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Abstract. Consider a system with N identical single-server queues and a number of task
types,where each server is able to process only a small subset of possible task types. Arriving
tasks select d ≥ 2 random compatible servers and join the shortest queue among them. The
compatibility constraints are captured by a fixed bipartite graph between the servers and the
task types. When the graph is complete bipartite, the mean-field approximation is accurate.
However, such dense compatibility graphs are infeasible for large-scale implementation.We
characterize a class of sparse compatibility graphs for which the mean-field approximation
remains valid. For this, we introduce a novel notion, called proportional sparsity, and establish
that systems with proportionally sparse compatibility graphs asymptotically match the per-
formance of a fully flexible system. Furthermore, we show that proportionally sparse ran-
dom compatibility graphs can be constructed, which reduce the server degree almost by a
factorN=ln (N) comparedwith the complete bipartite compatibility graph.
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1. Introduction
1.1. Background and Motivation
A canonical model for large-scale systems, such as data centers and cloud networks, consists of a large number
of parallel servers with dedicated queues. Tasks arrive into the system sequentially in time and are immediately
and irrevocably assigned, using some efficient load-balancing algorithm, to one of these queues, where they wait
until executed. Because of ever-increasing heterogeneity in the incoming traffic, these systems typically suffer
from stringent task–server compatibility constraints. Indeed, executing a task at a server requires some prestored
data, and being able to serve all possible task types comes with an excessive storage capacity requirement (Wang
et al. [44], Xie et al. [46]) and an overwhelming implementation complexity (Mishra et al. [20], Reiss et al. [26],
Tsitsiklis and Xu [35]). Consequently, full flexibility in task allocation is not a luxury large-scale systems can
afford. It is therefore important to understand the performance of load-balancing algorithms under sparser com-
patibility constraints, where tasks of a particular type can be served only by a relatively small number of servers,
naturally viewed as neighbors in a bipartite compatibility graph between the servers and the task types.

The analysis of load-balancing algorithms for large-scale systems dates back to the seminal works by Vveden-
skaya et al. [41] and Mitzenmacher [21]. Since then, using mean-field techniques, there has been significant prog-
ress in our understanding of the performance of various algorithms. However, many of these heuristics turn out
to be false in the presence of compatibility constraints. A widely studied algorithm in this area is the join-the-
shortest-queue with d choices (JSQ(d)) or the “power-of-d” scheme, where each arriving task is assigned to the
shortest of d randomly selected queues. The JSQ(d) scheme is popular for its low-complexity implementation
and excellent delay performance. However, an ill-designed compatibility structure can lead to instability or poor
delay performance even for a system operating under the JSQ(d) scheme. In spirit, the nature of this observation
is similar to the famous Braess’s [2] paradox (Roughgarden and Tardos [27]) in networks. We discuss this exam-
ple in more detail in Remark 4 below.

The lack of a thorough understanding of large-scale systems with compatibility constraints may be attributed
to the scarcity of the theoretical toolbox to analyze such systems. Performance analysis of large-scale systems has
flourished in the last three decades because of the abundance of sophisticated mean-field techniques and, in par-
ticular, the asymptotic analysis of density-dependent population processes (Ethier and Kurtz [10]). This has pro-
vided a firm theoretical basis to analyze these systems. In the presence of arbitrary compatibility constraints, the
servers become nonexchangeable, which breaks a core assumption that lies at the foundation of the classical
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mean-field framework. Our goal in this paper is to understand the effect of compatibility constraints on the per-
formance of large-scale systems and, in particular, characterize a large class of sparse compatibility graphs that
match the performance of a fully flexible system asymptotically in the large-system limit. In doing so, we will
also make progress in developing new approaches to analyze such structurally constrained large-scale systems
driven by stochastic inputs.

1.2. Our Contributions
Consider a system with N single-server queues and M(N) task types. Tasks of each type arrive as independent
Poisson processes of rate λN=M(N) for λ < 1. Each task requires an exponentially distributed service time with
unit mean. We will be looking at a scaling regime where N→∞. The task–server compatibility is captured in
terms of a bipartite graph GN between the servers and task types; that is, a server i shares an edge in GN with a
task type j, if task type j can be processed by server i. Following the JSQ(d) policy, when a task of type j arrives, d
servers that share an edge with j are sampled uniformly at random with replacement, and the task is routed to
the shortest of the sampled queues. The quantity of interest is the global occupancy process qN(t) � (qN1 (t),
qN2 (t), : : : ), where qNi (t) denotes the fraction of servers with queue length at least i at time t in the Nth system.
Note that the case when GN is complete bipartite corresponds to the fully flexible system. Our focus is to identify
the sparsest compatibility structures that preserve the performance benefits of a fully flexible system, asymptoti-
cally as N→∞. In other words, we study the sparsity condition for the compatibility graph, which preserves the valid-
ity of the mean-field approximation.
It is reasonable to guess that well-designed compatibility graphs with a “sufficient” amount of expansion prop-

erty should preserve the effects of full flexibility, asymptotically, in the large-system limit. However, identifying
the right notion of expansion and thereby establishing precise limit laws for the process-level and steady state
occupancy processes remains a notoriously challenging problem and has inspired several research works, as we
will discuss below. In this work, we attempt to make progress in this direction by developing new approaches to
tackle the nonexchangeability. Specifically, our results can be categorized into two groups, as follows.

1.2.1. Arbitrary Deterministic Compatibility Graphs. We start by considering an arbitrary deterministic sequence
of graphs {GN}N≥1, indexed by the number of servers N, and define a novel notion of expansion, which we call
proportional sparsity; see Definition 1. We show that if the sequence of compatibility graphs is proportionally
sparse, then as N→∞, on any finite time interval, the occupancy process qN(·) under the JSQ(d) policy converges
to the same mean-field limit as the sequence of fully flexible systems. In fact, this process-level limit result
extends to a broad class of load-balancing algorithms, for which the assignment decision depends “smoothly” on
the empirical queue length distribution of the compatible servers. We call such algorithms Lipschitz continuous
task assignment policies; see Definition 3. An important step to prove the process-level limit is to show that for
almost all dispatchers, the empirical queue length distribution observed in its neighborhood is close to the empir-
ical queue length distribution observed among all servers in the system. This allows us to construct a coupling
between the constrained system and the fully flexible system and establish that the ℓ1-distance between the
global occupancy processes in two systems is small uniformly over any finite time interval.

For the interchange of limits and hence the convergence of steady state, two more key ingredients that we
need are ergodicity of the prelimit system (for each fixed N) and the tightness of steady states in an appropriate
sense. Note that if GN is not complete bipartite, the occupancy process qN(·) is no longer Markovian. Conse-
quently, one needs to be careful in defining its time asymptotics and, hence, the interchange of limits. For ergo-
dicity of the underlying Markov process, we need the graph sequence to satisfy a certain subcriticality condition
that was first introduced in Bramson [3]; see Definition 2. The tightness, however, is technically more challeng-
ing. In particular, we need to show that the sequence of steady state occupancy is tight with respect to a certain
weighted ℓ1 norm. For this, we construct a collection of Lyapunov functions, which provide uniform tail bounds
on the steady state of the global occupancy process.

Combining the above results, we conclude in Theorem 1 that if a sequence of graphs is proportionally sparse and
satisfies the subcriticality condition, then bothfinite-timedynamics and steady state behavior of the empirical queue
length process coincide with that of a fully flexible system, asymptotically asN→∞. It is worth highlighting that in
the above interchange of limits, we do not impose any restrictions on how the number of task types M(N) scales
withN. This includes the two popular scenarioswhereM(N) equals a constant andM(N)�N as special cases.

1.2.2. Random Compatibility Graphs. The results for deterministic graph sequence provide us all the theoretical
framework needed to analyze these systems. Next, we exploit these results to construct random sparse compati-
bility graphs with desired performance benefits. In the context of data-file placement or content replication in
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large-scale systems, the degree of a server in the compatibility graph can be thought to be roughly proportional
to the storage capacity requirement of that server. It is also considered to be a measure of complexity of the net-
work. To this end, we consider two cases.

First, suppose that the servers are constrained to have degrees exactly equal to c(N). In this case, construct GN

by selecting c(N) task types for each server, independently uniformly at random, without replacement, from the
set of all task types. For such a randomly constructed compatibility graph, we establish that the empirical queue
length distribution of the system has the same asymptotic law as the fully flexible system, both at the process
level and in steady state, if c(N) �M(N)ln (N)=N and c(N) � 1; see Theorem 2 for details.
Second, we consider a system that allows for inhomogeneous levels of flexibility for different task types. In

this case, the compatibility graph is constructed by selecting each edge incident to a task type w ∈WN with prob-
ability pw(N), independently of other edges. Thus, task type w will have an average degree Npw(N). In this case,
we show that the empirical queue length distribution of the system has the same asymptotic law as the fully flex-
ible system, both at the process level and in steady state, if minw∈WNpw(N) and the ℓ2 norm of the inverse proba-
bility vector (1=pw(N))w∈WN

satisfy suitable growth conditions; see Theorem 3 for details.
To prove the results for random instances, we verify, using concentration of measure arguments, that the

graph sequence satisfies both the proportional sparsity and the subcriticality conditions, under the respective
growth rate conditions as N→∞.

1.3. Related Works
The effect of flexibility in the task assignment in large-scale systems was first studied by Turner [36], who consid-
ered two types of arriving customers, those that have no routing choice and those that employ the JSQ(d) strat-
egy. It was shown that even a small amount of routing choice can lead to substantial gains in performance
through resource pooling. Later, He and Down [15] also considered the diffusion limit of a similar mixed strat-
egy model under heavy traffic.

Relatively recently, there have been a number of works analyzing load-balancing algorithms for large-scale
systems, where queues themselves are interconnected by some graph topology. In these models, each queue has
an independent, dedicated stream of external arrivals at rate λ < 1, and each arrival must be assigned instantane-
ously and irrevocably to one of the neighboring queues, including the one where it first appeared. Although
these models are related to the one proposed in this paper, they cannot directly be used to capture the
task–server compatibility constraints. In fact, they represent a special case of our model when M(N) � N and
there is a perfect matching between task types and servers; see Budhiraja et al. [4, remark 4] for a detailed discus-
sion. Because of this structural difference, the queue length process on an undirected graph is stable for any
graph, whereas for our model the question of stability is nontrivial by itself. Also, there is a large set of bipartite
compatibility graphs that simply cannot be modeled by homogeneous arrivals on an undirected graph. In this
line of work, motivated by the bike-sharing network, Gast [13] studies a system of queues connected by a ring
topology. To deal with the long-range dependencies among the queue-length processes arising from the
restricted graph topology, the work proposes a pair approximation to describe the steady state system. When the
ordinary JSQ policy is used at each vertex, that is, when each arriving task joins the shortest of all the neighbor-
ing queues, Mukherjee et al. [23] develop a coupling-based approach to establish criteria for asymptotic optimal-
ity on fluid and diffusion scale. A key ingredient in their approach is the monotonicity of the system with respect
to edge addition; that is, performance of a system gets better, in the sense of stochastic majorization of the occu-
pancy process, if more edges are added to the underlying graph.

The scenario becomes fundamentally more challenging if the system lacks the above monotonicity. One such
scenario is when the JSQ(d) policy is considered at each vertex, instead of the JSQ policy, that is, each task is
assigned to the shortest queue among the one it first appears and its d – 1 randomly selected neighbors. Even a
first-order property such as stability is nontrivial in this case. See Remark 4 for a related illustration of this non-
monotonicity. It is this nonmonotonicity that makes the scenario considered in the current article very different
from those in the state-of-the-art literature. In fact, this nonmonotonicity hints that expansion properties that are
monotone with respect to edge addition cannot provide sufficient criteria for getting the same asymptotic limit law as the
fully flexible system.

Contemporaneously to the current article, Weng et al. [45] consider the join-the-fastest-shortest-queue (JFSQ)
and join-the-fastest-idle-queue (JFIQ) policies for systems with task–server compatibility constraints, where the
arrival rates of the task types and the service rates of the servers are heterogeneous. Specifically, Weng et al. [45]
obtain finite-system bounds on the mean response time and, generalizing the Lyapunov drift method, shows
that under a “well-connected” graph condition, the JFSQ and JFIQ policies can achieve the minimum steady state
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response time in both the many-server regime and the sub–Halfin–Whitt regime (when the system load
approaches one at a suitable rate), asymptotically as N→∞.

In a work by Budhiraja et al. [4], sufficient conditions on the graph sequence are obtained, so that the queue
length process under the JSQ(d) policy has the same fluid limit on any finite time interval as the complete graph.
Their method relies on an asymptotic coupling of the queue length process with an infinite-dimensional
McKean–Vlasov process. The asymptotic coupling requires that the system start from a state where the queue
lengths are independent and identically distributed, which is a fundamental limitation of their approach. More-
over, their approach does not easily generalize to steady state. Indeed, as mentioned by Budhiraja et al. [4, sec-
tion 4], even the existence of a time asymptotic limit was not clear for this system. To circumvent these issues, we
take a radically different approach in this paper and are able to establish both a process-level limit starting from
an arbitrary system state and convergence of the steady state.

In another interesting line of research, Tang and Subramanian [31, 32] analyze a variant of the classical JSQ(d)
policy, where the d servers are sampled through d independent nonbacktracking random walks on a high-girth
graph. The motivation here is to reduce the amount of randomness used in implementing the classical JSQ(d)
policy.

There has been a rich literature in the stability analysis of load-balancing algorithms of finite-sized systems.
Related to the output-queued model considered in this paper, the stability analysis dates back to Stolyar [28, 29]
and Chernova and Foss [11]. Building on the framework of Chernova and Foss [11], Bramson [3] analyzes stabil-
ity of JSQ-type systems under a broad class of policies, including the JSQ(d) policy, where the service times and
interarrival times follow general distributions. Instead of a bipartite compatibility graph, in this work, there is an
independent arrival stream of tasks of rate λS corresponding to each subset S ⊆ [N] of servers. Tasks in the arrival
stream S join the shortest queue among S. Bramson [3] proposes a sufficient subcriticality condition on the arrival
rates λS and shows that the system is ergodic under this condition. We will use the above subcriticality condition
to establish ergodicity of the system for each fixed N. However, the results of Bramson [3] do not guarantee that
the steady state workload in the system scales as Θ(N) as N→∞. This is crucial in the large-system limit,
because it relates to the tightness of the sequence of steady state occupancy. For this, we use the Lyapunov func-
tion approach, as in Wang et al. [42, 43], and establish moment bounds (Hajek [14], Meyn and Tweedie [19]) to
obtain uniform bounds on the tail of the stationary occupancy process.

A more recent work, by Cardinaels et al. [5], analyzes stability conditions and obtains performance bounds of
a general model for load balancing with affinity relations. In this setup, each arriving task can be routed to either
a fast, primary selection of servers or a secondary selection with a slower processing speed. Cruise et al. [8] estab-
lish stability for a similar problem where the task–server constraints are modeled as a hypergraph. In the area of
redundancy scheduling under compatibility constraints, Cardinaels et al. [6] study the case when each task may
only be replicated to a specific set of servers described by a compatibility graph. In the classical heavy-traffic
regime (fixed number of servers and load approaches the boundary of the capacity region) and under appropri-
ate conditions on the graph, Cardinaels et al. [6] establish that the system with graph-based redundancy schedul-
ing operates as a multiclass single-server system.

On the scheduling side, there has been significant development in the analysis of multiserver input-queued
systems with multiple task types; see Arapostathis et al. [1], Gamarnik and Stolyar [12], Hmedi et al. [16], Tsitsi-
klis and Xu [33–35], Yekkehkhany and Nagi [47], Yekkehkhany et al. [48], and the references therein. In this area,
the work that is closest in spirit to our setup, is by Tsitsiklis and Xu [34, 35]. Here, an input-queued system is con-
sidered, where N servers are connected to rN queues by a bipartite compatibility graph, where r > 0 is a fixed
constant that does not depend on N. Each queue i receives an independent arrival stream of rate λi, and tasks
remain in the queue until a server becomes available. In this setup, Tsitsiklis and Xu [34, 35] establish that if the
average degree of the queues c(N) � ln (N), then there exists a family of expander-graph-based flexibility archi-
tectures and a scheduling policy that stabilizes almost all admissible arrival rates and is throughput optimal.

Last, this work also fits into the recent line of work on load balancing for systems with multiple dispatchers
(Stolyar [30], Van der Boor et al. [37], Vargaftik et al. [40], Zhou et al. [49]). The analysis in these cases is often
more challenging than the classical setup. However, strict task–server compatibility is typically not considered in
these works. We refer to Van der Boor et al. [38] for a recent survey on load-balancing algorithms.

1.4. Notation and Organization
The remainder of this paper is organized as follows. In Section 2, we describe the model in detail and introduce
notations related to the underlying Markov chain and its state space. Section 3 lists the main theorems and dis-
cusses their ramifications. Section 4 provides the proofs of the main theorem involving the deterministic graph
sequence. Most other proofs are given in the appendices. In Section 5, we present simulation experiments, both
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to support the analytical results and to examine the performance of systems with compatibility constraints that
are not analytically tractable. Finally, Section 6 summarizes our results and discusses directions for future
research.

A complete bipartite graph with N servers andM(N) dispatchers will be denoted by KN,M. We denote by ℓ1 the
normed vector space with norm ‖q‖1 � ∑∞

i�1 |qi|. For some positive sequence v � (ω1,ω2, : : : ), denote by ℓω1
the normed vector space with the weighted-ℓ1 norm ‖q‖ω1 �∑∞

i�1ωi|qi|. For any set V, |V| denotes its cardinality.
We adopt the usual notations O(·),o(·),ω(·), Ω(·), and Θ(·) to describe asymptotic comparisons. For two positive
deterministic sequences ( f (n))n≥1 and ( g(n))n≥1, we write f (n) 
 g(n) (respectively, f (n) � g(n)) if f (n) � o( g(n))
(respectively, f (n) � ω( g(n))).

2. Model Description
We consider a system that consists of a set of dispatchers WN and a set of servers VN, with |VN | �N and
|WN | �M(N). Each dispatcher handles arrivals of a particular task type. Task type w ∈WN can only be served by
a subset N w ⊆ VN of servers. The set of servers N w compatible to the task type w can naturally be viewed as
neighbors of w in a bipartite graph GN � (VN,WN,EN) between VN and WN, where EN ⊆ VN ×WN is the set of
edges. In other words, w ∈WN and v ∈ VN share an edge in GN, if server v has the resources required to process
task type w; see Figure 1 for an illustration of the model. Note that the fully flexible system corresponds to GN

being complete bipartite. Each server has a dedicated queue with infinite buffer capacity and operates under a
nonidling service discipline that is oblivious to the actual service requirements (e.g., first come, first served).
Below we will interchangeably use the terms task type vertex and dispatcher.

Each dispatcher receives an external stream of arrivals as a Poisson process of rate λN=M(N), independently
of the other processes. Thus, the total arrival rate of the system is λN. The service times of the tasks are exponen-
tially distributed with unit mean, independently of each other. For the stability of the system, assume λ < 1. Each
dispatcher employs the JSQ(d) policy; that is, when a task arrives at w ∈WN, the dispatcher samples queue
lengths at d ≥ 2 servers uniformly at random with replacement from its neighborhood N w. The task is assigned
to the shortest of the sampled queues.

At time t ≥ 0, let INv (t) denote the queue length of server v ∈ VN. Also, let ξNvw denote the edge occupancy in GN;
that is, for v ∈ VN and w ∈WN, ξNvw � 1 if (v,w) ∈ EN, and ξNvw � 0 otherwise. Note that (INv (·),ξvw : v ∈ VN,w ∈WN) is
a Markovian state descriptor of the system. Denote this Markov process at time t ≥ 0 by Φ(GN, t) and the state space
by SN. Because, for each system, we keep the graph structure fixed beforehand, we leave the edge occupancy
implicit in the state and think of Φ(GN, t) as the vector of tagged queue lengths (INv (·) : v ∈ VN) and SN as NN.

We introduce a few shorthand notations. For a state z ∈ SN, let X i(z) ⊆ VN denote the set of servers with queue
lengths exactly equal to i, Xi(z) :� |X i(z)| and xi(z) :� Xi(z)=N. Also, let x(z) :� (xi(z))i≥0. We refer to x(z) as the
global empirical queue length distribution (GEQD). Furthermore, let Xw

i (z) :� |X i(z) ∩N w| denote the number of serv-
ers with queue length exactly equal to i in the neighborhood N w of w ∈WN, and xwi (z) :� Xw

i (z)=|N w| and
xw(z) :� (xwi (z))i≥0. We refer to xw(z) as the local empirical queue length distribution (LEQD). The space of (global and

Figure 1. (Color online) A schematic overview of the systemwith task typesWN, serversVN, and their compatibility relation.

1 2 3 4

1 2 3 4 5 6

Task Types (W)

Server vertices (V)
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local) empirical queue length distributions is denoted by

X :� x ∈ ℓ1

∣∣∣∑∞
i�0

xi � 1 and xi ≥ 0 ∀i ∈ N

{ }
:

For a state z ∈ SN, let Qi(z) denote the set of servers with queue length at least i, Qi(z) :� |Qi(z)| and
qi(z) :�Qi(z)=N, such that qi(z) � ∑∞

j�i xj(z). Also, let q(z) :� (qi(z))i≥1. We refer to q(z) as the global occupancy. Also,
for w ∈WN, let Qw

i (z) :� |Qi(z) ∩N w| denote the number of servers with queue length at least i in
N w, qwi (z) :�Qw

i (z)=|N w|, and qw(z) :� (qwi (z))i≥1. We refer to qw(z) as the local occupancy. Local and global occu-
pancy take values in the space

Y :� {q ∈ ℓ1|qi ∈ [0, 1],qi ≥ qj, i < j, i, j ∈ N}:

3. Main Results
3.1. Arbitrary Deterministic Graphs
We start by introducing the notion of proportional sparsity and the subcriticality condition for a deterministic
sequence of bipartite graphs {GN}N≥1 and discuss their ramifications. Proportional sparsity provides a sufficient
expansion property of the compatibility graph so that, on any finite time interval, the occupancy process of sys-
tems under a broad class of task assignment policies has the same weak limit as the fully flexible system. The
subcriticality condition bounds the maximum load on any server and implies that the underlying Markov proc-
ess is ergodic and the steady state global occupancy is tight in the appropriate space. Together, the proportional
sparsity and the subcriticality condition imply the interchange of limits for the global occupancy process.

3.1.1. Proportional Sparsity. The condition of proportional sparsity requires the edges in the bipartite graph to
be fairly distributed in an appropriate sense.

Definition 1 (Proportionally Sparse Graph Sequences). Let GN � (VN,WN,EN) be a sequence of connected graphs
indexed by the number of servers |VN | �N. The sequence {GN}N≥1 is called proportionally sparse if for each
ε > 0,

sup
U⊆VN

∣∣∣∣∣ w ∈WN |
∣∣∣∣∣ |N w ∩U|

|N w| − |U|
N

∣∣∣∣∣ ≥ ε

{ }∣∣∣∣∣=M(N) → 0, as N→∞: (1)

The condition of proportional sparsity ensures that for all but o(N) dispatchers, the local empirical queue length
distribution in its neighborhood is close, in a suitable sense, to that of the global empirical queue length distribu-
tion. The latter property will be pivotal in establishing the mean-field limit.

Remark 1. From a high level, the class of proportionally sparse graph sequences contains all graphs obtained
after two-step sparsification of the complete bipartite graph. To see this, note that the complete bipartite graph is
the only graph for which |Nw∩U|

|Nw | � |U|
N for all U ⊆ VN and w ∈WN. Now, the first step of sparsification allows for a

wiggle room of ε, however small, in the above difference for all U, and the second step allows for o(N)-many dis-
patchers to have the above difference larger than ε. As we will see, after these two steps of sparsification, the
class of graph sequences that satisfy this property will be large and will contain graph sequences that are much
sparser than the complete bipartite graph.

Remark 2 (Proportional Sparsity and Quasi Randomness). In the dense case when |N w| is Θ(N), the definition of
proportional sparsity is related to the notion of quasi-random bipartite graphs. To obtain a random server net-
work, one approach is to construct a random graph and use its structure in the network. An alternative approach
is to take a deterministic graph and question whether it is sufficiently “random.” For a sequence of these deter-
ministic graphs, it is possible to verify whether it satisfies certain properties that random graphs are expected to
have. A sequence of graphs satisfying such properties is called quasi-random. This notion was proposed in a
seminal paper by Chung et al. [7] and has subsequently been used in developing numerous algorithmic heuris-
tics. Lemma 1 states that quasi randomness implies proportional sparsity.

Lemma 1. If {GN}N≥1 is a quasi-random sequence of graphs, it must be a proportionally sparse graph sequence.

The proof of Lemma 1 is provided in Appendix D. However, even in the dense case, the converse of Lemma 1 is
not true. The main reason is the inherent symmetry assumption of quasi randomness, whereas a proportionally
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sparse graph sequence can have very inhomogeneous degrees. To see this, we refer to Theorem 3, which states
that a broad class of sequences of inhomogeneous random graphs are proportionally sparse.

3.1.2. Subcriticality Condition. We continue by introducing a condition on the maximum load at any server. The
subcriticality property will allow us to prove ergodicity of the system and tightness of the steady state occupancy
process.

Definition 2 (Subcriticality Condition). Let GN � (VN,WN,EN) be a graph sequence. The sequence {GN}N≥1 is said to
satisfy the subcriticality condition if for all N ≥ 1, w ∈WN and v1, : : : ,vd ∈ VN, there exists a probability distribu-
tion γv1,: : : ,vd

w (·) on VN supported on {v1, : : : ,vd} such that

limsup
N→∞

max
v∈VN

N
M(N)

∑
w∈WN

|N w|−d
∑

v1, : : : ,vd∈Nw

γv1,: : : ,vd
w (v) ≤ 1: (2)

The probability distribution γv1,: : : ,vd
w (v) can be interpreted as a static randomized task assignment policy for tasks

arriving at dispatcher w ∈WN, when the servers v1, : : : ,vd ∈N w are selected as the d chosen servers. To this end,
to understand the subcriticality condition intuitively, think of a new system where the task allocation is done as
follows: when a task arrives, a dispatcher w ∈WN is selected uniformly at random. Then, similar to the JSQ(d)
policy, the servers v1, : : : ,vd are sampled from the neighborhood N w of w with replacement. The task is then
routed to a server v ∈ {v1, : : : ,vd} with probability γv1,: : : ,vd

w (v). The subcriticality condition requires that, for any
λ < 1, the load received by any server under this static task assignment policy γv1,: : : ,vd

w (·) is less than one. It is thus
sufficient for stability to find one such static task assignment policy, depending on the underlying graph, satisfy-
ing this condition.

Remark 3. As mentioned in the introduction, Bramson [3] and, more recently, Cardinaels et al. [5] analyzed the
stability of JSQ-type policies in a related framework. The subcriticality condition (2) is equivalent to the those
stated in Bramson [3] and Cardinaels et al. [5], although our condition is stated for a sequence of graphs, later to
be used for tightness of the steady state occupancy process, and the latter conditions are stated for a fixed system.
As noted in Bramson [3, p. 1571], the subcriticality condition as stated in Definition 2 is also a necessary condition
for stability.

Remark 4 (Nonmonotonicity). The satisfiability of neither the proportional sparsity property nor the subcriticality
condition is monotone with respect to the addition of edges in the compatibility graph. As an example, consider
the graph in which each dispatcher is perfectly matched to exactly one server, as in Figure 2(a). This graph satis-
fies the subcriticality condition. Now, alternatively, consider the graph in Figure 2(b). The latter graph contains
all the edges of the graph in Figure 2(a), yet it is not hard to verify that it does not satisfy the subcriticality condi-
tion for d � 2. This is because for any task arriving at dispatchers 3, 4, 5, and 6, it will be assigned to either server
1 or 2 with probability 4/9. This makes the load on servers 1 and 2 higher than one, under any static task assign-
ment policy. Similarly, the notion of proportional sparsity is also not monotone in the addition of edges. For
example, adding a disproportionate number of edges between only a subset U ⊂ VN and the dispatchers WN will
invalidate proportional sparsity with respect to that set U.

Now we have all the ingredients to state the main result for deterministic sequences of compatibility graphs.

Figure 2. An example illustrating that increasing flexibility may not always lead to better performance.
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Theorem 1. Let {GN}N≥1 be a proportionally sparse graph sequence. Then, on any finite time interval [0,T], the scaled
occupancy process q(Φ(GN, t)) � (q1(Φ(GN, t)),q2(Φ(GN, t)), : : : ) converges weakly with respect to the Skorohod-J1 topol-
ogy, as N→∞, to the process q∗(t) � (q∗1(t),q∗2(t), : : : ), given by the unique solution of the system of ordinary differential
equations (ODEs)

dq∗i (t)
dt

� λ(q∗i−1(t)d − q∗i (t)d) − (q∗i (t) − q∗i+1(t)), for i � 1, 2, : : : , (3)

provided q∗(0) ∈ Y and ‖q(Φ(GN , 0)) − q∗(0)‖1 → 0 as N→∞.
Moreover, if the graph sequence {GN}N≥1 satisfies the subcriticality condition, then for each fixed N, the Markov process

is ergodic and q(Φ(GN,∞)) converges weakly to q∗(∞) as N→∞, where Φ(GN,∞) is a random variable distributed as the
steady state of (Φ(GN , t))t≥0 and

q∗i (∞) � λ
di−1
d−1 , for i � 1, 2, : : : : (4)

The proof of Theorem 1 is provided in Section 4.4.

Remark 5. As mentioned before, the process-level convergence result in Theorem 1 holds for a much broader
class of assignment policies, when the assignment decision depends smoothly on the LEQD. We call this class the
Lipschitz continuous task assignment policies, which is introduced in Definition 3 in Section 4.1.

Remark 6. The system of ODEs in (3) can be recognized as the mean-field limit of the classical JSQ(d) policy
(Mitzenmacher [21], Vvedenskaya et al. [41]). Thus, Theorem 1 extends the validity of mean-field approximation
for the class of proportionally sparse graph sequences that satisfy the subcriticality condition. In other words, as
we will see in the next section, Theorem 1 shows that the performance benefits of the fully flexible system can be
preserved while making the compatibility graph significantly sparser.

3.2. Randomly Designed Compatibility Graphs
We have seen two sufficient conditions on deterministic graph sequences to establish asymptotically equivalence
of the JSQ(d) policy under limited and full flexibility in task allocation. Given a graph sequence, the conditions
can be verified. This section will provide two simple ways of constructing a random compatibility graph, both
satisfying the two conditions almost surely, in the large-system limit. Note that although the graph is random in
the two cases below, once constructed, it remains fixed for the system. That is, in the terminology of random
processes in a random environment, we obtain a quenched limit theorem. Below, the almost sure statements
involving the sequence of random graphs {GN}N≥1 are with respect to any probability measure P0 on∏

N{0, 1}N×M(N) such that its projection on {0, 1}N×M(N) corresponds to the distribution of GN.

3.2.1. Hard Constraint on Server Degrees. As mentioned before, the degree of the servers in the compatibility
graph is an important measure of sparsity, as it is roughly proportional to the required storage capacity. For that
reason, we will first consider the case when all the servers have degree exactly equal to some fixed number c(N),
that is much smaller thanM(N), the server degree for a fully flexible system.

Theorem 2. Let c(N) ≤M(N) be a sequence of positive integers satisfying
c(N) →∞ and

Nc(N)
M(N)ln (N) →∞, as N→∞:

Also, construct GN as follows: for each v ∈ VN, select c(N) edges from {(v,w) ∈ VN ×WN |v ∈ VN} uniformly at random,
without replacement. Then the sequence {GN}N≥1 is proportionally sparse and satisfies the subcriticality condition, almost
surely. Consequently, the conclusions of Theorem 1 hold.

The proof of Theorem 2 is technically involved. It uses concentration of measure arguments repeatedly to
establish structural properties of the compatibility graphs, and it is provided in Appendix A.

Remark 7. Observe that Theorem 2 guarantees that the validity of the mean-field approximation can be retained
asymptotically, by uniformly reducing the server degrees by almost a factor of N=ln (N), compared with the fully
flexible system where the degree of each server is M(N). Also, note that if M(N) �O(N=ln (N)), then the conver-
gence results in Theorem 2 hold for any growth rate of c(N).
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3.2.2. Inhomogeneous Levels of Flexibility. Next, we consider a system that allows for inhomogeneous levels of
flexibility for different task types. In particular, the compatibility graph is constructed by selecting each edge inci-
dent to a task type w ∈WN with probability pw(N), independently of other edges. Thus, in expectation, task type
w has the flexibility to be assigned to Npw(N) possible servers. Theorem 3 provides a set of sufficient conditions
on (pw(N))w∈WN

to ensure that {GN}N≥1 satisfies the proportional sparsity and the subcriticality conditions.

Theorem 3. Assume that (pw(N))w∈WN
satisfies the following:

1:
N

ln (M(N)) + ln (N) min
w∈WN

pw(N) →∞,

2: M(N) min
w∈WN

pw(N) →∞, and

3:
ln (N)

(M(N))2
∑
w∈WN

1

(pw(N))2 → 0,

(5)

as N→∞: Also, construct GN as follows: for any v ∈ VN,w ∈WN, select edge (v,w) ∈ EN independently with probability
pw(N). Then the sequence {GN}N≥1 is proportionally sparse and satisfies the subcriticality condition, almost surely. Conse-
quently, the conclusions of Theorem 1 hold.

As in the proof of Theorem 2, the proof of Theorem 3 also uses concentration of measure arguments, and it is
provided in Appendix B.

Remark 8. If pw(N) � p(N) for all w ∈WN, then it is possible to relax condition 3 in Equation (5) on the edge prob-
abilities to p(N) � ω(ln (N)=M(N)). For the special case M(N) � N, if p(N) � o(ln (N)=N), then the compatibility
graph constructed as above will leave at least one dispatcher isolated with probability tending to one as N tends
to infinity (see, e.g., Van der Hofstad [39]). This means the graph sequence cannot satisfy the subcriticality condi-
tion, and this growth rate condition for p(N) is nearly the optimum.

4. Proofs
To prove Theorem 1, we will follow the usual interchange of limits argument. In particular, the proof consists of
three key steps. First, in Section 4.1, we show that if the graph sequence is proportionally sparse, then the scaled
occupancy process converges weakly to the appropriate system of ODEs, on any finite time interval. Second, in
Section 4.2, we show that if a graph sequence satisfies the subcriticality condition, then for any fixed N, the sys-
tem is ergodic, and the sequence of steady state global occupancy is tight in the appropriate topology. Third, in
Section 4.3, we prove the global stability of the limiting system of ODEs with (4) being its fixed point. Combining
the above three steps, we complete the proof of Theorem 1 in Section 4.4.

4.1. Process-Level Convergence
In this section, we will prove the process-level convergence of the occupancy process under a general class of
task assignment policies. We start by specifying the class of assignment policies.

4.1.1. Task Assignment Policies. To determine which server to assign an incoming task to, each dispatcher in
WN follows a generic task assignment policy Π that works as follows. We identify the policy Π with an assign-
ment probability function pΠ � pΠ0 ,p

Π
1 , : : :

( )
: X → [0,1]∞. When a task arrives at a dispatcher w ∈WN with LEQD xw,

do the following:
a. Select a random queue length I distributed as the probability measure induced by the assignment probability

function evaluated at the LEQD xw, that is, P(I � i) � pΠi (xw) for i � 0, 1, : : : . The random variable I is independent of
any other processes and also independent across different arrival epochs.

b. Next, a server is selected uniformly at random among all servers with queue length I.
Note that the above generic task assignment policy has a number of features. For example, the assignment pol-

icy may depend only on the LEQD, and the dispatcher does not distinguish between two neighboring servers
with the same queue length; that is, the assignment policy distinguishes servers based only on their queue
lengths and not, for instance, the number of compatible task types of a server. It is not hard to see that the JSQ(d)
policy can also be described in the above form. We restrict our analysis to Lipschitz continuous task assignment
policies as given by the next definition.
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Definition 3 (Lipschitz Continuous Task Assignment Policy). A policy Π is said to be Lipschitz continuous if there
exists a finite positive constant K such that its assignment probability function satisfies the following. For any
x,y ∈ X ,

∑∞
i�0

|pΠi (x) − pΠi (y)| ≤ K
∑∞
i�0

|xi − yi|: (6)

The Lipschitz continuity bounds the sensitivity of the assignment probability function. In other words, if the
ℓ1-distance between the LEQDs is small, then the probabilities of routing a task to a server with a given queue
length from these states should also be close. As we will see in Lemma 2, the JSQ(d) policy is Lipschitz continu-
ous for any fixed d ≥ 1. An example of a policy that is not Lipschitz continuous is the ordinary JSQ policy, where
the addition of a single task to the system, causing a change of Θ(1=N) in the LEQD, can change an assignment
probability from zero to one.

Lemma 2. For any fixed d ≥ 1, the JSQ(d) policy is Lipschitz continuous with Lipschitz constant 2d! × d2.

The proof of Lemma 2 is provided in Appendix E. We now state the process-level convergence theorem.

Theorem 4. Let {GN}N≥1 be a proportionally sparse graph sequence and Π be a Lipschitz continuous policy with assign-
ment probability function pΠ � pΠ0 ,p

Π
1 , : : :

( )
. Then, on any finite time interval [0,T], the scaled occupancy process

q(Φ(GN, t)) � (q1(Φ(GN, t)),q2(Φ(GN, t)), : : : ) converges weakly with respect to the Skorohod-J1 topology, as N→∞, to the
process q∗(t) � (q∗1(t),q∗2(t), : : : ), given by the unique solution of the system of ODEs

dq∗i (t)
dt

� λpΠi−1((q∗j (t) − q∗j+1(t))j≥0) − (q∗i (t) − q∗i+1(t)) for i � 1, 2, : : : , (7)

provided q∗(0) ∈ Y and ||q(Φ(GN, 0)) − q∗(0)||1 → 0 as N→∞.

The rest of this section is devoted to the proof of Theorem 4.

Remark 9. The unique solvability of the infinite set of ODEs in Equation (7) follows from the Lipschitz property
of the policyΠ, using standard results in analysis (see, e.g., Deimling [9, theorem 3.2]).

There are two main ingredients to the proof of Theorem 4. First, in Proposition 1, we establish that for almost
all dispatchers, the LEQD is close to the GEQD, uniformly over any finite time interval. Second, we couple the
Nth system with graph structure GN to a fully flexible system with the complete bipartite graph and establish in
Proposition 2 a criterion for the two systems to behave similarly. Finally, we complete the proof of Theorem 4
using Propositions 1 and 2 and the Lipschitz continuity of the task assignment policy.

4.1.2. Proximity of Local and Global Empirical Queue Length Distributions. We begin by introducing the notion
of good and bad dispatchers. Loosely speaking, a good dispatcher is a dispatcher for which the LEQD is close to
the GEQD.

Definition 4 (ε-Good Dispatchers). When the system is in state z ∈ SN, the dispatcher w ∈WN is called ε-good if
∑∞
i�0

|xi(z) − xwi (z)| < ε: (8)

Also, a dispatcher is called ε-bad if it is not ε-good.

In the following, let Bε
N(t) denote the number of ε-bad dispatchers at time t, when the system is in state

Φ(GN, t).
Proposition 1. Let {GN}N≥1 be a proportionally sparse graph sequence. Then for each ε,δ > 0,

P sup
t∈[0,T]

Bε
N(t) ≥ δM(N)

( )
→ 0 as N→∞, (9)

provided q∗(0) ∈ Y and ||q(Φ(GN, 0)) − q∗(0)||1 → 0 as N→∞.

The key idea in the proof of Proposition 1 is to observe that the servers with queue length i at time t form a
subset Ui(t) ⊆ VN and the proportional sparsity of the compatibility graph implies that for almost all w ∈WN, the
fraction of neighbors within Ui(t) is close to |Ui(t)|=N. However, we need to deal with some technical challenges.
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For example, the subset of dispatchers for which the above does not hold may depend on i, and thus, one needs
to be careful in estimating the number of ε-bad dispatchers. Also, an uniformity over [0,T] needs to be estab-
lished. The complete proof of Proposition 1 is provided in Appendix F.

Remark 10. It is worthwhile to highlight that Proposition 1 requires only the proportional sparsity property of
the graph sequence and does not depend on the task assignment policy or even on the dynamics in any way.
This makes the applicability of this method much broader, in analyzing certain structurally constrained large-
scale dynamical systems where the process running at each vertex (queue length in our case) takes countably
many values.

4.1.3. A Coupling Construction. Next, for any N ≥ 1, we couple the queueing system on an arbitrary bipartite
graph GN with the fully flexible system, that is, corresponding to the complete bipartite graph KN,M.

The coupling approach has been highly successful in proving large-system limit theorems (Mukherjee et al. [23,
24]). However, the biggest issue in constructing an appropriate coupling in the presence of compatibility constraints
lies in the fact that if the arrivals are synchronized at each dispatcher w ∈WN, in two systems with different compati-
bility graphs, the set of neighbors of w becomes different in the two systems. Consequently, one cannot synchronize
which server a task will be assigned to, and the coupling of the queues breaks down. We will now introduce a novel
coupling, called optimal coupling, to tackle this issue.

In short, we will refer to the two systems as the GN-system and KN,M-system, respectively. Both systems
employ a Lipschitz continuous task assignment policy Π. To describe the coupling, first, in each of the two sys-
tems, order the servers by nondecreasing queue lengths, breaking ties arbitrarily. We then couple the departure
and arrivals in both systems as follows.

• Departures. Synchronize the departure epochs of the kth ordered servers in the two systems, that is, both sys-
tems will potentially finish serving a task at the kth ordered server at the same epoch, whenever they are nonempty
for k � 1, 2, : : : ,N.
• Arrivals. Synchronize the arrival epochs of task type w in both systems, for all w ∈WN. At an arrival epoch of

w, let xw and yw be the LEQDs for the GN-system and the KN,M-system, respectively. Note that yw is also the GEQD
for the KN,M-system. Define pi �min(pΠi (xw),pΠi (yw)) for i � 0, 1, : : : . Now, let us draw a Uniform[0, 1] random vari-
able, independently of any other processes, and denote it byU. Recall the description of the task assignment policy
Π from Section 4.1. The value of U will be used in both systems to generate the random variables I1 and I2, for the
GN-system and KN,M-system, respectively. In the GN-system, set I1 � i, for i � 0, 1, : : : , if

U ∈ ∑i−1
j�0

pj,
∑i

j�0
pj

[ ) ⋃ ∑∞
j�0

pj +
∑i−1
j�0

(pΠj (xw) − pj),
∑∞
j�0

pj +
∑i

j�0
(pΠj (xw) − pj)

[ )
, (10)

and assign the arriving task to a server selected uniformly at random among all servers with queue length I1.
Similarly, in the KN,M-system, set I2 � i, for i � 0, 1, : : : , if

U ∈ ∑i−1
j�0

pj,
∑i

j�0
pj

[ ) ⋃ ∑∞
j�0

pj +
∑i−1
j�0

(pΠj (yw) − pj),
∑∞
j�0

pj +
∑i

j�0
(pΠj (yw) − pj)

[ )
, (11)

and assign the arriving task to a server selected uniformly at random among all servers with queue length I2.
Note that the coupling preserves the marginal laws of both systems. Next, we introduce a notion that facilitates

comparison of the performance of the two systems on suitable asymptotic scales.

Definition 5 (Mismatch in Queue Length). At an arrival epoch, the two coupled systems are said to mismatch in
queue length if I1 ≠ I2, that is, the arriving tasks are assigned to two servers of different queue lengths in the two
systems. Denote by ΔN(t) the cumulative number of times the systems mismatch in queue length up to time t.

The occupancy process and the cumulative number of mismatches in queue length are related as stated in
Proposition 2. The proof of Proposition 2 is provided in Appendix G.

Proposition 2. For any N ≥ 1, consider the GN-system and the KN,M-system coupled as above. Then the following holds
almost surely on the coupled probability space: for all t ≥ 0,

∑∞
i�1

|Qi(Φ(KN,M, t)) −Qi(Φ(GN, t))| ≤ 2ΔN(t), (12)

provided the inequality holds at t � 0.
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Remark 11. The statement of Proposition 2 is similar, in spirit, to proposition 5 of Mukherjee et al. [23] and prop-
osition 4 of Mukherjee et al. [24]. Our definition of mismatch in queue length counts the number of times a task
is routed to servers with different queue lengths. In contrast, Mukherjee et al. [23, 24] order the servers by queue
length, and their definition of differing in decision counts the number of times a task is routed to servers with dif-
ferent order statistics. Our notion of mismatch in queue length enables us to compare the occupancy processes of
two different systems based on their LEQDs only, even when the individual queues are not coupled.

4.1.4. Proof of Theorem 4. First, it is fairly standard (see, e.g., Kurtz [18, chapter 8]) to show that q(Φ(KN,M, t))
converges weakly to q∗(t). Therefore, by Proposition 2, it is enough to prove that for any ε′ > 0 and δ′ > 0, there
exists N0 ≥ 1 such that

P sup
t∈[0,T]

ΔN(t)=N ≥ ε′
( )

< δ′ for all N ≥N0: (13)

Fix any ε > 0, to be chosen later. Recall Definition 4 and let Aε
N(t) and Bε

N(t) denote the number of ε-good and
ε-bad dispatchers in the GN-system, respectively. Couple the GN-system to the KN,M-system by the optimal cou-
pling described in Section 4.1.3. For brevity, let x(t) :� x(Φ(GN, t)) and xw(t) :� xw(Φ(GN, t)) for the GN-system and
y(t) :� x(Φ(KN,M, t)) for the KN,M-system. Also, define ρN(t) :� ∑∞

i�0 |yi(t) − xi(t)|. At an arrival epoch t ≥ 0, if a task
arrives at an ε-good dispatcher w ∈WN, then∑∞

i�0
|yi(t−) − xwi (t−)| ≤

∑∞
i�0

|yi(t−) − xi(t−)| +
∑∞
i�0

|xi(t−) − xwi (t−)| ≤ ρN(t−) + ε: (14)

Define the uniform random variable U and pi as in the optimal coupling, and observe that the probability that
the systems mismatch in queue length at such an arrival epoch is bounded by

P U ∉ 0,
∑∞
i�0

pi

[ )( )
� 1 −∑∞

i�0
pi �

∑∞
i�0

(pΠi (y(t−)) − pi)

≤ ∑∞
i�0

|pΠi (y(t−)) − pΠi (xw(t−))| ≤ K
∑∞
i�0

|yi(t−) − xwi (t−)| ≤ K ρN(t−) + ε
( )

, (15)

by the Lipschitz property of Π in (6). If instead a task arrives at an ε-bad dispatcher, then with probability at
most one, the systems mismatch in queue length. Now, because at the arrival epochs, the random variables U are
independent of any other processes, we can construct an independent unit-rate Poisson process (Z(t))t≥0, so that
ΔN(t) is upper bounded by a random time change (cf. Pang et al. [25, section 2.1]) of Z as follows: for all t ∈ [0,T],

ΔN(t) ≤ Z
λN

M(N)
∫ t

0
[Aε

N(s−) ·K(ρN(s−) + ε) +Bε
N(s−) · 1]ds

( )
: (16)

Now observe that

ρN(t) �
∑∞
i�0

|xi(Φ(KN,M, t) − xi(Φ(GN, t))|

� ∑∞
i�0

|qi(Φ(KN,M, t)) − qi+1(Φ(KN,M, t)) − qi(Φ(GN, t)) + qi+1(Φ(GN, t))|

≤ 2
∑∞
i�0

|qi(Φ(KN,M, t)) − qi(Φ(GN, t))| ≤ 4ΔN(t)
N

, (17)
where the last inequality follows from Proposition 2. Furthermore, using Proposition 1 to bound Bε

N on the right-
hand side of (16), we can write, for any fixed δ > 0 to be chosen later, that there exists N0 �N0(δ) ∈ N such that
for all N ≥N0,

P sup
t∈[0,T]

Bε
N(t) > δM(N)

( )
≤ δ

2
: (18)

Therefore, (17), (18), and an application of Tonelli’s theorem imply that for all N ≥N0 and t ∈ [0,T],

E
ΔN(t)
N

( )
≤ λ

∫ t

0
K 4E

ΔN(s−)
N

( )
+ ε

( )
+ 3δ

2

[ ]
ds: (19)
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By applying Grönwall’s inequality to (19), we obtain,

E
ΔN(t)
N

( )
≤ λ(Kε + 3δ=2)t exp (4λKt): (20)

Finally, because ΔN(t) is nonnegative and nondecreasing in t, using Markov’s inequality, we write

P sup
t∈[0,T]

ΔN(t)
N

≥ ε′
( )

≤ P
ΔN(T)
N

≥ ε′
( )

≤ 1
ε′
E

ΔN(T)
N

( )

≤ λ

ε′
(Kε+ 3δ=2)Texp (4λKT), (21)

which yields Equation (13) by choosing ε and δ small enough. w

4.2. Stability and Tightness
In this section, we will prove positive recurrence of the Markov process Φ(GN, ·) and tightness of the steady state
occupancy process, as stated in the next theorem.

Theorem 5. Let {GN}N≥1 be a sequence of graphs satisfying the subcriticality condition. Then the following hold:
i. There exists N0 ≥ 1 such that for each N ≥N0, the Markov processΦ(GN, ·) under the JSQ(d) policy with d ≥ 1 is positive

Harris recurrent, and thus it has a unique steady state.
ii. Let Φ(GN,∞) denote a random variable distributed as the steady state of Φ(GN, ·). Fix any r ∈ (1, 2=(1+λ)) and a posi-

tive sequencev � (ω1,ω2, : : : ) satisfying
ωi0+i � ωi0r

i for i ≥ 1 (22)

for some i0 ∈ N. Then the sequence {q(Φ(GN ,∞))}N≥1 is tight when Y is endowed with the ℓω1 -topology.

The positive Harris recurrence from part i of Theorem 5 follows from known techniques in Bramson [3] and
Cardinaels et al. [5]. However, as we prove the tightness in part ii, the positive recurrence follows as a side result.
This is given in Appendix H. In the rest of this section, we complete the proof of tightness. First, we obtain a
bound on the tail of the expected global occupancy of the stationary state.

Lemma 3. Consider a sequence {GN}N≥1 that satisfies the subcriticality condition. There exists N0 ≥ 1 such that for all
N ≥N0 and k ≥ 1,

∑∞
i�k

E[qi(Φ(GN,∞))] ≤ (1+λ)=2
1− (1+λ)=2E[qk−1(Φ(GN,∞))]: (23)

The proof of Lemma 3 is provided in Appendix H. It uses a sequence (Vk)k≥1 of Lyapunov functions, where
bounds on the drift of Vk result in a moment bound on the tail sum of q(Φ(GN,∞)) starting from k. The next tech-
nical lemma states sufficient criteria for tightness with respect to the ℓω1 -topology, and it is proved in Appendix I.

Lemma 4. Fix a positive sequence v � (ω1,ω2, : : : ). The sequence of random variables {q(Φ(GN ,∞))}N≥1 is tight when Y
is endowed with the ℓω1 -topology, if for each fixed i ∈ N, {ωiqi(Φ(GN ,∞))}N≥1 is tight in R and

lim
j→∞ limsup

N→∞
P

∑∞
i�j

ωiqi(Φ(GN,∞)) > ε

( )
� 0: (24)

Proof of Theorem 5ii. We will verify the sufficient conditions stated in Lemma 4. Because ωiqi(Φ(GN,∞)) ∈
[0,ωi], it is trivially tight in R. Now, by Markov’s inequality,

P
∑∞
i�j

ωiqi(Φ(GN,∞)) > ε

( )
≤ 1
ε
E

∑∞
i�j

ωiqi(Φ(GN,∞))
[ ]

� 1
ε

∑∞
i�j

ωiE qi(Φ(GN,∞))[ ]
: (25)

Fix any r ∈ (1, 2=(1+λ)). In the following, let j ≥ i0 be such that ωi � (ωi0=r
i0)ri for i ≥ j. Recall from Lemma 3 that

{E[qi(Φ(GN ,∞))]}i≥1 satisfies (23). We will bound the right-hand side of Equation (25) by maximizing its value over
all sequences in ℓ1 satisfying Equation (23). That is, we arrive at the maximization problem, for j � 1, 2, : : : ,

SOL( j) :� (ωi0=r
i0) sup

a∈ℓ1

∑∞
i�j

riai, where
∑∞
i�k

ai ≤ (1+λ)=2
1− (1+λ)=2ak−1 for all k ≥ 1, (26)

Rutten and Mukherjee: Load Balancing Under Strict Compatibility Constraints
Mathematics of Operations Research, Articles in Advance, pp. 1–30, © 2022 INFORMS 13



and its finite projection,

SOLn( j) � (ωi0=r
i0) sup

a∈Rn

∑n
i�j

riai, where
∑n
i�k

ai ≤ (1+λ)=2
1− (1+λ)=2ak−1 for all 1 ≤ k ≤ n: (27)

Note that the solution of the maximization problem is an upper bound on the right-hand side of (25), and thus∑∞
i�j

ωiE qi(Φ(GN,∞))[ ] ≤ SOL( j) � sup
n≥1

SOLn( j), (28)

where the last equality follows because each sequence in ℓ1 can be written as the limit of a sequence of vectors in
R

n in the ℓ1-topology. The finite projected maximization problem is linear, and hence the solution is found at one
of the boundary points of the feasible region. In this case, for fixed n ≥ 1 and j ≥ i0, there is only one boundary
point, the point for which the constraints hold with equality:

ai � 1+λ

2

( )i
for 0 ≤ i ≤ n− 1, an � 1

1− (1+λ)=2
1+λ

2

( )n
, (29)

such that

SOLn( j) � (ωi0=r
i0) sup

a∈Rn

∑n
i�j

riai � ωi0

ri0
rj

1− (1+λ)=2
1+λ

2

( )j
: (30)

Therefore,

lim
j→∞ lim sup

N→∞
P

∑∞
i�j

ωiqi(Φ(GN,∞)) > ε

( )
≤ lim

j→∞
1
ε

ωi0

ri0
rj

1 − (1 + λ)=2
1 + λ

2

( )j
� 0: w (31)

4.3. Global Stability
The last key property needed in establishing the interchange of limits is the global stability of the process-level
limit in (3). As stated in the next theorem, global stability shows that the limiting system of ODEs converges to a
fixed point if started from suitable states.

Theorem 6. For any positive sequence v � (ω1,ω2, : : : ), let us define
Ψω(t) :�

∑∞
i�1

ωi|q∗i (t) − q∗i (∞)|

and i0 :�min i ≥ 1 |λ(2q∗i (∞) + 1) < 1+λ
2

{ }
. For each λ < 1, there exists a choice of v � (ω1,ω2, : : : ) satisfying

ωi0+i � ωi0r
i for i ≥ 1 (32)

for some r ∈ (1, 2=(1+λ)) such thatΨω(t) converges exponentially to zero as t→∞, ifΨω(0) <∞.

The proof relies on the global stability result of the classical mean-field limit of the JSQ(d) policy, as stated in
Mitzenmacher [22, theorem 3.6]. The details can be found in Appendix C.

4.4. Proof of Theorem 1
We now have all the necessary results to prove Theorem 1.

Proof of Theorem 1. The process-level convergence of the occupancy process under proportional sparsity fol-
lows from Theorem 4. For the convergence of steady states, we follow the usual interchange of limits argument.

Fix v � (ω1,ω2, : : : ) as in Equation (32) for r chosen as in Theorem 6. By Theorem 5, {q(Φ(GN ,∞))}N≥1 is tight
when Y is endowed with the ℓω1 -topology, and hence, any subsequence has a convergent further subsequence.
Let {q(Φ(GNn ,∞))}n≥1 be such a convergent subsequence with {Nn}n≥1 ⊆ N, and assume that q(Φ(GNn ,∞)) con-
verges weakly to some distribution π̂, as n→∞. Observe that π̂ must be supported on

Yω :� q ∈ ℓ1

∣∣∣∣∣∑
∞

i�1
ωiqi <∞, qi ∈ [0, 1],qi ≥ qj, i < j, i, j ∈ N

{ }
:

Now, imagine starting the system in the steady state as Φ(GNn , 0) ~Φ(GNn ,∞). Then Φ(GNn , t) ~Φ(GNn ,∞) for all
t ∈ [0,T], and also, by Theorem 4, it follows that

q(Φ(GNn , t))dq∗(t) as n→∞, (33)
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uniformly on [0,T]. Therefore,
q∗(t)�d π̂ for all t ∈ [0,T]: (34)

It follows that π̂ is an invariant measure of the limiting dynamics. To this end, the global stability result in Theo-
rem 6 implies that π̂ must be the Dirac measure at the fixed point q∗(∞) of q∗(t). This completes the proof of inter-
change of limits. w

5. Simulation Experiments
In this section, we perform extensive simulation experiments to evaluate our results and to gain insights into the
cases that are not included in our theoretical framework, for example, when the compatibility graph may not be
proportionally sparse.

5.1. Verification of Process-Level Convergence
Figure 3(a) shows the evolution of the occupancy process for M(N) �N � 102 and M(N) �N � 104, where the
compatibility graphs are single instances of bipartite Erdős–Rényi random graphs (ERRGs) with edge probability
(ln (N))2=N. Although the average number of neighbors is significantly less than the number of neighbors in a
fully flexible system, the simulation illustrates that the occupancy processes closely follow the limiting dynamics
of a fully flexible system. The sample path trajectories for N � 102 further exhibit the validity of the asymptotic
results for fairly small values of N.

5.2. Influence of the Level of Connectivity
In Figure 3(b), we examine the dependence of the average queue length in steady state on the average server
degree in GN. In each case, we have assumed M(N) � N and the compatibility graph is a single instance of the
bipartite ERRG. When the average degree scales as (ln (N))2, the graph sequence satisfies the conditions in Theo-
rem 1, and the average queue length can be seen to converge to the fixed point q∗(∞) given by (4). Among the
graph sequences that do not satisfy the conditions in Theorem 3 are the cases when the average degree is (i) a
constant and (ii) equal to ln (N). The simulation shows that in case (i), the behavior differs significantly from the
fully flexible case, and in case (ii) the average queue length converges to the fixed point. The latter is an edge
case not captured by Theorem 3.

5.3. Influence of the Arrival Rate
Figure 4(a) shows the dependence of the average queue length in steady state on the arrival rate λ. Although the
average queue length converges to the fixed point q∗(∞) for all λ < 1, the rate of convergence is faster for smaller
arrival rates. The difference in convergence rate is especially notable for λ � 0:8.

5.4. Influence of the Service-Time Distribution
Figure 4(b) shows the average queue length in steady state when service times are either exponentially distrib-
uted, deterministic (fixed at one), or distributed as a power law with exponent three. Note that these simulations

Figure 3. (Color online) Performance of the JSQ(2) policy on a bipartite Erdős–Rényi graph for λ � 0:8.

Notes. (a) The occupancy process for compatibility graphs with average degree (ln(N))2 for N � 102, 104. (b) The average queue length in steady
state for varying degrees.
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go beyond the theoretical results for the exponential distribution. In each of the above three cases, Figure 4(b)
shows that the behavior of the steady state average queue length with a sparse bipartite ERRG is close to that of
the corresponding fully flexible system. This hints at a possible universality result, where one would expect to
see an analog of Theorem 1 under a general service time distribution, although the behavior for different service
time distributions will be different.

5.5. Influence of Geometry
In the broader context of spatial queueing systems, servers and dispatchers are often geometrically constrained.
The compatibility graph in this case arises because of the proximity of servers and dispatchers, and such a geo-
metrically constrained graph often does not satisfy the proportional sparsity condition. In Figure 5(a), we investi-
gate using the well-known random geometric graph model, if and when the performance of such networks is
asymptotically indistinguishable from the fully flexible model. A random geometric graph is built by placing
each of the N servers and M(N) dispatchers at a uniformly selected location in [0, 1]2. As Figure 5(a) illustrates,
dispatchers are then connected to all servers within a certain radius. Dispatchers will therefore have only local
connections to servers in their proximity.

Figure 5(b) shows a comparison between the average steady state queue length when the compatibility graphs
are either single instances of a bipartite ERRG or a random geometric graph, respectively. Notice that the average
steady state queue length of the random geometric graph appears to converge to the fixed point q∗(∞) if the aver-
age degree is (ln (N)) or (ln (N))2, although the proportional sparsity condition is not satisfied. Extending our
results for such spatial queueing systems would be an important future research direction.

6. Conclusion
In this paper, we studied the impact of task–server compatibility constraints on the performance of the JSQ(d) algo-
rithm in large-scale systems. The results extend the validity of themean-field approximation far beyond the fully flexi-
ble scenario, allowing room for amuch sparser class of compatibility graphs to asymptoticallymatch the performance
of a fullyflexible system.We have also provided explicit constructions of random compatibility graphs that are shown
to almost surely belong to the above class, while being significantly sparser than the complete bipartite graph. In the
context of large-scale data centers, this translates into significant reductions in implementation complexity and storage
capacity, because both are roughly proportional to the server degrees in the compatibility graph. Extensive simulation
experiments corroborate the theoretical results.More interestingly, some simulation experiments seem to suggest that
the mean-field approximation may be valid for an even larger class of spatial graphs, where our expansion criterion
does not hold. Thiswould be an interesting future research direction.

Also, in an ongoing work, we are exploring the heterogeneous case where the arrival and service rates may
depend on the task type and the server, respectively, to see how the sufficient condition on the graph sequence
depends on the heterogeneity in the arrival rates or the service rates.

Figure 4. (Color online) Performance of the JSQ(2) policy on a bipartite Erdős–Rényi random graph. Here, powmeans a power
lawwith exponent three, expmeans an exponential distribution and det means deterministic (fixed at one).

Notes. (a) The average queue length in steady state for (ln(N))2 average degree and varying arrival rates. (b) The average queue length in steady
state for (ln(N))2 average degree and varying service distributions.
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Appendix A. Hard Constraint on Server Degrees
To establish Theorem 2, it suffices to prove that the sequence of random graphs as described in Theorem 2 satisfies the
conditions of proportional sparsity and subcriticality, almost surely. Throughout this section, {GN}N≥1 will denote the
sequence of random graphs as described in Theorem 2, where each server has degree c(N).

Verification of Proportional Sparsity
We start by verifying the proportional sparsity condition, as stated in Proposition A.1. Lemmas A.1–A.3 below provide
necessary technical results for the proof of Proposition A.1.

Lemma A.1. Let XN be a Binomial(N,p(N)) random variable. If p(N) → 0 as N→∞, then for any fixed δ ∈ (0,1=2), there exists
N0 ≥ 1 and a > 0 such that for all N ≥N0,

P(XN ≥ δN) ≤ (a(p(N))δ)N: (A.1)

Proof. Fix δ ∈ (0, 1=2). Let N0 ≥ 1 such that p(N) ≤ δ for all N ≥N0. By the Chernoff bound for binomials (Janson et al. [17,
equation 2.4]), we get, for all N ≥N0,

P(XN ≥ δN)

≤ exp −N (δ+ p(N))ln δ+ p(N)
p(N)

( )
− (1− p(N) − δ)ln 1− p(N)

1− p(N) − δ

( )( )( )

≤ exp −N δln
δ

p(N)
( )

− (1− δ)ln 1− p(N)
1− 2δ

( )( )( )

� exp −δln 1
p(N)
( )

+ δln
1
δ

( )
+ (1− δ)ln 1

1− 2δ

( )( )( )N
� (a(p(N))δ)N, (A:2)

where a � exp δln 1
δ

( )
+ (1− δ)ln 1

1−2δ
( )( )

. w

Define the neighborhood of a server v ∈ VN as N v :� {w ∈WN |(v,w) ∈ EN}. The next lemma provides sufficient condi-
tions on the server degree c(N) to ensure that the number of edges from the servers to any subset of dispatchers is close
to its mean, almost surely.

Lemma A.2. For any X ⊆WN and ε > 0, define

BN(X) :� v ∈ VN

∣∣∣∣∣ ||N v ∩ X| − c(N)|X|
M(N)

∣∣∣∣∣ ≥ εc(N)|X|
M(N)

{ }
: (A.3)

If c(N) � ω(1) and c(N) � ω M(N)
N

( )
, then for all 0 < ε ≤ 3=2, 0 < δ < 1=2, and η > 0, almost surely there exists N0 ≥ 1 such that, for

all N ≥N0, |BN(X)| ≤ δN, for all X ⊆WN with |X| ≥ ηM(N).

Figure 5. (Color online) Performance of large-scale systems with a spatially constrained compatibility graph.

Notes. (a) A random geometric graph (RGG) is built by connecting dispatchers (square) to servers (circle) that are within a specific distance to
each other. (b) The average queue length in steady state of a bipartite Erdõs-Rényi random graph for varying degrees, d � 2, and λ � 0:8, in com-
parison to a RGGwith same average degree.
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Proof. Fix 0 < ε ≤ 3=2, 0 < δ < 1=2, and η > 0. The number of edges between v ∈ VN and X ⊆WN is a hypergeometric ran-
dom variable. By the Chernoff bound for hypergeometric random variables (Janson et al. [17, corollary 2.3]), we have, for
any X ⊆WN with |X| ≥ ηM(N),

P

∣∣∣∣∣|N v ∩ X| − c(N)|X|
M(N)

∣∣∣∣∣ ≥ εc(N)|X|
M(N)

( )
≤ 2exp −ε2c(N)|X|

3M(N)
( )

≤ 2exp −ε2ηc(N)
3

( )
≕ p(N): (A:4)

For any fixed X, the events in the definition of BN(X) are independent over v ∈ VN. The random variable |BN(X)| is there-
fore stochastically upper bounded by a binomial (N,p(N)) random variable for all X. By Lemma A.1 and because c(N) →
∞ as N→∞, there exists N1 ≥ 1 and a > 0 such that

P(|BN(X)| ≥ δN) ≤ ap(N)δ
( )N � exp −N ε2ηδc(N)

3
− ln (2a)

( )( )
≤ exp −ε2ηδc(N)N

6

( )
, (A.5)

for all N ≥N1 and X ⊆WN. Because c(N)N=M(N) →∞ and c(N) →∞ as N→∞, there exists N2 ≥ 1 such that

P(∃X ⊆WN with |X| ≥ ηM(N) such that |BN(X)| ≥ δN) ≤ 2M(N)exp −ε2ηδc(N)N
6

( )

� exp ln (2)M(N) − ε2ηδc(N)N
6

( )
≤ exp −ε2ηδc(N)N

12

( )
≤ exp (−N) (A:6)

for all N ≥N2. Hence, the proof is completed by the first Borel–Cantelli lemma. w

We will now use Lemma A.2 to prove that for most dispatchers, the number of servers sharing an edge with the dis-
patcher is close to the mean.

Lemma A.3. Define

AN :� {w ∈ WN ||N w| ≤ (1 − ε)E[|N w|]}: (A.7)

If c(N) � ω(1) and c(N) � ω M(N)
N

( )
, then for all ε > 0 and δ > 0, almost surely there exists N0 ≥ 1 such that |AN | ≤ δM(N), for all N ≥N0.

Proof. Fix ε > 0 and δ > 0. Assume for the sake of contradiction that there is a sequence in N for which |AN | ≥ δM(N) for
all N in this sequence. The number of edges between VN and AN is then

∑
w∈AN

|N w| ≤ (1− ε)c(N)N|AN |
M(N) : (A.8)

However, by Lemma A.2, there exists N0 ≥ 1 such that∑
v∈VN

|N v ∩ AN | ≥
∑

v∈BN(AN)c
|N v ∩ AN |

≥ (N− |BN(AN)|) (1− ε1)c(N)|AN |
M(N) ≥ (1− δ1) (1− ε1)c(N)N|AN |

M(N) , (A:9)
for all N ≥N0, which contradicts Equation (A.8) for ε1 and δ1 small enough. w

Proposition A.1. Assume c(N) � ω(1) and c(N) � ω M(N)
N

( )
. Then the sequence of graphs {GN}N≥1 is proportionally sparse almost

surely.

Proof. Let ε1,ε2 > 0 and define
AN :� {w ∈WN ||N w| ≤ (1− ε1)E[|N w|]},

BN(X) :� v ∈ VN

∣∣∣∣∣|N v ∩ X| − c(N)|X|
M(N)

∣∣∣∣∣ ≥ ε2c(N)|X|
M(N)

{ }
for X ⊆WN:

Fix ε > 0 and δ > 0. The goal will be to prove proportional sparsity, that is, that there exists N0 ≥ 1 such that

sup
U⊆VN

∣∣∣∣∣ w ∈WN |
∣∣∣∣∣ |Nw ∩U|

|N w| − |U|
N

∣∣∣∣∣ ≥ ε

{ }∣∣∣∣∣ ≤ 2δM(N) for N ≥N0: (A.10)

Lemma A.3 showed that |AN | ≤ δM(N) for N large enough. It is therefore sufficient to prove that there exists N1 ≥ 1 such that

sup
U⊆VN

∣∣∣∣∣ w ∈ Ac
N |

∣∣∣∣∣ |Nw ∩U|
|N w| − |U|

N

∣∣∣∣∣ ≥ ε

{ }∣∣∣∣∣ ≤ δM(N) for N ≥N1: (A.11)
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Consider a subset U ⊆ VN. We proceed by contradiction. First, consider the case that there is a subset of dispatchers that
is overconnected to U. In other words, assume that there exists a subset X ⊆ Ac

N ⊆WN with |X| ≥ δM(N) such that for all
w ∈ X,

|N w ∩U|
|N w| ≥ |U|

N
+ ε: (A.12)

We now distinguish two cases based on the cardinality of U. Choose η :� εδ=2 and assume that |U| ≥ ηN. By Lemma A.2,
the number of edges between U and X is

∑
v∈U∩BN(X)

|N v ∩ X| + ∑
v∈U∩BN(X)c

|N v ∩ X| ≤ c(N)|BN(X)| + (1+ ε2)c(N)|X||U|
M(N)

≤ (1+ 2ε2)c(N)|X||U|
M(N) ,

(A.13)

for all N large enough such that |BN(X)| ≤ ε2δηN. At the same time, the number of edges between U and X is

∑
w∈X

|Nw ∩U| ≥ ∑
w∈X

|Nw| |U|
N

+ ε

( )
≥ (1− ε1) c(N)N

M(N)
|U|
N

+ ε

( )
|X|

� (1− ε1)(1+ ε) c(N)|X||U|
M(N) , (A:14)

which contradicts Equation (A.13) for ε1 and ε2 small enough.
Assume now that |U| < ηN. The number of edges between U and X is∑

v∈U
|N v ∩ X| ≤ ηc(N)N � εδc(N)N=2: (A.15)

Then, the number of edges between U and X is

∑
w∈X

|N w ∩ U| ≥ ∑
w∈X

|Nw| |U|
N

+ ε

( )
≥ (1 − ε1) c(N)N

M(N)
|U|
N

+ ε

( )
|X|

≥ εδ(1 − ε1)c(N)N,
(A.16)

which contradicts Equation (A.15) for ε1 small enough.
Second, consider the case that there is a subset of dispatchers which is underconnected to U. In other words, assume

that there exists X ⊆ Ac
N ⊆WN with |X| ≥ δM(N) such that for all w ∈ X,

|N w ∩U|
|N w| ≤ |U|

N
− ε: (A.17)

Then we consider the complement of U to find

|Nw ∩ Uc|
|N w| � 1 − |N w ∩ U|

|N w| ≥ 1 − |U|
N

+ ε � |Uc|
N

+ ε, (A.18)

which leads to a contradiction in the same way as before. Hence, the sequence {GN}N≥1 as described in Theorem 2 is pro-
portionally sparse almost surely.

Verification of Subcriticality
We now prove that {GN}N≥1 satisfies the subcriticality condition in Definition 2, almost surely. Note that it is enough to
verify that {GN}N≥1 satisfies (2) for some choice of γv1,: : : ,vd

w (v). In particular, if γv1,: : : ,vd
w (v) is the uniform distribution, that

is, γv1,: : : ,vd
w (v) � 1=|{v1, : : : ,vd}| for v ∈ {v1, : : : ,vd}, then the condition reduces to

limsup
N→∞

max
v∈VN

N
M(N)

∑
w∈WN

1{(v,w) ∈ EN}
|N w| ≤ 1: (A.19)

In the rest of this section, we will verify that {GN}N≥1 satisfies (A.19) almost surely.

Remark A.1. The condition of subcriticality as in (A.19) is similar to condition 1(ii) in Budhiraja et al. [4]. Translated to
the current framework, condition 1(ii) in Budhiraja et al. [4] reads

max
v∈VN

N
M(N)

∣∣∣∣∣ ∑w∈WN

1{(v,w) ∈ EN}
|N w| − 1

∣∣∣∣∣ → 0 as N → ∞: (A.20)

The subcriticality condition in (A.19) is less restrictive than the condition in Budhiraja et al. [4].

Lemma A.4. Assume c(N) � ω(M(N)ln (N)=N). Then the graph sequence {GN}N≥1 satisfies (A.19), and hence the subcriticality
condition, almost surely.
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Proof. Let ζ(N) :� ��������������������������
ln (N)c(N)N=M(N)√

and notice that

ζ(N)
c(N)N=M(N) �

������������������
ln (N)

c(N)N=M(N)

√
→ 0 as N→∞: (A.21)

We know that |N w| is binomial with parameters N and c(N)=M(N). By the Chernoff bound for binomials (Janson et al.
[17, theorem 2.1]),

P |Nw| ≤ c(N)N
M(N) − aζ(N)

( )
≤ exp − a2ζ(N)2

2c(N)N=M(N)

( )
≤ exp − a2ln (N)

2

( )
�N−a2=2: (A.22)

Hence,

P ∃w ∈ WN such that |N w| ≥ c(N)N
M(N) − aζ(N)

( )
≤ N1−a2=2: (A.23)

As the probabilities are summable over N for arbitrary a2 > 4, the first Borel–Cantelli lemma proves the events can only
happen finitely many times. Hence, there exists N0 ≥ 1 such that

|N w| ≥ c(N)N=M(N) − aζ(N) for all w ∈WN and N ≥N0: (A.24)

Therefore,

max
v∈VN

N
M(N)

∑
w∈WN

1{(v,w) ∈ EN}
|N w| ≤ N

M(N)
c(N)

minW∈VN |Nw|
≤ N
M(N)

c(N)
c(N)N=M(N) − aζ(N) � 1 + aζ(N)

c(N)M(N)=N − aζ(N) → 1 as N → ∞: w

Proof of Theorem 2. The proof of Theorem 2 follows immediately from Proposition A.1 and Lemma A.4. w

Appendix B. Inhomogeneous Levels of Flexibility
Throughout this section, {GN}N≥1 will denote the sequence of random graphs as described in Theorem 3, where
(pw(N))w∈WN

is the connection probability vector. To establish Theorem 3, it suffices to prove that {GN}N≥1 satisfies the
conditions of proportional sparsity and subcriticality, almost surely.

Verification of Proportional Sparsity
We start by verifying the proportionally sparsity condition. Define p̄(N) :�minw∈WNpw(N).
Lemma B.1. Assume p̄(N) � ω(1=N) and p̄(N) � ω(1=M(N)). Then the sequence of graphs {GN}N≥1 is proportionally sparse
almost surely.

Proof. Fix ε > 0, w ∈WN and U ⊆ VN. Let Bw(U) denote the event that a dispatcher w ∈WN is bad with respect to the set
U ⊆ VN, defined as

Bw(U) :�
∣∣∣∣∣ |Nw ∩U|

|N w| − |U|
N

∣∣∣∣∣ ≥ ε

{ }
: (B.1)

Define ζw(N) :� pw(N)N and η :� |U|=N. By the law of total probability,

P Bw(U)( )
≤ P(Bw(U) | ||N w ∩U| − ηζw(N)| < ε1ζw(N) and ||N w| − ζw(N)| < ε2ζw(N))
+P ||N w ∩U| − ηζw(N)| ≥ ε1ζw(N)) +P(||N w| − ζw(N)| ≥ ε2ζw(N)( )

: (B:2)

We will bound each term on the right-hand side of (B.2). The first term becomes equal to zero by choosing ε1 � ε=6 and
ε2 �min(ε=6,1=2) such that

|Nw ∩U|
|N w| − η ≤ ηζw(N) + ε1ζw(N)

ζw(N) − ε2ζw(N) − η ≤ ε1 + ε2
1− ε2

< ε (B.3)

and

|N w ∩U|
|N w| − η ≥ ηζw(N) − ε1ζw(N)

ζw(N) + ε2ζw(N) − η ≥ −ε1 + ε2
1+ ε2

> −ε: (B.4)
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By applying the Chernoff bound for binomials (Janson et al. [17, theorem 2.1]) on the second term, we obtain

P(||N w ∩ U| − ηζw(N)| ≥ (ε1=η)ηζw(N))
≤ 2exp − ηζw(N)(ε1=η)2

3

( )
≤ 2exp − p̄(N)Nε21

3

( )
, (B.5)

and applying the Chernoff bound (Janson et al. [17, theorem 2.1) on the third term yields

P ||N w| − ζw(N)| ≥ ε2pw(N)N( ) ≤ 2exp − ζw(N)ε22
3

( )
≤ 2exp − p̄(N)Nε22

3

( )
: (B.6)

Therefore,

P(Bw(U)) ≤ 2exp − p̄(N)Nε21
3

( )
+ 2exp − p̄(N)Nε22

3

( )
, (B.7)

uniformly over w ∈WN and U ⊆ VN. Fix 0 < δ < 1=2 and define α(δ) and β(δ) as
α(δ) :� 4

δ
,β(δ) :� exp −2

δ
δln

1
δ

( )
+ (1− δ)ln 1

1− 2δ

( )( )( )
: (B.8)

Because p̄(N)N→∞ as N→∞, Equation (B.7) converges to zero as N becomes large. Hence, for all δ > 0, there exists
N0 ≥ 1 such that P(Bw(U)) ≤ β(δ) for all N ≥N0. Similarly, because p̄(N)M(N) →∞ as N→∞, it follows that for all δ > 0,

there exists N1 ≥ 1 such that P(Bw(U)) ≤ exp − α(δ)N
M(N)

( )
for all N ≥N1. As the events {Bw(U)}w∈WN

are independent, for all δ >

0 and N ≥max(N0,N1), the sum of their indicators
∑

w∈WN 1(Bw(U)) is stochastically dominated by a binomial (M(N),θ)
random variable, where

θ :�min exp −α(δ)N
M(N)

( )
,β(δ)

( )
: (B.9)

By the Chernoff bound for binomials (Janson et al. [17, theorem 2.1]),

P
∑
w∈WN

1(Bw(U)) ≥ δM(N)
( )

≤ exp −M(N) δln δ

θ

( )
− (1 − δ)ln 1 − θ

1 − 2δ

( )( )( )

≤ exp − δM(N)
2

ln
1
θ

( )
+M(N) δln 1

δ

( )
+ (1 − δ)ln 1

1 − 2δ

( )
− δ

2
ln

1
θ

( )( )( )

≤ exp − δM(N)
2

α(δ)N
M(N) +M(N) δln 1

δ

( )
+ (1 − δ)ln 1

1 − 2δ

( )
− δ

2
ln

1
β(δ)
( )( )( )

≤ exp −2N( ) (B:10)
for all N ≥max(N0,N1), and hence,

P sup
U⊆VN

∑
w∈WN

1(Bw(U)) ≥ δM(N)
( )

≤ ∑
U⊆VN

P
∑
w∈WN

1(Bw(U)) ≥ δM(N)
( )

≤ exp (−N): (B.11)

As the probabilities are summable over N, the first Borel–Cantelli lemma proves that the sequence of random graphs is
proportionally sparse almost surely. w

Verification of Subcriticality
We now prove that {GN}N≥1 satisfies the subcriticality condition in Definition 2, almost surely. Note, as in Appendix A,
we will verify that {GN}N≥1 satisfies (A.19) almost surely. Recall that p̄(N) �minw∈WNpw(N).
Lemma B.2. Assume p̄(N) � ω((ln (M(N)) + ln (N))=N) and ‖p(N)−1‖−22 � ω(ln (N)=M(N)2). Then the sequence of graphs
{GN}N≥1 satisfies the subcriticality condition almost surely.

Proof. Let ζw(N) :� �������������������������������������(ln (M(N)) + ln (N))pw(N)N√
, and notice that

ζw(N)
pw(N)N ≤

������������������������
ln (M(N)) + ln (N)

p̄(N)N

√
→ 0 as N→∞: (B.12)
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We know that |Nw| is a binomial (N,pw(N)) random variable. By the Chernoff bound for binomials (Janson et al. [17, the-
orem 2.1]),

P(|N w| ≥ pw(N)N− c1ζw(N)) ≤ exp − c21ζw(N)2
2pw(N)N

( )

≤ exp − c21(ln (M(N)) + ln (N))
2

( )
�M(N)−c21=2 ·N−c21=2: (B:13)

Hence,

P(∃w ∈ WN such that |N w| ≥ pw(N)N − c1ζw(N)) ≤ M(N)1−c21=2 ·N−c21=2: (B.14)

As the probabilities are summable over N for arbitrary c21 > 2, because of the first Borel–Cantelli lemma, almost surely,
there exists N0 ≥ 1 such that for all N ≥N0,

|N w| ≥ pw(N)N− c1ζw(N) for all w ∈WN: (B.15)

Define the functions fv and g for v ∈ VN as

fv(z) � N
M(N)

∑
w∈WN

zw
|Nw\{v}| + zw

, g(z) � N
M(N)

∑
w∈WN

zw
pw(N)N− c1ζw(N), (B.16)

for vectors z ∈ {0,1}M(N). Note that for N ≥N0,

fv(z) − gv(z) � N
M(N)

∑
w∈WN

zw
1

|N w\{v}| + 1
− 1
pw(N)N− c1ζw(N)

( )

≤ N
M(N)

∑
w∈WN

zw
1

|N w| −
1

pw(N)N− c1ζw(N)
( )

≤ 0, (B:17)

and therefore fv(z) ≤ gv(z). Define the edge indicators Zv,w � 1{(v,w) ∈ EN} for v ∈ VN and w ∈WN. Note that the random
variables {Zv,w}w∈WN

are independent. Furthermore, there exists N1 ≥ 1 such that if two vectors z,z′ ∈ {0, 1}M(N) differ only
in the wth coordinate, then

|gv(z) − gv(z′)| � N
M(N)

1
pw(N)N− c1ζw(N) ≤

2
pw(N)M(N) , (B.18)

for N ≥N1. Finally, note that

E gv {Zv,w}w∈WN

( )[ ]
→ 1 as N→∞: (B.19)

We apply the Azuma–Hoeffding inequality (Janson et al. [17, corollary 2.27]) and use the condition ‖p(N)−1‖−22 �
ω(ln (N)=M(N)2) to obtain

P fv {Zv,w}w∈WN

( )
≥ 1+ 2ε

( )
≤ P gv {Zv,w}w∈WN

( )
≥ E gv {Zv,w}w∈WN

( )[ ]
+ ε

( )

≤ exp − ε2

2
∑
w∈WN

4

pw(N)2M(N)2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � exp − ε2M(N)2
8‖p(N)−1‖22

( )
≤ exp − c2ε2ln (N)

8

( ) (B.20)

for all c2 > 0 and N large enough. Therefore,

P ∃v ∈ VN such that max
v∈VN

N
M(N)

∑
w∈WN

1{(v,w) ∈ EN}
|Nw| ≥ 1+ 2ε

( )
≤N1−c2ε

2

8 : (B.21)

As the probabilities are summable over N for c2 large enough, the first Borel–Cantelli lemma proves that the graph
sequence satisfies the subcriticality condition almost surely. w

Proof of Theorem 3. The proof of Theorem 3 follows immediately from Lemmas B.1 and B.2. w

Appendix C. Global Stability Analysis
The proof of global stability is based on the proof of theorem 3.6 in Mitzenmacher [22]. Recall that Ψω(t) :�∑∞

i�1ωi|q∗i (t) −
q∗i (∞)| and i0 :�min i ≥ 1|λ(2q∗i (∞) + 1) < 1+λ

2

{ }
.

Proof of Theorem 6. To establish the theorem, it is sufficient to show that there exists 1 < r < 2=(1+λ) such that v ∈ R
∞

satisfies the condition from the proof of theorem 3.6 in Mitzenmacher [22]. That is, if there exists δ > 0 such that

ωi+1 ≤ ωi +ωi(1− δ) −ωi−1
λ(2q∗i (∞) + 1) for i ≥ 1, (C.1)
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then Ψω converges exponentially to zero if Ψ(0) <∞. As suggested in the proof of theorem 3.6 in Mitzenmacher [22], the
weights are broken up into two subsequences starting with ω0 � 0 and ω1 � 1. For 1 ≤ i ≤ i0 − 1, we set

ωi+1 :� ωi +ωi(1− δ) −ωi−1
3

≤ ωi +ωi(1− δ) −ωi−1
λ(2q∗i (∞) + 1) : (C.2)

Note that the subsequence ω0,ω1, : : : ,ωi0 consists of finitely many terms. Hence, there exists δ0 > 0 such that this subse-
quence is increasing for δ ≤ δ0. Applying Equation (C.1) to the (i0 + 1) th term yields

ωi0+1 :� ωi0r ≤ ωi0 +ωi0 (1− δ) −ωi0−1
λ(2πi0 + 1) , (C.3)

from which it follows that

r ≤ 1+ 1
ωi0

ωi0 (1− δ) −ωi0−1
λ(2πi0 + 1) ≕ R(δ): (C.4)

Note thatR(δ) increases as δ decreases. Hence, there exists δ1 > 0 such thatR(δ) > 1+ ε for δ ≤ δ1 and some ε > 0. Define

r(δ) :� 1
2

1+ 2− 2δ
1+λ

−
��������������������������
1+ 2− 2δ

1+λ

( )2
− 8
1+λ

√⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, (C.5)

and ωi0+i :� ωi0 r(δ)i for i ≥ 1 such that

ωi+1 � ωi + 2ωi(1− δ) − 2ωi−1
1+λ

≤ ωi +ωi(1− δ) −ωi−1
λ(2q∗i (∞) + 1) , (C.6)

for i ≥ i0 + 1. Note that r(δ) → 1 as δ→ 0. Hence, there exists δ2 > 0 such that 1 < r(δ) <min(2=(1+λ), 1+ ε) for δ ≤ δ2.
Finally, let δ :�min(δ0,δ1,δ2) and r � r(δ) such that Equation (C.1) is satisfied. w

Appendix D. Proportional Sparsity and Quasi Randomness

Proof of Lemma 1. Note that the quasi-random graph can be characterized by the discrepancy condition (Chung et al.
[7, property 4]), which, for bipartite graphs, states that a graph sequence {GN}N≥1 is quasi-random if there exists a fixed
0 < p < 1 such that for all UN ⊆ VN and BN ⊆WN,∣∣∣∣∣ ∑w∈BN

|Nw ∩UN | − p|UN ||BN |
∣∣∣∣∣ � o(NM(N)): (D.1)

We proceed by contradiction. Assume, if possible, that there exists ε > 0 and a sequence of choices for N for which there
exists U ⊆ VN such that ∣∣∣∣∣ w ∈WN |

∣∣∣∣∣ |N w ∩U|
|N w| − |U|

N

∣∣∣∣∣ ≥ ε

{ }∣∣∣∣∣ ≥ 2δM(N), (D.2)

for δ > 0. Define the overconnected set of dispatchers as

B1 :� w ∈WN

∣∣∣∣∣ |N w ∩U|
|N w| − |U|

N
≥ ε

{ }
, (D.3)

and assumewithout loss of generality that |B1| ≥ δM(N). Let p :�∑
w∈B1 |Nw|=(|B1|N) be the average connection probability. Now,∑

w∈B1

|N w ∪U| ≥ |U|
N

+ ε

( )∑
w∈B1

|N w| � p|U||B1| + εp|B1|N ≥ p|U||B1| + εδpNM(N): (D.4)

Define the underconnected set of dispatchers to Uc as

B2 :� w ∈ WN

∣∣∣∣∣ |Nw ∩ Uc|
|N w| − |Uc|

N
≤ −ε

{ }

� w ∈ WN

∣∣∣∣∣ 1 − |N w ∩ U|
|N w|

( )
− 1 − |U|

N

( )
≤ −ε

{ }

� w ∈ WN

∣∣∣∣∣ |N w ∩ U|
|N w| − |U|

N
≥ ε

{ }
� B1: (D:5)

With the same reasoning as before,∑
w∈B2

|Nw ∪ Uc| ≤ |Uc|
N

− ε

( )∑
w∈B2

|N w| ≤ p|Uc||B1| − εδpNM(N): (D.6)

As the deviations are of the orderNM(N), it now follows that there is no choice for p forwhich Equation (D.1) is satisfied. w
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Appendix E. Lipschitz Continuity of JSQ(d)

Proof of Lemma 2. Let x ∈ X be the queue length distribution, and let qi �∑∞
j�i xj be the corresponding occupancy proc-

ess. Let Π be the JSQ(d) policy. The assignment probability function pΠ � pΠ0 ,p
Π
1 , : : :

( )
: X → [0,1]∞ is given by

pΠi (x) � qdi − qdi+1 � (xi + qi+1)d − qdi+1 �
∑d−1
k�0

d
k

( )
xd−ki qki+1 for i � 1, 2, : : : : (E.1)

Let y ∈ X be another queue length distribution with corresponding occupancy process ri � ∑∞
j�i yj. Apply the triangle

inequality and Lipschitz continuity of f (z) � zk,

∑∞
i�0

|pΠi (y) − pΠi (x)| ≤
∑∞
i�0

∑d−1
k�0

d
k

( )
|yd−ki rki+1 − xd−ki qki+1|

≤ d!
∑∞
i�0

∑d−1
k�0

|yd−ki rki+1 − xd−ki rki+1| + |rki+1 − qki+1||xd−ki |
( )

≤ d!
∑d−1
k�0

∑∞
i�0

|yd−ki − xd−ki | + d!
∑d−1
k�0

max
i≥1

|rki − qki |
∑∞
i�0

|xd−ki |

≤ d!
∑d−1
k�0

(d− k)∑∞
i�0

|yi − xi| + d! · d2 max
i≥1

|ri − qi|

≤ d! · d2∑∞
i�0

|yi − xi| + d! · d2 max
i≥1

∣∣∣∣∣∑
∞

j�i
xj − yj
( )∣∣∣∣∣ ≤ 2d! · d2∑∞

i�0
|yi − xi|: w

Appendix F. Proof of Proposition 1
To prove Proposition 1, we first need to show that the tail of the occupancy process is small uniformly on any finite time
interval, for all large enough N. This is stated in the next lemma.

Lemma F.1. If the starting states satisfy ||q(Φ(GN, 0)) − q∗(0)||1 → 0 as N→∞, for some q∗(0) ∈ Y, then for each ε > 0, δ > 0, and
T > 0, there exist i0 ≥ 1 and N1 ≥ 1, possibly depending on λ, q∗(0), ε, δ, and T, such that,

P sup
t∈[0,T]

qi0 (Φ(GN, t)) ≥ ε

( )
< δ for all N ≥N1: (F.1)

Note that Lemma F.1 does not depend on any condition on the graph sequence, nor does it require the Lipschitz continu-
ity of the task assignment policy.

Proof of Lemma F.1. Fix ε > 0 and δ > 0. As q∗(0) ∈ ℓ1, there exists j0 � j0(q∗(0)) ≥ 1 such that q∗j0 (0) < ε=4. By convergence
of the starting states, there exists N0 ≥ 1 such that

P(qj0 (Φ(GN, 0)) ≥ ε=2) ≤ P(|q(Φ(GN ,0)) − q∗(0)|1 ≥ ε=4) < δ=2 for N ≥N0: (F.2)

Let i0 � j0 + �4λT=ε�. Then,

P sup
t∈[0,T]

qi0 (Φ(GN, t)) ≥ ε

( )

≤ P sup
t∈[0,T]

qi0 (Φ(GN, t)) ≥ ε|qj0 (Φ(GN, 0)) < ε=2

( )
+P(qj0 (Φ(GN, 0)) ≥ ε=2): (F:3)

By the choice of j0, the second term is smaller than δ=2 for N ≥N0. By the condition qj0 (Φ(GN, 0)) < ε=2, the number of
servers with at least j0 tasks is upper bounded by εN=2 at time zero. Hence, to reach qi0 (Φ(GN, t)) ≥ ε, there must be at
least (εN− εN=2)(i0 − j0) ≥ 2λNT tasks added to the system. Therefore, there exists N′

0 ≥ 1 such that

P sup
t∈[0,T]

qi0 (Φ(GN, t)) ≥ ε

∣∣∣∣∣qj0 (Φ(GN, 0)) < ε=2

( )
≤ P(Z(λNT) ≥ 2λNT) < δ=2 (F.4)

for N ≥N′
0, where Z(·) is a unit-rate Poisson process and Z(λNT) denotes the total number of arrivals into the system up

to time T. Choosing N1 �max(N0,N′
0) completes the proof of the lemma. w

Proof of Proposition 1. We can upper bound the probability in Equation (9) by repeatedly applying the triangle
inequality and splitting the probabilities in separate terms. For brevity, let x(t) :� x(Φ(GN, t)) and xw(t) :� xw(Φ(GN, t)), and
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similarly, q(t) :� q(Φ(GN, t)) and qw(t) :� qw(Φ(GN, t)). Then,

P sup
t∈[0,T]

∣∣∣∣∣ w ∈WN |
∑∞
i�0

|xi(t) − xwi (t)| ≥ ε

{ }∣∣∣∣∣ ≥ δM(N)
( )

≤ P( sup
t∈[0,T]

∣∣∣∣∣ w ∈WN |
∑i0−1
i�0

|xi(t) − xwi (t)| ≥ ε=4

{ }∣∣∣∣∣
+ sup

t∈[0,T]

∣∣∣∣∣ w ∈WN |
∑∞
i�i0

xwi0 (t) ≥ ε=2

{ }∣∣∣∣∣
+ sup

t∈[0,T]

∣∣∣∣∣ w ∈WN |
∑∞
i�i0

xi0 (t) ≥ ε=4

{ }∣∣∣∣∣ ≥ δM(N)) (F:5)

≤ P sup
t∈[0,T]

∣∣∣∣∣ w ∈WN |
∑i0−1
i�0

|xi(t) − xwi (t)| ≥ ε=4

{ }∣∣∣∣∣ > δM(N)=4
( )

+ P sup
t∈[0,T]

∣∣∣ w ∈WN |qwi0 (t) ≥ ε=2
{ }∣∣∣ > δM(N)=2

( )

+ P sup
t∈[0,T]

| w ∈WN |qi0 (t) ≥ ε=4
{ }| > δM(N)=4

( )

≤ ∑i0−1
i�0

P sup
t∈[0,T]

| w ∈WN ||xi(t) − xwi (t)| ≥ ε=4i0
{ }| > δM(N)=4i0

( )

+ P sup
t∈[0,T]

∣∣∣ w ∈WN ||qi0 (t) − qwi0 (t)| ≥ ε=4
{ }∣∣∣ > δM(N)=4

( )

+ 2P sup
t∈[0,T]

1{qi0 (t) ≥ ε=4} > 0

( )
, (F:6)

for an arbitrary choice of i0 ≥ 1, where in the second step we use qi0 (t) � ∑∞
i�i0 xi(t). By Markov’s inequality,

∑i0−1
i�0

P sup
t∈[0,T]

| w ∈WN ||xi(t) − xwi (t)| ≥ ε=4i0
{ }| > δM(N)=4i0

( )

≤ 4i0
δM(N)

∑i0−1
i�0

E sup
t∈[0,T]

| w ∈WN ||xi(t) − xwi (t)| ≥ ε=4i0
{ }|

[ ]

≤ 4i20
δM(N) supU⊆VN

∣∣∣∣∣ w ∈WN |
∣∣∣∣∣ |N w ∩U|

|N w| − |U|
N

∣∣∣∣∣ ≥ ε=4i0

{ }∣∣∣∣∣, (F:7)

where the last step follows because the servers with queue length i form a subset of VN at every time t ≥ 0. Similarly, the
second term on the right-hand side of (F.6) can be bounded by

P sup
t∈[0,T]

∣∣∣ w ∈WN ||qi0 (t) − qwi0 (t)| ≥ ε=4
{ }∣∣∣ > δM(N)=4

( )

≤ 4
δM(N)E sup

t∈[0,T]

∣∣∣ w ∈WN ||qi0 (t) − qwi0 (t)| ≥ ε=4
{ }∣∣∣

[ ]

≤ 4
δM(N) supU⊆VN

∣∣∣∣∣ w ∈WN |
∣∣∣∣∣ |N w ∩U|

|N w| − |U|
N

∣∣∣∣∣ ≥ ε=4

{ }∣∣∣∣∣: (F:8)

Fix ε′ > 0. By Lemma F.1, we can choose i0 ≥ 1 and N0 ≥ 1 such that

P sup
t∈[0,T]

qi0 (t) ≥ ε=4

( )
≤ ε′=4 for N ≥N0: (F.9)

Because the graph sequence is proportionally sparse, by Definition 1, there exists N1 ≥ 1 such that

sup
U⊆VN

w ∈WN |
∣∣∣∣∣ |N w ∩U|

|N w| − |U|
N

∣∣∣∣∣ ≥ ε=4i0

{ }∣∣∣∣∣
∣∣∣∣∣ < δ

4i20 + 4
ε′M(N)

2
for all N ≥N1: (F.10)
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Therefore, plugging the bound from (F.10) in (F.8) and (F.7) and plugging this together with (F.9) in (F.6), we obtain

P sup
t∈[0,T]

Bε
N(t) ≥ δM(N)

( )
≤ 4i20 + 4
δM(N) supU⊆VN

∣∣∣∣∣ w ∈ WN |
∣∣∣∣∣ |N w ∩ U|

|N w| − |U|
N

∣∣∣∣∣ ≥ ε=4i0

{ }∣∣∣∣∣
+ 2P sup

t∈[0,T]
qi0 (t) ≥ ε=4

( )
< ε′=2 + ε′=2 � ε′ for all N ≥ max(N0,N1): w (F:11)

Appendix G. Proof of Proposition 2
We now provide the proof of Proposition 2. The proof follows by induction on t.

Proof of Proposition 2. We prove the inequality in Equation (12) by induction on the event times. Assume the inequal-
ity holds before the current time epoch t. We continue by distinguishing two cases, depending on whether t is an arrival
or a departure epoch. Recall that the GN-system and KN,M-system refer to the systems where the compatibility graphs are
GN and KN,M, respectively. Also, recall that, because of the optimal coupling, the servers in both systems are ordered by
nondecreasing queue lengths, and departures happen simultaneously at the jth ordered server in the two systems, when-
ever they are nonempty for j � 1, 2, : : : ,N.

First, assume t to be a departure epoch at the jth ordered server. Our goal is to bound the increase of∑∞
i�1 |Qi(Φ(KN,M, t)) −Qi(Φ(GN, t))| by zero, because ΔN(t) remains unchanged during the departure. Let I1 and I2 denote

the queue lengths just before time t at the jth ordered server for the GN-system and KN,M-system, respectively. After the
departure, both QI1 (Φ(GN, t)) and QI2 (Φ(KN,M, t)) decrease by one, whereas the rest of the terms on the left-hand side of
(12) remain unchanged. We will consider three possibilities:

1. If I1 � I2 � i0, thenQi0 decreases by one in both systems, and hence the sum in the left-hand side of (12) remains unchanged.
2. Now assume I2 < I1. This implies that QI1 (Φ(GN, t−)) >QI1 (Φ(KN,M, t−)), and hence |QI1 (Φ(KN,M, t)) −QI1 (Φ(GN, t))|

decreases by one during the departure. Because |QI2 (Φ(KN,M, t)) −QI2 (Φ(GN, t))| increases by at most one, the sum on the left-
hand side of (12) remains unchanged.

3. The case I2 > I1 is similar to the I2 < I1 case.
Next, assume t to be an arrival epoch. In this case, we further distinguish two cases:
1. If the arriving tasks are routed to servers with unequal queue lengths in the two systems, then there is a mismatch in queue

length at time t and ΔN(t) increases by one. Let I1 and I2 denote the queue lengths of the servers the tasks are routed to for
the GN-system and KN,M-system, respectively. During the arrival, QI1+1(Φ(GN, t)) and QI2+1(Φ(KN,M, t)) increase by one, whereas
the rest of the terms on the left-hand side of (12) remain unchanged. Hence,

∑∞
i�1 |Qi(Φ(KN,M, t)) −Qi(Φ(GN, t))| increases by at

most two and, because ΔN(t) increases by one, the right-hand side of (12) increases by two as well.
2. If the arriving tasks are routed to servers with equal queue lengths in the two systems, then there is no mismatch in queue

length at time t and ΔN(t) remains unchanged. Therefore, our goal in this case is to bound the increase in the sum∑∞
i�1 |Qi(Φ(KN,M, t)) −Qi(Φ(GN, t))| by zero. Let I1 � I2 � i0 denote the queue length of the servers the tasks are routed to. During

the arrival,Qi0+1 increases by one in both systems, and hence, |Qi0+1(Φ(KN,M, t)) −Qi0+1(Φ(GN, t))| remains unchanged. As the rest
of the terms on the left-hand side of (12) remain unchanged aswell, the increase in the left-hand side of (12) is bounded by zero.

Therefore, in all the above cases, the inequality in (12) is preserved at time epoch t. This completes the proof of Proposition 2. w

Appendix H. Proof of Stability
As mentioned in the introduction, to prove stability and tightness of the steady state occupancy process, we use the Lya-
punov function approach, as in Wang et al. [42, 43] and establish moment bounds (Hajek [14], Meyn and Tweedie [19])
to obtain uniform bounds on the tail of the stationary occupancy process. To apply techniques from Meyn and Tweedie
[19] in discrete time, we consider the state of the system at event times t0 � 0 < t1 < tk; that is, for all i ≥ 1, ti is either an
arrival or a potential departure epoch. The Markov process can now be viewed as a uniformized Markov chain. We will
later relate the behavior of this uniformized Markov chain to the behavior of the original process.

For any real-valued function V : SN → R defined on the state space, denote the expected increase ΔV(·) as

ΔV(z) :� E[V(Φ(GN, t1)) −V(Φ(GN, t0))|Φ(GN, t0) � z]: (H.1)

We investigate positive Harris recurrence of the uniformized chain by employing the next theorem.

Theorem H.1 (Meyn and Tweedie [19, Theorem 11.0.1]). Suppose that Φ is a Markov chain. The Markov chain Φ is a positive
Harris recurrent chain if and only if there exists some petite set C ⊆ SN, b <∞ and some nonnegative function V : SN → R

satisfying

ΔV(z) ≤ −1+ b 1{z ∈ C} for all z ∈ SN: (H.2)

The goal is to find an appropriate petite set C and a suitable Lyapunov function V.
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The Lyapunov Function
Define a sequence of Lyapunov functions Vk : SN → R indexed by k � 1, 2, : : : as

Vk(z) :�
∑∞
i�k

∑∞
j�i

Qj(z) � 1
2

∑∞
i�k

(i− k+ 1)(i− k+ 2) ·Xi(z): (H.3)

The sequence of Lyapunov functions, instead of a single Lyapunov function, will be necessary to bound the tail of the
occupancy of the stationary state. This in turn will establish that the steady state of the occupancy process is tight in the
appropriate space.

Lemma H.1. Consider a sequence {GN}N≥1 of graphs that satisfies the subcriticality condition. For each ε > 0, there exists N0 ≥ 1
such that under the JSQ(d) policy, for all N ≥N0,

ΔVk(z) ≤ 1
λ+ 1

(1+ ε)λqk−1(z) − (1− (1+ ε)λ)∑∞
i�k

qi(z)
( )

for all z ∈ SN: (H.4)

Note that because of Lemma H.1, if the tail of the occupancy is heavy compared with qk−1(z), then the increase of the
Lyapunov function is negative. In other words, if queues are long, a task is more likely to join a shorter queue than to
join one of these long queues. This is a consequence of the JSQ(d) policy, which prefers shorter queues. The subcriticality
condition on the graph is necessary here to ensure tasks are able to reach the shorter queues.

Proof of Lemma H.1. By conveniently employing Poisson thinning as an argument, we can formulate an alternative
description of the queueing system. Tasks in the system arrive as a Poisson process with rate λN. At the arrival of a task,
a dispatcher w ∈WN is uniformly chosen at random. Next, servers v1, : : : ,vd ∈N w are selected uniformly at random with
replacement. The task is then routed to the server with the shortest queue out of v1, : : : ,vd. In this formulation, the proba-
bility of a task being routed to the subset of servers with at least i tasks, Qi, is

1
M(N)

∑
w∈WN

|Nw|−d
∑

v1, : : : ,vd∈N w

1{{v1, : : : ,vd} ⊆Qi} · 1+ (1− 1{{v1: : : ,vd} ⊆Qi}) · 0( ): (H.5)

Because the graph sequence satisfies the subcriticality condition, we know there exist a probability distribution γv1,: : : ,vd
w (v)

on VN supported on {v1, : : : ,vd} for each w ∈WN and v1, : : : ,vd ∈ VN such that

max
v∈VN

N
M(N)

∑
w∈WN

|Nw|−d
∑

v1, : : : ,vd∈N w

γv1,: : : ,vd
w (v) ≤ 1+ ε, (H.6)

for N large enough. If {v1, : : : ,vd} ⊆Qi, then∑
v∈Qi

γv1,: : : ,vd
w (v) � ∑

v∈{v1, : : : ,vd}
γv1,: : : ,vd
w (v) � 1, (H.7)

and hence,
1

M(N)
∑
w∈WN

|N w|−d
∑

v1, : : : ,vd∈Nw

1{{v1, : : : ,vd} ⊆Qi} · 1+ (1− 1{{v1, : : : ,vd} ⊆Qi}) · 0( )

≤ 1
M(N)

∑
w∈WN

|Nw|−d
∑

v1, : : : ,vd∈N w

∑
v∈Qi

γv1,: : : ,vd
w (v)

� ∑
v∈Qi

1
M(N)

∑
w∈WN

|N w|−d
∑

v1, : : : ,vd∈Nw

γv1,: : : ,vd
w (v) ≤ ∑

v∈Qi

1+ ε

N
� (1+ ε)qi, (H:8)

where the last inequality follows from the subcriticality condition for N large enough. The increase of the Lyapunov func-
tion is then bounded as

ΔVk(z) :� E[Vk(Φ(GN, t1)) −Vk(Φ(GN, t0))|Φt0 � z]

� ∑∞
i�k

E
∑∞
j�i

Qj(Φ(GN, t1)) −Qj(Φ(GN, t0))
( )∣∣∣∣∣Φt0 � z

[ ]

� ∑∞
i�k

λN
λN+N

P task routed to Qi−1(z)( ) − N
λN+N

Qi(z)
N

( )

≤ 1
λ+ 1

∑∞
i�k

(1+ ε)λqi−1(z) − qi(z)( )

� 1
λ+ 1

(1+ ε)λqk−1(z) − (1− (1+ ε)λ)∑∞
i�k

qi(z)
( )

: w (H:9)
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Proof of Positive Harris Recurrence
We will gradually progress toward proving positive Harris recurrence using Theorem H.1, starting with the definition of
an appropriate petite set. The set CΓ ⊆ SN is defined as

CΓ :� z ∈ SN

∣∣∣∣∣∑
∞

i�1
Qi(z) ≤ Γ

{ }
: (H.10)

We formally state the definition of a petite set below.

Definition H.1 (Petite Set). A set C ⊆ SN is a petite set if and only if there exists a distribution a � {a(n)} on N and a non-
trivial measure μ on SN such that

∑∞
n�0

Pn(z, A)a(n) ≥ μ(A) (H.11)

for all z ∈ C and A ⊆ SN, where Pn(z,A) is the n-step transition probability from z to A.

Lemma H.2 states that CΓ introduced in (H.10) is a petite set. The proof is fairly straightforward because CΓ is finite,
however, we provide it for the sake of completeness.

Lemma H.2. The set CΓ ⊆ SN defined as in (H.10) is petite for any Γ ≥ 0.

Proof. To establish petiteness, it is sufficient to show that there exists a nontrivial measure μ on SN such that

∑∞
n�1

e−nPn(z,A) ≥ μ(A), (H.12)

for all z ∈ CΓ, A ⊆ SN, where Pn(z,A) is the n-step transition probability from z to A. Define μ as

μ(a) :�min
z∈CΓ

∑∞
n�1

e−nPn(z, a) for a ∈ SN, (H.13)

and letμ(A) � ∑
a∈Aμ(a), which iswell defined because the state space is countable. Trivially, Equation (H.12) is satisfied.Moreover,

because each state a ∈ SN is reachable and |CΓ| <∞, theminimumwill be nonzero and themeasure is nontrivial. w

The next lemma establishes that the Lyapunov function defined in the previous section satisfies the condition of Theo-
rem H.1.

Lemma H.3. Consider a sequence {GN}N≥1 of graphs that satisfies the subcriticality condition. There exists N0 ≥ 1 such that for
the JSQ(d) policy, the function V1 as defined in Equation (H.3) satisfies

ΔV1(z) ≤ −1+ 2 1{z ∈ C} for all z ∈ SN, (H.14)

for C � CΓ with Γ � 3 1+λ
1−λN and all N ≥N0.

Choose ε small such that (1+ ε)λ ≤ (λ+ 1)=2 < 1. By Lemma H.1, we know that

ΔV1(z) ≤ 1
λ+ 1

(1+ ε)λ− (1− (1+ ε)λ)∑∞
i�1

qi(z)
( )

, (H.15)

for N large enough. Then, for z ∈ SN,

ΔV1(z) ≤ (1+ ε)λ
λ+ 1

≤ 1
2
λ+ 1
λ+ 1

< −1+ 2: (H.16)

Also, for z ∉ CΓ with Γ � 3 1+λ
1−λN,

ΔV1(z) ≤ (1+ ε)λ
1+λ

− 1− (1+ ε)λ
1+λ

∑∞
i�1

qi(z) < 1
2
1+λ

1+λ
− 1
2
1−λ

1+λ

Γ

N
≤ −1: (H.17)

Lemmas H.2 and H.3 together with Theorem H.1 imply positive Harris recurrence of the uniformized Markov chain.
This implies that also the continuous time chain is positive Harris recurrent and has a stationary distribution.

Proof of Moment Bound
Finally, we prove the moment bound in Lemma 3.

Proof of Lemma 3. By the definition of the steady state,

E ΔVk(Φ(GN,∞))[ ] � 0: (H.18)
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Choose ε small such that (1+ ε)λ ≤ (1+λ)=2 < 1. Using Lemma H.1, we conclude for N large enough that

E (1+ ε)λqk−1(z) − (1− (1+ ε)λ)∑∞
i�k

qi(z)
[ ]

≥ 0, (H.19)

which can be rewritten to show the lemma. w

Appendix I. Criteria for Tightness in the ‘v1 -Topology

Proof of Lemma 4. Define the map F : ℓ1 → ℓω1 as

F(s) � s1
ω1

,
s2
ω2

, : : :
( )

: (I.1)

The map F is a bijective isometry as for s, t ∈ ℓ1,

|F(s) − F(t)|ω1 � ∑∞
i�1

ωi

∣∣∣ si
ωi

− ti
ωi

∣∣∣ �∑∞
i�1

|si − ti| � ‖s− t‖1: (I.2)

For convenience, we denote v · s :� F−1(s). We first claim that the tightness of the sequence {q(Φ(GN ,∞))}N≥1 in ℓω1 is
equivalent to tightness of {v · q(Φ(GN ,∞))}N≥1 in ℓ1. Indeed, if {v · q(Φ(GN ,∞))}N≥1 is tight in ℓ1, then we can find a com-
pact set K ⊆ ℓ1 such that

P(q(Φ(GN,∞)) ∉ F(K)) � P(vq(Φ(GN,∞)) ∉ K) < ε: (I.3)

As the mapping preserves compactness due to continuity, F(K) is a compact set in ℓω1 , and hence {q(Φ(GN ,∞))}N≥1 is tight
in ℓω1 . Conversely, if {q(Φ(GN ,∞))}N≥1 is tight in ℓω1 , then there is a compact set K ⊆ ℓω1 such that Equation (I.3) holds and
F−1(K) is compact in ℓ1. Hence, the claim is proved.

Now, by lemma 2 of Mukherjee et al. [24], tightness in ℓ1 is equivalent to showing tightness with respect to the prod-
uct topology and (24). This completes the proof of Lemma 4. w
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