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of zircon δ18O values above +6.1‰ reflects 

supracrustal recycling processes, whereas low 

zircon δ18O values (<+4.5‰) require a source 

that has undergone high-temperature alteration 

or melting of source rocks that have interacted 

with fractionated meteoric waters at high paleo-

latitudes and/or paleo-elevations (Valley et al., 

2005; Bindeman, 2008). The εHf(t) composition 

of zircon can be used to assess the relative con-

tributions of primitive (mantle-derived) and con-

tinental crustal sources to magma petrogenesis 

and to calculate episodes of crustal extraction 

(Hf model age = TDM) from a depleted mantle 

source (Vervoort and Blichert-Toft, 1999; Kemp 

et al., 2007).

To test the evolving nature of Zealandia’s 

crustal architecture and the age and composition 

of the underlying lithosphere, we analyzed zir-

con from 169 samples that characterize the main 

episodes of plutonism in Zealandia’s Western 

province. This new data set includes >1500 oxy-

gen-isotope analyses (using secondary ion mass 

spectrometry) and >3550 Lu-Hf-U-Pb analy-

ses (collected simultaneously using split stream 

laser-ablation–inductively coupled plasma–mass 

spectrometry [U-Pb] and multi-collector–induc-

tively coupled plasma–mass spectrometry [Lu-

Hf]). A full description of sample preparation, 

analytical protocols, and results is provided in 

the Supplemental  Material1 and raw data for all 

zircon analyses from individual plutonic sam-

ples, sample IDs, and location information is 

provided in the Petlab database (https://pet.gns.

cri.nz/; Strong et al., 2016). To ensure analysis 

of a single domain representative of magmatic 

crystallization, all analyses were targeted to a 

single location of the zircon, guided by cath-

odoluminescence images (Fig. S1 in the Supple-

mental Material).

RECOGNITION OF A PERVASIVE 

LOW-Δ18O ISOTOPE DOMAIN

Marked differences in δ18O in zircon from 

Zealandia plutonic rocks highlight distinct litho-

spheric domains (Figs. 1B and 2A). Almost all 

plutonic rocks emplaced east of the limit of 

Paleozoic metasedimentary rocks have consis-

tently low δ18O values (Figs. 1B and 2A), with 

most within ±1‰ of the median δ18O value of 

+4.1‰ (a range from −8.1‰ to +8.9‰). Plu-

tonic rocks are Carboniferous to Cretaceous, 

with whole-rock SiO2 from 50 to 77 wt%. Low 

intrasample δ18O variability for most granitoid 

samples (Fig. 2A) supports isotopic homogeni-

zation in high-temperature melt-rich systems 

1Supplemental Material. Detailed outline of 
analytical methods, raw data for all O-isotope and 
Lu-Hf-U-Pb isotope analyses for unknowns and 
standards, and sample location information. Please 
visit https://doi .org/10.1130/GEOL.S.14417615 
to access the supplemental material, and contact 
editing@geosociety.org with any questions.

Figure 1. (A) Modern 
tectonic setting of New 
Zealand (thin black out-
lines) and spatial extent 
of Zealandia. Study area is 
delineated by thick black 
outlines. (B) Simplified 
geological map outlining 
the extent of early Paleo-
zoic metasedimentary 
terranes and Phanerozoic 
plutonic rocks and their 
δ18O zircon compositions 
(pre-Cretaceous recon-
struction that addresses 
Cenozoic Alpine fault 
displacement). East-
ern isotope domain 
includes all plutonic rocks 
emplaced east of the limit 
of Gondwanan Paleozoic 
upper- to mid-crustal 
metasedimentary rocks. 
VSMOW—Vienna stan-
dard mean ocean water.
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in the lower crust and/or upper mantle (Binde-

man, 2008). To the west of the limit of Paleozoic 

metasedimentary rocks, Cambrian-Ordovician 

to Cretaceous plutonic rocks have δ18O values 

that range from −4.7‰ to +11.3‰ (median 

of +6.8‰; Figs. 1B and 2A) and whole-rock 

SiO2 values between 47 and 78 wt%. I-type plu-

tonic rocks from this western domain typically 

have mantle-like values (+5.3‰ ± 0.9‰) from 

melting of a sediment-modified mantle source 

and/or melting of subducted oceanic crust (i.e., 

Bolhar et  al., 2008; Schwartz et  al., 2021); 

conversely, S-type (peraluminous) and A-type 

(peralkaline) plutonic rocks have δ18O values 

>>+6.1‰, consistent with significant crustal 

recycling (Hiess et al., 2015). For all plutonic 

rocks, no correlation is observed between δ18O 

and fractionation indexes (i.e., SiO2, Zr/Hf; Fig. 

S2), indicating that variability in O-Hf isotope 

compositions is not controlled by fractional 

crystallization. This new data set documents a 

widespread and internally homogeneous eastern 

isotope domain (EID) of plutonic rocks with 

anomalously low δ18O values that extends for 

>10,000 km2 (Figs. 1B and 2A). This contrasts 

with plutonic rocks emplaced in the western 

isotope domain (WID), which have mantle and 

crustal δ18O values and almost no plutonic rocks 

with δ18O zircon values <4.5‰.

Insights into the source(s) for the low-δ18O 

EID come from considering zircon Hf isotope 

compositions. Plutonic rocks from the low-δ18O 

EID have more radiogenic εHf(t) values (median 

εHf(t) = +6.1) and are tightly clustered com-

pared to those emplaced in the WID (median 

εHf(t) = +1.9, broad range of values) (Fig. 2B). 

Coupled O-Hf zircon isotope compositions 

indicate that plutonic rock compositions from 

the low-δ18O EID were controlled by melting 

of a relatively isotopically homogeneous mafic 

lower-crustal source (radiogenic εHf(t) values) 

that had experienced high-temperature hydro-

thermal alteration (responsible for the low-δ18O 

signature). Plutonic rock compositions from the 

WID are controlled by melting of a mafic lower-

crust and/or mantle source mixed with variable 

amounts of a metasedimentary source.

Magmas and zircon with δ18O values lower 

than mantle are relatively rare in the geologi-

cal record. Where present, they are primarily 

related to voluminous magmatism and elevated 

heat flux associated with hotspot and rift envi-

ronments (Wang et al., 2011; Troch et al., 2020). 

Conversely, they are rarely reported from mag-

mas emplaced within arc settings (Muñoz et al., 

2012). Mesozoic plutonic rocks with low δ18O 

(<<+4.5‰) have previously been reported in 

Fiordland, New Zealand (Bolhar et al., 2008; 

Schwartz et  al., 2021), and attributed to an 

underthrust low-δ18O source of unknown age. 

Our analysis of Cambrian-Ordovician and Car-

boniferous plutonic rocks with a low-δ18O sig-

nature demonstrates that a source for these rocks 

is at least Cambrian and likely older.

To assess the age of the lower-crustal 

source(s) in the EID, we calculated crustal res-

idence ages (TDM) (Fig. 3). A broad range of 

model ages is observed for low-δ18O plutonic 

rocks of the EID, with most TDM ages between 

ca. 1300 and 500 Ma (Fig. 3). For WID plutonic 

rocks, TDM ages range from >>2000 to 500 Ma 

(Fig. 3). We suggest that the TDM age range and 

radiogenic εHf(t) values for the EID are indica-

tive of a primitive lithospheric mafic source 

produced by melting of the depleted mantle at 

different periods between 1300 and 500 Ma. The 

isotopically homogeneous low δ18O zircon val-

ues of the EID imply widespread high-temper-

ature hydrothermal alteration of this primitive 

mafic source.

UNVEILING THE RODINIAN 

LITHOSPHERIC KEEL OF ZEALANDIA

We propose that Phanerozoic plutonic rocks 

emplaced within the low-δ18O EID of Zealandia 

were produced by partial melting of a hydrother-

mally altered Precambrian lower-crustal mafic 

source. This accounts for calculated crustal resi-

dence ages between ca. 1300 and 500 Ma, radio-

genic εHf(t), and low δ18O zircon values (Fig. 2; 

Figs. S3 and S4). A three-stage process is evoked 

to explain the formation and subsequent alteration 

of the lower-crustal Precambrian source. In the 

first stage, melting of depleted mantle between ca. 

1300 and 900 Ma produced mafic melts that pon-

ded at the base of the crust. Magmatism during 

this period occurred along an active oceanic arc 

margin prior to final suturing and accretion of the 

Rodinia supercontinent (Fig. 4A) (Li et al., 2008). 

During the second stage, melting of depleted 

mantle between ca. 800 and 500 Ma produced 

additional mafic melts that also ponded in the 

lower crust. Mantle melting during this period 

was associated with Rodinian rifting events in 

response to a mantle superplume focused beneath 

Australia–East Antarctica and Western Lauren-

tia (Fig. 4B) (Li et al., 1999, 2008). In the final 

stage, widespread hydrothermal alteration of 

the lower-crustal mafic material was synchro-

nous with Rodinian rifting (800–500 Ma) due 

to high-temperature water-magma interaction 

during plume-driven magmatism (Wang et al., 

2011). This would have been enough to impart 

the low-δ18O signature (Wang et al., 2011). How-

ever, the involvement of glacier-derived waters 

A

B

Figure 2. (A) Individual δ18O values of zircon from Zealandia plutonic rocks from the eastern 
and western isotope domains. Black symbols are δ18O zircon values from plutonic rocks of 
the South China block (Fu et al., 2013). VSMOW—Vienna standard mean ocean water. (B) Indi-
vidual zircon εHf(t) values for Zealandia plutonic rocks. Median δ18O and εHf(t) for each domain is 
represented by colored vertical bar; line thickness represents 1σ uncertainty (±0.15‰ for δ18O; 
±0.7 for εHf(t)). Analyses interpreted as metamorphic and inherited (based on spot U-Pb age) 
are not plotted. Samples (n = 169) analyzed in this study are supplemented with 61 additional 
δ18O and εHf(t) values from Hiess et al. (2015), van der Meer et al. (2018), Schwartz et al. (2021).
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along Rodinia rifting zones contributing to the 

low-δ18O signature of the source cannot be ruled 

out (Zheng et al., 2004). In either case, the O-Hf 

isotope composition of Paleozoic–Mesozoic plu-

tonic rocks in the low-δ18O EID is directly tied to 

melting of this hydrothermally altered low-δ18O 

mafic Rodinian keel.

The spatial extent of the Rodinian keel 

beyond the EID is difficult to establish. In the 

WID, any low-δ18O signature is obscured by 

magmas contaminated by Phanerozoic conti-

nental crust. The lack of Phanerozoic plutonic 

rocks with low δ18O values along the formerly 

contiguous Gondwana margin of southeastern 

Australia and Antarctica (Fig. 4C) (Kemp et al., 

2007; Yakymchuk et al., 2013) suggests either 

that these segments of Gondwana are not under-

lain by the same Rodinian lithospheric keel as 

Zealandia or that that any low-δ18O isotopic 

signal is also obscured by crustal contamina-

tion. Mantle xenoliths from the Waitaha domain 

(Fig. 4C) within Zealandia’s Eastern province 

have Re-Os melt extraction ages that support 

an underlying Paleoproterozoic cratonic mantle 

(McCoy-West et al., 2013) but not a crustal keel 

of Rodinian age as revealed in this study.

ZEALANDIA IN RODINIA 

CONFIGURATION MODELS

The continent of Zealandia was once adja-

cent to western Tasmania in the Cambrian 

(Münker and Crawford, 2000). Our data, for 

the first time, also permit a Precambrian corre-

lation to Tasmania and consequently Australia–

East Antarctica. We suggest that Zealandia was 

part of (or proximal to) the Proterozoic micro-

continental block VanDieland (which includes 

Tasmania) (Fioretti et al., 2005; Li et al., 2008; 

Cayley, 2011); the location of Zealandia in this 

context has implications for the position of 

South China (Fig. 4). In fact, the position of 

the South China block within Rodinia is contro-

versial, with two main models proposed: (1) the 

South China block occupied an external position 

along a convergent margin adjacent to Western 

Australia and northern India (Karlstrom et al., 

1999; Wang et al., 2017; Cawood et al., 2018), 

or (2) the South China block was located in the 

center of Rodinia between eastern Australia and 

Laurentia (Li et al., 1995, 1999, 2008). One of 

the pieces of evidence linking the South China 

block with northwestern India is the correla-

tion of diverse Precambrian rocks from both 

blocks with anomalously low δ18O values and 

the lack of any rocks with low δ18O values in 

Australia–East Antarctica (Wang et al., 2017). 

The low-δ18O EID in Zealandia, inherited from 

a low-δ18O Precambrian mafic source, provides 

an alternative solution (Fig. 4) and a possible 

link to the South China block. Along with the 

VanDieland microcontinent, Zealandia may be 

the “linkage” terrane between East Gondwana, 

the South China block, and Laurentia.
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