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Abstract: We show that operating magneto-optic coupled ring isolators near an exceptional
point (EP) fundamentally improves their tradeoff between isolation bandwidth and insertion
loss. In analogy to EP sensors, operating a coupled ring isolator at an EP causes its isolation
bandwidth to depend on the square root of the nonreciprocal phase shift (NRPS) instead of the
usual linear dependence, thereby enhancing the bandwidth when the NRPS is small. In cases of
practical interest, this behavior enables more than a 50% increase in 20 dB isolation bandwidth at
3 dB insertion loss for a given pair of rings. The advantage of EP operation grows in the vicinity
of magneto-optic material resonances and should extend to other types of on-chip isolators that
rely on similarly-weak nonreciprocal perturbations.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

On-chip optical isolators and circulators are critical for the operation of many photonic integrated
circuits, yet implementing these components on silicon with a foundry-compatible process that
combines high isolation ratio and bandwidth with low insertion loss and physical footprint remains
challenging. Of the various strategies [1–3] that have been explored to overcome this problem
with full dynamic reciprocity [4], magneto-optic (MO) ring resonators [5–11] and Mach-Zender
interferometers [12–15] are among the most successful to date. The nonreciprocal phase shift
(NRPS) underlying the operation of these devices is, however, a weak perturbation (with a
fractional change in propagation constant, ΔV/V ∼ 10−4 between forward and backward-going
modes), which imposes basic tradeoffs between isolation ratio, bandwidth, insertion loss, and
compactness [1].
In parallel, recent work has demonstrated that the effect of a small perturbation, X, can be

greatly enhanced in non-Hermitian optical systems that operate near exceptional points (EPs),
where the system eigenmodes and eigenfrequencies coalesce in parameter space [16–18]. These
spectral degeneracies are characterized by eigenfrequencies that vary in proportion to =

√
X (where

= is the number of eigenmodes that coalesce) instead of the usual linear dependence on X, which
has garnered attention for sensing applications since the frequency shift measured in response
to, e.g. a small dielectric perturbation remains large as the perturbation grows small [17, 18].
Viewing the weak NRPS of nonreciprocal MO devices in this context thus raises the question of
whether operating near an EP could similarly improve their performance.

Here, we examine ring resonator-based MO isolators and circulators using temporal coupled
mode theory [19, 20] and show that operating them near an EP leads to an analogous square
root dependence of isolation bandwidth on NRPS that fundamentally improves its tradeoff with
insertion loss. This result is verified through fullwave simulations and should be realizable in a
previously fabricated coupled-ring circulator [21] simply by changing its mode of operation.

2. Results and discussion

2.1. Isolator behavior near an EP

We begin by considering a single ring isolator in the all-pass configuration shown in Fig. 1(a).
Photons couple to and from the bus waveguide at a rate Wa and are dissipated in the ring at a
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rate W0. Maintaining the same notation as Ref. [22] for consistency in what follows, the time
evolution of the electric field in the ring, �0 (C) = 00 (C)4−8lC , is described by:

¤�0 (C) = −8l̃0�0 (C) + 8
√
Wa/grt�in (C), (1)

where �in = 0in4
−8lC is the incident field amplitude in the bus waveguide, grt is the round trip

time in the ring, and l̃0 = l0 − 8Ŵ0/2 is its complex resonance frequency written in terms
of the total loss rate, Ŵ0 = Wa + W0. Defining the complex detuning, X̃0 = l − l̃0, Eq. 1 can
be rewritten as ¤00 = 8X̃000 + 8

√
Wa/grt0in which, together with the output boundary condition,

0t = 0in + 8
√
Wagrt00, yields the single ring transmission coefficient:

Csr =
0t
0in

=
X0 + 8(Ŵ0/2 − Wa)

X0 + 8Ŵ0/2
, (2)

in terms of the real-valued detuning, X0 = l − l0. The intensity transmission coefficient,
) = |Csr |2, thus fully extinguishes at X0 = 0 when Wa = W0, which reflects the usual critical
coupling condition where the loaded Q-factor of the ring is half its intrinsic Q-factor [23].
Due to the NRPS in the ring, the resonance frequency for forward-going (counter clockwise-

circulating) light differs from that of backward-going (clockwise-circulating) light by an amount,
Xmo. Thus, if the ring in Fig. 1(a,i) is critically coupled and tuned to extinguish backward-going
light at X0 = 0, forward-going light is detuned (i.e. X0 → X0 − Xmo), causing the transmission
minimum of the black curve in Fig. 1(b) to shift to the right. An approximate analytical expression
for the isolation bandwidth (defined as the frequency range over which a minimum inverse
isolation ratio, . = )B/)F � 1, is maintained) in this situation follows from Eq. 2:

1sr ≈
2W0Xmo

√
.

(X2
mo + W2

0)1/2
, (3)

and exhibits a linear dependence on Xmo when Xmo � W0. Given that the forward transmittance
of the isolator at X0 = 0 is )F = X

2
mo/(X2

mo + W2
0), Eq. 3 can be rewritten as 1sr ≈ 2Xmo

√
. (1 − )F),

which expresses the basic tradeoff between bandwidth, isolation ratio, and insertion loss for a
single ring isolator.
Now consider the situation depicted in Fig. 1(a,ii), where the original MO ring is coupled to

the bus waveguide via another, non-MO ring. In analogy to the treatment above, the coupled
mode equations that describe this system are:

¤01 = 8(l − l̃1)01 + 8
˜̂
2
02 + 8

√
Wa
grt
0in (4a)

¤02 = 8(l − l̃2)02 + 8
˜̂∗

2
01. (4b)

Assuming lossless coupling between the rings (i.e. ˜̂ = ˜̂∗ = ^) and maintaining the same
complex detuning notation as before, X̃1,2 = l− l̃1,2 = X1,2 + 8Ŵ1,2/2, the transmission coefficient
for this coupled ring case is [22]:

Ccr =
(^/2)2 − X̃1X̃2 + 8WaX̃2

(^/2)2 − X̃1X̃2
. (5)

The eigenfrequencies of the homogeneous system in Eq. 4 follow from the poles of Eq. 5
and feature an EP when |Ŵ1 − Ŵ2 | = 2^. However, as emphasized by Smith et al. [22], the
transmittance minima (assuming passive rings with no gain) that follow from Eq. 5 do not
coincide with the eigenfrequencies due to interference with the input field in the bus waveguide.



Fig. 1. (a) Schematic showing the single (i) and coupled (ii) ring isolator configurations;
red dashes denote a magneto-optic ring with a resonance frequency split, Xmo, between
clockwise and counterclockwise circulating modes; the red arrow indicates the direction
with the higher frequency. Photons are coupled to and from the bus waveguide at a rate, Wa,
and between the rings at rate ^. Squiggly arrows denote the photon dissipation rate in each
ring. (b) Forward and backward transmission spectra for the critically-coupled single ring
(black), where Xmo simply shifts the resonance, and the coupled ring system (blue), where
Xmo breaks the exceptional point that exists for backward-going light.

The EP analogue in this case is the point at which a single transmittance minimum splits into two,
and may be identified by setting the derivative of the transmittance, 3) (l)/3l = 0. Recapping
the result from Ref. [22], the splitting point (casually referred to as the EP hereafter) occurs
when U ˆ̂4 + V ˆ̂2 + j = 0, where ˆ̂2 = (Ŵ1Ŵ2 + ^2)/4, U = 2(W1 + 2Ŵ2), V = −Ŵ2 (WaŴ2 + 2W2

avg),
j = WaŴ

2
2W

2
avg/2, and Wavg = (Ŵ1 + Ŵ2)/2.

To make a good isolator, the EP should ideally coincide with the critical coupling condition
that fully extinguishes transmission in one direction [23]. This condition is found from the zeros
of Eq. 5 and can be expressed as Ŵ2 (Wa − W1) = ^2. Combining this constraint with the splitting
point criterion, it is then straightforward to show that both are satisfied when Wa − W1 = Ŵ2 = ^.
Implementing this condition with W1 set to zero for simplicity (i.e. negligible loss in the

non-MO ring) thus yields a critically-coupled EP isolator characterized by the blue set of curves
in Fig. 1(b). The backward transmission spectrum occurs when there is no detuning between the
rings (i.e. X1 for CW circulation equals X2 for CCW circulation) and exhibits a sharper minimum
than the single ring case since it is a second order filter [24]. In the case of forward-going light,
the top ring is detuned by the MO frequency split (X2 → X2 − Xmo), which breaks the EP and
leads to the appearance of two shallow minima.

Setting aside the increase in isolation bandwidth that stems from its second order filter response,
the most interesting feature of the EP isolator is that its isolation bandwidth scales as the square
root of Xmo rather than linearly as shown in Fig. 2(a). A fairer comparison to two cascaded single



Fig. 2. (a) 20 dB isolation bandwidth as a function of the resonance frequency split in the
MO ring from Fig. 1, normalized to its dissipation rate (equal to Wa by virtue of critical
coupling) for the case of a single ring isolator (black), two single ring isolators cascaded
in series (red), and the coupled ring isolator operating at its exceptional point (blue). (b)
Isolation bandwidth per unit MO frequency shift as a function of insertion loss for each
case. The symbols in each panel are calculated by numerically evaluating the transmittance
spectra and the solid lines reflect the analytical approximations given in the text.

ring isolators [11] with the same net footprint and filter order shows that the bandwidth advantage
of EP operation emerges when Xmo is small compared with the loss/coupling rates in the system
(Wa = W2 = ^ at the EP), similar to the enhancement regime for EP sensors [17, 18]. We note,
however, that whereas some coupled ring EP sensors can actually perform better when operated
away from their EP with ^ < ^ep [25], operating at the EP is required in the present case for the
isolation bandwidth to achieve the square root scaling shown in Fig. 2(a).

As in the single ring case, it is possible to derive an approximate analytical expression for the
isolation bandwidth at the EP:

1ep ≈
√

2XmoW2.
1/4

(X2
mo + W2

2)1/4
, (6)

which explicitly shows the
√
Xmo dependence and agrees well with the numerical results in

Fig. 2. Using the forward transmission at zero detuning (which is identical to the single
ring isolator), Eq. 6 can be re-expressed in terms of the single ring isolator bandwidth as
1ep = 1sr (4.)F)−1/4, which indicates that the bandwidth enhancement grows arbitrarily large
with increasing insertion loss. Figure 2(b) compares the bandwidth-insertion loss tradeoff for all
three systems, demonstrating that EP operation enables a given MO frequency split to be used
more efficiently.



2.2. Circulator behavior near an EP

Since the total loss in the upper ring of the EP isolator does not distinguish between dissipation
and outcoupling, the results above are easily extended to the coupled ring circulator shown in
Fig. 3(a) by setting Ŵ2 = W2 + Wb. The scattering matrix coefficient for the thru path ((21) in this
case is the same as Eq. 5 and that for the cross path ((31) is obtained from the boundary condition
for the output field at port 3, 0x = 8

√
Wbgrt02, yielding:

(21 =
(^/2)2 − X̃1X̃2 + 8X̃2Wa

(^/2)2 − X̃1X̃2
(7a)

(31 =
−8(^/2)√WaWb

(^/2)2 − X̃1X̃2
. (7b)

The intuitive mode of operation for this device is to employ co-directional MO frequency shifts
in each ring that reinforce one another. This means that the rings have identical resonance
frequencies in the absence of a magnetic field and, e.g. the CCW mode in the lower ring and CW
mode in the upper ring undergo the same MO frequency shift (i.e. X̃1,2 → X̃1,2 − Xmo) so that the
extrema of |(12 |2 and |(13 |2 simply translate to the right in Fig. 3(b) and 3(c). This ’shift’ mode of
operation was analyzed previously in Refs. [10] and [11], and was experimentally demonstrated
in Ref. [21]. The isolation bandwidth between ports 1 and 2 for critically coupled operation is:

121,shft ≈
2XmoWa.

1/4

(4X4
mo + W4

a )1/4
, (8)

which is equivalent to 121,shft ≈ 2Xmo [. (1 − )F)]1/4 in terms of the forward transmission from
port 1 to port 2 (a factor of [. (1 − )F)]−1/4 higher than the equivalent single ring circulator).

The same system can be operated in EP mode by using contra-directional MO shifts such that
the positive MO-shifted resonance frequency of CW light in the lower ring is equal to the negative
MO-shifted resonance frequency of CCW light in the upper ring. That is, the rings are initially
detuned in the absence of a magnetic field such that the MO shifts push them into resonance
when light is incident from port 2 (corresponding to the EP condition, X1 = X2) and farther out of
resonance when light is incident from port 1 (X1 → X1 − Xmo and X2 → X2 + Xmo). This breaks
the EP, yielding the central transmission maximum in |(21 |2 and corresponding minimum in
|(31 |2 shown in Fig. 3(b) and Fig. 3(c), respectively. The isolation bandwidth between ports 1
and 2 in this case is:

121,ep =
2
√
XmoWa.

1/4 (X2
mo + W2

a )1/4

(2X2
mo + W2

a )1/2
, (9)

which exhibits the characteristic
√
Xmo dependence of EP operation when Xmo is small compared

to the coupling/loss rates in the system. Figure 3(d) shows that, in addition to maintaining a
larger isolation bandwidth as Xmo grows small, the forward transmission loss for EP operation
is also reduced relative to shift operation. Figure 3(e) summarizes both effects, demonstrating
that, for the same MO frequency split, insertion loss, and isolation ratio, EP operation enables
a higher isolation bandwidth. The increase can be estimated analytically by rewriting Eq. 9 as
121,ep ≈ 2121,shft [(1−)F) (4− 3)F)/)F(4− 2)F)2]1/4, which amounts to ∼ 1.5× at 3 dB insertion
loss.
The advantage of EP operation is less significant between ports 1 and 3 as shown in Fig. 3(f)

because high extinction in |(31 |2 requires high transmission in |(21 |2 by conservation of energy,
which is the low insertion loss/large Xmo regime where the EP effect diminishes in Fig. 3(d). We
note that, in principle, the EP-critical coupling condition, Wa − W1 = Wb + W2 = ^, implies that the
circulator (the circulation path is port 1→ 2→ 4→ 3→ 1) can only function symmetrically
(i.e. the same for light incident at any input port) when dissipation in the rings is negligible,



Fig. 3. (a) Schematic of a coupled ring circulator where light propagating from one port
to another experiences either the same (shift operation) or opposite (EP operation) MO
resonance frequency shifts in each ring. Non-reciprocal transmission spectra are shown for
each mode of operation between ports 1 and 2 in (b) and ports 1 and 3 in (c). In these plots,
Wa = Wb = ^ = Xmo and each family of curves shows the effect of increasing dissipation
(W1 = W2) in each ring. (d) Different scaling of isolation bandwidth (20 dB) and insertion
loss between ports 1 and 2 for the EP and shift modes of operation. These curves are for the
ideal case of lossless rings; they change negligibly when loss is included as summarized in
(e). (f) The isolation ratio between ports 1 and 3 is similar for the two modes of operation.

W1,2 � Wa,b. It turns out, however, that this is not a strict condition and the benefits of EP
operation remain robust even when loss is non-negligible, as evident from the lighter colored
lines in Fig. 3(b)-(e).
To validate the temporal coupled mode theory treatment above, we use Lumerical [26] to

simulate the circulator from Fig. 3(a) assuming the same geometry and material parameters
as in Ref. [11], except with a smaller ring radius of 10 µm that minimizes the combined
material and bending loss. Figure 4(a) shows the MO splitting in modal effective indices (=eff,±)
for each ring as well as the ring-to-ring and ring-to-guide power coupling coefficients ( rr
and  rg, respectively), which target the critical coupling condition,  rr =  

2
rg/(2 −  rg)2, at

_ = 1550 nm [24]. These results are then used with the transfer matrix method [24] to calculate
the transmission spectra plotted in Fig. 4(b), with equal ring radii for shift operation and slightly
different radii, '1/'2 = =eff,+/=eff,−, for EP operation (the rings would be thermally tuned in
practice) since the NRPS brings the rings into resonance for light propagating in one direction
and pushes them further out of resonance for light propagating in the other direction.

Associating the parameters in Fig. 4(a) with their temporal coupled mode theory counterparts,
we find good agreement between the two modeling approaches in Fig. 4(b), as well as with the
prior results of Ref. [11]. The EP mode splitting is obvious in the cross port spectra (|(31 |2)
of Fig. 4(b) but is less clear in the thru port case (|(21 |2) because the ∼ 37 dB cm-1 modal
propagation loss in the rings (due mainly to absorption in the Ce:YIG layer) causes the lower
wavelength minimum to dominate.

Figure 4(c) shows the average isolation bandwidth (20 dB) [21] for the thru port as a function
of the average (over the same bandwidth) insertion loss, which is varied by changing the coupling
gap widths to adjust  rr and  rg. As in Fig. 3(e), the advantage of operating in EP mode grows as



Fig. 4. (a) Effective indices calculated using the Lumerical MODE solver [26] for counter-
propagating modes in the MO rings of Fig. 3(a) assuming a ring radius of 10 µm and the
waveguide structure shown in the inset; details of the structure are provided in Ref. [11]. The
ring-to-ring ( rg) and ring-to-bus waveguide ( rr) power coupling coefficients simulated
using the Lumerical FDTD solver [26] are shown on the right-hand scale for gap thicknesses
of 150 nm and 400 nm, respectively. The optical constants of each material are the same as
in Ref. [11] except for a smaller Faraday rotation of -2000◦cm-1 in the cerium-substituted
yttrium iron garnet (Ce:YIG) layer [27]. The imaginary component of the effective index
(not shown) corresponds to a modal propagation loss of ∼ 37 dB cm-1. (b) Non-reciprocal
thru and cross port transmission spectra computed for shift and EP mode operation based on
the parameters in (a) using the transfer matrix method (dark lines) and temporal coupled
mode theory (faint background lines) for comparison; the rates in the latter case are
Wa = Wb = ^ = 34.5 GHz, W1 = W2 = 11.5 GHz, and Xmo = 39 GHz. (c) 20 dB isolation
bandwidth between ports 1 and 2 as a function of the insertion loss obtained by varying the
ring-to-ring (3rr) and ring-to-guide (3rg) gap thicknesses. The solid lines show the case
where the gaps satisfy the critical coupling condition and the scattered dots show the result
of normally-distributed random deviations in the gap thicknesses with a standard deviation,
f = 2 nm [28]. The filled green circles on each curve correspond to the spectra in (b) with
gap thicknesses (3rg, 3rr)=(150, 400) nm; magenta, and orange circles correspond to gap
thicknesses of (97, 280) nm and (60, 188) nm, respectively.



the coupling coefficients are increased (by decreasing the corresponding gap widths), broadening
the modal linewidths relative to the Δ_ ∼ 0.3 nm resonant wavelength split. To this point,
operating a typical circulator in EP instead of shift mode cuts its insertion loss by roughly a factor
of two while boosting its isolation bandwidth by ∼50%, as exemplified by the magenta markers
on each line.
Notably, this performance enhancement does not come at the expense of reduced fabrication

tolerance, as the scatter that results from likely coupling gap variations [28] in the Monte Carlo
analysis of Fig. 4(c) is similar for EP and shift mode operation. In fact, many of the random
realizations in the EP case yield a larger isolation bandwidth than the nominal critical coupling
condition (solid line). This happens when the rings are slightly overcoupled (realizations where
the ring-to-ring gap is narrower than nominal) and the extinction minimum of the backward
transmission spectrum begins to split, thereby broadening the bandwidth. This split is detrimental
to shift mode operation and thus all of its realizations lie below the critical coupling line. One
final practical benefit of EP operation is that it can be implemented for transverse electric (TE)
mode isolation by applying a uniform magnetic field normal to the plane of the rings, whereas
the field has to invert its direction between the rings for shift mode operation.
Moving forward, it seems likely that systems with higher order EPs [17] (constructed using,

e.g. the hierarchical method of Ref. [29]) could further improve the isolation bandwidth-insertion
loss tradeoff, though the value of doing this would ultimately depend on whether it justifies the
added complexity. More generally, the fact that loss is required for EPs to exist in the first place
may lead it to be viewed as a resource, for example by incentivizing operation closer to optical
transitions where the MO response is resonantly enhanced [27]. The opportunity is evident even
for the single ring case, where operating with the same MO figure of merit [30] (i.e. the ratio of
Verdet constant to absorption coefficient, which is proportional to Xmo/W0 in the formalism here)
near a lossy transition, as opposed to far from one, increases the isolation bandwidth per Eq. 3
without affecting the insertion loss since the latter is independent of Xmo/W0. In this context, we
note that our analysis neglects nonreciprocal loss (the Kramers-Kronig counterpart of NRPS) for
simplicity; it can be included by taking Xmo to be complex, though the effect tends to be minor.

3. Conclusion

In summary, we have shown that operating ring isolators at an EP causes their isolation bandwidth
to depend sublinearly on NRPS, which enhances the performance that can be achieved from the
weak MO response of current materials. The essence of this result can be recast in plain language
simply by saying that it is more effective to use a given NRPS to split a coupled ring resonance
than to shift one.

Although the treatment here is focused onMO isolators, other weak nonreciprocal perturbations
[2, 3] could presumably also leverage an appropriately-constructed EP to improve isolator
performance. Beyond passive isolators, the bigger opportunity may actually lie in active systems
(e.g. with gain in the top ring of Fig. 1(a,ii) and MO response in the bottom ring) given the
overarching desire to integrate lasers and isolators in most photonic integrated circuit applications.
While the basic threshold behavior of EP lasers is already worked out in Refs. [22,31–33], the
extent to which an above-threshold MO device is immune to its own reflected light (i.e. avoiding
dynamical and phase instabilities) is not yet clear and should provide fertile ground for future
study.
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