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Abstract

®

CrossMark

Spiking neural network (SNN) in future neuromorphic architectures requires hardware devices
to be not only capable of emulating fundamental functionalities of biological synapse such as
spike-timing dependent plasticity (STDP) and spike-rate dependent plasticity (SRDP), but also
biodegradable to address current ecological challenges of electronic waste. Among different
device technologies and materials, memristive synaptic devices based on natural organic
materials have emerged as the favourable candidate to meet these demands. The
metal—insulator-metal structure is analogous to biological synapse with low power
consumption, fast switching speed and simulation of synaptic plasticity, while natural organic
materials are water soluble, renewable and environmental friendly. In this study, the potential of
a natural organic material—honey-based memristor for SNNs was demonstrated. The device
exhibited forming-free bipolar resistive switching, a high switching speed of 100 ns set time and
500 ns reset time, STDP and SRDP learning behaviours, and dissolving in water. The intuitive
conduction models for STDP and SRDP were proposed. These results testified that honey-based
memristive synaptic devices are promising for SNN implementation in green electronics and

biodegradable neuromorphic systems.

Keywords: spiking neural network, neuromorphic systems, memristor, biodegradable,
spike-timing dependent plasticity, spike-rate dependent plasticity, natural organic material

(Some figures may appear in colour only in the online journal)

1. Introduction

High energy efficiency of biological nervous systems drives
the development of spiking neural networks (SNNs) which
offer more energy efficient deep learning. However, one chal-
lenge for SNN implementation in future neuromorphic sys-
tems is the demand of hardware, i.e. artificial synaptic devices

“ Author to whom any correspondence should be addressed.
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which are the building block of SNNs, with not only the func-
tionality of emulating biological synapses and realizing fun-
damental synaptic plasticity such as spike-timing dependent
plasticity (STDP) and spike-rate dependent plasticity (SRDP),
but also biodegradability to address current ecological chal-
lenges of electronic waste. STDP and SRDP play the most
important roles in the development and refinement of neuronal
circuits during brain development [1-3]. They are responsible
for learning processes in the brain and retaining new informa-
tion in neurons, and serve as the synaptic weight modification

© 2022 0P Publishing Ltd
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rule for SNNSs [4] via learning protocols, for example, the fam-
ous Hebbian learning rule that ‘those who fire together, wire
together’ [5]. Technologies including two terminal memris-
tors and three-terminal transistors based on inorganic, polymer
and natural organic materials have been proposed for artifi-
cial synaptic devices [6—15]. Among them, memristive devices
based on natural organic materials such as protein and polysac-
charide have inspired research interest due to their high stor-
age density, fast switching speed, low power consumption and
analog to biological synapse while combined with the advant-
ages of biodegradable, environmentally friendly, renewable
and abundant in nature.

In our recent work, we have developed memristors based on
honey, a natural material containing mainly monosaccharides,
disaccharides and trisaccharides. These honey-based memrist-
ive devices successfully demonstrated [16, 17] bipolar resist-
ive switching characteristics and imitated synaptic plasticit-
ies such as synaptic potentiation and depression, short-term
and long-term memory, spatial summation and shunting inhib-
ition, paired-pulse facilitation, high-pass synaptic filtering. In
this study, honey-based memristor was fabricated and their
switching speed, STDP and SRDP learning behaviours, and
solubility in water were characterized for the first time. The
intuitive conduction models for STDP and SRDP were pro-
posed. Our work laid a foundation for making use of natural
organic materials based artificial synaptic devices for green
electronics and implementation of SNNs in biodegradable
neuromorphic systems.

2. Experimental

The honey based memristors were fabricated by a bottom-
up process into a metal-insulator-metal (MIM) structure with
dried honey film as the resistive switching layer. Schematic of
the process flow is shown in figure 1(a). A 2.5 x 2.5 cm? glass
slide was used as a substrate and cleaned in an ultrasonic bath
by acetone, isopropyl alcohol and deionized (D.1.). water for
10 min in each solution. A 200 nm thick Cu film was deposited
by sputtering on the glass slide and used as the bottom elec-
trode. Commercial honey was mixed carefully with D.I. water
for a 30% concentration by weight till no visible honey crys-
tals in the final honey solution, and then stored in a vacuum
desiccator for 1 h to remove air bubbles. The honey solution
was spin-coated on the Cu/glass substrate at 1000 rpm for 90 s,
followed by baking on a hotplate at 90 °C for 9 h in air. After
baking, a part of the Cu film was oxidized into Cu,O. Our pre-
vious study [17] showed that the thickness of the dried honey
film after this spin rate and baking temperature/time was about
2.5 pm. Finally, an array of 200 nm thick Cu top electrodes
with circular patterns of 200 um diameters was deposited by
sputtering on the honey film through a stencil mask to com-
plete the fabrication of Cu/honey/Cu,O memristor devices.
All electrical tests were performed on a probe-station at
room temperature in air. Resistive switching was measured
with voltage sweep applied on the Cu top electrode and
ground on the bottom Cu,O electrode using a semiconductor
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Figure 1. (a) Schematic of process flow for Cu/honey/Cu,O
memristor: (i) deposition of Cu on glass substrate, (ii) after Cu
deposition, (iii) formation of honey film and Cu,O/Cu BE,

(iv) deposition of Cu TE through a shadow mask, (v) finished
device. (b) Bipolar resistive switching characteristics. Icc: current
compliance to protect device from breakdown in the SET process.
(c) Endurance test in a DC switching sweep mode at a read voltage
of 0.15 V. (d) Retention tests under a continuous read voltage stress
of 0.15 V.
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characterization system. Transient, STDP and SRDP beha-
viours were characterized with voltage pulses applied by an
arbitrary function generator and measured by an oscilloscope.
In STDP measurements, identical rectangular-shaped voltage
pulses (£0.8 V, 20 ms) with different time intervals of 20 ms,
25 ms, 30 ms, 35 ms, 40 ms, 100 ms, 150 ms and 200 ms were
applied on the top Cu electrode and bottom Cu,O electrode.
In SRDP measurements, voltage spike trains with 30 repetit-
ive pulses (1 V, 20 ms) and different frequencies of 0.5 Hz
and 25 Hz were applied on the top Cu electrode to compare
the current response.

3. Results and discussions

Resistive switching behaviours of the Cu/honey/Cu,O mem-
ristor were characterized with typical /-V curves shown in
figure 1(b). The device exhibited bipolar resistive switching
characteristics with positive SET (V) voltage and negative
RESET voltage (Vieset), but without forming process. These
behaviours are consistent with our previously reported [16]
results. The Ve is similar, 1.1 V vs 1 V, while V. is slightly
smaller, 1.2 V vs 1.8 V. This result translates to a smaller read
memory window but at the same time a much lower opera-
tion power. The endurance cycling test results by repetitive
sweeping operation at a read voltage of 0.15 V are shown in
figure 1(c). In 200 endurance cycles, the memristor retained
conductance and reproduced resistive switching without sig-
nificant current change in both high resistance state (HRS)
and low resistance state (LRS). The retention was conducted
to evaluate the non-volatile property as shown in figure 1(d)
using 0.15 V as the read voltage. The memristor showed good
retention characteristics up to 10* s without serious degrada-
tion in both HRS and LRS.

The schematic circuit diagram for characterization of the
switching speed of Cu/honey/Cu,O memristor is shown in
figure 2(a). A load resistor R of 100 {2 was connected in
series with the device as a voltage divider and current lim-
iter. The device was triggered in pulse mode [18] to test resist-
ive switching in a short timescale. The input SET and RESET
voltage pulses (3.2 V/5 ps and —1.6 V/5 us) were applied
with output voltage pulse on the Cu/honey/Cu,O memris-
tor measured. Current in the device was calculated by the
voltage drop on the load resistor. Transient responses of res-
istive switching in SET and RESET process are illustrated in
figures 2(b) and (c), with the switching speed defined by the
SET and RESET time. The SET time is defined by the time it
takes for device to transit from HRS to LRS in the SET pro-
cess, which is characterized by the time delay between input
and output voltage pulses. The RESET time is determined by
the time for device to transit from LRS to HRS in the RESET
process, which is demonstrated by the pulse width of the out-
put voltage pulse. As shown in figures 2(b) and (c), the SET
and RESET time were 100 ns and 500 ns, respectively. Such
switching speed is comparable to other reported memristors
such as Ag/pectin/indium tin oxide (ITO) [19] and emerging
metal oxide [20, 21] resistive switching memories.
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Figure 2. (a) Schematic diagram of the test setup for switching
speed measurement. Transient response in (b) SET and (c¢) RESET
process with Cu/honey/Cu,O memristor triggered by input voltage
pulse. The SET and RESET time was extracted from the delay time
and output voltage pulse width, respectively.

As shown in figure 3(a), Cu/honey/Cu,O memristor has
a metal-insulator-metal (MIM) structure which resembles
the biological synapse, with the top Cu electrode analog-
ous to the axon terminal of the pre-neuron, the bottom
Cu,O electrode to the dendritic spine of the post-neuron and
the honey film to the synapse cleft. 'The STDP process is
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Figure 3. STDP learning implementation in Cu/honey/Cu,O
memristor. (a) Schematic diagram of Cu/honey/Cu,O memristor
analogous to a biological synapse, with synaptic action potentials
mimicked by voltage pulses applied on the electrodes. Presynaptic
pulse is before (blue) or after (red) postsynaptic pulse. (b) Change
of synaptic weight Aw with relative timing At of the presynaptic
and postsynaptic pulse to demonstrate potentiation and depression
effect. Six devices were tested under 0.8 V and 0.6 V peak voltages,
with maximum, minimum and average Aw plotted.

closely correlated with the relative timing of action poten-
tials (or spikes) of pre- and postsynaptic neurons. The syn-
aptic weight increases or decreases when the presynaptic
spike reaches the synapse a few milliseconds before or
after the postsynaptic spikes, which strengthens or weak-
ens the synaptic connection and leads to potentiation or
depression of the synapse, respectively. In STDP measure-
ment, identical rectangular-shaped voltage pulses (£0.8 V,
20 ms) with different time intervals were applied on the
top Cu electrode and bottom Cu,O electrode to emulate
pre- and postsynaptic spikes respectively and modulate con-
ductance of the honey film. Excitatory postsynaptic current
and synaptic weight were mimicked by the current in the
Cu/honey/Cu, O memristor. The change of the synaptic weight
Aw is defined by AwW = (Iager — Tvefore )/ Tbefore X 100% =
(Gafler - Gbefore)/ Gbefore x 100% [22]7 where Ibefore and / after
are currents and Gpefore and Gger are conductance in the mem-
ristor before and after pre- and postsynaptic voltage pulses
(Vore and Vo) were applied. A total of six devices were tested
under 0.8 V and 0.6 V peak voltages, with the maximum, min-
imum and average Aw plotted as a function of the relative
timing Ar of the applied voltage pulses shown in figure 3(b).

Vi ® Cuion . Vi
pre e Cuatom

(M ® (h) @ 0

Figure 4. Schematic voltage waveforms and intuitive conduction
models for STDP of Cu/honey/Cu,O memristor. (a) Positive At
when presynaptic voltage pulse V. is ahead of postsynaptic
voltage pulse Vost, and voltage pulse on the memristor Vy is the
difference between Vpre and Vipost, VM = Vipre— Vpost. (b) Initial state
of the memristor in off-state. (¢c)—(e) Redox of Cu ions and atoms in
the honey film and conductive path formed by Cu filaments under
positive V. (f) Negative Ar when presynaptic voltage pulse Ve is
behind postsynaptic voltage pulse Vpost, With VM = Vpre—Vpost.

(g) Initial state of the memristor in on-state. (h)—(j) Rupture of Cu
filaments to breakdown the conductive path under negative V. The
red area in Vv contributes to the change in synaptic strength. The
arrows indicate the draft direction of Cu ions under electric field.

At = thos — tpre is the time interval between the beginning
of the postsynaptic spike and the beginning of the presynaptic
spike. At is positive (negative) when voltage pulse on the top
Cu electrode is ahead (behind) of the voltage pulse on the
bottom Cu,O electrode. Results in figure 3(b) showed poten-
tiation and depression behaviours, and with the decrease of
the relative time At between V. and V., potentiation and
depression effects were enhanced. These characteristics agree
with STDP in biological synapses. Due to the digital switching
nature of Cu/honey/Cu,O memristor as shown in figure 1(b),
the pulsing voltage was limited. Above a 0.8 V peak voltage
no STDP characteristics were obtained from the devices. Our
recent study found that the top electrode metals play a crit-
ical role to achieve digital and analog switching. With analog
switching, a larger range of pulsing voltages can be applied.
A comprehensive study on the effect of peak voltage and time
interval on different devices with analog switching is under
investigation.

Figure 4 depicts the schematic voltage waveforms and
intuitive conduction models for STDP of the Cu/honey/Cu,O
memristor. The presynaptic voltage—and postsynaptic
voltage pulses (0.8 V, 20 ms) were designed so that each
single pulse could not affect the memristor’s conductance.
When they overlapped, a voltage drop on the memristor,
VM = Vpre—Vpost, Was generated with the amplitude suffi-
ciently large to modulate the memristor’s conductance. As
shown in figure 4(a), when V. was before Vo, Vv was
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positive, with amplitude larger than V.. As discussed in our
previous study [16], with such positive voltage on the top Cu
electrode, Cu electrode was oxidized into Cu cations (Cut
and Cu’t) which diffused into the honey film and drifted
toward the bottom Cu,O electrode under the electric field
(figure 4(c)). When arriving at the Cu,O surface, Cu cations
were reduced back to Cu atoms and nucleate on the Cu,O
surface (figure 4(d)). This process continued and Cu atoms
accumulated and self-assembled into Cu filaments to form
a metallic path (figure 4(e)) which reduced the memristor’s
conductance and led to synaptic potentiation. As shown in
figure 4(f), when V. was after Vo, Vv Was negative, with
amplitude larger than V... With this negative voltage pulse
applied on the top Cu electrode, Cu cations moved toward the
top Cu electrode to reduce to Cu atoms and assembled back
on the Cu surface, and the faradaic current and joule heat-
ing gradually dissolved Cu filaments in the initial state of the
memristor (figure 4(g)) and ruptured the conductive path [16],
as in figures 4(h)—(j), which increased the memristor’s con-
ductance and led to synaptic depression. Furthermore, with
the decrease of the relative time At between Ve and Vo
till the pulse width of 20 ms, the overlapped (red) area in Vi
increased and it increased the formation (when positive) or
rupture (when negative) of the conductive path and therefore
enhanced potentiation and depression effect, as shown by the
change of Aw with Az in figure 3(b).

SRDP is another important synaptic learning function in
human neural networks especially for brain cognitive beha-
viours [23, 24]. In SRDP process, the synaptic weight is fre-
quency dependent since it is modulated according to the fir-
ing frequency (rate) of presynaptic spikes between neurons.
A higher rate or frequency leads to synaptic potentiation and
memory effects. Unlike STDP test in which stimulation was
applied on both top and bottom electrodes (pre- and post-
synaptic neurons), voltage pulses in SRDP test were applied
only on the top Cu electrode (presynaptic neuron) to mimic
presynaptic spikes with current response in the memristor
emulating the synaptic weight. The time-dependent current
response of Cu/honey/Cu, O memristor is shown in figure 5(a)
when a positive voltage spike train (amplitude: 1 V, fre-
quency: 0.5 Hz, pulse width: 20 ms) with 30 repetitive stimu-
lation pulses was applied on the top Cu electrode. The current
decayed instantaneously after each stimulation pulse, indicat-
ing that no potentiation occurred. When stimulus frequency
of the voltage spike train increased to 25 Hz, as shown in
figure 5(b), it was observed that the magnitude of the currents
increased, indicating a synaptic potentiation with increased
synaptic weight. Following the positive voltage spike train,
a negative voltage spike train of 30 repetitive pulses (amp-
litude: —0.8 V, frequency: 0.5 Hz, pulse width: 20 ms) was
applied to modulate the synaptic weight of the honey memris-
tor. The obtained currents demonstrated synaptic depression
behaviour by magnitude of currents decreasing. As shown in
figure 5(d), when stimulation pulse with low frequency was
applied on the memristor, only weak and instable conductive
path by Cu filaments was formed in the honey film, there-
fore the conductance was lower and memristor relaxed back
to its initial off-state after voltage pulse. When consecutive
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Figure 5. SRDP learning implementation in Cu/honey/Cu,O
memristor and intuitive conduction models. (a) Current response
(blue) showed no potentiation when the frequency of the
presynaptic spike train (red) was 0.5 Hz. (b) Synaptic potentiation
and depression occurred when frequency increased to 25 Hz,
indicating that the synaptic weight is frequency or rate dependent.
(c) Initial state of the memristor in off-state. (d) Weak Cu filaments
formed by single voltage spike. (e), (f) Extended Cu filaments
formed by consecutive voltage spikes.

voltage pulses in the spike train with a higher frequency were
applied, extended Cu filaments were formed (figures 5(e) and
(f)), which resulted in increased conductance of the honey film
and therefore an increased current. Biological synaptic spikes
between neurons are at frequencies of 1-10 Hz [25]. Our tested
STDP and SRDP functions with inherent self-adaption beha-
viours to relative timing and firing frequency testified that the
time and frequency required for spikes are not a limitation,
indicating the potential of honey-based memristor for spike
neural network and neuromorphic system with a higher fre-
quency than the biological systems. Recently a new hybrid
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Figure 6. Photographs showing dissolution of honey and lift-off of
Cu top electrodes in D.I. water at room temperature. Agitation was
applied by shaking the container and water to speed up the
dissolution process. (a) Initial sample after fabrication. After
immersed in D.I. water for (b) 0 min, (¢) 1 min, (d) 2 min, (e) 3 min
and (f) after honey completely dissolved and sample was taken out
of D.I. water and dried by nitrogen gas flow.

CMOS-memristive circuit [26, 27] was proposed to emulate
a number of biological synaptic functions including STDP
and SRDP and generate BCM-like behaviours. In our future
work, we will perform experiment on honey-based memris-
tor using the hybrid circuit to realize SRDP for showing the
BCM rule.

One of the advantages of natural organic materials based
memristor is the degradability over time due to their solubil-
ity in water, which makes them environmentally friendly. The
dissolution experiment was carried out by immersing Cu/hon-
ey/glass in D.I. water at room temperature. In order to clearly
show honey dissolution process and improve the contrast of
the top circular Cu electrodes, the sample has no bottom Cu, O
film. A set of evolution images was collected during dissolu-
tion process and shown in figure 6. The honey active switch-
ing layer was fully dissolved by reacting with water even
though it experienced a 9 h baking at 90 °C when forming the
honey film. Since Cu also does not dissolve in water, Cu top
electrodes were lifted off from the sample indicating that the
honey film dissolved in water. For honey-based memristor to
be used in green electronics and degradable neuromorphic sys-
tems, Cu electrodes need to be replaced by other dissolvable
metals such as Mg or W [28, 29]. The resistive switching and
synaptic behaviours of Mg/honey/Mg memristors are under
investigation.

In this study, the mechanisms responsible for STDP and
SRDP were proposed by only considering the redox of Cu
top electrode and Cu filament formation and rupture, without
the potential contribution from Cu,O in the bottom electrode.
Recently we have also fabricated honey-based memristor on
ITO bottom electrode [17] with demonstration of memristive
characteristics and synaptic behaviours. The results indicate
that honey is an active resistive switching layer. However, it
has been reported [30] that Cu,O is also an effective resist-
ive switching material therefore it could also contribute to the
resistive switching and synaptic properties when it is a part
of the bottom electrode in the honey based memristor. This is
an important investigation and requires more comprehensive
studies in the future work.

4. Conclusion

In summary, a memristor with active resistive switching layer
formed by a honey film was fabricated and characterized. The
device demonstrated bipolar resistive switching with a fast
switching speed of 100 ns SET time and 500 ns RESET time,
comparable with other reported resistive switching devices.
The honey-based memristor successfully emulated STDP and
SRDP, two important synaptic learning functions in biolo-
gical neurons. The honey film was soluble in water, exhibiting
biodegradability of the memristor. All these characteristics
demonstrated the potential of honey-based memristive syn-
aptic devices for energy efficient SNNs in biodegradable neur-
omorphic systems, which are promising to address the chal-
lenges of power consumption and electronic wastes faced by
conventional Si-based computing systems.
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