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Abstract

Background: Inter-population variation in host-associated microbiota reflects differences in the
hosts’ environments, but this characterization is typically based on studies comparing few
populations. The diversity of natural habitats and captivity conditions occupied by any given host
species has not been captured in these comparisons. Moreover, intraspecific variation in gut
microbiota, generally attributed to diet, may also stem from differential acquisition of
environmental microbes — an understudied mechanism by which host microbiomes are directly
shaped by environmental microbes. To more comprehensively characterize gut microbiota in an
ecologically flexible host, the ring-tailed lemur (Lemur catta; n = 209), while also investigating
the role of environmental acquisition, we used 16S rRNA sequencing of lemur gut and soil
microbiota sampled from up to 13 settings, eight in the wilderness of Madagascar and five in
captivity in Madagascar or the U.S. Based on matched fecal and soil samples, we used microbial
source tracking to examine covariation between the two types of consortia.

Results: The diversity of lemur gut microbes varied markedly within and between settings.
Microbial diversity was not consistently greater in wild than in captive lemurs, indicating that
this metric is not necessarily an indicator of host habitat or environmental condition. Variation in
microbial composition was inconsistent both with a single, representative gut community for
wild conspecifics and with a universal ‘signal of captivity’ that homogenizes the gut consortia of
captive animals. Despite the similar, commercial diets of captive lemurs on both continents,

lemur gut microbiomes within Madagascar were compositionally most similar, suggesting that
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non-dietary factors govern some of the variability. In particular, soil microbial communities
varied across geographic locations, with the few samples from different continents being the
most distinct, and there was significant and context-specific covariation between gut and soil
microbiota.

Conclusions: As one of the broadest, single-species investigations of primate microbiota, our
study highlights that gut consortia are sensitive to multiple scales of environmental differences.
This finding begs a reevaluation of the simple ‘captive vs. wild” dichotomy. Beyond the
important implications for animal care, health, and conservation, our finding that environmental
acquisition may mediate aspects of host-associated consortia further expands the framework for

how host-associated and environmental microbes interact across different microbial landscapes.
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Introduction

The structure of gut microbial communities within vertebrates is influenced in part by
endogenous host factors, such as genotype and physiology!=, and in part by exogenous factors,
such as sociality, seasonality, habitat quality, and diet*¢. These exogenous factors can influence
which microbial taxa in a gut community thrive or become depauperate, as amply demonstrated

7-10

in dietary studies’ ", or they can provide opportunities for more direct routes of microbial

acquisition'!'"!%, For example, the transmission of microbes between hosts, as evidenced by

15-17

horizontal pathogen transfer or vertical transmission during the birthing process and

1819 "are significant drivers of host health and development. There is, likewise, the

nursing
potential for horizontal acquisition of microbes via exposure to environmental consortia on
natural (e.g., soil) and man-made surfaces, plus on food and in water!'?2°-23; however, this latter
route to shaping host-associated communities, hereafter referred to as ‘environmental
acquisition,” remains understudied. Here, we match-sampled ring-tailed lemur (Lemur catta)
feces with soil from 13 “settings’, to (a) characterize variation in host gut microbiota, (b)
characterize variation in soil microbiota, and (c) test for any covariation between host and soil
communities. Examining environmental microbes alongside host-associated communities is a
first step to understanding the role of environmental acquisition in population-level differences
between host microbiomes.

Previous studies of intraspecific variation in gut microbiota, often framed using a ‘wild vs.
captive’ comparison, have provided valuable descriptions of differences in presumed extremes?*
26 For example, researchers often report a ‘signal of captivity,” whereby the gut microbiota of
captive hosts differ significantly from those of wild conspecifics, converging on a perturbed or

25,27,28

‘humanized’ composition . Perturbations of this nature are generally attributed to
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commercial diets that include manufactured chow and cultivated produce?”2-3?; nevertheless,

studies of captive populations have been focused on accredited zoos or rescue facilities that may
not represent the range of captive conditions or may be confounded by within-species
comparisons across continents?®**3!, Even comparative field studies have been limited in the
number of populations per species studied, typically to a few populations that differ on a given
metric of interest (e.g. season, health state, habitat type or quality*?=3). Because hosts experience
a wider range of environmental settings than is typically encompassed within wild vs. captive
comparisons, a broader comparative approach is necessary to provide a more comprehensive and
nuanced understanding of gut microbial variation.

As noted, differential exposure to environmental microbes provides potential for horizontal

2022.23.36-38 'wyith the ingestion of specific microbes

transmission and environmental acquisition
being linked to novel digestive functions of the gut microbiota**!. Under certain scenarios,
environmental acquisition has been shown to outweigh vertical transmission as the main mode of
microbial colonization*>*}. Although environmental acquisition may promote heterogeneity
within and between hosts**, its role rarely has been considered a differentiating factor between
wild and captive hosts. Husbandry practices and veterinary care, for example, introduce cleaning
products and antibiotics to the microbial environment of captive animals*-*¢, further
differentiating it from the ‘native” environment*’, with potentially critical consequences to
microbiome structure and function.

Our study species, the ring-tailed lemur, is a semi-terrestrial, omnivorous strepsirrhine
primate**#° that occupies various habitats across southern Madagascar® and also survives well in
captivity>!. Its ecological flexibility, coupled with existing knowledge about its gut

26,52-54

microbiome , motivates broader comparative study of intraspecific variation that takes
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environmental acquisition of microbes into consideration. We therefore collected fecal and soil
samples originating from lemurs and their environments, respectively, under three broad,
environmental conditions: the wilderness condition in Madagascar (Ww; 8 settings) represents a
large portion of the ring-tailed lemur’s natural habitat, whereas two captivity conditions
distributed between Madagascar (Cw; 2 settings) and the U.S. (Cus.; 3 settings) represent a wide
range of housing conditions on two continents (spanning pet ownership, zoos, and other
facilities; Table 1).

To analyze covariation between lemur gut microbiota and soil microbiota in our 13 settings,
we combine 16S rRNA sequencing and statistical tools based on microbial source tracking®-°,
which is the process of modelling the predicted origin of microbes to a given community (e.g.,
lemur gut microbiomes) based on certain source communities (e.g., soil samples). Given the
variability of environmental factors across our multiple settings, we expect the diversity,
membership, and composition of lemur gut microbiota and soil microbiota to differ within and
between our three environmental conditions (Table 1).

If diet or habitat quality were the main driver of gut microbiota composition, we would
expect (a) wild lemurs to show variation between their natural settings, (b) captive lemurs,
regardless of continent, to show similar gut microbiota between their settings (reflecting
commercial diets and perturbed habitats), and (c) wild and captive lemurs to differ most
drastically from one another, in line with prior studies?’. If, however, environmental acquisition
were to play a major role in shaping lemur gut microbiota, we would again expect (a) wild
lemurs to show variation between their natural settings (reflecting the soil microbiota of the
lemurs’ habitat), but we would expect (b) Malagasy lemurs (wild and captive) to share certain

soil-derived microbiota, differing most drastically from captive lemurs in the U.S., and (c)
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differential access to soil within captivity conditions to correlate with differential soil-associated
microbes present in hosts. With regard to the latter, for example, we might expect greater
proportions of soil-associated microbes in captive lemurs that gain access to natural enclosures

compared to their counterparts that are housed indoors.

Results

Lemur gut microbiota: Variation in diversity, membership, and composition

Alpha diversity. Across the gut microbiota of all ring-tailed lemurs sampled in this study,

metrics of alpha diversity differed significantly between the three environmental conditions
(Generalized Linear Models or GLM; Shannon: F = 23.773, p < 0.001; Faith’s phylogenetic: F =
4.415, p=0.013; Figures la, b) and by setting (GLM; Shannon: F = 13.157, p <0.001; Faith’s
phylogenetic: F = 5.628, p < 0.001; Figures 1c, d; Supplementary Material 1). The microbiota in
fecal samples from Wy and Cyss. lemurs were similarly diverse overall (pairwise Wilcoxon test;
Shannon: p = 0.635; Faith’s phylogenetic: p = 0.056; Figures 1a, b), whereas those from Cum
lemurs were significantly less diverse (pairwise Wilcoxon test; Shannon, Wy vs. Cy lemurs: p <
0.001; Wy vs. Cus. lemurs: p <0.001; Faith’s phylogenetic, Wy vs. Cy lemurs: p = 0.022; Wu
vs. Cus. lemurs: p = 0.021; Figures 1a, b). Within environmental condition, however, both
metrics of alpha diversity varied widely between the different settings (Figures lc, d;
Supplementary Material 1). For example, among Wwu lemurs, setting was a significant predictor
of both metrics of alpha diversity (GLM; Shannon diversity: F = 20.768, p < 0.001; Faith’s
phylogenetic: F = 11.104, p <0.001). Sex was not a significant predictor in any models of either

alpha diversity metric (Supplementary Material 1).



150 Community membership. The membership of lemur gut microbiota included 64 abundant

151  taxa (i.e., those that accounted for >1% of sequences). Of these 64 taxa, only four (6.2%) were
152  shared across lemurs from all settings: the genera Bacteroides (phylum Bacteroidetes),

153  Rikenellaceae RC9 gut group (Bacteroidetes), Erysipelotrichaceae UCG-004 (Firmicutes), and
154  Treponema 2 (Spirochaetes). Within environmental condition, five (7.8%) taxa were shared by
155  all wild lemurs, whereas 10 (15.6%) and six (9.4%) taxa were shared by Cwm and Cy s, lemurs,
156  respectively (Figure 2). Using Analysis of Compositions of Microbiomes (ANCOM), we

157  identified 801 amplicon sequence variants (ASVs) that were differentially abundant across the
158 three environmental conditions. For example, members of the Erysipelotrichaceae family

159  characterized the microbiota of Wu lemurs, whereas taxa from the Spirochaetaceae and

160  Prevotellaceae families were more abundant in the gut microbiota of captive lemurs from both
161  continents. Erysipelotrichaceae UCG-004 and Treponema 2, for example, were abundant in all
162  lemurs (Figure 2), but the log ratios of the two genera distinguished lemur gut microbiota by the
163  three environmental conditions and, in particular, differentiated Wy lemurs from Cy s, lemurs
164  (Figure 3).

165 Beta diversity. The composition of lemur gut microbial communities was significantly

166  distinct across the three environmental conditions, as revealed by beta diversity (Permutational
167  Multivariate Analysis of Variance or PERMANOVA; Wy vs. Cy lemurs: pseudo-F = 30.169, p
168 < 0.001; Wy vs. Cus. lemurs: pseudo-F =97.912, p < 0.001; Cum vs. Cus. lemurs: pseudo-F =
169  20.808, p <0.001). Across all subjects, gut microbiota composition clustered distinctly by

170  environmental condition (principal coordinate analysis of unweighted UniFrac distances; Figures

171  4a, b). One notable exception, however, owed to a single pet lemur: Unlike its in-country peers
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(i.e., other Cy lemurs), its microbial community structure matched those of Wum lemurs (see
arrows in Figures 4a, b).

Across the three environmental conditions, Random Forest Analysis accurately assigned 208
of the 209 gut microbial profiles to the correct environmental condition, with a low (0.48%) out-
of-bag (OOB) error rate. Based on its gut microbiota, only the previously mentioned pet lemur
(see arrows in Figure 2a, b) was misclassified as a Wy lemur. Across the 13 settings, Random
Forest Analysis accurately classified 189 of the 209 microbial profiles (OOB error = 9.57%). The
gut microbial communities of Wy and Cm lemurs were misclassified at rates of 7.9% and 7.3%,
respectively, whereas those of Cu.s. lemurs were misclassified at a rate of 20.6%.

With respect to uniformity within environmental condition, the composition of gut microbial
communities were least dissimilar between Wy lemurs and most dissimilar between Cyv lemurs
(Kruskal-Wallis test; main effect of environmental condition on beta diversity: y~ = 27487, p <
0.0001; pairwise Wilcoxon test; within Wy vs. within Cyv lemurs: p < 0.001; within Wy vs.
within Cys. lemurs: p < 0.0001; Figure 4c). Between environmental conditions, the microbiota of
Wwm and Cym lemurs were the least dissimilar, whereas the microbiota of W vs. Cus. lemurs were
the most dissimilar (pairwise Wilcoxon test: “Wu vs. Cm’ vs. “Wum vs. Cus.”, p < 0.0001; “Wy vs.
Cwm’ vs. ‘Cmvs. Cus.’, p <0.0001; Figure 4c). Considering Wum lemurs only, microbiota
composition clustered by setting (Figure 4d). Although there was some overlap between settings,

the patterns are suggestive of microbial ‘signatures’ across different settings.

Soil microbiota: Variation in diversity, membership, and composition

Alpha diversity. Across the eight settings for which we sampled soil, the alpha diversity of

soil microbiota did not vary significantly between environmental conditions (Kruskal-Wallis test;
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Shannon diversity: = = 3.3457, p = 0.187; Faith’s phylogenetic: x* = 3.433, p = 0.179; Figure 5)
nor between settings (Kruskal-Wallis test; Shannon diversity: = = 7.496, p = 0.379; Faith’s
phylogenetic: x* = 8.936, p = 0.257; Figure 5). These null findings may owe to small sample
sizes.

Community membership. The membership of soil communities included 77 abundant taxa,

of which none were shared across all settings (Figure 6). Of the identified soil microbiota,
78.12% were unique to the soil samples and were not found in any lemur fecal samples. For the
five wild populations for which we sampled soil, only five abundant taxa were shared: the genera
Bacillus (phylum Firmicutes), Steroidobacter (Proteobacteria), Bryobacter (Acidobacteria), and
RB41 (Acidobacteria), and an unidentified member of the class Subgroup 6 (Acidobacteria).
ANCOM identified nine ASVs that were differentially abundant across all soil samples, five of
which (55.6%) belonged to the Balneolaceae family. In addition, compared to soil from
Madagascar (i.e., Wy and Cw), the Cuss, soil communities were differentially enriched for the
genus Bacillus. By contrast, members of the family Nitrososphaeraceae (Thaumarchaeota) and
the genus Acinetobacter (Proteobacteria) characterized W soils and Cw soils, respectively.
(Figure S1).

Beta diversity. Despite the small sample sizes, the beta diversity of the soil microbiota varied
between environmental conditions (Figure 7), but only significantly so between Wy and Cuss.
soils (PERMANOVA; Wu vs. Cu soils: pseudo-F = 1.337, p = 0.202; Ww vs. Cus soils: pseudo-
F=3.897, p=0.012; Cmvs. Cus soils: pseudo-F = 7.752, p = 0.329). Variation in soil
communities within an environmental condition was not significantly different between Ww soils
or Cys. soils (pairwise Wilcoxon test, p = 0.130; Figure 7c). Between environmental conditions,

Ww and Cy soils had the lowest dissimilarities (pairwise Wilcoxon test; ‘Ww vs. Cum’ vs. “Wu

10
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vs. Cus’ soils: p < 0.001; “Wmvs. Cv’ vs. ‘Cum vs. Cus’: p=0.016; “Wm vs. Cuss’ vs. ‘Cu vs.

Cus’: p = 0.338 Figure 7c).

Covariation of lemur gut and soil microbiota

For analyses of covariation between fecal and soil microbiota, we used samples from the
eight settings for which we had matched fecal and soil samples, totaling 177 lemur fecal samples
and 25 soils samples (Table 1). There were 191 ASVs shared between lemur fecal communities
and soil communities. These were dominated by members of the Firmicutes (75 ASVs or
39.3%), Proteobacteria (49 ASVs or 25.6%), and Bacteroidetes (38 ASVs or 19.9%) phyla.
Although many of the shared taxa were abundant (>1%) in either lemur gut microbiota or soil
microbiota, only one genus, Acinetobacter (Proteobacteria), was abundant in both lemur gut
microbiota and soil microbiota.

As would be predicted if environmental acquisition impacts host microbial communities,
there was a significant correlation between the abundances of microbes in lemur feces and soil
samples (Mantel test; r = 0.494, p < 0.001). The proportion of ‘soil-associated” microbes found
in lemur gut microbiota varied significantly across environmental conditions (Kruskal-Wallis
test; x> = 73.862, p < 0.001; Figure 8a) and settings (Kruskal-Wallis test; x> = 112.69, p < 0.001;
Figure 8b). Overall, the gut microbiota of Wy lemurs had significantly greater proportions of
soil-associated microbes compared to those of all captive lemurs (pairwise Wilcoxon test, p <
0.001; Figure 8). In addition, Cym lemurs had significantly greater proportions of soil-associated
microbes in their gut microbiota compared to Cu.s. lemurs (pairwise Wilcoxon test; p < 0.001;
Figure 8). For lemurs housed at the DLC, those that semi-free-ranged in outdoor, natural habitat

enclosures had significantly greater proportions of soil-associated microbes in their gut

11
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microbiota compared to lemurs that did not have access to forested enclosures (Kruskal-Wallis
test; x> = 4.641, p = 0.031; Figure 8c).

Soil from within a lemur’s setting accounted for, on average, significantly greater proportions
of the lemur’s gut microbiota than did soil communities from other settings (Figure 9,
Supplementary Material 2). Overall, the greatest proportion of soil-associated microbes within
lemur gut microbiota occurred when comparing the Wy lemurs to Wy soils (Figure 9;
Supplementary Material 2). The proportion of soil-associated microbes from Cu.s. soil that were
present in the gut microbiomes of W lemurs was close to zero (Figure 9; Supplementary
Material 2). Similarly, soil-associated microbes from W soils were largely absent from the gut
microbiome of Cus. lemurs (Figure 9; Supplementary Material 2). Thus, despite small sample

sizes, the greatest differences observed involved the soil microbes from different continents.

Discussion

Through fecal and soil sampling from multiple settings representing the ring-tailed
lemur’s natural range in Madagascar and in captivity on two continents, we have highlighted (1)
the wide and often underrepresented variety of gut microbiota present within a single host
species, (2) the lack of a universal ‘signal of captivity’ that uniformly decreases microbial
diversity, (3) aspects of microbial membership and composition that differ markedly between
wild and captive populations, and (4) covariance between lemur gut microbiota and soil
microbiota, which points to a key role of environmental microbes. Researchers have reported
host ‘group signatures’ in microbiota, often attributed to the social transmission of microbes®>"-
60; our results expand this concept to ‘population signatures,” similar to the widely studied

61,62

differences across human populations®'-°4, and draw attention to the potential role of

12
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environmental acquisition of microbes in mediating significant inter-population variation.
Across populations of Wy lemurs, we first observed substantial variation in gut microbial
diversity, membership, and composition, indicating that there is not a single ‘representative’ gut
community for wild ring-tailed lemurs, as is likely the case for most host species®. Nonetheless,
the pattern of natural variation observed did not always meet expectations. For example, lemurs
living in what is considered a relatively pristine setting, IVO — a recently discovered humid
forest patch that is relatively undisturbed by human activity — unexpectedly had the second-
lowest diversity of gut microbes. To the extent that lack of disturbance is a proxy of habitat
quality, this pattern would be inconsistent with previous reports that greater habitat quality
promotes more diverse gut microbiota®*®, In prior studies, the gut microbiota of ring-tailed
lemurs were relatively unaffected by habitat degradation®?. Therefore, either pristine habitats can
be of low quality or the ecological and dietary flexibility of this species may dampen the impact
of variation in habitat quality and type, relative to more specialized primates (e.g., folivores)?%-66-
%8, That we found significant, natural, inter-population variation in a relatively hardy and robust

3069 suggests that hosts with greater sensitivity to environmental variation, including

species
habitat quality and type, would likely show even greater variation than that described herein. If
so, studies constrained to single or few host populations are likely to underrepresent the wide-
scale, natural variation in host gut microbiota.

7471 we did not observe the

Contrary to many previous studies’®"3, but consistent with others
gut microbiota of captive lemurs to be consistently less diverse than those of wild lemurs. Such
inconsistencies raise questions about the commonly held view that greater alpha diversity is both

a hallmark of wild individuals and a proxy for a healthier gut community’3-%2, Although we did

not assess gut health, we note that pet lemurs are prone to disease®33°. Often housed solitarily
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indoors, in close contact with people and domestic animals, pet lemurs are fed diets of rice and
fruit; yet, their gut consortia were as diverse as those of wild lemurs living at the relatively
pristine setting, IVO. Moreover, Cu.s. lemurs from the DLC and NCZ had diverse gut consortia,
on par with that seen in the most diverse Wy lemurs (e.g., in BEZ lemurs). These results add to
the mounting evidence®®-8637 that alpha diversity alone should not be used to extrapolate the
health state of gut consortia or the quality of the host’s environment.

We further found that gut microbiota of captive lemurs were not compositionally
homogenized by commercial diets’>®8. Heterogeneous gut microbiota could reflect slight
differences in the diets provided (as the produce and browse available differ between captivity
settings), but such minor dietary variation is unlikely to be the sole driver of such marked
microbial differences, particularly in an omnivorous host. Non-dietary factors must have
contributed to distinguishing the gut communities of captive lemurs. Indeed, the gut microbiota
of Cwm lemurs were compositionally more similar to those of their wild counterparts than to those
of Cu.s. lemurs Based on this observation, we suggest that the effect of a commercial diet is not
necessarily the strongest differentiator of gut consortia and that the effects of captivity cannot be
standardized across populations.

Beyond diet, other ‘environmental” aspects of captivity, including conspecific interactions,
contact with humans, habitat exposure, and medications (such as antibiotics) are known to
impact animal gut microbiomes?>%. Indeed, in a previous study of healthy ring-tailed lemurs at
the DLC, researchers demonstrated the long-term, disruptive influence of antibiotics on the gut
microbiome®. It is likely that Cus. lemurs experience such disruption more frequently than do
Cwm lemurs, particularly pets, that rarely, if ever, receive antibiotic treatment.

Host genotype is also a well-established mediator of microbial community structure.

14
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Reduced genetic diversity, evidenced as founder effects or inbreeding depression, plays a

90-92,93

variable role across taxa in shaping the gut microbiome and may contribute to differences

between captive and wild populations. Although both neutral heterozygosity and genomic

functional diversity decrease over time in captive ring-tailed lemurs®*9

, inbreeding effects can
be mitigated through managed breeding programs, resulting in the rapid ‘rescue’ of genetic
diversity®. Lacking genetic information on all populations, we could not address this influence
in the present study. Genetic distance between populations also influences gut microbial
structure®??, We would therefore expect the lemurs in Madagascar, whether wild or captive, to
be genetically more similar than either group would be to the captive lemurs in U.S., as the latter
have been genetically isolated from wild populations for many generations. Host genetic distance
may contribute to explaining some of the variation observed in microbiome structure.

We also found that, between wild and captive lemurs, the membership and composition of
gut microbiota was indicative of the environmental condition. There was little evidence of a
diverse ‘core’ microbiome, as only four taxa were found to be abundant across all lemur
populations. Two of those core taxa, Erysipelotrichaceae UCG-004 and Treponema 2, were
differentially abundant between the three environmental conditions. Despite links between
members of Erysipelotrichaceae and high-fat, commercial diets in humans®’,
Erysipelotrichaceae microbes were reported to be enriched in wild compared to captive
chimpanzees®®, mirroring our findings in lemurs. Furthermore, the genus Erysipelotrichaceae
UCG-004 was more abundant in the gut microbiota of chimpanzees, relative to humans®, and in
folivorous woolly lemurs compared to other lemur species!'®. The functionally diverse members
of the Treponema genus were more abundant in the gut microbiota of captive vs. wild hosts in

102,103

other species®®!%!, Treponema members break down pectin , a complex plant polysaccharide

15



333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

enriched in ripe fruits, such as those commonly provided to captive ring-tailed lemurs!%4195,

Compositionally, the gut microbiota of wild lemurs were markedly less varied than those of
lemurs in captivity settings, particularly compared to Cm lemurs (i.e., pets and LRC lemurs, most
of which are former pets). These findings support the “Anna Karenina” principle!'%®1%7, which
posits that perturbations of microbiota result in unstable communities and, thus, perturbed hosts
have greater variation in their microbiota than do unperturbed hosts. Indeed, among our lemur
populations, the most clearly perturbed animals were the pets or former pets, given their
combined experience of translocation, dietary change, and anthropogenic disturbance, leading to
perturbed microbial communities that vary greatly between individuals. A single exception to the
gut microbiota clustering according to the hosts’ environmental conditions was a pet lemur with
gut microbiota that resembled that of wild lemurs. Although we can only speculate about this
individual’s history, if recently taken from its natural habitat, the gut microbiota could still
reflect the wild origins of this animal, potentially indicative of gradual change in an omnivore’s
response to environmental shifts!0%:19%,

Lastly, we observed that patterns in lemur gut microbiota were somewhat mirrored in the
diversity and composition of soil microbiota, suggesting that environmental conditions other than
diet, including exposure to external microbes in soils, may influence gut microbiomes!!?.
Madagascar’s geographical isolation for ~88 million years accounts for high levels of floral and
faunal endemism!!!"!12, The same is true of microbes, as evidenced by the numerous, unique
pathogenic microorganisms found on the island!!3-'®, Undoubtedly, variation in nutrients,
mineral content, pH, and other abiotic properties of soil further contribute to differentiating soil
microbiota across small and large biogeographical scales'!”. Unsurprisingly, therefore, soil

microbiota in Madagascar, whether originating in wilderness or captivity settings, were similar in
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composition and significantly divergent from soils in the U.S.!!8, Given the disparate geographic
distributions of many wild vs. captive animals, environmental acquisition that reflects local
microbial endemism may be particularly relevant for distinguishing gut microbiota between wild
and captive conspecifics. For example, the natural ranges of most primates occur in the

119,120

tropics , yet most accredited zoos and captive facilities that house primates are found outside

)1211122. the distinct environmental

of tropical regions (in e.g., Europe and North America
consortia surrounding wild and captive conspecifics should reflect their geographic or
continental divides.

Regarding the exposure to environmental microbes, soil-associated microbes were more
prevalent in lemurs that had greater exposure to natural environments and the acquired soil
microbes were specific to the lemurs’ environment, reflecting active environmental acquisition.
This observation expands on findings that abiotic soil properties mediate primate gut

110

microbiota''’. Wild and captive ring-tailed lemurs perform geophagy (i.e., earth-eating), a

behavior that is linked to nutrient and microbial supplementation!?3-124

and is a potential vector
for the incorporation of environmental microbes*’. Similarly, dietary items may act as vessels of
soil or environmental microbes*'; dietary variation across wild and captive lemurs may influence
gut microbiomes by simultaneously offering different nutrients and different microbes.

Difficulties extracting DNA from soil samples reduced our sample sizes, particularly for the
captive settings, such that we likely underestimated the variation in soil microbiota within and
between environments. Akin to most cross-sectional studies of microbiomes, we were also
unable to assess the persistence or viability of the soil-associated microbes in lemur gut

communities. It is, therefore, possible that the soil-associated microbes in lemur guts were

ephemeral or non-viable; however, our results indicate setting-specific, environmental
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acquisition, supporting that these patterns are not random and that the acquired microbes may be
subject to filters that enable the incorporation of only specific microbes?*!23:126_ Furthermore, we
analyzed these data from the perspective that environmental consortia act as sources of microbes
for host-associated communities, but we expect consistent, bidirectional transmission of
microbes between hosts and their environments. Ultimately, greater sampling resolution in
matched soil and host-associated communities is necessary to reinforce our results and better
elucidate the role of environmental acquisition.

While expanding our understanding of the factors that shape host-microbe relationships,
these results also have significant potential to inform animal care and conservation strategies.
Perturbed microbiota are increasingly recognized as culprits of obesity, gastrointestinal distress,
and even associated mortality in captive animals!?’-12>7?, Given that lemurs are among the most
endangered mammals on the planet!*’, maintaining populations of healthy animals in captivity is
an important ‘safety net’ that augments in-vivo conservation efforts'*!132, We suggest that
environmental acquisition may be a key component of ‘rewilding’ or ‘bioaugmenting’ captive
animal gut microbiota, a process by which gut consortia can be reshaped to better promote host-
microbe symbiosis?®!31'133, Identifying what comprises healthy gut microbiota is a complex and
ongoing area of research; nonetheless, we show that environmental acquisition is a potential
driver of microbial communities and thus should be considered a relevant path to affecting

animal health.

Conclusions

Even in a relatively robust, omnivorous host, gut microbiota are distinct across populations.

This variation reflects environmental variability that is underrepresented by a simple wild vs.
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captive dichotomy. Moreover, concurrent analysis of lemur gut and soil microbiota supports the
premise that environmental acquisition contributes to shaping host-associated microbiota; hosts
and their associated microbes are components of a larger landscape that includes interactions
with environmental microbes. Together, these results expand our understanding of intraspecific
host-microbe dynamics under varying environmental conditions and reinforce the value of

broad-scale, comparative investigations of microbial variation within a single host species.

Methods
Study sites

Our research sites included 13 settings (one per ‘population’; settings were categorized based
on a combination of shared environmental factors and geographic location), grouped under the
following three environmental conditions: wilderness in Madagascar (Ww; 8 settings), captivity
in Madagascar (Cw; 2 settings), and captivity in the U.S. (Cus.; 3 settings; Table 1). The
wilderness settings occurred in protected areas (e.g., national parks, community-managed
reserves) that varied in habitat type (Table 1). The captivity settings in Madagascar included the
Lemur Rescue Center (LRC; Toliara, Madagascar), where the animals were socially housed, and
various townships that were home to individual pets. Although the pet lemurs were not located in
the same geographic location, they were categorized as a single population because of the shared,
unique experiences of ‘pethood’, including commercial diets prepared for human consumption,
housing in human dwellings, contact with humans and domestic animals, and isolation from
conspecifics, all of which differ significantly from the experiences of the wild lemurs or other
captive lemur populations. Lastly, the captivity settings in the U.S. included the North Carolina

700 (NCZ; Asheboro, NC), the Duke Lemur Center (DLC; Durham, NC), and the National
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Zoological Park (NZP; Washington, DC). These facilities were comparable to one another, all

with socially housed lemurs.

Subjects

Across all research settings, our subjects included 215 adult, ring-tailed lemurs (82 male, 81
female, 52 of unknown sex; Table 1). The wilderness settings were each occupied by multiple
lemur troops, ranging in size from 5-24 individuals. Excluding the pets, all captive settings
included groups of 2-7 lemurs that had access to indoor and outdoor enclosures, and were
provided facility-standardized diets (i.e., fresh produce and commercial chow, freely available
water). Certain animals at the LRC and the DLC also had access to natural habitat enclosures
that, respectively, consisted of dry and spiny forest (LRC) or North American deciduous and
pine hardwood forest (DLC). The pets were kept in human dwellings (i.e., houses or hotels) and

were fed fruit, rice, and other foods intended for human consumption.

Sample collection

During a span of four years (2016-2020), we collected ‘matched’ fecal and soil samples from
our subjects and study sites, respectively. Within 8 weeks of fecal or soil collection, the samples
were transported to the U.S., where they were stored at -80 °C, until analysis.

For feces, we opportunistically collected fresh samples, upon the lemur’s observed voiding.
In Madagascar, collections occurred during the dry season (May-October) and, in the U.S.,
collections occurred end of summer through fall (August-November). To avoid soil
contamination of the fecal sample, we removed the outer layer of each fecal pellet. We then

placed the sample in an Omnigene tube that contained a stabilizing buffer that preserved
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microbial communities at room temperature for 8§ weeks (Omnigene.Gut tube, DNAgenotek,
Ontario, Canada'>*13%), All settings were represented by fecal samples from minimally two
lemurs (the maximum number of individuals represented was 33).

When collecting soil in nature, we avoided high-defecation areas (e.g., under sleeping trees)
while identifying core areas where lemurs most commonly spent time on the ground. Within
these core areas, we demarcated a 2-3 m? area and collected soil from each of five evenly spaced
locations, using a clean, individually wrapped, sterile plastic spatula. For each area, the five
aliquots of topsoil (top 2-3 cm of soil) were pooled in a single Omnigene tube to create a
representative soil sample. Because multiple lemur troops inhabited each of the wilderness
settings, in some cases with overlapping core areas, we prioritized collecting soil samples from
areas of maximal use. In some cases, we were unable to collect soil samples for every troop that
provided fecal samples. At the LRC and DLC, we used the same collection methods to collect
soil samples from areas in the natural habitat enclosures where lemurs semi-free-ranged. Because
it is illegal to own pet lemurs in Madagascar, we minimized owner concern by collecting only
fecal samples for this group. Because of other logistical and analytical constraints (see below),

only eight of the 13 settings were represented by usable, pooled soil samples.

Microbial DNA extraction and sequencing

Following the manufacturer’s protocols for the DNeasy Powersoil kit (QIAGAN, Frederick,
MD), we extracted bacterial genomic DNA from fecal and soil samples. We quantified DNA
using a Fluorometer (broad-spectrum kit, Qubit 4, Thermo Fisher Scientific, Waltham, MA).
Aliquots of extracted DNA were sent to Argonne National Laboratory’s Environmental

Sequencing facility (Lemont, IL) for library preparation and amplicon sequencing of the 16S
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rRNA gene. After amplification of the V4 region with region-specific primers and sample-
specific 12-base barcodes, samples were pooled and amplicon libraries were cleaned using
AMPure XP Beads. Amplicons were then sequenced on a 151 x 151 base pair [llumina MiSeq

run'39,

Bioinformatics and statistics

We processed the raw sequence data using a previously published bioinformatics pipeline
generated in QIIME2!%’, In brief, we used the pipeline to join forward and reverse reads,
demultiplex and quality filter the joined reads (DADA2; PHRED scores indicated no quality
trimming was needed), remove non-bacterial sequences (Mitochondria), generate a phylogenetic
tree, and assign taxonomy based on 99% sequence similarity (SILVA database 13513, ver. 138.1)
to generate amplicon sequence variants (ASVs). After quality filtering, samples with fewer than
10,000 sequences were removed from downstream analyses, resulting in 209 fecal samples and
25 soil samples with over 11 million combined reads and an average of ~50,000 reads per
sample. To visually represent rare taxa that had relative abundances < 1% of the total sequences,
we combined them into the conglomerate “Other” category (Figures 1 and 6). Using tables of
ASVs, we calculated metrics of alpha diversity (Shannon and Faith’s Phylogenetic diversity
metric) and beta diversity (weighted and unweighted UniFrac distances). We report only on
unweighted UniFrac (vs. also weighted) as it gives equal consideration to rare and abundant taxa,
allows for better visualization of variation in less abundant taxa, and is most appropriate for
testing our hypotheses and predictions.

To test for differences in alpha diversity between the gut microbiota of lemurs under the

three environmental conditions and in the 13 settings, we first used generalized linear models
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(GLMs; glm in R, ver, 4.0.2) with environmental condition or setting and sex as fixed effects. To
further test for variation in lemur gut microbiota and soil microbiota alpha diversity, we used
nonparametric statistics (e.g., Kruskal-Wallis tests, and pairwise Wilcoxon rank sum tests

with Benjamini-Hochberg adjustment) to perform pairwise comparisons between the various
environmental conditions and settings. To identify and test for effects of environmental condition
or setting on beta diversity (unweighted UniFrac distances) in lemur fecal and soil microbiota,
we used principal coordinate analysis (i.e., to visualize clustering of microbiota composition) and
Permutational Multivariate Analysis of Variance (PERMANOVA) in QIIME2. We then
performed Random Forest Analysis'#’, which is a supervised learning technique that uses
decision trees to classify data to specific categories and provides an overall model error rate (out
of the bag error or OOB error). To identify microbes enriched in specific groups of samples, we
used differential abundance analyses via Analysis of Compositions of Microbiomes (ANCOM)
and songbird software!*! in QIIME2, paired with visualization through Qurro!'#2.

For the eight settings where we obtained matched fecal and soil samples (Table 1), we
analyzed covariation between lemur gut microbiota and the associated soil communities by
performing a Mantel test on microbial abundance matrices of lemur gut and soil microbiota.
Because multiple lemur fecal samples were associated with each soil sample, we created
comparable matrices for the Mantel test by averaging the microbial abundances across the fecal
samples of lemurs directly associated with a given soil sample, resulting in a single, mean lemur
gut community associated with each soil community. For this process, we omitted fecal samples
from troops not represented by a soil sample or for which troop identity was unknown.

To test if soil-associated microbes were present in lemur gut microbiota, we used FEAST, a

tool for fast expectation-maximization microbial source tracking>®>. FEAST assumes each ‘sink’
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sample is a convex combination of known and unknown ‘sources’ and uses multinomial
distributions and machine-learning classification to model the microbial source tracking>. For
this analysis, we used the matched lemur gut and soil samples; all soil samples collected in a
given setting were used to represent the potential exposure to environmental microbes
experienced by all sampled lemurs in that same setting, regardless of troop identity. Because we
were testing whether environmental acquisition influences lemur gut microbiota, and because
this analysis requires an assumption of directionality (i.e., from a source to a sink), we
categorized soil samples as ‘sources’ and lemur fecal samples as ‘sinks’; however, we
acknowledge and discuss the potential for bi-directional transmission of microbes between
lemurs and soil. The FEAST output provides “source proportions” that represent the scaled
proportion of each sink sample (fecal) that can be attributed to each source sample (soil) based
on FEAST’s probabilistic models. For each lemur fecal sample, we calculated the proportions
of microbes that were attributed to each soil community and from a default ‘unknown source’
that accounts for microbes not relevant to soil microbiota. Lastly, we used FEAST to test for
differences in the source proportions in the gut microbiota of lemurs at the DLC that were either

semi-free-ranging or sequestered to indoor enclosures.
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Table 1. Research settings (names, descriptions, and locations) and samples collected under
wilderness conditions and under captivity conditions in Madagascar and the U.S. A subset of the
samples collected were omitted from analyses owing to low-yield extractions or low-quality
sequencing. Soil samples could not always be obtained. Settings for which matched fecal and
soil samples were analyzed are highlighted in gray in the table and have an asterisk in the maps.
Maps show locations of each setting; the gray shaded area of the map shows the natural range of
wild ring-tailed lemurs in Madagascar.

Environmental Samples:
condition . . . . analyzed
(total samples Setting (abbreviation) Setting description (collected)
analyzed) fecal soil
Amoron'l Onilahy (AMO) Riverine gallery forest, dry scrub forest 20 34
Berenty Reserve (BER) Semi-arid dry forest, spiny forest 19 (22) 4
wilderness Beza Mahafaly Special Riverine gallery and semi-arid spiny 26 3 (@)
W Reserve (BEZ) forest
Et tl.:l) analvzed: Fiheranana (FIH) Dry forest and spiny forest 2 -
ot anayzee- Ysalo National Park (ISO)  Dry deciduous forest 16(18) 3
fecal = 139 . .
soil = 22) Ivohiboro (IVO) Humid forest, grassland 15 -
Ranomay (RAN) Dry forest 13 1(2)
Tsimanampetsotsa .
National Park (TSI) Dry forest and spiny forest 28 (29) 8
captivity: Lemur Rescue Center . .
Madagascar (Toliara, Madagascar; glrl:?or e e e 33 1(2)
(Cm) LRC)
(total analyzed:
fecal =41 Various towns (pets) Pets housed in human dwellings 8 -
soil=1)
fivity: Duke Lemur Center Indoor and outdoor enclosures, including 9 203)
capivity: (Durham, NC; DLC) free ranging in semi-deciduous forest
U.S. (Cus) . .
(total analyzed: National Zoological Park | Indoor and outdoor enclosures, moated 4 i
focal 29y " (Washington, DC; NZP) island with vegetation
soil = 2) North Carolina Zoo Indoor and outdoor enclosures, moated 3 i
(Asheboro, NC; NCZ) island with vegetation
i 209 25
Total samples: (215) (30)
Madagascar u.s.
Legend: captivit: captivit
. . ivity: ivity:
wilderness: Madagasacar  U.S.
Q AMO @ I1sA @ LRC O bLc
@BER Q VO @ pet @ Ncz
() BEZ @ RAN O nNzp
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Figure 1. Alpha diversity metrics of gut microbiota (a, b) collapsed by environmental condition,
including from lemurs in the wilderness (Ww; green), captivity in Madagascar (Cwu; pink), and
captivity in the U.S. (Cus.; orange), and (c, d) averaged across individuals for each of the 13
different settings inhabited (reprising the color codes of each condition, delineated by dashed
vertical lines). Shown are both (a, ¢) Shannon diversity and (b, d) Faith’s phylogenetic diversity.
Across the (c, d) settings within an environmental condition (see Table 1 for names of
abbreviated study settings), the data are plotted in descending order of mean Shannon diversity.
Tukey-style box and whiskers show the median (center horizontal line) and the interquartile
range (upper and lower bounds of the box), with outliers that are 1.5 times less than the 25"
quartile or 1.5 times more than the 75" quartile. Number of samples (n) is reported below each
condition and setting. Kruskal-Wallis test with Benjamini-Hochberg correction; *p < 0.05, ***p
<0.001, **** p <(0.0001, ns = nonsignificant. Full statistical results are available in the
Supplementary Materials.
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Figure 2. Mean proportion of sequences assigned to microbial taxa across lemurs at each of the
13 different settings, with the three environmental conditions (wilderness, Ww; captivity in
Madagascar, Cy; and captivity in the U.S., Cuss.) delineated by dashed vertical lines (see Table 1
for names of abbreviated study settings). Taxa are identified by phylum and deepest possible
taxonomic level (i.e., genus level or above); those representing < 1% of the microbiomes were
combined into the category “Other”
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Figure 4. Beta diversity (unweighted UniFrac distances) of lemur gut microbiota across three
environmental conditions — wilderness in Madagascar (Ww; green), captivity in Madagascar
(Cwm; pink), and captivity in the U.S. (Cus ; orange) — that encompass 13 setting (see Table 1 for
names of the abbreviated research settings). (a, b) Principal coordinate plots, showing axes 1 and
2, or 1 and 3, respectively, of individual gut microbial communities colored by setting and
encircled by normal data ellipses reflecting environmental condition. (¢c) Mean beta diversity
distance scores within an environmental condition (single color) and between two environmental
conditions (two colors). The center of the box reflects the mean and the error bars represent + the
standard error of the mean (SEM). (d) Principal coordinate plots, showing axes 1 and 2, for the
eight settings within the wilderness condition. Kruskal-Wallis test with Benjamini-Hochberg
correction; **** p < (0.0001.
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Figure 5. Alpha diversity metrics of soil microbiota (a, b) collapsed by environmental condition,
including the wilderness in Madagascar (Ww; green), captivity in Madagascar (Cw; pink), and
captivity in the U.S. (Cus.; orange) and (c, d) averaged across individuals for each of the eight
different settings (reprising the color codes of each condition, delineated by dashed vertical
lines). Shown are both (a, ¢) Shannon diversity and (b, d) Faith’s phylogenetic diversity. Across
the (c, d) settings within a condition (see Table 1 for names of abbreviated research settings), the
data are plotted in descending order of mean Shannon diversity. Tukey-style box and whiskers
show the median (center horizontal line) and the interquartile range (upper and lower bounds of
the box), with outliers that are 1.5 times less than the 25" quartile or 1.5 times more than the 75%
quartile. The number of samples (n) is reported below each environmental condition and setting.
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Figure 6. Mean proportion of sequences assigned to microbial taxa of soil at each of the eight settings sampled, within the three
environmental conditions: wilderness in Madagascar (Ww; green), captivity in Madagascar (Cwm; pink), and captivity in the U.S. (Cus;
orange), which are delineated by dashed vertical lines (see Table 1 for names of abbreviated research settings). Taxa are identified by
phylum and deepest possible taxonomic level (i.e., genus level or above); those representing < 1% of the microbiomes were combined
into the category “Other”.
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Figure 7. Beta diversity (unweighted UniFrac distances) of soil microbiota across three
environmental conditions — wilderness in Madagascar (Ww; green), captivity in Madagascar
(Cwm; pink), and captivity in the U.S. (Cus; orange) — that encompass eight setting (see Table 1
for names of abbreviated research settings). (a, b) Principal coordinate plots, showing axes 1 and
2, or 1 and 3, respectively, of soil microbial communities colored by setting and encircled by
normal data ellipses reflecting environmental condition. (¢) Mean beta diversity distance scores
within an environmental conditions (single color) and between two environmental conditions
(two colors). The center of the box reflects the mean and the error bars represent = the standard
error of the mean (SEM). Kruskal-Wallis test with Benjamini-Hochberg correction; * p < 0.05,

4% ) < 0.0001.
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Figure 8., Source proportions, calculated using probabilistic models in FEAST, for soil-
associated microbes in the gut microbiota (GMB) of lemurs (a) collapsed by environmental
condition: wilderness in Madagascar (Ww; green), captivity in Madagascar (Cw; pink), and
captivity in the U.S. (Cus.; orange), (b) at each of the eight settings for which we had matched
fecal and soil samples (reprising the color codes of each condition, delineated by dashed vertical
lines), and (c) by housing status (i.e., semi-free-ranging in natural habitat enclosures or housed
indoors) at the Duke Lemur Center (DLC). Tukey-style box and whiskers show the median
(center horizontal line) and the interquartile range (upper and lower bounds of the box), with
outliers that are 1.5 times less than the 25" quartile or 1.5 times more than the 75 quartile.
Number of samples (n) is reported below each condition and setting. Kruskal-Wallis test with
pairwise comparisons and Benjamini-Hochberg correction; * p < 0.05, ** p <0.01, *** p <
0.001, **** p <(.0001, ns = nonsignificant.
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Figure 9. Source proportions, calculated using probabilistic models in FEAST, for soil-associated
microbes in the gut microbiota of lemurs within (single color) and between (two colors) the three
environmental conditions that encompass eight settings: wilderness in Madagascar (Ww; green),
captivity in Madagascar (Cy; pink), and captivity in the U.S. (Cus.; orange) — Within the gut
microbiota of lemurs from a given environmental condition (left color = fecal source condition),
values show the proportion of soil associated microbes from a given condition (right color = soil
source condition). The center of the box reflects the mean and the error bars represent + the
standard error of the mean (SEM). Number of pairwise comparisons and the associated
calculation is reported below each box. Kruskal-Wallis test with pairwise comparisons and
Benjamini-Hochberg correction; ** p <0.01, *** p <0.001, **** p <0.0001.
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