
9

A Cost-Aware Logical Framework

YUE NIU, Carnegie Mellon University, USA

JONATHAN STERLING, Aarhus University, DK
HARRISON GRODIN, Carnegie Mellon University, USA

ROBERT HARPER, Carnegie Mellon University, USA

We present calf, a cost-aware logical framework for studying quantitative aspects of functional programs.
Taking inspiration from recent work that reconstructs traditional aspects of programming languages in terms
of a modal account of phase distinctions, we argue that the cost structure of programs motivates a phase
distinction between intension and extension. Armed with this technology, we contribute a synthetic account
of cost structure as a computational e!ect in which cost-aware programs enjoy an internal noninterference
property: input/output behavior cannot depend on cost. As a full-spectrum dependent type theory, calf
presents a uni"ed language for programming and speci"cation of both cost and behavior that can be integrated
smoothly with existing mathematical libraries available in type theoretic proof assistants.

We evaluate calf as a general framework for cost analysis by implementing two fundamental techniques
for algorithm analysis: the method of recurrence relations and physicist’s method for amortized analysis. We
deploy these techniques on a variety of case studies: we prove a tight, closed bound for Euclid’s algorithm,
verify the amortized complexity of batched queues, and derive tight, closed bounds for the sequential and
parallel complexity of merge sort, all fully mechanized in the Agda proof assistant. Lastly we substantiate the
soundness of quantitative reasoning in calf by means of a model construction.

CCS Concepts: • Theory of computation→ Type theory; Logic and veri!cation; Program reasoning;
Categorical semantics; • Software and its engineering → Functional languages; Parallel programming
languages.

Additional Key Words and Phrases: algorithm analysis, cost models, phase distinction, noninterference,
intensional property, behavioral veri"cation, equational reasoning, modal type theory, mechanized proof,
proof assistants, recurrence relations, amortized analysis, parallel algorithms

ACM Reference Format:
Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper. 2022. A Cost-Aware Logical Framework.
Proc. ACM Program. Lang. 6, POPL, Article 9 (January 2022), 31 pages. https://doi.org/10.1145/3498670

1 INTRODUCTION

Resource usage is an important intensional property of programs. With a rich enough type system,
extensional properties of programs can be investigated in the same language as the program is
written — an approach to veri"cation that has seen much application in type theoretic tools such as
Nuprl, Coq, Agda, and Idris [Brady 2013; Constable et al. 1986; Coq Development Team 2016; Norell
2009]. Intensional properties such as cost are not typically amenable to such an internal analysis,
in essence because one cannot conventionally have a function cost : bool→ nat that computes

Authors’ addresses: Yue Niu, yuen@andrew.cmu.edu, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA,
15213, USA; Jonathan Sterling, jsterling@cs.au.dk, Aarhus University, Aabogade 34, Aarhus C, 8000, DK; Harrison Grodin,
hgrodin@andrew.cmu.edu, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA; Robert Harper,
rwh@cs.cmu.edu, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA.

© 2022 Copyright held by the owner/author(s).
2475-1421/2022/1-ART9
https://doi.org/10.1145/3498670

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0003-4888-6042
HTTPS://ORCID.ORG/0000-0002-0585-5564
HTTPS://ORCID.ORG/0000-0002-0947-3520
HTTPS://ORCID.ORG/0000-0002-9400-2941
https://doi.org/10.1145/3498670
https://orcid.org/0000-0003-4888-6042
https://orcid.org/0000-0002-0585-5564
https://orcid.org/0000-0002-0947-3520
https://orcid.org/0000-0002-9400-2941
https://doi.org/10.1145/3498670

9:2 Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper

the cost of its input (such a “function” could not respect !-equivalence). To address this problem,
one could instrument programs with their cost, but this instrumentation must not be allowed to
interfere with the input/output behavior of programs.

A logical framework for cost. We contribute calf, a cost-aware logical framework for studying
quantitative aspects of functional programs, combining recent work on cost recurrence extrac-
tion [Kavvos et al. 2019] and the call-by-push-value decomposition of e!ects in dependent type
theory [Pédrot and Tabareau 2019] with recent modal account of phase distinctions and noninter-
ference of Sterling and Harper [2021]. calf evinces a phase distinction between extensional and
intensional aspects of code (analogous to the static–dynamic phase distinction of ML languages);
then the incurrence of cost is treated as a computational e!ect that has force only in the intensional
fragment, ensuring that the extensional behavior of a program does not depend on the costs of its
arguments. In particular calf ensures that one cannot write a function whose extension depends on
the cost component of its input.

Evaluation and implementation. We evaluate the e#cacy of calf by formulating two widely used
algorithm analysis techniques – the method of recurrence relations and the physicist’s method for
amortized analysis – and deploying them on a variety of case studies. We have also developed an
implementation of calf in the Agda proof assistant.1 The following results highlight the central
contributions of our case studies, all fully mechanized in the Agda proof assistant:

(1) We prove an asymptotically tight and closed upper bound on the number of primitive
arithmetic operations used in Euclid’s algorithm for gcd.

(2) We present an amortized analysis of the cost of sequences of operations on batched queues.
(3) We prove asymptotically tight and closed upper bounds on both the sequential and parallel

complexity of insertion sort and merge sort under the comparison cost model.

It is worth emphasizing that the presented case studies all require nontrivial mathematical reasoning,
which usually presents a signi"cant hurdle for $edgling implementations of type theories that
do not come equipped with the vast number of the necessary but well-known theorems. Our
implementation of calf alleviates this pain point by allowing one to directly import data types
from Agda whenever they are required for an algorithm. At a high level, this design evinces an
embedding of the Agda universe of “pure data types” into the e!ectful metalanguage of calf that
enables one to take advantage of Agda’s well-developed mathematical library.

Notation. In this paper we display all mechanized theorems as de"ned in the implementation
using the typewriter font, e.g. Calf.Types.Bounded.bound/relax.

Metatheory and soundness. In order to be used to study the cost of programs it is important that
calf not derive an equivalence between two programs ",# : bool that take a di!erent number
of steps to compute. We verify by means of a model construction that calf does not identify
computations that incur di!erent numbers of steps, the "rst step toward a stronger adequacy
theorem that would establish the equivalence of calf-encodings with traditional operational cost
dynamics à la Blelloch and Greiner [1995].

Parallel complexity. calf is compatible withmany interpretations of the cost structure of programs,
among which is the cost graph that encodes the work (sequential cost) and span (parallel cost) of a
program. Thus calf also supports reasoning about the parallel complexity of programs through an
equational presentation of the pro"ling semantics of Blelloch and Greiner [Blelloch and Greiner
1995]. By focusing on the veri"cation of functional programs, we position calf to take advantage of

1Available at https://github.com/jonsterling/agda-calf

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

https://github.com/jonsterling/agda-calf

A Cost-Aware Logical Framework 9:3

the elegant theory of language-based parallelism [Blelloch and Greiner 1996; Greiner and Blelloch
1999; Spoonhower et al. 2008] developed over the past three decades without descending into the
space of imperative, concurrent programs in which the analogous notions are much more complex.

1.1 Synthetic Cost Analysis via Computational E!ects

Although many cost veri"cation frameworks work with the deep embedding of an object language
in an ambient type theory, we take a synthetic approach by de"ning calf, a full-spectrum dependent
type theory in which cost is implemented as a primitive e!ect. This view of cost is inspired by Kavvos
et al. [2019], who de"ne and extract recurrence relations of functional programs representing their
(high-order) cost structure.

At "rst glance, cost might seem like a uniform concept that can be applied indiscriminately to
any computation. This "rst-order view quickly falls part when we consider the costs of functions,
which should be functions themselves. The question then is to introduce cost into the type theory in
such a way that it can $ow through the type structure compositionally. The insight of Kavvos et al.
[2019] is to consider the call-by-push-value (CBPV) structure induced by a certain cost monad’s
Eilenberg–Moore category [Levy 2004], leveraging the "ne-grained type structure of CBPV to
assign a compositional meaning to cost at higher type.

A cost monad is just the writer monad C × − for a given monoid (C, 0, +); in call-by-push-value,
we may interpret a value type by a set and a computation type by an algebra for C × −. There is a
free-forgetful adjunction F $ U, in which the right adjoint projects the carrier set of an algebra and
the left adjoint takes a set $ to C ×$; both adjoints are internalized as type constructors in CBPV.
In particular, given a value type $, we can form the computation type F($) whose interpretation is
the free algebra. Hence in calf, F($) classi"es free computations of$ where the costs of a sequence
of computations are aggregated using the monoid structure C, and a value % : $ is injected into
F($) via ret(%) as the computation yielding % incurring zero cost.

The semantic situation of the cost monad inspires a CBPV language containing a single computa-
tional e!ect step! (") that incurs a given cost & : C before computing" , such that step! (step" (")) ≡
step!+" ("). Indeed, calf is a dependently typed version of this CBPV language, de"ned in the style
of Pédrot and Tabareau’s 'cbpv calculus. The memorable slogan of Levy for CBPV states that “a
value is, a computation does,” which continues to hold in calf: a value is with no associated cost, a
computation does using some cost.

1.2 A New Phase Distinction: Behavior vs. Cost

The original phase distinction between static (compile-time) and dynamic (run-time) code arose
in the study of module systems [Harper et al. 1990], where light-weight static compatibility is
used to facilitate the composition of modules. The idea was to disallow type-level dependence on
dynamic parts of a module. Recall that a signature of a module consists of declarations of kinds
of constructors (static entities) and types of expressions (dynamic entities), and a module itself
consists of constructors and expressions. In the case of ML modules the phase distinction associates
to every module functor a function between their static parts (kinds); in this sense, the static part
of a module is entirely independent of the dynamic parts of the modules it is linked with.
In our setting a di!erent but entirely analogous phase distinction emerges between exten-

sion/behavior and intension/cost. Every type $ in calf can be thought of as having two parts: an
intensional part!$ characterizing its cost and an extensional part"$ characterizing its extensional
behavior. We say that a type is (extensional, intensional) if it is isomorphic to its (extensional, in-
tensional) part. The phase distinction ensures that the extensional part of a program is independent
of the intensional parts of its arguments. Put another way, the phase distinction of behavior and
cost constitutes a noninterference property of intension and extension:

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

9:4 Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper

Noninterference. Any function !$→ "(from an intensional type to an extensional
type is internally equal to a constant function.

1.3 The Language of Phase Distinctions

In calf the phase distinction between extension and intension is achieved by adding a new abstract
proposition ¶E called the “extensional phase”. Whenever an assumption of type ¶E is present in
the context, the cost structure of programs is rendered trivial; one can think of the fragment
of calf where ¶E is always in the context as a version of ordinary dependent type theory in
which cost is not tracked. Therefore, the extensional part of a type $ can be recovered as the
function space "$! (¶E → $). This extensional modality can be used to state equations between
programs that have di!erent costs but identical input-output behaviors; for instance, we can
prove "(insertionSort = mergeSort), even thought these algorithms have di!erent costs under the
comparison cost model for sorting. Indeed, the soundness of calf implies that this equation does
not hold outside of ".

Cost structure as proof-relevance. As we have pointed out, it makes little sense to think of cost as a
property of an ordinary program, because two such programs may be equal and yet “have” di!erent
costs. On the other hand we may view cost as a structure (proof-relevant property) over a program,
and the projection of ordinary programs from cost-instrumented programs is implemented in our
setting by the unit of the extensional modality $→ "$. The perspective of cost as structure is an
instance of a more general phenomenon pervading present-day work in type theory: notions that
are ill-posed as properties of equivalence classes of typed terms can be recovered more objectively
as structures de"ned over equivalence classes of typed terms, as in the work of Altenkirch and
Kaposi [2016a]; Coquand [2019]; Sterling and Angiuli [2021]; Sterling and Harper [2021].

1.4 "antitative Reasoning in calf

The fundamental advantage of calf is that it provides a purely equational approach to quantitative
reasoning: a useful bound can be placed on the number of steps engendered in a computation by
equating it to another computation in which the quantity can be observed directly. For example,
consider a computation) : F($); if we can prove that) = step! (ret(%)) for some value % : $, then
we are justi"ed to say that) has cost & . This cost re"nement is captured by the following calf type:

hasCost($,), &) ! Σ% : $.) =F(#) step
! (ret(%))

In Section 3 we consider more sophisticated re"nements that express cost bounds rather than precise
costs of computations.
There are two things to note in this de"nition. First, we can see that cost re"nements are not

primitive in calf; rather calf is a logical framework for de"ning quantitative properties such as
hasCost and then proving re"nement lemmas about those properties. Secondly, our formulation of
cost bounds is only meaningful insofar as stepping is nondegenerate, i.e. ! step! (ret(%)) = ret(%)
for any value % and nontrivial cost & . In fact this nondegeneracy property constitutes one of the
soundness criteria for quantitative reasoning in calf, which we prove in Section 5.
Under this regime, one proves more re"nements as the need arises in a veri"cation problem

or when new forms of computations are introduced. In Section 3 we present syntax-directed
quantitative re"nement lemmas that decompose the bounds on the cost of a computation into
bounds on the costs of its constituent subcomputations.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

A Cost-Aware Logical Framework 9:5

sig

G : Type

n : * → N

insertEdge : edge→ (*
log ◦ n
−−−−→ *)

isEdge : edge→ (*
log ◦ n
−−−−→ bool)

sig

G : Type

n : * → N

insertEdge : edge→ (*
n
−→ *)

isEdge : edge→ (*
$_. 1
−−−→ bool)

Fig. 1. Cost signatures; le! is Alice and right is Bob. For simplicity, suppose the vertices are natural numbers
and define edges as ordered pairs (i.e. edge ! N2).

1.5 Compositional Cost Analysis

As a type theory, calf naturally supports a compositional style of veri"cation. When localized to
quantitative properties of programs, calf evinces the notion of a cost signature [Acar and Blelloch
2019], the cost-aware counterpart to the functional speci"cation of a data structure. In calf, we
may specify the quantitative properties of a data structure by using cost-aware dependent functions

(% : $)
!
−→ (, an application of the hasCost re"nement from Section 1.4:

(% : $)
!
−→ (= Σ+ : (Π% : $. ((%)) .Π% : $. hasCost(((%), + (%), & (%))

Thus an element of (% : $)
!
−→ (is a function + along with a proof that it satis"es the cost

speci"cation & on all instances.
To see this connective in action, consider clients Alice and Bob who both require a data structure

to manipulate graphs. Alice may request a structure satisfying the left signature in Fig. 1, indicating
that they would like edge insertion and membership to both be logarithmic in the number of
vertices n. On the other hand, Bob’s algorithm needs constant time edge membership, but is not so
sensitive to changes to the graph. This requirement is captured by the right signature in Fig. 1.
Fortunately, both programmers can be supplied with suitable implementations: edge sets for

Alice and adjacency matrices for Bob. Although somewhat arti"cial, this example shows that calf
is able to formalize the notion of a cost signature as used by Acar and Blelloch [2019], paving the
way to veri"ed, cost-aware development of large-scale programs.

1.6 Analyzing the Cost of General Recursive Functions

Most e#cient algorithms are not de"ned by structural induction on the input — their e#ciency
is the result of exploiting the structure of the data in clever, nonobvious ways that nevertheless
terminate. It is not surprising that this often cannot be surmised by syntactic means and requires
proof. Hence a type theoretic framework for cost analysis must provide a story for encoding general
recursive algorithms such that the resulting analysis re$ects the expected complexity (and not, for
instance, the complexity of the termination proof).

A well-known and versatile solution to the encoding of general recursive functions in total type
theory is the celebrated Bove–Capretta method [Bove and Capretta 2005]. Any general recursive
program gives rise to an accessibility predicate that tracks the pattern of recursive calls; this
accessibility predicate can be glued onto the original program as a termination metric, and the "nal
(total) function is de"ned by proving that every input is accessible.

Cost recurrences provide an alternative to accessibility predicates. The idea is to parameterize a
given program in a clock, induced by the cost recurrence, which can then serve as a termination

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

9:6 Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper

metric that frees the program to make whatever recursive calls are required. This strategy is attrac-
tive in the quantitative setting precisely because cost analysis computes the desired instantiation of
the clock with no additional e!ort. In contrast the same method in a framework for pure behavioral
properties becomes a technical device for de"nition that does not provide further insight into the
de"ned program. As observed in Niu and Harper [2020], the cost-aware setting evinces a synergetic
relationship between cost analysis itself and programming with general recursion that is further
ampli"ed in calf: cost structure enables one to e!ectively encode general recursion, and general
recursion gives rise to programs with interesting cost structure.

Relationship to the normal form theorem. One of the most well-known results of computability
theory Kleene [1943] is that any partial computable function of type N→ N may be de"ned using
one minimization operation; in other words, one “while loop” is su#cient to compute any partial
function. We observe that the encoding of general recursive programs in calf shares a similar $avor
in the sense that the call-graph of an encoded algorithm may be seen as counting down a single
outer “for loop” whose bound is determined by the cost bound of the algorithm.

1.7 Cost Models and Adequacy

Informed by the actual practice of algorithm analysis, we do not associate a particular cost semantics
to calf itself but instead promote the use of calf as a cost-aware metalanguage for expressing
algorithm-speci"c/non-uniform cost models. Some authors (such as Danielsson) refer to this mode
of reasoning as “semiformal” because there is no precise relationship to the traditional formulation
of cost given by an operational semantics, which one may think of as a language-level/uniform
cost model. As Danielsson [2008] points out, the connection between the uniform and non-uniform
models can be made formal if one inserts “steps” at the right places, which is tantamount to
programming in the image of a cost-preserving embedding of an object language equipped with
an operational semantics. In Section 7 we conjecture that an adequacy result of this form may be
proved for calf in the style of Kavvos et al. [2019]; Paviotti et al. [2015], constituting an internal
version of the classic Plotkin-type adequacy theorem [Plotkin 1977] for calf.

From our point of view it is helpful to identify the uniform and non-uniformmodels as meaningful
in their own contexts. For the purposes of algorithm analysis it is clearly preferable to work inside
a framework that allows for di!erent cost models for di!erent classes of problems; cost models in
this sense cannot be detected at the level of operational semantics — how would one delineate a
comparison or edge insertion operation? On the other hand, it is ill-formed to speak of adequacy
results such as Kavvos et al. [2019] with respect to a non-uniform cost model. Although in this
paper we focus on the algorithms analysis perspective, we note that calf supports both perspectives
because a uniform cost model is just an instance of a non-uniform cost model, and as we discussed
above, the connection between the two can be made precise through an adequacy theorem.

1.8 Related Work

1.8.1 Recurrence Extraction Through CBPV. The CBPV decomposition of cost structure in calf is di-
rectly inspired by recent work on recurrence extraction [Kavvos et al. 2019] for functional programs.
In that setting a source language such as CBV PCF is interpreted via a cost-preserving translation
into CBPV, from which a syntactic recurrence relation is extracted; the syntactic recurrence is then
translated into a semantic recurrence in a domain appropriate for mathematical manipulation used
in algorithm analysis. The focus of this work is the formalization of the extract-and-solve paradigm
used informally in algorithm analysis and the modularity with respect to the source language
a!orded by the CBPV decomposition.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

A Cost-Aware Logical Framework 9:7

Because the extraction process is strati"ed over di!erent languages, the bounding theorem — the
fact that a source program satis"es a syntactic recurrence relation — is an external fact. In contrast
calf collapses the distinction between syntactic and semantic recurrence and is able to express
the source program and the cost recurrence in the same language. Moreover, calf furnishes a rich
speci"cation language that allows us to prove internally that a program is bounded by a given cost.
Another di!erence is the presence of general recursion in the work on recurrence extraction.

Because we propose calf as a logical framework for internal reasoning, inclusion of unrestricted
"xed-points is a nonstarter. This does not, however, prevent us from analyzing the cost of general
recursive programs: as discussed in Section 1.6, knowing the cost bound of an algorithm allows us
to de"ne it by recursion on cost in a total setting. Of course, cost bounds do not provide termination
metrics for non-terminating programs; we expect that non-terminating programs can also be
handled by means of a monad for partiality as in the work of Capretta [2005].

1.8.2 E!ects in Dependent Type Theory. The key ingredient that endows calfwith enough structure
to serve as a logic for internal reasoning is the integration of dependent types in an e!ectful language.
We essentially extend the universe-free fragment of the 'cbpv calculus of Pédrot and Tabareau
[2019] by axioms for the extensional modality. The weaning translation of 'cbpv is the closest
counterpart to the model we use to prove the soundness of calf. To de"ne the weaning translation,
Pédrot and Tabareau [2019] introduce the concept of the self-algebraic proto-monad, which provides
the structure needed to model computation universes. Because we do not axiomatize universes,
computation types in calf are interpreted as algebras over a strong monad as in the usual Eilenberg–
Moore models of CBPV. To include universes, we expect that the 'cbpv approach can be further
adapted to calf without signi"cant modi"cation.

1.8.3 Transparent vs. Abstract Axiomatization of Cost Structure. Semantically, free computations
F($) can be modeled as free algebras over the monad C×−. We are however careful to not commit
to this fact internally; by keeping the type F($) abstract, calf ensures that programs cannot drop
costs or branch based on the cost component of their input.

As an example, a language that does not satisfy this noninterference property is the language of
syntactic recurrences “PCF with costs” employed by Kavvos et al. [2019]. Indeed, by interpreting
F($) as C ×$, the language of syntactic recurrences is made transparent enough that programs
can spuriously use the cost of an input to choose an output. However, this is not an issue in that
setting because of the strati"cation of the source language (of programs) and target language (of
recurrences): such an exotic program lies outside the image of the interpretation.

1.8.4 Intensionality in Logic and Type Theory.

Intensional constructs in computational type theory. Cost structure in calf aims to capture an
intensional aspect of programs, historically a di#cult phenomenon to study type theoretically.
Researchers in theNuprl tradition have made a number of forays into intensionality beginning with
the PL/CV3 language, which included an operator isap that distinguished function applications
from other terms [Constable and Zlatin 1984]. Constable and Crary [2002] later on introduce a
version of type theory equipped with a more restricted form of intensionality by internalizing parts
of the operational semantics, which can be construed as a form of re$ective deep embedding.

Necessity modalities for intensionality. In the tradition of structural proof theory and modal
type theory, the necessity modality #$ has been argued to capture the formal aspects of staged
computation [Davies and Pfenning 1999]. From this perspective, #$ is the type of codes for terms
of type $. A detailed investigation of this folklore was carried out by Kavvos [2017b], introducing
the intensional PCF (iPCF) programming language with an intensional "xed-point operator whose

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

9:8 Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper

type is the Gödel-Löb axiom. Unfortunately, Kavvos’s investigation revealed that truly intensional
operations such as isap must be limited to syntactically closed terms; such a side condition casts
doubt on the type theoretic nature of intensional operations. In the context of modal type theory,
Pfenning [2001] investigates intensionality through a judgmental distinction between intensional
expressions, extensional terms, and irrelevant proofs. However, the internalization of this new
judgmental structure as modal operators is not fully worked out.
A common theme in prior work that aims to capture intensionality within type theory is that

equations are removed underneath certain constructors, consequently refuting most congruence
rules and obstructing presentations by generators and equations. Although tenable for simple
theories, this approach greatly complicates the integration of type dependency, where congruence
rules play a very important role in usability. In the design of calf we take the complementary per-
spective of conditional extensionality, where equations expressing extensional/behavioral properties
are added in certain contexts. By modeling intension/extension as another phase distinction, we
give an elegant mathematical account of the intensional content of programs without sacri"cing
extensionality principles or speaking of “equalities” that do not always hold.

1.8.5 Type Systems for Cost Analysis.

Amortized cost analysis. Many current type-theoretic approaches to cost analysis rely on the
notion of linearity/non-duplicability of resources. A prototypical example is Hofmann’s type system
for programming in bounded space in which heap resources are abstracted into a type $ that is
required to construct heap-allocated data structures. This idea essentially started the line of work
in automated amortized resource analysis (AARA) that includes automatic heap-space bounds
[Hofmann and Jost 2003], analysis of higher-order programs [Jost et al. 2010], and a resource-aware
version of OCaml (RaML) [Ho!mann et al. 2012]. More recently, the combination of AARA and
temporal modalities has also been used in the setting of session types to analyze both sequential
and parallel cost of message-passing programs [Das et al. 2018a,b; Das and Pfenning 2020].

In these type systems a derivation may be viewed as a stateful transformation of the context (e.g.
consumable resource) into a computation that satis"es a cost bound, constituting a type-theoretic
formulation of amortized analysis [Tarjan 1985]. Consequently, a linear/a#ne treatment of resources
is critical for ensuring the soundness of quantitative reasoning, which states that the derived cost
bound su#ces for the actual cost as given by a standard cost dynamics.

As we discuss in Section 4.2, it is straightforward to formalize textbook formulations of amortized
analysis in calf (we chose to demonstrate a particular formulation known as the physicist’s method).
However, it is not immediately clear how one may take better advantage of the existing type-based
approaches to amortized analysis in calf.

Cost analysis of lazy programs. A common phenomenon of functional programming we do not
consider in calf is lazy evaluation. A well-known type-based method for amortized analysis that
also handles lazy evaluation is introduced through the Thunk library of Danielsson [2008], a
lightweight semiformal approach to cost analysis based around a particular indexed monad Thunk.
The rough idea is that an element of Thunk , % is a term of type % that evaluates to weak head
normal form in at most , steps.2 One may give precise cost analyses of lazy programs in Thunk by
encoding a version of Okasaki’s banker’s method Okasaki [1998] using Thunk types.
Similar to calf, the library allows users to freely place cost increments inc : Thunk , % →

Thunk (1 + ,) % to express di!erent cost models. Because the Thunk monad is exposed to the
user as an abstract interface, it is necessary to include an operation force : Thunk , % → % that

2Here we assume that % is a type that is not of the form Thunk& ' for some& and '; in general one has to consider the
indices of all the nested Thunk’s.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

A Cost-Aware Logical Framework 9:9

facilitates the interaction of cost annotated terms and ordinary code. Clearly, force should not occur
inside programs that are being analyzed, so in addition to ensuring that cost increments are placed
correctly, one has to make sure that “running code” does not contain force. In contrast, although one
also has to ensure the correct placement of step in calf, by design there is no operation analogous
to force in calf that discards the cost component of computations.
Unlike calf, the framework of Danielsson [2008] does not handle veri"cation of functional

properties. As mentioned in op. cit., it is di#cult to work with types indexed in the Thunk monad,
and it is unclear whether one can express complex behavioral properties of cost annotated terms.

Non-amortized cost analysis. Type theoretic formulations of cost analysis do not have to be based
on amortization: Crary and Weirich [2000] develop a type system for resource bound certi"cation
by means of a virtual clock. Function types are re"ned with a starting and ending time, so that a
function of type ($, 5) → ((, 0) is an ordinary function $→ (with the property that it is to be
applied when the clock is "ve and completes when the clock is zero. Clock polymorphism relaxes
the limit on the starting time by allowing one to form the type ∀,. ($,, + 5) → ((,,). Variable cost
bounds are de"nable via a limited form of dependency using inductive kinds, which unfortunately
imposes a somewhat stilted programming style.

More recently, Wang et al. [2017] introduced TiML, a language loosely based on Standard ML that
provides internal cost speci"cations in the form of a timed function type. TiML supports indexed
data types whose indices furnish a notion of size measure, leading to a more natural treatment
of variable cost bounds compared to Crary and Weirich [2000]. The TiML type system generates
veri"cation conditions that are further re"ned by a recurrence solver using heuristics such as the
Master Theorem [Cormen et al. 2009].
Type systems presented in Crary and Weirich [2000]; Wang et al. [2017] represent practical

compromises in the sense that they are primarily designed for expressing cost information and only
secondarily support limited forms of behavioral speci"cation. In contrast calf is a full-spectrum
dependent type theory designed for both quantitative and behavioral veri"cation.

Frameworks for cost analysis. calf is a framework for cost analysis in the sense that it provides
the language for speaking about the cost structure of programs but does not prescribe a particular
method for cost analysis. Recently, Rajani et al. [2021] advance a similar thesis by developing a type
theory, --amor, that uni"es many extant type systems for cost analysis, in particular exhibiting
--amor embeddings of both e!ect and coe!ect-based systems for cost accounting. However, because
--amor does not support dependent types, there is no satisfying account of the behavioral fragment.

In the context of Liquid Haskell, Handley et al. [2019] de"ne a monadic library called RTick for
reasoning about both quantitative and correctness properties by taking advantage of LiquidHaskell’s
re"nement type system. They substantiate the library with a rich repository of examples, including
sorting algorithms, programs optimizations, and relational cost analysis. However, because cost is
represented transparently via the cost monad in the library, one may de"ne exotic programs in the
sense of Section 1.8.3 that use the cost of an input to choose the behavior of an output.
Finally, we mention the work of Niu and Harper [2020] on a cost-aware computational type

theory CATT in the Nuprl tradition. Unlike the type theory of Constable and Crary [2002], CATT
only internalizes cost structure, which leads to a framework that is more directly applicable to cost
analysis. In particular, Niu and Harper [2020] introduce a connective “funtime” that internalizes cost
speci"cation on functions types and prove a novel re"nement rule for funtime by appealing to the
speci"ed cost bound, constituting an induction principle based on cost structure. Our observation
that cost analysis may be used to encode general recursion in calf is inspired by the work on
CATT, as is the idea of using a cost-aware dependent function type to specify cost signatures. Niu

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

9:10 Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper

and Harper [2020] do not develop a formal proof theory for CATT, a fact that appears to pose
signi"cant challenges for its mechanization.

1.8.6 Separation Logic. An alternative perspective, exempli"ed by the work of Atkey [2010] on
amortized resource analysis in separation logic, is to treat cost as an ownable resource. Program
logics in this tradition primarily focus on the veri"cation of imperative programs. Atkey’s formula-
tion essentially transposes the types-with-potential concept of Hofmann and Jost [2003] into the
imperative setting, allowing one to prove resource bounds on heap-based data structures.

More recently, Mével et al. [2019] employed similar ideas to develop a resource-aware extension
to the Iris program logic [Jung et al. 2018, 2015]. The interesting twist in this work is the use of time
receipts, which are dual to the more common time credits. Time receipts witness that a computation
takes at least a certain amount of resources, thereby establishing a lower bound on the cost of
programs. This can be used to prove that catastrophic events do not happen until a long time has
passed. An application of the framework is the veri"cation of an asymptotically tight upper bound
on union-"nd, a mathematically involved and complex proof.

Iris is a very powerful tool whose scope goes far beyond cost analysis; the theoretical overhead
of Iris when applied speci"cally to quantitative analysis of functional programs is consequently
somewhat high in contrast to the basic rules of calf which can be written down in half a page.
Furthermore, the intended semantics of calf can be interpreted somewhat simple-mindedly in
any topos equipped with a subterminal sheaf representing the partition between extension and
intension. In this respect, calf o!ers a fundamentally di!erent perspective on cost analysis based
on the synthetic integration of cost speci"cation into a full-spectrum dependent type theory rather
than the de"nition of a resource-sensitive program logic over an existing language.

1.8.7 Isabelle/HOL. The proof assistant Isabelle/HOL represents another hot spot for complexity
veri"cation. In this setting the Archive of Formal Proofs contains a number of case studies on
complexity veri"cation, including quicksort [Eberl 2017b], medians of medians [Eberl 2017a], and
the formalization of the Akra-Bazzi theorem [Eberl 2015], just to name a few. In more recent
work Nipkow et al. [2021] give a systematic study of the functional correctness and complexity
veri"cation of a variety of algorithms and techniques including sorting, search trees, amortized
analysis, dynamic programming, etc.
In these works cost is often instrumented through the writer monad N × − or just treated

informally. In contrast, calf allows the user to de"ne formal relations between programs and
recurrences, and the careful instrumentation of cost structure as a computational e!ect induces a
noninterference property not found in the Isabelle/HOL setting. The Isabelle/HOL approach to cost
analysis uses existing tools in the framework to encode the notion of cost, while calf is a framework
in which one can use type-theoretic principles to reason about cost/quantitative properties of
programs in a "rst class way without sacri"cing the connection to the uninstrumented programs.

2 COST-AWARE LOGICAL FRAMEWORK

We de"ne calf as an extension to the 'cbpv calculus of Pédrot and Tabareau [2019]. As discussed
in Section 1, the design of calf rests on three main pillars. First, the "ne-grained type structure of
CBPV gives a compositional account of cost at higher types. Secondly, in the dependent setting
'cbpv provides a smooth integration of e!ects and type dependency, which allows us to de"ne
cost-aware programs and prove theorems about them in a single language. Lastly (as in Section 1.3),
the extensional phase ¶E generates a pair of complementary open and closed modalities ",! in
the sense of Rijke et al. [2020]; Schultz and Spivak [2019] that govern the interaction between
intension and extension. In the following, we introduce calf at an informal level through simple

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

A Cost-Aware Logical Framework 9:11

examples that illustrate the cost e!ect step, internal cost bounds as equations, and the interplay of
the open/extensional modality " and the closed/intensional modality !.

2.1 A Refresher on CBPV: the Identity Function TwoWays

We give a quick introduction to CBPV through the simplest possible example: the identity function
(on natural numbers). Recall that the type structure of CBPV is centered around the polarization of
values and computations. For our example, consider the following selection of types and terms:3

Values Computations
$,(! U(.), nat . ,/ ! F($),$→ .
%,0 ! thunk()), zero, suc(%)), + ! ret(%), bind(); +), force(1), rec(%){)1;)2}, -%.), ap(+ ; 2)

The pair of type constructors F and U bridges the dichotomy between value and computation
types: F turns a value % : $ into the computation ret(%) : F($), and U rei"es a computation) : .
into a value thunk()) : U(.). Observe that functions are computations in CBPV, a phenomenon
that may be explained by examining the operational behavior of functions in the CK-machine
model of CBPV [Levy 2006]. The "ne-grained type structure of CBPV evinces embeddings of both
CBV and CBN. For instance, one may recover the CBV function space nat→cbv nat as the CBPV
type U(nat→ F(nat)). We refer the reader to Levy [2004] for a more thorough introduction.

For the purposes of our example, we only consider the value type nat. As usual, zero and suc(,)
are values of nat. The recursor is assigned the type rec : {. } nat→ . → (nat→ U(.) → .) → . .
Note that the recursive call is rei"ed as a value U(.) because variables range over values in CBPV.
If we restrict attention to natural numbers, there are two evident ways to compute the identity: one
program returns the argument immediately, and the other reconstructs the argument by recursion.
In CBPV, they are rendered as the following programs:

ideasy : nat→ F(nat)

ideasy = -3 . ret(3)

idhard : nat→ F(nat)

idhard = -3 . rec(3){ret(zero); -3 ′,1 . bind(force(1); -4 . ret(suc(4)))}

Note that in idhard we have to force the rei"ed recursive computation 1 : U(F(nat)) to ob-
tain a computation F(nat), thence sequencing it and tacking on an additional successor.

2.2 Cost Monoid: Cost Structure of Programs

Cost-aware programs carry quantitative information through elements of the cost monoid C.
Because di!erent algorithms and cost models require di!erent notions of cost, we parameterize
calf by an arbitrary cancellative monoid (C, +, 0); here cancellative means that the operation + is
injective, a property that is needed to establish metatheoretic results in Section 5. Further structure
on C can be negotiated depending on one’s preference for generality. For the purposes of analyzing
(upper) bounds of algorithms, it is reasonable to additionally require the structure of an ordered
monoid (C, +, 0, ≤) in which the monoid multiplication is compatible with a preorder ≤.

2.3 Cost as an E!ect in calf

We formulate cost in calf as a primitive e!ect by adding a new form of computation step!(()) that
is parameterized by a computation type . and an element of the cost monoid & . The meaning of
step!(()) is to e!ect & units of cost and continue as) ; consequently, we require that step is coherent
with the monoid structure on C:

step0(()) =) step!((step
"
(())) = step!+"(())

3calf also includes additional types such as dependent products and dependent sums.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

9:12 Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper

In addition, we require a slew of equations governing the interaction of step with other compu-
tations. For instance, step satis"es the following laws:

bindstep : {) : F($), + : $→ . } bind(step!F(#) ()); +) = step!((bind(); +))

lamstep : step
!
#→((-3 .)) = -3 . step!(())

The "rst equation states that step inside a sequence of computations can be commuted outside
and executed "rst; the second equation states that step commutes with abstraction.

Meaning of step in the Eilenberg–Moore model of calf. Each computation type . of calf is
interpreted as an algebra (|. |,5) over C×−. Thus step(is interpreted by the structure map 5 , and
all of the equations associated with step(hold as a consequence of the algebra laws.

Cost of identity. For the identity example, let us suppose that C is the additive monoid on N
under the usual ordering. Consider the two identity programs from the previous section. Suppose
that we wanted to charge unit cost for each recursive call in the program. In calf, we can achieve
this by instrumenting the program with step at the appropriate place:

idhard = -3 . rec(3){ret(zero); -3 ′,1 . step1F(nat) (bind(force(1); -4. ret(suc(4))))}

We do nothing for ideasy because there is no recursion involved.

2.4 Cost Refinements in calf

Recall the predicate hasCost from Section 1, hasCost($,), &) ! Σ% : $.) =F(#) step! (ret(%)),
which states that the computation) : F($) incurs & units of cost. Given our instrumented identities,
we can prove the following quantitative re"nements for ideasy and idhard:

Theorem 2.1 (Examples.Id.Easy.id≤id/cost). We have that ideasy (3) has cost 0 for all 3 : nat.

Proof. We take the input as the witness value and apply the coherence rule of step to obtain
ideasy (3) = ret(3) = step0((ret(3)). !

Theorem 2.2 (Examples.Id.Hard.id≤id/cost/closed). We have that idhard (3) has cost 6 (3)
for all 3 : nat, where 6 is the obvious monoid isomorphism nat " N.

Proof. We proceed by induction on 3 . In the inductive case, we use the equations governing
step explained in Section 2.3 and the inversion principles for U and F. !

The study of quantitative properties qua equations evinces the essential advantage of veri"cation
in calf: proof of quantitative properties is reduced to ordinary equational reasoning.

2.5 Reasoning About Extensional Properties Using ¶E

In general, equations between cost-aware programs of calf are in some sense rare, exactly because
the cost e!ect obstructs equations between extensionally equivalent computations. To account for
extensional equivalence and other behavioral properties, we study programs in the fragment of
calf under the extensional phase ¶E.

The extensional fragment of calf. As discussed in Section 1.3, the (proof-irrelevant) proposition ¶E
renders the extensional modality as the function space "$! ¶E → $, which naturally generalizes
to a dependent modality "):¶E ($(1)) ! (1 : ¶E) → $(1). The force of this modality is e!ected by
the following axiom in calf, which makes step silent in the presence of ¶E:

step/¶E : "(step!(()) =))

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

A Cost-Aware Logical Framework 9:13

data !# where

*! : #→ !#

∗ : ¶E → !#

_ : Π% : #.Π) : ¶E .

*! (%) = ∗())

"(#⇓! → +⇓") " "#⇓! → "+⇓"

= "(Σ, : #.!hasCost(#, ,, !)) → "(Σ- : +.!hasCost(+, - ,"))

" Σ, : "#."#:¶E!hasCost(#, , ()), !) → Σ- : "+."#:¶E!hasCost(+, - ()),")

" (Σ, : "#. 1) → (Σ- : "+. 1)

" "#→ "+ " "(#→ +)

Fig. 2. Le!: closed modality as a quotient inductive type; right: extracting the extensional content of cost-
aware functions, where !):¶E$(1) ! (1 : ¶E) → $(1) is the dependent version of the extensional modality.

Thus the extensional modality " governs behavioral speci"cations in the sense that any type
in the image of " is oblivious to computation steps. One such behavioral speci"cation is the
extensional equality between programs, rendered in calf as the type "()1 =)2). In the case of the
two identity programs, we can take ideasy as the speci"cation and prove that idhard obeys it:

Theorem 2.3 (Examples.Id.easy≡hard). We have the modal equation "(idhard = ideasy).

Proof. By function extensionality, it su#ces to show idhard (3) = ideasy (3) for all 3 : nat and
1 : ¶E. This follows by induction on 3 , using the equation step/¶E (1) in the inductive case. !

2.6 Closed/Intensional Modality

Complementary to the open/extensional modality " is the closed/intensional modality ! that
governs intensional/quantitative properties. One may think of applying the intensional modality
as sealing away the extensional part so it cannot be observed and leaving only the intensional part
of a program. Consequently a type in the image of the intensional modality ! is trivial under the
extensional modality ", i.e. "!$ " 1 for any type $. In the Eilenberg–Moore model of calf, we
exploit this property to enforce the step erasure rule step/¶E: by interpreting computation types
as algebras for the writer monad !C × −, the cost structure of programs is obliterated whenever
the extensional phase ¶E is present in the context. In Fig. 2 we de"ne the intensional modality as a
quotient inductive type [Altenkirch and Kaposi 2016b; Fiore et al. 2021]. In categorical language
the intensional modality is the pushout $,#×¶E ¶E of the projection maps of $ × ¶E.

Program extraction. The intensional modality allows one to organize quantitative information
in a way that facilitates extraction of ordinary programs from cost-aware programs. For instance,
consider the type of functions between cost-aware computations $⇓! → (⇓" where $⇓! ! Σ) :
$.!hasCost($,), &) is the type of computations of $ that incur & steps. Note that the type hasCost
is guarded by the intensional modality. Fig. 2 shows that one may extract the underlying function by
applying the extensional modality" and using the fact that" is lex and commutes with exponentials.

2.7 Noninterference

In Section 1 we claim that the extensional part of calf programs cannot analyze the intensional
part of their input. This is substantiated by the following theorem:

Theorem 2.4 (Calf.Noninterference.oblivious). Given any function + : F($) → "(, we
have that + (step! ())) = + ()) for any & : C and) : F($).

Moreover, when the input of a calf program is fully intensional, we may obtain a stronger
noninterference property by observing the interaction of the extensional and intensional modalities
(also exploited in the program extraction example in Section 2.6):

Theorem 2.5 (Calf.Noninterference.constant). Any function + : !$→ "(is constant.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

9:14 Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper

In other words one cannot construct a map into the extensional fragment that branches based
on purely intensional information, a fact that enables a type-directed method to systematically
eliminate intensional structure from programs of a certain shape. For instance, one may perform
the following program optimization:

Theorem 2.6 (Calf.Noninterference.optimization). Any map + : (Σ& : 7 .!$(&)) → "(
admits an optimization + ′ : 7 → "(such that + (&,%) = + ′(&) for all & : 7 and % : !$(&).

Proof. We need to construct a map + ′ : 7 → "(. Suppose that & : 7 . By Theorem 2.5, there
is a constant map -_.0 : !$(&) → "(such that -%. + (&,%) = -_.0, which provides the required
program 0 of type "(. By de"nition, we have + (&,%) = + ′(&) for all & : 7 and % : !$(&). !

Recalling the type of bounded computations $⇓! from Section 2.6, we may apply Theorem 2.6 to
a program of type $⇓! → "(to obtain an optimized program of type $→ "(that dispenses with
the proof of the cost bound.

2.8 Presentation of calf in a Logical Framework

Following recent work [Gratzer and Sterling 2020; Sterling and Harper 2021; Uemura 2019] promot-
ing the study of type theories qua mathematical objects in structured categories, we present calf as
a signature in a logical framework using the internal language of locally cartesian closed categories
(lcccs). As observed by Uemura [2019], one can specify a type theory as a list of constants in a
version of extensional dependent type theory. The resulting signature presents the free lccc over the
de"ned constants, which we then take as the de"nition of the type theory. As we show in Section 5,
this view of type theories as certain initial objects allows one to easily de"ne models of calf.
Concretely, we work in a logical framework with a universe of judgments Jdg closed under

dependent product, dependent sum, and extensional equality. An object theory (e.g. calf) is speci"ed
as follows:

(1) Judgments are declared as constants ending in Jdg.
(2) Binding and scope is handled by the framework-level dependent product (3 : .) → / (3).
(3) Equations between object-level terms are speci"ed by constants ending in the framework-

level equality type 31 =(32.

Presentation of calf in the logical framework. We present calf in Fig. 3. For brevity, we do not
explicitly mention all types and computations here, the majority of which remain unchanged from
'cbpv. Note that we de"ne computations as tm- (.) ! tm+(U(.)), leading to a less bureaucratic
version of CBPV in which thunk and force are identities. The calf equality type eq comes equipped
with a re$ection rule ref that renders inhabitation of eq equi-derivable with judgmental equality.
Thus we abuse notation slightly and also write) =tm- (() + for the type eqU(() (), +).

Presentation of calf with contexts. One may also present calf in a more traditional style that
de"nes mutually inductively three basic judgments (ignoring equality judgments) governing con-

texts Γ ctx , types Γ . $ tp± , and terms Γ .) : tm±($) . In particular, a well-formed context in

such a presentation of calf would only contain structural assumptions of the form % : tm±($) or
1 : ¶E. Note that although we have promoted the terminology of “modalities” when describing calf,
the introduction and elimination rules of the extensional/intensional modalities behave like ordi-
nary connectives of type theory and involve only standard type theoretic contexts with structural
substitutions. For instance, the extensional/open modality may be de"ned as follows:

!-F

Γ . $ tp+

Γ . "+$ tp+

!-I

Γ,1 : ¶E .) : tm
+($)

Γ . "in ()) : tm
+("+$)

!-E

Γ .) : tm+("+$) Γ . 1 : ¶E

Γ . "out (),1) : tm
+($)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

A Cost-Aware Logical Framework 9:15

In the logical framework presentation of calf the extensional modality is more economically de"ned
by the following constants (also displayed in Fig. 3):

"+ : tp+ → tp+

_ : {$} tm+("+$) " "(tm+($))

The adequacy of the logical framework presentation of calf with respect to the presentation with
contexts is a result of recent work on de"ning dependent type theories in the doctrine of lcccs
[Gratzer and Sterling 2020].

3 QUANTITATIVE REFINEMENT IN calf

In Section 2.8 we developed the skeletal structure of calf equipped the e!ect step for cost instru-
mentation. In this section, we de"ne a quantitative re"nement expressing the upper bound of a
computation and present a collection of expected rules for the re"nement relation. As mentioned
in Section 1, this mode of quantitative reasoning manifests as equations between computations;
we can make meaningful inferences about the cost of a computation) by equating it to another
computation whose cost structure is readily available, i.e. step! (ret(%)).
As a "rst attempt, we may conjecture that a computation) : tm- (F($)) is bounded by & : C

if) =tm- (F(#)) step!
′
(ret(%)) for some & ′ ≤ & and % : tm+($). While this is a perfectly sensible

de"nition, our investigations suggest it is more natural to replace ordinary inequality ≤ with the
extensional inequality "(& ′ ≤ &). Consequently the upper bound speci"cation may be concisely
expressed by re"ning the hasCost re"nement from Section 1.4:

hasCost($,), &) = Σ
++% : $.) =tm- (F(#)) step

! (ret(%))

isBounded($,), &) = Σ
++& ′ : U(Ĉ)."+(U(& ′ ≤̂ &)) × hasCost($,), & ′)

Here Ĉ and ≤̂ internalizes the (judgmental) structure of the cost monoid C as calf types, i.e. we

have that tm- (Ĉ) " C. The use of the extensional inequality in the isBounded re"nement re$ects
the intuition that “costs don’t have cost”. More importantly, this arrangement grants one access to
the extensional fragment and the extensional properties therein when proving cost re"nements,
which is essential for analyses of algorithms that depend on behavioral invariants of data structures.
In Section 5, we prove that “extensional cost bounds” "(& ≤ & ′) are equivalent to ordinary cost
bounds & ≤ & ′ for a large class of cost monoids in the intended model of calf.

3.1 "antitative Refinement Rules

calf admits many expected principles for reasoning about the isBounded re"nement. We present
the exemplary rules used in the case studies in Section 4, summarized in inference rule style in
Fig. 4. There are three syntax-directed re"nements: the Return re"nement bounds the return of
a value by the neutral element 0 : C; the Step re"nement states that step! increases the bound
on a computation by & ; the Bind re"nement combines the bounds on a sequence of computations.
Lastly, the Relax re"nement allows a cost bound to be replaced with a weaker bound.

3.2 Recursion

As mentioned in Section 1.6, Bove and Capretta’s accessibility predicates provide a way to express
general recursive de"nitions in type theory. Inspired by Niu and Harper [2020], we provide an
alternative approach in calf that exploits the cost structure of programs: one can use the cost bound
of a given algorithm to safely de"ne the algorithm in question. Instead of accessibility predicates,
we may parameterize every program by a clock that represents the amount of fuel available for
recursion. We say that an instantiation of the clock is safe when it provides enough fuel for the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

9:16 Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper

C : Jdg

0 : C

+ : C→ C→ C

≤ : C→ C→ Jdg

costMon : isCostMonoid(C, 0, +, ≤)

step : {. : tp-} C→ tm- (.) → tm- (.)

step0 : {. ,)} step
0 ()) =)

step+ : {. ,), &1, &2}

step!1 (step!2 ())) = step!1+!2 ())

tp+ : Jdg

tm+ : tp+ → Jdg

U : tp- → tp+

F : tp+ → tp-

tm- (.) ! tm+(U(.))

ret : ($: tp+,% : tm+($)) → tm- (F($))

bind : {$: tp+,. : tp-} tm- (F($)) →

(tm+($) → tm- (.)) → tm- (.)

¶E : Jdg

¶E/uni : {1, 2 : ¶E} 1 = 2

!(J) ! ¶E → J

step/¶E : {. ,), &} !(step! ()) =))

!
+ : tp+ → tp+

_ : {$} tm+(!+$) " !(tm+($))

" : tp+ → tp+

8" : tm+($) → tm+("$)

∗ : ¶E → tm+("$)

_ : Π% : tm+($).Π1 : ¶E .8" (%) = ∗(1)

ind" : {$} (% : tm+("$)) → (. : tm+("$) → tp-) →

(30 : (% : tm+($)) → tm- (. (8" (%)))) →

(31 : (1 : ¶E) → tm- (. (∗(1)))) →

((% : tm+($)) → (1 : ¶E) → 30 (%) = 31 (1)) →

tm- (. (%))

Π : ($: tp+,. : tm+($) → tp-) → tp-

(ap, lam) : {$,. } tm- (Π($;.)) " (% : tm+($)) → tm- (. (%))

Σ
++ : ($: tp+,(: tm+($) → tp+) → tp+

(unpair++, pair++) : {$,(} tm+(Σ++($;()) " Σ(tm+($)) (-%. tm+(((%)))

Σ
+− : ($: tp+,. : tm+($) → tp-) → tp-

(unpair+−, pair+−) : {$,. } tm- (Σ+− ($;.)) " Σ(tm+($)) (-%. tm- (. (%)))

eq : ($: tp+) → tm+($) → tm+($) → tp+

self : {$} (%,0 : tm+($)) →

% =tm+ (#) 0 → tm+(eq# (%,0))

ref : {$} (%,0 : tm+($)) →

tm- (F(eq# (%,0))) → % =tm+ (#) 0

uni : {$,%,0} (9,: : tm- (F(eq# (%,0)))) → !(9 = :)

nat : tp+

zero : tm+(nat)

suc : tm+(nat) → tm+(nat)

rec : (, : tm+(nat)) →

(. : tm+(nat) → tp-) → tm- (. (zero)) →

((, : tm+(nat)) → tm- (. (,)) →

tm- (. (suc(,)))) → tm- (. (,))

lamstep : {$,. , + , &} lam(step! (+)) = step! (lam(+))

pairstep : {$,. ,)1,)2, &} step
! (()1,)2)) = ()1, step

! ()2))

bindstep : {$,. ,), + , &} bind(step! ()); +) = step! (bind(); +))

Fig. 3. Equational presentation of calf as a signature Σcalf in the logical framework. Here the type
isCostMonoid encodes all the structure of a cost monoid and Σ denotes the framework-level dependent sum.
We write (5, !) : $ " (when 5 and ! are the forward map and backward map of an isomorphism $ " (.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

A Cost-Aware Logical Framework 9:17

Return
(Calf.Types.Bounded.bound/ret)

isBounded ($; ret(%); 0)

Step
(Calf.Types.Bounded.bound/step)

isBounded ($;);;)

isBounded ($; step! ()); & + ;)

Bind
(Calf.Types.Bounded.bound/bind)

isBounded ($;); &) ∀% : $. isBounded ((; + (%);; (%))

isBounded ((; bind(); +); bind(); -%. & + ; (%)))

Relax
(Calf.Types.Bounded.bound/relax)

isBounded ($;); &) & ≤ & ′

isBounded ($;); & ′)

Fig. 4. "antitative refinement lemmas in calf displayed in inference rule style.

clocked program to satisfy the behavioral speci"cation of the algorithm. By de"nition the recursion
depth of the program is a safe instantiation.
Furthermore, note that the cost of the program is an upper bound on the recursion depth in

many cost models. In such cases de"ning an algorithm in calf is intertwined with extracting and
verifying its cost bound, evincing a synergy one enjoys in the cost-aware setting: algorithms with
interesting cost structure require general recursive de"nitions, meanwhile their safety as clocked
programs is derived from the cost bound. Observe that this paradigm is a legitimate encoding of
general recursion because we do not track the cost of computing the cost bound. One may think of
this arrangement as programming with a version of for loops whose bounds are computed in a
cost-free manner.

Method of recurrence relations. To put the plan in action, we outline a recipe for de"ning and
analyzing an algorithm using the method of recurrence relations in calf:

(1) An algorithm is given along with its cost model. Place step in accordance with the cost model
to obtain a cost-aware instrumentation of the algorithm.

(2) De"ne a clocked version of the algorithm; explicitly, one parametrizes the algorithm by an
extra clock argument of type nat representing the available fuel; when the clock is nonzero,
the program follows the designated recursion pattern by decrementing the clock, and when
the clock is zero, the program terminates by returning a default value or raising an exception.

(3) De"ne the recursion depth that bounds the number of recursive calls. Because we do not track
the cost of computing the recursion depth, it may be de"ned however convenient.

(4) De"ne the the associated cost recurrence that maps inputs and to costs. Often times this may
be used in place of the recursion depth as it is an upper bound. Similar to the recursion depth,
we do not track the cost of the cost recurrence.

(5) Obtain the complete program by instantiating the clocked program with the recursion depth.
Prove this is a safe instantiation in the sense that the resulting program satis"es the behavioral
speci"cation of the algorithm (e.g. computes the greatest common divisor).

(6) Prove that the resulting algorithm is bounded by the cost recurrence. This process is mostly
mechanical: one repeatedly applies the lemmas in Section 3 to break down isBounded goals.

(7) Re"ne the recurrence by (e.g.) computing a closed-form solution. Usually this step represents
the bulk of the work in pen-and-paper algorithm analysis.

We apply this recipe in the following section to analyze Euclid’s algorithm for the greatest
common divisor.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

9:18 Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper

4 VERIFICATION IN calf

We demonstrate in calf two fundamental techniques used pervasively in algorithm analysis. First,
we illustrate the method of recurrence relations by analyzing Euclid’s algorithm for the greatest
common divisor, proving its correctness and deriving an asymptotically tight upper bound on the
number of modulus operations used. Second, we formalize the physicist’s method for amortized
analysis by studying the complexity of sequences of batched queue operations, verifying that each
queue operation has constant amortized cost. Due to space limitations we cannot discuss the sorting
case study in detail, but we mention results concerning parallel complexity in Section 6, and the
interested reader can "nd the full development in the Agda formalization.

Through these case studies, we promote a comprehensive veri"cation pipeline made possible by
the uni"cation of the following ingredients in a single framework:

(1) Speci"cation of cost models
(2) Formal connection between algorithms and their associated recurrence relations
(3) A modality that administers extensional properties
(4) Full-spectrum dependent types that provides a rich speci"cation language

Cost models. Prior to analyzing an algorithm, one has to make clear what “counts” as cost. A
particularly simple de"nition is to count every transition step in an operational semantics, resulting
in a language-level cost semantics. On the other hand, algorithms researchers prefer a di!erent
perspective in which cost is an algorithm-speci"c notion. For example, a common cost model for
sorting algorithms counts the number of comparisons, which does not account for the cost of (e.g.)
constructing lists. This view allows one to study the underlying combinatorial structure of an
algorithm without getting distracted by implementation details. This is the prevailing perspective
we take in calf, although one can also work with a uniform language-level cost semantics when
necessary; for instance, in the amortized analysis of batched queues (see Section 4.2) we axiomatize
a type of cost-aware lists that charges one step per recursive call.

Formalizing recurrence extraction. Recurrence relations are a fundamental concept in algorithm
analysis — every algorithm can be abstracted into an associated cost recurrence that characterizes
the relationship between the input and the induced cost. Recent work of Kavvos et al. [2019] has
provided mathematical grounding for informal proofs involving recurrence relations in the form
of a veri"ed procedure for extracting (higher-order) recurrence relations from CBPV programs.
Although calf does not support recurrence extraction in the mechanical style proposed by Kavvos
et al. [2019], one canmanually de"ne a recurrence and express its relationship to the given algorithm
by proving the internal isBounded re"nement. Indeed, one of the advances embodied in calf is the
uni"cation of the distinct phases/languages in Kavvos et al. [2019] into a single framework that
furnishes a programming language with support for cost speci"cation.

Managing extensionality. As discussed in Section 1.3, the language of phase distinctions naturally
induces a modality " for extension, which we use to express behavioral speci"cations in calf.
For instance, we express the correctness of Euclid’s algorithm by proving that it satis"es the
characteristic equations of the gcd under the extensional modality ".

Cost-aware logical framework. Decades of experience has shown the e!ectiveness of using
dependent type theories to encode mathematics [Buzzard et al. 2020; Gonthier 2008; Han and van
Doorn 2020] and to verify behavioral properties of programs [Chlipala 2013; Lee et al. 2007; Stump
2016; Ullrich 2016]. Our experience with calf suggests that dependent type theories are also an
appropriate tool for analyzing intensional properties of programs including cost. In the following
case studies we rely on the rich type structure of calf to evaluate di!erent strategies for establishing

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

A Cost-Aware Logical Framework 9:19

modinst : tm
+(nat) → tm+(nat) → tm- (F(nat))

modinst (3,4) = step1 (ret(mod (3,4)))

gcdclocked : tm+(nat) → tm+(nat2) → tm- (F(nat))

gcdclocked (zero) (3,4) = ret(3)

gcdclocked (suc(<)) (3, zero) = ret(3)

gcdclocked (suc(<)) (3, suc(4)) = bind(modinst (3, suc(4)); -= . gcdclocked (<) (suc(4), =))

gcddepth : tm+(nat2) → tm+(nat)

gcddepth (3,4) =

{
zero if y = zero

suc(gcddepth (4,mod (3,4))) o.w.

gcd : tm+(nat2) → tm- (F(nat))

gcd (3,4) = gcdclocked (gcddepth (3,4)) (3,4)

Fig. 5. Euclid’s algorithm in calf. From top to bo#om: modinst is the cost instrumented modulus operation,
gcdclocked is the clocked algorithm, gcddepth is the recursion depth/cost recurrence, and gcd is the final

program. Note that because gcddepthis cost-free, we may define it however convenient, e.g. by well-founded

induction on the arguments.

cost bounds. We emphasize that calf is a framework for quantitative reasoning: instead of working
with a "xed set of rules, one is free to choose the most appropriate tool for the given problem.

4.1 Euclid’s Algorithm

In our "rst case study we analyze Euclid’s algorithm for calculating the greatest common divisor,
the prototypical example of an algorithm that relies on nonstructural recursion. Our analysis closely
follows the steps in the recipe from Section 3.2.

Behavioral speci"cation. Let gcd : tm+(nat2) → tm- (nat) be a candidate calf program for
computing the gcd. Inspired by the usual formulation of Euclid’s algorithm, we may specify the
correct behavior of gcd with the following propositions:

"(gcd (3, zero) = ret(3)) (3)

"(gcd (3, suc(4)) = gcd (suc(4),mod (3, suc(4)))) (4)

Above we have assumed that there is a (cost-free) calf program mod : tm+(nat2) → tm+(nat)
that computes the modulus. In other words Eqs. (3) and (4) state that gcd satis"es the de"ning
clauses of Euclid’s algorithm in the extensional fragment.

Specializing the cost structure. Because the gcd is de"ned on the natural numbers, we instantiate
the cost structure C at the ordered monoid (N, +, 0, ≤).

Executing the recipe. We execute the recipe from Section 3.2 to analyze Euclid’s algorithm. The
associated calf programs are displayed in Fig. 5. First we de"ne the cost model to be the number of
mod operations, encoded in the instrumented version of themodulus,modinst, which is used to de"ne
the clocked gcd algorithm gcdclocked. Here the "rst parameter of gcdclocked serves as the termination
metric: recursive calls in Euclid’s algorithm are justi"ed by decrementing the clock parameter.
Next, observe that under our cost model the recursion depth and cost recurrence coincide for

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

9:20 Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper

Euclid’s algorithm, so we de"ne a single (cost-free) program gcddepth that simultaneously provides
a su#cient instantiation (described in Section 3.2) of the clock in gcdclocked and a cost recurrence
for the algorithm. Consequently the complete algorithm gcd is obtained by instantiating the clock
parameter in gcdclocked with gcddepth. We prove that gcd correctly implements gcd:

Theorem 4.1 (Examples.Gcd.Spec.{gcd≡spec/zero, gcd≡spec/suc}). We have that gcd be-
haves correctly, i.e. Eqs. (3) and (4) hold for all 3,4 : tm+(nat).

Let 6 be the obvious isomorphism tm+(nat) " N.4 We verify that gcd is bounded by 6 ◦ gcddepth:
Theorem 4.2 (Examples.Gcd.Clocked.gcd≤gcd/depth). For all 3,4 : tm+(nat), we have that

isBounded
(
nat; gcd (3,4); (6 ◦ gcddepth) (3,4)

)
.

Lastly we prove a re"nement for the recurrence gcddepth by computing a closed-form bound. Let

Fib : N → N be the "bonacci sequence, and let Fib−1 : N → N be the function characterized by
the equation Fib−1 (3) = max {> | Fib(>) ≤ 3}. Note that Fib−1 is well-de"ned since Fib is strictly
monotonic for , ≥ 2. It is well-known that the cost bound 6 ◦ gcddepth is closely related to Fib−1:

Theorem 4.3 (Examples.Gcd.Refine.gcd/cost≤gcd/depth/closed). For all 3,4 : tm+(nat),
we have that (6 ◦ gcddepth) (3,4) ≤ Fib−1 (6 (3)) + 1.

Corollary 4.4 (Examples.Gcd.Refine.gcd≤gcd/depth/closed). For all 3,4 : tm+(nat), we
have that isBounded

(
nat; gcd (3,4); Fib−1 (6 (3)) + 1

)
.

4.2 Amortized Analysis

In addition to the method of recurrence relations, we may formulate more advanced algorithm
analysis techniques. As an example, we illustrate the calf formalization of amortized analysis. First
introduced by Tarjan in the mid-80s, amortized analysis is a method to establish cost bounds on
sequences of operations on a data structure that is more precise than a simple union bound. In this
section we present a version of amortized analysis known as the physicist’s method: given a data
structure ? , one may de"ne a measure Φ : ? → Z+ that represents the amount of potential that can
be used to do work. The crux of the analysis is to rig Φ so that expensive operations are associated
with large decreases in potential; because Φ is nonnegative, this ensures that expensive operations
cannot occur too often in a given sequence, i.e. their cost is amortized.

Batched queues. To illustrate the physicist’s method, we analyze the amortized complexity of
a queue implementation known as batched queues [Burton 1982; Gries 1987; Hood and Melville
1981; Okasaki 1998]. A batched queue is a pair of lists (+ ,0) coupled with the invariant that the
logical order of the queue is + :: rev(0). The calf implementation of the batched queue is presented
in Fig. 6. For simplicity, we only consider elements of type nat.

Specializing the cost structure. For amortized analysis of batched queues, we instantiate the cost
monoid C at the ordered monoid (N, +, 0, ≤) whose structure as a semiring and compatibility with
the integers Z are required to de"ne and reason about the potential function.

Cost model. A common cost model in this setting is the number of list iterations. We encode this
cost model by axiomatizing a type of cost-aware lists L : C→ tp+ → tp+. that is parameterized by
the amount to charge for each recursive call. The type L has the standard constructors nil and cons;

4Because both the cost monoid N and nat are de"ned via the Agda natural numbers, . is the identity in our implementation.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

A Cost-Aware Logical Framework 9:21

@ ! L1 (nat) × L1 (nat) enq : tm+(@) → tm+(nat) → tm+(@)

enq((+ ,0), 3) = (+ , cons(3 ;0))

deq0 : tm
+(list(nat)) → tm- (F(1 +@ × nat))

deq0 (0) = A ← rev(0); recL (A){ret(inl(★)) | -%, A
′, _. ret(inr((A ′, nil),%))}

deq : tm+(@) → tm- (F(1 + (@ × nat)))

deq((+ ,0)) = recL (+){deq0 (0) | -%, +
′, _. ret(inr((+ ′,0),%))}

Fig. 6. Batched queues in calf.

the only new rule is the destruction of cons nodes, which induces the annotated amount of cost:

rec/cons : {&,$,%,. ,)0,)1} (A : tm+(L! ($))) →

recL (cons(%; A);. ;)0;)1) = step! ()1 (%) (A) (recL (A ;. ;)0;)1)))

To charge unit cost per iteration, we de"ne the type of batched queues as @ ! L1 (nat) × L1 (nat).
Note that the standard list type is recovered as list($) ! L0 ($). We write | − | : {&} L! ($) → N for
the length function on lists.

Upper bounding individual queue operations. We obtain cost bounds on the individual operations
using similar techniques as in Section 4.1:

Theorem 4.5 (Examples.Queue.enq≤enq/cost, Examples.Queue.deq≤deq/cost). For any
queue : and element 3 , we have isBounded (@ ; enq(:, 3); 0). Moreover, for any queue : = (+ ,0), we
have isBounded (1 +@ × nat; deq(:); 1 + |0 |).

Serializing the queue operations. To formalize the notion of a sequence of operations, we de"ne
a serialization of the queue operations in Fig. 7. Here, op denotes the type of queue operations,
which is either an enqueue of an element or a dequeue. Given a serialized operation B and a queue
:, !B"(:) is the interpretation of B on :. By Theorem 4.5 the resulting computation is bounded by
the cost of the corresponding operation cost(:,B), de"ned in Fig. 7:

Corollary 4.6 (Examples.Queue.op≤op/cost). Given an operation B and a queue :, we have
isBounded

(
@ ; !B"(:); cost(:,B)

)
.

The function !−"seq (−) lifts the interpretation to sequences of operations by threading the given
queue through the list of operations. It is bounded by costseq:

Lemma 4.7 (Examples.Queue.op/seq≤op/seq/cost). Given a list of operations A and a queue :,
we have isBounded

(
@ ; !A"seq (:); costseq (A,:)

)
.

Amortized analysis of batched queues. We are now in a position to analyze the amortized cost of
the queue operations. We de"ne the potential function on queue states:

Φ : tm+(@) → N

Φ(+ ,0) = |+ | + 2 · |0 |

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

9:22 Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper

op : tp+

op = nat + 1

openq (3) = inl(3)

opdeq = inr(★)

cost : tm+(op) → tm+(@) → Z

cost(openq (3),:) = 0

cost(opdeq, (+ ,0)) = 1 + |0 |

!−"(−) : tm- (op→ @ → F(@))

!openq (3)"(:) = enq(:, 3)

!opdeq"(:) = ? ← deq(:);

case(?){ inl(★) ↩→ ret((nil, nil))

| inr((:, 3)) ↩→ ret(:) }

!−"seq (−) : tm
- (list(op) → @ → F(@))

!nil"seq (:) = ret(:)

!cons(B ; os)"seq (:) = :′ ← !B"(:); + (:′)

costseq : tm+(list(op)) → tm+(@) → Z

costseq (nil,:) = 0

costseq (cons(B ; os),:) = cost(B,:) + (:′ ← !B"(:); costseq (B?,:
′))

Fig. 7. Serialization of queue operations.

Traditionally an operation’s amortized cost is de"ned as the maximum value of the sum of the
induced cost and the di!erence in the potential over a starting state; we represent this relationally:

hasCostamortized : tm
+(op) → N→ Jdg

hasCostamortized (B,<) = (: : @) →
(
cost(B,:) +Z Φ(!B"(:)) −Z Φ(:)

)
≤Z <

Note that because amortized cost has to be de"ned using non-truncated subtraction, terms of
type N appearing in the relation hasCostamortized are all implicitly lifted to the integers Z. We verify
that the amortized cost of enqueue is 2, while the amortized cost of dequeue is 0:

Theorem 4.8 (Examples.Queue.enq/acost, Examples.Queue.deq/acost). We have that
hasCostamortized (openq (3), 2) for all 3 : tm+(nat) and that hasCostamortized (opdeq, 0).

Using the amortized costs, we can bound the cost of a sequence of queue operations using a
standard telescoping series:

Theorem 4.9 (Examples.Queue.op/seq/cost≤C0+2*|l|). Given an initial queue : : tm+(@)
and a list of operations A : tm+(list(op)), we have costseq (A,:) ≤ Φ(:) + 2|A |.

Combining this inequality with Lemma 4.7, we obtain an amortized bound on a sequence of
operations on the empty queue:

Corollary 4.10 (Examples.Queue.op/seq≤2*|l|). Given a list of operations A , we have that
isBounded

(
@ ; !A"seq ((nil, nil)); 2|A |

)
.

5 METATHEORY OF calf

In this section we substantiate the theory of calf by means of a model construction and prove the
following theorems:

(1) Nondegeneracy. The cost e!ect step is not degenerate, i.e ! step1 ()) =) for any) : F($).
(2) Validity of cost bounds. We have that " "(D ≤ ,) if and only if "D ≤ , for allD,, : N.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

A Cost-Aware Logical Framework 9:23

Models of calf. Recall from Section 2.8 that we de"ne calf as the free lccc!calf over the signature
Σcalf presented in Fig. 3. Consequently one may prove metatheorems about calf using the universal
property of freely generated categories. In the context of functorial semantics [Lawvere 1963], the
universal property states that one may de"ne a model !calf →ℰ by simply specifying the image
of the constants of Σcalf inℰ

5. The data of this speci"cation is encapsulated by the notion of an
algebra for a signature:

De"nition 5.1 (Algebra for a signature in the logical framework). Letℰ be a category that has a
universeU closed under dependent products, dependent sums, and extensional equality. Given a
signature Σ in the logical framework, we can de"ne a type AlgU(Σ) of U-small algebras for Σ in
ℰ by interpreting Jdg asU and taking the dependent sum over all the constants declared in Σ.

Thus given a su#ciently structured categoryℰ in the sense above, we can de"ne a model of
calf by exhibiting an algebra A : AlgU(Σcalf) in some universe U ofℰ. In fact we can de"ne the
intended model of calf in any given topos X with a distinguished subterminal object representing
the phase separation of intension and extension. To obtain an external view, we specialize the
construction to the presheaf topos over the interval category {0→ 1}, i.e. the category of families
of sets Set→, which suggests the interpretation of calf types as phase separated families.

Language of phase distinctions. Inspired by recent work emphasizing the role of phase distinctions
in the analysis of metatheoretic properties [Sterling and Angiuli 2021; Sterling and Harper 2021],
we isolate a pair of complementary modalities ",! that models the phase distinction of extension
and intension in calf. Using the language of phase distinctions, we give a succinct de"nition of our
model that avoids the explicit but more cumbersome presentation involving families.

5.1 Counting Model of calf

We exhibit an algebra A for Σcalf in any given topos X equipped with a distinguished proposition
¶E : Ω.6 Consequently we have at our disposal a rich internal language in the form of an extensional
dependent type theory that includes (in particular) a hierarchy of universesU0 , inductive types,
and a universe of proof-irrelevant propositions Ω. The role of the proposition ¶E is to provide a
semantic counterpart to the calf proposition ¶E.

Letting 5 < ! be universe levels, we then de"ne an algebraA : AlgU$
(Σcalf) that constitutes the

standard Eilenberg–Moore model of CBPV in which computation types are interpreted as algebras
for a given monad.7 In the case of calf we dub this interpretation the counting model, so named
because the interpretation of the computation type F($) is the free algebra of a particular writer
monad whose carrier classi"es elements of $ paired with a step count. Because many parts of the
interpretation are standard, we highlight only the constructions pertaining to calf per se.

5.1.1 Phase Distinction. As mentioned above, we de"ne the extensional phase ¶E as the distin-
guished proposition ¶E. By de"nition, the extensional modality is rendered as the function space
in the internal language of X, i.e "− ! ¶E → −. The intensional modality !− is de"ned as the
pushout $,#×¶E ¶E of the projection maps of $ × ¶E.

Proposition 5.2 (Rijke et al. [2020]). Both ",! are idempotent, left exact and monadic.

We write (8",8!) for the monadic unit of the (extensional, intensional) modality. Observe that
!$ collapses to a single point when a proof of ¶E exists:

5An analogous situation arises when considering homomorphisms out of a free group: any function on the generators
determines a homomorphism.
6For the limited topos theory we require in this section, we employ the notations of Anel and Joyal [2021].
7Not to be confused with De"nition 5.1.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

9:24 Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper

Proposition 5.3. Given 1 : ¶E, we have that !$ " 1 for any $.

Thus wemay e!ect the erasure of step in the extensional fragment by arranging the cost structure
of programs to be a type in the image of !: when a proof 1 : ¶E is present, a cost & is equal to any
other cost, in particular 0; consequently we have step! ()) = step0 ()) =) by the coherence of step.

5.1.2 Cost Monoid C. Recalling that calf is parameterized in a cost monoid C, our model takes as
an input an arbitrary (M, +, 0, ≤) cost monoid in the category of sets Set. We then de"ne C as the
image ofM under the constant sheaf functor Set→ Sh(X). Note that because C is not necessarily
in the image of !, we interpret computation types of calf as algebras for the writer monad !C×−.
By Proposition 5.3 the cost structure of programs is then rendered trivial underneath ¶E.

5.1.3 Judgmental Structure. Per the Eilenberg–Moore model of CBPV, value types calf are simply
interpreted as types in X, and computation types are interpreted as algebras for !C × −:

alg(E) =




A : U0

map : E (A) → A

unit : map ◦ 8 = >;A

mult : map ◦ F = map ◦Emap

tp+ : U1

tp+ = U0

tm+($) = $

tp- : U1

tp- = alg(!C × −)

tm- (.) = |. |

Note that given an algebra . , we write |. | for the carrier . · A.

5.1.4 Values and Computations. In the algebra semantics of CBPV, one coerces between value
types and computation types via the adjoint pair F $ U in which the left adjoint takes a type to
the associated free !C × −-algebra and the right adjoint forgets the structure of the given algebra,
writing freeAlg(E ,$) for the free E algebra on $:

F : U0 → alg(C × −)

F($) = freeAlg(!C × −,$)

U : alg(!C × −) → U0

U(.) = |. |

5.1.5 Cost E!ect. The cost e!ect step is given by the algebra map of the given computation type:

step : {. } C→ |. | → |. |

step! (3) = (. ·map) (8! (&), 3)

The following is an immediate consequence of Proposition 5.3.

Corollary 5.4 (Extensional fragment). We have that "(step! ()) =)) for all & : C and) : |. |.

Counting model in Set→. We may obtain a more concrete perspective on the counting model A
by considering its construction in the arrow category Set→ in which the extensional phase ¶E is
furnished by the subterminal family 0→ 1. Observe that objects in this category are families of
sets $: $1 → $0, which corresponds to the fact that a type $ is a family indexed in a collection of
behaviors with the "bers representing the cost structure for a given behavior.
In Set→ the extensional modality takes a family $1 → $0 to the identity $0 → $0, trivializing

the "ber (i.e. cost structure) over each point in $0. On the other hand, the intensional modality
takes $1 → $0 to the family $1 → 1; applying the extensional modality thence results in the
terminal family 1→ 1, illustrating the fact that the extensional part of the intensional part of any
type is trivial.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

A Cost-Aware Logical Framework 9:25

5.2 Nondegeneracy of step

Theorem 5.5. We have that (step! ()) =)) → !⊥ for any nonzero & : C and) : !C ×$.

Proof. By de"nition,) = (& ′,%) for some & ′ : !C and % : $. Unfolding the de"nition of step and
free algebra, we have step! (& ′,%) = (8! (&) +! & ′,%), where +! lifts + using the functorial action of
!. Hence it su#ces to show (8! (&) +!&

′,%) = (& ′,%) implies!⊥. Suppose (8! (&) +!& ′,%) = (& ′,%).
By the induction principle of pushouts, there are two cases to consider. First, suppose & ′ = 8! (&

′′)
for some & ′′ : C. Because ! is left exact, the equation 8! (&) +! 8! (&

′′) = 8! (&
′′) is equivalent

to !(& + & ′′ = & ′′). But we assumed that & is nonzero, so the fact that C is cancellative entails
& +& ′′ = & ′′ → ⊥, and the result follows from the functorial action of!. On the other hand, suppose
& ′ = ∗(1) for some 1 : ¶E. By Lemma 5.3, we obtain a unique proof of !⊥. !

Because !⊥ = ¶E, we know that if step is degenerate, then the extensional phase ¶E is derivable.
Observing that we placed no restrictions on the proposition ¶E in the construction of the counting
model, we immediately obtain the desired theorem by instantiating ¶E with the false proposition:

Theorem 5.6. We have that ! step! ()) =) for any nonzero & : C and) : F($).

5.3 Validity of Extensional Cost Bounds

We show that extensional inequalities are equivalent to ordinary inequalities in ASet→ , the Set
→

model of calf, whenever the cost monoid is extensional in the sense that C " "C and the relation
≤ may be characterized using Σ and equality types. As an example, we illustrate the case for the
cost monoid N, noting that the same proof may be easily adapted to other common cost monoids:

Theorem 5.7. We have that ASet→ " "(D ≤ ,) if and only if ASet→ "D ≤ , for allD,, : N.

Proof. Observe that we may presentD ≤ , as the type Σ< : N., = suc2 (D). By standard results
[Rijke et al. 2020] we know that the property of being extensional is closed under equality and Σ

types. Combined with the fact that N is an extensional type in the Set→ model of calf, we conclude
thatD ≤ , is also extensional, i.e. (D ≤ ,) " "(D ≤ ,). !

It may be natural to ask if Theorem 5.7 holds for the syntactic model of calf, i.e. is it the case
that . "(D ≤ ,) if and only if .D ≤ ,. While the backwards implication is immediate from the
de"nition of the extensional modality, the forward implication requires the fact that canonicity
holds for calf (so that any closed term . , : N is equal to a numeral). We conjecture that the
techniques of synthetic Tait computability developed by Sterling and Harper [2021] can be used in
the setting of calf to give a succinct proof of canonicity, but we do not claim any technical results.

Alternatively, one may axiomatize a version of calf with a constant of type "(D ≤ ,) →D ≤ ,
so that extensional inequality and inequality are equi-derivable internally. Executing this approach
requires one to restrict to cost monoids that are extensional and whose ordering relation is de"nable
using Σ and equality types. To keep the interpretation of calf more open-ended, we simply observe
via Theorem 5.7 that a large class of models of calf validates extensional cost bounds.

6 PARALLELISM IN calf

Parallelism arises naturally in the setting of calf via an equational presentation of the pro"ling
semantics of Blelloch and Greiner [1995]. Here we present a version adapted from Harper [2018]
in which it is observed that the source of parallelism can be isolated to the treatment of pairs of
computations: a parallel computation of $ × (is furnished by a new computation form & that
conjoins two independent computations of $ and (:

& : {$,(: tp+} tm- (F($)) → tm- (F(()) → tm- (F($ × ())

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

9:26 Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper

One may think of a term) & + as a computation in which) and + are evaluated simultaneously.

Cost structure of parallelism. Blelloch and Greiner [1995] characterize the complexity of a program
in terms of two measures: work, which represents its sequential cost, and span, which represents its
parallel cost. In calf this structure is recorded by the parallel cost monoid C ! (N2, ⊕, (0, 0), ≤N2)
in which ⊕ and ≤N2 are component-wise extensions of addition and ≤. Parallel cost composition is
then implemented by the operation (G1, ?1) ⊗ (G2, ?2) ! (G1 +G2,max (?1, ?2)) that takes the sum
of the works and max of the spans. This provides the required structure to assemble the cost of a
completed parallel pair:

&join : {$,(, &1, &2,%,0} (step!1 (ret(%))) & (step!2 (ret(0))) = step!1⊗!2 (ret((%,0)))

Nondegeneracy of parallel calf. Metatheoretic properties of parallel calf follows directly from
the counting model de"ned in Section 5, given that we can interpret parallel pairing. Because the
new pairing operation is only de"ned on free algebras, we may use ⊗! (lift of ⊗ by the functorial
action of !) to de"ne parallel pairing: (&1,%) & (&2,0) = (&1 ⊗! &2, (%,0)).

Parallel complexity of sorting. We have veri"ed the sequential and parallel complexity of insertion
sort and merge sort under the comparison cost model. As outlined above, we instantiate calf with
the parallel cost monoid N2 in which the "rst component represents the sequential cost and the
second component represents the parallel cost. The analysis is parameterized by a comparable type
$: tp+ that is equipped with a comparison operation ≤' : tm+($) → tm+($) → tm- (F(bool)).
Consequently, we may enforce the cost model by requiring the comparison operation ≤' to be
uniformly unit cost, i.e. isBounded

(
bool;3 ≤' 4; (1, 1)

)
for all 3,4 : tm+($). We have mechanized

the following asymptotically tight cost bounds:

Theorem 6.1 (Examples.Sorting.Parallel.InsertionSort.sort≤sort/cost/closed). For
all A : list($), we have that isBounded

(
list($); isort(A); (|A |2, |A |2)

)
.

Observe that sequential and parallel complexity coincide for insertion sort because there is
no opportunity for parallelism in the algorithm. The standard merge sort algorithm enjoys a
logarithmic speed up when the recursive calls are performed in parallel:

Theorem 6.2 (Examples.Sorting.Parallel.MergeSort.sort≤sort/cost/closed). For all
A : list($), we have that isBounded

(
list($);msort(A);

(⌈
log2 |A |

⌉
· |A |, 2 · |A | +

⌈
log2 |A |

⌉))
.

To obtain a sublinear bound on parallel complexity, one must modify merge sort to also perform
the merging step in parallel, an alteration that slightly increases the sequential complexity:

Theorem 6.3 (Examples.Sorting.Parallel.MergeSortPar.sort≤sort/cost/closed). For

all A : list($), we have that isBounded
(
list($);msortPar(A);

(⌈
log2 (|A | + 1)

⌉2
· |A |,

⌈
log2 (|A | + 1)

⌉3))
.

7 CONCLUSION

Three somewhat contradictory goals guide our type-theoretic approach to cost analysis:

(1) Expressiveness: the ability to codify the methods and results of informal algorithm analysis.
(2) Certi"cation: programs and their cost bounds should bear their intended meaning.
(3) Composition: cost bounds should be composable.

Most extant cost analysis frameworks excel at two out of three of the above. Type systems de"ned
by intrinsic cost-aware judgments [Ho!mann et al. 2012; Rajani et al. 2021; Wang et al. 2017] are
certi"ed by soundness theorems and admit composition by construction but lack expressiveness
because cost bounds are often form-constrained and typing derivations cannot exploit complex

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

A Cost-Aware Logical Framework 9:27

behavioral properties. The traditional method for cost accounting using the writer monad [Han-
dley et al. 2019] provides an expressive and compositional framework for cost analysis, but this
transparent instrumentation is not certi"ed in the aforementioned sense because programs in the
writer monad do not necessarily accumulate cost faithfully (see Section 1.8.3). Lastly, frameworks
for cost analysis in the setting of program logics [Atkey 2010; Mével et al. 2019] may be transposed
to type theory by working with a deep embedding of a programming language and its operational
semantics inside type theory. Although this can be developed into an expressive and certi"ed
framework in the sense above, it is not compositional because one may speak about operational
semantics only on closed terms and must quantify over closing instances for open terms.

In this paper we show that the three goals may be achieved simultaneously. First, the extensional
fragment of calf constituents an ordinary dependent type theory, which furnished us a rich
speci"cation language to formulate two widely used algorithm analysis techniques and illustrate
each through detailed case studies. Secondly, we see that calf programs account for cost faithfully
because cost structure arises via an abstract computational e!ect; therefore it is not possible to
de"ne exotic programs that spuriously abandon accumulated costs or branch based on the cost
component of an input. Lastly, the CBPV structure of cost e!ects induces a simple equational theory
that enables compositional cost analysis. We conclude by suggesting two particularly pertinent
directions for future investigations.

Automation. In practice the usability of any veri"cation framework may be greatly improved
by automating routine procedures or derivations. In the context of calf there are two immediate
opportunities for automation. On the one hand, the recurrence extraction step in the method of
recurrence relations (as de"ned in Section 3.2) may be automated in many cases by incorporating
the mechanism of Kavvos et al. [2019]. On the other hand, proofs involving restricted forms of cost
bounds may be automated either by recurrence solving (e.g. the Master theorem) or an automated
system such as RaML [Ho!mann et al. 2012].

Full adequacy and partiality. It would be interesting to prove an adequacy result of the form
presented in Kavvos et al. [2019] in which one de"nes a cost-aware embedding of a source language
(equipped with an operational semantics) in the target language (in this case calf) and proves
that the image of any source program is assigned the same cost as the cost of the source program
induced by the operational semantics. In many cases the source language of interest admits general
recursion; consequently one must arrange for calf to faithfully interpret non-terminating programs.
For instance, we may equip calf with the partiality monad of Capretta or guarded recursion à la
Birkedal et al. [2011]; Bizjak et al. [2016]. We believe that calf is expressive enough for us to prove
an internal version of the adequacy result of Kavvos et al. [2019] as Paviotti et al. have done for
PCF in guarded type theory.

8 DATA AVAILABILITY STATEMENT

calf has been implemented in the Agda proof assistant [Niu et al. 2021].

ACKNOWLEDGMENTS

We are grateful to Carlo Angiuli and Alex Kavvos for productive discussions on the topic of this
research, and to Tristan Nguyen at AFOSR for his support.
This work was supported in part by AFOSR under grants MURI FA9550-15-1-0053, FA9550-19-

1-0216, and FA9550-21-0009, in part by the National Science Foundation under award number
CCF-1901381, and by AFRL through the NDSEG fellowship. Any opinions, "ndings and conclusions
or recommendations expressed in this material are those of the authors and do not necessarily
re$ect the views of the AFOSR, NSF, or AFRL.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

9:28 Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper

REFERENCES

Umut A. Acar and Guy E. Blelloch. 2019. Algorithms: Parallel and Sequential. http:www.algorithms-book.com.
Thorsten Altenkirch and Ambrus Kaposi. 2016a. Normalisation by Evaluation for Dependent Types. In 1st International

Conference on Formal Structures for Computation andDeduction (FSCD 2016) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 52), Delia Kesner and Brigitte Pientka (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 6:1–6:16. https://doi.org/10.4230/LIPIcs.FSCD.2016.6

Thorsten Altenkirch and Ambrus Kaposi. 2016b. Type Theory in Type Theory Using Quotient Inductive Types. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’16). Association
for Computing Machinery, St. Petersburg, FL, USA, 18–29. https://doi.org/10.1145/2837614.2837638

Mathieu Anel and André Joyal. 2021. Topo-logie. In New Spaces in Mathematics: Formal and Conceptual Re#ections,
Mathieu Anel and Gabriel Catren (Eds.). Vol. 1. Cambridge University Press, Chapter 4, 155–257. https://doi.org/10.1017/
9781108854429.007

Robert Atkey. 2010. Amortised Resource Analysis with Separation Logic. In Programming Languages and Systems, Andrew D.
Gordon (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 85–103.

Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. 2011. First Steps in Synthetic Guarded
Domain Theory: Step-Indexing in the Topos of Trees. In Proceedings of the 2011 IEEE 26th Annual Symposium on Logic
in Computer Science. IEEE Computer Society, Washington, DC, USA, 55–64. https://doi.org/10.1109/LICS.2011.16
arXiv:1208.3596 [cs.LO]

Aleš Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus E. Møgelberg, and Lars Birkedal. 2016. Guarded Dependent
Type Theory with Coinductive Types. In Foundations of Software Science and Computation Structures: 19th International
Conference, FOSSACS 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2016, Eindhoven, The Netherlands, April 2–8, 2016, Proceedings, Bart Jacobs and Christof Löding (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 20–35. https://doi.org/10.1007/978-3-662-49630-5_2 arXiv:1601.01586 [cs.LO]

Guy Blelloch and John Greiner. 1995. Parallelism in Sequential Functional Languages. In Proceedings of the Seventh
International Conference on Functional Programming Languages and Computer Architecture. Association for Computing
Machinery, La Jolla, California, USA, 226–237. https://doi.org/10.1145/224164.224210

Guy E. Blelloch and John Greiner. 1996. A Provable Time and Space E#cient Implementation of NESL. In Proceedings of
the First ACM SIGPLAN International Conference on Functional Programming. Association for Computing Machinery,
Philadelphia, Pennsylvania, USA, 213–225. https://doi.org/10.1145/232627.232650

Ana Bove and Venanzio Capretta. 2005. Modelling general recursion in type theory. Mathematical Structures in Computer
Science 15, 4 (2005), 671–708. https://doi.org/10.1017/S0960129505004822

Edwin Brady. 2013. Idris, a general-purpose dependently typed programming language: Design and implementation. Journal
of Functional Programming 23, 5 (Sept. 2013), 552–593. https://doi.org/10.1017/S095679681300018X

F. Burton. 1982. An E#cient Functional Implementation of FIFO Queues. Inf. Process. Lett. 14 (1982), 205–206.
Kevin Buzzard, Johan Commelin, and Patrick Massot. 2020. Formalising Perfectoid Spaces. In Proceedings of the 9th ACM

SIGPLAN International Conference on Certi"ed Programs and Proofs. Association for Computing Machinery, New Orleans,
LA, USA, 299–312. https://doi.org/10.1145/3372885.3373830

Venanzio Capretta. 2005. General Recursion via Coinductive Types. Logical Methods in Computer Science 1, 2 (2005), 1–18.
Adam Chlipala. 2013. Certi"ed Programming with Dependent Types: A Pragmatic Introduction to the Coq Proof Assistant. The

MIT Press.
R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P.

Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith. 1986. Implementing Mathematics with the Nuprl Proof Development
System. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Robert L. Constable and Karl Crary. 2002. Computational complexity and induction for partial computable functions in type
theory. Cambridge University Press, Cambridge, 164–181. https://doi.org/10.1017/9781316755983.009

Robert L. Constable and Daniel R. Zlatin. 1984. The Type Theory of PL/CV3. ACM Transactions on Programming Languages
and Systems 6, 1 (Jan. 1984), 94–117. https://doi.org/10.1145/357233.357238

The Coq Development Team. 2016. The Coq Proof Assistant Reference Manual.
Thierry Coquand. 2019. Canonicity and normalization for dependent type theory. Theoretical Computer Science 777 (2019),

184–191. https://doi.org/10.1016/j.tcs.2019.01.015 arXiv:1810.09367 [cs.PL] In memory of Maurice Nivat, a founding
father of Theoretical Computer Science - Part I.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli!ord Stein. 2009. Introduction to Algorithms, 3rd Edition.
MIT Press. http://mitpress.mit.edu/books/introduction-algorithms

Karl Crary and Stephanie Weirich. 2000. Resource Bound Certi"cation. In Proceedings of the 27th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. Association for Computing Machinery, Boston, MA, USA, 184–198.
https://doi.org/10.1145/325694.325716

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

http:www.algorithms-book.com
https://doi.org/10.4230/LIPIcs.FSCD.2016.6
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.1017/9781108854429.007
https://doi.org/10.1017/9781108854429.007
https://doi.org/10.1109/LICS.2011.16
https://arxiv.org/abs/1208.3596
https://doi.org/10.1007/978-3-662-49630-5_2
https://arxiv.org/abs/1601.01586
https://doi.org/10.1145/224164.224210
https://doi.org/10.1145/232627.232650
https://doi.org/10.1017/S0960129505004822
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1145/3372885.3373830
https://doi.org/10.1017/9781316755983.009
https://doi.org/10.1145/357233.357238
https://doi.org/10.1016/j.tcs.2019.01.015
https://arxiv.org/abs/1810.09367
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1145/325694.325716

A Cost-Aware Logical Framework 9:29

Nils Anders Danielsson. 2008. Lightweight Semiformal Time Complexity Analysis for Purely Functional Data Structures.
In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San
Francisco, California, USA) (POPL ’08). Association for Computing Machinery, New York, NY, USA, 133–144. https:
//doi.org/10.1145/1328438.1328457

Norman Danner, Daniel R. Licata, and Ramyaa. 2015. Denotational cost semantics for functional languages with inductive
types. In Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming, ICFP 2015, Vancouver,
BC, Canada, September 1-3, 2015, Kathleen Fisher and John H. Reppy (Eds.). Association for Computing Machinery,
140–151. https://doi.org/10.1145/2784731.2784749

Ankush Das, Jan Ho!mann, and Frank Pfenning. 2018a. Parallel Complexity Analysis with Temporal Session Types. In
Proceedings of International Conference on Functional Programming (ICFP 2018), M. Flatt (Ed.). ACM, St. Louis, Missouri,
USA, 91:1–91:30.

Ankush Das, Jan Ho!mann, and Frank Pfenning. 2018b. Work Analysis with Resource-Aware Session Types. In Proceedings
of 33rd Symposium on Logic in Computer Science (LICS 2018), A. Dawar and E. Grädel (Eds.). Oxford, UK, 305–314.

Ankush Das and Frank Pfenning. 2020. Rast: A Language for Resource-Aware Session Types. CoRR abs/2012.13129 (Dec.
2020). https://arxiv.org/abs/2012.13129 Submitted.

Rowan Davies and Frank Pfenning. 1999. A Modal Analysis of Staged Computation. J. ACM 48 (Sept. 1999). https:
//doi.org/10.1145/382780.382785

Manuel Eberl. 2015. The Akra-Bazzi theorem and the Master theorem. Archive of Formal Proofs (July 2015). https://isa-
afp.org/entries/Akra_Bazzi.html, Formal proof development.

Manuel Eberl. 2017a. The Median-of-Medians Selection Algorithm. Archive of Formal Proofs (Dec. 2017). https://isa-
afp.org/entries/Median_Of_Medians_Selection.html, Formal proof development.

Manuel Eberl. 2017b. The number of comparisons in QuickSort. Archive of Formal Proofs (March 2017). https://isa-
afp.org/entries/Quick_Sort_Cost.html, Formal proof development.

Marcelo P. Fiore, Andrew M. Pitts, and S. C. Steenkamp. 2021. Quotients, inductive types, and quotient inductive types.
(2021). arXiv:2101.02994 [cs.LO]

G. Gonthier. 2008. Formal Proof — The Four-Color Theorem. Notices of the AMS 55, 11 (2008). https://www.ams.org/notices/
200811/tx081101382p.pdf

Daniel Gratzer and Jonathan Sterling. 2020. Syntactic categories for dependent type theory: sketching and adequacy. (2020).
arXiv:2012.10783 [cs.LO]

John Greiner and Guy E. Blelloch. 1999. A Provably Time-E#cient Parallel Implementation of Full Speculation. ACM
Transactions on Programming Languages and Systems 21, 2 (March 1999), 240–285. https://doi.org/10.1145/316686.316690

David Gries. 1987. The Science of Programming (1st ed.). Springer-Verlag, Berlin, Heidelberg.
Jesse Michael Han and Floris van Doorn. 2020. A Formal Proof of the Independence of the Continuum Hypothesis. In

Proceedings of the 9th ACM SIGPLAN International Conference on Certi"ed Programs and Proofs. Association for Computing
Machinery, New Orleans, LA, USA, 353–366. https://doi.org/10.1145/3372885.3373826

Martin A. T. Handley, Niki Vazou, and Graham Hutton. 2019. Liquidate Your Assets: Reasoning about Resource Usage in
Liquid Haskell. Proceedings of the ACM on Programming Languages 4, POPL (Dec. 2019). https://doi.org/10.1145/3371092

Robert Harper. 2018. PFPL Supplement: Types and Parallelism. (2018). https://www.cs.cmu.edu/~rwh/pfpl/supplements/
par.pdf

Robert Harper, John C. Mitchell, and Eugenio Moggi. 1990. Higher-Order Modules and the Phase Distinction. In Proceedings
of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. Association for Computing
Machinery, San Francisco, California, USA, 341–354. https://doi.org/10.1145/96709.96744

Jan Ho!mann, Klaus Aehlig, and Martin Hofmann. 2012. Resource Aware ML. In Computer Aided Veri"cation, P. Madhusudan
and Sanjit A. Seshia (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 781–786.

Martin Hofmann. 2000. A Type System for Bounded Space and Functional In-Place Update–Extended Abstract. In Proceedings
of the 9th European Symposium on Programming Languages and Systems. Springer-Verlag, Berlin, Heidelberg, 165–179.

Martin Hofmann and Ste!en Jost. 2003. Static Prediction of Heap Space Usage for First-Order Functional Programs. In
Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. Association for
Computing Machinery, New Orleans, Louisiana, USA, 185–197. https://doi.org/10.1145/604131.604148

Robert Hood and Robert Melville. 1981. Real-time queue operations in pure LISP. Inform. Process. Lett. 13, 2 (1981), 50–54.
https://doi.org/10.1016/0020-0190(81)90030-2

Ste!en Jost, Kevin Hammond, Hans-Wolfgang Loidl, and Martin Hofmann. 2010. Static determination of quantitative
resource usage for higher-order programs. In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2010, Madrid, Spain, January 17-23, 2010, Manuel V. Hermenegildo and Jens Palsberg
(Eds.). Association for Computing Machinery, 223–236. https://doi.org/10.1145/1706299.1706327

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the ground
up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28 (2018),

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

https://doi.org/10.1145/1328438.1328457
https://doi.org/10.1145/1328438.1328457
https://doi.org/10.1145/2784731.2784749
https://arxiv.org/abs/2012.13129
https://doi.org/10.1145/382780.382785
https://doi.org/10.1145/382780.382785
https://isa-afp.org/entries/Akra_Bazzi.html
https://isa-afp.org/entries/Akra_Bazzi.html
https://isa-afp.org/entries/Median_Of_Medians_Selection.html
https://isa-afp.org/entries/Median_Of_Medians_Selection.html
https://isa-afp.org/entries/Quick_Sort_Cost.html
https://isa-afp.org/entries/Quick_Sort_Cost.html
https://arxiv.org/abs/2101.02994
https://www.ams.org/notices/200811/tx081101382p.pdf
https://www.ams.org/notices/200811/tx081101382p.pdf
https://arxiv.org/abs/2012.10783
https://doi.org/10.1145/316686.316690
https://doi.org/10.1145/3372885.3373826
https://doi.org/10.1145/3371092
https://www.cs.cmu.edu/~rwh/pfpl/supplements/par.pdf
https://www.cs.cmu.edu/~rwh/pfpl/supplements/par.pdf
https://doi.org/10.1145/96709.96744
https://doi.org/10.1145/604131.604148
https://doi.org/10.1016/0020-0190(81)90030-2
https://doi.org/10.1145/1706299.1706327

9:30 Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper

e20. https://doi.org/10.1017/S0956796818000151
Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

Monoids and Invariants As an Orthogonal Basis for Concurrent Reasoning. In POPL ’15: Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. Association for Computing Machinery,
Mumbai, India, 637–650. https://doi.org/10.1145/2676726.2676980

G. A. Kavvos. 2017a. Dual-Context Calculi for Modal Logic. In Proceedings of the 32nd Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS). arXiv:1602.04860 http://arxiv.org/abs/1602.04860

G. A. Kavvos. 2017b. On the Semantics of Intensionality and Intensional Recursion. Ph.D. Dissertation. arXiv:1712.09302
G. A. Kavvos, Edward Morehouse, Daniel R. Licata, and Norman Danner. 2019. Recurrence Extraction for Functional

Programs through Call-by-Push-Value. Proceedings of the ACM on Programming Languages 4, POPL (Dec. 2019). https:
//doi.org/10.1145/3371083

S. C. Kleene. 1943. Recursive predicates and quanti"ers. Trans. Amer. Math. Soc. 53 (1943), 41–73. https://doi.org/10.2307/
1990131

F. William Lawvere. 1963. Functorial Semantics of Algebraic Theories. Ph.D. Dissertation. Columbia University.
Daniel K. Lee, Karl Crary, and Robert Harper. 2007. Towards a Mechanized Metatheory of Standard ML. In Proceedings of

the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. Association for Computing
Machinery, Nice, France, 173–184. https://doi.org/10.1145/1190216.1190245

Paul Blain Levy. 2004. Call-By-Push-Value: A Functional/Imperative Synthesis (Semantics Structures in Computation, V. 2).
Kluwer Academic Publishers, Norwell, MA, USA.

Paul Blain Levy. 2006. Call-by-push-value: Decomposing call-by-value and call-by-name. Higher-Order and Symbolic
Computation 19 (2006), 377–414. https://doi.org/10.1007/s10990-006-0480-6

Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2019. Time Credits and Time Receipts in Iris. In Programming
Languages and Systems, Luís Caires (Ed.). Springer International Publishing, Cham, 3–29.

Tobias Nipkow, Jasmin Blanchette, Manuel Eberl, Alejandro Gómez Londoño, Peter Lammich, Christian Sternagel, Simon
Wimmer, and Bohua Zhan. 2021. Functional Algorithms, Veri"ed! https://functional-algorithms-veri"ed.org

Yue Niu and Robert Harper. 2020. Cost-Aware Type Theory. (2020). arXiv:2011.03660 [cs.PL]
Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper. 2021. agda-calf. https://doi.org/10.1145/3462303
Ulf Norell. 2009. Dependently Typed Programming in Agda. In Proceedings of the 4th International Workshop on Types in

Language Design and Implementation (TLDI ’09). Association for Computing Machinery, Savannah, GA, USA, 1–2.
Chris Okasaki. 1998. Purely Functional Data Structures. Cambridge University Press, USA.
Marco Paviotti, Rasmus Ejlers Møgelberg, and Lars Birkedal. 2015. A Model of PCF in Guarded Type Theory. Electronic

Notes in Theoretical Computer Science 319, Supplement C (2015), 333–349. https://doi.org/10.1016/j.entcs.2015.12.020
The 31st Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXI).

Pierre-Marie Pédrot and Nicolas Tabareau. 2019. The Fire Triangle: How to Mix Substitution, Dependent Elimination, and
E!ects. Proceedings of the ACM on Programming Languages 4, POPL (Dec. 2019). https://doi.org/10.1145/3371126

Frank Pfenning. 2001. Intensionality, Extensionality, and Proof Irrelevance in Modal Type Theory. In Proceedings of
the 16th Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society, Washington, DC, USA, 221–.
http://dl.acm.org/citation.cfm?id=871816.871845

G.D. Plotkin. 1977. LCF considered as a programming language. Theoretical Computer Science 5, 3 (1977), 223–255.
https://doi.org/10.1016/0304-3975(77)90044-5

Vineet Rajani, MarcoGaboardi, DeepakGarg, and JanHo!mann. 2021. AUnifying Type-Theory forHigher-Order (Amortized)
Cost Analysis. Proceedings of the ACM on Programming Languages 5, POPL (Jan. 2021). https://doi.org/10.1145/3434308

Egbert Rijke, Michael Shulman, and Bas Spitters. 2020. Modalities in homotopy type theory. Logical Methods in Computer
Science Volume 16, Issue 1 (Jan. 2020). https://doi.org/10.23638/LMCS-16(1:2)2020 arXiv:1706.07526 [math.CT]

Patrick Schultz and David I. Spivak. 2019. Temporal Type Theory. Progress in Computer Science and Applied Logic, Vol. 29.
Birkhäuser Basel. https://doi.org/10.1007/978-3-030-00704-1 arXiv:1710.10258 [math.CT]

Daniel Spoonhower, Guy E. Blelloch, Robert Harper, and Phillip B. Gibbons. 2008. Space Pro"ling for Parallel Functional
Programs. In Proceedings of the 13th ACM SIGPLAN International Conference on Functional Programming. Association for
Computing Machinery, Victoria, BC, Canada, 253–264. https://doi.org/10.1145/1411204.1411240

Jonathan Sterling and Carlo Angiuli. 2021. Normalization for Cubical Type Theory. In 2021 36th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS). IEEE Computer Society, Los Alamitos, CA, USA, 1–15. https://doi.org/10.1109/
LICS52264.2021.9470719 arXiv:2101.11479 [cs.LO]

Jonathan Sterling and Robert Harper. 2021. Logical Relations as Types: Proof-Relevant Parametricity for Program Modules.
J. ACM 68, 6 (Oct. 2021). https://doi.org/10.1145/3474834 arXiv:2010.08599 [cs.PL]

Aaron Stump. 2016. Veri"ed Functional Programming in Agda. Association for Computing Machinery and Morgan &
Claypool.

R. Tarjan. 1985. Amortized Computational Complexity. Siam Journal on Algebraic and Discrete Methods 6 (1985), 306–318.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://arxiv.org/abs/1602.04860
http://arxiv.org/abs/1602.04860
https://arxiv.org/abs/1712.09302
https://doi.org/10.1145/3371083
https://doi.org/10.1145/3371083
https://doi.org/10.2307/1990131
https://doi.org/10.2307/1990131
https://doi.org/10.1145/1190216.1190245
https://doi.org/10.1007/s10990-006-0480-6
https://functional-algorithms-verified.org
https://arxiv.org/abs/2011.03660
https://doi.org/10.1145/3462303
https://doi.org/10.1016/j.entcs.2015.12.020
https://doi.org/10.1145/3371126
http://dl.acm.org/citation.cfm?id=871816.871845
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1145/3434308
https://doi.org/10.23638/LMCS-16(1:2)2020
https://arxiv.org/abs/1706.07526
https://doi.org/10.1007/978-3-030-00704-1
https://arxiv.org/abs/1710.10258
https://doi.org/10.1145/1411204.1411240
https://doi.org/10.1109/LICS52264.2021.9470719
https://doi.org/10.1109/LICS52264.2021.9470719
https://arxiv.org/abs/2101.11479
https://doi.org/10.1145/3474834
https://arxiv.org/abs/2010.08599

A Cost-Aware Logical Framework 9:31

Taichi Uemura. 2019. A General Framework for the Semantics of Type Theory. (2019). arXiv:1904.04097 [math.CT]
Sebastian Andreas Ullrich. 2016. Simple Veri"cation of Rust Programs via Functional Puri"cation. Master’s thesis. IPD

Snelting.
Peng Wang, Di Wang, and Adam Chlipala. 2017. TiML: A Functional Language for Practical Complexity Analysis with

Invariants. Proceedings of the ACM on Programming Languages 1, OOPSLA (Oct. 2017). https://doi.org/10.1145/3133903

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 9. Publication date: January 2022.

https://arxiv.org/abs/1904.04097
https://doi.org/10.1145/3133903

	Abstract
	1 Introduction
	1.1 Synthetic Cost Analysis via Computational Effects
	1.2 A New Phase Distinction: Behavior vs. Cost
	1.3 The Language of Phase Distinctions
	1.4 Quantitative Reasoning in calf
	1.5 Compositional Cost Analysis
	1.6 Analyzing the Cost of General Recursive Functions
	1.7 Cost Models and Adequacy
	1.8 Related Work

	2 Cost-aware Logical Framework
	2.1 A Refresher on CBPV: the Identity Function Two Ways
	2.2 Cost Monoid: Cost Structure of Programs
	2.3 Cost as an Effect in calf
	2.4 Cost Refinements in calf
	2.5 Reasoning About Extensional Properties Using the Extensional Phase
	2.6 Closed/Intensional Modality
	2.7 Noninterference
	2.8 Presentation of calf in a Logical Framework

	3 Quantitative Refinement in calf
	3.1 Quantitative Refinement Rules
	3.2 Recursion

	4 Verification in calf
	4.1 Euclid's Algorithm
	4.2 Amortized Analysis

	5 Metatheory of calf
	5.1 Counting Model of calf
	5.2 Nondegeneracy of step
	5.3 Validity of Extensional Cost Bounds

	6 Parallelism in calf
	7 Conclusion
	8 Data Availability Statement
	Acknowledgments
	References

