

SCIENCE • STEWARDSHIP • SERVICE

[Start](#) | [Grid View](#) | [Author Index](#) | [View Uploaded Presentations](#) | [Meeting Information](#)

GSA Connects 2021 in Portland, Oregon

Paper No. 37-9

Presentation Time: 4:00 PM

THE DIVERSIFICATION OF CORDILLERAN ARC MELTS IN THE DEEP CRUST OF FIORDLAND, NEW ZEALAND

SCHWARTZ, Joshua¹, **BRACKMAN, Adam**¹, **CARTY, Kendra**², **GREENBERG, Gillian**³, **KLEPEIS, Keith A.**⁴, **STOWELL, Harold H.**⁵ and **BARNES, Calvin**⁶, (1)Department of Geological Sciences, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330-8266, (2)Dept. of Geological Sciences, California State University at Northridge, Northridge, CA 91330, (3)Department of Geological Sciences, California State University Northridge, 18111 Nordhoff St., Northridge, CA 91330, (4)Department of Geology, University of Vermont, Trinity Campus, Delehanty Hall, 180 Colchester Ave, Burlington, VT 05405, (5)Department of Geological Sciences, The University of Alabama, 201 7th Ave., Bevill Building, Room 202, Tuscaloosa, AL 35487, (6)Geosciences, Texas Tech University, Lubbock, TX 79409-1053

There is an ongoing debate about the relative role of high-pressure minerals such as garnet in the diversification of melts in the deep crust of Cordilleran arcs. We investigate this problem in a well-exposed arc in Fiordland, New Zealand, which preserves a near continuous section of Mesozoic lower and middle crust from 65 to 20 km paleo depth where successive intrusions were stacked on top of each other. These Late Cretaceous arc rocks have high Sr/Y (>40) and Na₂O (>4 wt. %), which have been interpreted to reflect the production of a thick garnet-bearing mafic arc root.

Microbeam geochemical data were collected from igneous clinopyroxenes and amphiboles from the Inboard Median batholith including the lower crust (Misty and Malaspina Plutons) and the middle crust (Puteketekite Pluton). Clinopyroxenes and amphiboles in the lower crust crystallized at 1050-850°C and ca. 1.1-0.8 GPa. Chemistry calculations indicate that amphiboles were in equilibrium with fractionated andesites and dacites (SiO₂ = 56-66 and MgO = 0.5-2.0 wt. %; Mg#s = 25-35). Calculated melt compositions derived from partition coefficients are bimodal and include a trace-element enriched group (Zr >35 ppm) and a trace-element depleted group (Zr <35 ppm). Both melt groups have flat heavy-rare-earth element patterns, low Sr/Y (<40) and low Dy_N/Y_{Bn} (<2.0), which are inconsistent with garnet control but indicate fractionation of amphibole + plagioclase ± clinopyroxene.

In the middle crust, amphiboles crystallized at 825-800°C and 0.7-0.6 GPa. Calculated melts were dacitic to rhyolitic (SiO₂ = 67-75 and MgO <0.5 wt. %; Mg#s <25) and similar to depleted melts in the lower crust (Zr <35 ppm). Most analyses display flat heavy-rare-earth element patterns and low Dy_N/Y_{Bn} (<2.0), though some melts have Sr/Y values up to 400. The lack of correlation between Sr/Y and Dy_N/Y_{Bn} precludes garnet control and suggests that melt diversification was controlled by amphibole fractionation. We conclude that bulk-rocks in the middle and lower crust of Fiordland reflect crystal accumulation of plagioclase and amphibole, and they are poor proxies for original melt compositions. Our data do not support the production of a voluminous garnet-bearing residue and suggest that the use of high-Sr/Y values as an indicator of garnet in the lower crust requires re-evaluation.

[Recorded Presentation](#)

Session No. 37

[T23. The How, When, Where, and Why of Open-System Magma Processes](#)

Sunday, 10 October 2021: 1:30 PM-5:30 PM

Portland Ballroom 252 (Hybrid Room) (Oregon Convention Center)

Geological Society of America *Abstracts with Programs*. Vol 53, No. 6
doi: 10.1130/abs/2021AM-370492

© Copyright 2021 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.

[Back to: T23. The How, When, Where, and Why of Open-System Magma Processes](#)

[<< Previous Abstract](#) | [Next Abstract >>](#)