*’
xe— 0" (3.21)
where

s;R‘ —(l—R)ln'l_TR‘}.
(3.22)

For R > 1 the @ particle is stable, and we find

Mio(s) = Z;,(R)S8(s — 1) + M3o.(s),  (3.23)
where
Zi(R) = ! , (3.24)
1+ gR[In(z%) - 7
and M3o,.(s) is the contribution from the two particle

continuum above threshold, given by Eq. (3.21) for s > R.
Equation (3.24) clearly shows that as R — 17 the wave
function renormalization vanishes; namely there is no
longer an isolated single particle pole, and again the particle
dissolves into the continuum as its (renormalized) mass
approaches the threshold from below. This behavior is
displayed in Fig. 6 which shows Z;.(R) vs R for g = 0.01.

Again we have confirmed numerically the validity of the
sum rule Z;,(R) + [ M30.(s)ds = 1, therefore when the
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FIG. 6. Z;.(R) vs R, for the infrared case for R = m/M, and
g=0.01.

single particle pole approaches the threshold from below,
the sum rule is saturated from the continuum contribution
M36.(s) which is displayed in Fig. 7 showing a sharp rise
near threshold as it absorbs the normalization of the single
particle pole when it merges with threshold.

We conclude that in the infrared limit R = 1 when the
single particle pole merges with the threshold, the single
particle dissolves into the continuum and is no longer an
asymptotic state. However, as in the case of threshold
singularity, the particle does not decay in the usual sense
because the decay rate vanishes when the pole mass
coincides with the two particle threshold.

The infrared singularity for the case R = 1 is the same as
that studied in the model of a charged scalar field coupled
to a massless real scalar field [34]. This previous study also
revealed an emerging universality of infrared phenomena
and showed that the amplitude of an initial single particle
state decays with a power law with anomalous dimension.
The infrared singularities in this model field theory are the
same as in the general Lagrangian density (2.1), replacing
x1 = D9y, > yand my =M, my =0.

0.25

0.20 [—

0.10 —

D
M’p og(s)

0.05 [—

FIG. 7. M3jo.(s) vs s, for the infrared case for R = m/M, =
1.01 and g = 0.01.

The lesson that we draw from this analysis based on the
Kallen-Lehmann representation is that threshold and infra-
red divergences result in the probability that the single
particle state vanishes, transferring the normalization to the
multiparticle continuum. This “flow” of probability from
single particle to multiparticle states is a manifestation of
particle production, and we refer to these cases as gener-
alized decay, because, indeed, the single @ particle does
decay into the multiparticle continuum despite the fact that
the S-matrix decay rate I formally vanishes, because the
imaginary part of the self-energy vanishes at threshold.
Furthermore, although there are quantitative differences
between threshold and infrared divergences, for example in
the manner that Z vanishes as the threshold is approached
and the sharp rise of the continuum contribution near
threshold, qualitatively the two phenomena are rather
similar as evidenced by the figures displaying Z and o,
in both cases.

In the next section we study this flow or generalized
decay from the point of view of the time evolution of an
initial single particle state toward an asymptotic state.

IV. TIME EVOLUTION: DYNAMICAL
RESUMMATION METHOD

We now obtain the asymptotic state by following the
time evolution of an initial single @ particle state. For this
purpose we now introduce a method that implements a
dynamical resummation directly in time [34,37] and is
complementary to the dynamical renormalization group
[38,39]. We briefly revisit here the main aspects of this
method for coherence and completeness of presentation,
referring the reader to previous studies [34,37] for more
details.

Consider a system whose Hamiltonian is H = Hy, + H;
with H; a perturbation. The time evolution of states in the
interaction picture of Hy, is given by

1 (0) = Hy ()% (1). (@)

where the interaction Hamiltonian in the interaction picture
is

H[(f) = eiHUtHle_iHot. (42)
The Schrodinger Eq. (4.1) has the formal solution
[W1(1)) = U(t.10) ¥ (1)) (4.3)

and the time evolution operator in the interaction picture
Ul(t, 1) obeys
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d
Z.EU(Z‘, to) :Hl(t)U(t, to). (44)
Now we can expand the time evolved state as
%, (1) Zc (4.5)

where |n) are eigenstates of the unperturbed Hamiltonian,
Hy|n) = E,|n), and form a complete set of orthonormal
many particle states. From Eq. (4.1) one finds the exact
equation of motion for the coefficients C, (), namely

= —zZCm

Although this equation is exact, it generates an infinite
hierarchy of simultaneous equations when the Hilbert space
of states spanned by {|n)} is infinite dimensional.
However, this hierarchy can be truncated by considering
the transition between states connected by the interaction
Hamiltonian at a given order in H;.

Specifically, for the model under consideration here,
consider the situation depicted in Fig. 8 where the single
particle state, |1%’>, couples to the two particle state
|[141:12°), which couples back to |1%’> via the interaction

(n|H;(t)|m). (4.6)

Hamiltonian

H,(t) = i/d%c(b(f, O (X, s (X, 1), (4.7)

where the fields are in the interaction picture.
Consider that at the initial time r = 0 a single @ particle

state with momentum ¥ is prepared, upon time evolution
the interaction Hamiltonian connects this state with a two
particle state of the y4, y, fields; therefore, the time evolved
state is given by

(1)) = CR(O11Y) +ZC”

1)(1 1)(2>

=k-p, (4.8)

where the dots stand for multiparticle states that connect to
|1;_(?> in higher order in H;, and we have explicitly used

momentum conservation which is justified by the matrix

X2 X2

X1 X1

FIG. 8. Transitions |1%’) < |14;1%) in first order in H,.

elements obtained in Appendix A. In what follows we use
g = k — p to simplify notation.

The hierarchy of Egs. (4.6) lead to the following coupled
equations for the amplitudes

:—LZ (2|H, (1

— —iC (1) (15 12|H, (1)]12).

IR 1’“>C’f A1), (49)

~
C;;;/?(t) (4.10)
The initial value problem in which at time =0
the initial state is a single @ particle state, namely
¥(t=0)) = |1§>, and the vacuum for the other fields

corresponds to the initial conditions

c20)=1, ¢ _(0)=0. (4.11)

P
We solve Eq. (4.10) with these initial conditions and input
the solution into Eq. (4.9) to find

(4.12)

(1) = —i / (03 12 H, (1) 12)C2 (¢,
k 0 P k k

o) = - / (1. 1)C2(¢)dr (4.13)

0

where

So(t. ') = SO (O] 12) (15 12 |H,(1)]19)

P

= YR -

P

D12 1H, (0)|1 5 1)

(4.14)

and we used Eq. (4.2). It is convenient to write Zq (7, 7') in a
spectral representation, namely

Zolt.t) = [ polko)e b Ny, (415)
where we have introduced the spectral density
= ST OI1: )Patho - £ - £F).
(4.16)

which is obtained for the general case described by the
Lagrangian density (2.1) in Appendix A [see Eq. (A3)].
The integro-differential equation with memory (4.13)
yields a nonperturbative solution for the time evolution of
the amplitudes and probabilities. It provides a resummation in
real time of the one-particle irreducible self-energy correc-
tions, akin to the Dyson (geometric series) resummation of
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similar terms in the Fourier transform of the single particle
propagator.

Inserting the solution for C®(¢) into Eq. (4.12) one
obtains the time evolution of amplitudes C);(s-/}’(t) from
which we can compute the time dependent probability to
populate the two particle state [1%'; 17°), namely |C),;~Z([)|2'

The Hermiticity of the interaction Hamiltonian H; and
Egs. (4.9) and (4.10) yields

%[K§0»2+§;K§gn

|2} —0, (417

which together with the initial conditions in Eq. (4.11)
yields the unitarity relation

C2 (1) —|—Z|CX =1. (4.18)

This is the statement that the time evolution operator
U(t,0) is unitary, namely

(PO (1) = [CT(OP + ZIC’;;;(I) ’

(4.19)

The integro-differential equation (4.13) can be solved
exactly via Laplace transform [37]; however, finding the
time evolution from the inverse transform involves a
technically difficult integral with branch cut singularities.
Instead, recognizing that for weak coupling there is a
separation of timescales, we invoke the dynamical resum-
mation method introduced in Ref. [34] which hinges on a
separation of timescales warranted for weak coupling and
provides a nonperturbative resummation directly in real time
equivalent to the dynamical renormalization group [38,39].

The time evolution of C ]%’(t) determined by Eq. (4.13) is
slow in the sense that the timescale is determined by a weak
coupling kernel £ which is second order in the coupling.
This allows us to use an approximation in terms of a
consistent expansion in time derivatives of C%’(t). Let us

define
tl
Wo(t, 1) = / Yo (2, 1")dt" (4.20)
0
so that
d
Yot 1) =—Wy(t,1), Wy(2,0) = 0. (4.21)

dr

Integrating by parts in Eq. (4.13) we obtain

/th,(t,t’)C%’(t’)dt’:Wo(t, 1HC2(1)
0
/WO (t,7) d’ k( Ndr'. (4.22)

The second term on the right-hand side is formally of fourth
order in H; suggesting how a systematic approximation
scheme can be developed. Setting

t/
W (1, t’):/ Wo(t, 1")dt",
0

d’ Wi(t, 1) = Wy(t, 1), W,(¢,0) =0, (4.23)
and integrating by parts again, we find
t .
/) Wo(t, t’)?Cg(t’)dt’ = W,(1, Z)C%)(t) +--- (4.24)
leading to
t
A To(t, t’)Cg’(t’)dt’ = Wy(t, t)C%’(t)
—Wi(t.)C2(1) + - (4.25)

This process can be implemented systematically result-
ing in higher order differential equations. Since W, ~ H?
and also C, ~ H7 the second term in (4.25) is ~H}. We
consistently neglect this term because to order H7 the states
[1%1:1%°) also have nonvanishing matrix elements with
multiparticle states other than |1]i<.°>. These are the multi-
particle states denoted by the dots in Eq. (4.8) and the
hierarchy would have to include these other states, there-
fore yielding contributions of O(H7). Hence up to order
~H? Eq. (4.13) becomes

(4.26)

CR(1) = =Wo(1,1)C2(1).

and from Egs. (4.15) and (4.20) we find

- -
Wo(r,1) = /_oo P (ko) [I(IQT‘D)] dko,  (4.27)

yielding

C2 (1) = e e~ (4.28)

where we used the initial condition Cg(O) =1, with

SE®(1) = /

and

| sin((EP — ko)1)
(EP —ko)t

dky,  (4.29)

Po ko
E‘I> ko
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[1 = cos((EY — ko)t)]
(EY —ko)?

With this solution we find the time evolution of the
coefficients of the multiparticle states from Eq. (4.12)

y(1) =2 / * polk) dky. (4.30)

CL (1) = =i 12 1H (0)[17)

¢ X P t
x/ oI EP=ES—E2) _ivsEo(r —Ld; (4.31)
0

from which we obtain the probability of the multiparticle
states in the time evolved state, and in particular the
asymptotic state as t — oo.

The survival probability of the initial state is given by

1219(1))> = [C2(1)? = 7). 4.32
P k
In the long time limit we find
(ko)
SE®(1)—6ES = / p Lot p o 0 Sk, (43))

where P stands for the principal part, yielding a renorm-
alization of the bare frequency of the state |1]%’>, namely
E‘If +6E2 = E
yields the decay law of the initial state.

It is illuminating to write the energy renormalization

using the explicit form of the spectral density given by
Eq. (4.16), namely

2o Whereas the long time limit of (f)

[ X1.122\]|2
5~ 3 (12 [H,(0)[15:12)]
o P E®*_FO_F2
k p q

where the principal part in Eq. (4.33) removes the region in
momenta when the denominator vanishes denoted by the
superscript prime in the sum. This is the usual quantum
mechanical result for the second order energy shift.

(4.34)

A. Stable particles

Before we analyze the time evolution of the coefficients
C%’(t), we can understand their asymptotic behavior for the
case of stable particles. The spectral density pg (ko)
vanishes for ky < ko where kor = /k*> + (m; + m,)?
corresponds to the two particle threshold [see Eq. (A3)].
In the case of a stable particle EY < ky; the denominator in
y(?), Eq. (4.30), never vanishes and the cosine term
averages out in the long time limit. Therefore in the case
of a stable particle with energy below the two particle
threshold energy it follows that

©  pe(ky)
EP — ko)

t)—?2
() — o T

dkg=2z.  (4.35)

Hence, in the case of a stable particle for which the single
particle energy is below the two particle threshold (neglect-
ing renormalization to lowest order) the time evolution of
the initial single ® particle amplitude yields the asymptotic
result

CP(o0) = 7R, (4.36)
namely, the probability of finding the initial (bare) single
particle state in the asymptotic state |¥;(c0)) is
-2z — Z,

[(12[¥1(00))? = |CT(c0)* = e (4.37)

and the unitarity condition (4.18) implies the sum rule

Z+ Z|Cé;z(oo 2
p

(4.38)

and we show how this relation is fulfilled in Sec. V
[see Eq. (5.13)].

For the case m; = m, = m, it is straightforward to find
that as M? — 4m?, namely as EY — ko, the integral in
(4.35) yields z  (4m> — M?)~'/2 displaying the threshold
divergence that results in the vanishing of the overlap
between the asymptotic state and the initial single particle
state, namely Z — 0.

As we discuss below this is a consequence of taking the
infinite time limit too soon in the limit when the single
particle energy approaches the two particle threshold.

It is illuminating to understand the timescale over which
the integral (4.30) approaches its asymptotic limit (4.35). In
the case of a stable particle, with E; < kor as mentioned
above, the denominator in (4.30) does not vanish in the
domain of integration ky > kqr; therefore, we can separate
the time dependent cosine term from the expression for
y(¢). Hence, consider the integral

70) = [ patho) gt 0

where in the long time limit the cosine averages out and this
integral vanishes by dephasing, on a timescale

dky,  (4.39)

t ] (4.40)
dp =7 o .

P kor — ER

since kogr — E; is the smallest frequency contributing to the
integral, which, in turn dominates the long time limit.
Therefore as the single particle energy approaches the
threshold from below the dephasing timescale 7,, diverges,
and as discussed above the overlap Z vanishes. This is the
case of threshold divergences, the dynamics of which will
be studied in detail below.
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B. Decaying particle

In this case the (renormalized) single particle energy is
above the two particle threshold, EP > ko, and the
denominator in (4.30) vanishes within the domain of
integration; therefore, the cosine term cannot be separated.
Let us consider the case of equal masses m; = m, = m in
which case we find from Eqs. (4.30) and (A3) that

M2 [ 4m® JV2[1—cos((E® — ko)t
]/(l‘)zgz/ |:1_k2mk2:| [ COS(( k 0) )]dko,
kor 0~

E? (EP ko)
kOT =V k2 +4m2 (441)
Define

(ko — E,?)t =x (4.42)

in terms of which

2002

M /00 _ 1 — cos(x)
) = t x/Mt) ———" dx;

}’( ) E]? —X(f)p( / ) 2
X(1) = (Eg — kor)t > 0, (4.43)

where for a decaying state with M? > 4m?> = EP > kg,
and

4m 4+ e E 4 2 1/2
p(&) = W, E
+7§+§2 !

In the long time limit Mt — oo0; X(t) — oo we find

y(1) = Tt + 2z, + O(1/1), (4.45)

where

4m21/2 M

is the correct decay rate (3.16) including the time dilation
factor and is identified with the usual result from Fermi’s

golden rule, and
+ [

2211:%{ L

/ Z };
EY —kor)/M,

where p, (&) = (p(€) + p(=¢&))/2. The details of the der-
ivation of this result are given in Appendix B. We find the
long time behavior

(4.47)

CP(1)—e™ 0Lt g—Ft o=t = |C%’(t)|2t—>Zde_rkt;
—00

=00
Z, = e ¥, (4.48)
where SE® is a renormalization of the single particle
energy.

C. Threshold singularity

The expression for y(z), Eq. (4.43) in terms of p given by
Eq. (4.44) makes explicit the modification of the decay in
the case of threshold singularity, namely M? = 4m?; in this
case,

2Ep
_ a6+ 52 12 X
§) = [—M ® } ; E=—o, 4.49
p( ) 1 2Ek§ 52 Mt ( )

we note that in this case the decay rate (4.46) I', = 0, and
the spectral density vanishes with a square root at threshold.

In the limit  — oo it follows that p — [—2]]/ 2 yielding
(1) = 2v/7g* \/EE\/M (4.50)
k
and the survival probability decays as
|C%’(t)|2;:e_ i/, (4.51)
with an effective lifetime
= 4;zgl4M}155’ (4.52)

where EL /M is the usual time dilation factor. Namely the

decay law changes from e ™" — ¢~ V"/% _as the mass of the
particle approaches the threshold. The square root behavior
is a consequence of fact that the spectral density vanishes as
a square root near threshold.

Furthermore, whereas in the case of decay there is a
constant, time independent contribution in the asymptotic
long time limit of y(z) which defines the wave function
renormalization, no such term arises in the case of threshold
singularity. Therefore, at threshold when M? = 4m?, even
when the usual decay rate (3.16) vanishes, the amplitude of
the initial single particle state decays not as e’ but as

e=V7 with an effective lifetime 7* given by Eq. (4.52),
reflecting the square root divergence in both the spectral
density approaching threshold from above and the wave
function renormalization approaching the threshold from
below. This new decay law is in qualitative agreement with
a result found in Ref. [26] and implies that the single
particle state is not an asymptotic state in agreement with a
vanishing wave function renormalization from below, and
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the fact that the continuum contribution of the spectral
density saturates the sum rule.

In order to understand the asymptotic behavior in more
detail it proves convenient to study the case k = 0 and to
introduce the dimensionless combinations r = 4m?/M?
and 7 = M¢, in terms of which, for k = 0,

y(t) = ¢*eJ(r,7), (4.53)
where
~fe (1422 =721 = cos(x)
J(r7) = /_ (1_,>,[ (e } T ar (@54

Since the factor (1 —cos(x))/x? is localized within a
region of width ~2z around the origin, for r <1 the
function J(r, 7) approaches its asymptotic limit J(r, o0) =
7(1 — r)'/? within a 7 scale ~27/(1 — r). As the threshold
is approached from above, namely r — 1 from below, the
asymptotic value becomes smaller and smaller taking a
longer and longer timescale to reach, and for r =1 the
function J(1, 7) « 1//7 for large 7. This behavior is clearly
displayed in Fig. 9 for r = 0.8, 0.9, 0.98, 1.

The crossover between the linear and square root
behavior can be understood quantitatively in the inter-
mediate asymptotic regime for (1 —r) <1 from the
following argument. Consider first the case k =0, and
focus on the numerator of the term within brackets in
J(r,7), Eq. (4.54). In the region (1 — r) < (27/7) < 1 the
contribution 2x/7 dominates in the numerator yielding
J(r,7) < 1/4/7. This behavior continues until (1 —r) 2>
27/t at which point there is a crossover and the function
J(r, ) reaches the constant value z(1 — r). As r — 1 from
below, this constant value vanishes on a very long timescale
x 1/(1=r) during which J(r,7) falls off «1/\/7.
Therefore for r < 1 the crossover from the square root
falloff to the asymptotic constant value occurs at a

0 50 100 150 200 250 300 350

FIG. 9. The function J(r,7) with r = 4m?/M?*; T = Mt for
r=20.8,0.9, 0.98, 1.

timescale ¢, ~2z/M(1 —r). For k # 0 this timescale is
modified by the time dilation factor Ef /M. In Sec. VI we
comment on the effect of radiative corrections on threshold
behavior.

D. Infrared singularity

The case of infrared singularity corresponds to m; = M,
m, = 0, where the spectral density (A3) simplifies to

M? [(kg—ED)(ky+EP)
ko) = 2 k k
po(ky) =g 2E,? k%—kz

O(ky—EP), (4.55)

vanishing linearly as k, approaches the threshold
kor = E. This situation must be contrasted with the case
of threshold divergence where the spectral density vanishes
as a square root as kq approaches threshold. However, in
both cases the usual decay rate I' given by Eq. (4.46)
vanishes.

It is convenient to introduce the dimensionless combi-
nations

ko — E®
n= OEq, k. T=E%, (4.56)
k
in terms of which we find in this case
gM\?2 [ 2+n 1 —cos(nT)
y(1)= (—¢> / v - dn. (4.57)
EY) Jo (B +2n+n n

We note that this integral features a logarithmic divergence
in the region of small 5. Following Ref. [34] we write the
above integral as

v(T)=1,(T)+ 1,(7T), (4.58)
with
11(7)2292/011_008(’77)
1 (%)2—4—2;7
+92A [m]“‘cos(ﬂﬂ)dn (4.59)
and
_ gM 2 (o 247 1-— COS(?]T)
BT = (E—f> j (1%,)2 Tt p dn.
(4.60)

In the long time limit 7 > 1 the first integral in I;(7)
features an infrared logarithmic divergence, whereas in the
second integral and in I,(7") the cosine terms average out
yielding in this limit
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7/( )T_—w)ozg IH[E(D]-FZZ”, (461)
where
MY2 _ g
. 9—2{2}’154-/1[(152)) 4 217} )
M) o LGs)*+ 20+
MN\2 [ 2 d
+<—¢> / %—”} (4.62)
E}) v () +2n+nn

v 1s the Euler-Mascheroni constant, and z;, is infrared and
ultraviolet finite. Therefore, for the infrared case we find
Z ir — e—ZZ,‘r’

CE(1)]? — [EPA77 2, (4.63)

EPr>1

namely the probability of the initial single particle state
decays in time as a power law with anomalous dimension
2 and is not an asymptotic state in S-matrix amplitudes.

In summary, we find the following asymptotic long time
limits for the unstable cases in which the “mass shell” of the
particle is above or at threshold,

Z et above threshold
ICR(OP—{ eVt at threshold; my £0.  (4.64)
Z,[E®]™2" infrared;m, =0

V. UNITARITY AND ASYMPTOTIC STATE
A. Unitarity

In all cases of ‘“generalized decay” as described by
Eq. (4.64) the asymptotic state is

¥i(eh = 3 O350
The probabilities must obey the sum rule

W 2
Z'Cﬁ;z(‘x’
4

which is the statement of unitarity (4.18) in the asymptotic
long time limit when the amplitude of the initial state
vanishes.

The question that we address is how this sum rule is
fulfilled bemg that the probabilities |C% ( )|? are formally
of order ¢?. In Appendix C we show thgt for all cases and up
to O(H?), the asymptotic probabilities are given by

14512, (5.1)

(5.2)

2 © B
€0 o) =g g 2 |, O [ sinfarlerar

Q=FY + EZ ~EP, (5.3)

where EY in this expression is the renormalized single
particle energy [see Eq. (C8)]. Introducing the spectral
representation (4.16) we finally find the general form valid

up to O(HY),
Z|CX*( _2/ /°° Po ko
—' " pik
p
x [(ky — EP)rle >drdko

(5.4)

Armed with this general expression we can now study
the individual cases by considering the different forms of
() and spectral densities.

1. Decay
For the case of decay neglecting early time transient
dynamics before the linear secular growth in time in the
exponent, which only yields a perturbative contribution,
y (1) is given by (4.45) and pg (ko) by Eq. (A3) for the case
my = m, = m. In this case the time integral is straightfor-
ward leading to

%:'C);;E(oo

© Po k )
2 =22 / —( 0 dky. 5.5
)l d i [kO Eg,}z Fi 0 ( )

We can confirm the unitarity relation (5.2) to leading
(zeroth) order at this stage by setting Z, = 1 and writing

2w 1 I
C 2 — ko) ————K_dk,.
Z| k 3 p(D( ) [kO—E]?]z‘f'l—% 0
(5.6)
In the narrow width limit
1 I,
- & 5(ky— E®), 5.7
ﬂ[kO—Eg)]z—l-Firk—@ ( 0 k) ( )
yielding
¥ , 2m ®
S () = () =1 (58)

L

where we used the result (4.46). To prove unitarity up to
O(H?) requires a somewhat deeper analysis, which we now
undertake.

Let us introduce the dimensionless variables

ko — E® r - P _
éj:—OM Ly =ty E=—k s

it follows that
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Z|C){ —_ g M P(f) dé (510)

Eq’ §2+6

with p(£) given by Eq. (4.44).
Following similar steps as in Appendix B we find

D1 teo = 2 {50) [ e
 [2g=p0,
+/:§ff)82d§}. (5.11)

In the narrow width limit € <1 the first integral is
straightforward yielding z/e —2/& + O(e), and for &>
€ (EQ — kor > T) we can set & — 0 in the second and third
integrals,] yielding
21050

=2 1+22). (5.12)

where we used the results (B12) and (B13). Therefore, with
Z, = e %4~ 1-2z,+ --- we indeed find that the unitarity
relation (5.2) is fulfilled up to O(H7}) consistently with our
main approximation.

From this result we can confirm unitarity also in the
stable case, namely Eq. (4.38), simply by taking Z, — Z,
the amplitude of the single particle contribution in
Eq. (4.37), and the limit I" — O which is nonsingular in
Eq. (5.5) because EP < kor. Therefore, for I' =0 the
denominator in Eq. (5.5) never vanishes, and furthermore,
only the last term inside the brackets in Eq. (5.11)
contributes in the stable case because Ef < kop. I' > 0F
fulfills the role of a convergence factor in the integral in
(5.3). Including the contribution from the single particle
state with weight Z we find

Z[1+27] =1, (5.13)
where 2z is given by Eq. (4.35), thus proving the sum rule
(4.38) up to O(H}) in the stable case.

2. Threshold singularity
In this case y(¢) is given by Eq. (4.50), and pg (k) is
given by Eq. (A3) with m; = m, = m;4m*> = M. In the
general expression (5.4) we introduce the following var-
iables:

'"The second integral is finite in this limit because p, (&) —
p(0) =& as & — 0.

ko — E?) = E? .
( k) 2E2> ’
2
ng-M \/5
1) ; B(s) =6—, (5.14)
E? NG
obtaining

2103500

_5/“[ 2+ }I/st
o Liodys 4 Gyl s

M

o 2
x/ sin [Tm} P udu. (5.15)
0 2
Finally, we rescale the coupling by writing
s = 8%y, (5.16)

yielding

zﬁ]({;;]_{,(

o 2 1/2
oF = [Tt |
o bvarBryro@rel

o 2
X / sin [ﬂ} e_\ﬁ”udu.
0 2

Because 6> o g* o« H7 up to this order we can set § = 0 in
the above expression, and the remaining integrals are
elementary2 yielding

W 2
S IC () = 1,
p

(5.17)

(5.18)

thus confirming the unitarity relation (5.2) up to O(H?) in
this case.

3. Infrared divergence

The fulfillment of the unitarity condition (5.2) in the case
of infrared divergence has been confirmed up to O(H?) in
Ref. [34] to which the reader is referred for further technical
details. However, for the sake of completeness we here
summarize the main steps to leading (zeroth) order to
compare with the previous cases. In this case, the spectral
density is given by Eq. (A3) in Appendix A with m; = M,
m, = 0, which when combined with the general result (5.4)
and the result (4.61) for y(¢) and setting z;, = 0 to leading
order, yields

By a change of variables y~!/2

yields the Sine Fresnel integral.

= x, the resulting integral
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Pk ko — E®] 2
Z|C{,l€(°°)|2 - 2/ k (D_(EOLI)> 2 |: E® dko
7 & [ 0 k] k

. 2
X / sin[z]z729 dx.
0

| —
=1+0(¢%)

(5.19)

Changing variables to s = (ko — E¥)/EY we find to lead-
ing order

M 2 G 2 + 5 2 ds
Z . 2 _ 2 / 29" 22
> | p;k(oo)| g (E,?) 0 (E—A;{,)z tos+s2)" s
(5.20)

writing [$°(--)ds = [§(---)ds + [°(---)ds and in the
first 1ntegra1 separatmg the infrared domlnant term by

writing
[

the second term in (5.21) above along with the integral
J&2(---)ds yield contributions of order O(g?), the leading
order term is given by

L .d
S| ()P = 202 / 2B (5.m)
> pik 0 s

)2 —4-2s
2425+ 52

“’elg

2+s - 2
M2 2T TM
(F}) + 254§ (E)

=~

S+ } (5.21)

(

S| o
»e|§

confirming the unitarity constraint up to leading order; the
details of the confirmation up to O(g*) are available
in Ref. [34].

B. The asymptotic state
In the cases of decay, threshold, and infrared singularities
discussed above, the asymptotic state after the amplitude of
the initial state has become negligible, features a common
form, namely

|, (0 ZCX

)15 12 ). (5.23)

or in the case of the infrared singularity for the model given
by the Lagrangian density (2.2) of a charged scalar field
interacting with a massless scalar, obtained by identifying
x1 =D; yo =y, and y a massless field, namely

[¥s(e0 Zc ).

(5.24)

In the analysis below we will consider the asymptotic state
(5.23) describing all cases with the implicit understanding

that the case of infrared divergence is obtained by the
replacement y; — ®; m; — M; y, — y; my, — 0.

In all the cases studied in this article, namely particle
decay and those that feature threshold and infrared
singularities, the initial single particle state decays either
exponentially or with a power law and is not an asymp-
totic state. The asymptotic states that result from the time
evolution of these processes are given by (5.23) and
(5.24); these are correlated kinematically entangled states
of the daughter particles. We highlight this noteworthy
point: particle decay and the processes that feature
threshold and infrared divergences, while quantitatively
different in the details of the dynamical evolution of the
amplitudes, are asymptotically qualitatively similar and
determined by the asymptotic states (5.23) and (5.24)
which characterize the production of the daughter par-
ticles, with the total production probability fulfilling the
unitarity relation, namely ) 5 |C)£.];(oo)|2 = 1. Hence, in
conclusion, threshold and infrared singularities result in
the production of the daughter particles, much in the same
manner as the usual decay process.

Out of the pure state (5.23) [or (5.24)], we can construct
the (pure state) density matrix

00))(¥y(o0)l;

where the identity in the trace is a result of the unitarity
relation (5.2). Consider taking expectation values of oper-
ators that act on the Hilbert space of only one of the fields,
for example an operator Q1) that acts solely on the Hilbert
space of the field y;,

0= ¥ Tro=1, (5.25)

(OW)) =Try, , [0O%V], (5.26)
or similarly, of operators that act solely on the Hilbert space
of the field y,. In these cases the trace over the “unob-

served” fields yields a reduced density matrix, namely

0, = Tr,,0; =Tr, 0. (5.27)
and the unitarity condition obviously yields
Tr, 0, = 1; Tr,e0,, = 1. (5.28)
From the asymptotic state (5.23) we find
ZW IR IS (5.29)
ZW PIE )1z ] (530)

These reduced density matrices describe mixed states and
are diagonal in momentum and particle number. In par-
ticular, we identify the distribution function of the produced
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particles in terms of the expectation value of the number
operator for each field N/, (p) as

N, () = To, N (Pey, = [Cop(). (531)
NA(@) = TN (@, = [CE_ ()P (532)

therefore, as a consequence of entanglement, both daughter
particles share the same distribution function. Furthermore,
as a consequence of unitarity we find

D NLB) =D N, (@) =1,

p q

(5.33)

a result with the clear interpretation that there are in total
one y; and one y, particles in the asymptotic state, a
physically correct outcome of the generalized decay of a
single @ particle into one y; and one y, particles.

The results obtained above allow us to obtain the
distribution function in the cases under consideration from
the general expression (5.3). Denoting the matrix element
squared in (5.3) by /\/L we find for the case of decay,
namely E > kor,

' (c0)? PMyiZa 534
| I;I‘C’(oo)| - [E)g +E)[—(1»2 _Eg)]2 +l—% ’ ( . )
which can be written as
2r 1 I
2 _ k
P

— E§2]2 +r% .

The replacement (5.8) in the narrow width limit yields a
sharp energy conserving delta function; however, a small
but finite width introduces an energy uncertainty in the
distribution of daughter particles as a consequence of the
lifetime 1/I"; of the initial state with a concomitant
broadening of the distribution function.

For the case of infrared singularity, namely m; =
M,m, =0 we find

2M. - EX + B — E2¢
8 z(e0) = IS L
pik

[EY — EY — EZP? [ EY
(5.36)

This distribution function does not feature any particular
scale, although it is peaked at Q = E)Iﬁ,‘ + E)(-;? -EP =0,
namely energy conserving transitions. It falls off as a power
law Q2(-9) consistently with the scale invariance and
anomalous dimension associated with infrared phenomena
found in Ref. [34].

For the case of threshold singularity we can write the
distribution function as

\C);;,;(OO) > =2(r)> M ; ;. 2i, Fw;
1 E?
=[EY4+EZ-EP)r; 1= k(537
[ P + q k} 47Tg4MM ( )
where
Flw] = / st g, (5.38)
0 w

Although there is an analytic expression for this integral in
terms of Fresnel integral functions, a graphical representa-
tion is more illuminating and is displayed in Fig. 10. The
distribution function is sharply peaked at Q = [E)Ig1 + E’g -
EP] ~ 0 with a width of the order of 1/7* consistent with the
lifetime of the initial state. Note that this distribution is
narrower than the case of decay because the lifetime #* o
1/g* is longer as compared with 1/T" « 1/¢%.

The reduced density matrices (5.29) and (5.30) describe
mixed states; therefore, there is an associated von Neumann
entropy with each, and this is the entanglement entropy
arising from the loss of information as a result of tracing
over the complementary degree of freedom. This would be
the case for example if one of the particles in the decay
process belongs to a dark sector beyond the standard model
and is not observable, as in an “invisible decay.”

Because the pure state (5.23) is an entangled state of the
X1, x> particles, both subsystems share the same entangle-
ment entropy

— _Z|CZ

Since initially the coefficients vanish, the entanglement
entropy vanishes, whereas it is positive asymptotically at
long time since by unitarity |C§]_€(oo) |> < 1. Therefore, the

JPIn(ICE ()] > 0. (5.39)

entanglement entropy S,y grows as a consequence of
unitary time evolution, and its time evolution is completely

12

0.0 0.5 1.0 1.5 2.0 25 3.0
w

FIG. 10. The function F[w] vs w.
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determined by the dynamical resummation Egs. (4.12)
and (4.13).

The entanglement entropy has also been discussed in the
case of decay in Ref. [41] and for infrared singularity within
the context of quantum electrodynamics in Refs. [16,34,35].
While the entanglement entropy is a corollary of the pair
correlation in the asymptotic state, it is just beginning to
receive attention within particle physics [42].

VI. DISCUSSION

A. General lessons: Common aspects of decay,
threshold, and infrared divergences

Although we have focused our study on a simple quantum
field theory, the results obtained in the previous section
suggest some universality in the asymptotic state arising from
decay, threshold, or infrared singularities in that in all these
cases the asymptotic state is a kinematically entangled
multiparticle state with a probability that saturates the
unitarity constraint. While this is obviously a consequence
of unitary time evolution, the corollary is that threshold
and infrared divergences are just as efficient mechanisms
of particle production as the process of decay. The asym-
ptotic distribution functions |C¥(c0)|> are peaked at
Q= EY + E? — Ef =0, namely energy conserving tran-
sitions, but broadened. In the case of decay the width of this
distribution is O(T") & ¢? consistent with a broadening by the
lifetime o 1/T", for threshold singularity the distribution is
narrower, within a width of O(1/#*) o g* again consistent
with a much longer lifetime, and in the case of infrared
singularity the distribution function features a scaling behav-
ior with anomalous dimension Q2(1-9) asa consequence of
the scale invariance and anomalous dimension associated
with infrared phenomena [34].

The detailed analysis of the different cases yield the
following set of criteria on the spectral density p(k,) and
the mass of the particle that determines the time evolution
of the survival probabilities:

(a) If the spectral density does not vanish at ky = E
where E}, is the single particle energy of the “decaying
field,” the survival probability decays as usual o e™'"
with ' = 2zp(Ey). This is simply the statement of
Fermi’s golden rule and is the S-matrix result for the
decay width at leading order in the coupling.

(b) If E} coincides with the multiparticle threshold and the
spectral density vanishes at threshold as a square root
o +/|ko — kor|, this case corresponds to a threshold
singularity. The usual decay rate vanishes but the

survival probability decays as eV'/T This result
cannot be obtained within the S-matrix approach,
since the transition probability per unit time in the
infinite time limit, namely the usual decay rate
calculated via S-matrix, vanishes.

(c) If Ey coincides with the multiparticle threshold and the
spectral density vanishes linearly at threshold
 |kg — kor|, this case corresponds to an infrared
singularity. The usual decay rate vanishes but the
survival probability decays algebraically with an
anomalous dimension =2, Again, this result cannot
be obtained via the usual S-matrix calculation for the
transition probability per unit time in the infinite time
limit; again such a decay rate vanishes.

More generally, if the spectral density vanishes at
threshold as |ky — kor|/, the survival probability decays
as e~ with C a coupling dependent constant, = 1 is
the infrared singular case, and it yields a logarithmic
behavior.

Thus, threshold and infrared singularities differ only on
how the spectral density vanishes at threshold: if as a square
root, then the decay is e V" yielding a distribution
function with a breadth o 1/r*; if linearly, the decay is
o t74 yielding a distribution function with scaling dimen-
sion 2 — A.

B. Infrared and threshold divergences as production
mechanism of ultralight particles

Although we have studied the dynamics associated with
infrared divergences for the case in which the y, particle is
massless, the results apply to the case of ultralight particles
proposed to be dark matter candidates, from “fuzzy” dark
matter with a mass ~10722 eV [31-33] to axions with a
mass ~107® eV [27,28]. Consider that such particles are
coupled to a heavier one, with a mass =100 MeV;
the departure from threshold is <107'% of the value of
the threshold position, and this means that although the
threshold is just above the single particle pole, the wave
function renormalization is vanishingly small (see Figs. 4
and 6), thus transferring the normalization to the con-
tinuum. The time evolution—either as a square root or as
logarithmic—Iasts for a very long time, thus populating the
asymptotic state with the ultralight degree of freedom. Thus
infrared or threshold divergences are an efficient mecha-
nism for production of ultralight dark matter candidates as
proposed recently in Ref. [35].

C. Fermion loops

Threshold divergences depend crucially on the behavior
of the spectral density at threshold. Whereas for the case of
a bosonic loop the spectral density near threshold vanishes
as (1 —4m?/M?)'/? yielding the y(f) — /1 and the decay
law (4.51), a fermion loop yields a spectral density that
vanishes as (1 —4m?/M?)3/? yielding y(¢) — 1/+/t, thus
approaching an (ultraviolet divergent) constant at long
time. The lack of a threshold divergence in the case of a
fermion loop has also been recognized in Ref. [24].
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D. Relaxation and thermalization

Both for threshold and for infrared divergences the usual
decay rate vanishes; however, the survival probability
decays either as e"V/" or as t~27; in either case the
decay law cannot be described by Fermi’s golden rule or
the S-matrix approach. This observation leads to the
question of how @ particles would thermalize with a bath
of y particles under the conditions of threshold or infrared
divergence. In the usual Boltzmann equation, the thermal-
ization rate is directly proportional to the decay rate
obtained from Fermi’s golden rule modified by sponta-
neous emission/absorption factors. This question is of
relevance in cosmology and requires a treatment different
from the Boltzmann equation which directly inputs the
transition probabilities per unit time from S-matrix theory.
These are precisely the relaxation rates from Fermi’s golden
rule which vanish for threshold or infrared divergences. A
related question is how detailed balance emerges between
decay and inverse decay processes, since in the usual
formulation detailed balance is a consequence of explicit
energy conservation and the energy conserving constraint is
not exactly satisfied for threshold and infrared divergences.
This is the reason that the usual decay rate vanishes in these
cases. Work on these aspects is in progress and will be
reported elsewhere [43].

E. Entanglement entropy, correlations, and
thermalization

We have discussed the emergence of the entanglement
entropy upon tracing an “unobserved” degree of freedom
out of the pure asymptotic state density matrix. Such
tracing, or coarse graining, yields a mixed state, and a
concomitant von Neumann entropy as a consequence of the
loss of information in the coarse graining process. The pair
correlations in the pure entangled state entail that the
reduced density matrices ¢,,,¢,, feature the same proba-
bilities [see Egs. (5.29) and (5.30)] which are identified as
the distribution function of the produced particles, hence
the same entanglement entropy.

A remarkable experiment reported in Ref. [44] shows
that the entanglement entropy as a result of correlations in a
closed system heralds thermalization. It is therefore an
intriguing possibility that in the early universe, indeed a
closed system, the entanglement entropy associated with
cosmological particle production from threshold or infrared
divergences [35] may also herald the onset of a ther-
mal state.

Entanglement plays a fundamental role in the determi-
nation of time reversal and CP violation in neutral meson
systems [45]. Therefore, it is a tantalizing possibility that
correlations of particles produced via threshold or infrared
divergences may prove to also be relevant in experimental
particle physics. The potential relevance of the concept of
entanglement entropy associated with information loss in
the asymptotic final state, in particular if some of the decay

products belong to a dark sector beyond the standard
model, both in cosmology and in particle physics merits
further study.

F. Phenomenological consequences of the lifetime for
threshold divergences

The generalized decay as a consequence of threshold
divergences with a survival probability that decays as

e‘\/’/7 implies that even when the usual decay rate
vanishes (infinite lifetime), there is an intrinsic finite
lifetime 7* « 1/g*. This result may have potentially rel-
evant phenomenological implications, as the decay prod-
ucts of this process may feature displaced vertices with a
very long but finite decay length.

G. Radiative corrections: Moving away from threshold

The condition for threshold divergence, namely that the
mass of the particle coincides exactly with the value of the
lowest multiparticle threshold, will most likely not survive
radiative corrections. However, such corrections will be
proportional to a power of a small coupling; thus while not
exactly at threshold, the departure from threshold is
perturbatively small. Let us consider that upon radiative
corrections the mass of the particle moves perturbatively
below threshold so that (4m? — M?)/M? « a with a a small
coupling. In this case the particle has been rendered stable
by radiative corrections; however, asymptotically its prob-

ability in the final state is Z ¢™V@ with ¢ a constant of
O(1), hence featuring an essential singularity in the
coupling and for all intent and purpose the particle does
not appear as an asymptotic state. If, on the other hand, the
radiative correction moves the mass above threshold, the
particle is unstable, decaying as VT during a time o«
1/a until it begins decaying as e~'’, and is not an
asymptotic state. In conclusion, radiative corrections while
capable of moving the position of the mass shell away from
threshold perturbatively, the probability of the particle to be
present in the asymptotic state practically vanishes.

For the case of infrared divergence, for example for the
model defined by the Lagrangian density (2.2) in which a
massive charged particle emits and absorbs a massless y
particle, unless the mass of this particle is protected by
some symmetry radiative corrections will induce a non-
vanishing mass, thus modifying the conclusions. However,
if such a modification is perturbatively small, the mass shell
of the charged particle will be very close to threshold and
the near-threshold behavior will ensue as discussed above.

VIII. CONCLUSIONS

Motivated by the possibility that a dark sector beyond the
standard model could feature ultralight particles as dark
matter candidates, in this article we study threshold and
infrared divergences as hitherto unexplored possible
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production mechanisms that could be relevant in cosmol-
ogy. In the case of threshold and infrared divergences the
usual decay rates vanish; therefore, understanding the time
evolution in these cases will pave the way toward under-
standing the process of thermalization beyond the usual
Boltzmann approach which inputs the transition rates per
unit time in the infinite time limit. Our main objectives are
to compare the usual decay process to the time evolution
and particle production associated with threshold and
infrared divergences and to understand the nature and
characteristics of the asymptotic state. We study these
different mechanisms in a model field theory that provides
a simple arena to explore these phenomena within the same
setting by varying the masses of the various fields yet
allows one to extract more general lessons. An analysis
based on the Kallen-Lehmann representation of the particle
propagator suggests that decay, threshold, and infrared
singularities, while seemingly widely different phenomena
are qualitatively related, and also highlights the breakdown
of a Breit-Wigner approximation to propagators in the
cases of threshold and infrared divergences. A dynamical
resummation method complementary to the dynamical
renormalization group is introduced to study the time
evolution of initially prepared single particle states. This
method is manifestly unitary and yields the asymptotic
state, from which we obtain the distribution function of the
produced particles. We find that whereas in a typical decay
process the survival probability of the initial single particle
state decays as e™!’, in the case of threshold divergence it

decays as e=VY/" and for the case of infrared divergence
2, where ' and A are  (coupling)®> while
t* o 1/(coupling)*. Although the decay laws are strikingly
different, the asymptotic state is more “universal” in the
sense that it is a kinematically entangled state of the
daughter particles. The probability of the asymptotic state
is shown in each case to satisfy the unitarity condition. The
distribution function of the particles in the asymptotic state
are strongly peaked at energy conserving transitions, but in
the case of the usual decay and of threshold singularity they
are broadened by the lifetime of the decaying state 1/T, 1,
respectively, whereas in the case of the infrared divergence
the distribution function falls off with a scaling behavior
with scaling dimension 2 — A.

Therefore the results of this study indicate that threshold
and infrared divergences are production mechanisms just as
efficient as the usual particle decay. If either one of the
particles in the final state is not observed as perhaps in an
invisible decay into a dark matter particle, the information
loss leads to an entanglement entropy which grows as a
consequence of unitary time evolution. These alternative
mechanisms may be relevant for production of particles in
the dark sector in cosmology with possible phenomeno-
logical consequences in invisible decays with displaced
vertices and long decay lengths, and also to novel thermal-
ization dynamics, a possibility that merits further study.

pa(ko) Zgzﬂ2 [(1
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APPENDIX A: SPECTRAL DENSITY

Upon quantization in a volume V in a discrete momen-
tum representation, the relevant matrix element for the
interaction described by the interaction Hamiltonian in the
interaction picture (4.7) is found to be

<1<I>|H (O)|1)(1.1)(2> _ A 5ﬁ+5k (A])
[ p’q Toyl2 [8E?E)%1Egz]l/2'
This matrix element makes explicit momentum
conservation.

The spectral density is defined by Eq. (4.16), and with
the matrix elements given by Eq. (Al) and passing to the
continuum limit with 5 — f % we recognize that
(4.16) is given by

12 (S(ko
polbo) =g |

which is the Lorentz invariant two body phase space,

finally yielding
(m; +m;y)* 1 (my —my)*\ 11/
2ED k3 —k? k% — k*

X O (k3 — k> — (m; +my)?)O(kg). (A3)

_ E)(l E)(z ) d3
X1 A2 3
E} E/E_,; (27)

(A2)

To leading order in the coupling we replaced (;4;)* — ¢

where ¢ is the dimensionless coupling introduced
in Eq. (3.1).

APPENDIX B: LONG TIME LIMIT OF y(f) IN
DECAY CASE

For the case of decay, y(7) is given by Eq. (4.43) with

p(x/Mt) given by Eq. (4.44). Let us write Eq. (4.43) as

(B1)

where
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1(1) = /_ O e ) l_zi(js(”dx

X (1)

Ii(1)
© 1 —cos(x
X(1) X

1I,(1)

dx. (B2)

In 7, () the integration interval is symmetric and the function
(1 —cos(x))/x? is even in x; therefore, only the symmetric
combination p,(x/Mt) = (p(x/Mt) + p(—x/Mt))/2 con-
tributes to this integral. Adding and subtracting p(0), i
follows that

n =0 [ =5

(1) X
X(1) B 1 —cos(x
+ [ pesimn - po =5 s w3)
-X(1) X
/ 1 —cos( )dx_z{/ool —C(z)s(x)dx
-X(1) )C 0 X
3
o | —
- / 7“2’5(36) dx}, (B4)
X(t) X
in the second integral in (B4) change variables to
x=EMt,.= X(1)=EMr; E=(Ef—kor)/M>0 (B5)
in terms of which this second integral becomes
1 f[eol-— Mt 1
_/ TocosteMn) e, 1 (g
Mt [z & Mi—co M tE

where the cosine term averages out in the long time limit
(Riemann-Lebesgue lemma). Performing the same change
of variables in the second integral in (B3) yields for this
contribution

1 — cos(EMt)

- / P.(8) = p(0) 5=

because p, is even in &, and it follows that for £ ~0 the
numerator is of O(£?), therefore canceling the & in the
denominator. Hence, the region of integration near the origin
yields a vanishing contribution, and the cosine term oscil-
lates averaging out in the Mt — oo limit. In this limit the
second integral in (B3) yields

e (B7)

1 [ d
T NZGE OIS

Gathering all the terms we find

(B8)

100 -0 1 [0 - 01 F- (B9)

Carrying out the same change of variables in I,(¢) in
Eq. (B2) and taking the long time limit Mt — oo in which
the cosine term averages out as in the previous integrals
yields

1) — ©p(¢)

Ireyvry dg. (B10)

Including all contributions, we finally find in the long time
limit

]/(l) = Fkt + 2Zd, (Bll)
where
2102 2172 2
_mgM g M 4m
I, = 0 1——, B12
k= ECD /)( ) ECD M ( )
and
©p(&)
o) ___ —=d
- E‘D { E / pele s e cf
E=(EY —kor)/M (B13)
APPENDIX C: USEFUL IDENTITY
From Eq. (4.12) we find
. /
C’Ig;;(t) = —i(l’%‘; 1§2|H,(0)1]%’>A e’ Cg(t’)dt’;
Q=FY +E? - Ep, (C1)
hence
L = (15 12 | H, () 12)2

t [t )
X / / elQI] C‘_I?(tl)e—thz(C?(tz))*dtldtZ_
o Jo k k
(C2)

Inside the integrals we replace the amplitudes C]%’(t) by
Eq. (4.28). Since at early time the amplitude departs from
C%’(O) =1 by a perturbatively small amount, we will

replace them by their long time limit

(1)

Cl%’(t) = ¢ Ewl g7 (C3)

where y(r) is taken in the long time limit for the different
cases and absorbs 6E,, into a renormalization of EP.
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The integrand in the double time integral in (C2) is now
given by (EY in Q now stands for the renormalized energy)

O(t;, 1) = € ®n1=1) g=3lr(n)+7(12)) (C4)
writing the double time integral in (C2) as
t t
| [ ottt -1 + 00 - n)ands
t _M 1 _&2)
zzfdmzz/'mﬁmrqmezmb (C5)
0 0

where in the term with ©(¢, — #,) on the left-hand side of
(C5) we relabeled 1, <> 1, and used that Q(t,,1;) =
0Q*(t,, t,) with y() being real. Now writing

cos[Q(t; — 1)) = ditz/otz cos[Q(t, — ¢')|dr, (C6)

in the #, integral in (C5), we integrate by parts using (C6)
and neglect the term proportional to the time derivative of

y(t;) because it is of O(H?), and because the modulus
squared of the matrix element in (C2) is of order H%,
neglecting the derivative of y is consistent with neglecting
terms of O(H7}) in (C2). Therefore, up to O(H}) we find
that the double integral in (C2) becomes

t t . .
/ / e~ C2 (1) (C2 (1)) drt, dt,
0 Jo k ¢

2 t
== / sin[Qt, e~ dt, (C7)
Q Jo

Inserting this result into Eq. (C2) we find the final
expression for the probabilities valid up to O(H?),

2 t
4 2 X122 D\ |2 ; —y(11) .
%ﬂﬂ“%%%@%ﬂAm@kah

Q=FY + 2 - EP, (C8)

and EP here is the renormalized single @ particle energy.
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