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ABSTRACT

We present a data set of >1500 in situ O-Hf-U-Pb zircon isotope analyses that document
the existence of a concealed Rodinian lithospheric keel beneath continental Zealandia. The
new data reveal the presence of a distinct isotopic domain of Paleozoic-Mesozoic plutonic
rocks that contain zircon characterized by anomalously low 80 values (median = +4.1%o)
and radiogenic €, (median = +6.1). The scale (>10,000 km?) and time span (>>250 m.y.) over
which plutonic rocks with this anomalously low-8'*0 signature were emplaced appear unique
in a global context, especially for magmas generated and emplaced along a continental mar-
gin. Calculated crustal-residence ages (depleted mantle model, T},,,) for this low-§'*0 isotope
domain range from 1300 to 500 Ma and are interpreted to represent melting of a Precambrian
lithospheric keel that was formed and subsequently hydrothermally altered during Rodinian
assembly and rifting. Recognition of a concealed Precambrian lithosphere beneath Zealandia
and the uniqueness of the pervasive low-8'*0 isotope domain link Zealandia to South China,
providing a novel test of specific hypotheses of continental block arrangements within Rodinia.

INTRODUCTION

The Neoproterozoic amalgamation and sub-
sequent breakup of the Rodinia supercontinent
were significant events in Earth’s history. How-
ever, despite consensus that Rodinia was assem-
bled at ca. 1300-900 Ma and rifted apart ca.
800-600 Ma, debate continues as to the internal
configuration of continent-sized blocks (e.g., Li
etal., 1995, 2008; Cawood et al., 2013). Central
to the Rodinia debate is the location of cratonic
blocks to the east of the Australia—East Antarc-
tica margin, with arguments that the margin
was adjacent to the western Canadian Lauren-
tian margin (Dalziel, 1991; Moores, 1991) or
the western United States Laurentian margin
(Karlstrom et al., 1999). Alternatively, it is also
hypothesized that the South China block was
positioned between Australia—East Antarctica
and Laurentia (Li et al., 1999).

Recently recognized as a distinct continent,
Zealandia—of which 94% is currently underwa-

ter—formed following Late Cretaceous breakup
of the Gondwana supercontinent (Mortimer
etal., 2017). Prior to its separation, the basement
rocks of continental Zealandia were created
by multiple episodes of terrane accretion and
arc-related magmatism along the paleo-Pacific
Gondwana margin from the Cambrian to Early
Cretaceous (Mortimer, 2004). No Precambrian
rocks are exposed onshore in New Zealand. The
oldest basement rocks of Zealandia are divided
into two provinces: the early Paleozoic Western
province, comprising metasedimentary rocks
and Paleozoic—Mesozoic intrusions, and the late
Paleozoic—-Mesozoic Eastern province, a series
of plutonic-metasedimentary terranes accreted
to the Gondwanan margin (Fig. 1) (Mortimer,
2004). The Median batholith, a long-lived arc
once part of the active Gondwanan margin,
sutures the two provinces (Mortimer, 2004). The
inferred eastern limit of Gondwanan Paleozoic
upper- to mid-crustal metasedimentary rocks

in Zealandia is well defined by linked major
ductile shear zones, marking a major crustal
boundary (Fig. 1B) (Allibone and Tulloch, 2004;
Scott et al., 2011; Klepeis et al. 2019). Previ-
ous isotopic studies focused on this boundary
demonstrate that Mesozoic Zealandia consisted
of separate crustal blocks that are isotopically
distinct (Schwartz et al., 2021). In this study,
we present in situ O-Hf-U-Pb isotopic zircon
data for Cambrian—Cretaceous plutonic rocks
throughout Zealandia that enable us to deter-
mine the middle- to lower-crustal source(s) of
these diverse isotopic domains through time.
Our results reveal for the first time that conti-
nental Zealandia is underlain by a broad Pre-
cambrian lithospheric keel, which allows us to
place Zealandia into the greater Rodinia super-
continent puzzle.

ISOTOPIC FINGERPRINTING OF
ZEALANDIA

Zircon is the foremost deep-time recorder
of Earth’s history, preserving a rich archive of
isotope information that informs on magma par-
entage and crust-mantle evolution (Valley et al.,
2005; Kemp et al., 2007). Unlike whole rocks,
zircon is highly resistant to alteration and weath-
ering, (Hoskin and Schaltegger, 2003), provid-
ing a robust record of the U-Pb age and O-Hf
isotope composition of the melts from which it
crystallized. Importantly, the 6'*0 and Lu-Hf
isotope composition of zircon is particularly
sensitive in evaluating the interaction between
crust and mantle reservoirs (Valley et al., 2005;
Kemp et al., 2007). Mantle-like zircon has an
8180 composition of +5.3%o % 0.8%0; deviation
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Figure 1. (A) Modern
tectonic setting of New
Zealand (thin black out-
lines) and spatial extent
of Zealandia. Study area is
delineated by thick black
outlines. (B) Simplified
geological map outlining
the extent of early Paleo-
zoic metasedimentary
terranes and Phanerozoic
plutonic rocks and their
§'80 zircon compositions
(pre-Cretaceous recon-
struction that addresses
Cenozoic Alpine fault
displacement). East-
ern isotope domain
includes all plutonic rocks
emplaced east of the limit
of Gondwanan Paleozoic
upper- to mid-crustal
metasedimentary rocks.
VSMOW—Vienna stan-
dard mean ocean water.

of zircon 880 values above +6.1%o reflects
supracrustal recycling processes, whereas low
zircon 880 values (<+4.5%o) require a source
that has undergone high-temperature alteration
or melting of source rocks that have interacted
with fractionated meteoric waters at high paleo-
latitudes and/or paleo-elevations (Valley et al.,
2005; Bindeman, 2008). The &y, composition
of zircon can be used to assess the relative con-
tributions of primitive (mantle-derived) and con-
tinental crustal sources to magma petrogenesis
and to calculate episodes of crustal extraction
(Hf model age = Ty, from a depleted mantle
source (Vervoort and Blichert-Toft, 1999; Kemp
et al., 2007).

To test the evolving nature of Zealandia’s
crustal architecture and the age and composition
of the underlying lithosphere, we analyzed zir-
con from 169 samples that characterize the main
episodes of plutonism in Zealandia’s Western
province. This new data set includes >1500 oxy-
gen-isotope analyses (using secondary ion mass
spectrometry) and >3550 Lu-Hf-U-Pb analy-
ses (collected simultaneously using split stream
laser-ablation—inductively coupled plasma—mass
spectrometry [U-Pb] and multi-collector—induc-
tively coupled plasma-mass spectrometry [Lu-
Hf]). A full description of sample preparation,
analytical protocols, and results is provided in
the Supplemental Material' and raw data for all
zircon analyses from individual plutonic sam-
ples, sample IDs, and location information is
provided in the Petlab database (https://pet.gns.
cri.nz/; Strong et al., 2016). To ensure analysis
of a single domain representative of magmatic
crystallization, all analyses were targeted to a
single location of the zircon, guided by cath-
odoluminescence images (Fig. S1 in the Supple-
mental Material).

RECOGNITION OF A PERVASIVE
LOW-A®0 ISOTOPE DOMAIN

Marked differences in §'*O in zircon from
Zealandia plutonic rocks highlight distinct litho-
spheric domains (Figs. 1B and 2A). Almost all
plutonic rocks emplaced east of the limit of
Paleozoic metasedimentary rocks have consis-
tently low 680 values (Figs. 1B and 2A), with
most within +1%o of the median §'*0O value of
+4.1%o0 (a range from —8.1%o to +8.9%0). Plu-
tonic rocks are Carboniferous to Cretaceous,
with whole-rock SiO, from 50 to 77 wt%. Low
intrasample §'30 variability for most granitoid
samples (Fig. 2A) supports isotopic homogeni-
zation in high-temperature melt-rich systems

'Supplemental Material. Detailed outline of
analytical methods, raw data for all O-isotope and
Lu-Hf-U-Pb isotope analyses for unknowns and
standards, and sample location information. Please
visit https://doi.org/10.1130/GEOL.S.14417615
to access the supplemental material, and contact
editing@geosociety.org with any questions.
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Figure 2. (A) Individual §'®0 values of zircon from Zealandia plutonic rocks from the eastern
and western isotope domains. Black symbols are §'®O zircon values from plutonic rocks of
the South China block (Fu et al., 2013). VSMOW—Vienna standard mean ocean water. (B) Indi-
vidual zircon g, values for Zealandia plutonic rocks. Median §"*0 and ¢, for each domain is
represented by colored vertical bar; line thickness represents 16 uncertainty (£0.15%. for §'¢0;
10.7 for g,,). Analyses interpreted as metamorphic and inherited (based on spot U-Pb age)
are not plotted. Samples (n = 169) analyzed in this study are supplemented with 61 additional
30 and ¢, values from Hiess et al. (2015), van der Meer et al. (2018), Schwartz et al. (2021).

in the lower crust and/or upper mantle (Binde-
man, 2008). To the west of the limit of Paleozoic
metasedimentary rocks, Cambrian-Ordovician
to Cretaceous plutonic rocks have %0 values
that range from —4.7%o to +11.3%0 (median
of +6.8%o; Figs. 1B and 2A) and whole-rock
Si0, values between 47 and 78 wt%. I-type plu-
tonic rocks from this western domain typically
have mantle-like values (+5.3%0 £ 0.9%o0) from
melting of a sediment-modified mantle source
and/or melting of subducted oceanic crust (i.e.,
Bolhar et al., 2008; Schwartz et al., 2021);
conversely, S-type (peraluminous) and A-type
(peralkaline) plutonic rocks have §'*0 values
>>+6.1%o, consistent with significant crustal
recycling (Hiess et al., 2015). For all plutonic
rocks, no correlation is observed between %0
and fractionation indexes (i.e., SiO,, Zr/Hf; Fig.
S2), indicating that variability in O-Hf isotope
compositions is not controlled by fractional
crystallization. This new data set documents a
widespread and internally homogeneous eastern
isotope domain (EID) of plutonic rocks with
anomalously low $'%0 values that extends for
>10,000 km? (Figs. 1B and 2A). This contrasts
with plutonic rocks emplaced in the western

isotope domain (WID), which have mantle and
crustal 880 values and almost no plutonic rocks
with §'%0 zircon values <4.5%o.

Insights into the source(s) for the low-5'*0
EID come from considering zircon Hf isotope
compositions. Plutonic rocks from the low-5'*0
EID have more radiogenic €y, values (median
€uw = +6.1) and are tightly clustered com-
pared to those emplaced in the WID (median
€ = +1.9, broad range of values) (Fig. 2B).
Coupled O-Hf zircon isotope compositions
indicate that plutonic rock compositions from
the low-8'30 EID were controlled by melting
of a relatively isotopically homogeneous mafic
lower-crustal source (radiogenic ey, values)
that had experienced high-temperature hydro-
thermal alteration (responsible for the low-5'*0
signature). Plutonic rock compositions from the
WID are controlled by melting of a mafic lower-
crust and/or mantle source mixed with variable
amounts of a metasedimentary source.

Magmas and zircon with 880 values lower
than mantle are relatively rare in the geologi-
cal record. Where present, they are primarily
related to voluminous magmatism and elevated
heat flux associated with hotspot and rift envi-
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ronments (Wang et al., 2011; Troch et al., 2020).
Conversely, they are rarely reported from mag-
mas emplaced within arc settings (Muifioz et al.,
2012). Mesozoic plutonic rocks with low §*0O
(<<+44.5%0) have previously been reported in
Fiordland, New Zealand (Bolhar et al., 2008;
Schwartz et al., 2021), and attributed to an
underthrust low-8'*0 source of unknown age.
Our analysis of Cambrian-Ordovician and Car-
boniferous plutonic rocks with a low-5'%0 sig-
nature demonstrates that a source for these rocks
is at least Cambrian and likely older.

To assess the age of the lower-crustal
source(s) in the EID, we calculated crustal res-
idence ages (Tpy) (Fig. 3). A broad range of
model ages is observed for low-6'"*0 plutonic
rocks of the EID, with most T}, ages between
ca. 1300 and 500 Ma (Fig. 3). For WID plutonic
rocks, Ty ages range from >>2000 to 500 Ma
(Fig. 3). We suggest that the T}, age range and
radiogenic ey, values for the EID are indica-
tive of a primitive lithospheric mafic source
produced by melting of the depleted mantle at
different periods between 1300 and 500 Ma. The
isotopically homogeneous low §'#0 zircon val-
ues of the EID imply widespread high-temper-
ature hydrothermal alteration of this primitive
mafic source.

UNVEILING THE RODINIAN
LITHOSPHERIC KEEL OF ZEALANDIA
We propose that Phanerozoic plutonic rocks
emplaced within the low-5'*0 EID of Zealandia
were produced by partial melting of a hydrother-
mally altered Precambrian lower-crustal mafic
source. This accounts for calculated crustal resi-
dence ages between ca. 1300 and 500 Ma, radio-
genic €y, and low 80O zircon values (Fig. 2;
Figs. S3 and S4). A three-stage process is evoked
to explain the formation and subsequent alteration
of the lower-crustal Precambrian source. In the
first stage, melting of depleted mantle between ca.
1300 and 900 Ma produced mafic melts that pon-
ded at the base of the crust. Magmatism during
this period occurred along an active oceanic arc
margin prior to final suturing and accretion of the
Rodinia supercontinent (Fig. 4A) (Li et al., 2008).
During the second stage, melting of depleted
mantle between ca. 800 and 500 Ma produced
additional mafic melts that also ponded in the
lower crust. Mantle melting during this period
was associated with Rodinian rifting events in
response to a mantle superplume focused beneath
Australia—East Antarctica and Western Lauren-
tia (Fig. 4B) (Li et al., 1999, 2008). In the final
stage, widespread hydrothermal alteration of
the lower-crustal mafic material was synchro-
nous with Rodinian rifting (800-500 Ma) due
to high-temperature water-magma interaction
during plume-driven magmatism (Wang et al.,
2011). This would have been enough to impart
the low-0'80 signature (Wang et al., 2011). How-
ever, the involvement of glacier-derived waters
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along Rodinia rifting zones contributing to the
low-8'%0 signature of the source cannot be ruled
out (Zheng et al., 2004). In either case, the O-Hf
isotope composition of Paleozoic—Mesozoic plu-
tonic rocks in the low-6'*0 EID is directly tied to
melting of this hydrothermally altered low-5'*0
mafic Rodinian keel.

The spatial extent of the Rodinian keel
beyond the EID is difficult to establish. In the
WID, any low-6'®0 signature is obscured by
magmas contaminated by Phanerozoic conti-
nental crust. The lack of Phanerozoic plutonic
rocks with low 680 values along the formerly
contiguous Gondwana margin of southeastern
Australia and Antarctica (Fig. 4C) (Kemp et al.,
2007; Yakymchuk et al., 2013) suggests either
that these segments of Gondwana are not under-
lain by the same Rodinian lithospheric keel as
Zealandia or that that any low-5'30 isotopic
signal is also obscured by crustal contamina-
tion. Mantle xenoliths from the Waitaha domain
(Fig. 4C) within Zealandia’s Eastern province
have Re-Os melt extraction ages that support
an underlying Paleoproterozoic cratonic mantle
(McCoy-West et al., 2013) but not a crustal keel
of Rodinian age as revealed in this study.

ZEALANDIA IN RODINIA
CONFIGURATION MODELS

The continent of Zealandia was once adja-
cent to western Tasmania in the Cambrian
(Miinker and Crawford, 2000). Our data, for
the first time, also permit a Precambrian corre-
lation to Tasmania and consequently Australia—
East Antarctica. We suggest that Zealandia was

Tow (Ma)

part of (or proximal to) the Proterozoic micro-
continental block VanDieland (which includes
Tasmania) (Fioretti et al., 2005; Li et al., 2008;
Cayley, 2011); the location of Zealandia in this
context has implications for the position of
South China (Fig. 4). In fact, the position of
the South China block within Rodinia is contro-
versial, with two main models proposed: (1) the
South China block occupied an external position
along a convergent margin adjacent to Western
Australia and northern India (Karlstrom et al.,
1999; Wang et al., 2017; Cawood et al., 2018),
or (2) the South China block was located in the
center of Rodinia between eastern Australia and
Laurentia (Li et al., 1995, 1999, 2008). One of
the pieces of evidence linking the South China
block with northwestern India is the correla-
tion of diverse Precambrian rocks from both
blocks with anomalously low 6'*0 values and
the lack of any rocks with low %0 values in
Australia—East Antarctica (Wang et al., 2017).
The low-6'30 EID in Zealandia, inherited from
a low-8'80 Precambrian mafic source, provides
an alternative solution (Fig. 4) and a possible
link to the South China block. Along with the
VanDieland microcontinent, Zealandia may be
the “linkage” terrane between East Gondwana,
the South China block, and Laurentia.
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