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Abstract

We show that nontrivial bi-infinite polymer Gibbs measures do not exist in typical
environments in the inverse-gamma (or log-gamma) directed polymer model on the
planar square lattice. The precise technical result is that, except for measures
supported on straight-line paths, such Gibbs measures do not exist in almost every
environment when the weights are independent and identically distributed inverse-
gamma random variables. The proof proceeds by showing that when two endpoints of
a point-to-point polymer distribution are taken to infinity in opposite directions but
not parallel to lattice directions, the midpoint of the polymer path escapes. The proof
is based on couplings, planar comparison arguments, and a recently discovered joint
distribution of Busemann functions.
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1 Introduction

1.1 Directed polymers

The directed polymer model is a stochastic model of a random path that interacts
with a random environment. In its simplest formulation on an integer lattice Z?, positive
random weights {Y}, },cz« are assigned to the lattice vertices and the quenched probabil-
ity of a finite lattice path 7 is declared to be proportional to the product [ [, .. Y;. In the
usual Boltzmann-Gibbs formulation we take Y, = e #“+ so that the energy of a path is
proportional to the potential )| __w, and the strength of the coupling between the path
7w and the environment w is modulated by the inverse temperature parameter (.

The directedness of the model means that some spatial direction u € R? represents
time and the admissible paths 7 are required to be u-directed. One typical example
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Non-existence of bi-infinite polymers

would be to require that the steps of 7 are of the form (+e;,1) € Z? forie {1,...,d — 1}.
In this example the time direction is u = ey, space is the (d — 1)-dimensional lattice Z~!,
and 7 is a simple random walk path in space-time. Another common choice is to restrict
the steps of 7 to directed basis vectors {e;}1<i<q S0 that time proceeds in the diagonal
directionu =e; + - - - + e4.

This model was introduced in the statistical physics literature by Huse and Henley in
1985 [23] as a model of the domain wall in an Ising model with impurities. Since the
polymer can be viewed as a perturbation of a simple random walk, a natural question
to investigate is whether the walk is diffusive across large scales. The early rigorous
mathematical work by Imbrie and Spencer [24] and Bolthausen [8] in the late 1980s
established that in dimensions d > 4 (one time dimension plus at least three spatial
dimensions) the path behaves diffusively for small enough 3. This behavior is now known
as weak disorder. Later work [13, 28] established that in lower dimensions d € {2, 3}
or if g is large enough, the polymer model exhibits strong disorder, characterized by
localization. Excellent reviews of this development can be found in [12, 19].

Since the early interest in the phase transition between weak and strong disorder,
the study of directed polymers has branched out in several directions. The discovery
of exactly solvable 1+1 dimensional models, the first of which were the O’Connell-Yor
Brownian directed polymer [30] and the inverse-gamma, or log-gamma, polymer [33], led
to rigorous proofs that directed polymers are members of the Kardar-Parisi-Zhang (KPZ)
universality class [9, 10, 34]. This had been expected since directed polymers are positive
temperature analogues of directed last-passage percolation, for which predictions of
KPZ universality were first rigorously verified [3, 26]. On KPZ we refer the reader to the
recent reviews [16, 17, 31, 32].

Through Feynman-Kac-type representations, directed polymers provide solutions
to stochastic partial differential equations. Early work in this direction by Kifer [27]
connected a polymer in the weak disorder regime with a stochastic Burgers equation.
The significant current example of this, which also takes us back to the study of KPZ
universality, is the connection between the continuum directed random polymer and
the stochastic heat equation with multiplicative noise, whose logarithm is the Hopf-Cole
solution of the KPZ equation. We refer to Corwin’s review [15].

1.2 Infinite polymers

Another natural direction of polymer research is the limit as the path length is taken
to infinity. This limit can be readily taken in weak disorder. This can be found in the
work of Comets and Yoshida [14]. In strong disorder the existence of limiting infinite
quenched polymer measures was first proved in 1+1 dimensions for the inverse-gamma
polymer in [22].

The limiting quenched probability distributions on infinite-length polymer paths
can be naturally described as the Gibbs measures whose finite-dimensional conditional
distributions are given by the quenched point-to-point polymer distributions Q, ,(7) =
Z-;,@l/ [[,er Yu- Here 7 is a path between points z and y and the partition function
Zyy = 2n | luer Yu normalizes Q. , to be a probability distribution on the paths between
2 and y. (This notion is developed precisely in Section 2.)

This Gibbsian point of view arose prominently in the work of Bakhtin and Li [5] who
studied a 1+1 dimensional model with a Gaussian random walk. They used polymer
Gibbs measures to construct global solutions to a stochastic Burgers equation on the
line, subject to random kick forcing at discrete time intervals. Their sequel [4] showed
that as the temperature is taken to zero, the Gibbs measures concentrate around the
geodesic of the corresponding directed percolation model.

Janjigian and Rassoul-Agha [25] developed aspects of a general theory of polymer
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Gibbs measures for i.i.d. vertex weights and directed nearest-neighbor paths on the
discrete planar square lattice Z?2. We work in their setting, with a specialized choice of
weight distribution.

1.3 Bi-infinite polymers

The work cited above addressed the existence and uniqueness of semi-infinite Gibbs
measures. These are measures on semi-infinite, or one-sided infinite, paths, with fixed
initial point. The existence of bi-infinite Gibbs measures was left open. These would
be measures on bi-infinite paths that satisfy the Gibbs property. The problem can be
viewed as an analogue to the notorious open problem of the non-existence of bi-infinite
geodesics in first passage percolation, which in turn, is related to the ground states of
the Ising model with random exchange constants [2, Section 4.5]. It also generalizes
previous results on the non-existence of bi-infinite geodesics in zero temperature.

In this paper we assume that the i.i.d. vertex weights {Y,.},cz> on the planar lattice
Z? have inverse-gamma distribution. Then we prove that, for almost every choice of
weights, nontrivial bi-infinite Gibbs measures do not exist. Trivial bi-infinite Gibbs
measures do exist, by which we mean ones that are supported on bi-infinite straight
lines.

The key tools of the nonexistence proof are the following.

(i) Planar comparison inequalities, reviewed and proved in Appendix A.

(i) KPZ wandering exponent 2/3 of the polymer path, quoted in Appendix B.3 from
[33].

(iii) A jointly stationary bivariate inverse-gamma polymer from the forthcoming work
[20] of the second author and W. L. Fan, developed in full detail in Appendix B.2.

From these ingredients and coupling arguments we derive a bound on the speed of decay
of the probability that a polymer path from far away in the southwest to far away in the
northeast goes through the origin. This bound is given in Theorem 4.6 at the end of
Section 4. The KPZ fluctuation bounds on polymer paths enable us to deduce this result
from local point-to-point estimates and a coarse-graining step.

Item (iii) above is the joint distribution of two Busemann functions of the polymer
process. We do not use the Busemann functions themselves in this paper and hence do
not develop them. We refer the reader to [5, 22, 25].

A methodological point to emphasize is that our proof does not rely on any integrable
probability features of the inverse-gamma polymer, such as those developed in [10, 18].
The KPZ fluctuation estimates of Appendix B.3 were proved in [33] with techniques that
are the same in spirit as the arguments in the present paper.

It is reasonable to expect that non-existence of bi-infinite Gibbs measures extends
to general weight distributions, since the present proof boils down to path fluctuations
which are expected to be universal in 1+1 dimensions under mild hypotheses. However,
currently available techniques do not appear to yield sufficiently sharp estimates to
prove this result in general polymer models. Specifically, items (ii) and (iii) from the list
above force us to work with an exactly solvable model.

The zero-temperature counterpart of our result is the non-existence of bi-infinite
geodesics in first-passage or last-passage percolation models. This has been proved for
the planar exponential directed last-passage percolation model [6, 7]. The organization
of our estimates mimics our zero-temperature proof in [6].
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1.4 Organization of the paper

Section 2 develops enough of the general polymer theory from [25] so that in Section
2.3 we can state the main result Theorem 2.8 on the nonexistence of bi-infinite inverse-
gamma polymer Gibbs measures. Along the way we apply results from [25] to prove
for general weights that infinite polymers have to be directed into the open quadrant,
unless they are rigid straight lines (Theorem 2.6). This result will also contribute to the
proof of the main Theorem 2.8.

Section 3 gives a quick description of the ratio-stationary inverse-gamma polymer and
derives one estimate - that under the annealed measure, with high probability, stationary
polymers will leave far from the characteristic £ on the order of O(N 2/3 ) when perturbing
the density p(¢) properly on the order of O(N'/3).

The heart of the proof is in Section 4. A coarse-graining argument decomposes the
southwest boundary of a large 2N x 2N square into blocks of size N?/3. Two separate
estimates are developed.

(a) The first kind is for the probability that a polymer path from an N?/3-block denoted
by Z goes through the origin and reaches the diagonally opposite block 7 of size
N19/24_ This probability is shown to decay by controlling it with random walks that
come from ratio-stationary polymer processes (Lemma 4.4).

(b) The second estimate (Lemma 4.5) controls the paths from Z through the origin that
miss Z. Such paths are rare due to KPZ bounds according to which the typical path
remains within a range of order N%/3 around the straight line between its endpoints.

Section 4 culminates in Theorem 4.6 that combines the estimates.

Section 5 combines Theorem 4.6 with the earlier Theorem 2.6 to complete the proof
of Theorem 2.8. The estimates for paths that go through the origin are generalized to
other crossing points on the y-axis by suitably shifting the environment.

Since the background polymer material will be at least partly familiar to some readers,
we have collected these facts in the appendix. Appendix A covers polymers on Z? with
general vertex weights and Appendix B specializes to inverse-gamma weights. Appendix
C states a positive lower bound on the running maximum of a random walk with a small
negative drift that we use in a proof. This result is quoted from the technical note [11]
that we have published separately.

1.5 Notation and conventions

Subsets of reals and integers are denoted by subscripts, as in Z-, = {1,2,3,...} and
72, = (Z=0)*. [a,b] denotes the integer interval [a,b] N Z if a,b € R, and the integer
rectangle ([a1,b1] x [az, ba]) N Z? if a,b € R2.

For points = = (71, 72) and y = (y1,%2) in R?, the ¢! norm is |z|; = |x1|+ |22/, the inner
product is z - y = x1y; + T2y9, the origin is 0 = (0,0), and the standard basis vectors are
e; = (1,0) and e; = (0,1). We utilize two partial orders:

(i) the coordinatewise order: (x1,x2) < (y1,y2) if 2. <y, for r € {1,2}, and
(ii) the down-right order: (z1,z2) < (y1,y2) if 1 < y1 and z2 > yo.

Their strict versions mean that the defining inequalities are strict: (z1,22) < (y1,y2) if
x, < yr forr e {1,2}, and (z1,22) < (y1,¥2) if 1 < y1 and z3 > yo.

Sequences are denoted by %,,., = (24)7,,, and .0 = ()32, for integers m < n < o
and also generically by z.. An admissible path x. in Z? satisfies 2 — zx_1 € {e,es}.
Limit velocities of these paths lie in the simplex [e3,e1] = {(u,1 — u) : u € [0,1]}, whose

relative interior is the open line segment Jes, eq] .
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The notations IE and IP refer to the random weights (the environment) w, and oth-
erwise E# denotes expectation under probability measure p. The usual gamma func-
tion for p > 0is I'(p) = SSO 2P~ le~® dz, and the digamma and trigamma functions are
o = T"/T" and ¢; = ¢). X ~ Ga(p) if the random variable X has the density function
f(z) =T(p)~'zP~te=* on R=g, and X ~ Ga™*(p) if X' ~ Ga(p).

We often omit ||, for example, we write N?/3¢; € Z2.

2 Polymer Gibbs measures

2.1 Directed polymers

Let (Y,).cz> be an assignment of strictly positive real weights on the vertices of Z2.
For vertices o < p in Z? let X, denote the set of admissible lattice paths z. = (2;)o<i<n
with n = |p — o|; that satisfy g = o0, x; — z;—1 € {e1,e2}, z, = p. Define point-to-point
polymer partition functions between vertices o < p in Z? by

Zop= Y. |] Ye- (2.1)

We use the convention Z,, = 0 if o < p fails. The quenched polymer probability
distribution on the set X, , is defined by

[p—ol1
[T Yoo 2 eXo,. (2.2)
=0

Qopir.} =

ZOvP

When the weights w = (Y,) are random variables on some probability space (2, A, P),
the averaged or annealed polymer distribution P, , on X, , is defined by

P,,(A) = JQ > QY (@) P(dw)  for A< X, (2.3)

r, €A

The notation )3, highlights the dependence of the quenched measure on the weights. It
is also convenient to use the unnormalized quenched polymer measure, which is simply
the sum of path weights:

[p—ol1
Zop(A) = X7 [] Yoo = ZopQop(4)  for AcX,,. (2.4)
z,eA i=0

A basic law of large numbers object of this model is the limiting free energy density.
Assume now the following:

the weights (Y,,),ecz2 are i.i.d. random variables and 2.5)
E[|log Yy|P] < o for some p > 2. '

Then there exists a concave, positively homogeneous, nonrandom continuous function
A : RZ, — R that satisfies this shape theorem:

log Zo . — A(x)

7] =0 P-almost surely. (2.6)
I

lim sup
n—w0 z€Zy:|x)1=n

(See Section 2.3 in [25].) In general, further regularity of A is unknown. In certain
exactly solvable cases, including the inverse-gamma polymer we study in this paper, the
following properties are known:

A is differentiable and strictly concave on the open interval |es, eq]|. (2.7)
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Fix the base point o = 0 (the origin) and consider sending the endpoint p to infinity
in the quenched measure Qg ,. Fix a finite path z(.,, € Xo, where 0 < y < p and
n =1y - (e; + e2). To understand what happens as |p|; — o it is convenient to write Qo ,
as a Markov chain:

1/ " Zrr Ve,
QO,p{XO:n = :L'O:n} = 7 ( n Y:Ei>Z:En,p = n %pl (2.8)
=0

0.p \ j—o zi.p

with initial state X, = 0, transition probability 7%?(x,z + €;) = Z; | Zy1e, Y for p #
x € [0, p], and absorbing state p. The formulation above reveals that when the limit of
the ratio Z;. e, p/Z,p €xists for each fixed x as p tends to infinity, then Qg , converges
weakly to a Markov chain. When p recedes in some particular direction, this can be
proved under local hypotheses on the regularity of A. See Theorem 3.8 of [25] for a
general result and Theorem 7.1 in [22] for the inverse-gamma polymer.

The limiting Markov chains are examples of rooted semi-infinite polymer Gibbs

measures, which we discuss in the next section.

2.2 Infinite Gibbs measures

In this section we adopt mostly the terminology and notation of [25]. To describe
semi-infinite and bi-infinite polymer Gibbs measures, introduce the spaces of semi-infinite
and bi-infinite polymer paths in Z?:

Xu = {Jcmm Ty = U, T; € ZQ, Ty —T;—1 € {61,82}}

and X = {x_oo:oo 1 X; € ZZ, Ty —Ti—1 € {el,eg}}.

X, is the space of paths rooted or based at the vertex u € Z2. The indexing of the paths
is immaterial. However, it adds clarity to index unbounded paths so that zj - (e; + e2) = k,
as done in [25]. We follow this convention in the present section. So in the definition of
X, above take m = u - (e; + e2). The projection random variables on all the path spaces
are denoted by X;(z,.,) = x; for all choices —o0 < m < n < oo and ¢ in the correct range.
Fix w € Q and m € Z. Define a family of stochastic kernels {xy;, : | > k > m} on
semi-infinite paths x,,.,, through the integral of a bounded Borel function f:

’fclsylf(xm:oo) = Jf(ym,oo) Hf,l(l'm:oov dym,oc)

= Z f(xmk Ykl xl:w) Q:k,xl (ykl)

Y1 €Xap 2y

(2.9)

In other words, the action of s}/, amounts to replacing the segment z;; of the path with
a new path yj,; sampled from the quenched polymer distribution ¢);, . . The argument
Tm:k Ykl Ti:oo inside f is the concatenation of the three path segments. There is no
inconsistency because y, = z; and y; = z; ()5, ,, -almost surely. The key point is that the
measure k% ;(Tm:o0, +) is a function of the subpaths (z,.k, 1.0 ).

Note that the same kernel 57;7[ works on paths x,,.,, for any m < k and also on the
space X of bi-infinite paths by replacing m with —oo in the expressions above. With
these kernels one defines semi-infinite and bi-infinite polymer Gibbs measures. Let
Fr = o{X, : i€ I} denote the o-algebra generated by the projection variables indexed by

the subset I of indices.

Definition 2.1. Fixw € Q and u € Z? and let m = u - (e; + e2). Then a Borel probability
measure v on X,, is a semi-infinite polymer Gibbs measure rooted at u in environment
w if for all integers | > k > m and any bounded Borel function f on X, we have
EY[f|Fimxjopi.or] = K%, f- This set of probability measures is denoted by DLR;;.
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Definition 2.2. Fix w € . Then a Borel probability measure p on X is a bi-infinite Gibbs
measure in environment w if for all integers k < | and any bounded Borel function f on
X we have E*[ f|F) o0 rjoi.wof] = &%, f- This set of probability measures is denoted by

DIR”.

An equivalent way to state u € DLR” is to require
|| O g0 X dit = [ FOE ) (06819 (Xt Xic) h(Xir) i
X X

for all bounded Borel functions on the appropriate path spaces. For p € DLR; the
requirement is the same with X replaced by X, and with —oo replaced by m.

Remark 2.3 (Gibbs measures on lattices). The acronym DLR comes from Dobrushin,
Lanford and Ruelle, who introduced Gibbs measures in the late 1960s. The conditions
that define Gibbs measures are known as the DLR equations in statistical physics. See
the monographs by Georgii [21] and Simon [35] for basic theory of Gibbs measures on
lattices. Note though that the Gibbs measures of Definition 2.2 on bi-infinite paths do
not fit exactly the theory of Gibbs measures of Markovian specifications indexed by Z in
Chapters 10-11 of [21]. The reason is that the path space X is not a Z-indexed product
space and the stochastic kernel s} (7 0.0, *) = Q4, ., (+) is not defined for all pairs of
boundary points (z, x;), but only when z; and x; can be connected by a nearest-neighbor
path.

The issue addressed in our paper is the nonexistence of nontrivial bi-infinite Gibbs
measures. For the sake of context, we state an existence theorem for semi-infinite Gibbs
measures.

Theorem 2.4. [25, Theorem 3.2] Assume (2.5) and (2.7). Then there exists an event
Qo such that P(€) = 1 and for every w € Qq the following holds. For each u € Z?
and interior direction ¢ € ]es, e, [ there exists a Gibbs measure 11%¢ € DLRY such that
X,/n — & almost surely under I1%°¢. Futhermore, these measures can be chosen to
satisfy this consistency property: ifu-(e1 +e2) <y-(e1+e3) =n<z-(e1+e3)=r,
then for any path x,., € X, .,

H?:’E(Xnn’ = Tn:r ‘Xn = y) = 1_[Z)’g()('n,:r = xn:r)-

Uniqueness of Gibbs measures is a more subtle topic, and we refer the reader to
[25]. Since the Gibbs measure [1¥¢ satisfies the strong law of large numbers X,,/n — &,
we can call it (strongly) £-directed. In general, a path x,,.o is {-directed if x,,/n — £ as
n — oo,

We turn to bi-infinite Gibbs measures. First we observe that there are trivial bi-infinite
Gibbs measures supported on straight line paths.

Definition 2.5. A path z, is a straight line if for a fixed i € {1,2}, ©,,+1 — x,, = e, for all
path indices n.

If z, is a bi-infinite straight line then p = §,, is a bi-infinite Gibbs measure because the
polymer distribution @, ,+me, is supported on the straight line from u to u + me;. More
generally, any probability measure supported on bi-infinite straight lines is a bi-infinite
Gibbs measure.

The next natural question is whether there can be bi-infinite polymer paths that are
not merely straight lines but still directed into e;. That this option can be ruled out is
essentially contained in the results of [25]. We make this explicit in the next theorem. It
says that under both semi-infinite and bi-infinite Gibbs measures, up to a zero probability
event, e;-directedness even along a subsequence is possible only for straight line paths.
Note that (2.11) covers both e;- and (—e;)-directedness.

EJP 27 (2022), paper 14. https://www.imstat.org/ejp
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Theorem 2.6. Assume (2.5). There exists an event )y < ) such that P(Qy) = 1 and for
every w € § the following statements hold for both i € {1,2}:
(a) For allu € Z? and v € DLRY, withm = u - (e; + e3),

v{lim n '|X, - e3_;| = 0} = v{X,, = u+ (n — m)e; forn > m}. (2.10)

n—0o0
(b) For all € DLR”,

pf{ lim |n~'X, -es_| =0}
[n|—o00 (2.11)
= p{X_s.0 is an e;-directed bi-infinite straight line}.

Proof. Let the event ) of full IP-probability be the intersection of the events specified in
Lemma 3.4 and Theorem 3.5 of [25].

Part (a). We can assume that the left-hand side of (2.10) is positive because the event
on the right is a subset of the one on the left. Since A = {lim, ,, n !X, - e3—;| = 0}
is a tail event, it follows that o = v(-| A) € DLRY. The path space X, is compact in the
product topology because once the initial point u is fixed, each coordinate x; has a finite
range. Hence 7 is a mixture of extreme members of DLR;/. (This is an application of
Choquet’s theorem, discussed more thoroughly in Section 2.4 of [25].) This mixture can
be restricted to extreme Gibbs measures that give the event A full probability.

By Lemma 3.4 and Theorem 3.5 of [25], an extreme member of DLR; that is not
directed into the open interval Jeq, e[ must be a degenerate point measure I1¢¢, which is
the probability measure supported on the single straight line path (v + (n — m)e;)n:n>m-
We conclude that v = IIS:.

Let us show how we deduce (2.10). Let B = {X,, = u + (n — m)e; for n = m} be the
event that from v onwards the path is an e;-directed line. Then by conditioning,

v(By)=v(By n A) =v(By)v(A) = v(A).

Part (b). Consider first the case n — . Let m € Z and « - (e; + e2) = m. Suppose
w(X,, = x) > 0. Then, by Lemma 2.4 in [25], p, = p(-| X;n = =) € DLRY. Part (a) applied
to u, shows that

p{ X =z, lim n7'X, -es_ | =0} = u{X,, = = + (n —m)e; for n > m}. (2.12)

n—0o0

By summing over the pairwise disjoint events {X,,, = x} gives, for each fixed m € Z,

p{ lim n !X, -es_;| = 0} = u{X,, = X,, + (n —m)e; for n = m}.

n—o0

The events on the right decrease as m — —o0, and in the limit we get

p{lim n'|X, -es_;| = 0} = u{X, = X, + (n —m)e; for all n,m € Z}
n—o0
which is exactly the claim (2.11) the case n — 0.
The case n — —oo of (2.11) follows by reflection across the origin. Let w = (Yy,)zez2
and define reflected weights @ = (Y;)zezz by Yo = Y_,. Given u € DLR”, define the

~

reflected measure [ by setting, for m < n and . € Xy 2,0 B Xinin = Tmen) = p(X; =

R ~ W . .
—x_; fori = —n,...,—m). Then i € DLR . Directedness towards —e; under y is now
directedness towards e; under fi, and we get the conclusion by applying the already
proved part to fi. O
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Moving away from the e;-directed cases, the non-existence problem was resolved
by Janjigian and Rassoul-Agha in the case of Gibbs measures directed towards a fixed
interior direction:

Theorem 2.7. [25, Thm. 3.13] Assume (2.5) and (2.7). Fix £ € Jea, e1[ . Then there exists
an event Qy; ¢ < § such that P(Qpi¢) = 1 and for every w € ;¢ there exists no measure
pe DLR” such that as n — o, X,,/n — £ in probability under .

We assumed (2.7) above to avoid introducing technicalities not needed in the rest of
the paper. The global regularity assumption (2.7) can be weakened to local hypotheses,
as done in Theorem 3.13 in [25].

The results above illustrate how far one can presently go without stronger assump-
tions on the model. The hard question left open is whether bi-infinite Gibbs measures
can exist in random directions in the open interval ]es, e;[. To rule these out we restrict
our treatment to the exactly solvable case of inverse-gamma distributed weights.

That only directed Gibbs measures would need to be considered in the sequel is
a consequence of Corollary 3.6 of [25]. However, we do not need to assume this
directedness a priori and we do not use Theorem 2.7. At the end we will appeal to
Theorem 2.6 to rule out the extreme slopes. As stated above, Theorem 2.6 does not seem
to involve the regularity of A. But in fact through appeal to Theorem 3.5 of [25], it does
rely on the nontrivial (but provable) feature that A is not affine on any interval of the type
]¢, e1] (and symmetrically on [e2,n[). This is the positive temperature counterpart of
Martin’s shape asymptotic on the boundary [29] and can be deduced from that (Lemma
B.1 in [25]).

2.3 Bi-infinite Gibbs measures in the inverse-gamma polymer

A random variable X has the inverse gamma distribution with parameter 6 > 0,
abbreviated X ~ Ga™'(#), if its reciprocal X ! has the standard gamma distribution
with parameter 6, abbreviated X ~! ~ Ga(f). Their density functions for x > 0 are

1 .
fx-1(z) = —=2%"te™®  for the gamma distribution Ga(f) and
I'(0)
1 B (2.13)
fx(z) = mm’l’ee’x for the inverse gamma distribution Ga™'(6).
Here I'(0) = Sgo s%~le~* ds is the gamma function.
Our basic assumption is:
The weights (Y,),cz2 are i.i.d. inverse-gamma distributed (2.14)

random variables on some probability space (92, .4, P).

The main result is stated as follows.

Theorem 2.8. Assume (2.14). Then for P-almost every w, every bi-infinite Gibbs mea-
sure is supported on straight lines: that is, u € DLR” implies that

(X _c0:00 IS @ bi-infinite straight line) = 1.

Due to Theorem 2.6(b), to prove Theorem 2.8 we only need to rule out the possibility
of bi-infinite polymer measures that are directed towards the open segments | — ez, —eq |
and ]es, e1[. The detailed proofis given in Section 5, after the development of preliminary
estimates. For the proof we take Y, to be a Ga~!(1) variable. We note that there is
no loss of generality due to our choice of the parameter 1 as using a different scale
amounts to multiplying the weights by a scalar due to the scaling properties of the
Gamma distribution.

EJP 27 (2022), paper 14. https://www.imstat.org/ejp
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For the interested reader, we mention that the semi-infinite Gibbs measures of the
inverse-gamma polymer are described in the forthcoming work [20]. Earlier results
appeared in [22] where such measures were obtained as almost sure weak limits of
quenched point-to-point and point-to-line polymer distributions.

3 Stationary inverse-gamma polymer

The proof of Theorem 2.8 relies on the fact that the inverse-gamma polymer possesses
a stationary version with accessible distributional properties, first constructed in [33].
This section gives a brief description of the stationary polymer and proves an estimate.
Further properties of the stationary polymer are developed in the appendixes.

Let (Y,),ez> be ii.d. Ga=!(1) weights. A stationary version of the inverse-gamma
polymer is defined in a quadrant by choosing suitable boundary weights on the south
and west boundaries of the quadrant. For a parameter 0 < o < 1 and a base vertex o,
introduce independent boundary weights on the z- and y-axes emanating from o:

I% . ~Ga'1—a) and J% . ~Ga'(a) for i,j>1. (3.1)

o+iep o+jez

The above convention, that the horizontal edge weight I* has parameter 1 — « while
the vertical J“ has «, is followed consistently and it determines various formulas in the
sequel.

For vertices p > o define the partition functions

1, x=o0
ol _ ~ Y. reo+ 72
z8,= > | Ye. withweights ¥, =< " =0 (3.2)
’ r,€Xy p =0 ]g, xr € o+ (Z>O)e1

J$7 T Eo+ (Z>0)92.

Note that now a weight at o does not count. The superscript « distinguishes Z;', from
the generic partition function Z, , of (2.1). The stationarity property is that the joint
distribution of the ratios Z¢',/Z5, .. is invariant under translations of z in the quadrant
o+ 7Z2%,. See Appendix B.2 for more details.

The quenched polymer distribution corresponding to (3.2) is given by Qg’p(x.) =

(Zg,)7" ]_[L”:Ball Y,, for z. € X, ,, and the annealed measure is Py (x.) = E[Qg ,(x.)].

It will be convenient to consider also backward polymer processes whose paths
proceed in the southwest direction and the stationary version starts with boundary
weights on the north and east. For vertices o > p let }AKo,p be the set of down-left paths
starting at o and terminating at p. As sets of vertices and edges, paths in SA{W are
exactly the same as those in X, ,. The difference is that in Xoyp paths are indexed in the
down-left direction.

For o > p, backward partition functions are then defined with i.i.d. bulk weights as

[o—pl1

Zop= > [] Y= (3.3)

m,e)‘koyp =0

and in the stationary case as

1, T =0
lo—pl|1 Y. 2
~ ~ ~ reo—7%,
Z¢y= > ] Y. withweights ¥, ={ "’ = (3.4)
’ e ’ 1Y, zeo— (Zsp)e
z.eXop =0 T >0)€1
Je, v eo— (Zxp)es.
EJP 27 (2022), paper 14. https://www.imstat.org/ejp
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Non-existence of bi-infinite polymers

and J3 ;,, (i,j = 1) have the distributions

The independent boundary weights I¢* ;.
(3.1).

We define functions that capture the wandering of a path z. € X, ,. The (signed)
exit point or exit time 7,, = 7, ,(z.) marks the position where the path xz. leaves the
southwest boundary and moves into the bulk, with the convention that a negative value
indicates a jump off the y-axis. More generally, for 3 vertices 0 < v < p, To.v,p = To,v,p(Ts)
marks the position where z. € X, ,, enters the rectangle [v + e; + eq, p], again with a
negative sign if this entry happens on the west edge {v +e; + jes : 1 < j < (p —v) - e2}.
Here is the precise definition:

—max{j = 1:v+jesex.}, ifa.n (v+ (Zso)e2) # D
Tow.p(Te) = _ , , (3.5)
max{i = 1: v+ iej € 2.}, ife.n (v+ (Zso)er) # .
Exactly one of the two cases above happens for each path z. € X, ,. The exit point from
the boundary is then defined by 7, , = 75,0,p.
An analogous definition is made for the backward polymer. For o > v > p and
z. € X, p,

—max{j = 1:v—jesex.}, ifa.n(v—(Zso)e2) # S

Towp(Ts) = {

max{i > 1:v—iej € 2.}, ife.n (v—(Zso)er) # .
The signed exit point from the northeast boundary is 7, , = 75 0,p-

The remainder of this section is devoted to an estimate needed in the body of the
proof. First recall that the digamma function vy = I''/T is strictly concave and strictly
increasing on (0, ), with ¢y(0+) = —o0 and vy(0) = oo. Its derivative, the trigamma
function v = 1y, is positive, strictly convex, and strictly decreasing, with ¢, (0+) = «©
and ¢;(0) = 0. These functions appear as means and variances:

for n ~ Ga '(a), E[logn] = —tp(a) and Var(logn) = 1 (a). (3.6)

In the stationary polymer Z7', in (3.2), the boundary weights are stochastically larger
than the bulk weights. Consequently the polymer path prefers to run along one of the
boundaries, its choice determined by the direction (p — 0)/|p — 0|1 € [e2,e1]. For each
parameter « € (0,1) there is a particular characteristic direction £(«) € |es, ;[ at which
the attraction of the two boundaries balances out. For p € [0, 1] this function is given by

_ ¥1(p) Y1 (1= p) e
o= (¢1(p)+¢1(1—p) " i(p) +¢1(1—p)) € lezen]. (3.7)

The extreme cases are interpreted as £(0) = e; and £(1) = ep. The inverse function
p = p(&) of a direction £ = (£1,&) € [e2,e1] is defined by p(e2) =1, p(e;) = 0, and

=&1P1(1 = p(€)) + &91(p(§)) =0 foreles, e .

The function p(§) is a strictly decreasing bijective mapping of & € [0,1] onto p €
[0,1], or, equivalently, a strictly decreasing mapping of ¢ in the down-right order. The
significance of the characteristic direction for fluctuations is that 7, , is of order |p — o|f/ 3
if and only if p — o is directed towards £(«), and of order |[p — o|; in all other directions.
These fluctuation questions were first investigated in [33].

We insert here a lemma on the regularity of the characteristic direction.

&(

Lemma 3.1. There exist functions ¢ > 0 and B > 0 on (0,1) such that, whenever
po € (0,1) and |6 — po| < p1 = 5(po A (1= po)),
§2(po+6)  &(po)

&G(po+0) Eilpo) B(po)d + f(po,d) (3.8)

EJP 27 (2022), paper 14. https://www.imstat.org/ejp
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where the function f satisfies
[f(po. )| < B(po)d™. (3.9)
The functions ¢, $~' and B are bounded on any compact subset of (0, 1).

Proof. As the function ¢, is smooth on (0, )

S(po+0)  &(po) _ 11— (po+6)) ¢1(1—po)

&lpo+0)  &lpo)  i(po+9) ¥1(po)
_ %1 = po)ihi(po) + Y1 (po)r (1 — po)
=0 ¥1(po)? + $eond)
where ¢} < 0 and f satisfies (3.9). O

Recall that to prove Theorem 2.8, our intention is to rule out bi-infinite polymer
measures whose forward direction is into the open first quadrant, and whose backward
direction is into the open third quadrant. The main step towards this is that, as N
becomes large, a polymer path from southwest to northeast across the square [—N, N|?,
with slope bounded away from 0 and oo, cannot cross the y-axis anywhere close to the
origin.

To achieve this we control partition functions from the southwest boundary of the
square [—N, N]? to the interval J = [~N?%3ey, N?/3e,] on the y-axis, and backward
partition functions from the northeast boundary of the square [—N, N]? to the interval
J = e; + J shifted one unit off the y-axis.

Let ¢ > 0. We establish notation for the southwest portion of the boundary of the
square [—N, N]? that is bounded by the lines of slopes ¢ and ¢~!. With W for west
and S for south, let &Y, = {~N} x [-N,—eN], 0¥ = [-N,-eN] x {—N}, and then
oN = oNe = ol U 9Y. The parameter ¢ > 0 stays fixed for most of the proof, and
hence will be suppressed from much of the notation. We also let 0o; = (—N,—eN) and
oy = (—eN,—N). A lattice point 0 = (01,02) € 0V is associated with its (reversed)
direction vector £(0) = (£1(0),1 — &1(0)) € Jea, €1 and parameter p(o) € (0, 1) through the
relations

5(0)—( o = > (3.10)

01+ 0y 01+ 09
and indirectly via (3.7):
p(o) = p(&(0)) <= &(p(0)) = &(0). (3.11)

For all o € 0V we have the bounds

flo) [(1~1H:’ 1i5)’ (1fr€’ 116)] = (64

If we define the extremal parameters (for a given ¢ > 0) by

pi=p(0i)=p(1 E) and pf=p(0f)=p(E 1)

1+e'l+e¢ 14+e'1+¢

then we have the uniform bounds
0<pi<plo)<pr<l for all o € 0~ = o™e. (3.12)

For o € 0"V define perturbed parameters (with dependence on r, N suppressed from
the notation):

pe(0) = plo) —rN~"5 and  p*(0) = p(o) + rN75. (3.13)

EJP 27 (2022), paper 14. https://www.imstat.org/ejp
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The variable r can be a function of N and become large but always r(N)N~'/3 — 0 as
N — o. Then for N > Ny(e) the perturbed parameters are bounded uniformly away
from 0 and 1:

0 < po(e) < px(0) < p*(0) < p1(e) <1 foralloe oY = oM and N > Ny(e). (3.14)

We consider the stationary processes Z(’,’y.(o) and Z,’f,*.(o). Our next lemma shows that

the perturbation r can be taken such that, for all o € 0" and z € J = [-N?3ey, N*3ey],
on the scale N?/3 the exit point under Q{;,w(") is far enough in the e; direction, and under

ﬁf:,fo) far enough in the e, direction, with high probability.

Lemma 3.2. For each ¢ > 0 there exist finite positive constants c(¢), Cy(c), Cy(¢) and
Ny (e) such that, whenever 1 < d < ¢(e)N'/3, Cy(e)d < r < ¢(e)NY3, N = Ny(¢), o € oV,
and y > 0, we have the bounds

IP{ sup Q2%() (75, > —dN3) > y} < Cy(e)y~lr? (3.15)
€T '
and .
JP{ sup Q2 (7o, < ANB) > y} < Ci(e)y 3. (3.16)
zeJ

Proof. We prove (3.16) as (3.15) is similar. We turn the quenched probability into a form
to which we can apply fluctuation bounds. The justifications of the steps below go as
follows.

(i) The first inequality below is from (A.14).

(ii) Observe that the path leaves the boundary to the left of the point o + dN?/3e; if and
only if it intersects the vertical line o + dN?/3e; + je, at some j > 1.

(iii) Move the base point from o to o + dN?*3e; and apply (A.5). By the stationarity
(Lemma B.1), the new boundary weights on the axes emanating from o + dN?/3e;
have the same distribution as the original ones. This gives the equality in distribu-
tion.

(iv) Choose an integer ¢ so that the vector from o + dN?/3e; — le, to N2?/3e, points in
the characteristic direction £(p*(0)). Apply (A.5) and stationarity.

sup Qg;(()) (TO”I < dN%) < P lo) (To,Nz/?,e2 < dN%)
zeJ ’

O,N2/392

V) 4 Hr* (o)
- QO,N2/3e2 (To,o+dN2/3e1,N2/3e2 < O) - Qo+dN2/3el,N2/392 (T0+dN2/3917N2/392 < O)

— P ()
o Qo+dN2/3e1—Ze2,N2/3e2 (TO+dN2/3elfée2,N2/3e2 < _6)

We show that £ > ¢y(¢)rN?/3 for a constant ¢y(¢). Let o = —(Na, Nb), withe < a,b < 1.
Lemma 3.1 gives the next identity. The O-term hides an e-dependent constant that is
uniform for all p(0) because, as observed in (3.12), the assumption o € ¢ bounds p(0)
away from 0 and 1.

N34 Nb+0  &(p*(0)) b

Na—dN?3 ~ &(p*(0)) a + B(p(0))rN~V3 + O(r2N=2/3).

From this we deduce

b

¢ = ¢(p(0))arN?? — ngQ/S — N3 — ¢(p(0))rdN3 + O(r*NY3) + O(r2d).

EJP 27 (2022), paper 14. https://www.imstat.org/ejp
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Recall from Lemma 3.1 that ¢(p(0)) > 0 is uniformly bounded away from zero for o € o™V.
For a small enough constant ¢(¢) and large enough constants Cy(¢) and Ny(e), if we
have 1 < d < ¢(e)N'3, Cy(e)d < r < ¢(¢)N'/3 and N = Ny(e), the above simplifies to
0= co(e)rN?/5.

We can derive the final bound.

IP{ sup Qg;(o) (To,z < dN%) > y}
zeJ ’
< IP{QZ-FE;J)V?Bel—ZeQ,N?Bez (TOerNz/Bel*fez,N?Bez < _Z) > y}

*
-1 p”(0) 2/3
SY E[ o+dN?/3e;—ley, N2/3ey (Tordn/se, —tes, N2/3e, < —C(€)rN??)

PP*(O)

_,—1 2/3 -1,.-3
=y o-+dN2/3e; —ley, N2/3es (To+dN2/3e1—€eg,N2/3e2 < —Co(€)7“N / ) < Cl(é‘)y ro.

The final inequality comes from Theorem B.6. O

4 Estimates for paths across a large square

After the preliminary work above we turn to develop the estimates that prove the
main theorem. Throughout, d = (d1,ds) € Z2, denotes a pair of parameters that control
the coarse graining on the southwest and northeast boundaries of the square [—N, N]?.
For o e oV let

Toa=f{ued” :|lu—o| < %d1N§},

Let o. € Z,, 4 denote the minimal point of Z, 4 in the coordinatewise partial order, that is,
defined by the requirement that

0c€Z,q and o.<u Yuel,q.

This setting is illustrated in Figure 4.1.

On the rectangle [o., Ne;] we define coupled polymer processes. For each u € Z, q
we have the bulk process Z,, , that uses Ga_l(l) weights Y. Two stationary comparison
processes based at o. have parameters p.«(o.) and p*(o.) defined as in (3.13). Their
basepoint is taken as o, so that we get simultaneous control over all the processes based
at verticesu € Z, q.

Couple the boundary weights on the south and west boundaries of the rectangle
[oc, Nes] as described in Theorem B.4 in Appendix B.2. In particular, for k, ¢ > 1 we have
the inequalities

Px (OC) P* (OC) P* (OC) Px (OC)
Yoc+kel < Ioc+ke1 < Ioc+ke1 and Yoc+feg < J00+592 < J0c+€92‘ (41)

For all these coupled processes we define ratios of the partition functions from the
base point to the y-axis, for all u € Z, 4 and i € [-N?%/3 N?/3].

Zusi z5e) . zh )
Ju= Zwier o gpa(od) _ ot and  J! (ee) _ e (4.2)
Zu,(ifl)eg Z/P*0e ZP %

Ocv(i_l)e2 OC,(i—l)ez
Recall that 7 = [-Niey, Nie,].
Lemma 4.1. For 0 < y < 1, define the event
: * (0c 2 s * Oc * Oc 2
Aocdy = {;ggQﬁc,& N(Tow < —diN3) =1 —y, inf QEIE (70 ) > diN3) =1y
(4.3)

EJP 27 (2022), paper 14. https://www.imstat.org/ejp
Page 14/40



Non-existence of bi-infinite polymers

Under the assumptions of Lemma 3.2 for d = d, we have the bound
P(Ao.ay) = 1= Cie)y 'r™. (4.4)

On the event A,_ g4, for any m,n € [-N?3 N?/3] such that m < n we have the inequali-
ties
n x 0 n 1 n Y
-y [] 72 < [] o< +— ] 7 vueZla 45

i=m+1 i=m+1 l—y i=m+1

Proof. Bound (4.4) comes by switching to complements in Lemma 3.2. We show the
second inequality of (4.5). The first inequality follows similarly. Let u € Z, q4. The first
inequality in the calculation (4.6) below is justified as follows in two cases. Recall the
notation (2.4) for restricted partition functions Z, ,(A).

(i) Suppose u = o + jes for some 0 < j < dyN?/3. Apply (A.6) in the following setting.
Take quz) to be Z,.. Let Z,(Ll) use the same bulk weights Y. On the boundary Zl(tl)

takes YU(PZQ = JZi(z[;;) on the y-axis, and on the z-axis takes any Y.} . < Y, (e, for

1 < m < —u-e;. Then the second inequality of (A.6) followed by the second inequality of
(A.10) gives

Zu,ieg iji)ez iji)ez (Tu,ie2 <j- le%)
) = o0 = ) . 2 "
ZU7(7,—1)62 Zu,(i—1)62 Zu,(i—l)ez (Tu,(ifl)ez <J]- d1N3)

Next observe that the condition 7,,, < j —di N 3 < 0 renders the boundary weights on

the z-axis u + (Z=o)e; irrelevant. Therefore we can replace vV with the stationary

u+meq
boundary weights 151(5;)1 without changing the restricted partition functions on the

right-hand side. This gives the first equality below:

Z&z‘)% (Tu,iez <j-— le%) B ZZ;E;;C) (Tu,iez <j— le%)

Lyt <3 = 6NE) 2 (i <1~ )
_ Zg*ggz) (Tow,ies < —d1N§)

: Zsc*,(((z')c—)l)e2 (Toer(i=1)es < —d;N%)

The second equality comes by multiplying upstairs and downstairs with the boundary

weights J2* (%) for 1 <€ <j=(u—o.)-es.

(ii) On the other hand, if u = o, + ke; for some 0 < k < d; N?/3, then first by (A.9) and
then by applying the argument of the previous paragraph to u = o.:

p*(oc) X 2
Zu,ieg < Zoc,ieg < Zoc,z‘eg (TocﬂeQ < _d1N3)

= Zoc,(i—l)ez = ZP*(OC) (TOC’(i71)92 < _le%) '

097(i—1)92

Z’Uy(i—l)ez

Now for the derivation.

ZP*(OC) (Toc,ieQ < _leg)

n n n
Ju o Zu,z'eg < Oc,i€2
| | . | | = | |
P*(OC)

. 2
i=m+1 icma1 Zui—Dez  piiy 0, (i—1)es (Tour(i—1)es < —d1N3)
px(0c) 2 px(0c)
i (ocies < ZNF) [ oo (4.6)
- px(0c) 2 px(0c) ’
t=m+1 Wy, (i—1)es (Toc,(i—l)eg < _leS) i=m+1 Zoc,(ifl)eg
px(0c) 2 n n
= 0:,”92 (Toc,neg < _d1N3) 1_[ J/O*(OC) < 71 1_[ Jp*(oc) O
; B i ST i .
g:,(r?me)z (Toc,mez < 7d1N3) i=m+1 1 Yy i=m+1
EJP 27 (2022), paper 14. https://www.imstat.org/ejp
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Next we define the analogous construction reflected across the origin. Define east (£)
and north (V) portions of the boundary by 85 ={N} x [[aN NJ and 05 = [eN, N] x {N},
and combine them into oV = d™:¢ = 9N U oN. Each point 6 = (61,5;) € 0V is associated
with a parameter p(0) € (0, 1) and a dlrectlon £(0) € e, e1[ through the relations in (3.11)
and (3.10). For each point 0 € oV define the set

Iad ={ve oN dist(v,0) < 1do N3 }

and the maximal point 0, € fayd in the coordinatewise partial order, defined by the
requirement that
0c€Zsq and v <0, YveT;q.

As previously for sets Z, g4 on the southwest boundary, given now a northeast boundary
point 0 € 0"V we construct a family of coupled backward partition functions from 15,4 to
points on the shifted y-axis e; + Ze;. From each v € Z; 4 we have the backward bulk
partition functions Z, . that use the i.i.d. Ga=!(1) weights Y. From the base point 0. we
define two stationary backward polymer processes 25:506) and 25’0,(,06) with parameters
px(0.) = p(6.) —rN~% and p*(d.) = p(d.) + rN—3. Weights are coupled on the northeast
boundary according to Theorem B.4: for &,/ > 1

Yoo kes <100 <1550 and Y5, e, < < g2 < ger @) (4.7)

Oc —éeg o.—les

The boundary weights in (4.1) and in (4.7) above are taken independent of each other.
Ratio weights on the shifted y-axis are defined by

5 e (60) 50* (60)
~  Luert(i-1)e ~pu(62) 60,014 (i—1)e cor 60 Louerbli-t)e
J"U — /7\ 1 2 J‘p* Oc — cy €1 - 2 and JIJ Oc — cy €1 - 2 . (4.8)
' Zoonie, 1 o+ () : 70 (@)
v,e1+iez 0., e1+ies Oc,€1+ies

The collection of ration weights in (4.2) is independent of the collection in (4.8) above
because they are constructed from independent inputs.

We have this analogue of Lemma 4.1. f =e;1+J =[e1 — Nie, , e + N§e2]] is the
shift of the interval J in (4.3).

Lemma 4.2. For 0 < y < 1, define the event

Bs.ay = { ig @nga(%mz < —dyN3) =1 -y, ing @g:’fc)(famz > dyN3) =1 - y} .
xT

e

(4.9)
Under the assumptions of Lemma 3.2 for d = dy we have the bound
P(Bs,a,y) =1—Ci(e)y 'r2. (4.10)
On the event Bj, 4., for any m < n in [-N?/3, N?/3] we have the inequalities
T _ TT Gve LT Gee@0) 5
(1—y)'H J, <’H J; <ﬂ,n J] Vo € Is, a. (4.11)
i=m-+1 i=m-+1 i=m+1

Now we use partition functions from the southwest and northeast together. Let
oedN e oV and consider the polymers from points v € Z, 4 to the interval J on the
y-axis and reverse polymers from points v € .'/Z\g,d to the shifted interval JA =e +J.
Abbreviate the parameters for the base points as

*

p* =p*(0c), px=pxloc), A*=p"(0:), and A« = p«(0c). (4.12)
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For i € [-N?/3  N?/?], take the Z-ratios from (4.2) and (4.8) and define

T Je* Jr
X' =%, Y/ ==+ and V=2 (4.13)
Jiv Jl)\ J1 *

A two-sided multiplicative walk M (X) with steps {X} is defined by

H?:l Xj n= 1
My(X)={1 n=0 (4.14)
H?:nJrl X‘;l n < -1

The ratios from (4.13) above define the walks
M"Y = M(X*"), M'=MY') and M = M(Y). (4.15)

Specialize the parameter y in the events in (4.3) and (4.9) to set

Apa = Aod V3-1 and Bsa = Bﬁd V31
A5 T
Lemma 4.3. The processes
{M! :me[-N?*30]} and {M, :ne[0,N*?]} areindependent. (4.16)

On the event A, q N Bs g, forallueZ,q and v € f@d,

1M, < M <2M, for ne[-N3,—1]

) (4.17)
and M, < M"" <2M,, for ne[l,N5].

Proof. To prove the independence claim (4.16), observe first from the construction itself
that the collections {J/*, Jf* }ie[—n23,n2s) and (T, TN }ie[—n2/3,n2/5) are independent
of each other, as pointed out below (4.8). Then within these collections, Theorem B.4(i)
implies the independence of {.J*},<, and {J[’* }i=1, and the independence of {j{\* bis1
and {J>"};<o. With boundary weights on the southwest, the independence of {J* }i<o
and {Jf* }i=1 is a direct application of Theorem B.4(i) with the choice (), p, ) = (p«, p*, 1).
After reflection of the entire setting of Theorem B.4 across its base point u, the boundary
weights reside on the northwest, as required for {jf‘* }i=1 and {j{\* }i<o, and the direction
e, has been reversed to —e,. Hence the inequalities ¢ < 0 and ¢ > 1 in the independence
statement must be switched around. .

To summarize, the collections {.J7*,J>"};<o and {J ,J};>; are independent of
each other, which implies the independence of {Y]},<o from {Y;};>1.

We show the case n € [1, N*3] of (4.17).

<VRIT 0 V2T () = 2] 1), Y7 = 2M),;

i ) n * n TAx\— n
i1 i=1 = % [Tie 7 - % [T, (J) = %Hi:l Y; = %M"
An analogous argument gives the case n € [-N?%/3, —1]. O

Each path that crosses the y-axis leaves the axis along a unique edge e; = (ieq, iea+e1).
Decompose the set of paths between u € ¢ and v € 0" according to the edge taken:

%
X’U«;U = U Xu,v
i€l
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where the sets
Xi,={reXy, e e} (4.18)

satisfy X/, , n X/, , = & fori # j. Let
; Zu e Zie e1,v
Py = Qu,v(Xl,u) _ 2Z—2+1 (4.19)

be the quenched probability of paths going through the edge e¢;. We come to the
important step that bounds these edge probabilities in terms of the multiplicative walk
introduced above in (4.15). Namely, for all n € [~ N?/3, N?/3] we claim that

py? < (MEY)Th (4.20)
Here is the verification forn > 1:

u,v
u,v po’ o Zu,OZel,'u

0 N u,v

p’ﬂ Zu,neg Zneg+el,v

_ ﬁ Zu,(i—l)ezz(i—1)62+elm _ ﬁ Tzz _ ﬁ(Xiu,v)fl _ (M;:,v)fl.
i=1 "1 =1

i=1 ZU,ieQZiez-Fehv

The case n < —1 goes similarly.
We are ready to derive the key estimates. The first one controls the quenched
probability of paths between 7, 4 and Z; 4 that go through the edge e from O to e;.

Lemma 4.4. Letr = N5 andd = (dy,d>) = (1, N5 ). There exist finite positive constants
C(e) and Ny(e) such that, for all N > Ny(¢) and o € 0~ with 6 = —o,

IP( sup Py’ > N_1> < C(e)(log N)SN—2/3,

uEIOYdﬂ)E:/Z\a,d
Proof. ForanyueZ,q and v € fa,d, by (4.20) and (4.17),

U,v —1 N u,v P
{py" >N~} n(Apa N Bsa) < {ne[—JI\Irlgngm]} MY <N}n (Aoa N Bsa)

(4.21)
c{ max M, <2N, max M, <2N}n (A,an Bsa).
—N2/3g<n<—1 1<n<N?2/3
By the independence in (4.16),
P( max py”">N"')<P( max M, <2N)P( max M, <2N)
weT,a,velsa —N2isn<—1 T LSn<NZE (4.22)

+ P(AG q U BS 4)-
To apply the random walk bound from Appendix C, we convert the multiplicative
walks into additive walks. For given steps £ = {¢;} define the two-sided walk S(¢) by
i1 i n=1
- Z?:nJrl 5" n < 0.

Recall the parameters defined in (4.12). With reference to (4.13) and (4.15), define the
additive walks

S, =log M,  withsteps & = logJ? —logJ*
S! —=logM!  withsteps & = logJ™* —logJ; .

EJP 27 (2022), paper 14. https://www.imstat.org/ejp
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With the bounds (4.4) and (4.10), (4.22) becomes

P( max  py”">N"')<P( max S5 <log(2N))P( max S, <log(2N))

w€Tp,a,vELsa —N2/3<n<—1 1<n<N2/3

+ COr—3.
(4.23)
We use Theorem C.1 to bound P(max;,,<n2/3 Sn < log(2N)). Since

p* = ploo) +rN~Y3 = p(o.) + N™Y° and A = p(6.) — N3 = p(6,) — N~/5,

we can establish constants 0 < pmin < pmax < 1 and Ny(e) € Zso such that p* A, €
[Pmin, Pmax] for all 0 € 0¥ and N > Ny(e). As |o — o.| < 2d1N?/® and [0 — 0. < $d2N?/3,
the restriction of the slope to [¢,7!] implies that there is a constant C' = C'(¢) such that

p(oc) = plo)| < CLNTY?  and  |p(d.) — p(0)| < CdoN~Y2.
Then, since p(0) = p(—o) = p(0),
|p(6e) — ploe)| < |p(0e) — p(0)| + |p(0e) — p(0)| < CdeN~Y3 + Cdy N~V3 < ON5/24,

Hence

< —2N_1/5(1 _ CN_1/120)

A — p* = p(6.) — plog) — 2rN~1/3
x = p" = p(0c) — ploc) o oN-S(1 4+ ON-1120),

We conclude that for N > Ny(¢), the mean step of S, satisfies
E(Sl) = E[log le* — lOg j\i)\*] = wo()\*) — wo(p*) c [_CN—/1/570:|

where the (new) constant C' = C(e) works for all o € oN.
In Theorem C.1 set z = (log V)? to conclude that for N > Ny(e)

P{ sup 25, < (logN)?} < C(log N)>N~/°. (4.24)

1<n<N2/3

This bound with the same constant C' = C(¢) works for all points o € 0¥ and all N > Ny (e).
Similarly one can show that

P{ sup 25, < (logN)*} < C(logN)*N~*. (4.25)

—N2/3g<n<—1
The lemma follows by inserting these bounds and r = N%/15 into (4.23). O

The next lemma controls the quenched probability of paths from points u € Z, 4 that
go through the edge ¢o from 0 to e; but miss the interval Z; 4 on the northeast side of
the square [N, N]2. The complement of Z; 4 on ¢” is denoted by

Foa={vedV:|jv—0]; > LdyN3}.

Lemma 4.5. Letd = (dy,dy) = (1, N&). There are finite constants C(e) and No(¢) such
that, for all > 0, N > Ny(¢) and o € 0~ witho = —o € oV,

IP( sup o’ > 5) < C’(s)S*lN*%‘ (4.26)

uGIOYd, ’UE]'—a,d
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Figure 4.1: The square [N, N]? with two possible arrangements of the segments 7, q,
Zsa and F5q = F, 4 U F3 4 on the boundary of the square. In both cases 6 = —o.

Proof. Define the sets of boundary points

0]?5701 ={ve ]?a,d :Jdue f@d such that |v — u|; = 1}
0Zo.a = {veELyq:Iue dV\Z, 4 such that [v — u|, = 1},

Their cardinalities satisfy 1 < |é°.7?a,d| < |0Z,.4] < 2. (For example, 6]?5’(1 is a singleton if
T a contains one of the endpoints (N, |eN|) or ([eN], N) of 0V.) We denote the points of
0Fs.a by ¢*, ¢* and those of 0Z, q by h', h?, labeled so that

¢'<6<¢* and Rh®<o <hl

Geometrically, starting from the north pole Nes; and traversing the boundary of the
square [—N, N]? clockwise, we meet the points (those that exist) in this order: ¢ — 6 —
q¢> — h' — o — h? (Figure 4.2). The set F5.d4 can be decomposed into two disjoint sets

]?&d:]?g,dUﬁg,d
where
Fra={veFoa:v<q'} and Fy=fveFsa:v>d’}).
We show that
IP( sup pit > 5) < C(e)§ N3, (4.27)
ueIo,d,ve]-A%Td

The same bound can be shown for .7?(% 4 and the lemma follows from a union bound.
Recall the definition of Xi,v in (4.18) and define the set

X, = X (4.28)

<0

Forall u € Z,4 and v € ]?é,d' the pairs (u,v) and (h',q') satisfy the relation (u,v) <
(h',q') defined in (A.11). By Lemma A.3 we can couple random paths 7% ~ Q..
and 7' ~ Qn1 1 so that 7 < 7h".4" in the path ordering defined in Appendix A.3,

EJP 27 (2022), paper 14. https://www.imstat.org/ejp
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. -~ 11
simultaneously for all u € Z, 4 and v € 7} 4. Then 7% € X9 , forces 7" ¢ € X and

u,v ;17[11'
we conclude that
u,v 0 - 1
Py = Quo(Xy,) < Qum g (X5 1) forall ueZog,ve Fjg.

Hence
the probability on the left of (4.27) < P{Q1 o (X, ql) > 0}.

The last probability will be shown to be small by appeal to a KPZ wandering exponent

bound from [33] stated in Appendix B.3. To this end we check that the line segment

[h',q'] from h' to ¢' crosses the vertical axis far above the origin on the scale N%/3.
Foroe oY and 6 = —o € 0V, decompose h? = o + I/ and ¢/ = 0 + r?. These vectors

I = (1,13) and v = (rJ, 1)) satisfy
1l = lle%, ri|, = ldgN%, and rirl <O0. (4.29)
2 172

-2

Use first the definition of A/ and then ¢/ — h? = 6; + 1/ — (0; + 1) = —20; + v/ — I/ to
obtain

i B-h @y i B hy
- 2Ty, 2T, gy BTy
j*h] j*hj j*h]
a1 1 a1 1 a1 1 (4.30)
0or] — 0113 02lf — 0113 j_q%—h%lj
= , , , . ] , 214
@ — M @ — I @ — M

The first term on the last line is of order ©(d, N?/?) because there is no cancellation in
the numerator. It is positive if j = 1 and negative if 7 = 2. This term dominates because
d2=N§ > 1=d;.

Let y'ey € [h!, ¢'], that is, ' is the distance from the origin to the point where the
line segment [h!, ¢'] crosses the y-axis. We bound this quantity from below. In addition to

(4.29), utilize —N < 0; < —eN, 2Ne < ¢/ —h? < 2N and the slope bound ¢ < Z—Z <e 1
1~ "
The last line of (4.30) gives
1 1 1
1 1, 2 —hy 1 eN|rty N —1)71
g =nh+ B2 (nl) > ~ (G 1+ )h

2 _ 2 2
> 1edyN5 —2e7'diN3 > LedoNs.

The last inequality used (d;,ds) = (1, N'/®) and took N > (16e2)%. The wandering
exponent bound stated in Theorem B.5 gives

P g (X1 1) < Cle)dy
for a constant C(¢) that works for all 0 € & and N > Ny(¢). By Markov’s inequality
P{Qn1. g1 (Xp1 1) > 6} < C(e)d71dy ™ = C(e)d ' N7/%, (4.32)
The proof of (4.27) is complete. O

We combine the estimates from above to cover all vertices on ¢V and V.
Theorem 4.6. There exist constants C(g), No(¢) such that for § € (0,1) and N > 6! v
Ny(e),

P sup  py > 5) < C(e)§ "N~ =,

uedoN veolN
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Figure 4.2: Illustration of the proof of Lemma 4.5. The path 7% connects Z, 4 and
.F(%,d through the edge e¢g = ((0,0), (1,0)). The path 71" 4" lies below 7 and hence well
below the [h!,¢'] line segment (dashed line).

Proof. As before, d = (1, N¥). We first claim that for any o € oV,

P(  sup P> 5) < C(e)s'N—%, (4.33)

UELy q,vEN

This comes from a combination of Lemmas 4.4 and 4.5: since 0~ = T549 Y Fod,

IP( sup  py’ > 5) < ]P( sup Py’ > 6) + ]P( sup o’ > 5)

U€ZLy a,v €N u€Zya,v€lsq u€Zy a,v € Fs,d

< C(e)(log N)SN™F + C(e)6 ' N~% < C(e)s N %,
Next we coarse grain the southwest boundary 0. Let

ON — N ({(—N +idi N3], =N} | AN =N + s LN%J)}J,EZZO)

so that

{ sup  py’ > 5} c { sup sup o’ > 6}.

uedN,veolN 0€ON yeT, q,vedN

As |ON| < C(e)d{*N'~% = C(¢)N3, a union bound and (4.33) give the conclusion:

IP( sup  py’ > 5) < 2 IP( sup Py’ > 5)
0 0e ON

ueoN veoN u€Lpq,veN

< C(e)N3§ 'N~% =C(e)6 "N~ 2. O

5 Proof of the main theorem

Proof of Theorem 2.8. By Theorem 2.6(b), for almost every w every bi-infinite Gibbs
measure p satisfies

{ im |[n7'X, e|=0}u{ lim [n'X, e =0}

|n|—o0 |n|—o0 (5.1)

= {X. is a bi-infinite straight line} = p-almost surely
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where X, = X_ .4 is the bi-infinite polymer path under the measure p. This equality
follows because Theorem 2.6(b) has these consequences for (5.1): the union on the
left is disjoint, the event on the right is a subset of the union on the left, and their
p-probabilities are equal. The complement of the union on the left is the following event:
the limit points of [n|~1X,, lie in | — e2, —e;[ when n — —c0 and in |ez, e;[ when n — .
Thus to complete the proof we show the existence of an event 2’ such that P(€') = 1 and
foreachw e Q, nopu e DLR” assigns positive probability to this last property of the limit
points of |n| 71 X,,.

We put € back into the notation. For ¢ > 0 let
D = {¢eleg, e : ' < &/6 <7

Say that a bi-infinite path z. is (—D¢) x D°-directed if the limit points of |n|~lz, lie
in —D° when n — —oo and in D°® when n — oo. Recall the definition of the edges
e; = (ieq,ie2 + e1) and define these sets of bi-infinite paths:

X" = {z. e X : z.is (—D) x D*-directed and z. goes through e; }.

We show the existence of an event €’ of full IP-probability such that, forw e /, p e DLR”,
e>0,and i€ Z,

w(XEH = 0. (5.2)
Assume this proved. Let e, = 2. Then for w €  and p € DLR,

p{X.is ] — e, —e;[ x Jes, ;[ -directed} < Z p{X. is (=D*) x D*-directed}
k>1

< 2 2, m(x) =0,

k=>114€Z
which is the required result.

It remains to define the event Q' and verify (5.2). Recall the definition (4.19) of p:.“”.
Define translations 7, on weight configurations w = (Y,) by (T,w), = Yy+,. Define

& = sup  pg”, QL ={lim & noe =0} and Q= () () Tea 2,
ueoNe, vedNe N—o k>14€Z
By Theorem 4.6, 5, — 0 in probability as N — oo, and hence P(Q') = P(QY) = 1.

A (—D¢) x D-directed bi-infinite path intersects both 0™ and 0™¢ for all large
enough N. (This is because D¢ bounds the slopes by /2 which is larger than ¢.) Thus if
we let

XN, e X a0V £ B, an 0N £ )

x= = [ (] xMei, (5.3)

m=1 N>m

then

Let ¢ = 27 for some k > 1, ¢/ = ¢/2, and abbreviate N; = N + [N?/3]. In the scale
N; consider the translated square ie; + [N, N1]? centered at ie,, with its boundary
portions iey + 0N 1:¢" in the southwest and 1es + oN1:¢" in the northeast. This translated
N;-square contains [—N, N|? for all i € [-N?/3, N2/3].

There exists a finite constant Ny() such that |i| + ¢’N; < eN for all i € [-N?/3, N2/3]
and N > Ny(¢). Then every path z, € X5 necessarily goes through both iey + oN1-<’
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/éN,e
eN
r‘ Z-e2 eN i+e Ny
&Ny —i
! eN N N]
(’/JN,E
’—,_Hi eN
]
. ’ ' Ny
ieg + oN1€

I

Figure 5.1: The inner N x N square is centered at 0 while the outer N; x N; square
is centered at ie;. The (thick, dark) boundary segments of the outer square cover the
(thick, light) boundary segments of the inner square. Thus the path through ie; that
crosses V¢ and 0N ¢ is forced to also cross iey + V1< and ieqy + ONE .

and e + (A?Nl*‘f/. In other words, z. is a member of the translate iey + X N0 of the
class of paths that go through the edge eg. This is illustrated in Figure 5.1.

On the event X% let, in the coordinatewise ordering, X, = inf{X. n (ie; + 0N<')}
be the first vertex of the path X. in iey + 0V and X3 = sup{X. n (iex + 0"1<')} the last
vertex of the path in iey + 0¥+, Note that for u € (ies + 0N') and v € (iey + ON1<),
the event {X; = u, X3 = v} depends on the entire path X. only through its edges outside
iey + [~ N1, N1]2. Suppose pu(XV%) > 0 for some p € DLR . Below we apply the Gibbs
property, recall the definition (4.18) of ng as the set of paths from u to v that take
the edge ey = (0, e;), and write @ so that we can include explicitly translation of the
weights w.

HXVE) < ey +X V1)
2 p(ies + X5, | Xo = ieg + u, X3 = iex + v) u(Xp = iey + u, X3 = iey + v)

’ S ’
ueoNve yeoNne

= Z . (te2 + Xg_yv),u(X;7 = iey +u, X3 = iey +0)

1ex+u,tex+v

N

’ a ’
ueoNve yeoNne

w . 0\ _ Tiesw (70
< n}ax ~ , Yieatu,iez+v (Ze? + Xu,’u) - n}ax ~ , u,v2 (Xu,v)
ueoN1e' yeolNne ueoNue' yeoNte
U,V 4
= max _ py’ (Tie,w) = &, (Tie,w).
ueoNve' pyeoNne
Then (5.3) gives, on the event /,
p(X5) < lim p(XNV9) < lim €5, 0 The, = 0.
N—>w0 N—w0
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(5.2) has been verified. This completes the proof of the main result Theorem 2.8. O

A General properties of planar directed polymers

This appendix covers some consequences of the general polymer formalism. We
begin again with the partition function with given weights Y, > 0:

[v—ul1

> H Y,, foru<wonZ? (A1)
2. €Xy,, =0

with Z,, , = 0 if u < v fails.

A.1 Ratio weights and nested polymers
Keeping the base point u fixed, define ratio weights for varying x:

ZU x ZU x
I,=1,,=—">— d J,=Jy.=—"".
’ Zu,zfel an ’ Zu,xfeg
The ratio weights can be calculated inductively from boundary values I+ ke, = Yu+tke;
and Jy4re, = Yutve, for k,£ > 1, by iterating
I =Y, (14 I—e,J; ) and J, =Y, (Jome Ixle, +1). (A.2)

Let u < v on Z2. On the boundary of the quadrant v + Z>0, put ratio weights of the
partition functions with base point u:

7 .
vyl = _Zwvdier  for pe{1,2} and i>1
" Zu;qu(ifl)e,,.

The ratio weights dominate the original weights: Yv(ﬁe = Y, tie,, and equality holds iff
v = u + me, for some m > 0.

Define a partition function Zﬂ U)J that uses these boundary weights and ignores the
first weight of the path: for k,£ > 1 and w € v + Z2,,

¢
u) _ (u) (u) AL _ (u)
Zl(m? - 17 ZU ovt+ker an+ze17 v,v+les H Yv+je2

j=1
w1 —v1 W2 —V2
u (u) u)
Z’L(J,’LBJ = Z ( an+zel>Zv+ke1+e27w + Z ( H YU+]92> v+e;+Lleg,w-
k=1 i=1
For w € v + Z2 , the definition from above can be rewritten as follows:
1 w1 —vV1 1 W2 —V2
Zz(;uw = Z Zu7v+kelzv+kel+ez7w + Z Zu,v+ée22v+e1+ée2,w~
’ ZU,’U k=1 Zu,v (=1

Thus for all u < v < w we have the identity

Z

Z(u _ u,w A3

=z (A.3)
Ratio variables satisfy

b Zue _ Zu 2 ) A

u,r — 7 - (u) - (u) - tu,x .

u,r—e1 Zuﬂf Zva: e; Zv,asfel
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with the analogous identity J,, , = 15“32 )
Recall the definition (3.5) of 7, ,,,. Let QS,")U be the quenched path probability on
u)

Xy, w that corresponds to the partition function Zé w- Then we have the identity

Quio(Tuww =€) = QW) (1, = 1)  for 0 # L€ Z. (A.5)

v,w

Here is the derivation for the case where the path from u to w goes above v. Let k > 1.
Apply (A.3) and (A.4).

k
Zu,v+k92 Zﬂ+el+keg,w Z’“«;”(Hj:l J’U«;U+j92)Z’U+e1+k92;w
Qu,w(Tu,v,w = _k) = =
Zu,w Zu,w

k (u)
I Yz, w
(HJ_I : +Z] (iz Feuthes = Qq(;ﬁ)(Tv,w = _k)

A.2 Inequalities for point-to-point partition functions

We state several inequalities that follow from the next basic lemma. The inequalities

in (A.6) below are proved together by induction on = and y, beginning with x = u + ke;
and y = u + fe;. The induction step is carried out by formulas (A.2).
Lemma A.1l. Fix a base point u. Let {Yz(l)} and {Yz(z)} be strictly positive weights
from which partition functions Z&lg and Zq(fq), are defined. Assume that Yu(l) = u(z),
Y <Y v® <y, andY) = Y? forallk,¢>1andxeu+Z2,. Then
we have the following inequalities for x > u + e; and y > u + es:

(1) (2) (2) (1)
Zi L 2y Zu,
m Sye - wd <o (4.6)
Zu,ac—el Zu,ac—el Zu,y—eg Zu,y—eg
From the lemma we obtain the following pair of inequalities for z € u + Z2
Zu z Zu+e1 z Zu z Zufe z
— < : and = < = (A.7)
Zu,z—el Zu+e1,z—e1 Zu,z—el Zu—eg,z—el

The first inequality above follows from the first inequality of (A.6) by letting the weights
{Yu(i)jez} j>1 tend to zero, and the second one by letting the weights {Yu(i)e2 ‘tie, yi=1 tend
to zero.

Lemma A.2. Let z,y,z € Z? be such that x < y and x,y < z — e; — e,. We then have

Zfl? 4 Z z
5 < Y, (A8)
Zm,z—el Zy72_el
Zy.: < .z (A.9)

Zy,z—es h Zyyi—es

Proof. (A.8) follows from repeated application of (A.7) along the steps e; and —es from

x to y. Inequality (A.9) follows similarly. O

Since u + ke > v and u + fe; < u for k, £ > 0, inequalities (A.8)-(A.9) imply also these
forl<k<(r—u)-e;and1<¥ < (y—u)-eq:

Zu,x < Zu,z(Tu,x = k)

<

and

Zu,ac—el Zu,m—el (Tu@—el > k;) (A 10)
Zuy Zuy(Tuy < =)
< foru < x,y.
Zuy—es Zuy—e; (Tuy—es < =)
To illustrate the explicit proof of the first one:
k—1
Zu,w(TuJ > k) _ (Hi:o Yutie;) Zutker,x _ Zutker,x < Ly
Zu,m—el (Tu,m—el = k) (Hf;ol Yu+iel) Zu+kel,$—e1 Zu+kel,x—el Zu,m—el
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Figure A.1: On the left the pairs (z!,%') and (22, 3?) satisfy (z!,%') < (22, y?), while on
the right this relation fails. Consistently with this, on the left the paths 7! € X,1 ,1 and
72 € X,2 2 satisfy 7! < 7% but on the right this fails.

Y

A.3 Ordering of path measures

The down-right partial order < on R? and Z? was defined by (z1,22) < (y1,¥2) if
71 < y; and x5 > y,. Extend this relation to pairs of vertices (z',y!), (22, y?) € Z? x Z?
as follows (illustrated in Figure A.1):

(g < (22,9?) ifz! <yl 2% <9®, 2! < 2% and ¥t <92 (A.11)

1 and 72 € X,2 2

1

Extend this relation further to finite paths: 7! € X1, 2 satisfy 71 <7
if the pairs of endpoints satisfy (z!,y!) < (22,7?) and whenever 2! € 7!, 22 € 72, and
2t (e; +ey) = 22 (e; + ey), we have 2! < 22. Pictorially, in a very clear sense, 7! lies
(weakly) above and to the left of 72. See again Figure A.1.

Let ;4 and v be probability measures on the finite path spaces X1 1 and X2 0,
respectively. We write p < v if there exist random paths X' € X,1 ;1 and X2 € X2 2
on a common probability space such that X' ~ 1, X2 ~ v, and X' < X2. In other
words, i < v if v stochastically dominates ; under the partial order < on paths. The
following shows that for fixed weights there exists a coupling of all the quenched polymer
distributions {Q,,,}.<, on the lattice Z? so that Q, , < Qu,, whenever (z,y) < (u,v).

Lemma A.3. Let (Y,),cz> be an assignment of strictly positive weights on the lattice 7.
Then there exists a coupling of up-right random paths {n*"¥},<, such that 7 € X, ,,
%Y has the quenched polymer distribution Q) ,, and 7™¥ < =V whenever (z,y) < (u,v).

Proof. Let {U.}.cz> be an assignment of i.i.d. uniform random variables U, ~ Unif(0, 1)
to the vertices of Z2, defined under some probability measure P. For each pair z < z
such that =z # z, define the down-left pointing random unit vector

YZZZE z—e
—ep, if — > U,
_ if 2zfmEes gy pr
€, 1 Zx,z > U.
If z = x + ke, this gives V*(z) = —e; due to the convention Z, , = 0 when u < v fails.

Hence any path that starts at some vertex y > z distinct from z and follows the steps
from each z to z + V¥(z) terminates at x.

Since the paths from distinct points that follow increments V*(z) for a given z
eventually coalesce, a realization of {V*(z)},>,. .+, defines a spanning tree 7* rooted at
x on the nearest-neighbor graph on the quadrant x + Z;O. Forz < ylet 7*¥ € X, , be
the path that connects x and y in the tree 77. Then for any path z. € X, ,, (A.12) implies
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that Q; ,(z.) = P(7™¥ = z.). In other words, through the random paths {7*¥},<, we
have a coupling of the quenched polymer distributions {Q, y}s<y-
Let z < u. By Lemma A.2

YzZa;,z—e1 > YtzZu,z—el

YzZu,z—el > YZZ.’,C,Z—EQ
= .
Z:r,z

and >
Z:c,z

Zu,z Zu,z

Hence
{V¥(2) = —e2} = {V"(2) = —e2}
and {V%(z) = —e1} S {V*(2) = —e1}.
It follows from (A.13) that two paths satisfy 7*¥ < 7" whenever (z,y) < (u,v). This is
because if these paths share a vertex z, then their subsequent down-left steps satisfy
24+ V*(2) < 2+ V¥%(2). O

(A.13)

Let o < x. In the tree T7° constructed above, the path from x down to o stays weakly
to the left of the path from z + e; down to o. This gives the inequality below:

forverticeso<zand k> 1, Qo u(te; = k) < Qo zte, (te, = k), (A.14)

where

le, = (To,r)+

A similar bound holds for te, = (75.4) .

A.4 Polymers on the upper half-plane

The stationary inverse-gamma polymer process that is our tool for calculations will
be constructed on a half-plane. This section defines the notational apparatus for this
purpose, borrowed from the forthcoming work [20].

Define mappings of bi-infinite sequences: I = (I})rez and Y = (Y;)jcz in RZ; that
are assumed to satisfy

0 0
Y;
C(1,Y) mEH_looj:Zij iﬂl T <® (A.15)
From these inputs, three outputs I= (fk)kezf J = (Ji)kez and Y = (?k)keZ: also
elements of Rzo, are constructed as follows.
Let Z = (Zk)kez be any function on Z that satisfies I, = Zi/Z;_1. This defines Z up
to a positive multiplicative constant. Define the sequence 7 = (Z) tez, by

¢
Zy=>Y Z||vi, tez. (A.16)
ki k<t i=k
Under assumption (A.15) the sum on the right-hand side of (A.16) is finite. To check this

choose a particular Z by setting Zy = 1. (Any other admissible Z is a constant multiple
of this one.) Then Z; = ]_[O I fork < —1.

i=k+1"4
£ £
Zv= ) Zo]lYi+ ) Z]]v
k:k<{A0Q i=k k:1<k<t i=k
0 0 L
s (HIJ)(H%)C«(YH > Z v
k:k<lAQ N i=k+1 i=k k:1<k<t i=k

l
SCUY)C(Y)+ D, Zu[[Vi<w.

k:1<k</t i=k
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For k € Z define

Iy = Zy)Zj—1, (A.17)
Ji = Zi) 2, (A.18)
V= (7 + 77 ) (A.19)

The sequences I, J and Y are well-defined positive real sequences, and they do not
depend on the choice of the function Z as long as Z has ratios I, = Z,/Zy_1. The three
mappings are denoted by

I=D(LY), J=S(,Y), and Y = R(I,Y). (A.20)

Beginning from Zk =Yi(Zr + Zk,l) we derive these equations:

~ I Y]
T, = Yk( + 1> Ly A (A.21)
Jr—1 Y
Jr— Y;
and  Jj, = Yk(l + =k 1) LY (A.22)
p Y
The last formula iterates as follows: for ¢ < m,
Jm:ngH —Z+ZY H I (A.23)
i=0+1 j=0+1 i=j+1
We record two inequalities. From (A.21),
I; >2Y;. (A.24)

If we start with two coordinatewise ordered boundary weights I; < I j’ (for all j) and use
the same bulk weights Y to compute vertical ratio weights J = S(I,Y) and J' = S(I',Y),
the inequality is reversed:

ZYH/\ZYHI . (A.25)

jii<k i=j+1 Ji i<k i=j+1

Further manipulation gives the next lemma. We omit the proof.

Lemma A.4. To calculate {fk, Jk,}N/k : k < m}, we need only the input {I, Yy : k < m}.
The next lemma is nontrivial and we include a complete proof.

Lemma A.5. The identity D(D(A,I),Y) = D(D(A,R(I,Y)),D(I,Y)) holds whenever

the sequences I, A,Y are such that the operations are well-defined.

Proof. Choose (Z;) and (By) so that Z;/Z;_, = I; and B;/Bj_1 = A;. Then the output of
D(A, ) is the ratio sequence (Be/Bg 1)¢ of

Z Bkﬁli.

k: k<t i=k

Next, the output of D(D(A4,I),Y) is the ratio sequence (H,,/H,—1)m of
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Similarly, define first

Z ZkHY and I Z,

k:k<j i=k Z -1
sothat I = D(I,Y). Let Y = R(I,Y) and then
N~ ~ é ~
B, = D(A)Y) = Bkﬂyi.

of
= X BlL= X B Z(Hf’i)(Hfj)-
£:l<m j=L k<m {=k j=0
The lemma follows from H = H, which we verify by checking that for all kK < m
m 4 m m 4 m
S (110119 - ST(f17)
1=k i=k = =k i=k =

We fix k and prove this by induction on m. The case m = k follows from (A.19) and

(A.21):
Yk‘(J,{kl )

T 1
Iy Jr—1

To prove the induction step, we introduce two auxiliary quantities by adding terms
separately on the left and right of (A.26): let

?kfk = = I, Y.

and

Repeated application of (A.22) implies that Jj,_, H;”zk Y, = (112, )N’i)Jm. Thus (A.26) is
equivalent to T =T,
First observe that Tm+1 =T, Im+1 for m > k. This follows from checking inductively
the pair of identities
Tm Tm+1 ¥
_—=J, d =1, f > k.
H?lk 7 an T, 41 for m
This relies on the first equahtles of the iterative formulas (A 21) and (A.22).
Now assume that Tm = T,,. We show that Tm+1 = TmIm+1 which then implies
Tt =Tmi1.

m

m l m m
- B (e ([
(=k  i=Fk j=t i=k

i=k

= m+1 + ( H ) Jmferl + ?m+1fm+1 + ?m+1Jm+1)~

The last expression in parentheses vanishes because J, Im+1 = Yoi1(Lnms1 + Im),
Ym+1Im+1 = Yn41lns1 and Ym+1Jm+1 =Yni1Jdm. O

EJP 27 (2022), paper 14. https://www.imstat.org/ejp
Page 30/40



Non-existence of bi-infinite polymers

B The inverse-gamma polymer

This section reviews the ratio-stationary inverse-gamma polymer introduced in [33]
and then constructs the two-variable jointly ratio-stationary process, which is a special
case of the multivariate construction from the forthcoming work [20].

B.1 Inverse-gamma weights
Recall the inverse gamma distribution from (2.13) and it’s mean from (3.6).
Lemma B.1. Define the mapping (I,J,Y) — (I',J',Y’) on R2, by

I J 1
r-v(1i+%), r=v(1i+2), v-—+ B.1
(+J)’ J (*1)’ 1471 (B.1)

(@) (I,J,Y)~ (I',J',Y") is an involution.

(b) Let o, > 0. Suppose that I, J,Y are independent random variables with distribu-
tions I ~ Ga~'(a), J ~ Ga~'(B) and Y ~ Ga™'(a + ). Then the triple (I',.J',Y") has
the same distribution as (I, J,Y).

Proof. Part (b) follows by applying the beta-gamma algebra (see Exercise 6.50 on page
244 of [1]) to the reciprocals that satisfy

1 o, I 1 ., Jt 1 1 1

= =S AR S S -
Lemma B.2. Let 0 < p < 0. Let I = (Iy)rez and Y = (Yj), ez be mutually independent
random variables such that I, ~ Ga™'(p) and Y; ~ Ga™'(0). Use mappings (A.20) to
define N R

I=D(I,Y) Y=R(,Y) and J=S(Y).

Let Vi = ({Ij}j<k, i, {Y5}j<k)-

(a) {Vk}keZ is a statmnary, ergodic process. For each k € 7, the random variables
{I Yicks Jrs {Y } i<k are mutually independent with marginal distributions

I, ~Ga~Y(p), Y;~GaY(o) and Jp ~ Ga l(c—p).

(b) T and Y are independent sequences of i.i.d. variables.

Proof. We start by verifying (A.15) to guarantee that the processes I,Y and J are almost
surely well-defined and finite. To this end we show that

0 0
Y; . .

Z Y; 1_[ A < o0 with probability one. (B.2)

j=—00  i=j+1 "¢

Rewrite the above as

0 0
Z Y, H 2= 3 Y; eXi=gei (logYi-log li) _ 3 %Y, ¢34 K41 (log Yi-log L)
j=—00 = J+1 j=—0 Jj=—00

(B.3)
where we can choose § > 0 to satisfy

EflogY; —log I;] = —o(0) + to(p) < =30 <0 (B.4)

because v is strictly increasing. Hence almost surely for large enough j < 0,

0
> (log¥; —log I;) < 24 (B.5)
i=j+1
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The estimate below shows that, for any ¢ > 0, sup,; < e’ ‘5Yj is almost surely finite:

Y Pz e = Y Pllogy; = —joy < Y HUEN o

252
j<—1 j<—1 j<—1 J%0

The almost sure convergence of the series (B.2) has been verified. We turn to the proof
of the lemma.

Part (b) follows from part (a) by dropping the J; coordinate and letting & — o0.
Stationarity and ergodicity of {V},} follow from its construction as a mapping applied to
the independent i.i.d. sequences [ and Y.

The distributional claims in part (a) are proved by coupling (fk, Jr_1, }ka) ez With
another sequence of processes (indexed by N below) whose distribution we know. Let Z
be a fixed Ga™'(o — p) variable that is independent of (1,Y).

For each N > 0, construct a process (Ik ,Jk 1,Yk Jk=—n+1 as follows. First let

JN,, = Z. Then iterate the steps
(I, IN. YNy =0(I, JN1,Y;) fork>—N+1, (B.6)

where (1, J,Y) = (I’,J',Y’) is the involution (B.1) in Lemma B.1. We claim that for
eachkeZ,

~

lim JY =J,, lim IN =1, and lim ¥;¥ =V, in probability. (B.7)
N—w N—->wo N—o

Applying (A.23) gives

kY, oy,
Jp—JN = (J_n — n Tz (J-n—2) H - (B.8)
—N+1 7" i=—N+1 "
from which R A
| Tk — IV | < e N (J_y + Z) eNO+Eie w4 (logYi-log 1) (B.9)

where we chose § > 0 as in (B.4). Hence the last exponential factor above vanishes
almost surely as N — oo0. The equation

(B.10)

//\M
.:?g-
ol

J:Jj

—Né j_n — 0 in proba-

shows that {J,} is a finite stationary process, and consequently e
bility. (B.9) implies the first limit in probability in (B.7).

To get the second limit in (B.7), apply (B.6) and the first limit as N — co:

I, I ~
) r, yk< E +1>—zk. (B.11)
Jk 1 Jr-1

For the last limit in (B.7),

Y=+ ()™ S () T = Y (B.12)
Next, we prove the following claim for each N > 1
for each m > —N + 1, the random variables I™ Nl ..,I,J,\L’, Jnj\{, Yn]j, .. Y N1

are mutually independent with marginal distributions (B.13)

IN ~Ga™(p), JN ~Ga'(c—p), and Y/ ~Ga (o).
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By construction (I_N,jiVN,Y_N) ~ Ga ' (p) ® Ga (0 — p) ® Ga~'(0). The base
case m = —N + 1 of (B.13) comes by applying Lemma B.1 to the mapping (B.6) with
k=—-N+1.

Assume (B.13) holds for m. By the induction assumption and by the independence of
the ingredients that go into the construction,

Nyitseo o IN (L, TN Y1), YN VN

ytmo

are independent. Furthermore, (1,11, f,ﬁ,YmH) ~Ga ' (p)®Ga (o —p)®Ga(0). By
Lemma B.1, the mapping (B.6) turns the triple (I,,11,JY, Y;ns1) into (IN,, JN, |, VN )
~ Ga'(p) ® Ga~'(0 — p) ® Ga~'(0). Statement (B.13) has been extended to m + 1. The
proof of (B.13) is complete.

Part (a) follows from (B.7) and (B.13). O

Next we take an i.i.d. inverse-gamma sequence Y and describe a distributional
fixed point of the mapping (I',1?) — (D(I',Y),D(I%Y)). Let 0 > oy > ap > 0. Let
At = (A})jez, A% = (A3)jez, Y = (Y})jez be mutually independent i.i.d. sequences with
marginals A’; ~ Ga™'(ay) for k € {1,2} and Y; ~ Ga '(0). Define a jointly distributed
pair of boundary sequences by (I',1?) = (A', D(A?, A")). From these and bulk weights
Y, define jointly distributed output variables:

I* = D(I*)Y), J*¥=S8U")Y), and Y*=R(I*)Y) forke {1,2}.
Lemma B.3. We have the following properties.
(i) Marginally I? is a sequence of i.i.d. Ga_l(ag) variables.

(ii) For fixed k € {1,2} and m € Z, the random variables {I'};<,,, J%, and {Y}'} <, are
mutually independent with marginal distributions fJ’? ~Ga Y(ay), JE ~ Ga (o —
ay), and 17']’“ ~ Ga (o).

(iii) For fixed k € {1,2}, I* and Y* are mutually independent sequences of i.i.d. random
variables with marginal distributions I¥ ~ Ga™' (o) and Y} ~ Ga™' (o).

(iv) (fl, I~2) 4 (I*, I?), in other words, we have a distributional fixed point for this joint
polymer operator.

(v) For any m € Z, the random variables {I}i<m and {I}} ;> 1 are mutually indepen-
dent.

Proof. Parts (i)-(iii) come from Lemma B.2.

For part (iv), the marginal distributions of I! and I? are the correct ones by Lemma
B.3(iii). To establish the correct joint distribution, the definition of (1!, 1?) points us
to find an i.i.d. Ga_l(ag) random sequence Z that is independent of I! and satisfies
12 = D(Z,1"). From the definitions and Lemma A.5,

I? = D(I%Y) = D(D(A%, I'),Y) = D(D(A%, R(I',Y)),D(I',Y)) = D(D(A%, Y1), TY).

By assumption A2, I!,Y are independent. Hence by Lemma B.3(iii) A2, V!, I' are inde-
pendent. So we take Z = D(A2,Y') which is an i.i.d. Ga™!(as) sequence by Lemma
B.3(iii). This proves part (iv).

We know that marginally I' and I? are i.i.d. sequences. (A.16) and (A.17) show
that variables {I?},<,, are functions of ({A?},<, ,{I}}i<m) which are independent of
{I_]l }j>m+1- O
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u u u

Figure B.1: The independent ratio variables from Theorem B.4. Left: J* below x and J”
above z from part (i). Middle and right: /* and J ratios on the two lattice paths from
part (ii).

B.2 Two jointly ratio-stationary polymer processes

Pick 0 < A < p < o and a base vertex u = (u1,us) € Z2. We construct two coupled
polymer processes Zi, and Z/ . on the nonnegative quadrant u + Z2 ¢ such that the joint
process {(Z) /23 ., 28 ,/ 25 ) : 2,y € u + Z2,} of ratios is statlonary under translations
(z,y) — (z + v,y + v). Both processes use the same i.i.d. Ga~'(o) weights {Yoloeuszz,
in the bulk. They have boundary conditions on the positive - and y-axes emanating from
the origin at u, coupled in a way described in the next theorem.

For o € {)\, p}, we repeat here the definition of the process Z;, given earlier in
(3.2). On the boundaries of the quadrant we have strictly positive boundary weights
:1,J € Zi=o}. Put Z2,, = 1 and on the boundaries

{ utiey? u+]ez u,u

u, u+ ker — H u+tie; and Zu u+lex — 1_[ u+jes for k’l = 1. (B‘14)

In the bulk for x = (71, 2) € u + Z2,,

r1—U1 T2—U2
Zq(j,:v Z (H u+ze1) utker ey, x T Z (H u+ge2> utei+lez, (B.15)

(=1

= (Z"‘ + Z

u, r—ei U, T—e2

)Y,

Z, . does not use a weight at the base point u. Z, , above is the partition function (A.1)
that uses the bulk weights Y. Define ratio variables for vertices z € u + Z2 , by

e =2/ 2 s, and JY=2Z (B.16)

/um ey’

The next theorem describes the jointly stationary process that is used in the proofs
of Section 4. Since those arguments work with the J-ratio variables on the y-axis, in
order to tailor this theorem to its application we construct the joint process on the right
half-plane and then restrict that process to the first quadrant. Consequently the upper
half-plane of Sections A.4 and B.1 has been turned into the right half-plane, and thereby
horizontal has become vertical. An important part of the theorem is the independence of
various collections of ratio variables. These are illustrated in Figure B.1.

Theorem B.4. Let 0 < A\ < p < 0 and u € Z>. There exists a coupling of the boundary
weights {1}, io., I ie,s Jirt jesr Tt jon  15J € Z>0} such that the joint process (2., Z5.)
has the following properties.

(i) (Joint) The joint process of ratios is stationary: for each v € u + ZQZO,

ZA + Zp + 2 A 2
{( Zﬁ‘v , Z&),v )ZIEZ;O} {(Zuu+x725,u+x):I€Z20}' (B.17)
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(On the right above the implicit denominators Z;\ = Zf , = 1 were omitted.) The
following 1ndependence property holds a]ong vertical lines: for eachreu+72,,
the variables {J} ., : uz — 2 +1 < j < 0} and {J. ., : j = 1} are mutually

independent.

(ii) (Marglnal) For both « € {\, p} and for each v = (v1,v2) € u+ Z>O, the ratio variables

{13 iers Jo4 jeo + 15 ] € Zi=0} are mutually independent with marginal distributions

a —1 —1
I e, ~Ga (0 —«a) and iy jes ~ Ga ().
« . y y
The same is true of the variables {I3 ;. ,J5 o, : 0 <i<wvi —uy, 0 <j < vy —ua}.

(iii) (Monotonicity) The boundary weights can be coupled with i.i.d. Ga_l( ) weights
{Nutiers Mutje, : 1,7 = 1} independent of the bulk weights Y so that these inequalities
hold almost surely for all i,j > 1:

A P _ P A
Nu+ie; S Iu+1'e1 < Iu+ie1 and Nutjes S Ju+je2 J’ll,+j€2 (B.18)

Proof. We construct a joint partition function process (LQ, Lg)zewzzo <7 on the discrete
right half-plane v + Z>( x Z with origin fixed at u. The restriction of this process to the
quadrant u + Z2 < then furnishes the process (Zu ., Z4 .) whose properties are claimed
in the theorem.

In the interior put i.i.d. Ga_l(a) weights Y = {Y, : 1 > u;} as before. (We write
some weight configurations with bold symbols to distinguish the notation of this proof
from earlier notation.) For a € {), p} let Y* = {YA}]GZ and Y? = {Y”}jez be independent
sequences of i.i.d. variables with marginal distributions Yja ~ Ga Ya), 1ndependent of
Y. From these we define the boundary weights J* = {J2\, ;.. }jez and 37 = {J/, ; }jez
on the y-axis through u by the equation (J#,J*) = (Y?, D(Y*,Y")). D is the partition
function operator from (A.20). This gives a pair of coupled sequences (J?,J*). Marginally
{Ji4 je, bjez are 1id. Ga '(a).

For a € {)\, p} define the partition function values on the y-axis centered at u by

for j € Z.

a u+jes

L&, .
L(i = 1 and [/u& = Ja
u+(j—1)esz

Complete the definitions by putting, again for a € {\, p} and now for z € u + Z¢ x Z,

L LY
L = Z L ey Zurer+jesns Lo = Lax and J® = Ta (B.19)
JiJ<T2—uU2 T—e; T—eo

As in (A.16), the series converges because the boundary variables J“ are stochastically
larger than the bulk weights. This follows from the distributional properties established
below. The evolution in (B.19) satisfies a semigroup property from vertical line to line:
for each k > 0 the values L% for 1 > u; + k + 1 satisfy

Lg = Z L3+ke1+je2 Zu+(k+1)e1+je2,m- (B.20)

Jij Swa—uz

For k£ > 0, denote the sequences of J-ratios on the vertical line shifted by ke; by
Jook = (T ez = {J2, ke, 4+ e, }iez @nd the sequences of interior weights by Y* =
{YJ Viez = {Yutker+jes tjez- IO is the original boundary sequence J* we began with.
One verifies inductively that J** = D(J**~1 Y*) for each k > 1 and « € {), p}.

Apply Lemma B.3 with parameters (o, a1, a3) = (0,p, A). Directly from the defini-
tion (J#,J*) = (Y*,D(Y?*,Y")) follows that (J,J*) has the distribution of (1!, ?) in
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Lemma B.3. Repeated application of Lemma B.3(iv) implies the distributional equality
(Jeok Ak L (3P JX) for all k > 0. Equivalently, the joint distribution of the ratios along

a vert1ca1 line A e
{( ”5592,%92) je Z} (B.21)
is the same for all v € u+Z> x Z. The semigroup property (B.20) gives for both « € {, p}
LY LY

;f = Z ”*;’32 Zotertieswie forallze Z-g x Z. (B.22)

Jij<x2 v

The interior weights {Y} : z; > v;} from which each Zv+e1+]e2,v+x is computed above are

always i.i.d. Ga™* (0) and independent of the boundary ratios { ”“e"‘ 1j € Z} Thus by
applying the mapping (B.22) to the interior weights and the boundary ratios (B.21), we
conclude that the entire joint process of ratios

X ) Lﬁ ST E Lixo X ( . )

has the same distribution for all base points v € u + Zi>y x Z.
Lemma B.3(v) gives the property that, for any x € u + Z>( x Z, the ratio variables

{J;\Hez: <0} and {J? > 1} are mutually independent. (B.24)

T+jes ] =
We claim that for « € {), p} and for any new base point v € u + Zx( x Z,

{Io4iers Jotjes t 15 € Z=o} are mutually independent with marginal distributions

I%,. ~Ga'(c—a) and J

v+ie; v+jes

~ Ga l(a).
(B.25)
Since the joint distribution is shift-invariant, we can take v = u. As observed above, J¢ is
a sequence of i.i.d. Gafl( ) random variables by Lemma B.3(i). Thus it suffices to prove
the marginal statement about {I{, ;. :i > 1} because these variables are a function of
{Jotjerr Yus(ij) 121, < 0} which are independent of {.J¢
The claim for {

wtjes | j=1}
> 1} follows from proving inductively the following statement

u+tie; i
for each n > 1:
{Iutier> Jutne,+jes : 1 < i< m,j <0} are mutually independent with (B.26)
marginal distributions ¢, ,, ~Ga '(c —a) and Jitner+jes ~ Ga '(a). '

Begin with the case n = 1. From the inputs given by boundary weights {I; = J wtjes |
j < 0} and bulk welghts {Y; = Yute,+jes : J < 0}, equation (A.17) computes the ratio
weights {I = Jiter1jes - J < 0} and equation (A.18) gives Jo = I;, . (Note here the
switch between “horizontal” and “vertical”.) Part of Lemma B.3(ii) then gives exactly
statement (B.26) for n = 1. (The dual bulk weights XV/j that also appear in Lemma B.3(ii)
are not needed here.)

Continue inductively. Assume that (B.26) holds for a given n. Then feed into the

polymer operators boundary weights {I; = J¢ : j < 0} and bulk weights {Y; =

u+nex +je2
Yu+(n+1)el+_]e2 2 0} all independent of {I{, ;. : 1 <i < n}. Compute the ratio weights
{I u+(n+1)e1+Je2 :j <0} and Jy = u+(n+1) . Lemma B.3(ii) extends the validity of

(B.26) to n + 1. Claim (B 25) has been verified.
To prove the full Theorem B.4 on the quadrant v + Z>O, take the coupled boundary

weights {I% e Jitje, 11,5 = 1, € {), p}} as constructed above. The partition function
process {Z% e TEUT ZQZO} defined by (B.14)-(B.15) is then exactly the same as the
EJP 27 (2022), paper 14. https://www.imstat.org/ejp
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restriction {L% : x € u + Z2,} of L*. To verify this rewrite (B.15) as follows for z in the
bulk u + Z2 ,:

T1—U1 T2—Uu2
« _ @ @
Zu,x = Z Lu+ke1Zu+kel+e2.,m + Z L1l,+ee2Z1L+e1+ée2,x
k=1 (=1
T1—U1l T2 —U2
(o7 «
= Z < 2 Lu+je2Zu+e1+jeg,u+kel) Zu+kel+e2,r+ 2 Lu+le2ZU+e1+Eeg,m
k=1 j:j<0 {=1
T1—U1 T2—U2
(03 (03
= Z Lu+je2 Z Zu+e1+je2,u+ke1 Zu+ke1+eg,w + Z Lu+€e2 Zu+e1+£e27$
j<0 k=1 =1
_ a _ «
- Z Lu+ée2 Zu+el+€ez,x - La:-
(<To—US>

Invariance (B.17) comes from the invariance statement about (B.23). The statement in
part (i) about independence comes from (B.24). The first statement of part (ii) of the
theorem comes from (B.25) and the second statement from (B.26).

As the last step we prove part (iii). The inequality J/ tjes S JD +je, COmes directly
from (A.24), due to the construction (J°,J*) = (Y?, D(Y?*,Y")). Then (A.25) gives the
inequality I}, ., < I/ 1ie, Decause, in terms of the notation used above, the sequence
1% = {12, o, 1 jo, }jez Satisfies T®F = S(JF=1 yk),

Let F,(z) be the c.d.f. of the Ga~'(a) distribution. It is continuous and strictly
increasing in x € (0,00) and strictly increasing in . Thus F,_\(I),;..) ~ Unif(0,1),

u+ieq

and we define Nutie; = Fg_l(Faf)\(I;\-Hel)) ~ Ga_l(a). FU*)\(I;\-}—iel) < FU(Iqi\-ﬁ-iel) implies
Nutie; < If; ie because F- ! is also strictly increasing.
Define analogously 7.+ je, = Fy " (Fp(J} 4 jo,))- O

B.3 Wandering exponent

We quote from [33] bounds on the fluctuations of the inverse-gamma polymer path.
The results below are proved in [33] with couplings and calculations with the ratio-
stationary polymer process, without recourse to the integrable probability features of
the inverse-gamma polymer.

Let the bulk weights (Y;),cz2 beii.d. Ga='(1) distributed. Recall the definition of the
averaged path distribution P, from (2.3). On large scales the P ,-distributed random
path X. € X, , follows the straight line segment [0, v] between its endpoints. Typical
deviations from the line segment obey the Kardar-Parisi-Zhang (KPZ) exponent 2/3. The
result below gives a quantified upper bound. It is used in the proof of Lemma 4.5.

Given the endpoints 0 = (0,0) and v = (v1,v2) >0on Z?and 0 < h < 1, let

Loy = [hv — bN?Pey, hv + bN?3ey]

be the vertical line segment of length 20 N?/? centered at hv.

Theorem B.5. [33, Theorem 2.5] Let 0 < s,t,x < o0 and 0 < h < 1. Then there exist
finite (s,t, k, h)-dependent constants Ny, by and C such that, whenever N > Ny, v € Z2,

satisfies
lv — (N's, Nt)|; < kN?3 (B.27)

and b > by, we have
Po{XenIypy =3} <Cb° (B.28)

The parameter vector (Ny, by, C') is bounded if (s, t, x, h) is restricted to a compact subset

of R3, x (0,1).

EJP 27 (2022), paper 14. https://www.imstat.org/ejp
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We also state a KPZ bound on the exit point of the stationary polymer used in the
proof of Lemma 3.2. Take a parameter p € (0, 1) with characteristic direction £(p) of (3.7).
Consider the ratio-stationary inverse-gamma polymer with quenched path measure QS)U
and annealed measure Py, (-) = E[Qg ,(-)], as developed in Section 3.

Theorem B.6. [33, Theorem 2.3]Let v € (0,00). There exist finite (p, x)-dependent
constants Ny, by and C such that, whenever N > Ny, v € Z2, satisfies

lv — N&(p)|1 < kN?/3 (B.29)

and b = by, we have
P {00 = bN?P} < Cb3. (B.30)

The parameter vector (Ny, by, C') is bounded if (p, ) is restricted to a compact subset of
(0,1) x R~¢. A similar bound holds for the left tail of 7q ,.

C Bound on the running maximum of a random walk

In this appendix we quote a random walk estimate from [11], used in the proof of
Lemma 4.4. For o, 8 > 0let S8 =Y | X?’B denote the random walk with i.i.d. steps
{X*F},>, specified by

Xlo"ﬁ 2 log G —log GP

with two independent gamma variables G® ~ Ga(a) and G? ~ Ga(f) on the right. Denote
the mean step by a5 = E(XT?) = ¢o(a) — 1o(S).

Fix a compact interval [pmin, Pmax] < (0, 00). Fix a positive constant ag and let {sy}n>1
be a sequence of nonnegative reals such that 0 < sy < ag(log N)~3. Define a set of
admissible pairs

Sy = {(0‘7B) ra,fB € [pminapmax]7 —sy<a—fp< 0}

The point of the theorem below is that for (a,3) € Sy the walk {S%”},<,,<n has a
small enough negative drift that we can establish a positive lower bound for its running
maximum.

Theorem C.1. [11, Corollary 2.8] In the setting described above the bound below holds
forall N > Ny, (o, ) € Sy, and z > (log N)?:

P{ max SaB < 2} < Cx(log N)(pa,p v N7Y2),

1<m<N

The constants C' and Ny depend on ag, pmin, and puoax-
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