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Abstract. We derive a lower bound for the probability that a random walk with i.i.d. increments
and small negative drift u exceeds the value x > 0 by time N. When the moment generating
functions are bounded in an interval around the origin, this probability can be bounded below by
1 — O(z|u|log N). The approach is elementary and does not use strong approximation theorems.
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1. Introduction

1.1. Background. This paper arose from the need of a random walk estimate for the authors’ article
Busani and Seppéildinen (2020) on directed polymers. This estimate is a positive lower bound on
the running maximum of a random walk with a small negative drift. Importantly, the bound had
to come with sufficient control over its constants so that it would apply to an infinite sequence of
random walks whose drift scales to zero as the maximum is taken over expanding time intervals.
The natural approach via a Brownian motion embedding appeared to not give either the desired
precision or the uniformity. Hence we resorted to a proof from scratch. For possible wider use we
derive the result here under general hypotheses on the distribution of the step of the walk.

The polymer application of the result pertains to the exactly solvable log-gamma polymer on
the plane. The objective of Busani and Seppéldinen (2020) is to prove that there are no bi-infinite
polymer paths on the planar lattice Z2. The technical result is that there does not exist any
nontrivial Gibbs measures on bi-infinite paths that satisfy the Dobrushin-Lanford-Ruelle (DLR)
equations under the Gibbsian specification defined by the quenched polymer measures. In terms
of limits of finite polymer distributions, this means that as the southwest and northeast endpoints
of a random polymer path are taken to opposite infinities, the middle portion of the path escapes.
This is proved by showing that in the limit the probability that the path crosses the y-axis along a
given edge decays to zero. This probability in turn is controlled by considering stationary polymer
processes from the two endpoints to an interval along the y-axis. The crossing probability can be
controlled in terms of a maximum of a random walk. In the case of the log-gamma polymer, the
steps of this random walk are distributed as the difference of two independent log-gamma variables.
The case needed for Busani and Seppildinen (2020) is treated in Example 2.7 below.

1.2. The question considered. We seek a lower bound on the probability that the running maximum
of a random walk with negative drift reaches a level z > 0. To set the stage, we discuss the matter
through Brownian motion. Let S = Y | X» be a random walk with drift E(X{) = uy =
uN~12 <0, and such that the random walks S converge weakly to a Brownian motion with drift
1 < 0. The probability of the event
sup SN >z
1<n<N

should be approximately the same as that of

sup (Bg + sp) > zN~V/2, (1.1)

0<s<1

This latter can be computed (see (3.7)) to be

P{ sup (Bs + su) > aN"Y2} =1 O(|ulaN~V?). (1.2)
0<s<1
This suggests that we should aim for an estimate of the type
IP’( sup SN > :E) >1—0(|lun|z). (1.3)
1<n<N

To reach this precision weak convergence is not powerful enough, for a weak approximation of
random walk by Brownian motion reaches only a precision of O(N~V4) (Sawyer, 1972; Fraser,
1973). Our estimate (2.1) below does almost capture (1.3): we have to allow an additional log N
factor inside the O(-) and consider x of order at least (log N)2.

The by-now classical Komlos-Major-Tusnady (KMT) coupling (Komlos et al., 1976) gives a strong
approximation of random walk with Brownian motion with a discrepancy that grows logarithmically
in time. This precision is sufficient for us, as we illustrate in Section 3. The problem is now the
control of the constants in the approximation. Uniformity of the constants is necessary for our
application in Busani and Seppéldinen (2020). But verifying this uniformity from the original work
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Komlos et al. (1976) appeared to be a highly nontrivial task. In the end it was more efficient to
derive the estimate (Theorem 2.2 below) from the ground up.

The difficulty of the original KMT proof has motivated several recent attempts at simplification
and better understanding of the result, such as Bhattacharjee and Goldstein (2016), Chatterjee
(2012), and Krishnapur (2020). There is another strong approximation result due to Sakhanenko
(1984) which, according to p. 232 of Chatterjee (2012), “is so complex that some researchers are
hesitant to use it”.

1.3. Sketch of the proof. Our proof is elementary. The most sophisticated result used is the Berry-
Esseen theorem. Given a random walk of small drift ;4 < 0, our approach can be summarized in
two main steps:

(1) Up to the time the random walk hits the level —¢|u| ™1 it behaves like an unbiased random
walk.

(2) By the time the random walk hits the level —¢|u|~! it will have had about logy(e|u| =tz ~1)
independent opportunities to hit the level . By the previous step this implies that the
probability on the left-hand side of (1.3) is of order 1 — (1/2)1°g2(5|“|71z71) =1-0(|ple ).

As we will take ¢ = (log N)~! in the proof, we will obtain the right order in (1.3) up to a logarithmic
factor (Theorem 2.2). After the statement of the theorem we illustrate it with examples. Then we
demonstrate that even if we knew that the constants in the KMT approximation can be taken
uniform, the result would not be essentially stronger in the regime in which we apply our result.

2. Main result

For each N € Z~, let {XZN }i>1 be a sequence of non-degenerate i.i.d. random variables. Denote
their moment generating function by

My (0) = E(?X1).
Write M](\(,)) = My and M](\;H) = (d/dG)M](\;).

Assumption 2.1. We assume that the random variables {XiN}Z;l satisfy the following:

(i) There exists an open interval (—6y,6p) around the origin on which each moment generating
function My 1is finite. Furthermore, there exists a finite constant Cpy and 01 > 0 such that we
have the uniform bounds

MO (0)| < Chr for all N, 0<i <3, and 6 € [—0y,6,] (2.1)
for the compact interval [—01,61] < (=00, 6).

(ii) There exists a finite constant o, > 0 such that
IE[(X{V)Q] > 0% = Var(XY) = 02 forall N. (2.2)
(iii) There exists a finite constant D, > 0 such that the expectations pn = IE(X{V ) satisfy
—D,(logN)™ < puxy <0 for all N. (2.3)

The conditions in Assumption 2.1 are fairly natural. Note that (2.1) has to be checked only
for i = 0 at the expense of shrinking the interval [—61, 0] and increasing Cs. To make a positive
maximum possible, condition (2.2) ensures enough diffusivity and condition (2.3) limits the strength
of the negative drift. The bound (2.4) below shows that D,, has to be vanishingly small in order for
the result to be nontrivial.

For m > 1let S = 37" | XV be the random walk associated with the steps {X}N};>1. Here is
the main theorem.
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Theorem 2.2. There exist finite constants C' and Ny that depend on 61,02, D,, and Cyr such that,
for every N = Ny and = > (log N)?,

IP’( max SN < x) < Ca(log N)(|un| v N~Y2). (2.4)

1<m<N

Remark 2.3 (The constants in the theorem). The constant C' in the upper bound (2.4) is given by

C = dexp{4(Co + 4c; 1) (1 + D) + 8607 (1 + log(e” Cps + 1)) +4Cu} + 3 (2.5)
where I
Co =201+ 96610;301?4/2) + 2e80MOs +80: T m1 | 1952 (2.6)
2
¢ =log (2.7)

1+ ®,2[-2,2]

and @2 is the mean zero Gaussian distribution with variance o2

.

Throughout the proof we state explicitly the various conditions N > Ny required along the way.
Let us assume that N > 2 so that log N does not vanish. Then all the conditions NV > Ny can be
combined into a single condition of the form

f(Cr, Dy, 03,61, N) = 1 (2.8)

where the function f is a strictly positive continuous function on R, x Rs2, nondecreasing in
01, nonincreasing in Cjpy and D,,, but depends on o2 in both directions. When (Cyy, D, 02,01) is
restricted to a compact subset K of R? j, there exists a finite index Ny such that f(Cyy, D,,02,01,N)
is a nondecreasing function of N > Nx for any fixed (Cys, D, 02,601) e K, and

lim inf Cuy, Dy, 02,601, N) = 0.
N—o0 (C]M7D‘u,,o'>2k,91)€}cf( M K * ! )

In particular, for each compact subset K < Rio there exists a finite index Ny x such that (2.8)
holds for all N > Ny x and all (Ca, Dy, 02,601) € K. Furthermore, it is evident from (2.5)-(2.7)
that C is a continuous function of (Cpr, Dy, 02,6,) € RY,. We conclude with the following local
uniformity statement.

Corollary 2.4. For each compact subset K ]Rio there exist finite constants Cy x and Ny such
that the following holds: the estimate (2.4) with C' = Cyx on the right-hand side is valid whenever
N = Ny, simultaneously for all walks {SNY,=1 that satisfy Assumption 2.1 with parameters
(CM,DH,JZ,el) e k.

We illustrate the result with some examples.

Ezample 2.5 (Gaussian random walk). Let B; be a Brownian motion, x < 0, and define the random
walk SN = B, + mN~2y . We can verify that the bound (2.4) is off by a logarithmic factor in
this case, by comparison with the running maximum of the Brownian motion. For z > 0 and large
enough N
P( max SN <z)=P( sup By +tN Vpu<a
(1<m<N " ) (0<t<pN ' ) (2.9)

> 12N > gy | = aNTV2)).

where the middle inequality follows from (3.7) with u(N) = p and b(N) = 2N ~1/2.(2.9) shows that
the optimal error is at most O(x|un|), and that Theorem 2.2, if not optimal, is only log N away
from being so.

A natural way to produce examples is to take X7V as the difference of two independent random
variables whose means come closer as N grows and whose variances stay bounded and bounded
away from zero.
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Ezample 2.6 (Exponential walk). Consider a random walk S, = >/, X}, with step distribution
Xy 4 Y, —Yp where Y, and Y3 are two independent exponential random variables with rates o and
B, respectively. p = E[X;] = ﬁ;—ﬁa so we assume that o > . The distribution of the supremum of

Sy, is well-known and also feasible to compute (Example (b) in Section XIIL.5 of Feller (1971)): for
x>0,

P(sup Sp <z)=1-— ge*(a’ﬂ)x = Blul|(1 + Bz) + O(p*z?)

n=0
where we assume |u|z small and expand e = 1 + s + O(s%). We obtain a lower bound:

P( max S, <) > P(sup S, <) = Blu|(1 + Bz) + O(u?a?)
n=0

1<n<N
> ?|ule + O(u*z?).

Thus for |x| > N~/2 and small z|u|, the upper bound (2.4) loses only a logarithmic factor.

That maxi<p,<n Sy is close to the overall maximum sup,,~q S, in the case || = N-12 ig a
consequence of the fact that the overall maximum is taken at a random time of order p~2. This
claim is seen conveniently through ladder intervals {T;};>1. These are the intervals T; = 7; — 7,1
between successive ladder epochs defined by 79 = 0 and

i =inf{n > 71 : 5, > S, _,}.
The distribution of T; is given by
anfll@n

(o + APt
where {C}}r>0 are the Catalan numbers. (This calculation can be found in Lemma B.3 in the
appendix of Fan and Seppéldinen (2020).) Set Tp = 0 and let N = max{n > 0 : T,, < oo} be
the number of finite ladder intervals. The maximum sup,,~( S, is taken at time ¢ = Zf\il T;. One
calculates E[(] = a—lﬁu*Q and Var[(] = cq gp~*. Thus for large enough k, P(¢ > ku=2) < Cp gk 2.

P(T; =) =1-— é and P(T; =n) =Cph1 for n € Z~o,
o

Ezample 2.7 (Log-gamma walk). This is the application of Theorem 2.2 used in Busani and Sep-
paldinen (2020).

Let G* denote generically a parameter A gamma random variable, that is, G* has density function
f(z) =T(\)"'z* e on Rog. For o, B > 0 let S%° = > Xl-a’ﬁ denote the random walk where
the distribution of the i.i.d. steps {X?’ﬁ}izl is specified by

X% L 10g G — log G°

with two independent gamma variables G* and G” on the right.

Let to(s) = I''(s)/I'(s) be the digamma function and v (s) = {(s) the trigamma function on
R~o. Their key properties are that 1) is strictly increasing with ¢y(04+) = —oo and y(0) = oo,
while 1); is strictly decreasing and strictly convex with ¢1(04) = 00 and () = 0.

Fix a compact interval [pmin, Pmax] < (0,00). Fix a positive constant ag and let {sy}ny>1 be a
sequence of nonnegative reals such that 0 < sy < ag(log N)™3. Define a set of admissible pairs

Sy = {(a,B) : @, B € [pmin; Pmax], —sn < a— B <0}
For (o, B) € Sy, the mean step satisfies
pop = BIXT’) = Ellog G°] — E[log G7] = (@) — o (5)
= 1(N)(@ = B) € [~ao¥1(pmin)(log N) %, 0]

where we used the mean value theorem with some A € (pmin, Pmax). We take D, = ag¥1(pmin)-

(2.10)
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The MGF of X2 is
a, _ Fa+6)I'(B—0)

Mo 5(0) = E[?X77] = E[(G*)° | E[(G®)~] = 2.11
for @ € (—a, B). For the interval in assumption (2.1) we can take [—61,601] = [—3pmin, 3Pmin]. Now
(2.1) holds with a single constant Cps = Cas(pmin, Pmax) for all choices of «, 5 € [pmin, Pmax]-

The variance satisfies

Var(Xf"B) — Var(log G%) + Var(log G®) = ¥1() + ¥1(8) = 201 (pmax) = 02

The constants (Car, Dy, 02, 61) have been fixed and they work simultaneously for all («, 8) € Sy
and all N > 1. Define C through (2.5)—(2.7). Choose Ny so that (2.8) holds for all N > Ny. Now
C and Ny are entirely determined by (ag, Pmin, Pmax)- We state the result as a corollary of Theorem
2.2.

Corollary 2.8. In the setting described above the bound below holds for all N = Ny, (o, 3) € S,
and x = (log N)?:
]P’{ max S%P < x} < Cz(logN)(ftap v N2,

1<m<N

3. Comparison with the KMT coupling

As a counterpoint to our Theorem 2.2 we derive here an estimate for a single random walk with
the Komlos-Major-Tusnady (KMT) (Komlos et al., 1976) coupling with Brownian motion. We
emphasize though that Theorem 5.1 below is not an alternative to our Theorem 2.2 because we do
not know how the constants C, K, \ below depend on the distribution of the walk. Hence without
further work we cannot apply the resulting estimate (3.2) to an infinite family of random walks.

However, this section does illustrate that in a certain regime of vanishing drift the estimates
(2.4) and (3.2) are essentially equivalent, as explained below in Remark 3.2. So even if one were to
conclude that the constants C, K, A below can be taken uniform, the result remains the same.

Let S, = Y.p_; X be a mean-zero random walk with i.i.d. steps {X}} and unit variance F [YQ ] =
1. The KMT coupling (Theorem 1 in Komlos et al. (1976)) constructs this walk together with a
standard Brownian motion B. on a probability space such that the following bound holds:

P( max, |Sk — Bi| = Clog N + z) < Ke ™2 forall N € Z~y and z >0, (3.1)
where O, K, X are finite positive constants determined by the distribution of X}.
We apply this to the running maximum of a random walk with a negative drift.

Theorem 3.1. Let S, = Y. | X; be a random walk with i.i.d. steps {X;} that satisfy E[e!X] < oo
for t € (=0,0) for some 6 > 0. Assume the drift is negative: p = EXy < 0, and the variance
02 = E[(X; — p)?] > 0. Then there exists a constant Cy determined by the distribution of the
normalized variable X1 = o1 (X1 — pu) such that, for all real x > 0 and integers N > e*,

2log N (- -
< 1-(log N)/2 | TZ T 07108 N (5-1z+log N)o m)
p{og}gN Sp<z}<Cy (N + N2 ©

+1— 62(cr_13:-&-C’1 logN)U_l,u.

(3.2)

Remark 3.2. To compare this estimate with Theorem 2.2, imagine that we can let y vary as a
function of N while preserving the constant Cy in (3.2). Consider the regime where o2 is constant,
x > log N and |u| vanishes fast enough so that x|u| stays bounded. Then the first parenthetical
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expression on the right of (3.2) is dominated by a constant multiple of z N =3/21,72 To the last part
apply 1 — e® < |s| for s < 0. The bound (3.2) becomes

P{Og}ca%xN Sp < w} < CQ.’L'(N_S/QIU,_Q + |n])- (3.3)

The bound (2.4) is worse than the one above by at most a log N factor, and not at all if x4 vanishes
fast enough. In particular, for the application in Busani and Seppéldinen (2020), the KMT bound
cannot give anything substantially better than Theorem 2.2.

Proof of Theorem 5.1: Apply (3.1) to the mean-zero unit-variance normalized walk Sy = o1 (Sy —
Npu). To simplify some steps below we can assume that C' > 1v A~! Let x > 0 and z = A" log N.

P{Orgr}cang S < x} = P{Og}ﬁang(gk + ka_l,u) < a_lw}

< -z -1 -1 ) )
Ke —i—P{Og}gaéxN(Bk—i—ka p) <o 'z+ ClogN + z} (3.4)

Let M}, = supgcs<i(Bi+s — Br). Since p <0,

sup (B +to ') < max (B + ko 'u) + max M.
OétépN( ¢ M) ngSN( k M) 0<k<N-1 k

With this we continue from above.

line (3.4) < Ke ™ + P{ sup (B;+ ta_l,u) <o 'z 4+2Clog N + z}
0<t<N

(3.5)
+ P{oglilg?fAMk > ClogN}.

We bound the two probabilities above separately. Recall that C' > 1. For the running maximum
of standard Brownian motion, by (2.8.4) on page 96 of Karatzas and Shreve (1991),

o]
P{ max My > logN} < NP{ sup B, >logN} = N«/2/7Tf e V2 gy
1 log N

0<k<N-— 0<s< (3.6)
Ny2/m (% 2 g V2T gos) '
< ye dy = N .
log N Jiog v log N

For the running maximum of Brownian motion with drift, use first Brownian scaling, and then
the density of the hitting time Ty of the point b(N) = N=12(c=z + 2Clog N + z) with drift
w(N) = 67 ' N2 < 0 from (3.5.12-3.5.13) on page 197 of Karatzas and Shreve (1991).

P{ sup (Bt + to'_l,u) <o 'z +2Clog N + z}
0<t<N

= P{ sup (Bt + tU*1N1/2u) < N*I/Z(Uflx +2Clog N + z)}

0<t<1

= P{ sup (B; + tu(N)) < b(N)} = PUOINT, ) > 1}

o<i<1

o0
1 2
= —(b(N)—p(N)s)?/2s (B(N)) —
b(N)J1 27T536 ds + P {Ty(ny = o0} (3.7)

®© 1 1 2,-1_1 2

— () HNI) J oSN Tu(N)Zs g 2b(N)u(V)
1 V2ms?

< 92X NN b(N)

p(N)?

< 26(0_1x+3010g N)o~1p 0% +3Ca* log N 1— 62(0_lz+3010g N)o~'u

= N3/22 :

L] 2NN
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The second last inequality dropped the denominator 27ws® > 1 and the term —%b(N )25~ from
the exponent, and then integrated. The last inequality substituted in z = A"!log N < C'log N to
bound

N71/2(071$ +log N) < b(N) < N71/2(a*1x +3C'log N).

The conclusion (3.2) follows from substituting into (3.5) the bounds from above. O

4. Auxiliary facts

Before starting the proof proper, we record some simple facts. First, assumptions (2.1) and (2.2)
gives these bounds:

0 <02 <pan=E[(X])] = MP(0) < Cs,
sl = [E[(XY)?]] = [MP(0)] < O, (4.1)
P(XY > t) < Cye .

Lemma 4.1. Let {Y;} be i.i.d. random wvariables with common marginal distribution v. Assume
that, for two constants 0 < ¢y, Cy < o0,

E(™) < Cy  for tel0,cl. (4.2)
Then
fmax = fmax (Y, n) = E[max{(), Yi,.., Y} < cl_1 log(Cin + 1).
Proof: For 0 <t < ¢q,
n
ethmax E(et(ovmaXKK"Yi)) <1+ IE( etY’) =1+ nE(etYl) < Cin+1,
i=1
and the claim follows by taking ¢ = ¢;. 0
Since My, > 0 there is a unique minimizer

6y = argmin{My(6)}. (4.3)

Lemma 4.2. Let Ny be such that Cyrlun| < %ai for N = Ny and set cpy = 20,2. Then for
N = N07

0 <6y <cumlunl.

Proof: If M} (0) = ux = 0 then the minimum is taken at 6 = 0.
So suppose My, (0) = pny < 0. Expansion for 6 € (0,6;) gives, with some ¢’ € (0,6),

M]/V(e) = UN + ,U;27N0 + %M](\?)(Q/)gz = UN + M27N‘9 — %CMQZ.

Since M’ is strictly increasing and cpy = 2/02 > 2:“2_11\/7 by the choice of Ny we have for N = Ny

2uN T
MJ/V(—CM,MN) = M]/\;( — L) = —UN — QCMTN = _NN(1 - %Oﬁ/ﬂg,N) > 0.
H2, N Ko N

It follows that there exists a unique 6} € (0, car|un|) such that M4y (6)) = 0. O
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Define a tilted measure Q(dw) = fﬁ}]’; (w)P(dw) in terms of the Radon-Nikodym derivative

SN (w) = W-

Denote the expectation under @ by E®. Increase Ny further so that N > Ny implies 9(1]\7 €
[—61/2,6,/2] and —puy < 2. Then for 0 < ¢ < 3 and 6 € (—61/2,6,/2), the MGF under Q
satisfies

‘ i A — i N 1
M5y (6) = EQ((XI)1e®N) = My (6)) TE((X1)7e@+00)XN)
— My (0)) " MP 0 + 0) < 7% Oy < M1Cy,

where the first inequality used Jensen’s inequality and (2.1). From this we get moment bounds
under @: for 0 <1 < 3,

(4.4)

E? (X)) = MGy (0) < " . (4.5)
For 0| < 01, there exists §' € (—61,6)

Increase Ny further if necessary so that 96\7 < 20 > Ny and we can write

MPOY) = 02 — Cr6Y /%.

Then from EQ(X{V) = 0 and the third equation in (4.4),

_ 10
Var?(XY) = EQ((X{)?) = MG\ (0) = My (0)) ' MP (0)) = O3 2 (4.6)

5. Proof of the main theorem

To lighten the notation we omit the label N from y = uy and 6y = 6}, and from some other
notation that obviously depend on N. For y > 0 let

Ty = inf{m > |SN| y}

denote the first hitting time of the cylinder of width 2y. Let ®,2 denote the centered Gaussian

distribution with variance o2.

Lemma 5.1. For real k > 0 and y > yo we have P(r, > ky?) < 2e~¢F where

6Cro;3
yo=1v _ OMOTx and ¢, = log

11—, [—2,2] € (0,1og2). (5.1)

1+ ®,2[-2,2]

Proof: Let SN = SN —my be the centered walk. Consider an integer k > 1 and a real y > 1. Look
at the process along time increments of size |y|*:

P(r, > ky?) < P(r, > k|y)?) < P( |55,le]2| <yform=1,...k)
k
= (P{S]}}2 € [~2y,2y]} ) (P{ 1yl € [-2 - uly],2 — plyll})

< (g3 [=2 = ulyl,2 — ulyl] + 35257 lyJ‘l)k < (@52 [-2,2] + 6Cuo3 y )",
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The penultimate inequality is the Berry-Esseen Theorem. We use the version from Durrett (2010,
Section 3.4.4) where the constant is 3. The last inequality is a simple property of a centered
Gaussian. Now for y = yo and ¢, as above,

sup  P2[—2,2] 4+ 3Cy0, %y < ®,2[-2,2] + 3Cwoy 3y, !
2

03:<02<Cyy

<31+ @,2[-2,2]) = .
We have proved P(r, > ky?) < e “* for k € Z>(. Extend this to real k € Rx:

P(ry > ky?) <P(r, > |ky?) < e Wl <o tD =21 4 @ 5 [-2,2]) ek < 2¢7F. O

Let Hy = u=2 A N. By (2.3)
D, *(log N)® < Hy < N. (5.2)
Define the truncated version of 7,
Ty =Ty A Hy.

The following result shows that although the random walk SN has negative drift, up to times of

order Hy it behaves similarly to an unbiased random walk in the following sense: if y > 0 is not
too small, but small compared to H}V/Q, the probability that the random walk reaches level y before

level —y is close to 1/2. Our choice of Hy can be justified by decomposing the random walk into
n
SN — 2 (XN — p) +np.
i=1

For ¢ > 0 small and |u| = N~Y2 (so that Hy = u~2),

EHN
(eHn) V2SN, = HN) T2 Y (XN = p) + 22 (5.3)
i=1

6HN

(Hy) ™2 ) (XN — ) & N(0,0),
=1

we see that the left hand side of (5.3) is dominated by the first term on the right hand side. That
is, up to time e Hy the random walk S behaves approximately like an unbiased random walk.

Lemma 5.2. Let yo be as in (5.1). There exist finite constants Ny and Cy such that, for N = Ny
and yo <y < (log N)*IH}V/Z,
_1 2
P(S;, > y) > %[1 — CoHy? (y + (log Hy)?) — i log(e?LCr Hy + 1)].
: 1

Cy depends on 01,05 and Cyr while Ny depends on 91,03, D, and Cyy.

Proof: The constant Cy comes as follows in terms of the constants previously introduced above and
new constants Cy, C3, Cy introduced below in the course of the proof:

Co = Cy+ Cy = 2(0; " + 9" 0;3C%) + 2Cs¢; " + 6ey

1 01 _—3,5/2 20 c2,+4 1 (5-4)
=2(0, + 9" 0, °Cyp7) 4 27 CMMTAM L ey
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Under the measure @, S,, is a mean-zero random walk and hence a martingale. Furthermore, 7,
is a bounded stopping time. From this,

0= fS;de = Sf—de + J S{-de + J Sf—de
Sty 2y Sty <~y Sty €(=y5y)
On the event Sz, >y, we have 7, = 7, and S;, 1 <y < Sz, =853, 1+ XN y+ XN and so

f Sfde<f (y+X;V)dQ<J (y+0v max X,V)dQ
S =y S: >y v Sz =y 1<i<Hpn
Y Y Y
<YQ(Sz, = y) + bmax(Q, Hy) < yQ(Sz, = y) + 207, log(e” CarHy + 1),

where we applied Lemma 4.1 under the distribution Q with C; = e"'Cys,e1 = %01 from (4.4).
Combine the displays above to obtain

Q(S:, =) = f Sz, dQ — y! J Sz, dQ — 207y Mlog(e” CyHy + 1)
S Srye(_yvy)

> Q(Sz, < —y) —Q(S3, € (—y,y)) — 207y Hlog(e”* Oy Hy + 1).
Use

L
n
3
/
s
I
|
by
n
3
v

y) — Q(Sz, € (—v,))
to rewrite the above as
Q(Sz, = y) = 3[1-2Q(Ss, € (—y,y)) — 20, "y~ log(e” Crr Hy + 1)]. (5.5)

It remains to bound the probability on the right. S; € (—y,y) forces 7,

= Hp and thereby
another application of the Berry-Esseen theorem, while using (4.5), (4.6) and y = g

= 1, gives
Q{S:, € (—y,9)} = Q{HN"*Siy € (—HN Py, Hy'?y)}

910 1
_ — € M 3
< ‘1302 (_HN1/2 HNl/Qy) 3—_32H ’
* 2—3/20M/ U>3k
1/2 1/2 enCy 1 1 01 —3,15/2 -3
2(27[‘0 )~ /yH +9T23HN2 < (0 +9e’ oy, Cur )yHN2
M 9%
_1
= %CQyHNQ
Rewrite (5.5) as
1
Q(Ss, = y) = 3[1— CoyHy? — 2y~ 107 og(e” Cor Hy + 1)) (5.6)

It remains to switch from @ back to the original distribution P. Recall the Radon-Nikodym de-
rivative f¢ = M(6) ™e?5». Introduce a temporary quantity Gy > 1 to be chosen precisely below.
Decompose according to the value of 7, and use Cauchy-Schwarz:

Q(S:, = y) = E[ff5(15+y>y,+ygao + 15, >y,7,>Go) ]
1
2

E[/1s,,2y.7,<Co] + (E[(ffﬁ ]> (]P’{ >y, Ty > G0}>;- (5.7)
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Let us first bound the second term on line (5.7). Note that f? is a P-martingale and 7, is a
stopping time bounded by Hy. Hence (f?)? is a submartingale and we have

(E[(fgf)Q])%(P{S@ >y, 7> Go})%

1 1 HN/2 1
2 2
< (BLU31) (PS5 2 07> Go))* = (00 ) > 0,7y = Gol)
To bound the M-factor on the right, expand M and use (2. 4.1) and g < 0. In the numerator,

for some n € (0,26)),
M(200) = 1+ p20g + 212603 + MO ()03 < 1+ 2203 + 2C1103
and similarly in the denominator:

[M(QQO)M(90)_2]HN/2 o

Hy/2
< (1 4 2062 + cheg) v (1 + 1B + L1062 — éCMeg)

2 2,4 3013 g 2 e (5.8)
< (1 +2Cn ey + 5Cnchy | ) (1 —cpp” — Crcyylpl )
< e2CMc?u+4C]M = C3'

Above we used Hy < p~2 and increased Ny once more so that N > N, guarantees %cM| pl <1

enp® + Cnedy|pl® < 5 and Cpredsp] < 1. Then we applied the bounds

1 9
oK 2 2 2
(1+ 20mp® + 4Cuc ul?)*" < eOrehilirfenluh < (2Cucky,

,M—Q ﬂ—2
(1 _ CM,UZ _ CMC§)\J|,U|3) < (1 + QCM,LLQ(l + CMC%/[LUD) < 620M(1+CMC§M|H|) < 64CM,

where the second line also used (1—a)~! < 1+ 2a for a € [0, 1]. Put (5.8) back up, set Gy = yHl/2

and apply Lemma 5.1 (for which we use the assumption y > y):

1 1
(E[(fgf)Q]) 2 <P{S+y >y, Ty > G0}> " < Os(P{, > Go})% < 20ye eIV (5.9)

Next we bound the first term on line (5.7). Use M () < 1. Let M,, = maxi<;<n X;".
005+
0 e
E[f'1s,, >y,7,<Go] = E[Wlsﬂ,%ﬁys%]

605~ 605+

€077y e’077y
< E[W1S+y>y,MHN<(logHNP] +E[M(90)@1s7y/y,MH >(log Hy)? ] (5.10)
fo(y+ M) PRLEES
< E[W15+y>y,MHN<(IOgHN)2:| + E[W1S+y>y,MHN>(logHN)2]
Let us first bound the second term. Using Cauchy-Schwarz, the bound
P(MHN > t) < HNCMe_elt,

the bound (5.8), and the tail bound in (4.1), it follows that

005+,

B e L st o] < (I 071)* (BOMay > (g )

< CyHY2CH2e= 300 (log Hy)?,
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The first term on the last line of (5.10) is bounded as follows, with Go = yH 2

600(y+MHN) 690(y+(10g HN) )
B iy v <tosir | < B[ iana— 15,20
P(S; > y)ecMHIQl/2[y+(log HN)2]M(90)—yH}V/2 <P(S: > y)eCMH;fl/2[y+(10g HN)2]€CMyH;,1/2
Y Y
= P(S;, > y)ecr iy 2yt og Hy))
Y

We used above Jensen’s inequality in the form M (6y)~ —yHy < e~ OonyH , the definition of Hy in
the form |,uJ|H1/2 < 1, and then 6y < cpr|p| < ey H™Y2. Furthermore, by () 2) and our assumption
< (logN)~ 1HN/ we have

eneHy P12y + (log Hy)?] < enr(2 + D,)(log N) ™' < log 2

where we choose Ny large enough so that the last inequality holds for N > Ny. Then we applied
the inequality e* < 1 + 2z for z € [0, log 2].
Going back to (5.10), for N = Ny,
E[fP1 - <Go| <P(S3, =y) +2 H2191 4 (log Ha)2] + CoHY 2020~ 301(log Hy)?
7 s 2y,7,<00 ] <P(S7, 2 y) + 2eaH 72y + (log Hy)™] + CsHy"Cype
—-1/2
<P(S:, = y) + 3en Hy'?[2y + (log Hy)?).

The second inequality is guaranteed for example by choosing Ny large enough so that N = Ny
implies

1

D;2(logN)6 > and ey Cy 10_1/2(10g[D (log N)® ])

e
This works due to the lower bound () 2) on Hy and because the function f(x) = 61(log z)”
9 1

1
59

achieves its maximum e2 at x = e’ i after which it decreases.
Combine the above with (5.9) on line (5.7) to get this upper bound:

1

Q(S, > y) <P(Ss, > y) + 205~ TNV 4 3ep, H Y22y + (log Hy)?)
< P(S:, > y) + 2Cs¢. " Hy Py + 3ear Hy P [2y + (log Hy)?) (5.11)
<P(Ss, = y) + Caly [y + (log Hy)?)

where C4 = 2036; + 6¢pr. The second inequality above came from ze™ < e~ ! for > 0. Put
(5.11) and (5.6) together to obtain the claim of the lemma. O

By adjusting a constant we can replace 7, with 7, in the previous estimate.

Corollary 5.3. Under the assumptions of Lemma 5.2, with C1g = Co + 2¢; 1,

_1 2
P(Sr, 2 y) = %[1 - C10HN2 (y + (log Hy)?) — @log(eechHN + 1)] (5.12)

Proof: The assumption yo < y < H}V/Q implies that Lemma 5.1 applies to give

_ /2, _
P(r, > Hy) < e~crHmv™ g emerHy'v ™ o Sl (5.13)
The claim then comes from Lemma 5.2 and P(S;, > y) = P(S;, > y) — P(r, > Hy). O

For w > 0 truncate:

n
Xi]V’w = X’L]V]'{Xszfw} — wl{XiN<f’LU} and S’,JIV,’LU = Z XZ]V’w
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Define
ty = inf{m >1: |§7]X’w| > y}.
We transfer bound (5.12) to the truncated walk S. The reason is that the proof of the forthcoming

Lemma 5.5 is easier for the truncated RW.

Corollary 5.4. Under the assumptions of Lemma 5.2, with C13 = Co + 4c;t,

- 1 2 0w
PS> y) = %[1 — CHy? (y + (log Hy)?) — i log(e”* Oy Hy + 1) — HyCpre™® ]

Proof: Note that

P(SNv # SN for some 1 <m < Hy) = P(XN" # XN for some 1 <i < Hy) (5.14)
:]P’( inf XN < w) < HyCpre v,
1<i<Hpy
Moreover,
[P(S”t];[’w >y) = ]P)(Sg >y, 7y < Hy, g,]xw = SN forall1<m < Hy)
> ]P)(Sg >y) —P(ry, > Hy) — P(@n]\i’w # SN for some 1 <m < Hy)
> P(SY > y) — ¢ ' Hy Py — HyCare 1, (5.15)
where we used (5.14) and (5.13). Combine the above with (5.12) to obtain the result. O

We turn to the main argument of the proof of Theorem 2.2, that is, to show that the probability
of the random walk Sy, to hit the level z before hitting the level —eH'/2 is close to z|u|. This gives
rise to the error term in (2.4). We sketch the reasoning.

Let us try to hit the level x > 0 starting from the origin. By Corollary 5.4 there is a probability

~ 1/2 to hit = before hitting —z. Suppose we failed and hit —z first. We have another chance to
hit by going 2x upward from the level —x. By Corollary 5.4 the probability of going 2z up to

the level x before going 2z down to the level —4x is ~ 1/2. We continue this way until we either
hit the level z or the level —eH Y2 How many trials to hit z do we have before we hit —eH L2
Approximately K = logy(z~'eH / ). The trials are independent and so the probability of hitting

the level —eH Y2 before hitting the level = is ~ 27X = Cx|u|, which is what we seek.
We 1ntroduce the notation to make the sketch precise. See Figure 5.1 for an illustration.

Define K = |logy (! (log N)~ 1H]1V/2)J —2. For i > 0 set L; = 21*2 — 3. Inductively these satisfy
Lo=1and L; = 2L; 1 + 3. Furthermore,

zLi < (log N) " H)?.
Define the stopping times
To = inf{n : \SNw| xLo}
and T; = inf{n > : SNT < —2L; or SN > 1}
Note that T; = T;_1 is possible.
Lemma 5.5. There erist finite constants Ch2 and No such that for N = Ng and x > (log N)?,
IP’( max SNx < x) Craxz(log N)H 1/2,

1<m<Tk

where
Cha = 4exp{4(Co + 4c;") (1 + D) + 867 (1 + log(e? Chs + 1)) + 4C }

and Cy in the expression above is from (5.4).
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Proof: Since Cy = 2, we have C1a > 4e® > 219 Then we can assume that 2 < 27'%(log N)~ 1H]1V/2,
for otherwise the bound on the probabihty is > 1. This guarantees that K > 8. It also implies that
unless |M| < 2 1O(log N)~3, the result is trivial.

Since X > —x,
{SP% < —aLiy = {~a(Li +1) < Sp" < —wL;} (5.16)
and
{é‘g,w < —ILi,é\TJ{fl < _xLi+1} c {TZ < Tz’—&-l}-
Note that
EE{ max SNm<x}C SNI < —xL;}. 5.17
1<m<Tk 1<QK{ i} ( )
Due to (5.16)
P(Sp* < —xLy, ... §1Tf_f1 —aLi1, Sp° < —xL;)
=P(S" < —aLi|Sp" < —xLy, ... Sp" < —wLiy)
. P(S\qj\{)’x —x Ly, "'7ST~ivl < —(L‘LZ'_1>
N _ N (5.18)
<P(S" < —aLil 83" < —aLo, ..., Sp" = —a(Lioy + 1))
. P(Sjj%x < —xLy, ,Sg_m < l’Lz;l)
= P(é\gii_1+2) < —x(Li_l + 2))[@(52]%@ < —zLg, ..., ggicl < —acLl-_l).

The last equality used the definition of the stopping time t,, the definition of L;, and the Markov
property. For 1 <1 < K define the events

AN — (GNe < —2(Li_1 +2)}.

( to(L;_1+2)
Applying (5.18) to (5.17) repeatedly,

p( () (Sy"<—oLi}) < [] Pa).

1<i<K 1<i<K

Let z > (log N)2. Recall that by (5.2), (log Hy)2Hy"? < D,(logN)~' and Hy < N. Apply

Corollary 5.4 with w = z and y; = x(L;—1 + 2) € [z, (log N)_1H]1V/2] fori=1,...,K and N > Ny
to get this estimate:

_1
P(Aiv) < %[1 + CllHN2 (yl + (log HN)Q) + log(ealCMHN + 1) + HNCM€_01:C:|

1Yi
2log(e?1Cy N +1)
01(log N)?

N[

[1 +Ci(1+ D,)(log N)™ N CMNl—el(logN)Q]

[1 + Ca(log N)™ ]

D=

where we set
Ca = C11(1+ Dy) + 207 (1 + log(e” Cps + 1)) + Cur

and if necessary we increase Ny further so that N1—01(log N)? < (logN)~! for N > Ny.
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—xLy = —x =

—2x

—3x

—4x

~

N
Sp,

—xLy = (log N)"'Hy,

FIGURE 5.1. By the time the random walk SN exits the cylinder of radius (log N)*IH}V/2
it has had about K independent opportunities to hit the level z, each with probability close
to 1/2.

Continue with the above estimate,
K K
P(E) < [ [P(AY) < (3[1+ Callog N) 1)
i=1

[log, (2~ (log N)~1HY?)|—2
_ (%[1 +CA(logN)_1]> s

< 4a(log N)Hy"?[1 + Cy(log N) oz
< 4e' % (log NYH 2 = 4¢*“a(log N)(|u| v N72),

where we used log, N = lﬁ)gggf <4logN. O

We are ready to prove Theorem 2.2. By Lemma 5.5, by the time S hits the level (log N)_1H]1V/2,
with high probability it has hit level x as well. It remains to verify the two points below.

(i) S is close to S on the time interval [1, N]. This follows from a union bound and the exponential
tail of X{V.

.. : : . . . . . 1p1/2

(ii) With high probability by time N we hit the boundary of the cylinder of width (log V) 1HN/ .
This follows from Lemma 5.1.

Proof of Theorem 2.2: Consider x > (log N)2. Observe that

~ 1 o1/2 ~ ~
{ max_|SN*| > (log N) IHN/ , max SNT > :E} c { max SN > $}
1<m<N 1<m<Tk 1<m<N

Indeed, on the event maxj << ‘§%@’ > (log N)*lH}VﬂZ xLg we have T < N.
Next,

P(S’\%” # S forsome 1 <m < N)=P(X} < -z forsomel<i<N) (5.19)

_ _ 2
< CyNe 1z < CyNe 01(log N) .
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By Lemma 5.1, (5.19) and Lemma 5.5,

P( max S’N’”>m)>1*P( max 1SN < (log N)~ 1H1/2) P( . max §£{””<m)

1<m<N 1<m<N 1<m<Tk

21—[]?( max_|SN| < (log N)~ 1H1/2)+IP’(SN"T¢5N for some 1 < N)]

1<m<N

an,
—PP(  Jax Syt < x)

=1- I:]P)(T(logN)_lHjlv/2 > N) +P(SN* % SN for some 1 <m < N)]
_P §N,x

1—[2e _CTN(IOgN)QHN +C’MN6_61(1°gN)2] Croxz(log N)H 1/2
>1— 2€—<:T(logN)2 _ CMNe—Gl(logN) Clgx(log N) —1/2
>1— (Cyy + 2)z(log N)Hy"2.

< z)

\Y

To get the inequalities above for N > Ny we increase Ny if necessary so that N > Ny guarantees
(log N)_IH}V/2 > yo to apply Lemma 5.1, and furthermore so that 2e~¢- (o8 N O Ne=f01log N)?
(log N)?N~1/2 to get the last inequality.

Now the final inequality:

P(lglrc?icNS >z) > P(1$§N SN > z) — IP’(SA’TJXI # S for some 1 <m < N)

>1— (Cig + 2)z(log N)Hy'? — Cpy Ne 01008 N)?
>1—(Crz + 3)z(og N)(|p| v N~V2).

Theorem 2.2 has been proved. g
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