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ABSTRACT
3D perception in point clouds presents exciting opportunities to
transform the perception ability of future intelligent machines.
Point cloud algorithms, however, are plagued by irregular mem-
ory accesses, leading to massive ine�ciencies in the memory sub-
system, which bottlenecks the overall e�ciency.

This paper proposesC�������, an algorithm-hardware co-design
system that tames the irregularities in deep point cloud analytics
while achieving high accuracy. To that end, we introduce two ap-
proximation techniques, approximate neighbor search and selec-
tively bank con�ict elision, that “regularize” the DRAM and SRAM
memory accesses. Doing so, however, necessarily introduces accu-
racy loss, which we mitigate by a new network training procedure
that integrates approximation into the network training process. In
essence, our training procedure trains models that are conditioned
upon a speci�c approximate setting and, thus, retain a high accu-
racy. Experiments show that C������� doubles the performance
and halves the energy consumption compared to an optimized base-
line accelerator with < 1% accuracy loss. The code of our paper is
available at: https://github.com/horizon-research/crescent.

CCS CONCEPTS
• Computer systems organization! Neural networks; Sys-
tem on a chip; Special purpose systems.
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1 INTRODUCTION
Recent years have seen an explosive rise of intelligent machines that
can perceive, process, and understand visual data. 3D visual data,
a.k.a., point clouds, have become increasingly important. Prime
examples include localization and mapping in autonomous vehi-
cles [35, 62] and robotics [52], object detection in Augmented and
Virtual reality [56, 72], air pollutants detection [17], and geo-spatial
mapping in cultural heritage preservation [7, 25, 58].

Despite much algorithmic development, point cloud networks
are ine�cient to execute on today’s hardware architectures (e.g.,
GPUs, deep learning/stencil accelerators), most of which are de-
signed and optimized for regular 2D perception domains such as
video and image processing [27, 46]. Point cloud algorithms, how-
ever, exhibit highly irregular computation and memory behaviors
and, thus, are ill-suited for architectures built for regular kernels.

The irregularity stems from the fact that memory accesses, which
dominate the overall execution e�ciency, are input-dependent. As
a result, point cloud algorithms exhibit excessive and random (as
opposed to streaming) DRAM accesses as well as frequent SRAM
bank con�icts that stall the datapath. Many mature optimizations
such as tiling, double-bu�ering, static data layout that are com-
monly applied to regular kernels such as conventional Deep Neural
Networks (DNNs) are either ine�ective or not applicable at all.

This paper proposesC�������, an algorithm-hardware co-designed
system aiming to tame the irregularities in point cloud algorithms.
We start by understanding the sources of memory ine�ciency in
point cloud algorithms (Sec. 2), which points to two main sources.
First, point cloud algorithms spend a signi�cant amount of time (up
to 80%) [18] in explicit neighbor searches, which exhibit statically-
unknown memory access patterns. Second, the irregular neighbor
search necessitates that any subsequent operations must explicitly
aggregate data points through irregular gather operations instead
of simply indexing the memory as in conventional DNNs.

Our key idea is to impose structures on memory accesses. We
propose an approximate neighbor search algorithm (Sec. 3) that
turns irregular DRAM accesses into streaming accesses. While there
are search algorithms that preserve streaming accesses, they often
do so at a cost of increasing the search work and/or redundant
DRAM accesses by resorting to exhaustive search [44, 66]. We use
a di�erent strategy: we use an irregular tree-based algorithm to
reduce the search work, and selectively elide on-chip bank con�icts
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to tame the irregularities stemmed from tree traversals (Sec. 4). This
strategy reduces the search work and DRAM tra�c by over 40%.

Our techniques are inexact by nature. Without care, applying
them during inference leads to drastic network accuracy loss. To
retain accuracy, we propose approximation-aware training (Sec. 5).
Speci�cally, we integrate the approximation operations into train-
ing bymodeling hardware behaviors (e.g., bank con�icts) at training
time. We show that training with a generic hardware model is usu-
ally su�cient, which allows us to avoid tightly coupling training
with a particular hardware con�guration.

Our training procedure yields models that provide accuracy-vs-
performance trade-o�s at inference time without re-training. This
is achieved without increasing the network size or inference over-
head. The key is to train a network by sampling not only the input
distribution (as with conventional DNN training) but also the distri-
bution of a set of approximation knobs that dictate the accuracy-vs-
performance trade-o�. In this way, the model’s inference is condi-
tioned upon a speci�c approximate setting h, naturally presenting
a di�erent accuracy-vs-performance trade-o� for a given h.

We implement the C������� hardware in a 16nm process node
and evaluate it on a set of popular point cloud models. We show that
the optimizations introduced in C������� require virtually zero
hardware cost and, meanwhile, provide on average 1.9 ⇥ speedup
(up to 3.1 ⇥) and 1.5 ⇥ energy reduction (up to 4.2 ⇥) compared
to an optimized baseline point cloud accelerator without our opti-
mizations. Notably, the performance and energy gains are achieved
with less than 1.0% accuracy loss.

In summary, this paper makes the following contributions.

• We introduce an approximate neighbor search algorithm
and its co-designed hardware, which guarantees completely
streaming DRAM accesses while reducing the DRAM tra�c
in point cloud DNNs.

• We introduce selectively bank con�ict, a lightweight mech-
anism that avoids datapath stalls from bank con�icts and
reduces SRAM tra�c in point cloud networks.

• We propose a network training procedure that integrates
the approximate neighbor search and selective bank con�ict
into training to mitigate the accuracy loss while providing a
�exible accuracy-vs-performance trade-o� at inference time.

• We show that our optimizations collectively achieve 1.9 ⇥
speedup and 1.5 ⇥ energy reduction for a set of popular
point cloud networks compared to a baseline accelerator
while sacri�cing less than 1% accuracy.

The rest of this paper is organized as follows. We �rst character-
ize the memory ine�ciencies, both in DRAM and on-chip SRAM,
of today’s point cloud networks (Sec. 2). We then introduce two
techniques to tame the memory ine�ciencies: approximate neigh-
bor search that guarantees fully streaming DRAM accesses (Sec. 3)
and selectively bank con�ict elision, which streamlines on-chip
memory accesses (Sec. 4). We then introduce a neural network
training procedure that integrates both approximate techniques
into the training process to mitigate the accuracy loss (Sec. 5). Af-
ter describing the experimental setup (Sec. 6), we demonstrate the
e�ciency of C������� (Sec. 7). We then discuss C������� in the
broad literature (Sec. 8) before concluding the paper (Sec. 9).
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Fig. 1: A typical layer in a point cloud neural network, which
has two main stages: neighbor search and feature computa-
tion. Neighbor search in itself is highly irregular as it requires
tree traversal and is input-dependent. The feature computa-
tion requires irregular memory accesses because the input
data are from the neighbor search results.

2 MOTIVATION
We �rst brie�y describe the scope of deep point cloud algorithms
that this paper targets, and describe the two main algorithmic
stages, neighbor search and feature computation, in these algo-
rithms (Sec. 2.1). We then quantify the memory ine�ciencies in
both the neighbor search stage (Sec. 2.2) and the feature computa-
tion stage (Sec. 2.3).

2.1 Background: Deep Point Cloud Analytics
A point cloud is a collection of points, each of which is represented
by the [x, y, z] coordinates in the 3D space. Point cloud data are
becoming ever more relevant mainly because of two trends: 1) the
prevalence of convenient point cloud acquisition devices, e.g., stereo
cameras [39] and LiDAR [55], and 2) the emergence of deep learning
algorithms that can e�ectively extract semantics information from
point clouds. Today, deep point cloudmodels are routinely deployed
in real-world systems such as Waymo’s self-driving cars [8] and
Google’s Augmented Reality toolkit [1].

We focus on algorithms that directly operate on raw points,
which is by far the most common form of deep point cloud analytics.
We refer interested readers to Guo et al. [26] for a comprehensive
survey on deep learning for point clouds.

KeyOperations Generally, a point cloudDNN can be abstracted
as two stages, as shown in Fig. 1. Each input point undergoes a
neighbor search process. The neighbor search results are stored in a
matrix, where each row stores the neighbor indices of a point in the
input. The feature computation stage aggregates the neighbors of a
point, on which a transformation, usually a Multilayer Perceptron
(MLP), is applied, to generate a new output point.

Both stages are important to optimize. A recent study on �ve
popular point cloud networks shows that the execution time ratio
of the two stages varies between 1:4 to 4:1 [18], suggesting that
neither stage universally dominates.

2.2 Memory Ine�ciencies in Neighbor Search
Neighbor search in low-dimensional space (e.g., 3D) commonly uses
the K-d tree [14], which recursively subdivides the search space
into two half-spaces using axis-aligned planes. The sub-spaces are
organized as a tree, and neighbor search becomes a tree traversal
problem. Compared to exhaustive search, the space subdivision
strategy ismore e�cient as it prunes the search space: if the distance
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Fig. 2: Percentage of non-
continuous DRAM accesses.

Fig. 3: Ratio of actual DRAM
tra�c vs. the theoretical min-
imum and cache miss rate in
neighbor search.

of a query Q and the boundary of a subspace S is greater than the
search radius, all the points in S can be skipped.

While K-d tree search is inherently parallel (as di�erent search
queries are independent), tree traversals are hardware unfriendly.
In particular, the memory access patterns are known only at run
time, leading to massive ine�ciencies in both DRAM and SRAM
accesses, which we quantify below.

DRAM DRAM access ine�ciency in neighbor search is mani-
fested in two ways: non-streaming accesses and redundant accesses.
The DRAM accesses are non-streaming because the inputs (points)
are arbitrarily distributed in the search space. If two queries being
processed in parallel are spatially far-apart, they will likely exercise
di�erent parts of the K-d tree that are non-contiguous in memory.
Even within the same query, tree nodes consecutively accessed
during traversals are likely non-continuous in memory due to the
control-�ow heavy nature of tree traversal. Fig. 2 shows the per-
centage of non-continuous DRAM accesses across four popular
point cloud DNNs (see Sec. 6 for a comprehensive experimental
setup). Almost all DRAM accesses are non-continuous.

The non-streaming nature coupled with large point cloud data
size leads to redundant DRAM accesses. For instance, in the popular
KITTI dataset [20], the total points and queries in a typical scene
alone can be over tens of MBs (not considering the network weights,
activations, etc.), larger than what a mobile SoC can accommodate.
Thus, points are loaded on-chip in chunks (analogous to tiling in
conventional DNNs). Since not all data in each chunk will be used
when they are loaded due to the non-streaming access pattern, a
great amount of DRAM accesses are wasted.

Fig. 3 quanti�es the excessive DRAMaccesses and cachemiss rate
in neighbor search. The left ~-axis shows the ratio of the amount
of DRAM requests (in bytes) to the actual data theoretically needed
by the algorithm (i.e., reading each query and search point once).
The data are obtained by simulating an unrealistic 10 MB fully-
associated cache running a neighbor search on a typical KITTI-
constructed scene with about 1.2 million points. Even with this
unrealistic SRAM structure, searches in many models have about
10⇥ more DRAM tra�c than what is strictly required. Realistic mo-
bile accelerators would allocate an even smaller bu�er for neighbor
search to accommodate other data structures such as DNN weights
and activations. The right~-axis quanti�es the corresponding cache
miss rates, which are over 85%.

SRAM The on-chip memory accesses in K-d tree search are also
ine�cient because of the frequent bank con�icts. In regular kernels
such as stencil pipelines [46, 61] where the memory access pattern
is statically known, one could carefully interleave data in the SRAM

Fig. 4: Neighbor search bank
con�ict rate in Pointnet++(c)
vs. the number of banks, as-
suming 8 concurrent queries.

Fig. 5: SRAM bank con�ict
rate in aggregation, assum-
ing 16 banks and 16 concur-
rent memory requests.

banks to avoid bank con�icts [33, 71]. In contrast, on-chip memory
accesses in neighbor search are input-dependent and, thus, bank
con�icts are inevitable.

Fig. 4 quanti�es the bank con�icts by showing the percentage of
SRAM accesses that are bank-con�icted and how the percentage
varies with the number of banks. We assume an unrealistically
large 10 MB bu�er and 8 concurrent SRAM requests. With 4 banks
the bank con�ict rate is 26.9%. The bank con�ict rate is reduced
to 2.1% only when the number of banks quadruples the number of
simultaneous requests.

Using a heavily-banked SRAM design is highly undesirable. A
large number of banks requires a more costly crossbar design [9, 24],
as the crossbar area grows quadratically with the number of banks.
Using an Armmemory compiler [3], we �nd that the crossbar area is
twice as much as the memory arrays under a 32-bank con�guration.
In addition, a higher bank count also reduces the memory array
size, which increases the per-bank overhead (peripheral circuits,
BIST, redundancy) [60].

2.3 Memory Ine�ciencies in Feature
Computation

Unlike neighbor search, the DRAM accesses in the feature computa-
tion stage are completely streaming. The on-chip memory accesses,
however, are met with frequent bank con�icts.

Feature computation is broken down into two steps: 1) aggregate
the neighbors for each input point p8 using the neighbor indices
generated in the neighbor search stage, and 2) compute an output
point p> from each p8 by applying a function, usually a MLP, to the
neighbors of p8 . Step 2 is accelerated on today’s DNN accelerators.

Step 1 is analogous to fetching data from the input feature map in
a conventional DNN. However, conventional DNNs access consec-
utive feature map elements with statically-known patterns. There-
fore, a compiler lays out data in the SRAM such that a simple
single-bank, single-port memory array (using wide words) could
serve memory requests from tens or hundreds of PEs in one cycle
without stalling the PEs [2, 32, 71].

However, point cloud networks access non-consecutive memory
in this step, because the neighbors of a point can be arbitrary.
Therefore, the SRAM serving points are usually banked. Worse, the
access pattern is statically-unknown, as it depends on the neighbor
search results, which, in turn, depend on the inputs. Therefore,
bank con�icts are inevitable.
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Fig. 6: The two-level tree data structure of our neighbor
search algorithm. In the �rst stage, queries traverse the top-
tree and are assigned to a particular sub-tree in the end. In
the second stage, queries search neighbors in their assigned
sub-tree, and backtracking is limited to within the sub-tree.

Fig. 5 quanti�es the severity of bank con�icts in point aggrega-
tion by showing the percentage of SRAM accesses that are bank-
con�icted in aggregating the points. We assume a 16-bank SRAM
design with a total size of 64 KB. Across the four models, the bank
con�ict rate is at least 38.43% and can be as high as 57.27%. Increas-
ing the number of banks is undesirable as it requires a more costly
crossbar and/or a higher per-bank overhead due to the smaller
memory arrays [60].

3 FULLY-STREAMING NEIGHBOR SEARCH
ALGORITHM

We introduce our neighbor search algorithm and explain how it
fundamentally improves the DRAM access e�ciency by allowing
completely streaming memory accesses (Sec. 3.1). We then describe
the co-designed neighbor search hardware (Sec. 3.2). Finally, we
discuss the key knob in our algorithm that dictates the accuracy-
vs-performance trade-o� (Sec. 3.3).

3.1 Algorithm
Our algorithm splits the K-d tree into a top tree and a set of sub-
trees. Each top-tree leaf node is also the root node of a sub-tree.
The search is then naturally divided into two stages: a top-tree
search stage and a sub-tree search stage. The two stages themselves
are massively parallel but are serialized with each other. Fig. 6
illustrates the idea.

In the �rst stage, all the queries search the top-tree (a binary
search tree) until they reach the leaf nodes of the top-tree, at which
point the queries are assigned to the corresponding sub-trees. Con-
ceptually, each sub-tree has a queue that stores all the incoming
queries. At the end of the �rst stage, queries in the sub-tree queues
are written back to the memory in preparation for the second stage.
In actual hardware, a queue has a �xed size. Thus, the store back to
the memory is phased, as we will discuss later.

Once all the queries �nish the �rst stage, the algorithm enters the
second stage, where queries in each sub-tree are searched against

the corresponding tree. For each sub-tree, the search process is
exactly the same as that in the top-tree with a critical di�erence:
queries are allowed to backtrack when they reach a leaf node of
the sub-tree. This is necessary for a query to �nd all its neighbors.

However, we limit the backtracking to the sub-tree. The intuition
is that nodes in other sub-trees are naturally far away from the
query and thus are less likely to be neighbors. Architecturally, this
ensures that each sub-tree and each query is loaded to SRAM once
— at a cost of accuracy loss. We will discuss the accuracy implication
of this design decision in Sec. 3.3 and how to mitigate the accuracy
loss through approximation-aware network training in Sec. 5.

3.2 Hardware Design
The hardware designed to exploit the algorithm is shown in Fig. 7.
The search is carried out by a set of PEs, each of which can execute
a query independently. The PEs access data from the on-chip SRAM
that stores various data structures. The SRAM interfaces with the
DRAM through a DMA, as all DRAM accesses are streaming.

SRAM The SRAM is split into two global bu�ers and two local
bu�ers. The global tree bu�er and query bu�er are accessed by all
the PEs. Each PE is also equipped with a local result bu�er and a
local stack bu�er private to each query.

The global tree bu�er is accessed by the PEs simultaneously. To
sustain a high read bandwidth, the tree bu�er is heavily banked.
Unlike in regular kernels, bank con�icts here could not be avoided
by optimizing the data layout in the banks, because the access
pattern of the PEs is known only at run time. We will show in Sec. 4
how to mitigate the performance impact of bank con�icts.

PE Design The PE design follows the algorithm of how a query
traverses the K-d tree to search for its neighbors. As shown in the
left blown-up panel on Fig. 7, a PE is pipelined into �ve stages,
starting from reading the top of the traversal stack (RS) to fetch the
next tree node to visit (FN), followed by calculating the distance
between the query and the three node (CD), storing results (SR) is
a neighbor is found, and ended with updating the stack (US). The
pipeline stalls only when the FN stage meets a bank con�ict when
reading the global tree bu�er.

Hardware Reuse Due to the uniform traversal-based search
in both top- and sub-tree searches, the hardware is reused in both
phases. For instance, the PEs are designed with the generic traversal
logic that is agnostic to what the search tree is and what the queries
are. The US stage is skipped/bypassed in the top-tree search where
no backtracking takes place (i.e., no update to the query stack).

The SRAM is also reused between the two phases. Speci�cally,
the PE-local result bu�er is re-purposed between storing the sub-
tree queues in the top-tree search phase and storing the neighbor
results in the sub-tree search phase. The global tree bu�er is re-
purposed between storing the top-tree and storing the sub-tree. Dur-
ing top-tree search, whenever a result bu�er is full all the queries
assigned to that queue (thus far) are streamed back to the DRAM.

3.3 Accuracy and Performance Trade-o�
A key parameter that governs our algorithm is the top-tree height
(TTH). TTH must be set to ensure both the top-tree and the sub-
trees can be held in the on-chip SRAM. At the same time, TTH
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Fig. 8: Number of tree nodes
visited per query reduces as
the top-tree height increases.

Fig. 9: Number of tree nodes
skipped per query reduces as
the elision height increases.

also dictates the performance-vs-accuracy trade-o�. We explore
the implication of TTH in this section.

First, the top-tree height is dictated by the tree bu�er size. We
require that the entirety of the top-tree or a sub-tree, while is
being searched, is completely stored in the tree bu�er. This ensures
that the PE pipeline does not stall because the required data are
o�-chip. Thus, the top-tree height ⌘C must be within the range
[H + 1 � log2 (S + 1), log2 (S + 1)] to satisfy the following two
inequalities, where H is the total K-d tree height and S is the total
tree bu�er size:

2⌘C � 1  S (1)

2H�⌘C+1 � 1  S (2)

Given that a TTH is within the permissible range, a shorter
top-tree increases the neighbor search accuracy at a cost of more
computation, and vice versa. This can be explained by a �rst-order
analytical model, where the total number of nodes a query accesses
is proportional to the sum of:

(i) the number of nodes visited during forward traversal from
the root node of the top-tree to a leaf node of the sub-tree,

(ii) the number of nodes visited during sub-tree backtracking.

The cost of (i) is constant, as it depends only on the total tree
height. The cost of (ii) inversely depends on the TTH: a taller top-
tree translates to visiting fewer nodes in the sub-tree backtracking,
reducing the cost of (ii) and, by extension, the total cost. Fig. 8
quanti�es how the total number of nodes accessed per query (~-
axis) varies with the TTH (G-axis) using the average statistics of
PointNet++(c) on the KITTI dataset. As the TTH increases to 10,
only 2% of the tree nodes are accessed by a query. Visiting fewer
nodes improves the search speed but also degrades the accuracy.

An assumptionwemake, as with Tigris [66] and QuickNN [44], is
that a sub-tree can be stored completely on-chip. This is a reasonable
assumption: a typical 10 MB point cloud using a 5-level top-tree
would result in a sub-tree size of 640 KB, smaller than a typical on-
chip bu�er size found in mobile SoCs. In case of excessively large
point clouds, C������� can in theory recursively split a sub-tree;
we do not observe this need in common datasets.

3.4 E�ciency Discussion
The split-tree algorithm enables completely streaming DRAM ac-
cesses. The panel on the right of Fig. 7 shows how the di�erent
data structures are laid out in the DRAM and how they are ac-
cessed in a streaming fashion. Converting random DRAM accesses
to streaming accesses reduces the DRAM energy [6, 19], and en-
ables double-bu�ering, which improves performance because: 1)
o�-chip data accesses are overlapped with computation, and 2) data
needed by the datapath are readily available on-chip without stall.

Compared to prior neighbor search algorithms that also enable
streaming accesses such as Tigris [66] and QuickNN [44], we reduce
both the search load and DRAM tra�c. We qualitatively discuss it
here, and quantify the gains in Sec. 7.5.

First, Tigris and QuickNN use exhaustive search in the sub-trees,
whereas we retain K-d tree search in the sub-trees and thereby
reduce the total search load. Retaining K-d tree search is not an
obvious design decision, as it introduces irregular on-chip memory
accesses in the form of bank con�icts, which prior work aims to
avoid at a cost of more search work.

Our strategy is di�erent: we reduce the search work by retaining
K-d tree search and mitigate the resulting irregular on-chip memory
accesses through inference-training co-design. Speci�cally, we will
show a selective bank con�ict elision scheme to signi�cantly reduce
bank con�icts (Sec. 4), which, when coupled with an approximation-
aware training procedure (Sec. 5), retains the application accuracy.

Second, we reduce the amount of DRAM accesses compared to
Tigris and QuickNN, both of which load (and reload) a sub-tree
from DRAM whenever the corresponding query bu�er is full. We
instead �rst stage all the queries to a sub-tree in DRAM and then
process them in a batch, thus loading each sub-tree exactly once.

4 SELECTIVE BANK CONFLICT ELISION
This section addresses ine�ciencies pertaining to on-chip memory
accesses. We �rst describe our main idea of selectively eliding bank
con�icts (Sec. 4.1). We then discuss how point cloud algorithms
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proceed when bank con�icts are elided (Sec. 4.2) and the hardware
support (Sec. 4.3). Finally, we identify the key knobs that dictate
the accuracy-vs-performance trade-o� (Sec. 4.4).

4.1 Main Idea
A key requirement of the SRAM design is to feed data required by
the PEs without stalling them. Such a requirement is easy to meet
in conventional DNNs or other regular kernels, where data access
patterns are statically known and thus SRAM data layout can be
statically optimized accordingly [71]. The on-chip memory access
patterns in point cloud algorithms, however, are only dynamically
known, introducing SRAM bank con�icts that are detrimental to
overall performance.

Motivated by the error-tolerance nature of neural networks, our
idea is to dynamically and selectively ignore bank con�icts when
appropriate. That is, when multiple memory requests fall in the
same bank, instead of serializing the accesses we allow only one
request to access the SRAM; other requests return immediately
without stalling. While conceptually simple, actually realizing this
idea requires answering three questions:

(1) What happens when a bank con�ict occurs? That is, how
should the algorithm proceed without the correct data?

(2) How to support bank con�ict elision in hardware?
(3) When is it appropriate to elide bank con�icts without accu-

racy drop?
The answers to these questions depend on where a bank con�ict

takes place in the algorithm, because di�erent memory accesses re-
quest data of di�erent signi�cance. Both neighbor search stage and
feature computation introduce bank con�icts. In neighbor search,
bank con�icts are caused by accessing the tree bu�er; all other ac-
cesses are regular. In feature computation, aggregating neighbors of
a point as inputs to the MLP causes bank con�icts; SRAM accesses
incurred during MLP are regular. We now elaborate how the three
questions above are addressed in both stages.

4.2 How Algorithms Proceed with Bank
Con�icts Elision

Feature Computation To aggregate neighbors, SRAM accesses
aremade to retrieve neighbors of a point. Thus, ignoring a con�icted
access essentially ignores a point’s neighbor, in which case we must
�ll in the missing neighbors, as the subsequent MLP anticipates an
input matrix of a given size (decided at the training time).

To meet the size requirement, we propose to simply reuse the
point returned from the request that is allowed to access the bank.
The intuition is that concurrent accesses, say � and ⌫, are guaran-
teed to be requesting neighbors of the same point % [18]. Reusing
the returned data from � for ⌫ is equivalent to replicating one of
% ’s neighbors. This replication strategy is commonly done in point
cloud network design to meet the size requirement in case a neigh-
bor search does not return enough neighbors [48, 49]. Our design
essentially performs this replication in hardware, implicitly.

Neighbor Search The situation is slightly di�erent for neighbor
search, where bank con�icts happen when the PEs access the tree
nodes during tree traversal. One could use the same replication
strategy used in the feature computation stage: if accesses �1 from
PE 1 and �2 from PE 2 con�ict on the same bank, reuse the data
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Fig. 10: Supporting bank con�ict elision is trivial in hardware,
as many existing hardware structures can be reused. The
shaded/colored components are the augmentation, which is
required for each SRAM port. Only the relevant part of the
hardware is shown for simplicity. The Mode signal selects
between the neighbor search mode and the feature compu-
tation mode. The AND gate lowers the Conflict signal when
bank con�ict elision is enabled in the neighbor search stage.

returned from �1 for �2. However, this could lead to side e�ects
such as program crash, redundant computation, and in�nite loop.
For instance, when the node returned from �1 is in the part of the
tree that PE 2 has already visited, pushing �1 onto PE 2’s stack
leads to an in�nite loop or, at least, redundant traversals.

Our design simply ignores the con�icted accesses. Upon a con-
�ict, the FN stage in a PE skips the rest three pipeline stages, and
reads the next item on the stack. This is indicated by the “bypass”
signal in the PE architecture shown in Fig. 7. Algorithmically, this
is equivalent to skipping all the nodes beneath the lost node during
tree traversal. This strategy omits potential neighbors but guaran-
tees that the traversal terminates.

A potential optimization that we leave for future work is to
check whether the node returned from �1, the request allowed
to access the SRAM, is below beneath the node (in the tree) that
would have been returned from �2 if the bank con�ict were to be
observed; if so, using �1 to continue the search in %2 is guaranteed
to terminate without side e�ects. Doing so would skip fewer nodes
and potentially increase the accuracy.

4.3 Hardware Support
Eliding bank con�icts is virtually free to implement in hardware
by using many existing structures in banked SRAM design. As an
example, Fig. 10 shows a simple banked SRAM with 2 ports and 4
banks. The key to a banked SRAM is the arbitration and crossbar
logic, which detects bank con�icts and routes data from a bank
to the right port (a MUX here). For simplicity, we show only the
relevant hardware and assume a low-order interleaving, i.e., the
two least signi�cant bits in the address select a bank.

Assume both accesses from the two ports fall into Bank 0, and
Port 0 is allowed access. In the baseline SRAM, the MUX before
Port 1 would select data returned from Bank 0, but this data will be
ignored because the bank con�ict detection logic would raise the
Con�ict signal, indicating to Port 1 that a bank con�ict occurs and
the memory request is to be issued again. But, critically, the data
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returned from Bank 0 is exactly what Port 1 needs in the feature
computation stage under bank con�ict elision. We simply lower
the Con�ict signal in this case, which is accomplished by ANDing
the output of bank con�ict detection and the negation of the Elide
signal, which indicates whether bank con�ict elision is enabled.

The Mode signal operates a MUX to select between the neighbor
search mode and the feature computation mode. In neighbor search,
the original bank con�ict signal is used, except the PE will not re-
issue the memory request; instead, the PE simply continues the
search with the next item on the stack.

4.4 When to Elide Bank Con�icts?
Eliding bank con�icts returns incorrect data to the PEs and, thus,
hurts accuracy. We �nd that eliding bank con�icts in feature com-
putation leads to little to none accuracy loss whereas eliding bank
con�icts during neighbor search, without care, has signi�cant accu-
racy implications (Sec. 7.3). This is because in feature computation
the data that would have been returned (if bank con�icts were
observed) are replaced with the data returned from the con�icting
access; in neighbor search, however, eliding bank con�icts directly
skips all the computations associated with that node altogether. We
thus focus on the neighbor search stage here.

Intuitively, the accuracy loss is smaller when ignoring a memory
access made to a lower level tree node, as fewer tree nodes would
be skipped later in the traversal. Fig. 9 shows how the percentage of
skipped tree nodes (~-axis) varies with the tree level below which
bank con�icts are elided (G-axis). The statistics are averaged across
all the queries of PointNet++(c) on the ModelNet dataset, where the
total tree height is 14. When bank-con�icted accesses below level
2 are ignored, almost 100% of the tree nodes are skipped, which
degrades the model accuracy to almost zero (not shown). When the
elision level is 12, only 10% of the tree nodes are skipped.

Skipping more nodes degrades accuracy but increases the search
speed. Therefore, a natural knob that controls the trade-o� of
accuracy-vs-performance is the elision height ⌘4 , which is de�ned
as the tree level beneath which all con�icted memory accesses are
ignored. Sec. 5 will show how incorporating ⌘4 into model training
can minimize the accuracy loss while providing the accuracy-vs-
performance trade-o� without retraining.

5 APPROXIMATION-AWARE NETWORK
TRAINING

Our neighbor search algorithm and bank con�ict elision, if applied
directly on a trained point cloud DNN at inference-time, will de-
crease the accuracy sharply (Sec. 7.1). This is because the original
network is not trained with the various approximation techniques
in mind. To mitigate the accuracy drop, we propose a modi�ed
network training procedure that mitigates the accuracy loss.

The goal here is to learn a DNN that retains a high accuracy under
approximation compared to the baseline network. In particular,
we consider two approximation knobs: the top-tree height ⌘C and
the elision height ⌘4 . Brie�y, a larger ⌘C decreases accuracy but
increases the performance; conversely, a larger ⌘4 increases the
accuracy at a cost of a lower performance.

A straightforward idea is to integrate h =< ⌘C ,⌘4 > as part of
the inference such that the DNN is trained for a particular h. In
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Fig. 11: Training a point cloud network with approximate
neighbor search and bank con�ict elision. Note that the train-
ing is end-to-end di�erentiable as in conventional DNN train-
ing. The non-di�erentiable parts, neighbor search and aggre-
gation, do not participate in the gradient �ow.

essence, this is similar to �ne-tuning a compressed model to regain
the accuracy, where a network learns to adjust its weights given
the approximation introduced by a particular compression setting.

While one could train a dedicated model for each possible h and
build an ensemble, that would increase the training overhead and
deployment complexity. Instead, we propose to learn one model
that adapts to di�erent h. Mathematically, we aim to learn a DNN
distribution 5 (·, h;\ ) ⇠ � such that di�erent DNNs sampled from
the distribution � share the same model parameter \ and provide
similar accuracy given an input h (along with the input point cloud).

To that end, our training procedure augments the conventional
training with one simple extension: conventional training samples
input data; our training also randomly samples an h for each input.
During the forward propagation, h is used to modulate the neighbor
search and bank con�ict elision. In this way, the model parameter
\ is trained to accommodate the approximations introduced during
the forward inference. The training �ow is shown in Fig. 11.

In order to replay the same inference-time approximation during
training, we integrate a hardware simulator for modeling the bank
con�ict. The bank con�ict model is called by both neighbor search
and feature computation (the aggregation operation) , as Fig. 11
shows. The bank con�ict simulator takes in two parameters: 1)
⌘4 , which indicates the tree level below which bank con�icts are
elided, and 2) the hardware banking con�guration (e.g., number
of banks, bank size). We �nd that training with the exact banking
con�guration on the inference hardware yields higher accuracy,
but absent an exact hardware con�guration training with a generic
banking con�guration provides noticeable bene�ts, too (Sec. 7.3).

Finally, note that neighbor search and aggregation do not partic-
ipate in gradient descent; they simply construct inputs to the MLP
layers. Thus, the model is end-to-end di�erentiable even though
neighbor search and aggregation are not.

6 EXPERIMENTAL SETUP
Architecture Design Fig. 12 shows the overall point cloud accel-
erator, which includes three main components: a neighbor search
engine as described in Sec. 3.2, a neighbor aggregation unit, which
uses the design proposed in Mesorasi [18], and a DNN accelerator
for executing the MLPs. Without losing generality, we assume a
systolic-array-based DNN accelerator, which is con�gured to have
a 16 ⇥ 16MAC array, where each MAC unit mimics the design of
that in the TPU [31].
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Fig. 12: Overall architecture of the point cloud DNN accel-
erator, which includes three main components: a Neighbor
Search Engine, an Aggregation Unit, and a systolic array for
executing the MLPs in feature computation. The Neighbor
Search Bu�ers include all the bu�ers shown in Fig. 7.

Table 1: Evaluation models.

Application
Domains Algorithm Dataset

Classi�cation PointNet++ (c)
DensePoint ModelNet40

Segmentation PointNet++ (s) ShapeNet

Detection F-PointNet KITTI

The on-chip SRAM is partitioned to serve di�erent purposes.
The global bu�er serves the weight and activations for the systolic
array. It is con�gured to be 1.5 MB in size. The Point Bu�er is a
64 KB 16-banked bu�er serving points during aggregation. The
Neighbor Index Bu�er is sized at 12 KB with a single bank. The
Tree bu�er and the Query bu�er are sized at 6 KB and 3 KB with 4
banks and 1 bank, respectively. These two bu�ers support selective
bank elision as described in Sec. 4.3. The neighbor search engine
has 4 PEs, each with a dedicated result bu�er and a stack bu�er,
which are sized at 1.5 KB and 256 B, respectively.

Experimental Methodology We synthesize, place, and route
the datapath of the neighbor search engine, the systolic array, and
the aggregation unit using an EDA �ow consisting of Synopsys
and Cadence tools with the TSMC 16 nm FinFET technology. The
SRAMs are generated using the Arm Artisan memory compiler.
Power is estimated using Synopsys PrimeTimePX by annotating
the switching activity. We then build a cycle-accurate simulator of
the architecture with the latency of each component parameterized
from the post-synthesis results of the RTL design.

The DRAM is modeled after Micron 16 Gb LPDDR3-1600 (4
channels) according to its datasheet [5]. The DRAM energy is ob-
tained using Micron System Power Calculators [6]. On average,
the energy ratio between a random DRAM access and a streaming
DRAM access is about 3:1, and the energy ratio between a random
DRAM access and an SRAM access is about 25:1, both matching
prior work [19, 67].

Software Setup Tbl. 1 lists the four point cloud networks used in
the evaluation. To show the general applicability of our design, the
models cover a wide range of common point cloud tasks including
classi�cation, segmentation, and detection. For classi�cation, we
evaluate the classic PointNet++(c) [49] and DensePoint [37] on the
ModelNet40 dataset [65]. We use the overall accuracy as accuracy

metric. For segmentation, we evaluate PointNet++(s) [49] on the
ShapeNet dataset [15]. The metric used in segmentation is the
standard Intersection-over-Unit (mIoU) accuracy. For detection, we
evaluate F-PointNet [47] on the KITTI dataset [20] and report the
geometric mean of the IoU metric on the car class.

To obtain more competitive baselines and to ensure that the
improvements from C������� are not due to the ine�ciencies of
the network implementation, we use the versions of these mod-
els optimized by Feng et al. [18], which removes redundant MLP
computations and on average achieves 1.6⇥ speedup over the cor-
responding author-released implementations.

Baseline We compare against three baselines:

• GPU: the mobile Pascal GPU on Nvidia’s Jetson TX2 devel-
opment board [4].

• T�����+GPU: this baseline executes the neighbor search on
Tigris [66], a recent neighbor search accelerator that does not
perform approximate eighbor search and selectively bank
con�ict elision, and executes the feature computation on the
mobile Pascal GPU.

• M�������, a prior point cloud network accelerator [18] that
uses Tigris [66] for neighbor search and executes the feature
computation on a dedicated systolic-array without selec-
tively bank con�ict elision. The exact same systolic array
con�guration is used in C������� with the exception that
C������� performs selective bank con�ict elision.

Area Overhead Our accelerator has a total area of 1.55mm2, in
which the C�������-speci�c portion is almost negligible. The only
hardware extension is one that selectively elides the bank con�ict
(Fig. 10), which requires an additional MUX and an AND gate for
each port of the SRAM.

Traininig Overhead Our approximation-aware training in-
creases the training time by 38%. The main overhead is to simulate
bank con�icts, which currently is a multi-threaded CPU implemen-
tation. Using a random h does not further increase the training
overhead, since we still perform one search per inference. Note that
the training overhead is amortized across all subsequent inferences.

Variants We evaluate two variants of C������� to decouple
the contribution of the two optimizations:

• ANS performs approximate neighbor search but does not
elide bank con�icts.

• ANS+BCE performs approximate neighbor search while also
eliding bank con�icts in neighbor search and aggregation.

7 EVALUATION
We �rst show that C������� achieves similar accuracy as the base-
line (Sec. 7.1) but delivers signi�cant speedups and energy reduc-
tions (Sec. 7.2). We then provide a detailed analysis of our training
procedure and understand how its e�ectiveness varies with respect
to di�erent algorithmic and hardware con�gurations (Sec. 7.3). We
perform sensitivity study to understand C�������’s performance
and energy savings vary under di�erent settings (Sec. 7.4). Finally,
we provide an quantative comparison with prior neighbor search
accelerators (Sec. 7.5).
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Fig. 13: Accuracy comparison between the baseline models,
ANS+BCE without re-training, ANS with re-training under
⌘C = 4, and ANS+BCE with re-training under ⌘C = 4 and
⌘4 = 12.

7.1 Accuracy
We �nd that directly applying C������� optimizations without
retraining signi�cantly degrades the model accuracy. Integrating
approximation into the training process elevates the accuracy to the
baseline level. Fig. 13 compares the model accuracy between four
schemes: 1) the baseline models, 2) ANS+BCE without re-training,
3) ANS+BCE with re-training, and 4) ANS with re-training. In this
speci�c case, each re-trained model is trained speci�cally for the
approximate setting where ⌘C = 4 and/or ⌘4 = 12.

Directly applying the two optimizations at inference time de-
grades the accuracy between 27.3% to 40.5%, making the models
practically useless. Re-training regains the accuracy with an ac-
curacy drop of at most 0.9% (PointNet++(c)). In PointNet++(s),
re-training completely recovers the accuracy loss introduced in
approximation. The fact that we can almost completely recover
the accuracy loss with ANS+BCE, the most aggressive approxima-
tion setting, shows the e�ectiveness of our approximation-aware
training. The accuracy of ANS alone is slightly higher than that of
ANS+BCE, as the latter applies two approximations whereas the
former applies only one.

7.2 Performance and Energy
Using the re-trained ANS and ANS+BCE model shown in Fig. 13,
we compare C�������’s performance and energy consumption
over the baseline accelerator, shown in Fig. 14.

Speedup Fig. 14a shows the speedup of ANS and ANS+BCE
against the three baselines; all data are normalized to M�������.
Among the three baselines, T�����+GPU and GPU are much slower
than M�������, because the latter accelerates feature computation
on a systolic array.

Overall, ANS and ANS+BCE achieve a 1.7⇥ and 1.9⇥ speedup,
respectively, over M�������. Comparing the speed of ANS+BCE
and ANS shows that approximation neighbor search contributes
more to the speedup than bank con�ict elision. The speedups on
DensePoint are the highest (2.8⇥ and 3.1⇥, respectively) because
DensePoint’s time is dominated by neighbor search (81%) whereas
neighbor search takes “only” about 55% of the time in other models.

To understand the sources of speedup, Fig. 15a and Fig. 15b
show the speedup of ANS+BCE on neighbor search and on the
aggregation operation in feature computation, respectively. On
average, ANS+BCE achieves a 4.9⇥ speedup on neighbor search
and a 2.1⇥ speedup on aggregation.

Energy Savings Fig. 14b shows the energy consumption of
ANS and ANS+BCE normalized to M�������. On average, ANS

(a) Speedup. Higher is better.

(b) Normalized energy. Lower is better.

Fig. 14: End-to-end speedup and normalized energy of ANS
and ANS+BCE over the baseline.

(a) Neighbor search. (b) Aggregation.

Fig. 15: Speedup and energy savings ofANS+BCE on neighbor
search and aggregation alone.

and ANS+BCE saves 33% and 36% of the total energy, respectively.
The energy saving is mainly contributed by approximate neighbor
search rather than bank con�ict elision, because the former opti-
mizes the DRAM tra�c, which contributes more to the energy than
the SRAM tra�c, which the latter optimizes for. DensePoint, again,
has the highest energy saving because it is dominated by neighbor
search. As a comparison, T�����+GPU and GPU consume 25⇥ and
38⇥ more energy, respectively, compared toM�������.

Fig. 15a and Fig. 15b on the right ~-axes show the energy savings
on neighbor search and aggregation. DensePoint’s savings on these
two operations in isolation are on par with other networks, con�rm-
ing that its signi�cant end-to-end savings are primarily attributed
to the dominance of neighbor search in its execution time.

Tease Apart Contributions To understand the sources of en-
ergy savings, Fig. 16 decouples the memory energy savings into
four components: converting random DRAM accesses to stream-
ing accesses, DRAM tra�c reduction, SRAM tra�c reduction in
neighbor search, and SRAM tra�c reduction from aggregation. The
former two are from our neighbor search algorithm, and the latter
two are from bank con�ict elision.

Generally, themain energy saving contributor is the SRAM tra�c
reduction in neighbor search, which frequently accesses the Tree
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Fig. 16: Memory energy sav-
ing contribution.

Fig. 17: Tree node access sav-
ing and bank con�ict reduc-
tion of ANS+BCE

Fig. 18: Accuracy of ded-
icated PointNet++(c) mod-
els under di�erent top-tree
heights (⌘C ).

Fig. 19: Accuracy of dedicated
PointNet++(c) models under
di�erent elision heights (⌘4 ).

Bu�er. While the DRAM savings are relatively smaller, we expect
the DRAM savings will become more signi�cant in the future as
the point clouds grow in size.

We quantify the impact of selective bank con�ict elision (BCE) in
Fig. 17, where we show the reduction in bank con�icts (left ~-axis)
and, as a result, the reduction in the number of tree nodes visited
(right ~-axis). The results are obtained by comparing ANS+BCE
with ANS. Overall, BCE avoids over 45% of bank con�icts and
reduces 50% of tree node accesses in neighbor search. This result
explains the 1.9⇥ speedup overM������� by ANS+BCE.

7.3 Understanding the Training Procedure
We use PointNet++(c) as a representative model to drive the analy-
ses in this section. The conclusions generally hold.

Dedicated Models We �rst evaluate the accuracy of models
trained with dedicated approximation settings.

Fig. 18 shows the accuracy of PointNet++(c) trained under dif-
ferent top-tree heights (⌘C ) and then inferenced under the same ⌘C .
The setting ⌘C being 0 is the baseline model with exact search. As
the ⌘C increases, the accuracy decreases. This is because a larger
⌘C reduces the search space and, thus, it is less likely to �nd the
exact neighbors for each query. The accuracy is acceptable initially,
dropping from 89.6% to 88.8% as ⌘C increase from 0 to 4. Beyond
4, the accuracy drop becomes more signi�cant. As the top-tree
height reaches 12, the accuracy is only 84.4%. As we will shown
later, however, a higher ⌘C leads to a higher speedup, providing a
large trade-o� space.

Fig. 19 performs a similar study while varying the elision height
⌘4 . Each marker in the �gure represents a dedicated ANS+BCE
model trained with di�erent ⌘4 ranging from 4 to 14; ⌘C in this
example is �xed at 4. As ⌘4 increases, the accuracy increases. This
is because a higher elision height skips fewer tree nodes during

Fig. 20: Accuracy compar-
ison of di�erent training
schemes.

Fig. 21: Sensitivity of bank
con�ict simulation in train-
ing.

tree traversal, leading to a better search result. At a ⌘4 of 12, the
accuracy loss is only 0.8%. The accuracy loss is over 5% when ⌘4
reduces to 4, essentially ignoring almost all nodes in the sub-tree.

Mixed Training We now evaluate how a model trained by sam-
pling di�erent approximation settings adapts to di�erent approx-
imation levels at inference time. Fig. 20 compares three schemes:
1) a model trained with ⌘C = 1, 2) a model trained with ⌘4 = 6,
and 3) a model trained by random sampling ⌘C between 1 and 6 for
each input (“Mixed” in the �gure). We show their accuracy under
di�erent inference-time ⌘C .

When a dedicated model is trained with ⌘C = 1, the accuracy
signi�cantly drops when the inference-time ⌘C is greater than 1.
This is not surprising: a model trained with little approximation in
mind does not perform well when inference performs aggressive
approximation. When a dedicated model is trained with ⌘C = 6,
however, it performs reasonablywell across di�erent⌘C at inference-
time, even for ⌘C settings that are not seen in the training time.

The mixed model consistently provides higher or similar ac-
curacy compare the dedicated ⌘C = 1 model. Compared to the
dedicated ⌘C = 6 model, the mixed model is signi�cantly better
when higher accuracy is required (i.e., ⌘C  3). The accuracy is
only noticeably worse than the dedicated ⌘C = 6 model when the
inference-time ⌘C is 6, which is what the dedicated ⌘C = 6 model is
trained to do well on. The mixed model is favorable when accuracy
requirement is high, which is arguably more important than the
low-accuracy regime.

Bank Con�ict Simulation In order to integrate bank con�ict
elision into training, we simulate the bank con�icts in the forward
propagation process during training. However, at training time
the exact banking con�guration of the target hardware might be
unknown. Fig. 21 show the accuracy of training a model assuming
4 banks in the SRAM while inferencing under di�erent numbers of
banks. The accuracy beyond 8 is largely stable; the accuracy has
about 2% drop when inferencing on a 2-banked SRAM.

BCE in Aggregation vs. Neighbor Search We perform bank
con�ict elision in both neighbor search and in feature aggregation.
We �nd that the overall accuracy is insensitive to bank con�ict eli-
sion in aggregation even without re-training. Across �ve networks,
directly applying bank con�ict elision in aggregation alone (while
turning o� other approximations) results in at most 0.3% accuracy
loss. In contrast, accuracy typically drops by double digits if bank
con�ict elision is applied in neighbor search without re-training.
As discussed in Sec. 4.4, this is because in the latter case eliding
bank con�icts completely skips subsequent search operations.
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(a) Speedup sensitivity. (b) Energy sensitivity.

Fig. 22: Sensitivity of speedup and (normalized) energy to
hardware con�guration (PE and bank counts) on Point-
Net++(c).

(a) Speedup-vs-accuracy trade-o�. (b) Energy-vs-accuracy trade-o�.

Fig. 23: Accuracy vs. performance vs. energy trade-o� on
PointNet++(c) under di�erent < ⌘C ,⌘4 > combinations.

7.4 Sensitivity Study
Hardware Con�guration Fig. 22a and Fig. 22b show how C����
����’s speedup and energy vary, respectively, as the numbers of
PEs and the number of Tree Bu�er banks vary. The energy is nor-
malized to the corresponding baseline.

Naturally, the speedup is higher on less-capable baselines and
diminishes on more capable baselines (e.g. 32 PEs and 32 banks),
because performance optimizations are less important when the
hardware is faster to begin with. Note, however, that a 16-bank
memory introduces large cross-bar overhead and is generally im-
practical for mobile-grade accelerators [9, 71].

The signi�cant energy saving is consistent across di�erent hard-
ware con�gurations. Even with a 32 PE 32 bank con�guration,
C������� still saves about 27% energy on PointNet++(c). This is
because the energy is roughly proportional to the amount of work
done. Changing the hardware con�guration does not a�ect the bulk
of the work needed to be done.

ApproximationDegrees Fig. 23a and Fig. 23b show the accuracy-
vs-speedup and accuracy-vs-energy trade-o�s, respectively, with
di�erent ⌘C and ⌘4 combinations, which dictate di�erent approxi-
mation strengths. The data are reported from PointNet++(c), but
the trend generally holds. Overall, varying ⌘C from 0 to 12 and ⌘4
from 4 to 14 provide a trade-o� space of about 5% accuracy range,
2.0 ⇥ performance range, and 1.5 ⇥ energy range.

7.5 Comparison with Prior Neighbor Search
Accelerators

QuickNN [44] and Tigris [66] are two recent neighbor search ac-
celerators that both use a split-tree data structure. As discussed in
Sec. 3.4, C������� reduces both the search load and DRAM tra�c.

(a) Reduction in total tree nodes
visited from Tigris [66].

(b) DRAM access (in Bytes) reduc-
tion from QuickNN [44].

Fig. 24: Comparison with prior neighbor search accelerators.

Fig. 24a shows that the K-d tree-based search reduces the total num-
ber of tree nodes visited by 41% compared to exhaustive search. This
explains the one order of magnitude performance improvement
over the Tigris-based accelerator shown in Sec. 7.2.

QuickNN, similar toC�������, also presents a completely stream-
ing DRAM accesses — at the expense of redundant DRAM accesses,
since each sub-tree is potentially loaded onto the accelerator multi-
ple times. Comparing to a QuickNN implementation with the same
PE con�guration, Fig. 24b shows that C������� reduces the total
DRAM accesses by 48%.

Finally, we target DNN-based algorithms and, thus, can mitigate
the potential accuracy loss through end-to-end network training,
which is not available to QuickNN and Tigris; both target a non-
DNN algorithm (point cloud registration).

8 RELATEDWORK
Deep Learning for Point Clouds Point cloud algorithms are
increasingly moving toward DNNs, which has spurred recent in-
terests in accelerating point cloud networks [18, 29, 36]. Point
cloud DNNs mainly come in two forms: one that operates on raw
points [37, 48, 49, 59, 70], and the other that �rst voxelizes points
and operates on voxels, which are grid-aligned points [16, 22]. The
former requires explicitly neighbor search whereas the latter ac-
cesses neighbors through simple indexing. It is unclear whether
future point cloud algorithms will de�nitively favor one form over
the other. C������� focuses on optimizing point-based algorithms,
whose �exibility and compact data representation are shown to be
critical in many application domains [26], such as object detection,
localization (SLAM), segmentation, and classi�cation.

PointAcc [36], Point-X [69], and Mesorasi [18] are all recent
point cloud accelerators. They are fundamentally orthogonal to our
work in that they focus on accelerating the feature computation in
point cloud DNNs. For instance, Point-X and Mesorasi exploit the
spatial locality and computation redundancy, respectively. All three
use brute-force neighbor search and, thus, can directly bene�t from
the optimizations (approximate neighbor search and selective bank
con�ict elision) proposed in this paper. We show 1.9 ⇥ speedup and
36% energy reduction over Mesorasi in Sec. 7.2.

Neighbor Search This paper targets neighbor search in low-
dimensional space (2/3D), which is a fundamental building block in
many computational science and engineering �elds, where physical
objects naturally lie in 2/3D space, such as computational �uid
dynamics [30], computer graphics [68], and vision [38, 66]. Prior
work has explored both algorithmic and hardware solutions to
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accelerate neighbor search [11, 21, 28, 34, 44, 50, 63, 66], many
of which are approximate in their nature [12, 23, 28, 40, 41, 45].
We provide a quantitative comparison with QuickNN [44] and
Tigris [66], two most relevant accelerators in Sec. 7.5.

Optimizing Irregular Memory Accesses Recent work has
made signi�cant strides in domain-agnostic prefetching for irregu-
lar applications [10, 43, 57]. Our split-tree structure can be seen as
an application-speci�c prefetcher and achieves “perfect prefetching”
in that 1) o�-chip data accesses are overlapped with computation, 2)
data needed by the accelerator are readily available on-chip without
stall, and 3) no redundant DRAM accesses are needed.

Our split-tree structure also serves as an irregular tiling strategy,
akin to propagation blocking for graph algorithms [13], but the
decision as to which partition (sub-tree) a point is stored is based
on the geometric position of a point.

Approximation Techniques Our approximation techniques
exploit the inexact nature of DNNs. Selective bank con�ict elision
can be seen as a form of value approximation, bearing similarity
to such approximation in general-purpose processors [42, 51, 53,
54, 64]. However, di�erent from prior systems where the accuracy
control is empirical, we integrate approximation into the training
process; this allows us to provide statistical accuracy guarantees.

9 CONCLUSION
The mismatch between 3D perception algorithms and today’s hard-
ware designed and optimized for 2D perception will only increase
in the future, where 3D perception applications are expected to
be much more compute- and memory-intensive while at the same
time being deployed in more resource-constrained platforms such
as micro aerial vehicles.

The mismatch between 3D perception algorithms and today’s
hardware designed and optimized for 2D perception will only in-
crease in the future.C������� demonstrates an algorithm-hardware
collaborative approach toward taming the irregularities in point
cloud algorithms. The key idea behind C������� is to intention-
ally introduce approximations at both the algorithm and the hard-
ware level to reduce memory ine�ciencies (e.g., converting ran-
dom DRAM accesses to streaming accesses, selectively eliding
SRAM bank con�icts), and the mitigate the accuracy loss through
approximate-aware network retraining.
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