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Abstract 27 

Background: Inter-population variation in host-associated microbiota reflects differences in the 28 

hosts’ environments, but this characterization is typically based on studies comparing few 29 

populations. The diversity of natural habitats and captivity conditions occupied by any given host 30 

species has not been captured in these comparisons. Moreover, intraspecific variation in gut 31 

microbiota, generally attributed to diet, may also stem from differential acquisition of 32 

environmental microbes – an understudied mechanism by which host microbiomes are directly 33 

shaped by environmental microbes. To more comprehensively characterize gut microbiota in an 34 

ecologically flexible host, the ring-tailed lemur (Lemur catta; n = 209), while also investigating 35 

the role of environmental acquisition, we used 16S rRNA sequencing of lemur gut and soil 36 

microbiota sampled from up to 13 settings, eight in the wilderness of Madagascar and five in 37 

captivity in Madagascar or the U.S. Based on matched fecal and soil samples, we used microbial 38 

source tracking to examine covariation between the two types of consortia. 39 

Results: The diversity of lemur gut microbes varied markedly within and between settings. 40 

Microbial diversity was not consistently greater in wild than in captive lemurs, indicating that 41 

this metric is not necessarily an indicator of host habitat or environmental condition. Variation in 42 

microbial composition was inconsistent both with a single, representative gut community for 43 

wild conspecifics and with a universal ‘signal of captivity’ that homogenizes the gut consortia of 44 

captive animals. Despite the similar, commercial diets of captive lemurs on both continents, 45 

lemur gut microbiomes within Madagascar were compositionally most similar, suggesting that 46 
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non-dietary factors govern some of the variability. In particular, soil microbial communities 47 

varied across geographic locations, with the few samples from different continents being the 48 

most distinct, and there was significant and context-specific covariation between gut and soil 49 

microbiota.  50 

Conclusions: As one of the broadest, single-species investigations of primate microbiota, our 51 

study highlights that gut consortia are sensitive to multiple scales of environmental differences. 52 

This finding begs a reevaluation of the simple ‘captive vs. wild’ dichotomy. Beyond the 53 

important implications for animal care, health, and conservation, our finding that environmental 54 

acquisition may mediate aspects of host-associated consortia further expands the framework for 55 

how host-associated and environmental microbes interact across different microbial landscapes.  56 

  57 
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Introduction 58 

The structure of gut microbial communities within vertebrates is influenced in part by 59 

endogenous host factors, such as genotype and physiology1–3, and in part by exogenous factors, 60 

such as sociality, seasonality, habitat quality, and diet4–6. These exogenous factors can influence 61 

which microbial taxa in a gut community thrive or become depauperate, as amply demonstrated 62 

in dietary studies7–10, or they can provide opportunities for more direct routes of microbial 63 

acquisition11–14. For example, the transmission of microbes between hosts, as evidenced by 64 

horizontal pathogen transfer15–17 or vertical transmission during the birthing process and 65 

nursing18,19, are significant drivers of host health and development. There is, likewise, the 66 

potential for horizontal acquisition of microbes via exposure to environmental consortia on 67 

natural (e.g., soil) and man-made surfaces, plus on food and in water12,20–23; however, this latter 68 

route to shaping host-associated communities, hereafter referred to as ‘environmental 69 

acquisition,’ remains understudied. Here, we match-sampled ring-tailed lemur (Lemur catta) 70 

feces with soil from 13 ‘settings’, to (a) characterize variation in host gut microbiota, (b) 71 

characterize variation in soil microbiota, and (c) test for any covariation between host and soil 72 

communities. Examining environmental microbes alongside host-associated communities is a 73 

first step to understanding the role of environmental acquisition in population-level differences 74 

between host microbiomes. 75 

Previous studies of intraspecific variation in gut microbiota, often framed using a ‘wild vs. 76 

captive’ comparison, have provided valuable descriptions of differences in presumed extremes24–
77 

26. For example, researchers often report a ‘signal of captivity,’ whereby the gut microbiota of 78 

captive hosts differ significantly from those of wild conspecifics, converging on a perturbed or 79 

‘humanized’ composition25,27,28. Perturbations of this nature are generally attributed to 80 
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commercial diets that include manufactured chow and cultivated produce27,29,30; nevertheless, 81 

studies of captive populations have been focused on accredited zoos or rescue facilities that may 82 

not represent the range of captive conditions or may be confounded by within-species 83 

comparisons across continents26,29,31. Even comparative field studies have been limited in the 84 

number of populations per species studied, typically to a few populations that differ on a given 85 

metric of interest (e.g. season, health state, habitat type or quality32–35). Because hosts experience 86 

a wider range of environmental settings than is typically encompassed within wild vs. captive 87 

comparisons, a broader comparative approach is necessary to provide a more comprehensive and 88 

nuanced understanding of gut microbial variation. 89 

As noted, differential exposure to environmental microbes provides potential for horizontal 90 

transmission and environmental acquisition20,22,23,36–38, with the ingestion of specific microbes 91 

being linked to novel digestive functions of the gut microbiota39–41. Under certain scenarios, 92 

environmental acquisition has been shown to outweigh vertical transmission as the main mode of 93 

microbial colonization42,43. Although environmental acquisition may promote heterogeneity 94 

within and between hosts44, its role rarely has been considered a differentiating factor between 95 

wild and captive hosts. Husbandry practices and veterinary care, for example, introduce cleaning 96 

products and antibiotics to the microbial environment of captive animals45,46, further 97 

differentiating it from the ‘native’ environment47, with potentially critical consequences to 98 

microbiome structure and function. 99 

Our study species, the ring-tailed lemur, is a semi-terrestrial, omnivorous strepsirrhine 100 

primate48,49 that occupies various habitats across southern Madagascar50 and also survives well in 101 

captivity51. Its ecological flexibility, coupled with existing knowledge about its gut 102 

microbiome26,52–54, motivates broader comparative study of intraspecific variation that takes 103 
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environmental acquisition of microbes into consideration. We therefore collected fecal and soil 104 

samples originating from lemurs and their environments, respectively, under three broad, 105 

environmental conditions: the wilderness condition in Madagascar (WM; 8 settings) represents a 106 

large portion of the ring-tailed lemur’s natural habitat, whereas two captivity conditions 107 

distributed between Madagascar (CM; 2 settings) and the U.S. (CU.S.; 3 settings) represent a wide 108 

range of housing conditions on two continents (spanning pet ownership, zoos, and other 109 

facilities; Table 1). 110 

 To analyze covariation between lemur gut microbiota and soil microbiota in our 13 settings, 111 

we combine 16S rRNA sequencing and statistical tools based on microbial source tracking55,56, 112 

which is the process of modelling the predicted origin of microbes to a given community (e.g., 113 

lemur gut microbiomes) based on certain source communities (e.g., soil samples). Given the 114 

variability of environmental factors across our multiple settings, we expect the diversity, 115 

membership, and composition of lemur gut microbiota and soil microbiota to differ within and 116 

between our three environmental conditions (Table 1).  117 

If diet or habitat quality were the main driver of gut microbiota composition, we would 118 

expect (a) wild lemurs to show variation between their natural settings, (b) captive lemurs, 119 

regardless of continent, to show similar gut microbiota between their settings (reflecting 120 

commercial diets and perturbed habitats), and (c) wild and captive lemurs to differ most 121 

drastically from one another, in line with prior studies27. If, however, environmental acquisition 122 

were to play a major role in shaping lemur gut microbiota, we would again expect (a) wild 123 

lemurs to show variation between their natural settings (reflecting the soil microbiota of the 124 

lemurs’ habitat), but we would expect (b) Malagasy lemurs (wild and captive) to share certain 125 

soil-derived microbiota, differing most drastically from captive lemurs in the U.S., and (c) 126 
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differential access to soil within captivity conditions to correlate with differential soil-associated 127 

microbes present in hosts. With regard to the latter, for example, we might expect greater 128 

proportions of soil-associated microbes in captive lemurs that gain access to natural enclosures 129 

compared to their counterparts that are housed indoors. 130 

 131 

Results 132 

 133 

Lemur gut microbiota: Variation in diversity, membership, and composition 134 

  Alpha diversity. Across the gut microbiota of all ring-tailed lemurs sampled in this study, 135 

metrics of alpha diversity differed significantly between the three environmental conditions 136 

(Generalized Linear Models or GLM; Shannon: F = 23.773, p < 0.001; Faith’s phylogenetic: F = 137 

4.415, p = 0.013; Figures 1a, b) and by setting (GLM; Shannon: F = 13.157, p < 0.001; Faith’s 138 

phylogenetic: F = 5.628, p < 0.001; Figures 1c, d; Supplementary Material 1). The microbiota in 139 

fecal samples from WM and CU.S. lemurs were similarly diverse overall (pairwise Wilcoxon test; 140 

Shannon: p = 0.635; Faith’s phylogenetic: p = 0.056; Figures 1a, b), whereas those from CM 141 

lemurs were significantly less diverse (pairwise Wilcoxon test; Shannon, WM vs. CM lemurs: p < 142 

0.001; WM vs. CU.S. lemurs: p < 0.001; Faith’s phylogenetic, WM vs. CM lemurs: p = 0.022; WM 143 

vs. CU.S. lemurs: p = 0.021; Figures 1a, b). Within environmental condition, however, both 144 

metrics of alpha diversity varied widely between the different settings (Figures 1c, d; 145 

Supplementary Material 1). For example, among WM lemurs, setting was a significant predictor 146 

of both metrics of alpha diversity (GLM; Shannon diversity: F = 20.768, p < 0.001; Faith’s 147 

phylogenetic: F = 11.104, p < 0.001). Sex was not a significant predictor in any models of either 148 

alpha diversity metric (Supplementary Material 1). 149 
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Community membership. The membership of lemur gut microbiota included 64 abundant 150 

taxa (i.e., those that accounted for >1% of sequences). Of these 64 taxa, only four (6.2%) were 151 

shared across lemurs from all settings: the genera Bacteroides (phylum Bacteroidetes), 152 

Rikenellaceae RC9 gut group (Bacteroidetes), Erysipelotrichaceae UCG-004 (Firmicutes), and 153 

Treponema 2 (Spirochaetes). Within environmental condition, five (7.8%) taxa were shared by 154 

all wild lemurs, whereas 10 (15.6%) and six (9.4%) taxa were shared by CM and CU.S. lemurs, 155 

respectively (Figure 2). Using Analysis of Compositions of Microbiomes (ANCOM), we 156 

identified 801 amplicon sequence variants (ASVs) that were differentially abundant across the 157 

three environmental conditions. For example, members of the Erysipelotrichaceae family 158 

characterized the microbiota of WM lemurs, whereas taxa from the Spirochaetaceae and 159 

Prevotellaceae families were more abundant in the gut microbiota of captive lemurs from both 160 

continents. Erysipelotrichaceae UCG-004 and Treponema 2, for example, were abundant in all 161 

lemurs (Figure 2), but the log ratios of the two genera distinguished lemur gut microbiota by the 162 

three environmental conditions and, in particular, differentiated WM lemurs from CU.S. lemurs 163 

(Figure 3). 164 

Beta diversity. The composition of lemur gut microbial communities was significantly 165 

distinct across the three environmental conditions, as revealed by beta diversity (Permutational 166 

Multivariate Analysis of Variance or PERMANOVA; WM vs. CM lemurs: pseudo-F = 30.169, p 167 

< 0.001; WM vs. CU.S. lemurs: pseudo-F = 97.912, p < 0.001; CM vs. CU.S. lemurs: pseudo-F = 168 

20.808, p < 0.001). Across all subjects, gut microbiota composition clustered distinctly by 169 

environmental condition (principal coordinate analysis of unweighted UniFrac distances; Figures 170 

4a, b). One notable exception, however, owed to a single pet lemur: Unlike its in-country peers 171 
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(i.e., other CM lemurs), its microbial community structure matched those of WM lemurs (see 172 

arrows in Figures 4a, b).  173 

Across the three environmental conditions, Random Forest Analysis accurately assigned 208 174 

of the 209 gut microbial profiles to the correct environmental condition, with a low (0.48%) out-175 

of-bag (OOB) error rate. Based on its gut microbiota, only the previously mentioned pet lemur 176 

(see arrows in Figure 2a, b) was misclassified as a WM lemur. Across the 13 settings, Random 177 

Forest Analysis accurately classified 189 of the 209 microbial profiles (OOB error = 9.57%). The 178 

gut microbial communities of WM and CM lemurs were misclassified at rates of 7.9% and 7.3%, 179 

respectively, whereas those of CU.S. lemurs were misclassified at a rate of 20.6%. 180 

With respect to uniformity within environmental condition, the composition of gut microbial 181 

communities were least dissimilar between WM lemurs and most dissimilar between CM lemurs 182 

(Kruskal-Wallis test; main effect of environmental condition on beta diversity: χ2 = 27487, p < 183 

0.0001; pairwise Wilcoxon test; within WM vs. within CM lemurs: p < 0.001; within WM vs. 184 

within CU.S. lemurs: p < 0.0001; Figure 4c). Between environmental conditions, the microbiota of 185 

WM and CM lemurs were the least dissimilar, whereas the microbiota of WM vs. CU.S. lemurs were 186 

the most dissimilar (pairwise Wilcoxon test: ‘WM vs. CM’ vs. ‘WM vs. CU.S.’, p < 0.0001; ‘WM vs. 187 

CM’ vs. ‘CM vs. CU.S.’, p < 0.0001; Figure 4c). Considering WM lemurs only, microbiota 188 

composition clustered by setting (Figure 4d). Although there was some overlap between settings, 189 

the patterns are suggestive of microbial ‘signatures’ across different settings. 190 

 191 

Soil microbiota: Variation in diversity, membership, and composition  192 

 Alpha diversity. Across the eight settings for which we sampled soil, the alpha diversity of 193 

soil microbiota did not vary significantly between environmental conditions (Kruskal-Wallis test; 194 



 10 

Shannon diversity: χ2 = 3.3457, p = 0.187; Faith’s phylogenetic: χ2 = 3.433, p = 0.179; Figure 5) 195 

nor between settings (Kruskal-Wallis test; Shannon diversity: χ2 = 7.496, p = 0.379; Faith’s 196 

phylogenetic: χ2 = 8.936, p = 0.257; Figure 5). These null findings may owe to small sample 197 

sizes. 198 

 Community membership. The membership of soil communities included 77 abundant taxa, 199 

of which none were shared across all settings (Figure 6). Of the identified soil microbiota, 200 

78.12% were unique to the soil samples and were not found in any lemur fecal samples. For the 201 

five wild populations for which we sampled soil, only five abundant taxa were shared: the genera 202 

Bacillus (phylum Firmicutes), Steroidobacter (Proteobacteria), Bryobacter (Acidobacteria), and 203 

RB41 (Acidobacteria), and an unidentified member of the class Subgroup 6 (Acidobacteria). 204 

ANCOM identified nine ASVs that were differentially abundant across all soil samples, five of 205 

which (55.6%) belonged to the Balneolaceae family. In addition, compared to soil from 206 

Madagascar (i.e., WM and CM), the CU.S. soil communities were differentially enriched for the 207 

genus Bacillus. By contrast, members of the family Nitrososphaeraceae (Thaumarchaeota) and 208 

the genus Acinetobacter (Proteobacteria) characterized WM soils and CM soils, respectively. 209 

(Figure S1).  210 

Beta diversity. Despite the small sample sizes, the beta diversity of the soil microbiota varied 211 

between environmental conditions (Figure 7), but only significantly so between WM and CU.S. 212 

soils (PERMANOVA; WM vs. CM soils: pseudo-F = 1.337, p = 0.202; WM vs. CU.S soils: pseudo-213 

F = 3.897, p = 0.012; CM vs. CU.S soils: pseudo-F = 7.752, p = 0.329). Variation in soil 214 

communities within an environmental condition was not significantly different between WM soils 215 

or CU.S. soils (pairwise Wilcoxon test, p = 0.130; Figure 7c). Between environmental conditions, 216 

WM and CM soils had the lowest dissimilarities (pairwise Wilcoxon test; ‘WM vs. CM’ vs. ‘WM 217 
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vs. CU.S’ soils: p < 0.001; ‘WM vs. CM’ vs. ‘CM vs. CU.S’: p = 0.016; ‘WM vs. CU.S’ vs. ‘CM vs. 218 

CU.S’: p = 0.338 Figure 7c).  219 

   220 

Covariation of lemur gut and soil microbiota 221 

 For analyses of covariation between fecal and soil microbiota, we used samples from the 222 

eight settings for which we had matched fecal and soil samples, totaling 177 lemur fecal samples 223 

and 25 soils samples (Table 1). There were 191 ASVs shared between lemur fecal communities 224 

and soil communities. These were dominated by members of the Firmicutes (75 ASVs or 225 

39.3%), Proteobacteria (49 ASVs or 25.6%), and Bacteroidetes (38 ASVs or 19.9%) phyla. 226 

Although many of the shared taxa were abundant (>1%) in either lemur gut microbiota or soil 227 

microbiota, only one genus, Acinetobacter (Proteobacteria), was abundant in both lemur gut 228 

microbiota and soil microbiota.  229 

As would be predicted if environmental acquisition impacts host microbial communities, 230 

there was a significant correlation between the abundances of microbes in lemur feces and soil 231 

samples (Mantel test; r = 0.494, p < 0.001). The proportion of ‘soil-associated’ microbes found 232 

in lemur gut microbiota varied significantly across environmental conditions (Kruskal-Wallis 233 

test; χ2 = 73.862, p < 0.001; Figure 8a) and settings (Kruskal-Wallis test; χ2 = 112.69, p < 0.001; 234 

Figure 8b). Overall, the gut microbiota of WM lemurs had significantly greater proportions of 235 

soil-associated microbes compared to those of all captive lemurs (pairwise Wilcoxon test, p < 236 

0.001; Figure 8). In addition, CM lemurs had significantly greater proportions of soil-associated 237 

microbes in their gut microbiota compared to CU.S. lemurs (pairwise Wilcoxon test; p < 0.001; 238 

Figure 8). For lemurs housed at the DLC, those that semi-free-ranged in outdoor, natural habitat 239 

enclosures had significantly greater proportions of soil-associated microbes in their gut 240 
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microbiota compared to lemurs that did not have access to forested enclosures (Kruskal-Wallis 241 

test; χ2 = 4.641, p = 0.031; Figure 8c). 242 

Soil from within a lemur’s setting accounted for, on average, significantly greater proportions 243 

of the lemur’s gut microbiota than did soil communities from other settings (Figure 9, 244 

Supplementary Material 2). Overall, the greatest proportion of soil-associated microbes within 245 

lemur gut microbiota occurred when comparing the WM lemurs to WM soils (Figure 9; 246 

Supplementary Material 2). The proportion of soil-associated microbes from CU.S. soil that were 247 

present in the gut microbiomes of WM lemurs was close to zero (Figure 9; Supplementary 248 

Material 2). Similarly, soil-associated microbes from WM soils were largely absent from the gut 249 

microbiome of CU.S. lemurs (Figure 9; Supplementary Material 2). Thus, despite small sample 250 

sizes, the greatest differences observed involved the soil microbes from different continents.  251 

 252 

Discussion  253 

 Through fecal and soil sampling from multiple settings representing the ring-tailed 254 

lemur’s natural range in Madagascar and in captivity on two continents, we have highlighted (1) 255 

the wide and often underrepresented variety of gut microbiota present within a single host 256 

species, (2) the lack of a universal ‘signal of captivity’ that uniformly decreases microbial 257 

diversity, (3) aspects of microbial membership and composition that differ markedly between 258 

wild and captive populations, and (4) covariance between lemur gut microbiota and soil 259 

microbiota, which points to a key role of environmental microbes. Researchers have reported 260 

host ‘group signatures’ in microbiota, often attributed to the social transmission of microbes5,57–
261 

60; our results expand this concept to ‘population signatures,’ similar to the widely studied 262 

differences across human populations61,62, and draw attention to the potential role of 263 
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environmental acquisition of microbes in mediating significant inter-population variation. 264 

Across populations of WM lemurs, we first observed substantial variation in gut microbial 265 

diversity, membership, and composition, indicating that there is not a single ‘representative’ gut 266 

community for wild ring-tailed lemurs, as is likely the case for most host species63. Nonetheless, 267 

the pattern of natural variation observed did not always meet expectations. For example, lemurs 268 

living in what is considered a relatively pristine setting, IVO – a recently discovered humid 269 

forest patch that is relatively undisturbed by human activity – unexpectedly had the second-270 

lowest diversity of gut microbes. To the extent that lack of disturbance is a proxy of habitat 271 

quality, this pattern would be inconsistent with previous reports that greater habitat quality 272 

promotes more diverse gut microbiota64,65. In prior studies, the gut microbiota of ring-tailed 273 

lemurs were relatively unaffected by habitat degradation53. Therefore, either pristine habitats can 274 

be of low quality or the ecological and dietary flexibility of this species may dampen the impact 275 

of variation in habitat quality and type, relative to more specialized primates (e.g., folivores)26,66–
276 

68. That we found significant, natural, inter-population variation in a relatively hardy and robust 277 

species50,69 suggests that hosts with greater sensitivity to environmental variation, including 278 

habitat quality and type, would likely show even greater variation than that described herein. If 279 

so, studies constrained to single or few host populations are likely to underrepresent the wide-280 

scale, natural variation in host gut microbiota.  281 

Contrary to many previous studies70–73, but consistent with others74–77, we did not observe the 282 

gut microbiota of captive lemurs to be consistently less diverse than those of wild lemurs. Such 283 

inconsistencies raise questions about the commonly held view that greater alpha diversity is both 284 

a hallmark of wild individuals and a proxy for a healthier gut community78–82. Although we did 285 

not assess gut health, we note that pet lemurs are prone to disease83–85. Often housed solitarily 286 
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indoors, in close contact with people and domestic animals, pet lemurs are fed diets of rice and 287 

fruit; yet, their gut consortia were as diverse as those of wild lemurs living at the relatively 288 

pristine setting, IVO. Moreover, CU.S. lemurs from the DLC and NCZ had diverse gut consortia, 289 

on par with that seen in the most diverse WM lemurs (e.g., in BEZ lemurs). These results add to 290 

the mounting evidence66,86,87 that alpha diversity alone should not be used to extrapolate the 291 

health state of gut consortia or the quality of the host’s environment.  292 

We further found that gut microbiota of captive lemurs were not compositionally 293 

homogenized by commercial diets72,88. Heterogeneous gut microbiota could reflect slight 294 

differences in the diets provided (as the produce and browse available differ between captivity 295 

settings), but such minor dietary variation is unlikely to be the sole driver of such marked 296 

microbial differences, particularly in an omnivorous host. Non-dietary factors must have 297 

contributed to distinguishing the gut communities of captive lemurs. Indeed, the gut microbiota 298 

of CM lemurs were compositionally more similar to those of their wild counterparts than to those 299 

of CU.S. lemurs Based on this observation, we suggest that the effect of a commercial diet is not 300 

necessarily the strongest differentiator of gut consortia and that the effects of captivity cannot be 301 

standardized across populations.  302 

Beyond diet, other ‘environmental’ aspects of captivity, including conspecific interactions, 303 

contact with humans, habitat exposure, and medications (such as antibiotics) are known to 304 

impact animal gut microbiomes25,89. Indeed, in a previous study of healthy ring-tailed lemurs at 305 

the DLC, researchers demonstrated the long-term, disruptive influence of antibiotics on the gut 306 

microbiome89. It is likely that CU.S.  lemurs experience such disruption more frequently than do 307 

CM lemurs, particularly pets, that rarely, if ever, receive antibiotic treatment.  308 

Host genotype is also a well-established mediator of microbial community structure. 309 
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Reduced genetic diversity, evidenced as founder effects or inbreeding depression, plays a 310 

variable role across taxa in shaping the gut microbiome90–92,93 and may contribute to differences 311 

between captive and wild populations. Although both neutral heterozygosity and genomic 312 

functional diversity decrease over time in captive ring-tailed lemurs94,95, inbreeding effects can 313 

be mitigated through managed breeding programs, resulting in the rapid ‘rescue’ of genetic 314 

diversity95. Lacking genetic information on all populations, we could not address this influence 315 

in the present study. Genetic distance between populations also influences gut microbial 316 

structure92,96. We would therefore expect the lemurs in Madagascar, whether wild or captive, to 317 

be genetically more similar than either group would be to the captive lemurs in U.S., as the latter 318 

have been genetically isolated from wild populations for many generations. Host genetic distance 319 

may contribute to explaining some of the variation observed in microbiome structure. 320 

We also found that, between wild and captive lemurs, the membership and composition of 321 

gut microbiota was indicative of the environmental condition. There was little evidence of a 322 

diverse ‘core’ microbiome, as only four taxa were found to be abundant across all lemur 323 

populations. Two of those core taxa, Erysipelotrichaceae UCG-004 and Treponema 2, were 324 

differentially abundant between the three environmental conditions. Despite links between 325 

members of Erysipelotrichaceae and high-fat, commercial diets in humans97, 326 

Erysipelotrichaceae microbes were reported to be enriched in wild compared to captive 327 

chimpanzees98, mirroring our findings in lemurs. Furthermore, the genus Erysipelotrichaceae 328 

UCG-004 was more abundant in the gut microbiota of chimpanzees, relative to humans99, and in 329 

folivorous woolly lemurs compared to other lemur species100. The functionally diverse members 330 

of the Treponema genus were more abundant in the gut microbiota of captive vs. wild hosts in 331 

other species98,101. Treponema members break down pectin102,103, a complex plant polysaccharide 332 
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enriched in ripe fruits, such as those commonly provided to captive ring-tailed lemurs104,105.  333 

Compositionally, the gut microbiota of wild lemurs were markedly less varied than those of 334 

lemurs in captivity settings, particularly compared to CM lemurs (i.e., pets and LRC lemurs, most 335 

of which are former pets). These findings support the “Anna Karenina” principle106,107, which 336 

posits that perturbations of microbiota result in unstable communities and, thus, perturbed hosts 337 

have greater variation in their microbiota than do unperturbed hosts. Indeed, among our lemur 338 

populations, the most clearly perturbed animals were the pets or former pets, given their 339 

combined experience of translocation, dietary change, and anthropogenic disturbance, leading to 340 

perturbed microbial communities that vary greatly between individuals. A single exception to the 341 

gut microbiota clustering according to the hosts’ environmental conditions was a pet lemur with 342 

gut microbiota that resembled that of wild lemurs. Although we can only speculate about this 343 

individual’s history, if recently taken from its natural habitat, the gut microbiota could still 344 

reflect the wild origins of this animal, potentially indicative of gradual change in an omnivore’s 345 

response to environmental shifts108,109.  346 

Lastly, we observed that patterns in lemur gut microbiota were somewhat mirrored in the 347 

diversity and composition of soil microbiota, suggesting that environmental conditions other than 348 

diet, including exposure to external microbes in soils, may influence gut microbiomes110. 349 

Madagascar’s geographical isolation for ~88 million years accounts for high levels of floral and 350 

faunal endemism111,112. The same is true of microbes, as evidenced by the numerous, unique 351 

pathogenic microorganisms found on the island113–116. Undoubtedly, variation in nutrients, 352 

mineral content, pH, and other abiotic properties of soil further contribute to differentiating soil 353 

microbiota across small and large biogeographical scales117. Unsurprisingly, therefore, soil 354 

microbiota in Madagascar, whether originating in wilderness or captivity settings, were similar in 355 
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composition and significantly divergent from soils in the U.S.118. Given the disparate geographic 356 

distributions of many wild vs. captive animals, environmental acquisition that reflects local 357 

microbial endemism may be particularly relevant for distinguishing gut microbiota between wild 358 

and captive conspecifics. For example, the natural ranges of most primates occur in the 359 

tropics119,120, yet most accredited zoos and captive facilities that house primates are found outside 360 

of tropical regions (in e.g., Europe and North America)121,122; the distinct environmental 361 

consortia surrounding wild and captive conspecifics should reflect their geographic or 362 

continental divides.  363 

Regarding the exposure to environmental microbes, soil-associated microbes were more 364 

prevalent in lemurs that had greater exposure to natural environments and the acquired soil 365 

microbes were specific to the lemurs’ environment, reflecting active environmental acquisition. 366 

This observation expands on findings that abiotic soil properties mediate primate gut 367 

microbiota110. Wild and captive ring-tailed lemurs perform geophagy (i.e., earth-eating), a 368 

behavior that is linked to nutrient and microbial supplementation123,124 and is a potential vector 369 

for the incorporation of environmental microbes40. Similarly, dietary items may act as vessels of 370 

soil or environmental microbes41; dietary variation across wild and captive lemurs may influence 371 

gut microbiomes by simultaneously offering different nutrients and different microbes.  372 

 Difficulties extracting DNA from soil samples reduced our sample sizes, particularly for the 373 

captive settings, such that we likely underestimated the variation in soil microbiota within and 374 

between environments. Akin to most cross-sectional studies of microbiomes, we were also 375 

unable to assess the persistence or viability of the soil-associated microbes in lemur gut 376 

communities. It is, therefore, possible that the soil-associated microbes in lemur guts were 377 

ephemeral or non-viable; however, our results indicate setting-specific, environmental 378 
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acquisition, supporting that these patterns are not random and that the acquired microbes may be 379 

subject to filters that enable the incorporation of only specific microbes20,125,126. Furthermore, we 380 

analyzed these data from the perspective that environmental consortia act as sources of microbes 381 

for host-associated communities, but we expect consistent, bidirectional transmission of 382 

microbes between hosts and their environments. Ultimately, greater sampling resolution in 383 

matched soil and host-associated communities is necessary to reinforce our results and better 384 

elucidate the role of environmental acquisition.  385 

While expanding our understanding of the factors that shape host-microbe relationships, 386 

these results also have significant potential to inform animal care and conservation strategies. 387 

Perturbed microbiota are increasingly recognized as culprits of obesity, gastrointestinal distress, 388 

and even associated mortality in captive animals127–129,79. Given that lemurs are among the most 389 

endangered mammals on the planet130, maintaining populations of healthy animals in captivity is 390 

an important ‘safety net’ that augments in-vivo conservation efforts131,132. We suggest that 391 

environmental acquisition may be a key component of ‘rewilding’ or ‘bioaugmenting’ captive 392 

animal gut microbiota, a process by which gut consortia can be reshaped to better promote host-393 

microbe symbiosis26,131,133. Identifying what comprises healthy gut microbiota is a complex and 394 

ongoing area of research; nonetheless, we show that environmental acquisition is a potential 395 

driver of microbial communities and thus should be considered a relevant path to affecting 396 

animal health.  397 

 398 

Conclusions 399 

Even in a relatively robust, omnivorous host, gut microbiota are distinct across populations. 400 

This variation reflects environmental variability that is underrepresented by a simple wild vs. 401 
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captive dichotomy. Moreover, concurrent analysis of lemur gut and soil microbiota supports the 402 

premise that environmental acquisition contributes to shaping host-associated microbiota; hosts 403 

and their associated microbes are components of a larger landscape that includes interactions 404 

with environmental microbes. Together, these results expand our understanding of intraspecific 405 

host-microbe dynamics under varying environmental conditions and reinforce the value of 406 

broad-scale, comparative investigations of microbial variation within a single host species. 407 

 408 

Methods  409 

Study sites  410 

Our research sites included 13 settings (one per ‘population’; settings were categorized based 411 

on a combination of shared environmental factors and geographic location), grouped under the 412 

following three environmental conditions: wilderness in Madagascar (WM; 8 settings), captivity 413 

in Madagascar (CM; 2 settings), and captivity in the U.S. (CU.S.; 3 settings; Table 1). The 414 

wilderness settings occurred in protected areas (e.g., national parks, community-managed 415 

reserves) that varied in habitat type (Table 1). The captivity settings in Madagascar included the 416 

Lemur Rescue Center (LRC; Toliara, Madagascar), where the animals were socially housed, and 417 

various townships that were home to individual pets. Although the pet lemurs were not located in 418 

the same geographic location, they were categorized as a single population because of the shared, 419 

unique experiences of ‘pethood’, including commercial diets prepared for human consumption, 420 

housing in human dwellings, contact with humans and domestic animals, and isolation from 421 

conspecifics, all of which differ significantly from the experiences of the wild lemurs or other 422 

captive lemur populations. Lastly, the captivity settings in the U.S. included the North Carolina 423 

Zoo (NCZ; Asheboro, NC), the Duke Lemur Center (DLC; Durham, NC), and the National 424 
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Zoological Park (NZP; Washington, DC). These facilities were comparable to one another, all 425 

with socially housed lemurs.  426 

 427 

Subjects  428 

Across all research settings, our subjects included 215 adult, ring-tailed lemurs (82 male, 81 429 

female, 52 of unknown sex; Table 1). The wilderness settings were each occupied by multiple 430 

lemur troops, ranging in size from 5-24 individuals. Excluding the pets, all captive settings 431 

included groups of 2-7 lemurs that had access to indoor and outdoor enclosures, and were 432 

provided facility-standardized diets (i.e., fresh produce and commercial chow, freely available 433 

water). Certain animals at the LRC and the DLC also had access to natural habitat enclosures 434 

that, respectively, consisted of dry and spiny forest (LRC) or North American deciduous and 435 

pine hardwood forest (DLC). The pets were kept in human dwellings (i.e., houses or hotels) and 436 

were fed fruit, rice, and other foods intended for human consumption. 437 

 438 

Sample collection  439 

During a span of four years (2016-2020), we collected ‘matched’ fecal and soil samples from 440 

our subjects and study sites, respectively. Within 8 weeks of fecal or soil collection, the samples 441 

were transported to the U.S., where they were stored at -80 °C, until analysis. 442 

For feces, we opportunistically collected fresh samples, upon the lemur’s observed voiding. 443 

In Madagascar, collections occurred during the dry season (May-October) and, in the U.S., 444 

collections occurred end of summer through fall (August-November). To avoid soil 445 

contamination of the fecal sample, we removed the outer layer of each fecal pellet. We then 446 

placed the sample in an Omnigene tube that contained a stabilizing buffer that preserved 447 



 21 

microbial communities at room temperature for 8 weeks (Omnigene.Gut tube, DNAgenotek, 448 

Ontario, Canada134,135). All settings were represented by fecal samples from minimally two 449 

lemurs (the maximum number of individuals represented was 33). 450 

When collecting soil in nature, we avoided high-defecation areas (e.g., under sleeping trees) 451 

while identifying core areas where lemurs most commonly spent time on the ground. Within 452 

these core areas, we demarcated a 2-3 m2 area and collected soil from each of five evenly spaced 453 

locations, using a clean, individually wrapped, sterile plastic spatula. For each area, the five 454 

aliquots of topsoil (top 2-3 cm of soil) were pooled in a single Omnigene tube to create a 455 

representative soil sample. Because multiple lemur troops inhabited each of the wilderness 456 

settings, in some cases with overlapping core areas, we prioritized collecting soil samples from 457 

areas of maximal use. In some cases, we were unable to collect soil samples for every troop that 458 

provided fecal samples. At the LRC and DLC, we used the same collection methods to collect 459 

soil samples from areas in the natural habitat enclosures where lemurs semi-free-ranged. Because 460 

it is illegal to own pet lemurs in Madagascar, we minimized owner concern by collecting only 461 

fecal samples for this group. Because of other logistical and analytical constraints (see below), 462 

only eight of the 13 settings were represented by usable, pooled soil samples. 463 

 464 

Microbial DNA extraction and sequencing  465 

 Following the manufacturer’s protocols for the DNeasy Powersoil kit (QIAGAN, Frederick, 466 

MD), we extracted bacterial genomic DNA from fecal and soil samples. We quantified DNA 467 

using a Fluorometer (broad-spectrum kit, Qubit 4, Thermo Fisher Scientific, Waltham, MA). 468 

Aliquots of extracted DNA were sent to Argonne National Laboratory’s Environmental 469 

Sequencing facility (Lemont, IL) for library preparation and amplicon sequencing of the 16S 470 
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rRNA gene. After amplification of the V4 region with region-specific primers and sample-471 

specific 12-base barcodes, samples were pooled and amplicon libraries were cleaned using 472 

AMPure XP Beads. Amplicons were then sequenced on a 151 x 151 base pair Illumina MiSeq 473 

run136.  474 

 475 

Bioinformatics and statistics 476 

We processed the raw sequence data using a previously published bioinformatics pipeline 477 

generated in QIIME2137. In brief, we used the pipeline to join forward and reverse reads, 478 

demultiplex and quality filter the joined reads (DADA2; PHRED scores indicated no quality 479 

trimming was needed), remove non-bacterial sequences (Mitochondria), generate a phylogenetic 480 

tree, and assign taxonomy based on 99% sequence similarity (SILVA database 
138,139, ver. 138.1) 481 

to generate amplicon sequence variants (ASVs). After quality filtering, samples with fewer than 482 

10,000 sequences were removed from downstream analyses, resulting in 209 fecal samples and 483 

25 soil samples with over 11 million combined reads and an average of ~50,000 reads per 484 

sample. To visually represent rare taxa that had relative abundances < 1% of the total sequences, 485 

we combined them into the conglomerate “Other” category (Figures 1 and 6). Using tables of 486 

ASVs, we calculated metrics of alpha diversity (Shannon and Faith’s Phylogenetic diversity 487 

metric) and beta diversity (weighted and unweighted UniFrac distances). We report only on 488 

unweighted UniFrac (vs. also weighted) as it gives equal consideration to rare and abundant taxa, 489 

allows for better visualization of variation in less abundant taxa, and is most appropriate for 490 

testing our hypotheses and predictions.   491 

 To test for differences in alpha diversity between the gut microbiota of lemurs under the 492 

three environmental conditions and in the 13 settings, we first used generalized linear models 493 
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(GLMs; glm in R, ver, 4.0.2) with environmental condition or setting and sex as fixed effects. To 494 

further test for variation in lemur gut microbiota and soil microbiota alpha diversity, we used 495 

nonparametric statistics (e.g., Kruskal-Wallis tests, and pairwise Wilcoxon rank sum tests 496 

with Benjamini-Hochberg adjustment) to perform pairwise comparisons between the various 497 

environmental conditions and settings. To identify and test for effects of environmental condition 498 

or setting on beta diversity (unweighted UniFrac distances) in lemur fecal and soil microbiota, 499 

we used principal coordinate analysis (i.e., to visualize clustering of microbiota composition) and 500 

Permutational Multivariate Analysis of Variance (PERMANOVA) in QIIME2. We then 501 

performed Random Forest Analysis140, which is a supervised learning technique that uses 502 

decision trees to classify data to specific categories and provides an overall model error rate (out 503 

of the bag error or OOB error). To identify microbes enriched in specific groups of samples, we 504 

used differential abundance analyses via Analysis of Compositions of Microbiomes (ANCOM) 505 

and songbird software141 in QIIME2, paired with visualization through Qurro142.  506 

 For the eight settings where we obtained matched fecal and soil samples (Table 1), we 507 

analyzed covariation between lemur gut microbiota and the associated soil communities by 508 

performing a Mantel test on microbial abundance matrices of lemur gut and soil microbiota. 509 

Because multiple lemur fecal samples were associated with each soil sample, we created 510 

comparable matrices for the Mantel test by averaging the microbial abundances across the fecal 511 

samples of lemurs directly associated with a given soil sample, resulting in a single, mean lemur 512 

gut community associated with each soil community. For this process, we omitted fecal samples 513 

from troops not represented by a soil sample or for which troop identity was unknown.  514 

To test if soil-associated microbes were present in lemur gut microbiota, we used FEAST, a 515 

tool for fast expectation-maximization microbial source tracking55. FEAST assumes each ‘sink’ 516 
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sample is a convex combination of known and unknown ‘sources’ and uses multinomial 517 

distributions and machine-learning classification to model the microbial source tracking55. For 518 

this analysis, we used the matched lemur gut and soil samples; all soil samples collected in a 519 

given setting were used to represent the potential exposure to environmental microbes 520 

experienced by all sampled lemurs in that same setting, regardless of troop identity. Because we 521 

were testing whether environmental acquisition influences lemur gut microbiota, and because 522 

this analysis requires an assumption of directionality (i.e., from a source to a sink), we 523 

categorized soil samples as ‘sources’ and lemur fecal samples as ‘sinks’; however, we 524 

acknowledge and discuss the potential for bi-directional transmission of microbes between 525 

lemurs and soil. The FEAST output provides “source proportions” that represent the scaled 526 

proportion of each sink sample (fecal) that can be attributed to each source sample (soil) based 527 

on FEAST’s probabilistic models55. For each lemur fecal sample, we calculated the proportions 528 

of microbes that were attributed to each soil community and from a default ‘unknown source’ 529 

that accounts for microbes not relevant to soil microbiota. Lastly, we used FEAST to test for 530 

differences in the source proportions in the gut microbiota of lemurs at the DLC that were either 531 

semi-free-ranging or sequestered to indoor enclosures.  532 
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Table 1. Research settings (names, descriptions, and locations) and samples collected under 964 

wilderness conditions and under captivity conditions in Madagascar and the U.S. A subset of the 965 

samples collected were omitted from analyses owing to low-yield extractions or low-quality 966 

sequencing. Soil samples could not always be obtained. Settings for which matched fecal and 967 

soil samples were analyzed are highlighted in gray in the table and have an asterisk in the maps. 968 

Maps show locations of each setting; the gray shaded area of the map shows the natural range of 969 

wild ring-tailed lemurs in Madagascar.  970 

Environmental 

condition 
(total samples 

analyzed) 

Setting (abbreviation) Setting description 

Samples: 

 analyzed 

(collected) 

fecal soil 

wilderness 

(WM) 

(total analyzed:  

fecal = 139 

soil = 22)  

Amoron'I Onilahy (AMO) Riverine gallery forest, dry scrub forest 20 3 (4) 

Berenty Reserve (BER) Semi-arid dry forest, spiny forest 19 (22) 4 

Beza Mahafaly Special 

Reserve (BEZ) 

Riverine gallery and semi-arid spiny 

forest 
26 3 (4) 

Fiheranana (FIH) Dry forest and spiny forest 2 - 

Isalo National Park (ISO) Dry deciduous forest  16 (18) 3 

Ivohiboro (IVO) Humid forest, grassland 15 - 

Ranomay (RAN) Dry forest 13 1 (2) 

Tsimanampetsotsa 

National Park (TSI) 
Dry forest and spiny forest 28 (29) 8 

captivity: 

Madagascar 

(CM) 

(total analyzed:  

fecal = 41 

soil = 1) 

Lemur Rescue Center 

(Toliara, Madagascar; 

LRC) 

Outdoor enclosures in dry and spiny 

forest 
33 1 (2) 

Various towns (pets) Pets housed in human dwellings  8 - 

captivity: 

U.S. (CU.S.) 
(total analyzed:  

fecal = 29 

soil = 2)  

Duke Lemur Center 

(Durham, NC; DLC) 

Indoor and outdoor enclosures, including 

free ranging in semi-deciduous forest 
22 2 (3) 

National Zoological Park 
(Washington, DC; NZP) 

Indoor and outdoor enclosures, moated 
island with vegetation 

4 - 

North Carolina Zoo 

(Asheboro, NC; NCZ) 

Indoor and outdoor enclosures, moated 

island with vegetation 
3 - 

Total samples: 
209 

(215) 

25  

(30) 

 

AMO

BER

BEZ

FIH

ISA

IVO

RAN

TSI

Legend:

LRC

pet

wilderness:
captivity: 

Madagasacar

Madagascar U.S.

captivity: 

U.S.

DLC

NCZ

NZP

*
*
*

*

*
*

* *

* *

*

*

*

*

*
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 971 

Figure and legends 972 

 973 

 974 

 975 

Figure 1. Alpha diversity metrics of gut microbiota (a, b) collapsed by environmental condition, 976 

including from lemurs in the wilderness (WM; green), captivity in Madagascar (CM; pink), and 977 

captivity in the U.S. (CU.S.; orange), and (c, d) averaged across individuals for each of the 13 978 

different settings inhabited (reprising the color codes of each condition, delineated by dashed 979 

vertical lines). Shown are both (a, c) Shannon diversity and (b, d) Faith’s phylogenetic diversity. 980 

Across the (c, d) settings within an environmental condition (see Table 1 for names of 981 

abbreviated study settings), the data are plotted in descending order of mean Shannon diversity. 982 

Tukey-style box and whiskers show the median (center horizontal line) and the interquartile 983 

range (upper and lower bounds of the box), with outliers that are 1.5 times less than the 25th 984 

quartile or 1.5 times more than the 75th quartile. Number of samples (n) is reported below each 985 

condition and setting. Kruskal-Wallis test with Benjamini-Hochberg correction; *p < 0.05, ***p 986 

< 0.001, **** p < 0.0001, ns = nonsignificant. Full statistical results are available in the 987 

Supplementary Materials.  988 

 989 

 990 

 991 

 992 
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 993 

 994 

Figure 2. Mean proportion of sequences assigned to microbial taxa across lemurs at each of the 995 

13 different settings, with the three environmental conditions (wilderness, WM; captivity in 996 

Madagascar, CM; and captivity in the U.S., CU.S.) delineated by dashed vertical lines (see Table 1 997 

for names of abbreviated study settings). Taxa are identified by phylum and deepest possible 998 

taxonomic level (i.e., genus level or above); those representing < 1% of the microbiomes were 999 

combined into the category “Other”1000 
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 1001 

 1002 

Figure 3. Differential abundance of Erysipelotrichaceae UCG-004 and Treponema 2 amplicon 1003 

sequence variants (ASVs) in the gut microbiota of lemurs. (a) Differential rank plot showing 1004 

lemur gut microbial ASVs (x axis) ranked by their differentials (y axis; the estimated log-fold 1005 

changes for taxa abundances across sample groups) for wild lemurs in Madagascar (WM) vs. 1006 

captive lemurs in the U.S. (CU.S.). Those ASVs that are more abundant in WM lemurs compared 1007 

to CU.S. lemurs appear on the right side of the plot whereas those that are less abundant in WM 1008 

lemurs appear on the left side. The differentials of Erysipelotrichaceae UCG-004 and 1009 

Treponema 2 ASVs are highlighted in red and blue, respectively, with other taxa represented in 1010 

gray. (b) Natural log ratios of Erysipelotrichaceae UCG-004 vs. Treponema 2 in lemurs across 1011 

all three environmental conditions. Tukey-style box and whiskers show the median (center 1012 

horizontal line) and the interquartile range (upper and lower bounds of the box), with outliers 1013 

that are 1.5 times less than the 25th quartile or 1.5 times more than the 75th quartile. Each point 1014 

represents a single lemur gut microbiome in which the target ASVs were present. 1015 

 1016 

 1017 
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 1018 

Figure 4. Beta diversity (unweighted UniFrac distances) of lemur gut microbiota across three 1019 

environmental conditions – wilderness in Madagascar (WM; green), captivity in Madagascar 1020 

(CM; pink), and captivity in the U.S. (CU.S.; orange) – that encompass 13 setting (see Table 1 for 1021 

names of the abbreviated research settings). (a, b) Principal coordinate plots, showing axes 1 and 1022 

2, or 1 and 3, respectively, of individual gut microbial communities colored by setting and 1023 

encircled by normal data ellipses reflecting environmental condition. (c) Mean beta diversity 1024 

distance scores within an environmental condition (single color) and between two environmental 1025 

conditions (two colors). The center of the box reflects the mean and the error bars represent ± the 1026 

standard error of the mean (SEM). (d) Principal coordinate plots, showing axes 1 and 2, for the 1027 

eight settings within the wilderness condition. Kruskal-Wallis test with Benjamini-Hochberg 1028 

correction; **** p < 0.0001.  1029 
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 1034 

Figure 5. Alpha diversity metrics of soil microbiota (a, b) collapsed by environmental condition, 1035 

including the wilderness in Madagascar (WM; green), captivity in Madagascar (CM; pink), and 1036 

captivity in the U.S. (CU.S.; orange) and (c, d) averaged across individuals for each of the eight 1037 

different settings (reprising the color codes of each condition, delineated by dashed vertical 1038 

lines). Shown are both (a, c) Shannon diversity and (b, d) Faith’s phylogenetic diversity. Across 1039 

the (c, d) settings within a condition (see Table 1 for names of abbreviated research settings), the 1040 

data are plotted in descending order of mean Shannon diversity. Tukey-style box and whiskers 1041 

show the median (center horizontal line) and the interquartile range (upper and lower bounds of 1042 

the box), with outliers that are 1.5 times less than the 25th quartile or 1.5 times more than the 75th 1043 

quartile. The number of samples (n) is reported below each environmental condition and setting. 1044 
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 1048 

Figure 6. Mean proportion of sequences assigned to microbial taxa of soil at each of the eight settings sampled, within the three 1049 

environmental conditions: wilderness in Madagascar (WM; green), captivity in Madagascar (CM; pink), and captivity in the U.S. (CU.S.; 1050 

orange), which are delineated by dashed vertical lines (see Table 1 for names of abbreviated research settings). Taxa are identified by 1051 

phylum and deepest possible taxonomic level (i.e., genus level or above); those representing < 1% of the microbiomes were combined 1052 

into the category “Other”.1053 
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 1056 

Figure 7. Beta diversity (unweighted UniFrac distances) of soil microbiota across three 1057 

environmental conditions – wilderness in Madagascar (WM; green), captivity in Madagascar 1058 

(CM; pink), and captivity in the U.S. (CU.S.; orange) – that encompass eight setting (see Table 1 1059 

for names of abbreviated research settings). (a, b) Principal coordinate plots, showing axes 1 and 1060 

2, or 1 and 3, respectively, of soil microbial communities colored by setting and encircled by 1061 

normal data ellipses reflecting environmental condition. (c) Mean beta diversity distance scores 1062 

within an environmental conditions (single color) and between two environmental conditions 1063 

(two colors). The center of the box reflects the mean and the error bars represent ± the standard 1064 

error of the mean (SEM). Kruskal-Wallis test with Benjamini-Hochberg correction; * p < 0.05, 1065 

**** p < 0.0001. 1066 
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 1069 

 1070 

Figure 8., Source proportions, calculated using probabilistic models in FEAST, for soil-1071 

associated microbes in the gut microbiota (GMB) of lemurs (a) collapsed by environmental 1072 

condition: wilderness in Madagascar (WM; green), captivity in Madagascar (CM; pink), and 1073 

captivity in the U.S. (CU.S.; orange), (b) at each of the eight settings for which we had matched 1074 

fecal and soil samples (reprising the color codes of each condition, delineated by dashed vertical 1075 

lines), and (c) by housing status (i.e., semi-free-ranging in natural habitat enclosures or housed 1076 

indoors) at the Duke Lemur Center (DLC). Tukey-style box and whiskers show the median 1077 

(center horizontal line) and the interquartile range (upper and lower bounds of the box), with 1078 

outliers that are 1.5 times less than the 25th quartile or 1.5 times more than the 75th quartile. 1079 

Number of samples (n) is reported below each condition and setting. Kruskal-Wallis test with 1080 

pairwise comparisons and Benjamini-Hochberg correction; * p < 0.05, ** p < 0.01, *** p < 1081 

0.001, **** p < 0.0001, ns = nonsignificant. 1082 
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 1088 

 1089 

Figure 9. Source proportions, calculated using probabilistic models in FEAST, for soil-associated 1090 

microbes in the gut microbiota of lemurs within (single color) and between (two colors) the three 1091 

environmental conditions that encompass eight settings: wilderness in Madagascar (WM; green), 1092 

captivity in Madagascar (CM; pink), and captivity in the U.S. (CU.S.; orange) –. Within the gut 1093 

microbiota of lemurs from a given environmental condition (left color = fecal source condition), 1094 

values show the proportion of soil associated microbes from a given condition (right color = soil 1095 

source condition). The center of the box reflects the mean and the error bars represent ± the 1096 

standard error of the mean (SEM). Number of pairwise comparisons and the associated 1097 

calculation is reported below each box. Kruskal-Wallis test with pairwise comparisons and 1098 

Benjamini-Hochberg correction; ** p < 0.01, *** p < 0.001, **** p < 0.0001. 1099 
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