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Abstract

We consider point-to-point last-passage times to every vertex in a neighbourhood of
size SN at distance N from the starting point. The increments of the last-passage
times in this neighbourhood are shown to be jointly equal to their stationary versions
with high probability that depends only on 8. Through this result we show that (1) the
Airy, process is locally close to a Brownian motion in total variation; (2) the tree of
point-to-point geodesics from every vertex in a box of side length §N** going to a
point at distance N agrees inside the box with the tree of semi-infinite geodesics going
in the same direction; (3) two point-to-point geodesics started at distance N7* from
each other, to a point at distance N, will not coalesce close to either endpoint on the
scale N. Our main results rely on probabilistic methods only.
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1 Introduction

Planar last-passage percolation (LPP) belongs to the KPZ universality class where
models of random surface growth exhibit height and transversal fluctuation exponents
of order 1/3 and 2/3, respectively. The different models in the KPZ universality class
are believed to have the same limiting behaviour under this scaling. The LPP with
exponential weights belongs to the set of models in the KPZ universality class that
are exactly solvable, or integrable. For models in this group, one can obtain closed
form expressions for their prelimiting statistics. Coupling this with techniques from
combinatorics, representation theory and random matrix theory, one can take the limits
of the prelimiting expressions to obtain the statistics of the limiting object. By the
KPZ universality conjecture, these statistics should be valid for all models in the KPZ
universality class.

One of the interesting questions about the model involves its prelimiting local
fluctuations. To make this more concrete, let G be the last-passage time between the
points (0, 0) and x. Define

Ly = Gv.n+y — G vy (1.1)

@ Springer



Local stationarity in exponential last-passage percolation

If |x], |y| = O(1), then LY is close to a stationary cocycle called the Busemann
function [17]. In fact, these stationary cocycles are defined as, roughly speaking, the
limits when N is taken to infinity in (1.1). Busemann functions extend the stationary
LPP process to the whole lattice Z> and play a major role in the study of infinite
geodesics.

The main contribution of this paper is the total variation convergence of L" to the

Busemann function when |x|, |y| < §N %, first N — oo and then § — 0. Moreover,
the results are quantitative; we show that the decay of the error is polynomial in §. We
stress that this cannot be obtained simply from the “crossing lemma” (Lemma B.2)
which says that difference of geodesics along an edge is monotone in the starting point
of the geodesics. Indeed, to compare the LPP increments to those of the stationary LPP
one must tweak the intensity of the stationary LPP by order of N ~3 50 that the error of
the approximation along each edge is of the order of N 3 as well. Therefore a simple

union bound over N 3 edges gives N SN~5 = N3 and will not work. In a recent work,
Fan and Seppildinen [12] obtained a coupling of different Busemann functions using
queueing mappings. We use new insights about this coupling to obtain a result we call
local stationarity. Our other results are applications of local stationarity to questions
about the Airy, process and geodesics.

LPP can be viewed as a 1 4+ 1 dimensional growing surface, and also as a Markov
process that takes values in the space of continuous functions. Using the 1:2:3 KPZ
scaling, the conjectural limit of this Markov process is believed to be the KPZ-fixed
point [26]. An extension of this limiting object was shown to exist recently in [9]. In
[23] Johansson showed the convergence of the spatial fluctuations to the Airy, process
minus a parabola and that the limit is continuous. As was mentioned previously, the
fact that LPP has stationary counterparts whose spatial fluctuations are that of a simple
random walk suggests thatlocally, the Airy, process should have a Brownian behaviour
around a fixed point.

Known results on the Brownian behaviour of the Airy, process fall roughly into
two types:

1. onasmallinterval [0, €] the Airy, process should be close to the Brownian motion
in some sense;

2. on the interval [0, 1] the law of the Airy, process can be related to that of the
Brownian motion.

Under point (1), Pimentel [29] showed, in the LPP setup, that locally the Airy,
process converges weakly to a Brownian motion in the Skorohod topology. The proof
relied on the comparison lemma, also called the crossing lemma (Lemma B.2). The
idea is that the spatial increments of the last-passage time can be compared with high
probability to stationary increments with a small drift. In [26, Theorem 4.14], Matetski,
Quastel and Remenik showed that the Airy, process has Brownian regularity and its
finite-dimensional distributions converges to those of two-sided Brownian motion. In
[30] (that contains results under both points (1) and (2)) Pimentel extended the results
in [29], though the convergence is still in the weak sense.

Under point (2), Corwin and Hammond [7] showed that the Airy line ensemble
(the top line of which is the Airy, process) minus a parabola, conditioned on its
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values at the boundaries, has the distribution of Brownian bridges conditioned not
to meet. Building on these ideas, Calvert, Hammond and Hedge obtained through
the Brownian LPP [6,18], among other things, control on the moment of the Radon-
Nikodym derivative of the law of the Airy line ensemble with respect to the Brownian
bridge and a modulus of continuity of the Airy, process. In LPP on the lattice, control
on the modulus of continuity of the prelimiting spatial fluctuations was obtained in [1]
by Basu and Ganguly. In [10] Dauvergne and Virdg, using better insight on the sampled
Airy line ensemble, managed to show that the Airy line ensemble can be approximated,
in total variation, by Brownian bridges, conditioned on not intersecting, without the
conditioning on the lower boundary that appears in the Brownian Gibbs property.

Our work compares the Airy, process with Brownian motion on a small interval. Our
result on the Brownian regularity of Airy, process belongs to point (1). In Theorem
2.2 we show that the Airy, process is close in total variation to a rate 2 Brownian
motion. This improves similar results under point (1). Our Corollary 2.3 shows that
the regularity of the Airy, process cannot be better than that of Brownian motion. This
corollary can also be deduced from [6, Theorem 1.1].

Next we apply local stationarity to study two aspects of the behaviour of geodesics,
their behaviour close to the endpoints which we refer to as stabilization, and the
coalescence of point-to-point geodesics started from two points whose distance scales
with N. Let us start with the latter.

The first suite of methods for studying geodesics of growth models came from
Newman and co-authors in planar first-passage percolation (FPP) [20,21,25,28]. FPP
is another random growth model believed to be in the KPZ universality class. These
methods were then used by Ferrari and Pimentel [14] and Coupier [8] to show that in
exponential LPP, for a fixed direction, from any point on the lattice there exists a.s. a
unique infinite geodesic and all these geodesics coalesce.

The first quantitive coalescence result in LPP came from Pimentel [29], who showed
that two semi-infinite geodesics with the same direction, coming out of two points
distance k apart, coalesce after about k”/2 steps. The tail of the decay was conjectured
to be of exponent —2/3. The proof used the distributional equality of the geodesic
tree and its dual tree, and drew on existing bounds on the exit point of a geodesic in
stationary LPP, derived with probabilistic proofs. The question of showing that the
geodesics will not coalesce too far compared to k i.e. a matching upper bound, was
left open. This question was then taken up by Basu, Sarkar and Sly [3] who proved
the —2/3 exponent for the lower bound and a matching upper bound. In that paper, the
authors also proved a polynomial upper bound for point-to-point coalescence. In [33]
Seppildinen and Shen studied coalescence of semi-infinite geodesics. Without relying
on integrable probability methods, they reproved the results of [3] up to a logarithmic
error and obtained new upper and lower bounds of matching order on abnormally fast
coalescence. In [36] Zhang proved the optimal bounds of —2/3 for coalescence of two
point-to-point geodesics from two points at distance k. The proof relies on diffusive
concentration of geodesic fluctuations coming from integrable probability.

The first coalescence question we consider is the following: if 7! and 72 are the

geodesics from (0, 0) and (0, N %), respectively, that terminate at (N, N), what is the
typical distance of the coalescence point from the three endpoints? Results of that
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flavour were proved in [19] and [2] for Brownian LPP, and in [13] for Poissonian LPP.
We show in Theorem 2.8 and Theorem 2.9 that the coalescence point will not be too
close, on the macroscopic scale N, to any of the end points. We emphasize that the
methods used in [29] and [33] cannot be used here, as they rely on a well understood
duality principle for stationary LPP geodesics [32].

We turn to stabilization. Let 7 be the geodesic from (0, 0) to (N, N). Since the
work of Johansson in [22] it is known that the fluctuations of & around the diagonal
at any macroscopic point should be of order N7°. If 1 < [ <« N, as the geodesic
is expected to have a self-similarity property, one would expect the fluctuation of &
in a square of size /2 around the origin to be of order 3. A proof of this was given
in [3, Theorem 3] with diffusive concentration bounds. In [18] Hammond considered
the regularity of the spatial fluctuation around the point (I, /) for the Brownian LPP
while for the lattice LPP with exponential weights this was proved in [1, Theorem 3]
by Basu and Ganguly.

The behaviour of semi-infinite geodesics is somewhat better understood because
they can be defined locally in terms of the Busemann functions, through the minimum
gradient principle [16,17,32]. This implies that a link between point-to-point geodesics
and infinite ones should provide better insight on the former. Consider a small square of
side length M around the origin. Denote by 7 P? the tree consisting of all the geodesics
from points in the M x M square to the point (N, N). Let 7°° be the tree of semi-
infinite geodesics in direction 45° started from the M x M square. Our stabilization
result, Theorem 2.4, shows that on a square of side M = § N %, the trees 7 PP and T
agree outside an event whose probability decays as a power of é.

We use this to show in (2.5), for example, that the fluctuations of the point-to-point
geodesic in a small box of side / around the origin are, with high probability, the same
as those of a stationary geodesic for which the fluctuations are known to be of the

order [3.
Finally, we use stabilization to study coalescence of point-to-point geodesics to
(N, N) from two fixed starting points. For fixed k > 0 let 7! and 2 be the geodesics

to (N, N) started from (0, 0) and (O, k%), respectively. Let p. be the coalescence point
of 7! and 2. Let p° be the coalescence point of the two semi-infinite geodesics in

direction (1, 1) started at the points (0, 0) and (O, k%). Theorem 2.6 shows that p.
converges weakly to p2°. In this theorem we also show how our stabilization result
gives an alternative route from the bounds on p2° given in [3] to the tail decay of | p,|
earlier derived in [36].

Evidence to the strength of the methods developed in this work can be seen in
a recent work of one of the authors and Ferrari [5]. Precisely, in [5, Theorem 2.2]
they obtain a lower bound on the probability of stabilization of the point to point
profile increments to that of the stationary one in a neighbourhood of 0(N) in the time
direction (as opposed to o(N 2/3) in this work) around the endpoint (N, N). The main
step towards such result is Theorem 2.4 in this paper. The idea is to show that geodesics
terminating at (N, N), with high probability, will cross a small spatial interval of size
o(N?/3) at time N — o(N). Our Theorem 2.4 would then imply that these geodesics
must have coalesced by that time. To execute this scheme, [5] employs a chaining
argument from [4], that shows that geodesics fluctuations around their characteristic
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along a time interval of size O (N) is of order O (N 2/3). Moreover, [5, Theorem 2.6]
gives an upper bound on the probability of stabilization in the setup of [5, Theorem
2.2]. This was done using the heavy traffic picture of the difference of Busemann
functions developed in Sect. 5 and the Appendix of this work.

The correct exponent of stabilization of any geodesic leaving from a neighbourhood
of (0, 0) of size O(N?/3) in space and O(N) in time is 1/2, as was shown in [5]. It
is not hard to verify that using concentration results from [24] one could improve
the exponent in Theorem 2.4 from 3/8 to 1/2. However, the authors of this paper
opt for simple probabilistic arguments for concentration bounds and therefore use
suboptimal polynomial concentration bounds as in Lemma 5.5. Sharper concentration
bounds using simple probabilistic arguments were developed in [11] and [5, Theorem
2.8].

The main body of our arguments only uses probabilistic methods. The only
integrable-probability input used is the emergence of the Airy, process as the limit of
the increments of the last-passage time.

Some general notation and terminology

Zso =1{0,1,2,3,...}and Z-o = {1,2,3,...}. For n € Z. we abbreviate [n] =
{1,2,...,n}. Asequence of n points is denoted by xp , = (xk)Z=o = {x0, X1, -+ +» Xn},
and in case it is a path of length n also by x.. a vV b = max{a, b}, a A b = min{a, b}.
xT =x1y-0and x~ = |x|1y <. C is a constant whose value can change from line to
line.

The standard basis vectors of R2 are ¢; = (1,0) and e; = (0, 1). For a point
x = (x1, x2) € R? the £'-norm is |x| = |x1| 4+ |x2| . We call the x-axis occasionally
the ej-axis, and similarly the y-axis and the e;-axis are the same thing. Inequalities
on R? are interpreted coordinatewise: for x = (xg, x2) € R? and y = (y1, y2) € R,
x < ymeans x; < yj and xp < y,. Notation [x, y] represents both the line segment
[x,y] = {tx+ (1 —1)y : 0 <t < 1} for x,y € R and the rectangle [x, y] =
{(z1.22) € R? 1 x; < z; < yj fori = 1,2} forx = (x1,x2), y = (y1, y2) € R% The
context will make clear which case is used. 0 denotes the origin of both R and R?.

If x < y we write [x, y] for the set of integers [x, y]NZ. If x,y € R? such
that x < y we denote by [[x, y] = [x, yIN 72 . Nearest-nieghbor edges (x, x + ¢;)
are generically denoted by e. For A C Z?, £(A) is the set of nearest-neighbor edges
between points of A.

X ~ Exp(d) for 0 < A < oo means that random variable X has exponential
distribution with rate A, in other words P(X > t) = e ™ for t > 0. The mean is
E(X) = »~! and variance Var(X) = 1 2. In general, X = X — E(X) denotes a
random variable X centered at its mean.

To lighten on notation we generally ignore integer parts and treat for example N&
when & € R? as if it were a point on the lattice Z? close to N&.
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2 Main results

Let @ = {wy},cz2 be ii.d. Exp(1)-distributed random weights on the vertices of Z2.
For 0 € 77, define the last-passage percolation (LPP) process on o + Zzzo by

ly—ol
G”y_xrg%)iv I;)ka foryeo+Z220. 2.1

I,y is the set of paths x, = (xk)Z=o that startatxg = o,endatx,, = y withn = |y—o|,
and have increments x; 1 — xx € {ey, e2}. The a.s. unique path 7%Y € I, , that

attains the maximum in (2.1) is the geodesic from o to y. A stationary LPP process
1

G2 o,y associated with the direction (1, 1) is defined similarly, but with altered weights
on the boundary of the quadrant o + 72 20 (precise definition follows below in (3 7).
Let R = [N—cN3 : , N]be the rectangle whose lower left corneris (N —cN 3 3 ,N—

cN %) and whose upper right corner is (N, N). Let £ (R‘) be the set of directed edges
in the subgraph of Z? induced by the vertices in R®. Define the increment random
variables indexed by the edges in £ (R) by

HY'S =Goy—Goy and  HZ§

and then the configurations of increment variables:

HNC = {H(xy) L (x,y) € E(R),

H2Ne = {H(; oY) € ERYY.

Let drv (-, -) denote the total variation distance between two probability distributions.
If X ~pand Y ~ v, we also write drv(X,Y) = drv(u, v). The following is the

main result of the paper. It shows that on the scale of N %, around the point (N, N),
local increments of G jointly equal those of G? with high probability. The choice of

direction (1, 1) which determines the parameter % in G2, is made only to simplify
exposition. The same result works for any direction vector &, with a different stationary
process G” and constants that depend on §.

Theorem 2.1 There exists co > 0 and C(co) > 0 such that, forc € (0, coland N > 1,

Oc\...:

dry(HN, H3N-¢) < Ce 2.2)

Let A>(x) denote the Airy, process and

4
3

W=

LY =273N"3(G 2 2 —4N)
(0,0),(N+x(2N)3 ,N—x(2N)3)
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the process of LPP values on the antidiagonal at distance 2N from the origin. A
continuous interpolation of x > L;\' converges in distribution to As(x) — x? as
N — 00, in the uniform topology of continuous functions on compact sets. This was
proved by Johansson [23] for LPP with geometric weights and in [15, Cor. 2.4] for
the case of exponential weights we use here. Set

Ay (x) = Ay (x) — A2 (0) — x2.

Let B be a two-sided Brownian motion of variance 2 on R. As a consequence
of Theorem 2.1, our next result shows that locally, the Airy, process looks like a
Brownian motion in a strong sense. The proof is given at the end of Sect. 5.

Theorem 2.2 There exists co > 0 and C(cg) > 0, such that for ¢ < cg

ool

dry(Ayli—c.c1, Bli-c.e1) < Cc3.

By the transportation cost representation of the total variation distance [34, Thm. 1.27,
p-44], as a corollary we have the existence of a coupling between A/Z l[—c.c] and Bl[—¢.¢]
such that ,

P{A)|(—c.c; = Bli—c,c1} = 1 — Cc5. (2.3)

Precisely, P is a probability measure on the product space C([—c, c])* of pairs of
continuous functions on [—c¢, ¢] and the marginals of P are the distributions of A |, ¢
and B|[_C’C].

Let I C R be a compact interval containing the origin, and let

wp(t) = 2,/tlog(t)!

be the modulus of continuity of the Brownian motion. In [18, Theorem 1.11] Hammond
showed that the regularity of the Airy process is not worse than that of a Brownian
motion i.e.

Ar(t+h) — Ax(t
sup lim sup 20t + 1) 2(1) < oo with probability 1.
tel R0 wp(h)

As a corollary of Theorem 2.2, we show that the regularity of the Airy, process is
not better than that of a Brownian motion. As was mentioned earlier, this can also be
deduced from [6, Theorem 1.1].

Corollary 2.3

t+h) — t
sup lim sup At 1) = Ao ) > 1 with probability 1.
el hl0 wp(h)

We turn to the stabilization results. The set of possible asymptotic velocities or direc-
tion vectors of semi-infinite up-right paths isid = {(t,1 — 1) : 0 < ¢t < 1}, with
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REN
F/J(JN’ N)

RES

.

(0,0)

Fig.1 The infinite geodesic 70:%% and the geodesic 70-NE agree in the box RS-/, On the event S5/ for
any x € RES the geodesics ¥ 0% and 77%-NV§ have the same restriction on the small square RES

relative interior ritd = {(t,1 —#) : 0 <t < 1}. For & € rild, let R&M = [0, M&] be
the rectangle whose lower left corner is (0, 0) and upper right corner is M&. Let 7 be
an up-right path whose origin is (0, 0). Let I = {i : m; € R%™} be the set of indices
of 7 for which 7 is in R&M . We define P5M (1) to be the restriction of the path T to
the rectangle R$M, that is, P5M (1) is a finite path defined by

(PEM () =m; Viel”. (2.4)

Let 7%%°¢ be the infinite geodesic started from x whose directionis & [32]. For M < N,
define the following event

SEM — (PEM (g %008y — PEM (7 NEY for all x € REM). (2.5)

S%M s the event on which any geodesic leaving from any site x € R and terminat-
ing at £ N agree with the infinite geodesic 7%°% on R&M (see Fig. 1). Our first result
gives a lower bound on the probability of stabilization on small enough rectangles.

Theorem 2.4 For any & € rild and ¢ > O there exists a constant C = C(&,c) > 0,
2
locally bounded in c, such that the following holds: whenever 0 < M < c¢N3,

PSEM) > 1 — CN~1ME. (2.6)

As was mentioned earlier, stabilization can be used to study the behaviour of point-
to-point geodesics close to their endpoints. The following result shows that around
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the origin, on the scale of o(N) the geodesic has transversal fluctuations of exponent
2/3. A result of that flavour was obtained in [3, Theorem 3].

Corollary 2.5 There exists C (&) > 0 such that for | € Z~g

lim P(xN — 18| > r13) < or 2. 2.7
N—oo
Proof For fixed M, on R%™ consider the stationary backward LPP G/, ., o (pre-

cise definition below in (3.14)), starting from the point M& + e + e> and terminating
at the origin. Let us denote its geodesic by 7*. Let 7%V¢ be the geodesic of LPP
starting from the origin O and terminating at N&. Theorem 2.4 and the fact that the
distribution of an infinite geodesic going backwards is that of a stationary one (see the
proof of Theorem 2.4) imply that

Jlim dry (PEM @P), PEM (7 ON8)) = 0. (2.8)
— 00

(2.7) follows from (2.8) and well known bounds on the fluctuations of stationary
geodesics [31, Theorem 5.3]. O

Stabilization relates results on semi-infinite geodesics with results on point-to-
point geodesics. Consider the points g1 = (0, 0) and g2 = ke, for some k > 1. Let
791 and 792°% be the semi-infinite geodesics in direction & started from ¢; and
2, respectively. Let p2° be the point in 791:°% N 7792:°% that is closest to the origin.
Similarly let p. = (p.(1), p.(2)) be the closest point to the origin in 779! NE N ga2.NE
In [3] Basu, Sarkar and Sly showed that there exist universal constants Ci, Ca, Ro
such that for every k > O and R > Ry

2

CiR™3 <P(|p°| > Rk) < C2R™5. (2.9)

Moreover, they showed that there exist C, Rg, ¢ > 0 such that for every k£ > 0 and
R > Ry

lim sup P(p(1) > Rk) < CR™. (2.10)

N—o0
The exponent ¢ in (2.10) was not identified but was conjectured to be 2/3. This was
recently settled by Zhang in [36]. The theorem below shows how our stabilization

result transfers the bounds (2.9) from p° to p,.

Theorem 2.6 The sequence |p.| converges weakly to | p°|. Moreover, there exist uni-
versal constants C1, Ca, Ry > 0 such that for R > Ry, foranyk > 1 and N > (Rk)?

C\R™3 < P(|pe| > Rk) < CR™3.
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Proof 1f exactly one of the events {|p2°| > Rk}, {|pc| > Rk} occurs then paths must

. Lpr . 1 .
not have coalesced in RS2 Rk, in other words, S 2Rk does not occur. Therefore, via

the symmetric difference and using Theorem 2.4,
| P(1p°| > Rk) —P(|pe| > Rk) | < P({|p2°| > Rk}A{lpc| > Rk})
< P((S52RK)¢) < CN 4 (RK)3,
which shows that |p.| converges weakly to |p2°|. Taking N = (Rk)? and using
Theorem 2.4

A

P(p>®| > Rk) — CR™% < P(|p| > Rk) < P(Ip>°| > Rk) + CR™5.  (2.11)

As7/8 > 2/3,(2.11) and (2.9) imply the result. O

Remark 2.7 We note here that in terms of the conditions on N, the results in [36,
Theorem 1.1] are sharper. Indeed, in [36, Theorem 1.1] the requirement on N is
N > RK while in Theorem 2.6 N > (Rk)°.

We turn to coalescence results where the distance between the starting point is
of order N?/3. In RN = [0, N&], consider the points 0 = £N, ¢! = (0, 0) and

2 .
2 = gN3e; where a > 0 and where we assume that N is large enough so that
q> € REN . Let

c*t =g ong?, (2.12)

be the points shared by the geodesics starting from ¢; and terminating ato fori € {1, 2}.
We define the coalescence point p. to be the unique point such that

pe€C% and p.<x Vxe(C%, (2.13)

as in Fig. 2. Our next result shows that the point p. is not likely to be too close to the
point 0 on a macroscopic scale.

Theorem 2.8 For every a > 0 and & € rild, there exists a constant C(§,a) > 0,
locally bounded in a, such that for every 0 < a < 1l and N > N(a)

P(jo — pe| < aN) < Ca?. (2.14)

. . 1 2
The following complementary result shows that the geodesics 7¢°° and 77> ° do
not coalesce too close to their origins on a macroscopic scale. Although the proof does
not require local stationarity, we state it for completeness.

Theorem 2.9 Foreverya > 0 and & € rild, there exists a constants C (&, a) > 0 such
that for every 0 < o < 1l and N > N ()

P(l¢*> = pe|l < aN) < Ca?.

@ Springer



M. Baldzs et al.

REN

Tglo

ql

2
Fig. 2 Two geodesics leaving from two points that are aN 3 far from one another, meet at the point p.
(red). With high probability the point p. is not too close to the points ql , q2, 0 on a macroscopic scale

3 Preliminaries
3.1 Ordering of paths

We construct a partial order on directed paths in Z?. For x, y € Z? we write x < y if
y is below and to the right of x, i.e.

x1 <y and x3 > ys. (3.1)
We also write x<y if
x<y and x #y (3.2)
If A, B C Z?, we write A < B if
x<y VxeA,yeB. 3.3)

A down-right path is a bi-infinite sequence )V = (Vx)rez in 72 such that Yk — Yk—1 €
{e1, —ex} forall k € Z. Let DR be the set of infinite down-right paths in 72 . For two
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Fig. 3 The two geodesics y; and y, are ordered i.e. | <y». For any down-right path )V in 72 the set of
points x € Y Nyy and y € Y Ny, are ordered, i.e. x<y

up-right paths y1, y» in Z2,
izyy if yNY=xy»n)Y VY eDR, (3.4)

where we take the inequality to be vacuously true if one of the intersections in (3.4)
is empty (see Fig. 3).

3.2 Stationary LPP
For a base point 0 = (01, 02) € Z? and a parameter value p € (0, 1) we introduce

the stationary last-passage percolation process G5, on o + Z2>0. This process has
boundary conditions given by two independent sequences

{10,072, and {Jjﬂ.e2 it (3.5)

of i.i.d. random variables with marginal distributions /), ~ Exp(1—p)and J},,, ~
Exp(p). Put G5 , = 0 and on the boundaries

k !
Gl iker = ovier and Go =" o e, (3.6)
i=1 j=1
Then in the bulk for x = (x1, x2) € 0 + Z2>0’

k 14
Gf,) x = max { E 10+iel + G0+ke|+ez.x} max { § J0+jez + Gn+lez+e|,x}-
’ I<k=xi—o; U4 I=l=xs—0r L £
i=1 j=1
3.7
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For a northeast endpoint p € o+ Zio, let ZJ) p be the signed exit point of the geodesic
7."? of G, from the west and south boundaries of o + Z? ;. More precisely,

arg max | Z{'(:I Iotie, + Gothe+er, x } if 7"’ =0 +ei,
ze,={ . o (33)
> —arg max { Zj:] J0+j32 + G()+@82+81,x}7 lfJT] =0+ e.
¢
The value Gg,x can be determined by (3.6) and the recursion
Gg,x =y + G(/)),x—el Vv Gg,x—ez' (3.9

Relation (3.9) implies that one can backtrack the geodesic 77 in the box [0 + e1 +
ez, p] in the following way; for each (directed) edge (x, y) in [0 + e] + e2, p] assign
the weight wy y = G, — G5 . Letm = |p — 0|, and p; = 7r"”. Then

Pm =D,
pi = Pi+1 — €1 %f Wpir1—er,piv1 < Wpiir1—ea,piti for |Z(/))p| <i<m-—1.
pivt —ex Wy e piyy > Wpiyi—erpiy ’
(3.10)
In other words, we trace the geodesic 7”7 backwards up to the exit point from the
boundaries, by following the edges of minimal G, p increments.
The following result will be used repeatedly in this paper.

Lemma 3.1 [31, Corollary 5.10] Fix 0 < p < 1 and let (m,n) = (N(l —p)?, sz).
There exists C(p) > 0 such that for N > 0 such thatm An > 1 andr > 0

C
P
IED(Z(O’O)»(m,nJrer/3) > 1) < r_3
C
P
P(Z(O,O),(m,nerNS) < —1) < 5

The constant C is locally bounded in its parameter. Similar results hold for the exit
point of the stationary geodesic going from the origin to the points (m + rN*/3, n)
and (m — rN?/3, n).

3.3 Backward LPP
Next we consider LPP maximizing down-left paths. For y < o, define
Goy =Gy, (3.11)

For each 0 € Z? and a parameter value p € (0, 1) define a stationary last-passage

percolation processes G” ono+ Z2<0, with boundary variables on the north and east,
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in the following way. Let

{1y

o—iey

192, and {J7

o—je

15 (3.12)

be mutually independent sequences of i.i.d. random variables with marginal distribu-
tions 17 ~ Exp(l — p) and J(f:jez ~ Exp(p). The boundary variables in (3.5)

o— ze
and those in (3.12) are taken independent of each other. Put 65 o = 0 and on the

boundaries
k

iju re, = Zl,,_iel and 65,07,82=ZJ,,_,-62. (3.13)
i=1 j=

Then in the bulk for x = (x1, x2) € 0 + Z2<0,

k 4
~, ' ~ . ~
Gn.,x - lSkmfg}Xfxl { 21:10—12] + Gu—kel—ez,x} lgﬁngloazxfxz { 2} Jo—]ez + Go—eez—el,x}~
i= j=
(3.14)

For asouthwest endpoint p € 0+ 72 <o let ZO p» be the signed exit point of the geodesic
7P of Gg p from the north and east boundaries of 0 + 7> <o Precisely,

k -~ . 0,x
R arg max { > it lo—ie; + G,,_kgl_ez,x}, ifn]” =o0—ey,
7P = k ~ (3.15)
¥4 . 0,X .
_argznax { » =1 Jo—je, + Go_gez_equ}, if 1) =0 —es.

Similar to (3.10), one can backtrack the geodesic 77 in the box [p, 0 — e — €3] in
the following way; for each edge (x, y) (where y < x) in [p, 0 — e] — e3] assign the
weight

By =Gh, —Gh .. (3.16)

o,p

Letting p; = 7;"", we have

Pm =D,

for |Z(’)’p|§i§m—1.

. )P+l ter Wy piiter < Wpigy pipi+er
pivtte2 Wy piiter > Wpiy piyiter

Since

wy = (G, — YA(GE, — G o) (3.17)

0 ,Xx+eq

we see that (3.17) can be written as

Op p

a)ﬂt_n.p = u)nlghp’ﬂv.;;.

(3.18)

@ Springer



M. Baldzs et al.

|

u

Fig. 4 Illustration of Lemma 3.2. Path u-x-y is a geodesic of G,y and path v-x-y is a geodesic of GH‘J}

3.4 Nested LPP processes

The following is a construction we shall refer to often. For general weights {Yy}, .72
on the lattice and a point u € Z?, let G, be the LPP defined by

|x—ul

Gux= max Yy forx eu+72%,. (3.19)
X, €1y x -
° " k=0

Now let v € Z? be such that u < v. One can construct a new LPP on Z2  as follows.
Define the south-west boundary weights

IzEI-ll—]kel :Gu,v+kel - Gu,v—l—(k—l)el for1 <k < oo, (3.20)
Jlgi]kq :Gu,v-i-kez - Gu,v-{-(k—l)eg for1 <k < oo.

Let {G[U'f)]( }xez., be the LPP defined through relations (3.6)—(3.7) using the base point
o = v, the boundary conditions (3.20) and the bulk weights {Y},cz_,. We call G
the induced LPP at v by G, x. The superscript [1] indicates that G'*1 uses boundary
weights determined by the process G, . with base point u. Figure 4 illustrates the next
lemma. The proof of the lemma is elementary.

Lemma3.2 Letu <v < yin 72. Then Guy=Gyy+ Gm The restriction of any
geodesic of G,y to v+ ZZZO is part of a geodesic of G[,”]y The edges with one endpoint

inv+ Zio that belong to a geodesic of Ggf]y extend to a geodesic of G y.

In case the process inherited is associated to a stationary process G” we shall use
the notation G”[*] to indicate the density p as well. Similarly, if G, . is a LLP on

Z2<u for some u € 72, if v < u, we can construct the induced process @L”l on Z2<U.
A result similar to Lemma 3.2 holds for G, , and Ggffl.
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4 Busemann functions
4.1 Existence and properties of Busemann functions

Let (€2, F, IP) be a probability space and let {z.},.2 be a group of translations on £2.

Definition 4.1 A measurable function B : Q x Z? x Z> — R is a covariant cocycle
if it satisfies these two conditions for P-a.e. w and all x, y, z € Z?:

B(w,x+z,y+2z) = B(t,w, x,y) “.1)
B(w,x,y)+ B(w, y,7) = B(w, x, 2). “4.2)

Given a down-right path ) € DR, the lattice decomposes into a disjoint union
72 =G_uU)YyuU G+ where the two regions are

G ={xeZ: dj € Z~qg such that x + j(e; + e2) € V}
and
Gy ={xe 7% 3dj € Z-¢ such that x — j(e; + e2) € V}.

Definition 4.2 Let 0 < o < 1. Let us say that a process

(e, Les Ju, Tx : x € Z%) (4.3)

is an exponential-a last-passage percolation system if the following properties (a)—(b)
hold.

(a) The process is stationary with marginal distributions

Ne, Tx ~Bxp(1), I, ~Exp(l—«a), and Jy ~ Exp(a). (4.4)
For any down-right path )V = (yx)kez in 72, the random variables
{T::z2e€G-}, {t(y—1. D) 1k e Z), and {ny:x € Gy} 4.5)

are all mutually independent, where the undirected edge variables ¢ (e) are defined

as
I, ife={x—
Jy ife={x—en, x}.
(b) The following equations are in force at all x € Z?:
h/xfquez = Ixfez A foel (4-7)
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I, = Ny + (Ix—ez - Jx—el)+ (48)
Jx =Ny + (Ix—e2 - Jx—el)i- (49)
The following theorem can be found in the lecture notes [31]. The Busemann limit

(4.14) below uses the characteristic direction associated with the parameter p € (0, 1),
defined by

_ ([ —py P’
g(p)_((l—ﬁ))z—i-ﬁz’(1—,0)2+,02) @10

When & € rild is given, p(§) denotes the unique parameter value p that satisfies
(4.10).

Theorem 4.3 For each 0 < a < 1 there exist a stationary cocycle B® and a family of
random weights { X%}, <72 on (2, F, P) with the following properties.

(1) Foreach 0O < a < 1, process

{X¢, BY_, .. BY , . oy x €7 4.11)
is an exponential-a last-passage system as described in Definition 4.2.

(ii) There exists a single event 2, of full probability such that for all v € 2, all
x € Z* and all & < p in (0, 1) we have the inequalities

A P A P
Bx,x+61(a)) < Bx’H_el(w) and Bx’x+e2(a)) > Bx’xﬂ,z(a)). 4.12)

Furthermore, for all € Q2 and x,y € 72, the function A — B;y (w) is right-
continuous with left limits.

(iii) Foreachfixed0 < a < 1 there exists an event ng) of full probability such that the
following holds: for each w € Qéa) and any sequence v, € 7? such that |v,| — 00

and
. Un
lim — = &(a) (4.13)
n— 00 |Un|
we have the limits
B;‘y(w) = lim [Gy v, (@) — Gy, (@)] Vx,y € 72. (4.14)
’ n—>0oo

The LPP process Gy y is now defined by (2.1). Furthermore, for all o € ng) and
x,y €72
lim B} (w) = BY (w). (4.15)
A= Y Y

4.2 Busemann functions and infinite geodesics

Fix x € Z?. An infinite up-right path 75> originating at x is called a geodesic if
for all m, n € Z- such that m < n, the path {nlx’oo}le[[m,n]] is a geodesic. We say a
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geodesic has direction & € ri/ if

X,00
(2
lim 72 _ % (4.16)
n—oo (1) &

It is known that for a given £ € ril{, with probability one, from every point x € Z?
there is a unique semi-infinite geodesic 7% in direction £. Busemann functions
can be used to construct these semi-infinite geodesics. Consider the family of random
variables

{B®_, . BY_ . wc:xel? (4.17)
defined in (4.11). Let £ := &(«) be the characteristic direction associated with «.

One can trace the infinite geodesic 7**° by following the gradient of the Busemann
function B*. (This is developed for example in [16].) Let {p; }ic Z-, be an enumeration
of the vertices in 7%, i.e.

pi = JTZ-X’OO'E i€ ZZQ,

where po = x. Then the vertices {p;};cz_, are given recursively through

po =X,

pi = {pi_l ter Bgifl’l’ifﬁel < Bgi—lspi—l+€2 (4.18)

o o fori € Z~o.
pi-1+ey if By e > Byt

i—1Pi
(Equality happens with probability zero on the right, due to the independence of
BY e, and BY ) Note thatin (4.18) p; is attained by taking an up \ right step from
the point p;_; in the direction of the minimal increment of the Busemann function.

Since wy = BY ;1o A BY 1 ieys %% is the unique path that satisfies
Ty =x 4.19)
W00 = Bz’_xm’nmo. (4.20)

The monotonicity (4.12) of Busemann functions implies a spatial ordering of
geodesics:

Lemma4.4 Letx € 7% and &1, & € rild such that £,<&. Fori € {1,2} let 75 be
the infinite geodesic starting from x in direction &;. Then

%8100 < 8200 4.21)
4.3 Coupling Busemann functions

In [12, Theorem 3.2] a coupling between Busemann functions of different densities
was developed, expressed in terms of queueing mappings.
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Lemma4.5 Let 0 < p < p < 1. The coupling of B” and BP in Theorem 4.3 has the
following properties.

(i) Foreveryx € 72
]
= Bx,erez

L
= Bx,x-i—e] .

B?

X, Xx+ep

BP

x,x+e;

(4.22)

(ii) For every x € 7> we have the joint distributions

F ’ N
(Bx+iel,x+(i+1)el’ Bx+iel,x+(i+l)el)iEZ v -

P o ~ 1,0P
(Bx+ie2,x+(i+l)e2’Bx+iez,x+(i+1)62)ieZ V=,

where vP is the distribution defined in (A.4).

5 Stabilization
In this section we prove Theorems 2.1 and 2.4. Recall (3.11) and define the event
HoM = (Gey — e = BLS forall (x, y) € E(REM)). (5.1)

HEM s the event where the increments of G along the edges in £(R5M) coincide
with those of the Busemann function associated with the direction &.

5.1 Bounds on P(S¢M) and P(H$M)

Recall definition (4.10) that connects directions and parameter values. Fix a direction
vector & € rild with its parameter p(&). For r > 0 define perturbed parameters

p=p@&=pE—rNT andj=p) =p@E) +rN3,
with characteristic directions
E=¢(p) and £ =E(p). (5.2)

Set a northeast base vertex at oy = EN + e] + ep. Assign weights on the edges of
the north and east outer boundaries of RSV by

p _ pb i
USS BﬁN—(i+1)61,5N—i€1 0=i=N& (5.3)
JP =B? 0<i<N&.

i on—(i+1)er,on—ier

Use the boundary weights {Ii‘5 Yo<i<Ng {Jiﬁ Jo<i<ng, and the bulk weights {wy }, e
to construct the stationary LPP G” asin (3.13)=(3.14). Similarly we construct GZ. As
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in (3.15) we let 2§N,x (resp. 2§N,x) denote the exit point of the geodesic TPONE of
G? (resp. geodesic 72"V of G2). For0 < M < N let

-~ =P &) . 5p(E)
AEM { sup Z20) < O} { inf Z2%) > 0}. 5.4
XGREM o m xeREM Y ©

A%-M is the event that for each x € RE-M | the geodesic 77” ONX of 6§N .. (and geodesic

LN of 5§N’X) crosses the boundary of REN (not to be confused with RE-M 1) from
the north (from the east).

Lemma5.1 Let& e rild and N > M > 0. On the event As:M the following ordering
of geodesics holds in the rectangle RE-N :

0%k <X NELp X008y starting points x € REM (5.5)

Proof We show the first inequality in (5.5), the second one being analogous. Because
the boundary conditions (5.3) come from the Busemann functions, the geodesic
TPON X of the stationary LPP process @gN’ . follows the semi-infinite geodesic 77~ 100f
from x until they hit together the north/east boundary of the rectangle [x, 0]. (This is a
version of Lemma 3.2 where Fig. 4 is rotated 180 degrees and then the base point u is
taken to infinity in direction £.) Event A5 M constrains this hit to happen on the north
boundary, that is, to the left of the point N&. Uniqueness of point-to-point geodesics
then forces 7% V¢ to stay to the right of TN, O

Let 0y = ME& + e + e; be the outer upper right corner of R . Assign weights
on the edges of the north-east outer boundary of R from the Busemann function:

o _ pP .
Ii - BaMf(i+1)e1,5M7ie| 0 =i = Mél (5 6)
P _ pp ; ’

Ji = 8BS, _i+1)eroy—ie, 0 =1 = M&.

Define the event where the increment variables for o and p agree on the north and
east boundaries of the rectangle [0, 0y]:

CEM =1 =1f vie[o.Mal}n{sl =J7 Vjie[o.M&]).  (6T)
Lemma 5.2 On the event C5M,

B? = B*® = BY Ve e EREM) (5.8)
and  PEM (o8 = PEM (008 (-9)

Proof The values {B. : ¢ € £(R5M)} are determined by the bulk weights {0} erem
and the boundary weights in (5.6) through the recursion (4.8)—(4.9):

P _ P p +
Bx,x+e1 =y + (Bx+ez,x+el+ez - Bx+e1,x+21+ez)
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P _ 14 P —
By xtey = @x + (Byig) xieter = Brteyxteiter) -

As both {Bf}eeg(Rg,M) and {Bg}eeg(Rg.M) use the same bulk weights and the event

C5M forces their boundary conditions to agree, B) = Bf Ve € E(RSM). Equality
(5.8) follows from the monotonicity (4.12) of Busemann functions. (5.9) follows from
(5.8) because the geodesics P5-M (7%:°%) and P5M (7%°%¢) are determined by the
Busemann function increments through (4.18). O

Corollary 5.3 On the event CcEM N0 A\S'M,

Grey — Grex = BLE Y(x,y) € ERSM) and (5.10)
PEM (.08 = PEM (1.800) = PEM (g 8Ny — PEM (7 0.0F) gy ¢ REM,
(5.11)

Proof By Lemma B.2, on the event A%-M

5 = =~ P
BY i toy < GNexter — Gnex < By 1oy, V(. X +2) € EREM)

and

o . R _
B;’XJFL)] < GNgxte; — GNex < B)'?’XJFL)] V(x,x +e1) € S(RS’M),

which implies (5.10), using (5.8). By Lemma 4.4 we see that

%0008 <00k 4 X 00k o 72 (5.12)

By Lemma 5.1, on A%-M
%08 <X NE X 00f o EM. (5.13)
Lemma 5.2 along with (5.12) and (5.13) imply the result. O

For M > 0, recall the event S5-™ in (2.5). Using Corollary 5.3 we have the follow-
ing.

Corollary 5.4

P(S5M) = P(HEM) = P(C5M 0 A5M) > 1 — P((C5M)e) — P((A5M)%).
(5.14)

Proof The first inequality comes from
HEM C SEM

which is true because last-passage and Busemann increments determine the geodesics.
The second inequality comes from Corollary 5.3. O
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5.2 Upper bound on P((A¢M)<)

Lemma5.5 For & € rild and ¢ > O there exist finite constants C = C(c, &) and
No = No(&, ¢), locally bounded in c, such that the following hold: whenever N > Ny,

0<M<cN3and1 <r < N3(log(N))~!,

=p(&) C
IP( 72 0) <= 515
x:';;,EM ON-X g - 7'3 ( )
and c
o 5hE)
P(xelgﬂ 25 <0) < 5 (5.16)

where Oy = N& +e1 + ez, p(€) = p(€) — rN "3 and p(§) = p(§) + rN 3.

Proof We only prove (5.16) as (5.15) is similar. Given & € ril{, abbreviate p = p (&)
and p = p(&). Let xXO = (M&, 0) be the lower-right corner of R . By the order on
geodesics we have

: Zp P

{xelfgm Zow.x = O} < {ZﬁNsxo = O}’

which implies

P inf 72 <0)<P(ZZ , <0). (5.17)

xeREM N

In order to upper bound (5.17) we must show that the characteristic line of direction

—&(p) that leaves from oy goes, on the scale of N %, well below the point XY =
@21, x°(2)) = (M&,, 0). We have, via (4.10),

(N& — MENP?  N&(L— p)> — (N& — ME)*

") = NE ~ = 5.18
v %2 (1—p)2 (1—7)2 ( )
_ £1-2(1— p)rNF + 2N = Ei2or N3 + N3] + 6 M5
- (1—p)?
_ 2 [62(1 — p) + E12p]  MEPE: (& — 51)r2N%
= —rN3 _ a !
(1—=p) (1-p)? (1—-7)
- 2[62(1 — p) +E120]  cN3IEFE (5 — EDFENS
—rN3 — L !
- (1=p) (1-pr " (1-p
2[6:2(1— p) + 120 — r~'ck1(p> = 20rN"F + 2N "F) = rN T3]
—rN3 _ ‘
(1—5)?
(5.19)

where in the first inequality we used that M < ¢N?/3 and in the second inequality the
definition of p. For large enough N andr < N 3 (log(N )L plug into (5.19) to obtain
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(N& — ME)p?
Ne =15
2 [6:2(1— p) +E12p — 1=\ c&1(p? — 2prN~5 +r2N"3) — rN~3]
—rN3 —
(1—-p)?
31820 = p) + 520 — rTckip? 4+ cE12pN T + N7 logW) ) — (log(V) ']
= (1 —=p)? ’

(5.20)

such that for N large enough

_Wa—MEp? B —p+Ep—rTickp?]

N
%2 a-p2 = (1—p)?

For

c& p?
> v
[52(1 — p) +&1p — (1 — p)?]

r 1,

the right hand side of (5.20) is smaller than — N 3. This in turn implies that there exists
a constant C’(&, ¢) > 0 (locally bounded in c) such that

_ (N& — M&)p?

o= CE Oy,

N&
It then follows by Lemma 3.1 that there exists a constant C; (&, ¢) > 0
P(’Z\f’xo < 0) < C1r_3,

which proves the result. O

Corollary 5.6 Fix & € (0, 1) and ¢ > 0. There exists C(c, &) > 0, locally bounded in
2

¢, such that for every) < M <cN3 and1 <r < N.%(log(N))_l

P((A5M)) < % (5.21)
r

Proof By the definition of A5 M e see that

@My c | sup Zé’f%o}u{ inf 279 <o} (5.22)
YeREM xeREM T

Taking probability on both sides of (5.22) and using (5.15) and (5.16) we obtain the
result. =
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5.3 Upper bound on P((C¢:M)¢)

Express C5M from (5.7) as

M M
cEM = ciM i, (5.23)
where
EM p _ pP
G = {B?)\M*kelyﬁM*(kfl)el = By ket om—k=Dey forl <k = SIM}
EM _ P _ pP
C3" = {BL s 50— ktrer = By —keroy—th—1ye, fOT 1 <k < E2M}.

This subsection proves the following.

Proposition 5.7 For & € rild and ¢ > 0 there exists a constant C (&, c) > 0, locally

bounded in c, such that for0 < M < CN%, there exists r (&, M, N) > O for which the
following holds

]P’((Cg’M)C) < CN™iMs5. (5.24)

Before we prove Proposition 5.7 we obtain some auxiliary results. As was noted in
Lemma 4.5[ii], for & jg (and therefore p = 0)

o _ pP
P(BEM—kelﬁM—(k—l)el - BﬁM—kel,b\M—(k—l)el

for 1 §k§£§1M)

=721 =5 forl <i <& M),
where d = D(a, s) from “Appendix A”, and a = (a;) jez and s = (s;) jcz are two
independent i.i.d sequences of exponential random variables of intensity 1 — p and

1 — p respectively, such that 0 < p < p < 1. Using (A.9)

VI @ = s for 1 <i <& M) = v P12, = Ofor 1 <i < & M)

It follows that

M
P(Cs M) = v‘*/%‘*f(ze,- =o), (5.25)
i=1
and similarly
s
P(C5M) = vf”o(Ze,- = o). (5.26)
i=1
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Altogether, plugging (5.25) and (5.26) into (5.23) we obtain

M M

P((CEM)e) < vl_ﬁ’l_B<Zei > 0) + vf’ﬁ<Zei > 0). (5.27)

i=1 i=l1

Let us now try to explain the idea behind the proof. Let x; = s;_1 — a;, from (A.6)
we see that

wj = (wj-1+x,) "
Define the stopping time
T =sup{k:k >0, w1+ x; >0}
so that
wj=w;j1+x; 1<j<T.
Using this recursion and (A.10)

wj=wo+Sl’j 1<;<T
and w; >0 1<j<T. (5.28)

The dynamics behind (5.28) is as follows. The waiting time w; increases when the
service times are longer then usual and the interarrival times are shorter i.e. when the
random walk S*/ goes up. Similarly, the w j decreases when the service times are fast
compared to the arrival of customers i.e. S/ goes down. This dynamics hold until the
random walk goes below —w( where the waiting time at the queue vanishes. The r.v.

Zf': AII e; can be thought of as the local time of the queue at zero, i.e. the accumulated
time of the queue being empty. The main idea behind the proof of Proposition 5.7 is

. - _1 . .
the observation that when p — P~ N7 3, that is when the queue is in the so-called
heavy traffic regime, at stationarity, the waiting time wq of customer 0, is of order N 3.
As the difference between the average service time rate and the average inter-arrival
. . — _1 . ; . _1
time rate is of order p — p ~ N73, the simple random walk §9J has drift —N 3.

(5.28) implies that the queue’s waiting time vanishes by time of order N 3. Over time
t =o(N %) the random walk S; will not change the waiting time at the queue by much

so that with high probability w, will be of order N 3 and the r.v. Z;zl e; will be zero
(see Fig. 5). The proof of the following result is deferred to the appendix.

Lemma5.8 Let& erid andlet M > 0. For0 < B <o < 1

M

B o B aM 5 (@—=BB _w_pw
phe ei>0)<1-— f—l—/ eTfv— T @By, (5.29)
(; ) . [(a+9) (,3—9)] e
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W~ N

(A) While the waiting time W at the queue

is of order N é., over time of order smaller
than N3 the waiting time is not likely to
change by much.

W~ N3 S, ~ N3

t~N3

(B) Over time of order N 3, with positive
probability the waiting time W vanishes, i.e.
the queue will be empty.

Fig. 5 The two cases of a queue at stationarity. S; is the random walk whose incremental step is x;
s;—1 — az. As the rate of service at the queue is higher than the rate of interarrival E(x;) < 0 and so S; is a
simple random walk with a negative drift. The waiting time at the queue decreases by S; until it vanishes

Lemma5.9 Let & € rild and let M > 0. For p(§) = p(§) —rN™3, p(€) = p(&) +
rN_% and 0 < 6 < p,

s M _1 _1
VB’E(Z@' >0) - 2rN 31 +p—rN ?
) p+rN=3 p+rN73
2rON"3 + 62 siM Lo
1+ - : (14+20r7'N%) (530
P2 — (r2N73 +2rN"—36 +62)
Proof Set p = p and @ = p so that
[ o B ]SlM —ow _T ,o—i—rN_% P —rN_% ]S1Me_9w
(@+0) (B—0) Tl rNTI 10 (p—rNT3 —0)
r 0> — P2N"3 ]ElM _ow
= e
Lp2 — (FAN"3 +2rN"36 + 02)
s 2rON~3 + 62 ]aMe_gw
= 2 ) .
- p2—(ANT3 +2rN"30 +62)
(5.31)
and that
1 1
- 2rN~3)(p —rN~3 1
CZPF ey = CND@ TN oev=Suy (532

@ ,0—|—er%
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Using (5.31) and (5.32) in (5.29) and the change of variable 2rN’% W w

LY 2rN~3 ,o—rN_%
Ug,p(zei>0)= rt T
i=1 p+rN=3 p+rN73

%] -1 2 M 1
/ [1 + 2rON 67 ] eI NIw e gy
0 p2—(2N73 +2rN736 +62)
1 1
2rN~3 —rN™
LP

[

a p—l—rN’% p+rN~—
[1 . 2rON"5 + 62 ]W
p? — (FAN"3 +2rN"36 +62)

3
1
3

17!
(1+92r— N§)

m}

Lemma5.10 Let& € rild andlet M > O suchthat M < CN%. There exists C(€,¢) > 0
such that

P((C5™)°) = CNTF @M. (5.33)

Proof Letr = (élM)’%Nﬁ and 6 = (SlM)’% in (5.30) to obtain

M

1)9”5(26,- > o) <A+B, (5.34)
i=1
where
S IGLIN
A= 1 1
p+ N E M)
and
B =B x By X B3 (5.35)
where
_1 _1 _1 _1
p o LoNTHEMTE | N 536
pENTHEM)TE o+ NTHEM T
INI(E M) 3 M)~ LM
5o [1 . aNTHEM) T+ ) } 537
P2 = (NZ(EM) 42N 3(E M) 8 + (5 M)~
By = (1+2@M) 3N < NH@ans, (5.38)
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Local stationarity in exponential last-passage percolation

There exists C4(p) > 0 such that
A <CaN“*(EM)™S for N > 1. (5.39)

Note that by our assumption on M the numerator in (5.37) is dominated by 2c N Iv
(& M)~ and

B, - C(c) as N — oo,

where C(c) > 0 is locally bounded in c. In particular, there exists Cp,(p) > 0 such
that

B, <Cp, forN >1. (5.40)

Plugging (5.36), (5.40) and (5.38) into (5.35) we see that there exists Cp(p) > 0 such
that

B < N~1(&M)3. (5.41)

Plugging now (5.39) and (5.41) into (5.34) and using (5.25) we obtain the result. 0O

Proof of Proposition 5.7 Similar to Lemma 5.10 one can show that for & € ri/ and
2
M > 0 such that M < ¢N 3, there exists C (&, ¢) > 0 such that

P((Cf’M)C) < CN~ (& M)3. (5.42)

(5.33) and (5.42) imply the result. O

Proof of Theorem 2.1 Plugging (5.21) and (5.24) into (5.14) we see that there exists
co > 0 such that for every ¢ < ¢g

2
P((H5~0N3)6) < CN~i(eN3)E < Ccb. (5.43)

2
By the definition (5.1) of H&¢N3 | (5.43) shows that there exists a coupling between

~ ~N - ~ ~ 2/3
AN = {(HS) = Gy — Gyew : (x,7) € ERENTH),

and BS(”)|8(RE‘CN2/3), the Busemann function B5() restricted to the edges in

€(R§'CN2/3), such that

ool

P(ﬁN,c £ Bg(p)|g(RE,cN2/3)) < CcB. (5.44)
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In general, the coupling inequality above bounds the total variation distance. Hence
~ N 3
dry (A, Bl e nons)) = Cef (5.45)
As the distribution of B%()| E(REN?/y equals that of

~ ~co)Ne A ~ 23
HEONe = {HEONC = GRE — GRE,  (x.y) € ERENTH),

(5.45) also gives
drv (ﬁN <. ﬁWW’C) < Cch. (5.46)

With & = (%, %) and p = %, (5.46) is the same as (2.2) after rotating the LPP picture
by 180 degrees. O

Proof of Theorem 2.4 Plugging (5.21) and (5.24) into (5.14) we obtain the result. O

Proof of Theorem 2.2 Define

-G )
(0.0, (N+x2N) 3 N—x(2N) ) 0,0),(N.N)

By Theorem 2.1 there exists cp > 0 and C(cp) > 0 such that for any |c| < ¢, with
probability at least 1 — Cc%, simultaneously for all [x| < ¢

1 1

2 2
=Go0.0wN) =G 2~ Go,0,0v,n)

2 2 2
0,0),(N+x(2N)3 ,N—x(2N)3) (0,0),(N+x(2N)3 ,N—x(2N)3)

Defining

LN ety %
ALZ =2_§N_§<G .y )
* (0,0),(N+x(2N)%,N*X(ZN)%) 0,0),(N.N)

we conclude that with probability at least 1 — Cc%, simultaneously for all |x| < ¢
LN
ALY = AL?". (5.47)
This coupling implies the bound

L N

1 3
drv (ALY ey AL |—e,e)) < CcE. (5.48)
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Local stationarity in exponential last-passage percolation

The following limits are in distribution in the topology of continuous functions on
[—c.cl.

Jim ALY = A5 = Ay (x) — A (0) — x? (5.49)
lim ALY = B. (5.50)
N—o00

To see that (5.50) holds, note that by Theorem 4.3 and Definition 4.2, AL%’N is an
unbiased random walk, Donsker’s invariance principal implies (5.50). Using Lemma
C.2 with (5.49)—(5.50) and (5.48) implies that

3
dTV(A/2|[—c,C]v B|[—c,c]) <3Ccs,

which implies the result. O

Proof of Corollary 2.3 By the stationarity of the Aj, it is enough to verify the claim
for I = [0, a] for some a > 0. For every € > 0, let Q¢ = C[0, €] be the space
of continuous functions on the interval [0, €]. Let F¢ be the Borel sigma algebra
associated with the supremum metric on Q€. By Theorem 2.2, for every § > O there
exists 0 < € < a and a probability space (¢, IP¢) such that

Pé( 2li0.e = Bl[o,g]) >1-3. (5.51)
For € € (0, a], (5.51) implies that with probability larger than 1 — §

. Ayt + h) — A5 (1) . Ayt + h) — A5 (1)
sup lim sup sup limsup
el hl0 wp(h) ref0,e)  hl0 wp(h)
. B(t + h) — B(t)
= sup limsup ——— =
tel0.6) A0 wp(h)

IV

1, (5.52)

where the last equality comes from Lévy’s modulus of continuity [27, Theorem 10.1]
and the self-similarity of Brownian motion. Taking § — 0

A5t +h) — A5(1)

sup lim sup > 1 with probability 1.
rel  hi0 wp(h)
Note that
. Ay (t +h) — A5 (1)
sup lim sup
tel  hi0 wp(h)
. Aot +h) — Az (1) . (t+h)? -1
= sup lim sup + sup lim sup ——
rel  hi0 wp(h) rel  hi0 wp(h)
t+h)— t
= sup lim sup At 1) — A1) (5.53)
tel  hlo wp(h)
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Plugging (5.53) in (5.52) implies the result. O

6 Coalescence of point-to-point geodesics

In this section we prove Theorem 2.8 and Theorem 2.9. For technical reasons, namely
the direction in which we send v, to infinity in (4.13), we prove the results for a setup
that is a bit different, yet equivalent, to the one in Fig. 2 i.e. we set ¢! = éN, ¢ =
EN —aN?*3e; and 0 = (0, 0) (see Fig. 6).

6.1 Upper bound on P(Jo — p.| < aN)

Let G? and G” be the stationary LPP with p = p + rN’% and p = p — rN’% con-
structed through (3.13)—(3.14) with the boundary weights on the north-east boundaries
of RSN as in (5.6) (with M = N) and the bulk weights {w,} .gn~e. Recall (3.15).
Similarly to (5.4) define

A = {’Z\fl(i) < —aN%} m [’Z\fl@j > O}.
Similarly to Corollary 5.6 we have

Lemma 6.1 Fix & € rild and a > 0. There exist C(€,a) > 0, locally bounded in a,
and Ny (&, r) > 0 such that

P((A")") < Cr3. 6.1)
Proof By definition of A"
- Sp(€) 2 =5
P(AN)) <P(Z,,, = —aN3) + P(zgfi) <0) 6.2)

The bound on P(fg ,@3 < O) comes from (5.16), it remains to bound P(/Z\fl(i) >

—~ 1
—aN3). Letu = (u1.uz) = €N — aNiey, and let G2'" | be the LPP induced by
/G\f;l . atu. By Lemma 3.2 we see that

=P 2 PNPL
P(Z, , =z —aN3) =P(Zi%) = 0), 6.3)
1 e 1
where Z,[f,x] is the exit point of Gf :)Eq ]. Compute

p2 2

P 2
02 =§2N—1_78)251N—QN3

(”2_(118)21'{1)_ (

@ Springer



Local stationarity in exponential last-passage percolation

_BN(1-2(p —rN"3) +(p —rN")?) — (0 = 2prN~5 + 2N 3)EN

2
3

(1—p)? man
N(E( = p)? — &) +2rN3(Eip+ 81— p) + N3P — &)
= —aN3
(1—p)?
2(r — )N (Eip+E80—-p)+N" 5128 — él)
(1-p)?
where
1— 2
= (1-p) . (6.4)
2[&1p + &1 = p)]
It follows that there exists No(&, r) such that for N > Ny
( p* ) _ r—caN (Eap + £l — )
2— ———S UL —02 ;
(1—-p)? (1—p)?
where
N2
(I—p) 6.5)

T AEp+ 60— p)]

It then follows by Lemma 3.1 that there exists a constant C; (&) > O such that
lg"1 -3
IP’(Z,M > 0) <Ci(r —ca)—".

the proof is now complete. Taking C > 0 large enough implies (6.1) O

Let0 <o < land oy, = 0 + ¢éN = aéEN. We define R, = [0, 0,] to be the
rectangle whose left bottom corner is 0 and whose upper right corner is o,. We shall
need the following result.

Lemmaé6.2 Fix& erild, 0 < o < 1 andr > 0. There exists C (&) > 0 such that for
t >arand N > No(&,r)

P(1Z], . = tN3) = Car™? (6.6)
P(|Z§a,o| > zN%) < Ca?3. 6.7)

Proof We prove (6 6) as (6.7) is similar. In fact we only prove here the upper bound
for ]P’( o> tN?) as the bound on ]P’(Z,‘,’a 0 < tN3) is similar. Let Gf,) Loal be the
LPP induced by Gou,x at u where u = aéN — A1tN3e1, and

410 +5(1 — p))

A =
02

(6.8)
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By Lemma 3.2 we see that
P(Zly) > 0) = B(Z], > AitN?). (6.9)

where Z%’él and /Z\fa, + are the exit points of /G\Sj)[co"] and 65{1’ + respectively. We would

like to show that the characteristic £(p) emanating from the point u = (u1, us) goes
2

well above the point o on the scale of N3. Compute

=2 =2

o o 2
(u2 — mul) — 0y =aéy)N — m(“éll\/ — All‘N3)
aiaN (1 =2(p +rN"H) + (0 +rN"3)2) — (0> +20rN™% + >N~ )a&i N
- (15
=2
V!
_aN(&(1 - p)? —£19%) — 2raN3 (19 + &2(1 — p)) +aN3 (& — &)
- (152
=2
g
(NF (0241 = 22 (10 + £2(1 - ) + NI — £1)
> .
= (1-p)?

By (6.8), fort > ra

2 2 1
(12 - ﬁ_zm) L, NiREp TR ) + N @ —8)
(1—-p)? - (1—p)?
It follows that there exists No(r) > 0 such that for N > N
— _2 2
(Mz S ul) -0y > o St@N)i[&1p + &1 - p)]
(1-p)? - (1—p)2 :

It then follows by Lemma 3.1 that there exists a constant C}(§) > 0
P(Zld > 0) < Cja?3 (6.10)
Plugging (6.9) in (6.10) implies that

P(Z2 . > AiIN3) < Clar™3,
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Applying the change of variables At +— t, there exists C;(£) > O such that

P(Z > tN3) < Cra?t™, 6.11)

[

Similarly we show that there exists C2 (&) such that

P(’Z\fa’x < —tN%) < C2a2t_3.

Setting C = C; Vv C; implies the result. O

Define the sets

= o e e —ier]
aEN — e 05iga51NU BN =12 ot

a)t _ _ . _ .
0 = {aéN lel}oggzv% U {erN lez]OsistN%
0f" = 9%\ 9.

In words, 8 is the north-east boundary of R, 9" are all the points in 3% whose [
. . 2 . s
distance from o, is less or equal to t N3 while 8?” are the set of points in 0% whose

. . 2 _ gl 1 .
[1 distance from oq is larger or equal to tN 3. Let 79 *° and £ +“ be the stationary
geodesics that start from ¢! and terminate at o, associated to G” and G” respectively.
Define

Bt — {ﬁ,ql,o N a?,t — VJ} ) {7_-[(11»0 n a?'t = @} (6.12)

The superscript r in 5% appears implicitly in p, p. The following result shows that

with high probability the geodesics 79 "0 and i " will not wonder too far from the
point o0y .

Corollary 6.3 Fix& €rild,0 < o < landr > 0. There exists C (&) > 0 such that for
t >arand N > No(&,r)

P((B"*")°) < Ca?t ™. (6.13)

Proof Note that it is possible to couple 250,,0, Z%’a,,,, g"l 20 and 77+ 50 that
{ﬁqlv”m;*f 7&@} - {|2§M| th%} (6.14)
{J_ﬂ's”ma?’f 7&(2)} - {|2;’,’a,0| thﬂ. (6.15)

Taking probabilities on both sides of (6.14) and (6.15), using Lemma 6.2 and union
bound we obtain (6.13). m]
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Define the sets

o

pret — (P — B | forl <k <tN3
1 - og—kei,0q—(k—1)e; = Toq—key,04—(k—1)eq =" = :
r.a,t P _pP 2
DZ - {Boa—kez,aa—(k—l)ez - Baa—kez,oa—(k—l)ez} for 1 = k <IN3

Dr,a,t — ,Dq,oz,t N ,D;,a,t’

where the superscript r is implicit in p, p ((5.2)).

Lemma 6.4 Forevery§ € rild and0 < o < 1, there exists C(§) > 0 so that for every
r>1andt < r=2 there exists No(r) > 0 such that for N > Ny

P((D”“*’)”) <Ctor. (6.16)

Proof We show (6.16) for Dg’“’t the result then follows by union bound. As in (5.26)
we have

2
tN3

IP’((DS’“J)C) - vﬁ)’ﬁ( Y e 0). (6.17)
i=l1

Using (5.30) with @ = 12 N~3

2
IN3 1
v8ﬁ<2e,~>0)§ 2rN 31
i=1 p+rN—3
2
_1 1 1Ar—2 tN3
—rN73 2rt2 + 1)t7IN73 -1
+P . 1|:1+ (2 )1 2 zi| <1+2t_%”_1)
p+rNT3 p?>— (r*N73 +2rt72N"3 +17IN73)
(6.18)
Sending N to oo, the right hand site of (6.18) converges to
2(2r241) 1o\t 2(nz41) 1
e (1 +27 3 ) <ef St (6.19)

Plugging (6.19) in (6.17), by our assumption on ¢, rt? < 1, and so we see that there
exists C2(£) > 0 such that for every r > 1, there exists No(r) > 0 such that for
N > Ny

]P’((DE'“”)C) < oty

Similar bound can be obtained for Df’“” the result then follows by union bound. O
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REN

ot
c

o

1 2
Fig.6 With high probability the geodesics 7 4! and alo sandwich the geodesics 77 ? and w4 . The

o
stationary geodesics (in red) use the same weights on edges in £ (821 ’t)

Proof of Theorem 2.8 We first claim that on the event A” N B! N D%/ the geodesics
79" and 77> must coalesce outside Ry (see Fig. 6). On the event A"

- 1 2
ﬂql’oﬁﬂq’ofﬂq'ofquya. (6.20)

g'.0and 7 ;1 , outside R, implies the
. 1 2 . .

coalescence of the geodesics 79 ? and 79> outside Ry. It is therefore enough to

show that on the set 8-*" N D!

This means that coalescence of the geodesics 7,

PN (G ) = PN (1) (6.21)

On the event B"%7 the geodesics 77,1 , and 1 , do not cross 8?’t and therefore use

) q'. q'.0

only the weights B, Bf where e € £(8%") and the bulk weights {wy}xem, - It follows
thaton B"*'ND"%! (6.21) holds. Setr = a_%,t — o¥ sothatt = a B > o —ar
holds (since 0 < o < 1). Note that under this choice of parameters r'/2r < 1. Use
(6.1), (6.13) and (6.16) to see that there exists C’' (£, a) > 0 such that

P(lo — pc| = (61 AE2)aN) = P(pe € Ra)
1

51@(@1-%)C>+P<(Ba—%,a,a%)0>+P<(Da—%,a,m)c)
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2 2 2
<C (a9 +a?d +a9).
The result now follows. O

6.2 Upper bound on P(|g% — pc| < aN)
For every & € rild and m € Z, define the set

Col = my x [y € Z:mbofey — y < INF)

Ci o ={m) x {y € Z:mbje —y > —tN7).

L D
Let &' = £ and £2 = & — (0, aN~3) be two vectors whose dlrectlon is that of the
characteristics emanatmg from o ass001ated with the point g' and ¢? respectively. Let

p=p&)+rN~ 3 p=pE)—rN~ 3 and consider Go » and GU «onRN¢ asin (3.7).
Forx € o + Z>O, let 72* and 7 * be the geodesics associated with the last-passage
time Gg,x and Gg,x respectively. We shall need the following auxiliary result.

Lemma6.5 Let 0 < a < 1 andr > 1. There exists No(&,r), C(§), A(E) > O such
that for N > Ng and t > Aar

1 — —
P(r1"0 € (€] pen.)) = C@ 47 (6.22)
P(n00 € (€] ey ) = C@ 17, (6.23)
Proof We prove only (6.22) as the proof of (6.23) is similar. We would first like to

show that there exist No(&, r), C1(§), A(§) > 0 such that for N > Ng and t > Aar
(see Fig. 7)

(770" € (6 en)) = Cra?i™, (6.24)

To see that (6.24) holds, letu = ((1—a)& N, (1—a)&,N —tN3) and consider G4,
Note that

+ ¢ [o]
EE (C(l Cwand) 1 =12, >0} (6.25)
We compute
2 o2
N = [ = &N — N3 + s akiN]
=ab )N — '672_0651N N3
(1-p)7?
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REN

o
(1 -a)&aN
Fig.7 With high probability the geodesic 724 ! exits from the south boundary of REN and crosses the set
&t
(1—a)é Nt

_@N(1 =20+ rNTH 4 (o rNT?) = (07 4 2pr NS4 PN RJatiN s
- (1-p)?
_ oaN(@ = p ~&p%) ~2raNi (o + 600 = p) +aN i 6 —8) | o
(1-5)?
zN%<(1 — 0= (= pP+ (1= p)? = L2 (1 + 61— p) + LN (& - 51))
= (1-p)? '
If
P> Sar(&1p +&(1 — ,0))’
(1—p)?
then there for C'(§) > 0
N 7’ N+ (N3
adr - [))20!551
tN3 ((1 — = (1 =p)?+ 31— p? +CrN"3(E — sl))
. T . (6.26)
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REN
1
q
st
— 2
(1 Ol)le,t aN§
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704 ,
7
/ 2 q
p TtNs
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4
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7’ P -
7
/ P
. LT pod?
< 52_
T Chisaany
o
(1-a)eN

Fig. 8 With high probability the geodesic rr"*ql crosses the vertical line at (I — o) N no too far below

. . 2 N e
the characteristic & ! while 799" crosses no too far above the characteristic & 2

so that there exists Ny (&, r) such that for N > Ny the left hand side of (6.26) is greater
of equal to

tN%(%(l _'0)2) 1 _2 2
— > = — 3t(aN)3.
(1 -p)? 2

It then follows by Lemma 3.1 that there exists a constant C1(£) > 0 such that for
N > Ny

Pz, > 0) = Cio’i. (6.27)

(6.24) now follows from (6.27) using (6.25). Next we use (6.24) to obtain (6.22). To
see that, we first note that (similar to (5.16)) there exists C2(£) > 0 such that

P(z"

0.q"

>0)>1—Cor™
which implies that
P(r 4 0<7%') > 1 — Cyr 2. (6.28)

@ Springer



Local stationarity in exponential last-passage percolation

Note that
1 1 _ 1 — 1
(0 € (C e ) TN T 02770} {72 € (C e n.) ) (629)

Taking probability in (6.29) and using (6.24) and (6.28) we arrive at (6.22). O

Proof of Theorem 2.9 Fix 0 < a < 1. Note that

(N_éz _ Ng—aNs

2
NE, NG, )(1 — )N =a(l —a)N3

_2
3

Lett = %(1 —a)and r = %a where A is the constant from Lemma 6.5, so that

t > Aar = ta%. By Lemma 6.5, there exists C(§,a) > 0
1 1
]P’(nq 0 ¢ (Cflfa)gw,,)“) < Ca?

2 2_
]P’(nq 0 ¢ (Cfl_a)glN,t)C) < Cca?. (6.30)
Let2p1 = inf{y : (1 —a)&1N,y) € nql'o} and p» = sup{y : (1 —a)§IN,y) €
9>} be the lowest and highest intersection points of the vertical line at (1 — @) N
with 74" and 7 4*° respectively (Fig. 8). (6.30) implies that

P(pl —p2 < %(1 —a)N%) <2Ca>.
It follows that
P(pe € [((1 = @8N, 0), £N) < 2Ca?. (6.31)

(6.31) implies the result. O
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Appendix A. Queues

We formulate last-passage percolation over a bi-infinite strip as a queueing operator.
The inputs are two bi-infinite sequences: the inter-arrival process a = (aj) jez and
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the service process s = (s;) jez. The queueing interpretation is that a; is the time
between the arrivals of customers j — 1 and j and s; is the service time of customer j.

The operations below are well-defined as long as lim,,— —~ Z?:m (si—ajy1) = —o0.
From inputs (a, s) three output sequences

d= D(a,s), t=2S(a,s), and S= R(a,s) (A1)

are constructed through explicit mappings: the inter-departure process d = (d;) jez.,

the sojourn process t = (t) jez, and the dual service times § = (3}) jez.
The formulas are as follows. Choose a sequence G = (G ) jez that satisfies aj =
G — Gj—1. Define the sequence G = (G;) jez by

Gj= sup IGk + Zs,} (A2)

kik<j

The supremum above is taken at some finite k. Then set
djzé,‘—@j_l, tj:6j—Gj, and §;=a; Antj_. (A.3)

The outputs (A.3) are independent of the choice of G. Note that to compute {d, ¢;, §; :
J < m},onlyinputs {a;,s; : j < m}areneeded. Leta = (a;)jcz and s = (s;) jez be
two independent sequences of i.i.d. exponential r.v. of intensity A and p respectively,
where 0 < A < p < 1. We denote by v** the distribution of (D(a, s), s) on R% X R?_,
ie.

VP~ (D(a,s), s). (A.4)
By Burke’s Theorem D(a, s) is sequences of i.i.d. Exponential r.v. of intensity A,

consequently, the measure v*+* is referred to as a stationary measure of the queue.
The waiting time of the j’th customer is given by

= sup (Zsk 1 — ak) . (A.S5)

i<j
The random variables {w} ¢z satisfy
+
wjz(wj_1+sj_1—aj) . (A.6)

The distribution of wy (and by stationarity the distribution of any w; for j € Z) is
given by

fu(@w) =P(w € dw) = (1 — %)So(dw) + @ﬂﬂ*”wdu). (A7)

@ Springer



Local stationarity in exponential last-passage percolation

One can write
di =ej+sj, (A.8)
where e is called the j’th idle time and is given by
ej =(wj_1+sj-1—aj;). (A.9)

e; is the time between the departure of customer j — 1 and the arrival of customer j
in which the sever is idle. Define

Xj=3S8j—-1—4aj,
and the summation operator

1
S =3 "x; (A.10)
i=k

Summing e; we obtain the cumulative idle time [35][Chapter 9.2, Eq. 2.7] as in the
following lemma.

LemmaA.1 Foranyk <1

!
D= inf wiy+557) (A1)
k<i<l
—
Proof For simpler exposition we set k = 1. By (A.5)

SNt SNt
w;:(sup S”l) \/( sup S”l)

I<i<l —00<i<0
NS : +
= ( sup S”l> \% ( sup S04 Sl’l)
1<i<l —oo<i<0
SNt ‘ +
= ( sup S”l) v <( sup S"O)+ + Sl’l) .
1<i<i —00<i<0

To see that the last equality holds, note that

o giid + .80
SUP1<i<i SUP_oo<i <0 <

= i\ " i,0)F " i,0
(Sup1§i§15’> \ ((Sup_oo<i§05 ’ ) + S ’) Sup_oo<,-§05 > 0.

It follows that

w; = ( sup S’"l)+ \Y (Sl’l + w0)+

1<i<l
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= (sup [54 = 5"7]) v (84 4 w)*

2<i<l

(S”— inf Sl’i>+v(Sl’l+wo)+

I1<i<l-1
A7 o\ T
= (s""+wo— inf [uwo+5"]) (A.12)
0<i<I-1
where
3‘1’5 _ Sl’i i>0
—wy i=0 "

where the last equality in (A.12) follows since
11 sron\ " 1.1 +
(S’ +wo — [wo + S" ]) = (8" +wo) ™.
It follows that
wy =S +wo — inf [wo + §M]. (A.13)
0<i<l
where we dropped the positive part because
1,1 QLI _
wp = SY 4+ wo — [wo + M| =0.
By (A.6) and (A.9) we see that

—ejtwj=wj_1+Sj-1—-4;
= ej=Wj —wj_1 —Xj. (A.14)

Summing on both sides of (A.14) and using (A.13)

I
Zei =w; —wo— S
i=1

= — inf wo+ §hi
0o<i<l
=( inf wo—l—Sl’i)_.
l1<i<l
O
Proof of Lemma 5.8 By (A.11)
&M o
Y e = ( inf  wp+ Sl") (A.15)
— 1<i<&iM x
1=
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where
i
S]’i— .
x = Sji—1 aj.
j=1

Next we bound from above the probability that the infimum of the path of { S}”' h<i<eiM
drops too low. Let C > 0, then

IF’( inf S”<—C>=IP’< su —SU>C).
l<i<gM * T 15,'5211/1 T

As —S ;’i is a submartingale and ¢ (x) = %% is a strictly increasing convex function
for 6 > 0 ¢p (—S;”) is again a submartingale. By Doob’s inequality

LM

1,i o(—shi 6C E(eg(fsx ’)
P( sup —Shi > c) =JP>< sup S > ¢ ) < 7 (Al16)
l<i<&iM I<i<f§iM €

Note that by the independence of a = (a;)jez and s = (s5;) jez, for0 < 6 < B

e ) = [l el = [ ) e

Plugging (A.17) in (A.16)

. aM
IP( sup —Shi > c) < [ * p ] gec (A.18)
l<i<&/M (a+0)(B—0)
By (A.15)
&M _
Zei >0 & wy+ inf S;” <0,
= I<i<&iM
and so
&M
. _ - Li
P(;e, > 0) = P(uwo + inf st <0) (A.19)
=

Note that by the definition of wg ((A.5)), wy is independent of {S;’i }iez., and so

IP(wo + inf SN o< 0) = ]P’( sup —Shi > w0>
l=istiM l<i<gt M

= /]P’( sup —S;’i > w|wy = w)]P’(wo € dw)
I<i<&iM
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/]P’ sup —S)lc’i > wlwy = u))fw(dw)

I<i<&tM
- /IP’ sup —Sl > w)fw(dw) (A.20)
I<i<&M
where f;, is given by (see (A.7))
Jwdw) = ((1 - é)So(dw) + we_(“_ﬂ)wdw), (A.21)
o a
so that
]P’(wo—l— inf Sl’ < 0)
I<i<& M
<1-—= +/ sup _S;»i > w)we—(a—ﬂ)wdw. (A.22)
I<i<&tM o
Plugging (A.18) in (A.22) we obtain the result. O

Appendix B. Coupling and monotonicity in last-passage percolation

In this section w = (wyx),¢z2 is a fixed assignment of real weights. Gy y is the last-
passage value defined by (2.1). No probability is involved.

LemmaB.1 Suppose weights w and  satisfy woyie; = Qotie;» Dot jer < Qo jey, and

Wy =y fori,j>1landx € o + Z2>0. As in (2.1) define LPP processes
ly—ol ly—x|

Go,y = max Zka and G,,,y_ max Z@xk fory€0+Zz>O.
oy 130 Y =0 -

Then forall y € 0 + Zzzo’ the increments over nearest-neighbor edges satisfy

Go,y+61 - Go,y = Go,y+e1 - Go,y and Go,y—i—ez - G(J,y = Go,y—i—ez - Go,y-

Proof The statements are true by construction for edges (y, y + ¢;) that lie on the
axes o + Zsoe;. Proceed by induction: assuming the inequalities hold for the edges
(y,y + e2) and (y,y + e1) , deduce them for the edges (y + e2, y + e + e2) and
(y+er,y+e+e). O

LemmaB.2 (Crossing Lemma) The inequalities below are valid whenever the last-
passage values are defined.

Go+el,x+ez - G(H—el,x =< Go,x+ez - Go,x < G(H—ez,x-i-ez - G0+ez,x (B-l)
Go+ez,x+e| - Go+ez,x = Go,x+el - Go,x =< Go+el,x+e| - Go+e1,x~ (B~2)
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Proof The proofs of all parts are similar. We prove the second inequality in (B.1), that
is,

Go,x-i—ez - Go,x S G0+e2,x+ez - Go+ez,x~ (B3)

The geodesics 7, x4e, and o4, x Must cross. Let u be the first point where they
meet. Note that

Go,u + Gu,x =< Go,x and G0+ez,u + Gu,x+e2 =< Go+ez,x+ez- (B.4)

Add the two inequalities in (B.4) and rearrange to obtain (B.3).
This inequality can be proved also from Lemma B.1, by writing Gote,, x+e, —
Goter,x = Go, x+e; — Go,x with environment 50+y = wyt+y When y; > 0 and
@otie; = —M for large enough M. O

Appendix C. Convergence of distributions

Let (X, p) be a complete, separable metric space and let M (X) be the space of Borel
probability distributions on X. For u, v € M (X) and € > 0 we define

drv (u,v) = inf{]P’(,o(X, Y) > 6) (X, Y)isarv.s.t. X ~u, Y ~v}.

For ¢ = 0 we obtain exactly the definition of total variation distance of distributions.

Lemma C.1 Let 1, (2, u3 € M1(X). Suppose that for some § > 0
dry (1, u2) <6 and dry (u1, u3) < 9. (C.1)

Then

drv, (n2, 3) < 26.

Proof Let X1, X; and X3 be three copies of X and let 2 = X; x X, x X3. By (C.1),
there exist fu, us» fui.us € M1(X?) s.t.

/XZ Loe,y)yse dfpuypu; (x,y) <6 fori e {2,3}.

Fori € {2, 3} let df},;,,, be the conditional distribution of w; given wy w.r.t. fu, ..
Define the distribution F on 2 by

dF =du, (xl)dfuzlul (-x2)dfu3lul (x3).

Note that the marginals of F are 1, o and 3. Let Po3 1 Q — X2 be the projection
map of the last two coordinates in 2 and let F’ be the pushforward measure of F with
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respect to P, 3. Then F is a coupling of py and p3 and

/2 1,o(x,y)>2e dF/(-xa y) Zf lp(xz,x3)>2€ dF(xy,x2,x3)
X Q

5/;2lp(xl,x3)>edF(xlsx2,x3)+Alp(xz,x1)>edF(xlvx21 x3)

< 24. (C.2)
(C.2) implies the result. O

Lemma C.2 Let {u, }nen and {v;, }nen be two sequences of distributions on X. Suppose
that

Un —> K and vy, — v weakly. (C.3)
Assume that for everyn € N
drv(in, vp) < 6. C4H
Then
dry(u,v) < 36.

Proof Fix k € N. The convergences in (C.3) can be realized a.s. and so, there exists
N (k) such that for n > N (k)

dTVk_l (Mn, ) <9

dry,_, (vp,v) <38.
Using Lemma C.1 twice with (C.4) implies that for n > N (k)
dry,_ (1, v) < 36,

and so there must be a coupling F¥ of ;1 and v such that

/1p(x,y)>k4 dF* <35,

The sequence { F¥},cn is tight with respect to the product metric as the marginals of F¥
are independent of k. It follows that there must be a weakly convergent subsequence
Fkn such that

Fkn — F,
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where F is a coupling of 1 and v and that for every k € N

/lp(x,y)>k_' dF S 38

Sending k to infinity implies the result. O
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