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ABSTRACT 

Electro-chemical polishing (ECP) was utilized to produce sub-micron surface finish on Inconel 718 parts manufactured 

by Laser Powder-Bed-Fusion (L-PBF) and extrusion methods. The L-PBF parts had very rough surfaces due to semi-

welded powder particles, surface defects, and difference layer steps that were generally not found on surfaces of 

extruded and machined components. This study compared the results of electro-polishing of these differently 

manufactured parts under the same conditions. Titanium electrode was used with an acid-based electrolyte to polish 

both the specimens at different combinations of pulsed current density, duty cycle, and polishing time. Digital 3D 

optical profiler was used to assess the surface finish, while optical and scanning electron microscopy was utilized to 

observe the microstructure of polished specimens. At optimal condition, the ECP successfully reduced the surface of 

L-PBF part from 17 µm to 0.25 µm; further polishing did not improve the surface finish due to different removal rates 

of micro-leveled pores, cracks, nonconductive phases, and carbide particles in 3D-printed Inconel 718. The 

microstructure of extruded materials was uniform and free of processing defects, therefore can be polished 

consistently to 0.20 µm. Over-polishing of extruded material could improve its surface finish, but not for the L-PBF 

material due to defects and the surrounding micro-strain. 

Keywords: Laser Powder Bed Fusion, Selective Laser Melting, Electro-chemical polishing, Surface roughness, Extrusion, 

Inconel 718, Microstructure. 

 

1 INTRODUCTION 

Metal Additive Manufacturing (MAM) have become more popular in industry and academia since it can produce 

complex shaped metal components using one platform without having to integrate many different manufacturing 

techniques. The Inconel 718 (IN 718) superalloy possesses properties suitable for extreme environments in nuclear, 

chemical, oil/gas and aerospace applications. Owing to its superior properties such as corrosion and creep resistance 

at elevated temperatures, the IN 718 are highly demanded material for complex engineering profiles, robust and with 

high dimensional precision [1]. Consolidation of Inconel powder by AM techniques has helped in producing IN 718 

parts while preserving material properties and allowing more design freedom. A variety of powder-bed AM methods 

such as electron beam melting, direct energy depositing, selective laser sintering, binder jetting, and selective laser 

melting (SLM) –or laser powder bed fusion (L-PBF) -- are suitable for this purpose. However, parts produced through 

these methods are far from finished products due to their rough surfaces and dimensional inaccuracy. The rough 

surface is a result of shrinkage, layer wise building sequence or “staircase effect,” partially welded powder particles, 

cracks and slags. 

Optimizing the AM parameters and scanning strategies can only improve the surface finish to some extent [2,3], 

but to achieve the required level of submicron surface finish would necessitate the need of post processing of MAM 

parts. For examples, dimensioning accuracy and good surface finish are required for applications such as aircraft 

engines, high-pressure turbines, or medical implants. These post processing operations could include machining, 

buffing, grinding, lapping, chemical mechanical planarizing (CMP), magnetic particle polishing and electrochemical 

polishing (ECP). Finish machining of IN 718 can reduce the as-printed surface finish from 17-20 µm to about 1.5 µm 
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Sa but at the expense of tool wear [4]. Another preliminary study showed that buffing can produce a submicron 

surface finish but corners and specimen details could be indiscriminately polished. Similar issues are expected for the 

abrasive flow polishing. Although grinding, lapping, CMP, or magnetic particle polishing can be applied to polish 

additively printed specimens, these processes are more suitable to large components with restricted or very specific 

and simple geometries. The ECP process is a promising technique due to its non-contact nature, non-consumable 

electrode, independence of workpiece strength and hardness, no surface damage, and no process-induced residual 

stress. This process can be applied locally to polish only a critical surface, or to improve the larger surface of an 

engineering component with customized electrodes. The ECP also eliminates additional deburring process compared 

to using a contact-method for surface enhancement. 

Post processing techniques including ECP have been applied to Inconel alloys that were fabricated by either 

extruding, rolling, forging, or casting but very limited published data were found for polishing of 3D-printed IN 718. 

This research aims to: 

i. Achieve submicron surface finish of IN 718 by ECP,  

ii. Compare the polishing results on IN 718 samples fabricated by L-PBF or extrusion, and 

iii. Correlate polishing results with the microstructural study on ECP specimens. 

 

2 LITERATURE REVIEW 

Inconel comes from a family of austenitic-nickel-chromium based superalloys. The high strength and corrosion 

resistance properties make them well suited for adverse environments subjected to pressure and heat. Inconel 718 

(50-55 wt% Ni, 17-21 Cr, 13.25-24.6% Fe, 4.75-5.50 Nb, 2.8-3.3 Mo, 0.65-1.15 Ti, 0.2-0.8 Al, <1.0 Co, <0.08 C) 

is a superalloy that can retain its mechanical properties at high temperature up to 650°C [5]. This precipitation 

hardenable material exhibits good creep and rupture strengths along with welding characteristics. It was reported 

that in an MAM process, repeated melting and fast cooling of the molten powders would form the dendrite solid 

solution γ phase, NbC niobium carbide, and the Laves phase [6-10]: 

 

Liquid Inconel 718 → γ + NbC + Laves                                                               (1) 
 

Further heating of adjacent regions in L-PBF led to aging of the γ phase to form δ precipitates, and other γ’ and 

γ” precipitates. Compositions of the δ precipitate was reported as Ni3Nb, that for the Laves was (Ni, Cr, Fe) (Nb, 

Mo, Ti), and those for the γ’ and γ” precipitates were Ni3(Al, Ti) and Ni3Nb respectively [10,11]. The δ precipitates, 

typically needle shape of few-micron long, were formed primarily at grain boundaries and contained at least 6-8% 

Nb. Both the γ’ and γ” precipitates, in nanometre scale, can be seen with transmission electron microscopy (TEM) 

and maybe visible with very high-resolution scanning electron microscopy (SEM). The Laves phases were the largest 

phase of all; contained at least 10%Nb, although a very large percentage of 35%Nb in Laves was also reported [7]. 

The Laves phases can be dissolved by homogenizing at 1100°C/hr before solution heat treating and aging to obtain 

the optimal mechanical properties of IN 718 [10]. Additional metal carbides were reported as M23C6 containing Cr, 

Mo, and Nb. Both the NbC and M23C6 carbides were stable; a NbC phase, with significant Nb content, depleted Nb 

atoms around it and prevented formation of the finer γ” precipitates [11]. 

Both volume and surface defects on MAM specimens had been reported in literature. Even though L-PBF IN 718 

offered some advantages compared to subtractive methods, there were issues with pores, partially melted powder, 

shrinkage cavities, slags, and incomplete bonding between layers. Other studies [12,13] found spherical gas-filled 

pores trapped in the molten metal, balling phenomenon, partially melted powder particles that adhered on the top 

surface or at the boundary between deposited layers. These defects, caused by improper scanning speed and linear 

laser density, would act as detrimental stress raisers and finally led to early failure under fatigue conditions. 

Many researchers had made efforts to improve the surface quality of L-PBF manufactured parts by studying the 

effects of processing parameters on surface morphologies, microstructures, and material properties of IN 718. They 

found that surface integrity varied significantly at different laser energies and scanning speeds. By reducing the 

scanning speed from 300 to 100 mm/s, the positive results with nearly dense materials and relatively smooth surfaces 

were obtained [3,14].  

In another research, finish-turning of IN 718 with three different types of coated carbide tools in minimum 

quantity lubrication (MQL) were performed. Three types of coating selected in this study were the chemical vapor 

deposited (CVD) three-layers coating of TiCN/Al2O3/TiN, a physical vapor deposited (PVD) superlattice coating of 

TiN/AlN and a PVD monolayer coating of TiAlN. Cutting speeds were selected at 1.0 and 1.5 m/s. Amongst the three 

coatings there was always a trade-off between surface finish and the tool life. Machining with TiN/AlN coated tools 

in MQL provided the best surface finish amongst the three coatings but at the expenses of shorter tool life. The 

longest tool life was attained by using the TiCN/Al2O3/TiN coated tools in wet-cutting but the surface finish was 

compromised [30]. 

Few researchers had applied ECP as the post-processing method to improve surface finish of IN 718. Combinations 

of perchloric, sulfuric, phosphoric, and acetic acids were suggested for ECP of IN 718 [15]. Phosphoric acid ensured a 

slow and uniform dissolution at the appropriate working conditions without significant adverse effects of corrosion 

or erosion, whereas sulfuric acid increased current density by causing the initial dissolution of the surface of workpiece. 

Neda et al. [31], proposed an innovative finishing technique combining chemical and abrasive flow polishing of 
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interior surfaces of tubular IN 625 components for the aerospace industry. The results showed that by combining the 

chemical and abrasive flow polishing technique on the interiors surfaces, the surface roughness can be significantly 

improved from 17 µm to 2.3µm Ra; and the semi-welded particles that adhered on the surface can be completely 

removed.  

Another study using ECP process to improve the surface finish of L-PBF IN 718 parts was performed. An anodic 

cylindrical part was position at centre of a cathodic cylindrical tank. The large 30-mm electrode gap was filled with 

stirred electrolyte (20% sulfuric acid and methanol). Current density of 50 A/dm
2
 was applied between electrodes 

for different intervals of 1-5 minutes. At optimal condition, the resulted surface roughness Ra was reduced to 3.66 

µm from 6.05 µm. Nano hardness of the polished samples, however, was reduced due to dissolving of the 

strengthening precipitates during the etching/polishing process. The needle shaped δ-phase and carbide particles 

appeared in the grain boundaries after long polishing time of 5 minutes [17].  

Surface finish of electrochemically drilled holes in conventionally manufactured wrought IN 718 was performed. 

The Ø0.5 mm brass electrodes were used as the drilling tool. The authors varied the input variables (pulsed voltage, 

duty cycle, electrolyte concentration and types --NaCl or NaNO3-- and the electrode feed rate). Surface finish inside 

an Ø0.5 mm hole was measured with a non-contact probe. The study concluded that NaCl should be used for high 

drilling rate, while NaNO3 should be used for fine surface finish. A surface finish range of 0.535-3.930 µm Ra was 

reported [18].   

The performance of ECP can also be enhanced by switching the applied direct current to pulsed current. The 

additional off-time in pulsed current allowed effective flushing of debris/ions and refreshing of new electrolyte to the 

anodic surface [19-23]. When combining with ultrasonic vibration, the cavitation effect led to effective flushing and 

improved surface finish of ECP parts [24]. Electrochemical grinding was used as finishing process for IN 718 [25]. 

High material removal rate could be obtained with brazed diamond wheel, high applied-voltage, feed rate and 

electrolyte temperature; however, the resulted surface finish was not included in the report. 

 

3 EXPERIMENTS 

3.1 Sample Preparation 

Both the L-PBF and extruded IN 718 samples were prepared for ECP process.  

• The L-PBF parts were laser printed to 15 x 20 x 5mm on a Renishaw AM250 system. The 15 x 20mm base surface 

was parallel to the scanning x-y plane while the 5mm thickness was along the building z-direction. The average 

diameter of IN 718 powder was 50µm and the powder was fused together using a YAG laser beam at 160W 

power with a hatching distance of 110µm in argon gas. The stripe scanning strategy was adopted for the 

manufacturing of these samples.  

• The extruded samples were cut from an annealed Ø19.1mm bar using Wire-type Electrical Discharged Machining 

(Wire EDM) method. A sample was cut to the same size of 15 x 20 x 5mm with the 15 x 20 mm surface is 

perpendicular to the bar axial direction. 

Due to inconsistent surface profiles of MAM and extruded surfaces, each specimen surface was normalized by hand-

grinding with a fresh 180-grit SiC paper in a uniform direction to achieve an even surface. The sanded samples were 

then cleaned ultrasonically for 5 minutes in isopropyl alcohol to remove any debris and contaminants before ECP. 

 

3.2 Experimental Set-up 

The anodic workpiece (IN 718) was then clamped in the ESMA ECP system with a sanded direction in vertical 

direction.  A cathodic titanium electrode with hemispherical end was used to minimize orientation error. The titanium 

electrode was mounted on a Teflon holder that electrically insulated it from the motor. A multimeter was used to 

detect the electrical contact of both clean and dried electrode/workpiece surfaces, after which the Velmex bislide 

system with 5µm repeatability was used to move the electrode and position it 0.5mm away from the specimen 

surface (Fig. 1). A minimum of at least 4 trials were performed to verify the repeatability of electrical contact of the 

two electrodes and the interelectrode gap.  

A full factorial experiment was conducted based on three ECP input parameters (current density, polishing time, 

and duty cycle) at three different levels. The numerical values of these levels were selected after completion of 

preliminary experiments. The duty cycles of 25, 50, and 75% were chosen to study the effect of off-time from current 

pulses. A longer off-time (low duty cycle) would allow more flushing time but reducing the polishing rate. Thus, a 

total of 27 experiments with two replicates were conducted to polish the L-PBF and extruded IN 718 samples.  

A commercial and proprietary mixture of phosphoric and sulphuric acids was used. It consisted of a high 

percentage of phosphoric acid about 40-80% and sulphuric acid with 5-35% by weight. Although this electrolyte 

can be used up to 65ᵒC (150ᵒF), it was used at room temperature in this study, since a high testing temperature would 

lead to aggressive chemical reactions suitable for machining but not for polishing. A fresh electrolyte was used for 

every set of 27 experiments. Table 1 lists all variables, constants, and equipment in this study while Table 2 tabulates 

different samples and respective ECP parameters. After polishing, a workpiece with remnant electrolyte was first 

rinsed in running tap water, and then dried completely with compressed air.  

A schematic of polished specimen is shown in Figure 2. After ECP’ed, rinsed, and dried, the surface of a specimen 

was studied in the rectangular zone of 3x3 mm
2
. Both the Olympus STM6 optical microscope and Vegas scanning 

electron microscope (SEM) were used for microstructure study. An Energy Dispersive Spectroscopy (EDS) system, 
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integrated with the Vegas SEM, was utilized to identify different phases in the microstructure of polished samples. 

Surface roughness was measured with the Alicona G4 IF profiler within a square zone of 1x1mm for area surface finish 

Sa and a 1mm length for line surface finish Ra. Surface evaluation was repeated four times at each location in both 

directions, parallel and perpendicular to the sanding marks. Figure 2 defines different zones and the coordinate 

system. The y-axis was chosen to be parallel to sanding marks while the x-axis was perpendicular to the sanding 

direction. 

 

 

 

Figure 1: Schematic of experimental set-up 

 

 

 

Table 1: Experiment Design 

 

Variables Values 

Current density (A/mm
2
) 0.2, 0.7, 1.2 

Duty cycle (%) 25, 50, 75 

Polishing time (s) 90, 180, 270 

Constants and dependent variables 

On-time (ms) 10, 20, 30 

Peak current (A) 1.0, 3.5, 6.0 

Interelectrode gap (mm) 0.5 

Electrolyte Commercial acid-based, EP 2000 

Electrode Ø2.5mm commercially pure titanium  

Equipment Model 

ECP cell ESMA model E1085-1S 

Power supply Dynatronix (CRS-LFP(R)) 

Multimeter Tenma 72-6202 

3D optical profiler Alicona IF 

Positioner Velmex bislide MN10 

Optical microscope Olympus STM6 

Scanning electron microscope VEGA3 Tescan 

 

 

  

 Pulsed Power Supply 
Multimeter 

Granite Table 

+ _ 

Electrolyte 

Ti electrode Specimen 

2-axis 
positioner 
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Table 2: Factorial Design 

 

Sample 

Number 
Current (A) 

Current 

density 

(A/mm
2
) 

Time (sec) 
Duty Cycle 

(%) 

1 1 0.2 
 

 

90  

25 

2 3.5 0.7 

3 6 1.2 

4 1 0.2 

 

180 
5 3.5 0.7 

6 6 1.2 

7 1 0.2 

270 8 3.5 0.7 

9 6 1.2 

10 1 0.2 

90 

50 

11 3.5 0.7 

12 6 1.2 

13 1 0.2 

180 14 3.5 0.7 

15 6 1.2 

16 1 0.2 

270 17 3.5 0.7 

18 6 1.2 

19 1 0.2 

90 

75 

20 3.5 0.7 

21 6 1.2 

22 1 0.2 

180 23 3.5 0.7 

24 6 1.2 

25 1 0.2 

270 26 3.5 0.7 

27 6 1.2 

 

 

 

Figure 2: Schematic of polished zone and surrounding area 
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3 RESULTS AND DISCUSSIONS 

3.1 Surface Finish 

The average surface finish of as-printed samples on xy-plane was measured to be 17-20 µm Sa, the measurement was 

even rougher in the building z-direction due to layer mismatching and partially welded powder particle on the surface 

(Fig. 4a). Alternate layers with different microstructures are shown on x-y plane (Fig. 4b), additional defects like 

shrinkage cavities, microcracks, slags were also observed; therefore, each sample was normalized by sanding for a 

uniform surface before polishing (Fig. 5a).  

ECP conditions: Current density (A/mm
2
), Polishing time (s), and Duty Cycle (%) respectively. refers to Figure 5 

shows the success of ECP when all the sanding marks were completely removed. The repeatability of ECP system and 

the uniformity of ECP polished surfaces were confirmed: 

• Repeatability. A set of 15 extruded samples were electropolished in a random order to check the 

repeatability of the ECP system. The average error was within ± 7% as shown in Table 3.  

• Isotropy. Table 4 and Fig. 6 show the uniformity of ECP polishing. The line surface roughness Ra values, 

measured in both perpendicular and parallel to grinding marks, were practically the same since the data 

were statistically indifference. This implies (i) a grinding mark was polished completely as confirmed with 

microscopic observation, and (ii) the electrical field around the titanium electrode was uniform and 

symmetric so that ions are uniformly removed around the electrode; however, the distance from electrode 

tip to a specific location affected the material removal rate (Fig. 7). The material was polished more at 

location just below the electrode, and the effect diminished away from the electrode. A larger electrode or 

control motion of electrode would solve this issue. 

Table 5 shows the difference in surface finish of L-PBF and extruded IN 718 parts. Submicron surface finish was 

achieved in the polished zones; the process was repeated twice for each condition and the measured results –the 

average of four random measurements– were repeated within ± 8%.  

As expected, the duty cycle of 75% yielded better results for both the MAM and extruded samples. At this optimal 

condition, the longer on-time allowed more material to be removed yet left sufficient off-time for flushing debris 

and replenishing of fresh electrolyte to the polished surface. The vertical position of polished anode also facilitated 

the removal of debris during polishing; an anodic workpiece in horizontal position would accumulate fine debris, 

especially the nonconductive contaminants, at the polishing zone and interfere with ion transport mechanism. 

Figures 8a-c below compare the surface finish between the L-PBF and extruded specimens at different polishing 

durations at each duty cycle of 25%, 50% and 75% respectively.  

• Polishing of L-PBF samples. At every duty cycle, 90 seconds of polishing duration produced the best surface 

finish, but the roughness increased after longer polishing time from 90 to 270 seconds. The issues were with 

microstructural defects such as pores and nonconductive intermetallic phases like carbide or Laves. The ECP 

process would remove the conductive matrix according to Faraday law, but would not affect the 

nonconductive “contaminants” in the materials. During the ECP process, ions from the conductive matrix 

were removed and exposed more nonconductive defects on the polished surface, thus degrading the surface 

texture. The best surface finish for L-PBF samples was 0.28 µm after ECP at 0.7 A/mm
2
 current density, 90s 

polishing time, and 75% duty cycle. 

• Polishing of extruded samples. The microstructure of extruded samples was more uniform. Polishing of 

extruded samples after 270s gives the best surface finish at every duty cycle. 

The reaction equation (1) predicts significant microstructural changes in MAM. Such metallurgical reaction 

happened regardless of different AM processes that utilize either laser, electron beam, or plasma arc to deposit 

successive layers of metal beads. The fast heating and rapid cooling of each layer formed the brittle intermetallic 

compound Laves phases with combination of (Ni, Cr, Fe) (Nb, Mo, Ti). Figures 4 b-c shows alternative layers of IN 

718 after melted, solidified, and reheated again when a laser scanned and melted adjacent beads. Contamination of 

IN 718 powder after repeated PBF cycles also contribute to irregularities in the microstructure of samples fabricated 

by L-PBF process. 

In contrast, the hot extruded materials are commonly performed at temperature approximately half of the 

absolute melting temperature of those metals. The metallurgical reaction (1) does not apply to IN 718 at the relatively 

low temperature during hot extrusion, therefore, we would expect a more uniform microstructure with no porosity 

in extruded samples. The polishing results by ECP can be further explained when examining the microstructure of the 

polished samples. 
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Figure 4: Surface profile of L-PBF Inconel 718: (a) Partially welded powder particles on xz-plane, (b) secondary 

electron image of x-y plane, and (c) back-scattered electron image on x-y plane. The arrow in (b) indicates the laser 

scanning direction. 

 

 

 

  
 

Figure 5: Optical image of (a) sanded L-PBF Inconel 718, and (b) polished zone after 0.70 A/mm
2
, 90 s, 50% duty 

cycle. The arrows point to different pores on the polished surface. 

 

 

 

 

 

Figure 6: Surface finish of measuring in direction relative to grinding marks. 

 

 

 

 

 

Figure 7: Effect of distance from electrode on polishing results showing (a) polished zone directly below the electrode, 

(b) transitional zone, and (c) unpolished zone. L-PBF specimen after 0.2 A/mm
2
, 180s, 50% duty cycle.  
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(a) 

  

(b) 

  

(c) 

 

Figure 8: Comparison of roughness at polished zone of AM and wrought specimens. ECP at 25Hz at (a) 25%, (b) 

50%, and (c) 75% duty cycle. Average of 4 data points. 
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Table 3: Repeatability of ECP results 

 

Sample number Current density (A/mm
2
) 

Time 

(sec) 

Duty cycle 

(%) 

Original Ra 

(µm) 

Repeated 

Ra (µm) 

Error 

(%) 

1 

0.20 

180 25 0.77 0.75 -3% 

2 180 75 0.58 0.55 -5% 

3 270 25 0.73 0.69 -5% 

4 270 75 0.55 0.53 -4% 

5 

0.70 

90 75 0.54 0.58 7% 

6 180 75 0.45 0.42 -7% 

7 270 75 0.21 0.2 -5% 

8 90 25 0.67 0.69 3% 

9 180 25 0.63 0.65 3% 

10 270 25 0.58 0.566 -2% 

11 

1.20 

90 25 0.67 0.695 4% 

12 90 75 0.43 0.46 7% 

13 180 25 0.5 0.53 6% 

14 180 75 0.45 0.465 3% 

15 270 25 0.6 0.58 -3% 

 

 

 

Table 4: Data for parallel and perpendicular roughness comparison 

 

Polishing 

condition * 

Parallel 

σ for 

Ra(1-4) 

 

Perpendicular 

σ for 

Ra(5-8) 

 

Ra1 

(µm) 

Ra2 

(µm) 

Ra3 

(µm) 

Ra4 

(µm) 

Ra5 

(µm) 

Ra6 

(µm) 

Ra7 

(µm) 

Ra8 

(µm) 

0.2-90-25 0.425 0.64 0.4 0.42 0.11 0.57 0.53 0.61 0.55 0.06 

1.2-90-25 0.61 0.58 0.48 0.47 0.09 0.62 0.58 0.63 0.59 0.11 

0.2-270-25 0.57 0.65 0.69 0.49 0.09 0.67 0.63 0.57 0.53 0.06 

1.2-270-25 1.18 0.66 0.78 0.99 0.24 0.97 0.93 1.05 0.61 0.22 

0.2-90-75 0.73 0.67 0.49 0.57 0.11 0.74 0.7 0.82 0.71 0.08 

1.2-90-75 0.59 0.53 0.66 0.69 0.07 0.65 0.59 0.51 0.75 0.10 

0.2-270-75 0.77 0.5 0.71 0.63 0.12 0.69 0.65 0.45 0.75 0.13 

1.2-270-75 0.94 0.84 0.78 0.81 0.08 0.93 0.89 0.94 0.85 0.07 

* The three numbers refer to Current density (A/mm
2
), Polishing time (s), and Duty Cycle (%) respectively. 
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Table 5: ECP results of L-PBF and extruded samples 

 

Sample number Current density (A/mm
2
) Time (sec) Duty cycle (%) 

Surface finish, Ra (µm) 

L-PBF Extruded 

1 

0.2 

180 25 0.77 0.51 

2 180 75 0.58 0.67 

3 270 25 0.73 0.49 

4 270 75 0.55 0.35 

5 

0.7 

90 75 0.54 0.75 

6 180 75 0.45 0.30 

7 270 75 0.21 0.24 

8 90 25 0.67 0.45 

9 180 25 0.63 0.82 

10 270 25 0.58 0.60 

11 

1.2 

90 25 0.67 0.49 

12 90 75 0.43 0.31 

13 180 25 0.5 1.11 

14 180 75 0.45 0.32 

15 270 25 0.6 0.5 

 

3.2 Microstructures 

Both samples –extruded and additively manufactured-- were polished at the same ECP parameters for comparison. 

The extruded and annealed specimens had a uniform microstructure consisted of the matrix and  precipitates along 

the grain boundaries and did not exhibit any obvious material defects (Fig. 9a). Aghajani et al. [11] reported that 

ceramic carbides can be formed in the microstructure of IN 718. The niobium carbides (NbC) combined and used 

niobium atoms from the surrounding matrix. Defects in IN 718 affected the polishing results due to: 

– Inclusions. Both metallic carbide M23C6, and niobium carbide NbC are seen in the microstructure. The 

metallic carbides were embedded into the surrounding matrix (Fig. 10a), but the NbC inclusions contained 

niobium atoms, therefore, the etching rate of niobium depleted zone and the matrix of IN 718 should be 

different. Scanning electron microscopic observation shows NbC particles surrounded by dark zones that 

implied materials with different chemical compositions, or the different topography after electro-chemical 

etching (Fig. 10b). In addition to the carbide phases, the segregated niobium also was shared by precipitates 

such as δ (Incoherent - Ni3Nb), γ’ (Ni3Al), γ’’ (Ni3Nb), and Laves phases ((Ni,Cr,Fe)2(Nb,Mo,Ti)). The 

precipitates were dissolved in the etching solution due to their small sizes, but the larger and nonconductive 

carbides and Laves particles had much lower etching rates as compared to that of the matrix. 

– Voids. There was no porosity in extruded samples, but voids and smaller spherical pores were seen in the 

L-PBF samples. The geometry of voids/pores on polished surface degraded the surface roughness of MAM 

samples. Common pores and voids may have tiny cracks in grain boundaries (Fig. 11b); materials at such 

irregular feature with sharper edges were removed at a faster rate due to higher current density in ECP. A 

crack within a pore, or between 3D-printed layers was enlarged after ECP as shown in Figs. 11a and 12a. 

– Strain-induced etching. Microlevel strains were induced in the matrix by precipitates, inclusions, temperature 

difference, or grinding/machining actions. Although in minute scales, such plastic train was significant enough 

to (i) lower the activation energy for electrochemical reaction, (ii) accelerate the local material removal 

rate, and (iii) degrade the overall surface quality of ECP samples. Fig. 12b shows craters in the material 

matrix with inclusions (labelled #2) at the centre; but no surrounding craters with other inclusions (labelled 

#1). Perhaps these inclusions were different in compositions and had different thermal expansion coefficients 

with that from the matrix, thus imparted different micro-strain levels at the corresponding circumferences. 

Figures 13a-c show the evolution of a L-PBF surface. The vertical grinding marks on as-printed samples 

(Fig. 13a) were gradually removed (Fig. 13b) until the final step (Fig. 13c). However, the plastic strain 

underneath a grinding mark was still present in the optical image and shown as residual grinding mark in 
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Fig. 13c. The residual marks, that were not visible in scanning electron microscopy, indicated nonuniform 

electrochemical reaction rates. Perhaps such residual marks can be quantitatively detected by atomic force 

microscopy. Grain boundaries (Fig. 13c) and scanning laser paths (Fig. 13b) were also visible due to preferred 

and different etching rates due to high strain energy at grain boundaries and boundaries of laser melted 

seams. 

– Electrical conductivity. The ECP process required control movement of ions and electrons to effectively 

remove and polish an anodic workpiece in atomic scale. Nonconductive phases such as precipitates, 

voids/pores, cracks, inclusions, ceramic particles, slags/contaminants were not affected by ECP. Even 

conductive phases with different electrical conductivities in an inhomogeneous matrix would have different 

etching rates and affect the surface finish of polished samples.  

Submicron surface finish on both extruded and L-PBF materials was achieved in this study; however, the 

microstructure of each material contributed to final surface finish. Referring to Fig. 8 that compares surface finish of 

two materials, the L-PBF samples had the lowest surface finish of 0.25µm Ra at 0.7 A/mm
2
, 75% duty cycle after 90s. 

Longer polishing time and higher current density worsened the surface finish since more defects would be exposed 

after removing the matrix materials. In contrast, due to the more homogeneous microstructure and less defects, the 

surface of extruded samples can be further improved after longer time or by applying a higher current density. 

Post processing techniques can be applied to the L-PBF material to improve its microstructure before polishing. 

Pores can be reduced by modifying the scanning strategies [27], but it might be more cost effective when hot-isostatic 

pressing the bulk number of L-PBF parts. Since Laves phases and pores can be eliminated by homogenizing and hot-

isostatic pressing [6,8,10,28,29], these post processes could be applied before ECP to achieve a better surface finish. 

 

 

 

  

 

Figure 9: (a) SEM image of extruded sample, viewing along the extruding direction. The needle shape δ phases are 

visible along grain boundaries. ECP at 0.7 A/mm
2
, 270s, 75% duty cycle; and (b) Optical image of extruded sample. 

ECP at 0.7 A/mm
2
, 270s, 50% duty cycle. 

 

 

 

 

  

 

Figure 10: Inclusions in extruded sample (a) Metallic carbide, and (b) Niobium carbide with depleted surrounding. 

ECP at 0.7 A/mm
2
, 270 s, 75% duty cycle. 
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Figure 11: Enhanced defects of L-PBF samples; (a) Enlarged crack within a pore after ECP at 0.7 A/mm
2
, 180 s and 

75% duty cycle, and (b) Typical crack within a pore before ECP. 

 

 

   

 

Figure 12: Enhanced defects after ECP of L-PBF samples; (a) Crack after ECP at 1.2 A/mm
2
, 270 s and 50% duty cycle, 

(b) Differential etching rates around different inclusions. ECP at 0.7 A/mm
2
, 180 s and 75% duty cycle. 

 

 

   

 

Figure 13: Evolution of surface polishing on L-PBF sample (a) ground surface, (b) partially polished surface, and (c) 

0.45µm Ra polished surface. ECP at 1.2 A/mm
2
, 180s, 75% duty cycle.  

 

 

3.3 Regression Models 

Regression models were derived for both extruded and L-PBF parts based on the experimental data for line roughness 

Ra and area roughness Sa. These models were built using the extreme values of the parameters (Table 1) and then 

tested with the intermediate values to predict the accuracy of each model.  

 

• Regression equations for L-PBF IN 718: 

𝑅𝑎𝐿𝑃𝐵𝐹 = 0.602 − 0.191 𝐽 − 0.00021 𝑡 + 0.0007 𝑑𝑐 − 0.0493 𝑑 + 0.0013(𝐽 × 𝑡) + 0.0014(𝐽 × 𝑑𝑐) 

+0.248 (𝐽 × 𝑑)                                                              (2) 
 

𝑆𝑎𝐿𝑃𝐵𝐹 = 0.490 + 0.370 𝐽 + 0.00383 𝑡 + 0.0040 𝑑𝑐 − 0.0796 𝑑 − 0.00005(𝑡 × 𝑑𝑐) − 0.000329 (𝑡 × 𝑑) 

+0.00218(𝑑𝑐 × 𝑑)                                                        (3) 
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• Regression equations for extruded IN 718: 

𝑅𝑎𝑒𝑥𝑡𝑟𝑢𝑑𝑒 = 1.06 − 0.193 𝐽 − 0.000635 𝑡 − 0.0041 𝑑𝑐 − 0.19 𝑑 + 0.075 (𝐽 × 𝑑) +  0.00273(𝑑𝑐 × 𝑑)                              (4) 
 

𝑆𝑎𝑒𝑥𝑡𝑟𝑢𝑑𝑒 = 0.975 − 0.373 𝐽 + 0.00093 𝑡 + 0.00577 𝑑𝑐 − 0.0092 𝑑 + 0.0044 (𝐽 × 𝑑𝑐) +  0.1063 (𝐽 × 𝑑) 

−0.000056 (𝑡 × 𝑑𝑐)                                           (5) 
Where, 

Ra : average line roughness (µm) 

Sa : average area roughness (µm) 

J  : current density (A/mm
2
) 

t : polishing time (s) 

dc : duty cycle (%) 

d  : distance from the polished zone centre (mm) 

 

Table 6: Fitness values of regression models 

 

Model Ra for L-PBF Sa for L-PBF Ra for extruded Sa for extruded 

R
2
 fitness value (%) 79 86 84 81 

 

 

─ Line roughness: Equations (2) and (4) both indicated the higher impact of current density J over polishing 

time t and duty cycle dc.  A higher current density would polish surface more and reduce its line roughness 

as expected.  

─ Surface roughness: Equations (3) and (5) also indicated current density as the most relevant parameter. 

When polishing the L-PBF samples, the positive signs for current density, polishing time, and duty cycle were 

due to accelerated etching rate of electrochemical reaction on (i) strained regions that surrounding defects 

such as nonconductive phases, pores and cracks, and (ii) the Nb depleted zone surrounding an NbC phase. 

Strain energy at a high dislocation density zone would lower the activation energy for chemical reaction to 

happen, therefore increasing the local etching rate. A high current density and longer time removed more 

matrix materials around the nonconductive phases, enlarge existing pores/crack while exposing additional 

defects embedded below the original surface. 

On the contrary when polishing the extruded samples, the negative sign of current density suggested more 

effective polishing to smoothen a surface since (i) the small precipitates (e.g., , ’, ”) were dissolved with 

matrix ions, and (ii) lack of larger “inert” defects (e.g., void, Laves phases…) compared to the L-PBF samples. 

─ During the line roughness measurement, a 1-mm line was drawn in the matrix and did not cross any defect, 

therefore, its value represented the best possible scenario and was lower than the surface roughness values 

that represented everything within a 1-mm
2
 area.   

 

4 CONCLUSIONS AND RECOMMENDATIONS 

Surfaces of Inconel 718 fabricated by laser-based powder bed fusion (L-PBF) and extrusion were successfully polished 

to submicron level by pulsed electrochemical polishing (ECP) process. This study found that: 

1. The pulsed ECP produced a desirable isotropic polishing effect. Submicron surface finish was achieved within 

the ranges of chosen process variables for line roughness (Ra) and area roughness (Sa).  

2. The niobium carbides, metallic carbides were found on both materials. However, the L-PBF samples 

contained additional Laves phases and voids that degraded the surface finish after electrochemically 

polished. 

3. For the L-PBF samples, the best surface finish was 0.25 µm Ra when polishing at 0.7 A/mm
2
, 75% duty cycle 

after 90s. Further polishing did not improve the surface finish due to the exposure of inherent nonconductive 

phases and defects in the materials. For the extruded samples, the best surface finish was 0.21 µm Ra when 

polishing at 0.7 A/mm
2
, 75% duty cycle after 270s. The surface finish of extruded parts improved with 

higher polishing duration due to absence of material impurities beneath the surface.  

4. Regression models for both area and line surface finish were presented. The R
2
 values of all models were in 

the range 79-86%. Such fitness value could be further improved with 5-level parameter experimental 

studies. 

5. Homogenizing and hot-isostatic pressing should be done to eliminate large Laves phases and pores prior to 

ECP for a uniform polished surface. Both of these thermal processes also anneal and eliminate any residual 

strains in the material, therefore, minimize the strain-induced accelerate etching at local areas. 
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