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With the rapid advancement of biotechnology, there arise new challenges to discover

regulatory and co-action relationships among heterogeneous biological features as

well as to capture significant topological changes when data are observed across

time. This paper is devoted to joint structural estimation of time-varying mixed

graphical models based on multivariate data over a series of time points. Assuming

the graph topology changes gradually over time, we establish a flexible local

estimator to fully exploit the structural smoothness. Utilizing variational likelihood

inference, we impose a group lasso penalty to integrate information from nearby time

points. In order to reduce the algorithmic complexity, we propose an accelerated

alternating direction method of multipliers (ADMM)-based algorithm exploiting the

block diagonal structure to adapt our problem for large sparse networks. Practical

merits of our method are exhibited through synthetic networks with mixed data

types. Ultimately, we illustrate the real application by incorporating multi-platform

data from the PsychENCODE human brain development project and detect the

evolution of gene regulatory networks along different stages of human brain

development.

K E YWORD S

ADMM, brain development, DNA methylation, group lasso, joint modelling, network

1 | INTRODUCTION

In biomedical research, reconstruction of correlation networks between different types of features is a fundamental step to understand the func-

tions and mechanisms among them. As for multi-omic studies, a variety of genomic, transcriptomic, proteomic or epigenomic data are integrated

together to form a comprehensive view of the studied organisms at the molecular level. Common biological networks include protein–protein

interaction (PPI) networks, gene co-expression networks and gene regulatory networks, classified by the types of molecules involved. Gene

regulatory networks study the interactions (i.e., activations and inhibitions) between transcription factors and expressions of genes, which play an

important role in numerous cellular processes (Karlebach & Shamir, 2008). PPI networks (Chautard et al., 2009) as well as gene co-expression

networks (Zhang & Horvath, 2005) catalogue mutual interactions among proteins and gene expressions, respectively. The inference of biological

networks is critical in detecting important co-action and causal relationships among different molecules, so as to discover gene or protein

functions, signalling pathways and causation of many diseases. With the rapid advancement of biotechnology, there emerge new experimental

and observational studies to reveal the mechanisms of many progression processes, such as cell differentiation, cell cycle and brain development,

at the cell or tissue level. To better uncover the evolution of molecule interactions in complex biological systems, it is of great necessity to model

a sequence of temporal dynamic networks and portray the evolution trajectory.

Undirected graphical models, also known as Markov Random Fields, is a widely used model-based approach to characterize the conditional

dependency structure for multivariate data, including representative examples such as Gaussian graphical models for symmetric and thin-tailed

continuous data, as well as Ising models for binary data. To extend the application of graphical models to data composed of heterogeneous types

of features, Lauritzen and Wermuth (1989) proposed an undirected graphical model for mixtures of categorical and Gaussian variables. Then,
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Cheng et al. (2017) and Lee and Hastie (2015) simplified the model to improve the scalability for a large amount of categorical variables. In addi-

tion, a line of work developed a sub-class of Markov Random Fields (Chen et al., 2014; Tansey et al., 2015; Yang et al., 2012, 2014), which is

specified by conditional distributions belonging to potentially different exponential families. Such mixed graphical models are useful in the vertical

integration of multi-platform data, for example, gene expressions, mutations, copy number variations and epigenetic states, including binary, cate-

gorical, count and continuous variables. In terms of horizontal integration of multiple static conditions, Danaher et al. (2014) developed the joint

graphical lasso to estimate multiple Gaussian graphical models. Furthermore, a line of work developed multiple mixed graphical models (Liu &

Zhang, 2020b; Zhang et al., 2017) for simultaneously vertical integration of heterogenous data types and horizontal integration of multiple static

conditions.

This paper is aimed at the situation that the same set of heterogeneous features are observed over a temporal grid, and we would like to

estimate a series of temporal dynamic graphical models to elucidate the evolution process. For instance, modelling time-varying regulation net-

works of human brain development can help targeting critical transcription factors and gene markers at different stages of brain development. For

multivariate data observed on temporal grids, abundant existing works (Gibberd & Nelson, 2017; Gibberd & Roy, 2017; Hallac et al., 2017; Monti

et al., 2014; Qiu et al., 2016; Yang & Peng, 2020; Zhou et al., 2010) proposed different frameworks to jointly estimate smoothly evolving Gaussian

graphical models; Song et al. (2009) and Kolar et al. (2010) developed methodologies for time-varying graphical models using binary and discrete

data. To impose temporal smoothness, we have to make assumptions on how the true models vary over time. One type of local stationarity is the

model parameters are smooth functions of time, which can be implemented by kernel smoothing to combine observations close in time. The other

type of assumption is the model parameters are piecewise constant, often achieved by fused lasso type penalties. Recently, Haslbeck and

Waldorp (2020) developed an R package named mgm to estimate pairwise and higher order interactions in mixed graphical models, which also

supports time-varying mixed graphical models. It is capable of handling mixtures of three types of variables: Gaussian, count and categorical. The

temporal smoothness is introduced by a Gaussian kernel on nodewise regressions. The nodewise regressions employed in mgm yield asymmetric

estimates of edge parameters, and the final topology estimates are formed by “AND” or “OR” rule to unify all neighbourhood structures.

In this paper, we propose the “Local Approximate Likelihood Data Integration” (LoALDIG), a joint structural inference framework for temporal

dynamic mixed graphical models, fully taking advantage of the smoothness of dependency structures. Besides assuming smoothness in model

parameters, we make another reasonable assumption that the graph topology gradually changes over time, which is very beneficial in recovering

edge structures. Thus, in additional to kernel weighting on approximate likelihood, we introduce a local group lasso regularization with adjustable

width. In comparison with mgm, not only does our approach borrow information from neighbouring time points, but it also adapts to the local

degree of smoothness in a data-driven manner. Furthermore, our LoALDIG avoids the common asymmetry problem of nodewise regression type

of approaches.

To organize the rest of the paper, we start from elaborating the statistical model as well as the joint modelling framework in Section 2. Then,

we propose an algorithm for model fitting in Section 3 and introduce a purely data-driven strategy for tuning parameter selection in Section 4.

Practising our method via numerical experiments in Section 5, we demonstrate the practical merits of LoALDIG. A case study on the human brain

development data is carried out in Section 6, followed by conclusions in Section 7.

2 | METHODS

Suppose xðtkÞ¼ x1ðtkÞ,…,xpðtkÞð Þ > �ℝp denotes a p-variate random vector observed at time point tk, following a joint distribution fðx;θðtkÞÞ. In
practice, we rescale all time points, so that tk� [0, 1] for k¼1,…,K. The set of p features shared across the timeline are potentially heterogeneous,

possessing different supports and measures from each other, such as categorical, Gaussian, Poisson, truncated Poisson (Yang et al., 2013) and

exponential. In this paper, we consider not only time series data but also data with repeated measurements at each observed time point. There-

fore, we denote the full data matrix at tk by XðtkÞ¼ ðx1ðtkÞ,…,xnk ðtkÞÞ, and the nk observations are assumed independent and identically distrib-

uted. In addition, we assume that fXðt1Þ,…,XðtKÞg are independent along time, but the underlying model parameters θðtkÞ's have a smooth trend

of change temporally.

2.1 | Pairwise exponential Markov Random Field and its variational likelihood inference

Omitting all indices indicating time for simplicity in this part, we first define the joint distribution fðx;θÞ in the form of pairwise exponential Markov

Random Field (Park et al., 2017):

fðx;θÞ¼ exp
Xp
r¼1

θ >r BrðxrÞþ
Xp
r¼1

Xp
s¼1

⟨θrs,BrðxrÞBsðxsÞ > ⟩Fþ
Xp
r¼1

CrðxrÞ�AðθÞ
( )

, ð1Þ
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where ⟨A,B⟩F ¼ trðA > BÞ is the Frobenius inner product, θ¼fθ1,…,θp,θ11,…,θppg is the set of natural parameters and BðxÞ¼
BrðxrÞf gpr¼1, BrðxrÞBsðxsÞ >

� �p
r,s¼1

n o
is the set of sufficient statistics. Among the p heterogeneous features, the dimensions of these sufficient sta-

tistics and natural parameters may not be the same, so we set θr �ℝmr , θrs �ℝmr�ms ,BrðxrÞ�ℝmr . Without loss of generality, we impose symmetry

constraints θrs ¼ θ >sr . This model explicitly specifies a pairwise Markov Random Field factorized by vertices and edges (V, E), including Gaussian

graphical models as a special case. That means edge potential θrs is a zero matrix if and only if xr and xs are conditionally independent given all

other variables. AðθÞ is the log-partition function which should be finite valued. We are able to verify that the conditional distribution of xr given

all other variables x ∖ r is proportional to

exp θrþ2
X
s≠ r

θrsBsðxsÞ
 ! >

BrðxrÞþ ⟨θrr ,BrðxrÞBrðxrÞ > ⟩FþCrðxrÞ
( )

,

which is a distribution from the exponential family. Hence, we specify mixed graphical models through full conditional distributions, of which each

node can be of a different type (e.g., categorical, Gaussian, exponential, Poisson etc.).

Consider n independent observations, and the log-likelihood can be expressed as ℓðθÞ¼ ⟨θ, μ̂⟩�AðθÞ, where

μ̂¼1
n

Xn
i¼1

BðxiÞ¼ 1
n

Xn
i¼1

BrðxirÞ
( )p

r¼1

,
1
n

Xn
i¼1

BrðxirÞBsðxisÞ
>

( )p

r,s¼1

( )

is the sample mean sufficient statistics. It is challenging to make direct likelihood inference due to the existence of the intractable log-partition

function AðθÞ¼ log
Ð
Xexpf⟨θ,BðxÞ⟩þCðxÞgμðdxÞ. In general, the log-partition function does not have an analytic form. Consequently, Park

et al. (2017) derived a variational method, which utilizes an upper bound of AðθÞ to establish an approximate maximum likelihood problem based

on the log-determinant relaxation proposed by Jordan and Wainwright (2004) and Wainwright and Jordan (2006).

Because of the Fenchel duality among the maximum likelihood and the maximum entropy (Wainwright & Jordan, 2007), we apply the Gauss-

ian entropy bound to construct the upper bound of AðθÞ by introducing the following discreteness adjustment. For each discrete node r� {1,… , p},

we denote the minimum distance of sufficient statistic by cr ¼ infa≠ b � X rkBrðaÞ�BrðbÞk∞ >0 (cr ¼0 for continuous nodes). So as to obtain differ-

ential entropy, an additive diagonal matrix D¼diagð½0, l1,…, lp�Þ�ℝðqþ1Þ�ðqþ1Þ is defined, where lr ¼ðc2r =12Þ �1mr and q¼
Xp

r¼1mr . For notational

simplicity, we further introduce the following map and alternative parameterization. Given a scalar ν�ℝ, a map Mν½�� is formulated as: for

μ¼ fμrgpr¼1,fμstg
p
s,t¼1

n o
�ℝm1 �…ℝmp �ℝm1m1 �…ℝmpmp ,

Mν½μ� ¼

ν μ >1 μ >2 … μ >p
μ1 μ11 μ12 … μ1p
μ2 μ21 μ22 μ2p

..

. ..
. ..

. . .
. ..

.

μp μp1 μp2 … μpp

2
66666664

3
77777775
¼ ν μ>•

μ • μ ••

� �
�ℝðqþ1Þ�ðqþ1Þ;

θ0 ¼ fθ1=2,…,θp=2,θ11,…,θppg. Further taking relaxation of the Gaussian entropy bound, we are able to derive

AðθÞ≤ 1
2
min
ν � ℝ

�logdet �2M1þν=2½θ0�
� �

�ν
� �

� ⟨D,M1½θ0�⟩Fþ f1,

where f1 is a constant only determined by node types. Replacing the log-partition function AðθÞ by its upper bound, we attain the following

approximated maximum likelihood problem:

min
θ
� ⟨μ̂,θ⟩þAðθÞ≈ 1

2
min
θ ≻ 0

⟨Θ,M1½μ̂�þD⟩F� logdetΘ
� �

þ f2,

where Θ¼�2M1þν=2½θ0� and f2 is another constant. For convenience, we let Σ̂¼M1½μ̂�þD, and thereby, the approximate likelihood of a static

model can be presented as

Lðθ;XÞ¼ ⟨Θ, Σ̂⟩F� logdetΘ:
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Choosing the group lasso (Yuan & Lin, 2006) as the penalty function to impose group sparsity on edge potentials, Park et al. (2017) showed that

the corresponding regularized approximate likelihood method is able to recover the structure of pairwise exponential graphical models with high

accuracy.

2.2 | Local estimator for temporal dynamic mixed graphical models

Data fXðt1Þ,…,XðtKÞg are measured over a temporal grid. At observed time point tk, the underlying probability mass/density fðx;θðtkÞÞ is specified
by the aforementioned pairwise exponential Markov Random Field (1). With limited data, one cannot estimate a model from a single time point.

Hence, assuming that θðtÞ have a continuous and smooth change over time, we employ kernel smoothing to obtain the following stabilized

approximate likelihood for the model at tk,

~LhðΘðtkÞÞ ¼
1XK

j¼1njKhðtj� tkÞ

XK
j¼1

njKhðtj� tkÞLðθðtkÞ;XðtjÞÞ

¼ ⟨ΘðtkÞ, ~Σðtk ,hÞ⟩F� logdetðΘðtkÞÞ,

where Kh is a symmetric non-negative kernel function and h>0 is the bandwidth. The choice of bandwidth involves a trade-off between the sen-

sitivity to time-specific information and the stability of the estimate. As we can see, the smoothed approximate likelihood can be considered as

applying kernel smoothing on μ̂, that is, ~Σðtk ,hÞ¼M1 ~μðtk ,hÞ½ �þD, where

~μðtk ,hÞ¼
1XK

j¼1njKhðtj� tkÞ

XK
j¼1

njKhðtj� tkÞμ̂ðtjÞ:

Please note that the kernel weighted approximate likelihood is also applicable to unobserved time points based on the local stationary

assumption.

Our study objective is to reconstruct the graph topology E(t) at a given time point t � [0, 1] based on the observed data. To utilize the data

more efficiently, we assume that the edge set changes gradually over time. Based on this assumption, we further apply a group lasso penalty to

conduct joint inference of the sparsity pattern of edge potentials,

Θ̂ðtk;h,d,λÞ
� �

k �N dðtÞ ¼ arg min
ΘðtkÞ ≻ 0,k �N dðtÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jN dðtÞj

p X
k �N dðtÞ

~LhðΘðtkÞÞ

þλ
P
r ≠ s

wrs
P

k �N dðtÞ
ΘrsðtkÞk k2F

 !1=2

,

ð2Þ

where N dðtÞ¼ v� f1,…,Kg : jtv� tj≤ df g represents the indices of time points centred around time t with a half neighbourhood width d; jN dðtÞj is
the number of time points included by the neighbourhood; and Ak kF ¼ ½trðA

> AÞ�1=2 denotes the Frobenius norm. The transformed model parame-

ter matrices ΘðtkÞ's are also partitioned according to Mν½��, and ΘrsðtkÞ indicates the (r, s)th block of the mapping. It is noteworthy that non-edge

potentials, including the first row, the first column as well as the diagonal of ΘðtkÞ, do not get regularized. The weights wrs are designated as wrs¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mr�ms
p

to balance the penalty for edge-potential matrices of different sizes. The group lasso regularizer integrates the weighted likelihood

functions within the neighbourhood and synchronizes all sparsity patterns across time. As a result, the level of smoothness is controlled

by the tuning parameter d. The wider neighbourhood we select, the more data from remote time points we integrate, so that the

estimated topology would change more smoothly provided that h holds fixed. The factor 1ffiffiffiffiffiffiffiffiffiffiffi
jN dðtÞj
p is introduced to ensure that the problem (2)

is adaptive to different d. So we are able to apply the same sequence of λ to a range of different neighbourhood sizes for sparsity control.

In summary, the proposed local estimator (LoALDIG) contains two parts of smoothness, including kernel smoothing of variational likelihood

and a joint estimation via structured-sparsity-inducing penalty. Its form is connected with the previous research works by Danaher et al. (2014),

Liu and Zhang (2020b) and Zhang et al. (2017), which employ two parts of group lasso penalties in a hierarchical structure for joint estimation of

multiple graphical models. Their methods are devoted to the scenario that observed data are from K unordered classes, so they accommodate dis-

crepancy in the estimated edge sets to adjust the level of joint modelling. Differently, given that time labels are known in our problem, our estima-

tor with only one group lasso term forces all jN dðtÞj edge sets to be identical, while the level of joint modelling is controlled by the

neighbourhood width. Furthermore, LoALDIG can be viewed as a generalization of Yang and Peng (2020), which relies on the same set of
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assumptions to make inference on time-varying Gaussian graphical models. Our contribution is to broaden the application of the local group lasso

estimation to data with mixed types of attributes.

Based on the solution to problem (2), it is sufficient to extract the common sparsity pattern, so the estimated graph topology Êðt;h,d,λÞ is sub-
sequently determined. Regarding parameter estimation, one problem is that the sparsity-inducing penalty is likely to over-shrink the edge poten-

tials. Hence, for more accurate estimation of model parameters, we further carry out the following model refitting procedure by maximizing the

weighted approximate likelihood at time t subject to the constraint of the estimated graph topology:

Θ̂
rfðt;h,d,λÞ¼ arg min

ΘðtÞ ≻ 0
~LhðΘðtÞÞ, subject to ΘrsðtÞ¼0 for all ðr,sÞ =2 Êðt;h,d,λÞ:

For any time point between 0 and 1, we are able to first make inference on the graph topology and then refit the model to eliminate over-

shrinkage supposing there is no rank deficiency.

2.3 | Problem reformulation

As for Gaussian graphical models, people usually do data centralization first to focus on the inference of the precision matrix. Likewise, we

reformulate the previous joint inference problem (2) to obtain a simplified equivalent form excluding all node potentials. To begin with, we define

the following q � q modified empirical covariance matrix of all sufficient statistics at time tk smoothed by the kernel function Kh:

~Hðtk ,hÞ¼ ~μðtk ,hÞ½ � •• � ~μðtk ,hÞ½ � • ~μðtk ,hÞ½ � >• þdiagð½l1,…, lp�Þ:

Based on joint modelling within the local neighbourhood, we consider the following alternative optimization problem for local edge set recovery

without inferring node potentials:

Ω̂ðtk;h,d,λÞ
� �

k � N dðtÞ ¼ arg min
ΩðtkÞ ≻ 0,k � N dðtÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jN dðtÞj

p X
k � N dðtÞ

⟨ΩðtkÞ, ~Hðtk ,hÞ⟩F� logdetΩðtkÞ
	 


þλ
P
r ≠ s

wrs
P

k � N dðtÞ
ΩrsðtkÞk k2F

 !1=2

:

ð3Þ

The group lasso penalty is also applied to each off-diagonal block of ΩðtkÞ. Then, we introduce the following lemma to demonstrate that the

reformulated problem is equivalent to the previous local group lasso estimator.

Lemma 1. For any selection of h,d,λ, the solutions to problems (2) and (3), Θ̂ðtk;h,d,λÞ
� �

k �N dðtÞ
and Ω̂ðtk;h,d,λÞ

� �
k �N dðtÞ

, respec-

tively, must satisfy

Θ̂ðtkÞ¼
1þ ~μðtk ,hÞ½ � >• Ω̂ðtkÞ ~μðtk ,hÞ½ � • � ~μðtk ,hÞ½ � >• Ω̂ðtkÞ

�Ω̂ðtkÞ ~μðtk ,hÞ½ � • Ω̂ðtkÞ

" #
,

for all k�N dðtÞ.

From Lemma 1, we are able to discover that the reformulated problem solution shows the same sparsity pattern as that from the original

problem, so we can condivert to solving the simplified problem to directly learn the graph topology. Also, the solution to the original problem can

be recovered from Ω̂ðtkÞ
� �

k �N dðtÞ
. These results guarantee the equivalence between the two problems (2) and (3).

3 | COMPUTATION

3.1 | An alternating direction method of multipliers algorithm

The local group lasso estimator summarized by (3), as a solution to a convex problem, could be solved in the scheme of the two-block alternating

direction method of multipliers (ADMM) (Boyd, 2010), which splits a complex problem into multiple subproblems through augmentations.
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First, we notice that the problem can be rewritten into the following split form:

min
ΩðtkÞ,ZðtkÞ,k �N dðtÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jN dðtÞj

p X
k �N dðtÞ

⟨ΩðtkÞ, ~Hðtk ,hÞ⟩F� logdetΩðtkÞ
	 


þλ
P
r ≠ s

wrs
P

k � N dðtÞ
ZrsðtkÞk k2F

 !1=2

; subject to ΩðtkÞ¼ZðtkÞ≻0 for all k�N dðtÞ:

Then, the augmented Lagrangian in the scaled form is

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jN dðtÞj

p X
k �N dðtÞ

⟨ΩðtkÞ, ~Hðtk ,hÞ⟩F� logdetΩðtkÞ
	 


þλ
X
r ≠ s

wrs

X
k �N dðtÞ

ZrsðtkÞk k2F

0
@

1
A1=2

þρ

2

X
k � N dðtÞ

ΩðtkÞ�ZðtkÞþUðtkÞk k2F ,

where UðtkÞf gk �N dðtÞ are the scaled dual variables and ρ>0. The ADMM algorithm updates three blocks of variables

ΩðtkÞf gk �N dðtÞ, ZðtkÞf gk �N dðtÞ and UðtkÞf gk �N dðtÞ alternately, so the following steps should be executed iteratively until convergence.

i. Update ΩðtkÞf gk � N dðtÞ. For each time point within the neighbourhood, do the eigen decomposition ρ ZðtkÞ�UðtkÞð Þ�
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jN dðtÞj

p	 

~Hðtk ,hÞ¼QðtkÞΛðtkÞQðtkÞ > , and then we update

ΩðtkÞ 
1
2ρ

Q Λþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2þ 4ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jN dðtÞj
p I

s !
Q > :

ii. Update ZðtkÞf gk �N dðtÞ. We denote ΩrsðtkÞþUrsðtkÞ by ArsðtkÞ. For any r≠ s and k�N dðtÞ, the analytic solution becomes

ZrsðtkÞ 1� λwrs

ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

g � N dðtÞkArsðtgÞk2F
q

0
B@

1
CA
þ

�ArsðtkÞ:

Also update all non-edge potentials, ZrrðtkÞ ΩrrðtkÞþUrrðtkÞ.
iii. Update UðtkÞf gk � N dðtÞ. Recalculate dual variables by U UþΩ�Z.

To check the convergence of the ADMM algorithm, the standard stopping criterion on primal and dual residuals is adopted. Applying a mod-

erate relative tolerance of 5 � 10�4 in our paper, satisfactory accuracy in recovery of sparsity pattern can be achieved within an acceptable num-

ber of iterations. In addition, the ADMM framework is also applicable to the model refitting procedure, where the Z update should be replaced by

a projection to impose the equality constraint.

3.2 | Acceleration via exploiting block diagonal structure

In the previous algorithm, each ADMM iteration requires jN dðtÞj eigen decompositions on q� q matrices, so the per iteration complexity is Oðq3Þ.
The time complexity grows rapidly as the graph dimension increases, making the computation expensive for high-dimensional problems. To accel-

erate the computation, we borrow the idea from Danaher et al. (2014), Liu and Zhang (2020a) and Witten et al. (2011), which takes advantage of

the block diagonal structure in the solution for the Gaussian graphical lasso problem. In this part, we propose a necessary and sufficient condition

to determine whether the solution to problem (3) is block diagonal after some permutation of features. Given that condition, we are able to per-

form the previous ADMM algorithm within each block of features separately, which has the same solution as the one solved by applying the algo-

rithm to all p features.

Lemma 2. Suppose that the solution to the alternative optimization problem (3) is block diagonal, that is, the p features can be

reordered in some way such that the solution has the following block diagonal form:
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Ω̂ðtkÞ¼
Ω̂1ðtkÞ 0

. .
.

0 Ω̂GðtkÞ

2
664

3
775:

Then, for any g¼1,…,G, Ω̂gðtkÞ
� �

k � N dðtÞ
can be obtained from solving the problem only on the corresponding g th set of variables.

Therefore, we are able to separate the local estimation problem into G subproblems according to the block diagonal structure. This leads to a

massive reduction in computation complexity from Oðq3Þ to
XG

g¼1Oðq
3
g Þ per iteration, when we are able to divide the p features into a large num-

ber of blocks. To validate and identify the block diagonal structure of Ω̂ðtkÞ
� �

k �N dðtÞ, we propose the following necessary and sufficient condition

on the weighted empirical covariance matrices ~Hðtk ,hÞ
n o

k � N dðtÞ
for the presence of a block diagonal structure.

Theorem 1. Let C1 and C2 be a non-overlapping partition of the p variables, such that C1 \ C2¼;,C1[C2¼f1,…,pg. Then the follow-

ing condition is necessary and sufficient for the variables in C1 to be completely disconnected from those in C2 in the estimated network:

1
jN dðtÞj

X
k �N dðtÞ

~Hrsðtk ,hÞ
��� ���2

F
≤ λ2w2

rs ; for all r�C1,s�C2:

Proof of these results can be found in the supporting information. It is noteworthy that this theorem can be easily extended to any number of

unconnected blocks, so it allows us to check whether the solution to (3) has a block diagonal structure given a specific partition of the p variables.

In this paper, for any fixed value of λ, we implement the following procedure to identify the block structure and the corresponding feature

partition.

i. Create a p � p pseudo adjacency matrix T with Trr ¼1 for r¼1,…,p. For r< s, we check the condition in Theorem 1. If the condition is met, set

Trs ¼Tsr ¼0. Otherwise, let Trs ¼Tsr ¼1.

ii. Use T to identify the connected and unconnected collections of variables and determine the partition to form the block diagonal structure. This

step can be accomplished by the graph component searching algorithm proposed by Tarjan (1972), and the computational cost is no greater

than Oðp2Þ.

Please note that the pseudo adjacency matrix T is designated for detecting the block diagonal structure, and it does not represent the edge

topology in most situations. When the tuning parameter λ is sufficiently large, the scalability of our algorithm can be substantially improved by

divide and conquer. As for high-dimensional problems, only sparse networks with a small proportion of nodes being connected are useful and easy

to interpret in real-world applications. So the proposed fast computation approach is helpful in most high-dimensional problems we encounter.

4 | SELECTION OF TUNING PARAMETERS

Our proposed local estimator is associated with three tuning parameters, namely, h, the kernel weight bandwidth; d, the neighbourhood width;

and λ to control the overall sparsity. In this section, we introduce a V-fold time-stratified cross-validation (CV) scheme to select these tuning

parameters, an approach that is adaptive to data with different levels of temporal smoothness. We denote hgrid, dgrid, λgrid the candidate tuning

grids from which the parameters h, d, λ, respectively, should be chosen. Let T denote the collection of time points to be estimated. As rec-

ommended by Yang and Peng (2020), one plausible strategy is to choose d and λ separately for each t� T due to the fact that the levels of spar-

sity and smoothness of the graph topology might be time varying, but a common h for all estimated time points.

To begin with, we create the validation datasets by including every Vth observed time point, so that the vth validation set includes an equally

spaced sequence fXðtkÞ : k¼ vþcV,c�ℤ,k ≤Kg. The corresponding training set should consist of the remaining observed time points. For each

t� T , we obtain its locally estimated model using only the training set data subject to a specific combination of tuning parameters. We denote the

refitted solution at time t computed by the training set leaving out the vth fold by Θ̂
rf
½�v�ðt;h,d,λÞ. The CV score measures how the fitted model pre-

dicts the adjusted empirical covariance matrix obtained from the validation set. In order to stabilize the CV result, we apply a kernel weighting on

the validation set with the smallest bandwidth. Afterwards, the CV error for model prediction at time t on the vth validation set can be written as

CV½v�ðt;h,d,λÞ¼ ⟨Θ̂
rf
½�v�ðt;h,d,λÞ, ~Σ½v�ðt,minðhgridÞÞ⟩F� logdet Θ̂

rf
½�v�ðt;h,d,λÞ

	 

,
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which is the approximate log-likelihood computed by the trained solution and the validation data. This procedure is repeated V times. Then we

take the arithmetic mean over the V folds and get CVðt;h,d,λÞ.
In principle, we would look for the minimum CV error to select the corresponding optimal combination of tuning parameters, which may be

computationally expensive. To improve the efficiency, we suggest a line search over hgrid, dgrid, λgrid. First, we fix the smoothness parameters h and

d at their median level, and we minimize the CV score with respect to λ separately for each estimated time point. Second, for each t� T , we fix

the kernel bandwidth h at its median level and search the optimal neighbourhood width d̂ðtÞ under the previously tuned λ̂ðtÞ. Ultimately, the opti-

mal ĥ is chosen by minimizing the sum of CVðt;h, d̂ðtÞ, λ̂ðtÞÞ over those time points of interests. The effectiveness of our proposed method to select

tuning parameters is verified in the following section through simulations.

5 | NUMERICAL EXPERIMENTS

5.1 | Setting

In this section, we generate synthetic data to illustrate the efficiency of the proposed local estimator as well as the validity of the scheme for tun-

ing parameter selection. Networks gradually evolve over K¼101 equally spaced time points (0, 0.01,… , 1) in our experiment. Each network is a

mixture of 10 categorical variables (3 categories), 10 truncated Poisson variables with truncation at 10 and 10 Gaussian variables, which we refer

to as the “C–P–G mixture.” As what we stated in the assumption, the underlying networks should be sparse and change smoothly. We let all node

potential be time invariant, that is, θrðtkÞ¼0 for categorical and Gaussian variables; θrðtkÞ¼�0:2 for truncated Poisson variables; and θrrðtkÞ¼�3
for all Gaussian variables. The evolution of edge potentials are generated by the following models. For each vertex pair r< s, we separately gener-

ate random matrices R1,R2,R3,R4 �ℝmr�ms with entries independently drawn from Nð0,0:52Þ. Then we define

• Model 1: GrsðtÞ¼ sinðπt=2ÞR1þcosðπt=2ÞR2þ sinðπt=4ÞR3þcosðπt=4ÞR4;

• Model 2: GrsðtÞ¼ sinðπt=4ÞR1þcosðπt=4ÞR2þ sinðπt=8ÞR3þcosðπt=8ÞR4.

In order to add sparsity to edge potentials, we employ the following soft-thresholding:

G0rsðtÞ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffi
mrms
p

kGrsðtÞkF

� 

þ
�GrsðtÞ:

We assign θrsðtkÞ¼0:3G0rsðtkÞ for all of the P–P, C–P and P–G edges; θrsðtkÞ¼1:5G0rsðtkÞ for the other types of edges. It results in an average of

68 and 61 edges in Model 1 and Model 2, respectively, around 15% of all vertex pairs. Based on the model formulation, Model 2 is supposed to

have a smoother topology change in comparison with Model 1. As the model parameters gradually evolve, there exist many weak signals near the

varying edges, which makes joint modelling crucial in topology estimation. Random samples are generated by Gibbs samplers under this setting

with appropriate burn-in and thinning. The per time-point sample size is set at nk ¼20. More details about the graph topology can be found in the

supporting information.

We devote our simulation to the structural estimation at 6 time points T ¼f0,0:2,…,1g. To obtain the weighted empirical covariance matrix,

we adopt the unbounded Gaussian kernel

KhðxÞ¼
1ffiffiffiffiffiffi
2π
p exp � x2

2h2

� 

:

Time-stratified fivefold CV is used to select the tuning parameters with the searching grids hgrid¼f0:1,0:2,…,0:5g, dgrid¼
f0:01,0:03,0:05,0:1,0:15,0:2,0:25,0:3,0:4g and λgrid¼f10�2:5,10�2:4,…,10�1g. Meanwhile, we also compare our proposed LoALDIG with the

tvmgm function from the R package mgm (Haslbeck & Waldorp, 2020). The competing method is based on kernel smoothed neighbourhood

regression, whose kernel bandwidth and sparsity are tuned by a combination of CV and extended Bayesian information criterion (EBIC). We treat

the count variables as Poisson variables assuming that the true truncation points are unknown. Considering only two-way interactions in tvmgm,

we employ the default “AND rule” to construct the topology estimates.

With regard to edge recovery, the problem of selecting edges can be treated as a binary classification problem. The metrics used for perfor-

mance evaluation include the true positive rate (TPR) and the false discovery rate (FDR). Another popular measure for such problems is the F1

score:
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F1¼
2TP

2TPþFNþFP
� ½0,1�,

which is an overall metric for model selection performance to balance TPR and FDR. The larger F1 is, the better a method performs with respect

to edge selection.

5.2 | Performance

First, we compare LoALDIG and tvmgm without consideration of tuning parameter selection to show the flexibility of LoALDIG. For each t� T ,
we utilize the two approaches to estimate its topology under all possible combinations of tuning parameters. Remark that the smoothness level of

LoALDIG depends on hyperparameters h and d, but h is the only factor controlling the smoothness of tvmgm. To have fair comparison, we study

how the F1 score changes over the kernel bandwidth h in the two methods. Assuming the true topology is known, we search hyperparameters λ

(and d) separately for each t� T to optimize the F1 score, so that we attain the highest F1 score each method can achieve given each kernel band-

width. Figure 1 depicts how the F1 score varies over kernel bandwidth. All F1 scores shown in the picture are averaged over 6 estimated time

points and 20 independent replicates. Meanwhile, so as to better demonstrate the effect of neighbourhood width d on the performance of

LoALDIG, we add three more lines standing for d¼0:01, d¼0:2, d¼0:4 by using a common width on all estimated graphs.

Not surprisingly, our estimator reaches higher peaks than tvmgm thanks to exploiting the additional assumption on smooth change of sparsity

structures. We also observe that tvmgm requires higher h to achieve the best edge selection performance compared with LoALDIG in Model

2. The reason is that a wider kernel can compensate for the lack of joint group lasso selection. Moreover, the lines of LoALDIG with optimal

hyperparameter selection significantly outperform the ones using a common neighbourhood width for all time points to be estimated, which

implies the necessity of separate tuning for d. In some cases such as h¼0:5, d¼0:4, overly wide neighbourhood sizes may diminish the temporal

specificity, leading to the consequence that our estimate becomes not so good as the ones with narrower neighbourhoods. This phenomenon

highlights the importance of proper tuning that is adaptive to different levels of smoothness from data. At last, we compare the edge selection

performance under the two different true models. Our method enjoys better accuracy in inferring Model 2, since the smoother topological change

from Model 2 is in favour of integrating information from nearby time points. Furthermore, the optimal F1 score corresponds to higher kernel

bandwidth in Model 2, which is also aligned with the reality that Model 2 has more temporal homogeneity.

Table 1 summarizes the simulation results tuned by time-stratified fivefold CV. Implemented on a laptop with 16-GB RAM and a 2.3-GHz

dual-core Intel i5 processor, it takes less than 75 minutes on average to complete the CV. On average, the computation time of fitting one tuned

model is around 10 seconds. For both Model 1 and Model 2, we observe that LoALDIG results in a higher F1 score than tvmgm. Specifically, our

proposed method recovers higher percentages of true edges, but yields more false positives at the same time. In spite of lower FDRs, the compet-

ing method is much too conservative, selecting fewer than 25% of true edges while missing most weak edge signals, since its model tuning is in

favour of sparse models. In general, our method shows better balance between sensitivity and specificity. To obtain a closer overlook on the tun-

ing parameter selection, we create Figure 2 to inspect the kernel bandwidth selected by fivefold CV. For both estimators, the CV selects a

F IGURE 1 Comparison of edge recovery performance between LoALDIG and tvmgm: F1 scores (averaged over 20 replicates) versus kernel
bandwidth h
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smoother kernel for Model 2, which is consistent with the true smoothness level. Specifically for LoALDIG, the time-stratified CV results in opti-

mal kernel bandwidths as in Figure 1 for both models. More details about the simulation are provided in the supporting information.

6 | REAL DATA APPLICATION: TIME-VARYING HUMAN BRAIN GENE EXPRESSION–DNA
METHYLATION NETWORKS

In this section, we conduct a case study on the PsychENCODE Human Brain Development dataset with free online access (https://development.

psychencode.org). As the most complex organ in human body, brain is responsible for human's cognition, emotion and behaviour. Regulated by an

enormously large number of factors, the process of human brain development is intricate and the full picture of regulatory mechanism is still to be

uncovered. To have a deeper insight into the regulatory relationships among heterogeneous variables, mixed graphical models is a powerful tool,

helping us better understand the functionalities of different types of factors and detect the dependency structures among them. Along with the

PsychENCODE Human Brain Development dataset, Li et al. (2018) conducted a comprehensive analysis by integrating regulatory, epigenomic

TABLE 1 Simulation results: Model selection by fivefold CV

TPR FDR F1 score

Model 1 LoALDIG 0.519 (0.006) 0.385 (0.009) 0.562 (0.003)

tvmgm 0.233 (0.012) 0.038 (0.010) 0.370 (0.015)

Model 2 LoALDIG 0.474 (0.009) 0.295 (0.011) 0.565 (0.006)

tvmgm 0.223 (0.016) 0.021 (0.005) 0.357 (0.021)

Note: Means (and standard errors) are computed over 20 replicates.

F IGURE 2 Boxplots of kernel bandwidth h selected by fivefold CV

F IGURE 3 Number of observations along the developmental time span of human brain
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and transcriptomic features of the human brain across time, regions and cell types. They discovered spatio-temporal trends and variations in brain

development and related them to the major neuropsychiatric disorders.

Rather than the entire transcriptome, we focus our research on the the temporal correlation variation in a smaller co-expression module

(the ME37 from Li et al., 2018). Specifically, we choose 26 important genes within this module, which are associated with multiple neurological

disorders and traits such as schizophrenia, bipolar disorder and intelligence quotient (Li et al., 2018). In addition to gene expressions, we also con-

sider DNA methylation in our study. As one of the most common epigenetic modifications, DNA cytosine methylation can regulate the transcrip-

tion activity without changing the DNA sequence. Incorporating mRNA-seq and DNA methylation data along different stages of brain

TABLE 2 Summary of estimated gene expression–DNA methylation networks at four brain developmental stages

Stage d̂ðtÞ Total edges RNA–RNA RNA–methylation

1 0.05 90 57 33

2 0.4 79 46 33

3 0.1 124 88 36

4 0.03 17 15 2

F IGURE 4 Time-varying gene expression–DNA methylation regulatory networks. Gene expressions are shown as pink circles; DNA
methylations are presented as orange squares. The number of connections are node sizes
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development to learn the time-varying mixed network structures, we are able to attain two major types of interactions of interest from our model,

gene co-expression relationships as well as regulatory relationships between DNA methylation and gene expressions.

After data merging, we obtain a total of 21 subjects possessing both mRNA-seq and DNA methylation measurements, whose ages range from

4 postnatal months to 40 postnatal years. For each donor, tissues from different anatomical brain regions are collected. Since transcription profiles

in postnatal neocortex (NCX) are relatively homogeneous (Kang et al., 2011), we select only tissue samples from 11 NCX areas into our analysis

to ensure the homogeneity of samples. Although each individual donates multiple samples, we ignore the underlying dependency structure among

the samples and treat them as independent observations. As a result, there are K¼20 observed time points and the per time-point sample sizes

fall between 2 and 19 (see Figure 3). The raw RNA-Seq count data are processed by the function processSeq from the R package XMRF

(Allen & Liu, 2012), which adjusted for sequencing depth and overdispersion (Li et al., 2012). Then the processed mRNA-seq data are Poisson like,

thereby modelled as count variables. As for DNA methylation, we incorporate CpG sites proximal to the transcription start sites (TSS) as well as

the ones inside the 26 gene bodies and then filter out the sites whose methylation beta value standard deviations are lower than 0.05. Ultimately,

a number of 94 CpG sites are selected. Their beta values are treated as Gaussian variables because of their shapes. The full list of genes and meth-

ylation sites can be found in the supporting information.

We are concerned about inferring the mixed networks at T ¼f1,8,16,36g years of age, representing late infancy, childhood,

adolescence and adulthood, respectively. Each of them indicates a distinct stage of brain development (Kang et al., 2011). The

optimal tuning parameters are selected by the aforementioned scheme of fivefold time-stratified CV, with search grids

hgrid¼f0:1,0:2,…,0:5g, dgrid¼f0:005,0:01,0:03,0:05,0:1,0:15,0:2,0:3,0:4g. As a result, we use ĥ¼0:3 to infer the time-varying models, and the

results are summarized in Table 2.

We recover the most edges in the adolescence stage and the fewest edges in the adulthood stage. No methylation–methylation interactions

are found. From Figure 4, we can see the expression of MEF2C serves as a hub node in the first three stages, which agrees with the existing

knowledge that MEF2C controls activity-dependent expression of neuronal genes, including those linked to the synapse function and autism

spectrum disorder (Ebert & Greenberg, 2013; Parikshak et al., 2013). Other hub gene expression nodes, such as TCF4 and TBR1, also play critical

roles in neurodevelopment (Huang & Hsueh, 2015). In the adolescence stage, the CpG site cg20994660 is the most connected DNA methylation,

which is located at the TSS of gene TBR1. Based on the refitted model, the methylation level of cg20994660 is negatively correlated with the

expression of TBR1, indicating the effect of transcriptional silencing.

7 | CONCLUDING REMARKS

In this paper, we have proposed a structural learning framework (LoALDIG) for estimating time-varying mixed graphical models. Through both

kernel smoothing and a joint group lasso penalty, our local estimator fully exploits the temporal smoothness with much flexibility and therefore

makes the graph estimation more accurate and efficient. Our method can complete the estimation of graphs of all time points simultaneously and

avoid the common asymmetry problem in edge recovery. The practical performance has been validated through a numerical experiment and a real

data application.
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