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Abstract. We derive a lower bound for the probability that a random walk with i.i.d. increments
and small negative drift µ exceeds the value x ą 0 by time N . When the moment generating
functions are bounded in an interval around the origin, this probability can be bounded below by
1 ´Opx|µ| logNq. The approach is elementary and does not use strong approximation theorems.
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1. Introduction

1.1. Background. This paper arose from the need of a random walk estimate for the authors’ article
Busani and Seppäläinen (2020) on directed polymers. This estimate is a positive lower bound on
the running maximum of a random walk with a small negative drift. Importantly, the bound had
to come with sufficient control over its constants so that it would apply to an infinite sequence of
random walks whose drift scales to zero as the maximum is taken over expanding time intervals.
The natural approach via a Brownian motion embedding appeared to not give either the desired
precision or the uniformity. Hence we resorted to a proof from scratch. For possible wider use we
derive the result here under general hypotheses on the distribution of the step of the walk.

The polymer application of the result pertains to the exactly solvable log-gamma polymer on
the plane. The objective of Busani and Seppäläinen (2020) is to prove that there are no bi-infinite
polymer paths on the planar lattice Z

2. The technical result is that there does not exist any
nontrivial Gibbs measures on bi-infinite paths that satisfy the Dobrushin-Lanford-Ruelle (DLR)
equations under the Gibbsian specification defined by the quenched polymer measures. In terms
of limits of finite polymer distributions, this means that as the southwest and northeast endpoints
of a random polymer path are taken to opposite infinities, the middle portion of the path escapes.
This is proved by showing that in the limit the probability that the path crosses the y-axis along a
given edge decays to zero. This probability in turn is controlled by considering stationary polymer
processes from the two endpoints to an interval along the y-axis. The crossing probability can be
controlled in terms of a maximum of a random walk. In the case of the log-gamma polymer, the
steps of this random walk are distributed as the difference of two independent log-gamma variables.
The case needed for Busani and Seppäläinen (2020) is treated in Example 2.7 below.

1.2. The question considered. We seek a lower bound on the probability that the running maximum
of a random walk with negative drift reaches a level x ą 0. To set the stage, we discuss the matter
through Brownian motion. Let SN

n “ řn
i“1X

N
i be a random walk with drift EpXN

1 q “ µN “
µN´1{2 ă 0, and such that the random walks SN converge weakly to a Brownian motion with drift
µ ă 0. The probability of the event

sup
1ďnďN

SN
n ą x

should be approximately the same as that of

sup
0ďsď1

pBs ` sµq ą xN´1{2. (1.1)

This latter can be computed (see (3.7)) to be

P
 

sup
0ďsď1

pBs ` sµq ą xN´1{2
(

“ 1 ´Op|µ|xN´1{2q. (1.2)

This suggests that we should aim for an estimate of the type

P

´
sup

1ďnďN

SN
n ą x

¯
ě 1 ´Op|µN |xq. (1.3)

To reach this precision weak convergence is not powerful enough, for a weak approximation of
random walk by Brownian motion reaches only a precision of OpN´1{4q (Sawyer, 1972; Fraser,
1973). Our estimate (2.4) below does almost capture (1.3): we have to allow an additional logN
factor inside the Op¨q and consider x of order at least plogNq2.

The by-now classical Komlós-Major-Tusnády (KMT) coupling (Komlós et al., 1976) gives a strong
approximation of random walk with Brownian motion with a discrepancy that grows logarithmically
in time. This precision is sufficient for us, as we illustrate in Section 3. The problem is now the
control of the constants in the approximation. Uniformity of the constants is necessary for our
application in Busani and Seppäläinen (2020). But verifying this uniformity from the original work
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Komlós et al. (1976) appeared to be a highly nontrivial task. In the end it was more efficient to
derive the estimate (Theorem 2.2 below) from the ground up.

The difficulty of the original KMT proof has motivated several recent attempts at simplification
and better understanding of the result, such as Bhattacharjee and Goldstein (2016), Chatterjee
(2012), and Krishnapur (2020). There is another strong approximation result due to Sakhanenko
(1984) which, according to p. 232 of Chatterjee (2012), “is so complex that some researchers are
hesitant to use it”.

1.3. Sketch of the proof. Our proof is elementary. The most sophisticated result used is the Berry-
Esseen theorem. Given a random walk of small drift µ ă 0, our approach can be summarized in
two main steps:

(1) Up to the time the random walk hits the level ´ε|µ|´1 it behaves like an unbiased random
walk.

(2) By the time the random walk hits the level ´ε|µ|´1 it will have had about log2pε|µ|´1x´1q
independent opportunities to hit the level x. By the previous step this implies that the

probability on the left-hand side of (1.3) is of order 1´ p1{2qlog2pε|µ|´1x´1q “ 1´Op|µ|ε´1xq.
As we will take ε “ plogNq´1 in the proof, we will obtain the right order in (1.3) up to a logarithmic
factor (Theorem 2.2). After the statement of the theorem we illustrate it with examples. Then we
demonstrate that even if we knew that the constants in the KMT approximation can be taken
uniform, the result would not be essentially stronger in the regime in which we apply our result.

2. Main result

For each N P Zą0, let tXN
i uiě1 be a sequence of non-degenerate i.i.d. random variables. Denote

their moment generating function by

MN pθq “ E
`
eθX

N
1

˘
.

Write M
p0q
N “ MN and M

pi`1q
N “ pd{dθqM piq

N .

Assumption 2.1. We assume that the random variables tXN
i uiě1 satisfy the following:

(i) There exists an open interval p´θ0, θ0q around the origin on which each moment generating

function MN is finite. Furthermore, there exists a finite constant CM and θ1 ą 0 such that we

have the uniform bounds

|M piq
N pθq| ď CM for all N , 0 ď i ď 3, and θ P r´θ1, θ1s (2.1)

for the compact interval r´θ1, θ1s Ă p´θ0, θ0q.
(ii) There exists a finite constant σ˚ ą 0 such that

E
“
pXN

1 q2
‰

ě σ2N “ VarpXN
1 q ě σ2˚ for all N . (2.2)

(iii) There exists a finite constant Dµ ą 0 such that the expectations µN “ E
`
XN

1

˘
satisfy

´DµplogNq´3 ď µN ď 0 for all N . (2.3)

The conditions in Assumption 2.1 are fairly natural. Note that (2.1) has to be checked only
for i “ 0 at the expense of shrinking the interval r´θ1, θ1s and increasing CM . To make a positive
maximum possible, condition (2.2) ensures enough diffusivity and condition (2.3) limits the strength
of the negative drift. The bound (2.4) below shows that Dµ has to be vanishingly small in order for
the result to be nontrivial.

For m ě 1 let SN
m “ řm

k“1X
N
k be the random walk associated with the steps tXN

i uiě1. Here is
the main theorem.
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Theorem 2.2. There exist finite constants C and N0 that depend on θ1, σ
2
˚, Dµ and CM such that,

for every N ě N0 and x ě plogNq2,

P

´
max

1ďmďN
SN
m ď x

¯
ď CxplogNqp|µN | _N´1{2q. (2.4)

Remark 2.3 (The constants in the theorem). The constant C in the upper bound (2.4) is given by

C “ 4 exp
 
4pC0 ` 4c´1

τ qp1 `Dµq ` 8θ´1
1

`
1 ` logpeθ1CM ` 1q

˘
` 4CM

(
` 3 (2.5)

where
C0 “ 2pσ´1

˚ ` 9eθ1σ´3
˚ C

5{2
M q ` 2e8CMσ´4

˚ `8σ´2

˚ c´1
τ ` 12σ´2

˚ , (2.6)

cτ “ log
2

1 ` Φσ2
˚

r´2, 2s , (2.7)

and Φσ2
˚

is the mean zero Gaussian distribution with variance σ2˚.

Throughout the proof we state explicitly the various conditions N ě N0 required along the way.
Let us assume that N ě 2 so that logN does not vanish. Then all the conditions N ě N0 can be
combined into a single condition of the form

fpCM , Dµ, σ
2
˚, θ1, Nq ě 1 (2.8)

where the function f is a strictly positive continuous function on R
4
ą0 ˆ Rě2, nondecreasing in

θ1, nonincreasing in CM and Dµ, but depends on σ2˚ in both directions. When pCM , Dµ, σ
2
˚, θ1q is

restricted to a compact subset K of R4
ą0, there exists a finite indexNK such that fpCM , Dµ, σ

2
˚, θ1, Nq

is a nondecreasing function of N ě NK for any fixed pCM , Dµ, σ
2
˚, θ1q P K, and

lim
NÑ8

inf
pCM ,Dµ,σ

2
˚,θ1qPK

fpCM , Dµ, σ
2
˚, θ1, Nq “ 8.

In particular, for each compact subset K Ă R
4
ą0 there exists a finite index N0,K such that (2.8)

holds for all N ě N0,K and all pCM , Dµ, σ
2
˚, θ1q P K. Furthermore, it is evident from (2.5)-(2.7)

that C is a continuous function of pCM , Dµ, σ
2
˚, θ1q P R

4
ą0. We conclude with the following local

uniformity statement.

Corollary 2.4. For each compact subset K Ă R
4
ą0 there exist finite constants C0,K and N0,K such

that the following holds: the estimate (2.4) with C “ C0,K on the right-hand side is valid whenever

N ě N0,K, simultaneously for all walks tSN
mumě1 that satisfy Assumption 2.1 with parameters

pCM , Dµ, σ
2
˚, θ1q P K.

We illustrate the result with some examples.

Example 2.5 (Gaussian random walk). Let Bt be a Brownian motion, µ ă 0, and define the random

walk SN
m “ Bm ` mN´1{2µ . We can verify that the bound (2.4) is off by a logarithmic factor in

this case, by comparison with the running maximum of the Brownian motion. For x ą 0 and large
enough N

P
`

max
1ďmďN

SN
m ď x

˘
ě P

`
sup

0ďtďN

Bt ` tN´1{2µ ď x
˘

ě 1 ´ e´2xN´1{2|µ| ě x|µN | “ xN´1{2|µ|.
(2.9)

where the middle inequality follows from (3.7) with µpNq “ µ and bpNq “ xN´1{2.(2.9) shows that
the optimal error is at most Opx|µN |q, and that Theorem 2.2, if not optimal, is only logN away
from being so.

A natural way to produce examples is to take XN
i as the difference of two independent random

variables whose means come closer as N grows and whose variances stay bounded and bounded
away from zero.
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Example 2.6 (Exponential walk). Consider a random walk Sn “ řn
k“1Xk with step distribution

Xk
d“ Yα ´Yβ where Yα and Yβ are two independent exponential random variables with rates α and

β, respectively. µ “ ErXks “ β´α
αβ

so we assume that α ą β. The distribution of the supremum of

Sn is well-known and also feasible to compute (Example (b) in Section XII.5 of Feller (1971)): for
x ą 0,

P
`
sup
ně0

Sn ď xq “ 1 ´ β

α
e´pα´βqx “ β|µ|

`
1 ` βx

˘
`Opµ2x2q

where we assume |µ|x small and expand es “ 1 ` s`Ops2q. We obtain a lower bound:

P
`
max

1ďnďN
Sn ď xq ě P

`
sup
ně0

Sn ď xq “ β|µ|
`
1 ` βx

˘
`Opµ2x2q

ě β2|µ|x`Opµ2x2q.

Thus for |µ| ě N´1{2 and small x|µ|, the upper bound (2.4) loses only a logarithmic factor.

That max1ďnďN Sn is close to the overall maximum supně0 Sn in the case |µ| ě N´1{2 is a
consequence of the fact that the overall maximum is taken at a random time of order µ´2. This
claim is seen conveniently through ladder intervals tTiuiě1. These are the intervals Ti “ τi ´ τi´1

between successive ladder epochs defined by τ0 “ 0 and

τi “ inftn ą τi´1 : Sn ą Sτi´1
u.

The distribution of Ti is given by

PpTi “ 8q “ 1 ´ β

α
and PpTi “ nq “ Cn´1

αn´1βn

pα ` βq2n´1
for n P Zą0,

where tCkukě0 are the Catalan numbers. (This calculation can be found in Lemma B.3 in the
appendix of Fan and Seppäläinen (2020).) Set T0 “ 0 and let N “ maxtn ě 0 : Tn ă 8u be

the number of finite ladder intervals. The maximum supně0 Sn is taken at time ζ “ řN
i“1 Ti. One

calculates Erζs “ 1
αβ
µ´2 and Varrζs “ cα,βµ

´4. Thus for large enough k, Ppζ ą kµ´2q ď Cα,βk
´2.

Example 2.7 (Log-gamma walk). This is the application of Theorem 2.2 used in Busani and Sep-
päläinen (2020).

Let Gλ denote generically a parameter λ gamma random variable, that is, Gλ has density function

fpxq “ Γpλq´1xλ´1e´x on Rą0. For α, β ą 0 let Sα,β
m “ řm

i“1X
α,β
i denote the random walk where

the distribution of the i.i.d. steps tXα,β
i uiě1 is specified by

X
α,β
1

d“ logGα ´ logGβ

with two independent gamma variables Gα and Gβ on the right.
Let ψ0psq “ Γ1psq{Γpsq be the digamma function and ψ1psq “ ψ1

0psq the trigamma function on
Rą0. Their key properties are that ψ0 is strictly increasing with ψ0p0`q “ ´8 and ψ0p8q “ 8,
while ψ1 is strictly decreasing and strictly convex with ψ1p0`q “ 8 and ψ1p8q “ 0.

Fix a compact interval rρmin, ρmaxs Ă p0,8q. Fix a positive constant a0 and let tsNuNě1 be a
sequence of nonnegative reals such that 0 ď sN ď a0plogNq´3. Define a set of admissible pairs

SN “ tpα, βq : α, β P rρmin, ρmaxs, ´sN ď α ´ β ď 0u.
For pα, βq P SN , the mean step satisfies

µα,β “ ErXα,β
1 s “ ErlogGαs ´ ErlogGβs “ ψ0pαq ´ ψ0pβq

“ ψ1pλqpα ´ βq P r´a0ψ1pρminqplogNq´3, 0s
(2.10)

where we used the mean value theorem with some λ P pρmin, ρmaxq. We take Dµ “ a0ψ1pρminq.
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The MGF of Xα,β
1 is

Mα,βpθq “ E
“
eθX

α,β
1

‰
“ E

“
pGαqθ

‰
E
“
pGβq´θ

‰
“ Γpα ` θqΓpβ ´ θq

ΓpαqΓpβq (2.11)

for θ P p´α, βq. For the interval in assumption (2.1) we can take r´θ1, θ1s “ r´1
2
ρmin,

1
2
ρmins. Now

(2.1) holds with a single constant CM “ CM pρmin, ρmaxq for all choices of α, β P rρmin, ρmaxs.
The variance satisfies

VarpXα,β
1 q “ VarplogGαq ` VarplogGβq “ ψ1pαq ` ψ1pβq ě 2ψ1pρmaxq “ σ2˚.

The constants pCM , Dµ, σ
2
˚, θ1q have been fixed and they work simultaneously for all pα, βq P SN

and all N ě 1. Define C through (2.5)–(2.7). Choose N0 so that (2.8) holds for all N ě N0. Now
C and N0 are entirely determined by pa0, ρmin, ρmaxq. We state the result as a corollary of Theorem
2.2.

Corollary 2.8. In the setting described above the bound below holds for all N ě N0, pα, βq P SN ,

and x ě plogNq2:

P

!
max

1ďmďN
Sα,β
m ď x

)
ď CxplogNqpµα,β _N´1{2 q.

3. Comparison with the KMT coupling

As a counterpoint to our Theorem 2.2 we derive here an estimate for a single random walk with
the Komlós-Major-Tusnády (KMT) (Komlós et al., 1976) coupling with Brownian motion. We
emphasize though that Theorem 3.1 below is not an alternative to our Theorem 2.2 because we do

not know how the constants C,K, λ below depend on the distribution of the walk. Hence without

further work we cannot apply the resulting estimate (3.2) to an infinite family of random walks.

However, this section does illustrate that in a certain regime of vanishing drift the estimates
(2.4) and (3.2) are essentially equivalent, as explained below in Remark 3.2. So even if one were to
conclude that the constants C,K, λ below can be taken uniform, the result remains the same.

Let Sn “ řn
k“1Xk be a mean-zero random walk with i.i.d. steps tXku and unit variance ErX 2 s “

1. The KMT coupling (Theorem 1 in Komlós et al. (1976)) constructs this walk together with a
standard Brownian motion B‚ on a probability space such that the following bound holds:

P
`

max
1ďkďN

|Sk ´Bk| ě C logN ` z
˘

ď Ke´λz for all N P Zą0 and z ą 0, (3.1)

where C,K, λ are finite positive constants determined by the distribution of Xk.
We apply this to the running maximum of a random walk with a negative drift.

Theorem 3.1. Let Sn “ řn
i“1Xi be a random walk with i.i.d. steps tXiu that satisfy EretX s ă 8

for t P p´δ, δq for some δ ą 0. Assume the drift is negative: µ “ EX1 ă 0, and the variance

σ2 “ ErpX1 ´ µq2 s ą 0. Then there exists a constant C1 determined by the distribution of the

normalized variable X1 “ σ´1pX1 ´ µq such that, for all real x ą 0 and integers N ą e4,

P
 

max
0ďkďN

Sk ă x
(

ď C1

´
N1´plogNq{2 ` σx` σ2 logN

N3{2µ2
epσ´1x`logNqσ´1µ

¯

` 1 ´ e2pσ´1x`C1 logNqσ´1µ.

(3.2)

Remark 3.2. To compare this estimate with Theorem 2.2, imagine that we can let µ vary as a
function of N while preserving the constant C1 in (3.2). Consider the regime where σ2 is constant,
x ą logN and |µ| vanishes fast enough so that x|µ| stays bounded. Then the first parenthetical
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expression on the right of (3.2) is dominated by a constant multiple of xN´3{2µ´2. To the last part
apply 1 ´ es ď |s| for s ă 0. The bound (3.2) becomes

P
 

max
0ďkďN

Sk ă x
(

ď C2x
`
N´3{2µ´2 ` |µ|

˘
. (3.3)

The bound (2.4) is worse than the one above by at most a logN factor, and not at all if µ vanishes
fast enough. In particular, for the application in Busani and Seppäläinen (2020), the KMT bound
cannot give anything substantially better than Theorem 2.2.

Proof of Theorem 3.1: Apply (3.1) to the mean-zero unit-variance normalized walk SN “ σ´1pSN ´
Nµq. To simplify some steps below we can assume that C ě 1_λ´1. Let x ą 0 and z “ λ´1 logN .

P
 

max
0ďkďN

Sk ă x
(

“ P
 

max
0ďkďN

`
Sk ` kσ´1µ

˘
ă σ´1x

(

ď Ke´λz ` P
 

max
0ďkďN

`
Bk ` kσ´1µ

˘
ă σ´1x` C logN ` z

(
. (3.4)

Let Mk “ sup0ďsď1pBk`s ´Bkq. Since µ ă 0,

sup
0ďtďN

`
Bt ` tσ´1µ

˘
ď max

0ďkďN

`
Bk ` kσ´1µ

˘
` max

0ďkďN´1
Mk.

With this we continue from above.

line (3.4) ď Ke´λz ` P
 

sup
0ďtďN

`
Bt ` tσ´1µ

˘
ă σ´1x` 2C logN ` z

(

` P
 

max
0ďkďn´1

Mk ą C logN
(
.

(3.5)

We bound the two probabilities above separately. Recall that C ě 1. For the running maximum
of standard Brownian motion, by (2.8.4) on page 96 of Karatzas and Shreve (1991),

P
 

max
0ďkďN´1

Mk ą logN
(

ď NP
 

sup
0ďsď1

Bs ą logN
(

“ N
a
2{π

ż 8

logN

e´y2{2 dy

ď N
a
2{π

logN

ż 8

logN

ye´y2{2 dy “
a
2{π

logN
N1´plogNq{2.

(3.6)

For the running maximum of Brownian motion with drift, use first Brownian scaling, and then
the density of the hitting time TbpNq of the point bpNq “ N´1{2pσ´1x ` 2C logN ` zq with drift

µpNq “ σ´1N1{2µ ă 0 from (3.5.12–3.5.13) on page 197 of Karatzas and Shreve (1991).

P
 

sup
0ďtďN

`
Bt ` tσ´1µ

˘
ă σ´1x` 2C logN ` z

(

“ P
 
sup

0ďtď1

`
Bt ` tσ´1N1{2µ

˘
ă N´1{2pσ´1x` 2C logN ` zq

(

“ P
 
sup

0ďtď1

`
Bt ` tµpNq

˘
ă bpNq

(
“ P pµpNqqtTbpNq ą 1u

“ bpNq
ż 8

1

1?
2πs3

e´pbpNq´µpNqsq2{2s ds` P pµpNqqtTbpNq “ 8u

“ bpNqebpNqµpNq

ż 8

1

1?
2πs3

e´
1
2
bpNq2s´1´

1
2
µpNq2s ds` 1 ´ e2bpNqµpNq

ď 2ebpNqµpNq bpNq
µpNq2 ` 1 ´ e2bpNqµpNq

ď 2epσ´1x`3C logNqσ´1µ σx` 3Cσ2 logN

N3{2µ2
` 1 ´ e2pσ´1x`3C logNqσ´1µ.

(3.7)
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The second last inequality dropped the denominator 2πs3 ě 1 and the term ´1
2
bpNq2s´1 from

the exponent, and then integrated. The last inequality substituted in z “ λ´1 logN ď C logN to
bound

N´1{2pσ´1x` logNq ď bpNq ď N´1{2pσ´1x` 3C logNq.
The conclusion (3.2) follows from substituting into (3.5) the bounds from above. �

4. Auxiliary facts

Before starting the proof proper, we record some simple facts. First, assumptions (2.1) and (2.2)
gives these bounds:

0 ă σ2˚ ď µ2,N ” E
“
pXN

1 q2
‰

“ M
p2q
N p0q ď CM ,

|µ3,N | ” |E
“
pXN

1 q3
‰
| “ |M p3q

N p0q| ď CM ,

PpXN
1 ą tq ď CMe

´θ1t.

(4.1)

Lemma 4.1. Let tYiu be i.i.d. random variables with common marginal distribution ν. Assume

that, for two constants 0 ă c1, C1 ă 8,

EpetY1q ď C1 for t P r0, c1s. (4.2)

Then

µmax “ µmaxpν, nq ” E
“
maxt0, Y1, ..., Ynus ď c´1

1 logpC1n` 1q.

Proof : For 0 ă t ď c1,

etµmax ď E
`
etp0_max1ďiďn Yiq

˘
ď 1 ` E

´ nÿ

i“1

etYi

¯
“ 1 ` nE

`
etY1

˘
ď C1n` 1,

and the claim follows by taking t “ c1. �

Since M2
N ą 0 there is a unique minimizer

θN0 “ argmintMN pθqu. (4.3)

Lemma 4.2. Let N0 be such that CM |µN | ď 1
3
σ2˚ for N ě N0 and set cM “ 2σ´2

˚ . Then for

N ě N0,

0 ď θN0 ď cM |µN |.

Proof : If M 1
N p0q “ µN “ 0 then the minimum is taken at θN0 “ 0.

So suppose M 1
N p0q “ µN ă 0. Expansion for θ P p0, θ1q gives, with some θ1 P p0, θq,

M 1
N pθq “ µN ` µ2,Nθ ` 1

2
M

p3q
N pθ1qθ2 ě µN ` µ2,Nθ ´ 1

2
CMθ

2.

Since M 1 is strictly increasing and cM “ 2{σ2˚ ě 2µ´1
2,N , by the choice of N0 we have for N ě N0

M 1
N p´cMµN q ě M 1

N

´
´ 2µN

µ2,N

¯
ě ´µN ´ 2CM

µ2N
µ22,N

ě ´µN
`
1 ´ 2

3
σ2˚{µ22,N

˘
ą 0.

It follows that there exists a unique θN0 P p0, cM |µN |q such that M 1
N pθN0 q “ 0. �
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Define a tilted measure Qpdωq “ f
θN
0

N,npωqPpdωq in terms of the Radon-Nikodym derivative

f
θN
0

N,npωq “ eθ
N
0
SN
n

E
`
eθ

N
0
SN
n

˘ .

Denote the expectation under Q by E
Q. Increase N0 further so that N ě N0 implies θN0 P

r´θ1{2, θ1{2s and ´µN ď 2. Then for 0 ď i ď 3 and θ P p´θ1{2, θ1{2q, the MGF under Q
satisfies

M
piq
Q,N pθq “ E

Q
`
pXN

1 qieθX1

N

˘
“ MN pθN0 q´1

E
`
pXN

1 qiepθ`θN
0

qX1

N

˘

“ MN pθN0 q´1M
piq
N pθN0 ` θq ď e´µNθN

0 CM ď eθ1CM ,
(4.4)

where the first inequality used Jensen’s inequality and (2.1). From this we get moment bounds
under Q: for 0 ď i ď 3,

E
Q
`
pXN

1 qi
˘

“ M
piq
Q,N p0q ď eθ1CM . (4.5)

For |θ| ď θ1, there exists θ1 P p´θ1, θ1q

M
p2q
N pθq “ µ2,N `M

p3q
N pθ1qθ

Increase N0 further if necessary so that θN0 ď σ2
˚

2CM
for N ě N0 and we can write

M
p2q
N pθN0 q ě σ2˚ ´ CMθ

N
0 ě σ2˚

2
.

Then from E
QpXN

1 q “ 0 and the third equation in (4.4),

VarQpXN
1 q “ E

Q
`
pXN

1 q2
˘

“ M
p2q
Q,N p0q “ MN pθN0 q´1M

p2q
N pθN0 q ě C´1

M

σ2˚
2
. (4.6)

5. Proof of the main theorem

To lighten the notation we omit the label N from µ “ µN and θ0 “ θN0 , and from some other
notation that obviously depend on N . For y ą 0 let

τy “ inftm ě 1 : |SN
m | ě yu

denote the first hitting time of the cylinder of width 2y. Let Φσ2 denote the centered Gaussian
distribution with variance σ2.

Lemma 5.1. For real k ě 0 and y ě y0 we have Ppτy ą ky2q ď 2e´cτk, where

y0 “ 1 _ 6CMσ
´3
˚

1 ´ Φσ2
˚

r´2, 2s and cτ “ log
2

1 ` Φσ2
˚

r´2, 2s P p0, log 2q. (5.1)

Proof : Let sSN
m “ SN

m ´mµ be the centered walk. Consider an integer k ě 1 and a real y ě 1. Look
at the process along time increments of size tyu2:

Ppτy ą ky2q ď Ppτy ą ktyu2q ď Pp |SN
mtyu2 | ď y for m “ 1, . . . , k q

ď Pp |SN
mtyu2 ´ SN

pm´1qtyu2 | ď 2y for m “ 1, . . . , k q

“
`
PtSN

tyu2 P r´2y, 2ysu
˘k“

`
P
 

tyu´1S
N
tyu2 P r´2 ´ µtyu, 2 ´ µtyus

(˘k

ď
´
Φσ2

N
r´2 ´ µtyu, 2 ´ µtyus ` 3

µ3,N

σ3
tyu´1

¯k

ď
`
Φσ2

N
r´2, 2s ` 6CMσ

´3
˚ y´1

˘k
.
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The penultimate inequality is the Berry-Esseen Theorem. We use the version from Durrett (2010,
Section 3.4.4) where the constant is 3. The last inequality is a simple property of a centered
Gaussian. Now for y ě y0 and cτ as above,

sup
σ2

˚ďσ2ďCM

Φσ2r´2, 2s ` 3CMσ
´3
˚ y´1 ď Φσ2

˚
r´2, 2s ` 3CMσ

´3
˚ y´1

0

ď 1
2
p1 ` Φσ2

˚
r´2, 2sq “ e´cτ .

We have proved Ppτy ą ky2q ď e´cτk for k P Zě0. Extend this to real k P Rě0:

Ppτy ą ky2q ď Ppτy ą tkuy2q ď e´cτ tku ď e´cτ pk´1q “ 2p1 ` Φσ2
˚

r´2, 2sq´1e´cτk ă 2e´cτk. �

Let HN “ µ´2 ^N . By (2.3)

D´2
µ plogNq6 ď HN ď N. (5.2)

Define the truncated version of τy

τ̂y “ τy ^HN .

The following result shows that although the random walk SN
m has negative drift, up to times of

order HN it behaves similarly to an unbiased random walk in the following sense: if y ą 0 is not

too small, but small compared to H
1{2
N , the probability that the random walk reaches level y before

level ´y is close to 1{2. Our choice of HN can be justified by decomposing the random walk into

SN
n “

nÿ

i“1

`
XN

i ´ µ
˘

` nµ.

For ε ą 0 small and |µ| ě N´1{2 (so that HN “ µ´2),

pεHN q´1{2SN
εHN

“ pεHN q´1{2
εHNÿ

i“1

`
XN

i ´ µ
˘

` ε1{2. (5.3)

As

pεHN q´1{2
εHNÿ

i“1

`
XN

i ´ µ
˘ d« Np0, σq,

we see that the left hand side of (5.3) is dominated by the first term on the right hand side. That
is, up to time εHN the random walk SN behaves approximately like an unbiased random walk.

Lemma 5.2. Let y0 be as in (5.1). There exist finite constants N0 and C0 such that, for N ě N0

and y0 ď y ď plogNq´1H
1{2
N ,

PpSτ̂y ě yq ě 1
2

”
1 ´ C0H

´ 1

2

N

`
y ` plogHN q2

˘
´ 2

θ1y
logpeθ1CMHN ` 1q

ı
.

C0 depends on θ1, σ
2
˚ and CM while N0 depends on θ1, σ

2
˚, Dµ and CM .

Proof : The constant C0 comes as follows in terms of the constants previously introduced above and
new constants C2, C3, C4 introduced below in the course of the proof:

C0 “ C2 ` C4 “ 2pσ´1
˚ ` 9eθ1σ´3

˚ C
5{2
M q ` 2C3c

´1
τ ` 6cM

“ 2pσ´1
˚ ` 9eθ1σ´3

˚ C
5{2
M q ` 2e2CM c2M`4cM c´1

τ ` 6cM .
(5.4)
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Under the measure Q, Sn is a mean-zero random walk and hence a martingale. Furthermore, τ̂y
is a bounded stopping time. From this,

0 “
ż
Sτ̂ydQ “

ż

Sτ̂yěy

Sτ̂ydQ`
ż

Sτ̂yď´y

Sτ̂ydQ`
ż

Sτ̂yPp´y,yq
Sτ̂ydQ.

On the event Sτ̂y ě y, we have τ̂y “ τy and Sτ̂y´1 ă y ď Sτ̂y “ Sτ̂y´1 `XN
τ̂y

ď y `XN
τ̂y

and so

ż

Sτ̂yěy

Sτ̂y dQ ď
ż

Sτ̂yěy

`
y `XN

τ̂y

˘
dQ ď

ż

Sτ̂yěy

`
y ` 0 _ max

1ďiďHN

XN
i

˘
dQ

ď yQpSτ̂y ě yq ` µmaxpQ,HN q ď yQpSτ̂y ě yq ` 2θ´1
1 logpeθ1CMHN ` 1q,

where we applied Lemma 4.1 under the distribution Q with C1 “ eθ1CM , c1 “ 1
2
θ1 from (4.4).

Combine the displays above to obtain

QpSτ̂y ě yq ě ´ y´1

ż

Sτ̂yď´y

Sτ̂ydQ ´ y´1

ż

Sτ̂yPp´y,yq

Sτ̂ydQ ´ 2θ´1
1 y´1 logpeθ1CMHN ` 1q

ě QpSτ̂y ď ´yq ´QpSτ̂y P p´y, yqq ´ 2θ´1
1 y´1 logpeθ1CMHN ` 1q.

Use

QpSτ̂y ď ´yq “ 1 ´QpSτ̂y ě yq ´QpSτ̂y P p´y, yqq

to rewrite the above as

QpSτ̂y ě yq ě 1
2
r1 ´ 2QpSτ̂y P p´y, yqq ´ 2θ´1

1 y´1 logpeθ1CMHN ` 1qs. (5.5)

It remains to bound the probability on the right. Sτ̂y P p´y, yq forces τ̂y “ HN and thereby
another application of the Berry-Esseen theorem, while using (4.5), (4.6) and y ě y0 ě 1, gives

Q
 
Sτ̂y P p´y, yq

(
“ Q

 
H

´1{2
N SHN

P p´H´1{2
N y,H

´1{2
N yq

(

ď Φσ2
˚

p´H´1{2
N y,H

´1{2
N yq ` 3

eθ1CM

2´3{2C
´3{2
M σ3˚

H
´ 1

2

N

ď 2p2πσ2˚q´1{2yH
´1{2
N ` 9

eθ1CM

C
´3{2
M σ3˚

H
´ 1

2

N ď pσ´1
˚ ` 9eθ1σ´3

˚ C
5{2
M qyH´ 1

2

N

” 1
2
C2yH

´ 1

2

N .

Rewrite (5.5) as

QpSτ̂y ě yq ě 1
2
r1 ´ C2yH

´ 1

2

N ´ 2y´1θ´1
1 logpeθ1CMHN ` 1qs. (5.6)

It remains to switch from Q back to the original distribution P. Recall the Radon-Nikodym de-
rivative fθn “ Mpθq´neθSn . Introduce a temporary quantity G0 ą 1 to be chosen precisely below.
Decompose according to the value of τ̂y and use Cauchy-Schwarz:

QpSτ̂y ě yq “ E
“
fθ0τ̂y p1Sτ̂yěy, τ̂yďG0

` 1Sτ̂yěy, τ̂yąG0
q
‰

ď E
“
fθ0τ̂y 1Sτ̂yěy, τ̂yďG0

‰
`
´
E
“
pfθ0τ̂y q2

‰¯ 1

2

´
PtSτ̂y ě y, τ̂y ą G0u

¯ 1

2

. (5.7)
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Let us first bound the second term on line (5.7). Note that fθn is a P-martingale and τ̂y is a

stopping time bounded by HN . Hence pfθnq2 is a submartingale and we have

´
Erpfθ0τ̂y q2 s

¯ 1

2

´
PtSτ̂y ě y, τ̂y ą G0u

¯ 1

2

ď
´
Erpfθ0HN

q2 s
¯ 1

2

´
PtSτ̂y ě y, τ̂y ą G0u

¯ 1

2 “
ˆ
Mp2θ0q
Mpθ0q2

˙HN {2´
PtSτ̂y ě y, τ̂y ą G0u

¯ 1

2

.

To bound the M -factor on the right, expand M and use (2.1), (4.1) and µ ă 0. In the numerator,
for some η P p0, 2θ0q,

Mp2θ0q “ 1 ` µ2θ0 ` 2µ2θ
2
0 ` 8

6
M p3qpηqθ30 ď 1 ` 2µ2θ

2
0 ` 4

3
CMθ

3
0

and similarly in the denominator:
”
Mp2θ0qMpθ0q´2

ıHN {2
ď
´
1 ` 2µ2θ

2
0 ` 4

3
CMθ

3
0

¯HN {2´
1 ` µθ0 ` 1

2
µ2θ

2
0 ´ 1

6
CMθ

3
0

¯´HN

ď
´
1 ` 2CMc

2
Mµ

2 ` 4
3
CMc

3
M |µ|3

¯1
2
µ´2´

1 ´ cMµ
2 ´ CMc

3
M |µ|3

¯´µ´2

ď e2CM c2M`4cM ” C3.

(5.8)

Above we used HN ď µ´2 and increased N0 once more so that N ě N0 guarantees 2
3
cM |µ| ď 1,

cMµ
2 ` CMc

3
M |µ|3 ď 1

2
and CMc

3
M |µ| ď 1. Then we applied the bounds

´
1 ` 2CMc

2
Mµ

2 ` 4
3
CMc

3
M |µ|3

¯1
2
µ´2

ď eCM c2M p1` 2

3
cM |µ|q ď e2CM c2M ,

´
1 ´ cMµ

2 ´ CMc
3
M |µ|3

¯´µ´2

ď
´
1 ` 2cMµ

2
`
1 ` CMc

3
M |µ|

˘¯µ´2

ď e2cM p1`CM c3M |µ|q ď e4cM ,

where the second line also used p1´aq´1 ď 1`2a for a P r0, 1
2
s. Put (5.8) back up, set G0 “ yH

1{2
N ,

and apply Lemma 5.1 (for which we use the assumption y ě y0):

´
Erpfθ0τ̂y q2 s

¯ 1

2

´
PtSτ̂y ě y, τ̂y ą G0u

¯ 1

2 ď C3

`
Ptτ̂y ą G0u

˘ 1

2 ď 2C3e
´cτH

1{2
N y´1

. (5.9)

Next we bound the first term on line (5.7). Use Mpθ0q ď 1. Let Mn “ max1ďiďnX
N
i .

E
“
fθ0τ̂y 1Sτ̂yěy, τ̂yďG0

‰
“ E

” eθ0Sτ̂y

Mpθ0qτ̂y 1Sτ̂yěy, τ̂yďG0

ı

ď E

” eθ0Sτ̂y

Mpθ0qG0

1Sτ̂yěy,MHN
ďplogHN q2

ı
` E

” eθ0Sτ̂y

Mpθ0qτ̂y 1Sτ̂yěy,MHN
ąplogHN q2

ı

ď E

”eθ0py`MHN
q

Mpθ0qG0

1Sτ̂yěy,MHN
ďplogHN q2

ı
` E

” eθ0Sτ̂y

Mpθ0qτ̂y 1Sτ̂yěy,MHN
ąplogHN q2

ı

(5.10)

Let us first bound the second term. Using Cauchy-Schwarz, the bound

PpMHN
ą tq ď HNCMe

´θ1t,

the bound (5.8), and the tail bound in (4.1), it follows that

E

” eθ0Sτ̂y

Mpθ0qτ̂y 1Sτ̂yěy,MHN
ąplogHN q2

ı
ď
´
Erpfθ0HN

q2 s
¯ 1

2

´
PtMHN

ą plogHN q2u
¯ 1

2

ď C3H
1{2
N C

1{2
M e´ 1

2
θ1plogHN q2 .
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The first term on the last line of (5.10) is bounded as follows, with G0 “ yH
1{2
N .

E

”eθ0py`MHN
q

Mpθ0qG0

1Sτ̂yěy,MHN
ďplogHN q2

ı
ď E

”eθ0py`plogHN q2q

Mpθ0qG0

1Sτ̂yěy

ı

ď PpSτ̂y ě yqecMH
´1{2
N ry`plogHN q2sMpθ0q´yH

1{2
N ď PpSτ̂y ě yqecMH

´1{2
N ry`plogHN q2secMyH

´1{2
N

“ PpSτ̂y ě yqecMH
´1{2
N r2y`plogHN q2s

ď PpSτ̂y ě yq
“
1 ` 2cMH

´1{2
N r2y ` plogHN q2s

‰
ď PpSτ̂y ě yq ` 2cMH

´1{2
N r2y ` plogHN q2s.

We used above Jensen’s inequality in the form Mpθ0q´yH
1{2
N ď e´θ0µyH

1{2
N , the definition of HN in

the form |µ|H1{2
N ď 1, and then θ0 ď cM |µ| ď cMH

´1{2. Furthermore, by (5.2) and our assumption

y ď plogNq´1H
1{2
N we have

cMH
´1{2
N r2y ` plogHN q2s ď cM p2 `DµqplogNq´1 ď log 2

where we choose N0 large enough so that the last inequality holds for N ě N0. Then we applied
the inequality ex ď 1 ` 2x for x P r0, log 2s.

Going back to (5.10), for N ě N0,

E
“
fθ0τ̂y 1Sτ̂yěy, τ̂yďG0

‰
ď PpSτ̂y ě yq ` 2cMH

´1{2
N r2y ` plogHN q2s ` C3H

1{2
N C

1{2
M e´ 1

2
θ1plogHN q2

ď PpSτ̂y ě yq ` 3cMH
´1{2
N r2y ` plogHN q2s.

The second inequality is guaranteed for example by choosing N0 large enough so that N ě N0

implies

D´2
µ plogNq6 ě eθ

´1

1 and cMC
´1
3 C

´1{2
M

`
logrD´2

µ plogNq6 s
˘2 ě e

1

2
θ´1

1 .

This works due to the lower bound (5.2) on HN and because the function fpxq “ xe´ 1

2
θ1plog xq2

achieves its maximum e
1

2
θ´1

1 at x “ eθ
´1

1 after which it decreases.
Combine the above with (5.9) on line (5.7) to get this upper bound:

QpSτ̂y ě yq ď PpSτ̂y ě yq ` 2C3e
´cτH

1{2
N y´1 ` 3cMH

´1{2
N r2y ` plogHN q2s

ď PpSτ̂y ě yq ` 2C3c
´1
τ H

´1{2
N y ` 3cMH

´1{2
N r2y ` plogHN q2s

ď PpSτ̂y ě yq ` C4H
´1{2
N ry ` plogHN q2s

(5.11)

where C4 “ 2C3c
´1
τ ` 6cM . The second inequality above came from xe´x ď e´1 for x ě 0. Put

(5.11) and (5.6) together to obtain the claim of the lemma. �

By adjusting a constant we can replace τ̂y with τy in the previous estimate.

Corollary 5.3. Under the assumptions of Lemma 5.2, with C10 “ C0 ` 2c´1
τ ,

PpSτy ě yq ě 1
2

”
1 ´ C10H

´ 1

2

N

`
y ` plogHN q2

˘
´ 2

θ1y
logpeθ1CMHN ` 1q

ı
(5.12)

Proof : The assumption y0 ď y ď H
1{2
N implies that Lemma 5.1 applies to give

Ppτy ą HN q ď e´cτHNy´2 ď e´cτH
1{2
N y´1 ď c´1

τ H
´1{2
N y. (5.13)

The claim then comes from Lemma 5.2 and PpSτy ě yq ě PpSτ̂y ě yq ´ Ppτy ą HN q. �

For w ą 0 truncate:

pXN,w
i “ XN

i 1tXN
i ě´wu ´ w1tXN

i ă´wu and pSN,w
n “

nÿ

i“1

pXN,w
i .
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Define

ty “ inftm ě 1 : |pSN,w
m | ě yu.

We transfer bound (5.12) to the truncated walk pS. The reason is that the proof of the forthcoming
Lemma 5.5 is easier for the truncated RW.

Corollary 5.4. Under the assumptions of Lemma 5.2, with C11 “ C0 ` 4c´1
τ ,

PppSN,w
ty

ě yq ě 1
2

”
1 ´ C11H

´ 1

2

N

`
y ` plogHN q2

˘
´ 2

θ1y
logpeθ1CMHN ` 1q ´HNCMe

´θ1w
ı
.

Proof : Note that

P
`pSN,w

m ‰ SN
m for some 1 ď m ď HN

˘
“ P

` pXN,w
i ‰ XN

i for some 1 ď i ď HN

˘
(5.14)

“ P
`

inf
1ďiďHN

XN
i ă ´w

˘
ď HNCMe

´θ1w.

Moreover,

PppSN,w
ty

ě yq ě PpSN
τy ě y, τy ď HN , pSN,w

m “ SN
m for all 1 ď m ď HN q

ě PpSN
τy ě yq ´ Ppτy ą HN q ´ PppSN,w

m ‰ SN
m for some 1 ď m ď HN q

ě PpSN
τy ě yq ´ c´1

τ H
´1{2
N y ´HNCMe

´θ1w, (5.15)

where we used (5.14) and (5.13). Combine the above with (5.12) to obtain the result. �

We turn to the main argument of the proof of Theorem 2.2, that is, to show that the probability

of the random walk pSm to hit the level x before hitting the level ´εH1{2 is close to x|µ|. This gives
rise to the error term in (2.4). We sketch the reasoning.

Let us try to hit the level x ą 0 starting from the origin. By Corollary 5.4 there is a probability
« 1{2 to hit x before hitting ´x. Suppose we failed and hit ´x first. We have another chance to
hit x by going 2x upward from the level ´x. By Corollary 5.4 the probability of going 2x up to
the level x before going 2x down to the level ´4x is « 1{2. We continue this way until we either

hit the level x or the level ´εH1{2
N . How many trials to hit x do we have before we hit ´εH1{2

N ?

Approximately K “ log2px´1εH
1{2
N q. The trials are independent and so the probability of hitting

the level ´εH1{2
N before hitting the level x is « 2´K “ Cx|µ|, which is what we seek.

We introduce the notation to make the sketch precise. See Figure 5.1 for an illustration.

Define K “ tlog2px´1plogNq´1H
1{2
N qu ´ 2. For i ě 0 set Li “ 2i`2 ´ 3. Inductively these satisfy

L0 “ 1 and Li “ 2Li´1 ` 3. Furthermore,

xLK ď plogNq´1H
1{2
N .

Define the stopping times

T0 “ inftn : |pSN,x
n | ě xL0u

and Ti “ inftn ě Ti´1 : pSN,x
n ď ´xLi or pSN,x

n ě xu.
Note that Ti “ Ti´1 is possible.

Lemma 5.5. There exist finite constants C12 and N0 such that for N ě N0 and x ě plogNq2,
P
`

max
1ďmďTK

pSN,x
m ă x

˘
ď C12xplogNqH´1{2

N ,

where

C12 “ 4 exp
 
4pC0 ` 4c´1

τ qp1 `Dµq ` 8θ´1
1

`
1 ` logpeθ1CM ` 1q

˘
` 4CM

(

and C0 in the expression above is from (5.4).
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Proof : Since C0 ě 2, we have C12 ě 4e8 ě 210. Then we can assume that x ď 2´10plogNq´1H
1{2
N ,

for otherwise the bound on the probability is ą 1. This guarantees that K ě 8. It also implies that
unless |µ| ď 2´10plogNq´3, the result is trivial.

Since pXN,x
i ě ´x,

tpSN,x
Ti

ď ´xLiu “ t´xpLi ` 1q ă pSN,x
Ti

ď ´xLiu (5.16)

and
 pSN,x

Ti
ď ´xLi, pSN,x

Ti`1
ď ´xLi`1

(
Ď tTi ă Ti`1u.

Note that

E ”
!

max
1ďmďTK

pSN,x
m ă x

)
Ď

č

1ďiďK

tpSN,x
Ti

ď ´xLiu. (5.17)

Due to (5.16)

P
`pSN,x

T0
ď ´xL0, ..., pSN,x

Ti´1
ď ´xLi´1, pSN,x

Ti
ď ´xLi

˘

“ P
`pSN,x

Ti
ď ´xLi|pSN,x

T0
ď ´xL0, ..., pSN,x

Ti´1
ď ´xLi´1

˘

¨ P
`pSN,x

T0
ď ´xL0, ..., pSN,x

Ti´1
ď ´xLi´1

˘

ď P
`pSN,x

Ti
ď ´xLi|pSN,x

T0
ď ´xL0, ..., pSN,x

Ti´1
“ ´xpLi´1 ` 1q

˘

¨ P
`pSN,x

T0
ď ´xL0, ..., pSN,x

Ti´1
ď ´xLi´1

˘

“ P
`pSN,x

txpLi´1`2q
ď ´xpLi´1 ` 2q

˘
P
`pSN,x

T0
ď ´xL0, ..., pSN,x

Ti´1
ď ´xLi´1

˘
.

(5.18)

The last equality used the definition of the stopping time ty, the definition of Li, and the Markov
property. For 1 ď i ď K define the events

AN
i “ tpSN,x

txpLi´1`2q
ď ´xpLi´1 ` 2qu.

Applying (5.18) to (5.17) repeatedly,

PpEq ď P

´ č

1ďiďK

tpSN,x
Ti

ď ´xLiu
¯

ď
ź

1ďiďK

PpAN
i q.

Let x ě plogNq2. Recall that by (5.2), plogHN q2H´1{2
N ď DµplogNq´1 and HN ď N . Apply

Corollary 5.4 with w “ x and yi “ xpLi´1 ` 2q P rx, plogNq´1H
1{2
N s for i “ 1, . . . ,K and N ě N0

to get this estimate:

PpAN
i q ď 1

2

”
1 ` C11H

´ 1

2

N

`
yi ` plogHN q2

˘
` 2

θ1yi
logpeθ1CMHN ` 1q `HNCMe

´θ1x
ı

ď 1
2

”
1 ` C11p1 `DµqplogNq´1 ` 2 logpeθ1CMN ` 1q

θ1plogNq2 ` CMN
1´θ1plogNq2

ı

ď 1
2

“
1 ` CAplogNq´1s,

where we set

CA “ C11p1 `Dµq ` 2θ´1
1

`
1 ` logpeθ1CM ` 1q

˘
` CM

and if necessary we increase N0 further so that N1´θ1plogNq2 ď plogNq´1 for N ě N0.
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x

0

´xL0 “ ´x

´2x

´3x

´4x

´xL1 “ ´5x

...

´xLK “ plogNq´1H
1{2
N

pSN
T0

pSN
T1

Figure 5.1. By the time the random walk pSN exits the cylinder of radius plogNq´1H
1{2
N

it has had about K independent opportunities to hit the level x, each with probability close
to 1{2.

Continue with the above estimate,

PpEq ď
Kź

i“1

PpAN
i q ď

´
1
2

“
1 ` CAplogNq´1s

¯K

“
´
1
2
r1 ` CAplogNq´1s

¯tlog2px´1plogNq´1H
1{2
N qu´2

ď 4xplogNqH´1{2
N r1 ` CAplogNq´1slog2N

ď 4e4CAxplogNqH´1{2
N “ 4e4CAxplogNqp|µ| _N´1{2q,

where we used log2N “ logN
log 2

ď 4 logN . �

We are ready to prove Theorem 2.2. By Lemma 5.5, by the time pS hits the level plogNq´1H
1{2
N ,

with high probability it has hit level x as well. It remains to verify the two points below.

(i) pS is close to S on the time interval r1, N s. This follows from a union bound and the exponential
tail of XN

1 .

(ii) With high probability by time N we hit the boundary of the cylinder of width plogNq´1H
1{2
N .

This follows from Lemma 5.1.

Proof of Theorem 2.2: Consider x ě plogNq2. Observe that
!

max
1ďmďN

|pSN,x
m | ě plogNq´1H

1{2
N , max

1ďmďTK

pSN,x
m ą x

)
Ď
!

max
1ďmďN

pSN,x
m ě x

)
.

Indeed, on the event max1ďmďN |pSN,x
m | ě plogNq´1H

1{2
N ě xLK we have TK ď N .

Next,

P
`pSN,x

m ‰ SN
m for some 1 ď m ď N

˘
“ P

`
XN

i ă ´x for some 1 ď i ď N
˘

(5.19)

ď CMNe
´θ1x ď CMNe

´θ1plogNq2 .
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By Lemma 5.1, (5.19) and Lemma 5.5,

P
`

max
1ďmďN

pSN,x
m ě x

˘
ě 1 ´ P

`
max

1ďmďN
|pSN,x

m | ă plogNq´1H
1{2
N

˘
´ P

`
max

1ďmďTK

pSN,x
m ď x

˘

ě 1 ´
”
P
`

max
1ďmďN

|SN
m | ă plogNq´1H

1{2
N

˘
` P

`pSN,x
m ‰ SN

m for some 1 ď m ď N
˘ı

´ P
`

max
1ďmďTK

pSN,x
m ď x

˘

“ 1 ´
”
P
`
τ

plogNq´1H
1{2
N

ą N
˘

` P
`pSN,x

m ‰ SN
m for some 1 ď m ď N

˘ı

´ P
`

max
1ďmďTK

pSN,x
m ă x

˘

ě 1 ´
“
2e´cτNplogNq2H´1

N ` CMNe
´θ1plogNq2

‰
´ C12xplogNqH´1{2

N

ě 1 ´ 2e´cτ plogNq2 ´ CMNe
´θ1plogNq2 ´ C12xplogNqH´1{2

N

ě 1 ´ pC12 ` 2qxplogNqH´1{2
N .

To get the inequalities above for N ě N0 we increase N0 if necessary so that N ě N0 guarantees

plogNq´1H
1{2
N ě y0 to apply Lemma 5.1, and furthermore so that 2e´cτ plogNq2 _CMNe

´θ1plogNq2 ď
plogNq3N´1{2 to get the last inequality.

Now the final inequality:

P
`

max
1ďmďN

SN
m ě x

˘
ě P

`
max

1ďmďN

pSN,x
m ě x

˘
´ P

`pSN,x
m ‰ SN

m for some 1 ď m ď N
˘

ě 1 ´ pC12 ` 2qxplogNqH´1{2
N ´ CMNe

´θ1plogNq2

ě 1 ´ pC12 ` 3qxplogNqp|µ| _N´1{2q.

Theorem 2.2 has been proved. �
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