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Abstract

Neighbor search is of fundamental importance to many en-
gineering and science fields such as physics simulation and
computer graphics. This paper proposes to formulate neigh-
bor search as a ray tracing problem and leverage the dedi-
cated ray tracing hardware in recent GPUs for acceleration.
We show that a naive mapping under-exploits the ray trac-
ing hardware. We propose two performance optimizations,
query scheduling and query partitioning, to tame the ineffi-
ciencies. Experimental results show 2.2X — 65.0x speedups
over existing neighbor search libraries on GPUs. The code is
available at https://github.com/horizon-research/rtnn.

CCS Concepts: « Computing methodologies — Ray trac-

the search space, but tree traversal is hardware-inefficient,
introducing irregular control flows and memory accesses.
This paper argues that neighbor search can be made both
work-efficient and hardware-friendly — by using Bounding
Volume Hierarchy (BVH) tree as the basic data structure.
This design decision allows us to formulate neighbor search
as a ray tracing problem (Section 3.1), which, critically, has
dedicated hardware support (for BVH traversal) in recent
GPUs such as Nvidia’s Turing (and later) architecture.
Unfortunately, a naive mapping from neighbor search
to ray tracing does not effectively exploit the ray tracing
hardware, and is in fact work- and hardware-inefficient (Sec-
tion 3.2). We quantitatively show two performance-limiting
factors : 1) unmanaged query-to-ray mapping, which leads

ing; Graphics processors; - Information systems — Nearest- to control-flow divergences, and 2) excessive tree traversals

neighbor search; « Theory of computation — Nearest
neighbor algorithms.
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1 Introduction

3D Neighbor search is a building block widely used in many
application domains such as computer vision, graphics, and
scientific computing. Due to its fundamental importance, fast
neighbor search has long been a subject of much research,
including many CPU [17, 19, 26] and GPU libraries [15, 16,
45] as well as hardware accelerators [32, 44].

A fundamental trade-off neighbor search algorithms make
is one between work efficiency and hardware efficiency. On
one hand, grid-based algorithms are work-inefficient, as they
perform (limited) exhaustive search over a grid, but exhaus-
tive searches are hardware friendly and can be easily paral-
lelized. On the other hand, tree-based algorithms (e.g., Oc-
tree, k-d tree) are work-efficient by hierarchically pruning
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stemming from the monolithic BVH construction. These
characterizations motivate us to propose two optimizations.

First, we propose a query scheduling strategy to tame the
control-flow divergence by mapping spatially-close queries
to nearby rays (Section 4). We show that this scheduling
algorithm, in itself, can be formulated as a truncated ray
tracing problem and, thus, is extremely efficient to execute.

Second, we propose a lightweight query partitioning algo-
rithm to aggressively suppress tree traversals (Section 5.1).
Instead of using a single BVH for all the queries/rays, we
partition queries such that each partition has a unique BVH
that minimizes tree traversals for that partition. Query par-
titioning, however, comes with the overhead of extra BVH
constructions. We propose an algorithm that bundles the
partitions to minimize the execution time (Section 5.2).

On the RTX 2080 GPU, we show 2.2X to 44.0X speedups
compared to optimized CUDA neighbor search and a 65.0x
speedup over unoptimized ray tracing-accelerated neighbor
search. The contributions of the paper are the following:

e We describe a systematic way to map neighbor search
to ray tracing, and quantitatively demonstrate two key
performance bottlenecks of such a mapping.

e We introduce two optimizations, query scheduling and
query partitioning, that mitigate the bottlenecks and
effectively exploit the ray tracing hardware.

e We provide an open-source implementation of our
algorithm, which achieves 2.2x — 65.0x speedup over
existing GPU neighbor search algorithms.
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(a) A simple scene (left) with three primitives (triangles here) and the
corresponding BVH (right). Numbers denote AABBs and primitives.
Each BVH node represents an AABB, and the leaf nodes store the

actual primitives. Each leaf node (3, 5, 7) in this example stores one
primitive, but in principle more primitives per leaf node is possible.
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(b) The (not-to-scale) timelines of tracing Ray A and Ray B on the BVH. TL
represents traversal (including ray-AABB intersection test), which executes
on the RT cores. Ray A and Ray B are spatially apart; they exercise different
traversal paths and shaders. IS shader is skipped for primitives whose
AABBs do not intersect the ray. No AH/Miss shader in this example.

Ray B
RT Cores

Fig. 1. A simple BVH example and the (not-to-scale) execution timelines of tracing two rays on the BVH. Abbreviations: RG
(Ray Generation), TL (Traversal), IS (Intersection), CH (Closest-Hit), AH (Any-Hit); see Figure 3.

2 Background

We first define the scope of neighbor search that is considered
in this paper (Section 2.1). We then briefly overview the ray
tracing algorithm (Section 2.2) pertaining to this paper, and
introduce the programming and hardware support for ray
tracing in Nvidia’s recent GPUs (Section 2.3).

2.1 Scope of Neighbor Search This Paper Targets

Dimensionality in Neighbor Search Different applica-
tions require neighbor searches in different dimensions. Due
to the curse of dimensionality, it is well-known that search
algorithms used for low dimensions (three or lower) are
different from that for high-dimensional searches [5, 41, 42].

We target neighbor search in low-dimensional (three or
lower) space, which is prevalent in engineering and science
fields (e.g., computational fluid dynamics, graphics, vision),
because they deal with physical data such as particles and
surface samples that inherently reside in the 2D/3D space.

Neighbor Search Variants Two types of neighbor search
exist: fixed-radius search (a.k.a., range search) and K nearest
neighbor search. RTNN optimizes for both types.

Fixed-radius search concerns with returning all the neigh-
bors within a fixed radius r. In practice, the maximum amount
of returned neighbors is bounded in order to bound the mem-
ory consumption and to interface with downstream tasks,
which usually expect a fixed amount of neighbors.

KNN search concerns with returning the nearest K neigh-
bors of a query. In practice, the returned neighbors are
bounded by a search radius, beyond which the neighbors
are discarded. This is because the significance of a neighbor
(e.g., the force that a particle exerts on another) is minimal
and of little interest when it is too far away.

Therefore, for both types of search we assume a search
interface that provides a search radius r and a maximum
neighbor count K, consistent with the interface of exist-
ing neighbor search libraries. We can easily emulate an un-
bounded KNN search by providing a very large r and emulate
an unbounded range search by providing a very large K.

2.2 Ray Tracing Algorithm and Data Structure

Graphics rendering algorithms are moving toward ray trac-
ing. We briefly review algorithmic components relevant to
our paper, and refer interested readers to Pharr et al. [30]
and Glassner [13] for a more comprehensive treatment.
Intersection Test The crux of ray tracing is to calculate
the closest intersection of a ray and the scene, which is
usually represented by a set of geometric primitives such as
triangles and spheres. The intersection test dominates the
rendering time [39], and is the prime target for optimization.
The intersection test is done by partitioning the primitives
in the scene. In particular, primitives are represented by
their bounding volumes, which are usually Axis-Aligned
Bounding Boxes (AABBs). The AABBs are then hierarchically
organized as a tree, which is called the Bounding Volume
Hierarchy (BVH). Figure 1a shows the BVH of a simple three-
primitive (triangles here) scene. The leaf nodes in the BVH
are the AABBs that store the actual scene primitives, and
the interior nodes are the AABBs that enclose other AABBs.
With the BVH, finding the closest hit for a ray becomes a
tree traversal problem. At every node, we test whether the
ray intersects with the AABB of that node. If the ray does not
intersect the node’s AABB, the entire subtree beneath that
node can be skipped, because all the primitives enclosed by
that AABB are guaranteed to be not intersected by the ray.
For instance, Ray A in Figure 1a does not intersect AABB 5,
so primitive 6 can be skipped. Otherwise, we further test the
ray against all the AABBs enclosed by the node. Note that
AABB 7 and primitive 8 will also be skipped after hit test
with primitive 4, which provides a closer hit than AABB 7.
When the ray reaches a leaf node, we test the ray against
all the enclosed primitives and record the closet hit point
(so far). This process continues until we have traversed the
entire tree, at which point the closet hit is reported.
Intersection Conditions It is vital to understand the
conditions under which an AABB is considered to be inter-
sected by a ray, which our algorithm relies on. Formally,
a ray is a line P(¢) parameterized by two parameters: the
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origin O and the direction vector d [36]:
P(t) =0 +1td. (1)

While in theory ¢ can take any value, providing a full line,
in practice we are often interested in only a segment of the
ray, which is described by bounding t € [tnin, tmax]. A ray
intersects an AABB if one of the following two conditions is
met. Figure 2 illustrates the two conditions.
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Fig. 2. Two conditions for ray-AABB intersection.

1. when a ray hits the bounds of the AABB (the six faces)
and the t value of hit point is within [f,,in, tmax];

2. when the origin of the ray is within the AABB, even if
the intersected t value is beyond [tmin, tmax]-

As we will show later, we rely on Condition 2 to implement
neighbor search. Condition 2 might initially seem odd. It is
necessary because when a ray originates from within an
AABB, it is possible that the ray might intersect children
AABBs that are enclosed in the current AABB. Therefore, we
must treat that ray as intersecting such that the ray is allowed
to further test against the enclosed (children) AABBs.

2.3 Hardware Support and Programming Model for
Ray Tracing on Nvidia GPUs

While using BVH to prune the search space is work-efficient,
tree traversal is irregular, exhibiting frequent control-flow
and memory divergences (e.g., per-thread stack manage-
ment). Nvidia’s recent Turing (and later) GPU architecture
is equipped with dedicated hardware, i.e., the RT cores, to
accelerate BVH tree traversal [6]. We briefly review the ar-
chitectural and programming details that are relevant to
developing neighbor search algorithms.

Hardware The RT cores are essentially tightly-coupled
accelerators sitting alongside the conventional Stream Multi-
processors (SMs). The RT cores and the SMs share the same
device memory — an important feature that allows us to, in
one program, use SMs for regular parallel computations and
use the RT cores for ray tracing.

Programming Model To leverage the RT cores, we use
the OptiX programming model [28] from Nvidia as it natively
supports the RT cores, but the same principles apply to other
graphics APIs as well (e.g., Vulkan and DirectX).

In OptiX, ray tracing starts by building the BVH; this stage
executes on the SMs and is non-programmable. Once the
BVH is built, the ray tracing pipeline is launched. OptiX
presents to programmers a fixed pipeline organization, but
exposes interfaces for user-defined programs (a.k.a., shaders
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Fig. 3. The simplified programming model of OptiX. Shaded
components are the programmable shaders. AH/CH/Miss
shaders are optional. All the shaders are compiled into one
single CUDA kernel, which executes on the SMs. Each ray
is mapped to a CUDA thread. BVH traversals, including the
ray-AABB intersection tests, are accelerated on the RT cores.

Enter leaf node

One Single CUDA Kernel

in the graphics parlance) to control different stages in the
pipeline. It is these programmable shaders that provide the
opportunity for implementing algorithms beyond rendering.
Figure 3 shows a simplified view of the pipeline, where the
shaded components are the programmable shaders.

OptiX shaders are essentially callback functions triggered
at different phases during BVH traversal. The Ray Genera-
tion (RG) shader, the entry to the pipeline, generates rays by
specifying the ray origins and directions. During traversal,
whenever leaf nodes of the BVH are encountered the Intersec-
tion (IS) shader is called, which performs the ray-primitive
intersection test. If an intersection is found, the Any-Hit
(AH) shader can be called to process the hit information or
to terminate the traversal. When the entire traversal finishes,
either the Closest-Hit (CH) shader or the Miss shader could
be called depending on whether a hit is found.

Execution Model OptiX provides a “Single Instruction
Multiple Rays” execution model: every shader in the pipeline
(Figure 3) is executed by every single ray. Under the hood,
all the shaders are compiled into one single CUDA kernel
executing on the SMs; each ray is mapped to a CUDA thread.

Figure 1b illustrates the execution timelines of tracing the
two rays in the BVH in Figure 1a. Each ray starts from the
RG shader on the SMs. The control then transfers to the
RT cores for the BVH traversal, during which if a shader
is triggered the hardware traversal is interrupted and the
control is transferred back to the SMs.

Terminology Clarification In graphics parlance, iden-
tifying the intersection of a ray and the scene is called ray
casting; ray tracing refers to recursive ray casting; the recur-
sion is necessary for realistic shading [18, 43]. In Nvidia’s
post-Turing GPUs, it is ray casting that is being accelerated
in hardware. How (and whether) to implement recursion is
left to the OptiX programmers (usually in the IS shader). In
this sense, our paper maps neighbor search to a ray casting
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(a) Original neighbor (b) Reversed neighbor search. (c) Testing if Q is in
search for query Q. P’s r-sphere.

Fig. 4. Formulating neighbor search as ray tracing. (a):
Searching points that are within r from the query point
Q; (b) Testing whether Q is within r from all other points; (c)
Testing whether Q is in P’s r-sphere can be done by tracing
a very short ray from Q. Using long rays would lead to false
positives in ray-AABB tests (e.g., Q”).

problem rather than a ray tracing problem. That is, a query
will not recursively spawn new queries.

3 Neighbor Search as Ray Tracing: Basic
Idea and Performance Characterizations

We describe how to formulate neighbor search as ray trac-
ing (Section 3.1). We then quantitatively demonstrate two
sources that dictate the performance of our algorithm (Sec-
tion 3.2), i.e., ray coherence and the AABB size, which moti-
vate our optimizations that follow.

3.1 The Basic Idea

Distance measure in Euclidean spaces is commutative: test-
ing whether a point P is within a distance r from a query
Q is equivalent to testing when Q is within the same dis-
tance r from P. Leveraging this property, we can turn the
neighbor search problem around: instead of finding all the
points within a distance 7 from a query point Q (shown in
Figure 4a), we test whether Q is within r from all other points.
This inverse test can be done by generating spheres with a
radius r around all the points, and returning points whose
spheres enclose Q (shown in Figure 4b).

Identifying r-radius spheres that enclose Q is done in two
steps. Figure 4c illustrates the idea.

e Step 1 (AABB test): For each sphere, we first gener-
ate an AABB that circumscribes the sphere (i.e., the
tightest AABB that just encloses the sphere), and test
whether Q resides in the AABB. All the spheres that
fail this test can be skipped.

o Step 2 (Sphere test): Otherwise, we further test whether
Q resides in the sphere, by comparing the distance
between Q and the sphere center P with r. If successful,
we can record P as a neighbor of Q under range search
or operate a priority queue under KNN search.
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Critically, the algorithm above can be mapped as a ray
tracing problem. This is done by building a BVH from the
AABBs of all the points and casting a ray originated from
Q. Step 1 essentially uses the ray to traverse the BVH and
discards points whose AABBs do not intersect the ray. Step
2 is a ray-primitive intersection test, where the primitives
are spheres. Step 1 is completely accelerated by the RT cores,
and Step 2 can be implemented as an IS shader in OptiX.

Casting the Ray In theory, the ray from Q can be of an
arbitrary length. However, using a ray with a long length
could lead to false positives in Step 1. Figure 4c illustrates
this scenario using query Q’, whose ray intersects with P’s
AABB (i.e., Step 1 test passes and Step 2 test is performed),
but does not reside in P’s sphere.

While this false positive does not affect the correctness, as
Step 2 will eventually reject P as a neighbor of Q’, it does lead
to redundant computation in Step 2, which is much more
expensive than Step 1 — an order of magnitude slower in our
experiments: Step 2 requires floating point multiplications
and potentially manipulates a priority queue, whereas Step
1 requires only bounds comparison.

Therefore, we generate very short rays from the queries by
setting t,,;, to be 0 and t,,4x to be a small number (e.g., 1e-16
in our implementation). With this, only rays whose origins
reside in an AABB will trigger Step 2. Note that the ray-
AABB intersection tests now will mostly rely on Condition
2 (Figure 2) since the rays are very short. With short rays,
the ray direction can be arbitrary. We set all ray directions
to [1, 0, 0] in our implementation.

Benefits Our algorithm is work-efficient, because it prunes
the search space by omitting points whose AABBs do not con-
tain the query point. It is similar, in spirit, to other tree-based
algorithms using k-d trees [25, 48] and Octrees [3, 29]. Using
BVH, however, let us leverage the ray tracing hardware in
recent GPUs to accelerate the irregular tree traversals, which
would not be available if other data structures were used.

Summary We show the pseudo-code of the range search
algorithm in Listing 1. KNN search is similar except the IS
shader would operate a priority queue.

Listing 1. Pseudo-code of range search as ray tracing.

input: points, queries, radius, K;
buildBVH(points, radius) {
foreach point in points
create an AABB {center=point; width=2*radius};

return (generate BVH from all AABBs);

/* code on the host =*/
bvh « buildBVH(points,
//launch pipeline,

radius);
starting from the RG shader
bvh) ;

traceRays (queries, K, radius,

/* shader code =*/
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L1/L2 cache hit rate and
higher SM occupancy.
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154
©

o
o2}
T

o
w
T

#of IS Calls (x10°)

0.0k
0 5 10 15 20 25 30
AABB Width
Fig. 8. The number of IS calls
increases with the width of
the AABBs in the BVH. Rays

intersect more AABBs when

RG_Shader () {
//0ptiX API to get current ray ID;
rayld <« optixGetLaunchIndex().x
ray {origin=queries[rayId], direction=[1,0,0],

tmin=0, tmax=1.e-16f};

//trigger BVH traversal with the ray

castRay (bvh,

ray, count=0);

IS_Shader () {
//called every time a ray intersects a leaf AABB
ray_origin « get the ray origin;
curPoint « get the AABB center;
if (distance(ray_origin, curPoint) < radius*2) {
record curPoint as a neighbor;
if ((count + 1) == K) calls the AH shader;
else count++;

AH_Shader () {
terminate the current ray;

Lines 3-6 show that we generate an AABB for each point
and build the BVH. All the AABBs have the same width
(twice the search radius). Lines 17-18 show that each query
is mapped to a ray. When the maximum neighbor count K is
met, the IS shader calls the AH shader to terminate the ray.

3.2 Understanding the Performance

We characterize key aspects that impact the performance of
our algorithm. The performance characterizations point out
sources of potential inefficiency and motivate optimizations
that we propose in sections that follow. The performance
results are obtained from a RTX 2080 Ti GPU. Input data used
in this section are from the popular KITTI dataset [11, 12].
See Section 6.1 for a complete experimental setup.

3.2.1 Ray Coherence Tree traversal is control-flow in-
tensive. Rays that are spatially distant (“incoherent” rays in
graphics parlance [1, 31]) will diverge when traversing the

AABBs are larger.

BVH. For instance, Ray A and Ray B in Figure 1b exercise
different traversal paths and execute different shaders.

OptiX groups every 32 adjacent rays generated in the RG
shader into a warp. This means adjacent rays, if representing
spatially-distant queries, will lead to control-flow divergence.
Even worse, for tree traversal-based algorithms, control-flow
divergences translate to lower memory access efficiency. This
is because incoherent rays access different tree nodes as they
exercise different traversal paths, increasing the working set
size and reducing chances for memory coalescing.

To demonstrate the impact of incoherent rays on neighbor
search, we perform a simple experiment, where we assign
queries uniformly to the cells in a 3D grid and compare two
different query-to-ray mappings: 1) queries are mapped to
rays according to the raster-scan order of the grid cells such
that adjacent rays represent spatially-close queries, and 2)
queries are randomly mapped to rays.

Figure 5 shows the results. To draw general conclusions,
x-axis varies the number of queries from 0.27 to 27 mil-
lions. Searching with arbitrarily-ordered rays is consistently
5 times slower compared to searching with coherent rays.
The performance difference is corroborated by the micro-
architectural behaviors. Figure 6 shows that the search with
ordered queries/rays has significantly higher L1/L2 cache hit
rate and SM occupancy compared to the incoherent search.

It is worth noting that in the current OptiX implementa-
tion, a ray could, at run time (and out of a programmer’s
hands), be moved to a different thread, warp, or an SM to im-
prove the ray coherency [27]. Our results show that even with
the run-time coherence optimization by OptiX, performance
remains sensitive to the initial query to ray mapping.

Observation 1: Search performance is sensitive to ray coher-
ence, which could be improved by mapping queries to rays such
that adjacent rays represent spatially-close queries.

3.2.2 AABB Size. The search time strongly correlates with
the AABB size in the BVH. To demonstrate the impact of
the AABB size, we fix the amount of queries and vary the
AABB width in the BVH from 0.3 to 30. Figure 7 shows that
the search time increases as the AABB width increases.
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The reason that the search time correlates with the AABB
size is that a larger AABB size means a query is enclosed by
more AABBs; thus, the corresponding ray intersects more
AABBs. More ray-AABB intersections translate to more BVH
traversals on the RT cores (step 1 in the algorithm), which in
turn leads to more IS calls on the SMs (step 2 in the algorithm).
Figure 8 confirms that the number of IS shader calls increases
with the AABB width'. Interestingly, the number of 1S shader
calls grows super-linearly. This is because the AABB volume
grows cubicly w.r.t. its width, so the number of AABBs that
a query resides in (i.e., ray intersections) grows cubicly too.

Observation 2: Search time is strongly correlated with the
AABB size, which dictates the work on both the SMs and the
RT cores. Reducing AABB size reduces the search time.

4 Spatially-Ordered Query Scheduling

Each query is mapped to a ray; a direct mapping, shown at
the top of Figure 9, maps queries to rays in the order that
the queries appear in the input, which could be arbitrary,
leading to incoherent rays. This section introduces a query
scheduling technique that tames the ray incoherence and
reduces the control-flow divergence in the algorithm.

Our intuition is to group spatially close queries such that
adjacent rays follow similar BVH traversal paths. We propose
a lightweight grouping algorithm using a simple heuristic:
queries that reside in the same leaf AABB are spatially close and
should be grouped together. In practice, a query is usually
enclosed by many leaf AABBs; any such enclosing AABB
would provide a useful hint for the query’s spatial proximity.
That is, we are not interested in a particular enclosing AABB
for a query as long as we associate an AABB with each query.

This loose definition of spatial proximity allows us to
group queries very efficiently — as another ray tracing prob-
lem! In particular, finding an enclosing AABB for a query can
be done by casting a ray for the query and immediately ter-
minating the ray once the first IS shader is called, essentially
returning the first intersecting leaf AABB of each query. This
ray tracing is very efficient because it invokes the IS shader
only once for each ray without traversing the entire BVH.

Listing 2. Pseudo-code of neighbor search with ray reorder-
ing, which is done through an initial ray tracing that termi-
nates when the first leaf AABB is found for each ray.

bvh«buildBVH (points, radius);

// initial search with K =1
FirstHitAABBs«traceRays (queries, 1, radius,
reorderQueries (queries, FirstHitAABBs);

// second search with the actual K
traceRays (queries, K, bvh);

bvh);

radius,

IStatistics about the number of traversals are hidden by OptiX. The fact
that Figure 7 and Figure 8 have the same trend means that the time per IS
execution is roughly constant, which we experimentally confirm.
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Fig. 9. Comparison between direct query-to-ray mapping
(top) and spatially-order mapping (bottom). p[] denotes the
array of points, which are also the AABB centers; q[] denotes
the array of queries, which are also the ray origins.

Listing 2 shows the pseudo-code of the search algorithm
with query grouping. Essentially we perform ray tracing
twice: the first time is with a maximum neighbor count K = 1
(Line 3) and the second time is with the actual search K (Line
6). After the first search, all the queries have a first-hit AABB
ID; queries with the same ID are then grouped together.

One issue remains: how should different groups be or-
dered? Recall that each leaf AABB represents a point in the
search space. Thus, the order of the first-hit AABBs is essen-
tially the order in which their corresponding search points
appear in the input, which could be arbitrary.

To introduce order into the first-hit AABBs, we simply sort
their corresponding points (i.e., AABB centers) in a Morton
(Z) order. This is done by the function reorderQueries()
in Listing 2, and is implemented in a CUDA kernel, which
operates on the first-hit AABB data produced by the shaders
directly in the device memory without extra memory copies.
Figure 9 compares the the spatially-ordered query-to-ray
mapping (bottom) with the direct mapping (top).

5 Query Partitioning and Bundling

This section introduces a technique to suppress BVH traver-
sals. The idea is to partition queries and build a specialized
BVH for each partition with the smallest possible AABB size
without violating correctness. We first describe the basic
idea (Section 5.1), followed by an algorithm to determine the
(near-)optimal partitioning (Section 5.2).

5.1 Query Partitioning

In our baseline algorithm, all the queries share the same BVH.
We observe, in Section 3.2.2, that the search time is strongly
correlated with the AABB size in the BVH, because larger
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stops when either the sphere boundary is reached or at
least K neighbors are found.
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cell that contains 3 points,
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(c) For KNN search, the AABB must circumscribe the
sphere that circumscribes the megacell. The AABB width
is V2a for 2D search (illustrated here) and V3a for 3D
search (as the AABB is 3D and the circumcircle becomes
the circumsphere), where a is the megacell width.

Fig. 10. Determining the megacell and AABB size used for neighbor search.

AABBs result in more traversals and IS shader calls, which
increases the search time.

Our idea is to, for each query, identify an AABB size that is
Jjust large enough to ensure correctness. In this way, instead
of using one monolithic BVH for all queries, queries are
partitioned into different partitions, each with a unique BVH
that minimizes the amount of search work for that partition.

In theory, the AABB width must be twice as the search
radius r provided by users (see Figure 4c). However, it is
possible to use smaller AABBs for a query if its K neighbors
can be found within a smaller radius. We use an iterative
method over a uniform grid to identify the proper AABB
size for a query. This is illustrated in Figure 10a.

We first create a uniform grid over the scene containing
all the search points. For each query, we then calculate the
least amount of grid cells that contain K neighbors. This
calculation is done by starting from the cell that contains
the query, and iteratively growing the cells along all six
directions (or four in the case of 2D search). The growth
stops just before the r-radius sphere boundary is reached or
at least K neighbors are found. We call the final collection
of cells a megacell. Naturally, the largest possible megacell is
the cube (square) that is inscribed by the sphere (circle).

Determining AABB Size Given the megacell of a query,
the next step is to decide the AABB size used to build the
BVH, which differs between range search and KNN search.

In range search, the AABB size can be safely set to the
megacell size. The actual search would simply return the K
neighbors from the megacell, which are guaranteed to be
within the distance r from the query Q. An additional benefit
now is that the IS shader does not have to perform the sphere
test anymore (Step 2 in Section 3.1), since any query that is
enclosed by the AABB is guaranteed to be enclosed by the
sphere. This leads to significant performance gains.

The situation is slightly more complicated for KNN search.
Even if a megacell contains K neighbors of Q, it does not
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mean the nearest K neighbors of Q are in the megacell. Fig-
ure 10b shows a counter-example where P1, which is just
outside of the megacell, is part of the 3 nearest neighbors of
Q even though the megacell contains 3 neighbors.

We can, however, guarantee that the circumscribed sphere
of the megacell will contain the K nearest neighbors of Q.
This is illustrated in Figure 10c. To guarantee correctness,
a conservative estimation would be to set the AABB width
w = V2a for 2D search (as illustrated in Figure 10c) and
w = V3a for 3D search, where a is the megacell width.

We use a simple heuristic to reduce w: assuming that the
point density is locally uniform within and around a mega-
cell, a sphere with the same volume as the megacell should
contain K neighbors of Q. Thus, we use a w = 2v/3/(47)a
(in 3D search)?. We find this heuristics to be sufficient (for
correctness) from the datasets we evaluate (Section 6.1). One
could further relax w if an application is amenable to approx-
imate neighbor search, which we discuss in Section 8.

Algorithm Summary Listing 3 shows the pseudo-code
of the search algorithm with query partitioning. Lines 1-5
calculate the megacell size for each query. In the end, the
queries are naturally split into different partitions, each with
a unique AABB size. Lines 7-10 generate a BVH for each
partition; each partition is then searched separately using
the corresponding BVH. Queries in each partition could be
further spatially-ordered as described in Section 4.

Listing 3. Pseudo-code of neighbor search with query parti-
tioning. Each partition has a different BVH.

grid < generate grid from search points;

foreach query in queries
megaCellWidth « gen megacell for query in grid;
AABBSize « megaCellWidthv2; // V3 for 3D search
partitions[AABBSize].add(query);

2The megacell volume is a®, and the sphere volume is %n’( %)3, where a
is the megacell width and w is the sphere diameter (i.e., AABB size) to be
solved for. Thus, w is 2+/3/(477)a to ensure equi-volume.
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foreach p in partitions
bvh « buildBVH(points, p.AABBSize/2);
queries = partitions[pl;

traceRays (queries, K, radius, bvh);

We implement the megacell calculation in CUDA. An im-
portant parameter is the grid resolution. Intuitively, small
grid cells lead to a more accurate megacell estimation because
the stride of each growth step is smaller, but also increase
the memory consumption. In our implementation, we use
the smallest cell size allowed by the GPU memory capacity.

5.2 Bundling the Partitions

By default, each partition is launched separately with its
corresponding BVH (as shown in Listing 3). However, this
strategy might be sub-optimal. This is because each partition
requires constructing a unique BVH. In cases where the
search time saving is smaller than the BVH construction
overhead (e.g., when the partitions are small), generating
many partitions degrades performance.

We propose an algorithm that optimally bundles partitions
together to minimize the overall search time. The idea is to
first generate as many partitions as described before, and
then decide how to combine partitions together by analyti-
cally modeling the cost of bundling partitions. The overall
ideas for KNN search and range search are the same, but
differ in details. We focus on KNN search here, and leave the
details of range search to Supplementary Material A.

Cost Model As a first-order approximation, the total
search cost T is the sum of the cost of each of the P partitions,
which in turn is the sum of the BVH construction cost (Tpyi1q)
and the actual search cost (Tseqrcn):

P
T= Z (Tbluild + Y;Iearch)' (2)
i=0

While Nvidia discloses little detail about their BVH con-
struction algorithm and implementation, we empirically find
that the BVH construction time is linearly correlated with
the number of AABBs in the BVH (see details in Supplemen-
tary Material B). We model the BVH construction time as
linearly scaling with the number of AABBs M:

Tpuita = kiM. 3)

The search cost for a partition is dictated by the number of
IS shader calls, which is a product of the number of queries
(N) and the number of IS calls per query. The number of
IS calls a query makes is equivalent to the number of leaf
AABBs that the query resides in, which in turn is the product
of the AABB volume and the point density (i.e., average
number of points per unit volume). Therefore, the search
time Teqrcn 1s modeled as:

Tsearch = kZNpS3> (4)

where S is the AABB width and p is the point density. Since
each partition’s megacell, by construction, contains just
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about K points, p can be estimated by K/C?, where C is
the megacell width of the partition.

While there are two unknown coefficients k; and k; in
our modeling, knowing their ratio is sufficient to compare
the relative costs of partitioning strategies. This ratio can
be obtained offline through profiling the BVH construction
time per AABB and the IS shader execution time per call.
On RTX 2080, this ratio is about 1:15000. Absent the offline
profiling, we fall back to the default strategy (Listing 3).

Bundling Algorithm Given the cost modeling, let us
explain why there exists an optimal bundling. The crux is
that bundling partitions increases the total search cost but
reduces the BVH construction cost.

Specifically, when we bundle a partition P; (with Nj; queries,
an AABB width of S;, a point density p;) with another par-
tition P; (with N; queries, an AABB width of S;, a point
density p j), we eliminate one unit of BVH construction cost;
meanwhile, the combined partition will have an AABB width
of max(S;,S;). Thus, the search cost of this new partition is
greater than the individual search cost of P; and P; combined
(assuming the point density does not change abruptly):

ka(Nipi + Njp;) [max(S;,$;)1° > ko(NipiS; + Njp;S3).
(5)

The goal of our bundling algorithm is to determine how
to optimally bundle the available partitions to minimize the
total cost. In theory, this is a combinatorial optimization,
which in general is intractable. Fortunately, we empirically
observe that this problem has a special structure that lends
itself to be solved efficiently at run time. We leave the proof
to Supplementary Material C, and state the conclusion below.

To find the optimal bundling, we first sort all partitions in
the ascending order of their query counts; we then start from
the last partition and linearly scan toward the first partition.
At each stop, we bundle all the partitions that have been
scanned, leave the rest unbundled, and calculate the total
cost. The bundling strategy that has the lowest cost T wins.

6 Evaluation

After describing our evaluation methodology (Section 6.1),
we show the overall speedup of RTNN (Section 6.2), followed
by teasing apart the contributions of different optimizations
(Section 6.3). Finally, we study the sensitivity of RTNN with
respect to search configurations (Section 6.4).

6.1 Evaluation Methodology

Environment We implement our algorithm in OptiX 7.1;
the entire program is compiled with nvec V11.4.48. We eval-
uate the performance on two Turing GPUs: a RTX 2080Ti
(68 RT cores, 4352 CUDA cores, 11 GB GDDR6) and a RTX
2080 (46 RT cores, 2944 CUDA cores, 8 GB GDDRG6).
Baselines We compare with four GPU baselines, which
are built and evaluated in the same environment as RTNN.
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(b) Speedups on RTX 2080Ti.

Fig. 11. Speedup of RTNN over the baselines (log-scale).
OOM denotes that the baseline ran out of memory; DNF
denotes that the baseline did not finish within the time that
would have given RTNN a 1,000 speedup.

e cUNSEARCH [15, 16] is an optimized CUDA library
used in many scientific computing applications such
as the widely popular SPlisHSPlasH fluid simulator [4].
cuNSearch has only a range search implementation.

e FRNN [45] is a drop-in replacement for (and about 10
times faster than) the KNN search in PyTorch [10]. We
instrument the code to measure just the CUDA time
without the Python wrapper overhead.

e PCLOCTREE is an octree-based CUDA implementa-
tion in Point Cloud Library (PCL) [33, 34], a widely-
used library for computational geometry, graphics, and
vision. PCLOctree is available for both KNN search and
range search (K must be 1 for KNN search).

o FASsTRNN [9] is a recent work that leverages the RT
cores for KNN search only and without the various
optimizations that we propose in this paper.

Why These Baselines? Both cUNSEarRcH and FRNN
are grid-based algorithms. The performance gains of RTNN
over them highlight the benefits of using a tree structure
(i.e., BVH) with hardware acceleration.

Similar to RTNN, PCLOCTREE also uses a hierarchical data
structure, i.e., the Octree, which is a space-partitioning struc-
ture rather than an object-partitioning structure like the
BVH. Comparing with PCLOCTREE shows the benefits of
hardware-supported object partitioning. Comparing to Fas-
TRNN quantifies the optimizations proposed in this paper.
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Datasets We use three datasets covering three domains
where neighbor search is critical. We first use the LiIDAR-
generated point clouds from the KITTI self-driving car dataset,
which is commonly used in computer vision and robotics
research [11, 12]. To evaluate the scalability, we combine
point cloud frames to obtain three final frames with a point
count of 1M, 12M, and 25M, respectively.

The second dataset consists of three 3D-scanned models
from the Stanford 3D Scanning Repository [20]: Bunny (360K
points), Asian Dragon (3.6M points), and Buddha [7] (4.6M
points), all of which are widely used for graphics research.
Finally, we use a cosmological N-body simulation dataset [24,
38] from the Millennium Simulation Project [23]. The dataset
has two traces with 9M and 10M particles (galaxies) each.

Apart from covering three representative application do-
mains where neighbor search is critical, these three datasets
also allow us to evaluate RTNN under different point dis-
tributions. Points in the KITTI self-driving car dataset are
mostly distributed in the xy-plane (the ground) and while
being confined in a very narrow z-range (height). Points in
the other two datasets occupy the entire 3D space, but point
distribution in the cosmological simulation is much more
non-uniformly than that in the 3D scanning dataset. Points in
cosmological simulation represent galaxies in the universe;
galaxy distribution is naturally non-uniform”.

6.2 Overall Performance Analysis

On RTX 2080, RTNN provides a (geomean) 2.2x and 44.0x
speedup over PCLOCTREE and CUNSEARCH, respectively,
on range search, and provides a (geomean) 3.5X and 65.0X
speedup over FRNN and FAsTRNN, respectively, on KNN
search. Figure 11a shows the per-input speedup.

We observe that: 1) the speedup increases when the num-
ber of points increases, and 2) the speedup on range search
is generally lower than that on KNN search. Let us elaborate.

Across Input Scales On the two smallest inputs (KITTI-
1M and Bunny-360K), RTNN has only limited speedup (up
to 2X) over the fastest baselines PCLOCTREE and FRNN. The
speedups on larger inputs (e.g., KITTI-12M and Buddha-
4.6M) are at least 5-10%. Figure 11b shows the results on
RTX 2080Ti; the same trend holds.

To understand why the speedup changes with the scale of
the input, Figure 12a breaks down the KNN search time on
RTX 2080 into five components: data transfer time (Data)’,
the overhead of applying optimizations (Opt), including re-
ordering and partitioning queries, time spent on generating
the BVHs (BVH), the first search to find the first-hit AABBs

30n scales of order 1 to 10 Mpc/h, the galaxy distribution is roughly hierar-
chical clustering (fractal), where 1 Mpc/h is of order the spacing between
galaxies. On scales much larger than 10 Mpc/h the matter distribution very
slowly approaches uniformity. The Millennium Simulation dataset runs 500
Mpc/h on a side and, thus, exhibits the non-uniform distribution.

“This includes times to copy data to and from the device memory. The
former is not hidden, but the latter is almost completely hidden.
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Fig. 12. Time distribution on RTX 2080.

for queries (FS), and the second (actual) search (Search).
The execution times of smaller inputs (e.g., KITTI-1M and
Bunny-360K) are dominated by non-search related tasks,
diminishing the gains from accelerating the search.

The two N-body inputs are interesting cases: they have
large numbers of points but still spend more than half of the
time on non-search related tasks. A close examination shows
that the spatial density of their points (i.e., galaxies used
in the N-body simulation) varies a lot. Thus, queries have
different megacell sizes and fall into different partitions. As
a result, RTNN spends much time generating the partitions
(Opt) and building the different BVHs (BVH).

KNN vs. Range Search We also observe that the speedup
on KNN search is generally higher than that on range search.
This is because KNN search spends more than in the actual
search than range search due to the need to manipulate a
priority queue. This time distribution difference is evident by
comparing Figure 12a and Figure 12b, which show the time
distribution for KNN search and range search, respectively.
For instance, on KITTI-12M RTNN spends 88.5% of the time
on the actual search (Search) under KNN search, which
decreases to only 63.5% under range search.

6.3 Teasing Apart Optimizations

The optimizations we propose in this paper are critical to the
performance benefits of RTNN. Using two representative
inputs, Figure 13 compares the performance of five variants
of our algorithm on RTX 2080 (KITTI-12M in Figure 13a and
NBody-9M in Figure 13b):

e NoOpt: no optimization;

e Sched.: query scheduling only (Section 4);

e Sched. + Partition: query scheduling and query
partitioning (Section 5.1);

e Sched. + Partition + Bundle: query scheduling,
partitioning, and bundling (Section 5.2);

e Oracle: assuming a priori knowledge of 1) whether to
partition, and 2) the best bundling strategy through
an offline exhaustive search (infeasible for run time).

Scheduling Comparing to NoOpt, ray scheduling im-
proves the performance by 1.8x and 5.9x on KNN and range
search, respectively, for KITTI-12M; the speedups are 4.7x
and 2.9x for NBody-9M. The speedups not only come from
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Fig. 13. Effects of our optimizations on RTX 2080.

better ray coherence but also because the overhead of find-
ing the first-hit AABBs is negligible, which is evident in
Figure 12, where the FS category is virtually invisible.

Partitioning Query partitioning is much more effective
for KNN search. On KITTI-12M, partitioning provides a
154.4% and 1.1x speedup for KNN and range search, respec-
tively, on top of ray scheduling.

Recall that query partitioning improves speed by suppress-
ing tree traversals and IS calls. KNN search needs many more
traversals (as it must find the K nearest neighbors whereas
range search terminates tree traversal whenever K neigh-
bors are found), and the cost of an IS shader call in KNN
search is (3—6X) higher than that in range search. Thus, query
partitioning is more effective to KNN search.

Interestingly, query partitioning degrades performance on
NBody-9M. As discussed early, the points in N-body simula-
tions are non-uniformly distributed, which results in a high
partitioning and BVH construction overhead (Figure 12).

Bundling Bundling provides an additional 18.8% and
18.6% performance gain on range search for the two inputs,
but has little impact on KNN search. This is because KNN
search, with its hefty costs of IS shader and traversal, typi-
cally uses all the partitions anyways (i.e., no bundling), which
our bundling algorithm accurately captures.

Overall, our bundling algorithm is effective, leading to
a performance that is within 3% of Oracle for KITTI-12M.
The Oracle for NBody-9M is achieved when partitioning is
disabled, whereas RTNN always assumes partitioning. A fu-
ture improvement to RTNN is to estimate the points’ spatial
density before deciding whether to partition.

6.4 Sensitivity Analysis

RTNN offers speedups across a range of r and K values. Using
range search on Buddha-4.6M as an example, Figure 14a and
Figure 14b show how the speedup on RTX 2080 varies with
r and K, respectively.

Sensitivity to r As r increases our speedups increase
initially, because a larger r means a larger AABB and, thus,
more search work that can be accelerated. For range search,
however, the speedups (over PCLOCTREE and CUNSEARCH)
decrease (still >1) as the search radius r exceeds 0.1. This
is because the points in Buddha are bounded in a 1% cube;
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Fig. 14. Range search speedup of Buddha-4.6M on RTX 2080
as r and K change. PCLOCTREE supports only K=1 for KNN
search, so it has only one KNN data point. The missing data
points of FASTRNN is because it did not finish within the
time that would have given RTNN a 1,000 speedup.

the search sphere under, say, r = 0.4, covers almost the
entire cube. Queries can thus quickly find neighbors under
a large r, so the search terminates quickly, in which case the
overhead of RTNN (e.g., building BVH, ray scheduling) are
more pronounced, leading to lower speedups.

Sensitivity to K As K grows, RTNN’s speedup generally
increases, because a larger K leads to more search work that
can be accelerated by RTNN. The speedup degrades when
K becomes too big (e.g., 128). We find that this is because
the bundling algorithm tends to be overly aggressive under
a larger K. We leave it to future work to investigate a better
bundling algorithm under large Ks.

7 Related Work

Section 2.1 provides an overview of neighbor search. Sec-

tion 6.1 discusses neighbor search algorithms in low-dimensional

space. This section focuses on work related to ray tracing.

RTX Beyond Ray Tracing Recent papers have started
using (Nvidia) ray tracing hardware to accelerate workloads
beyond ray tracing, including both rendering workloads [22,
46, 47] and non-rendering workloads [9, 35, 40].

Among them, Evangelou et al. [9] and Zellmann et al. [47]
are the closest to our paper; the former uses RT cores for 3D
KNN search and the latter uses RT cores for 2D range search.
This paper provides a unified neighbor search algorithm
with two generally-applicable optimization that significantly
improves the search performance. In addition, we provide a
detailed performance characterization of using ray tracing
for neighbor search (Section 3.2).

Ray Incoherence Literature is rich with techniques that
improve ray tracing performance, much of which is focused
on taming incoherent rays [1, 2, 8, 14, 31, 37], which lead to
both branch divergences and memory inefficiencies.

All existing techniques target rendering. We propose an
efficient reordering technique specialized to neighbor search,
which exposes two opportunities. First, all the rays (queries)
are known at the beginning, enabling a global reordering; in

-@ PCLOctree
- cuNSearch

o PCLOctree
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contrast, incoherent rays in rendering are dynamically gen-
erated (e.g., bounces) and, thus, are usually locally reordered.
In this sense, our ray scheduling is similar to wavefront ray
tracing [21, 37] but with only one wavefront. Second, our
rays have the same direction, so reordering involves only
the ray origin (3D) whereas reordering for rendering usually
involves both ray origin and direction (6D).

8 Conclusion and Future Work

Conventional GPUs, while initially built for rasterization-
based graphics, are now widely used as general-purpose
accelerators for parallel algorithms. Emerging ray tracing-
based GPUs beg the question: can we use the ray tracing
hardware for workloads beyond ray tracing? This paper
uses neighbor search as a case study and provides a positive
answer. We show that effectively exploiting the ray tracing
hardware requires carefully mapping work items (i.e., queries
in our case) to rays and suppressing excessive tree traversals.
The analyses and techniques in this paper provide useful
insights in broadening the utility of ray tracing hardware.

Approximate Neighbor Search Many applications do
not require exact neighbor search. RTNN is amenable to
approximation, sometimes with quantitative error bounds.
We discuss two opportunities here. First, in building a BVH
for a query (or a query partition) one could use an AABB size
smaller than what is strictly required. Using a smaller AABB
would reduce the number of neighbors returned but also
provide performance gains, since performance is sensitive
to AABB size as established in Section 3.2.2.

Second, one could elide Step 2 in the search algorithm
(Section 3.1), i.e., treating any query that resides in an AABB
as residing in the inscribed sphere. Under this approximation,
given a query range r all the returned neighbors are bound
to be within a distance V3r of the query. Speedups from
this approximation would be significant, given that Step 2 is
much more costly than Step 1.

General-Purpose Irregular Processor Given the suc-
cess of today’s GPGPUs for regular algorithms, one would
naturally wonder how a ray tracing-based GPU can be used
as a general-purpose processor for irregular applications.
Ray casting is fundamentally a tree traversal problem, which
is central to many irregular applications beyond graphics.

Realizing this vision requires us to carefully rethink the
architecture, run-time system, and programming model [49].
Hardware-wise, Nvidia’s RT cores are specialized for BVH
traversal with a specific branching logic (bounded inter-
section checking), which is not easily extensible to more
generic traversals. Meanwhile, the run-time ray scheduler,
a performance-critical component, should ideally be cus-
tomized to a particular algorithm. Our paper shows that the
default OptiX scheduler optimized for ray tracing is sub-
optimal for neighbor search. Finally, it would be interesting
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to explore programming models that free programmers from
constantly thinking about rays and geometry.
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Appendix
A Cost Model for Range Search

The BVH construction cost Tp,;;4 of range search is the same
as that of KNN search. The search cost Tyeq,cp is different
from that in KNN search. In particular, the number of IS
shader calls per query in range search is always K, as the
search terminates as soon as K neighbors are found. That is:

Tsearch = kSNK> (6)

where S is the AABB width, N is the number of queries in a
partition. ks is the time of an IS shader in range search.

ks depends on the megacell size of a partition. When the
megacell size does not touch the search sphere, the IS shader
can skip the ray-sphere intersection test, because the cor-
responding query, being inside the megacell, is guaranteed
to reside in the sphere. When the megacell size touches the
sphere, the IS shader has to perform the ray-sphere inter-
section test, because a query residing in the megacell does
not guarantee that the query will reside in the sphere. As a
result, the ratio of k; to k3 varies. On RTX 2080, the ratio is
about 20:1 in the former case and is 2:1 in the latter case.

B Modeling BVH Construction Time

Figure 15 shows how the BVH time varies with the number
of AABBs. We regress a linear fit for the correlation with an
R? of 0.996, indicating a strong linear relationship.

C Derivation of the Optimal Bundling Algorithm

We find that as the AABB size of a partition increases the
number of queries in the partition usually decreases. Fig-
ure 16 shows a typical query distribution over the AABB size
when searching about 6 millions queries in total. This makes
statistical sense, because usually only a handful of sparsely
located queries need a large AABB, whereas most of queries
should be captured by small AABBs.

With this observation, our bundling algorithm is divided
into two steps. First, we prove the following theorem:

Theorem: if the optimal number of bundles is M, (1 <
M, < M, where M is the number of available partitions),
the optimal bundling strategy is one where the (M, — 1)
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Fig. 17. Partition bundling. Under the empirical observation
that the AABB size and the query count of the partitions are
inversely correlated, bundling strategy 1 is optimal, whereas
strategy 2 is sub-optimal.

partitions that have the most queries are not bundled and
the remaining partitions are combined into one bundle.

Figure 17 illustrates it using a simple example, which has
four partitions that are sorted according to the ascending
order of their AABB sizes S, which is also the descending
order of their query counts N (based on the empirical obser-
vation above). Assuming that the optimal number of bundles
is three, the optimal bundling strategy is strategy 1 (left fig-
ure), where the first two partitions have their own bundles
and the last two partitions are combined. Its search cost is
(omitting the constant coefficient k3):

Ts(elnzrch = Nlple + szzsg + (ngg + N4p4)52 (7)

We can prove this by contradiction. Without losing gen-
erality, let us assume that strategy 2 in Figure 17, where p2
and p4 are combined, is optimal. The resultant search cost is
thus (again omitting the coefficient k;):

T(Z) = N1p15$ + N3p35§’ + (szz + N4p4)52 (8)

search
Since S; < S5 < S4, S2 = V3Cs, S5 = V3C; we have:
p2=K/C3 > K/Ci = ps. )
Combined with N, > N3, we have:
1 2)
Ts(ea)rch N Ts(earch = N3ps (SZ - Sg) — N2p, (52 - Sg) < 0('10)

Since both strategies require three BVH constructions (as
there are three bundles), strategy 2 has a higher total cost
(Tyuitd + Tsearch) than that of strategy 1, contradicting the
proposition that strategy 2 is optimal.



RTNN: Accelerating Neighbor Search Using Hardware Ray Tracing

The theorem essentially allows us to find the optimal
bundling in constant time given an M,. The problem then
is reduced to finding the optimal M,, which is a linear-time
problem: we linearly search all the possible M, values; for
each M, value (1 < M, < M), we estimate its cost accord-
ing to the bundling strategy given by the theorem (constant
time) and pick the M, that has the lowest search cost.
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