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Abstract. We consider a large-scale service systemwhere incoming tasks have to be instan-
taneously dispatched to one out of many parallel server pools. The user-perceived perfor-
mance degrades with the number of concurrent tasks and the dispatcher aims at maximiz-
ing the overall quality of service by balancing the load through a simple threshold policy.
We demonstrate that such a policy is optimal on the fluid and diffusion scales, while only
involving a small communication overhead, which is crucial for large-scale deployments.
In order to set the threshold optimally, it is important, however, to learn the load of the sys-
tem, which may be unknown. For that purpose, we design a control rule for tuning the
threshold in an online manner. We derive conditions that guarantee that this adaptive
threshold settles at the optimal value, along with estimates for the time until this happens.
In addition, we provide numerical experiments that support the theoretical results and fur-
ther indicate that our policy copes effectively with time-varying demand patterns.
Summary of Contribution: Data centers and cloud computing platforms are the digital
factories of the world, and managing resources and workloads in these systems involves
operations research challenges of an unprecedented scale. Due to the massive size, com-
plex dynamics, and wide range of time scales, the design and implementation of optimal
resource-allocation strategies is prohibitively demanding from a computation and commu-
nication perspective. These resource-allocation strategies are essential for certain interac-
tive applications, for which the available computing resources need to be distributed opti-
mally among users in order to provide the best overall experienced performance. This is
the subject of the present article, which considers the problem of distributing tasks among
the various server pools of a large-scale service system, with the objective of optimizing the
overall quality of service provided to users. A solution to this load-balancing problem can-
not rely on maintaining complete state information at the gateway of the system, since this
is computationally unfeasible, due to the magnitude and complexity of modern data cen-
ters and cloud computing platforms. Therefore, we examine a computationally light load-
balancing algorithm that is yet asymptotically optimal in a regime where the size of the
system approaches infinity. The analysis is based on a Markovian stochastic model, which
is studied through fluid and diffusion limits in the aforementioned large-scale regime. The
article analyzes the load-balancing algorithm theoretically and provides numerical experi-
ments that support and extend the theoretical results.
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1. Introduction
Consider a service system where incoming tasks have
to be immediately routed to one out of many parallel
server pools. The service of tasks starts upon arrival
and is independent of the number of tasks contending
for service at the same server pool. Nevertheless, the
portion of shared resources available to individual
tasks does depend on the number of contending tasks,

and, in particular, the experienced performance may
degrade as the degree of contention rises, creating an
incentive to balance the load so as to keep the maxi-
mum number of concurrent tasks across server pools
as low as possible.

The latter features are characteristic of video streaming
applications, such as video conferencing services. In this
context, a server pool could correspond to an individual
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server, instantiated to handle multiple streaming tasks
in parallel. The duration of tasks is typically determined
by the application and is not significantly affected by
the number of instances contending for the finite shared
resources of the server (e.g., bandwidth). However, the
video and audio quality suffer degradation as these re-
sources get distributed among a growing number of ac-
tive instances. Effective load-balancing policies are thus
key to optimizing the overall user experience, but the
implementation of these policies must be simple
enough as to not introduce significant overheads, par-
ticularly in large systems.

As it is standard in the load-balancing literature, sup-
pose that the execution times of tasks are exponentially
distributed, with unit mean, and that tasks arrive as a
Poisson process with aggregate intensity equal to the ar-
rival rate scaled by the number of server pools. The
number of tasks in steady state is Poisson distributed
with mean equal to this intensity. Thus, a natural and
simple load-balancing strategy is a threshold policy that
assigns incoming tasks to server pools that exhibit a
number of tasks smaller than the rounded-up arrival
rate, if possible. In fact, we prove that a policy of this
kind is optimal on the fluid scale: in large-scale systems,
the fraction of server pools that feature a number of
tasks that exceeds or falls short of the rounded-up or
rounded-down arrival rate vanishes over time; we fur-
ther show that this policy is still optimal on the more
fine-grained diffusion scale and only involves a small
communication overhead. To achieve optimality, how-
ever, the threshold must be learned, since it depends on
the overall demand for service, which may be unknown
or even time-varying. For this purpose, we introduce a
control rule for adjusting the threshold in an online
fashion, relying solely on the same state information
needed to take the dispatching decisions.

Effectively, our adaptive dispatching rule integrates
online resource-allocation decisions with demand esti-
mation. Whereas these two attributes are evidently in-
tertwined, the online control actions and longer-term
estimation rules are typically decoupled and separate-
ly studied in the literature. The former usually assume
perfect knowledge of relevant system parameters,
whereas the latter typically focus on statistical estima-
tion of these parameters. In contrast, our policy
smoothly blends these two elements and does not rely
on an explicit load estimate; instead, it yields an im-
plicit indication as a by-product.

We analyze this policy theoretically, through fluid
and diffusion approximations that are justified by
suitable large-scale limit theorems, and also by means
of several numerical experiments; our main contribu-
tions are as follows:

• We establish that a threshold policy is optimal on
the fluid and the diffusion scales if the threshold is cho-
sen suitably. In addition, we provide a token-based

implementation that involves a low communication
overhead of at most twomessages per task.

• The optimal threshold depends on the offered
load, which tends to be uncertain or even time-varying
in practice. We propose a control rule for adjusting the
threshold in an online manner to an unknown load, re-
lying solely on the tokens kept at the dispatcher. To an-
alyze this rule, we provide a fluid limit for the joint
evolution of the system occupancy and the self-
learning threshold. To the best of our knowledge, this
is the first paper that tackles control parameter adapta-
tions of this kind as part of a fluid-limit analysis.

• We prove that the threshold settles in finite time in
a many-server regime, and we provide lower and upper
bounds for the equilibrium threshold. These are used to
design the control rule to achieve nearly-optimal perfor-
mance once the threshold has reached an equilibrium.
In addition, we derive an upper bound for the limit of
the time until the threshold settles as the number of
tasks grows large.

• The theoretical results are accompanied by several
numerical experiments, which show that the threshold
settles in systems with a few hundred servers and only
after a short time. Furthermore, even in the presence of
highly variable demand patterns, our simulations indi-
cate that the threshold adapts swiftly to variations in
the offered load.

Load-balancing problems, similar to the one ad-
dressed in the present paper, have received immense
attention in the past few decades; van der Boor et al.
(2018) provide a recent survey. Whereas traditionally
the focus in this literature used to be on performance,
more recently the implementation overhead has
emerged as an equally important issue. This overhead
has two sources: the communication burden of ex-
changing messages between the dispatcher and the
servers, and the cost in large-scale deployments of
storing and managing state information at the dis-
patcher, as considered in Gamarnik et al. (2018).

Although this paper concerns an “infinite-server”
setting, the load-balancing literature is predominantly
focused on single-server models, where performance
is generally measured in terms of queue lengths or de-
lays. In that scenario, the join-the-shortest-queue (JSQ)
policy minimizes the mean delay for exponentially dis-
tributed service times, among all nonanticipating poli-
cies; see Winston (1977) and Ephremides et al. (1980).
However, a naive implementation of this policy in-
volves an excessive communication burden for large
systems. So-called power-of-d strategies assign tasks to
the shortest among d randomly sampled queues, which
involves substantially less communication overhead
and yet provides significant improvements in delay
performance over purely random routing, even for d � 2;
see Vvedenskaya et al. (1996), Mitzenmacher (2001),
and Mukherjee et al. (2016). A further alternative are
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pull-based policies, which were introduced in Badonnel
and Burgess (2008) and Stolyar (2015). These policies re-
duce the communication burden by maintaining state
information at the dispatcher. In particular, the join-the-
idle-queue (JIQ) policy studied in Lu et al. (2011) and
Stolyar (2015) matches the optimality of JSQ in a many-
server regime and involves only one message per task.
This is achieved by storing little state information at the
dispatcher, in the form of a list of idle queues.

The main differences in the delay performance of
the aforementioned policies appear in the heavy-
traffic regime where the load approaches one. If we
take JSQ as a reference, then JIQ deviates from this
benchmark under certain heavy-traffic conditions.
This issue was addressed in Zhou et al. (2017, 2019),
which propose join below the threshold (JBT): a re-
finement of JIQ for achieving heavy-traffic delay opti-
mality at the expense of increasing the communication
overhead only mildly. Despite similarity in name, the
problem considered in the latter papers is essentially
different from the one addressed in the present paper,
since achieving delay optimality in a system of paral-
lel single-server queues does not require to maintain a
balanced distribution of the load; in fact, the JBT
policy does not maintain even queue lengths. The JBT
policy was considered for systems of heterogeneous
limited processor-sharing servers with state-dependent
service rates in Horváth et al. (2019). Individual limited
processor-sharing systems with state-dependent service
rates were studied by Gupta and Harchol-Balter (2009),
who analyze how to set the multiprogramming limit to
minimize the mean response time in a way that is ro-
bust with respect to the arrival process; this is a sched-
uling problem where the way in which the service rate
changes with the number of tasks sharing the server is
a crucial factor. In the context of purely processor-
sharing servers with finite buffers, dispatching policies
that are insensitive to the job size distribution, as in Bo-
nald et al. (2004), have received considerable attention.
Jonckheere and Prabhu (2016) study the asymptotic loss
probability of an insensitive dispatching policy in a
symmetric scenario, and Comte (2019) proposes a
token-based insensitive load-balancing rule for a system
with different classes of both jobs and servers, assuming
balanced service rates across the server classes.

As we have mentioned, the infinite-server setting
considered in this paper has received only limited atten-
tion in the load-balancing literature. Whereas queue
lengths and delays are hardly meaningful in this type of
scenario, load balancing still plays a crucial role in opti-
mizing different performance measures, and many of the
concepts discussed in the single-server context carry over.
One relevant performance measure is the loss probability
in Erlang-B scenarios. Power-of-d properties for these
probabilities have been established in Turner (1998),
Mukhopadhyay et al. (2015a,b), Xie et al. (2015), and

Karthik et al. (2017). Other relevant measures are Schur-
concave utility metrics associated with quality of service
as perceived by streaming applications; these metrics
are maximized by balancing the load. As in the single-
server setting, JSQ is the optimal policy for evenly dis-
tributing tasks among server pools, but it involves a sig-
nificant implementation burden; see Menich and Serfo-
zo (1991) and Sparaggis et al. (1993) for proofs of the
optimality of JSQ. It was established in Mukherjee et al.
(2020) that the performance of JSQ can be asymptotical-
ly matched by certain power-of-d strategies that reduce
the communication overhead significantly, by sampling
a suitably chosen number of server pools that depends
on the number of tasks and dispatching tasks to the
least congested of the sampled server pools.

Just like the strategies studied in Mukherjee et al.
(2020), the policy considered in this paper aims at optimiz-
ing the overall experienced performance and asymptoti-
cally matches the optimality of JSQ on the fluid and diffu-
sion scales. Moreover, our policy involves at most two
messages per task and requires to store only two tokens
per server pool at the dispatcher; from this perspective,
our policy is the counterpart of JIQ in the infinite-server
setting. Another pull-based strategy in an infinite-server
(blocking) scenario was briefly considered in Stolyar
(2015). Whereas this policy minimizes the loss probability,
it does not achieve an even distribution of the load and in-
volves storing a larger number of tokens: one for each idle
server in the system. From a technical perspective, we use
a similar methodology to derive a fluid limit in the case of
a static threshold. However, a different proof method is
neededwhen the threshold is adjusted over time.

The infinite-server model considered in this paper
represents a scenario with streaming applications that
have random but fixed session durations and adaptive
resource requirements (e.g., in terms of bandwidth) in
the presence of a time-varying number of competing
flows. This setup has been commonly adopted in the
literature as a natural modeling paradigm for describ-
ing the dynamics and evaluating the performance of
streaming sessions on flow-level; see, for instance,
Benameur et al. (2002) and Key et al. (2004).

As alluded to earlier, the most appealing feature of
our policy is its capability of adapting the threshold to
unknown and time-varying loads. The problem of ad-
aptation to uncertain demand patterns was addressed
in the single-server setting in Mukherjee et al. (2017)
and Goldsztajn et al. (2018a,b), which remove the clas-
sical fixed-capacity assumption of the single-server
load-balancing literature and assume instead that the
number of servers can be adjusted on the fly to match
the load. However, in these papers, the load-
balancing policy remains the same at all times, since
the “right-sizing” mechanism for adjusting the capacity
of the system is sufficient to deal with changes in de-
mand. Mechanisms of this kind had already been
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studied in the single-server scenario to trade off latency
and power consumption in microprocessors; see Yao
et al. (1995) and Wierman et al. (2012). As in the present
paper, all of the aforementioned papers attempt to learn
the load of the system by observing certain state infor-
mation; a treatment of the more general problem of esti-
mating parameters of a queueing system by observing
its trajectories can be found in Baccelli et al. (2009). A
different option is to forecast demand from historical
data, which has been the predominant approach
within the call center staffing literature; a recent survey
of this literature is provided in Defraeye and van
Nieuwenhuyse (2016).

Different from any of the aforementioned studies,
this paper considers a pull-based dispatching policy for
optimizing the overall quality of service in a system of
parallel server pools. This policy is endowed with a
self-learning capability that seamlessly adapts to un-
known load values in an online manner and additional-
ly tracks load variations that are prevalent in practice
but rarely accounted for in the load-balancing literature.

The remainder of the paper is organized as follows.
In Section 2, we describe the model and our dispatching
policy. In Section 3, we establish that this policy is fluid
and diffusion-optimal if the threshold is chosen suit-
ably. In Section 4, we analyze a control rule for adjust-
ing the threshold to an unknown load, and we explain
how to tune this control rule for nearly-optimal perfor-
mance. Our theoretical results are corroborated by nu-
merical experiments1 in Section 5, and conclusions are
provided in Section 6. The proofs of some technical re-
sults are provided in the online supplement.

2. Model and Threshold Policy
In this section, we specify a stochastic model for a ser-
vice system of parallel and identical server pools, and
we describe a threshold-based load-balancing policy for
assigning the incoming tasks to the server pools. The
model description is carried out in Section 2.1, and the
load-balancing policy is explained in Section 2.2.

2.1. Model Description
Consider n parallel and identical server pools with infi-
nitely many servers each. Tasks arrive as a Poisson pro-
cess with rate nλ, where λ is the individual server-pool
arrival rate, and are immediately routed to one of the
server pools, where service starts at once and lasts an
exponentially distributed time of unit mean. The execu-
tion times are independent of the number of tasks con-
tending for service at the same server pool, but the
quality of service experienced by tasks degrades as the
degree of contention increases. Thus, maintaining an
even distribution of the load is key to optimizing the
overall quality of service.

More specifically, let Xi denote the number of concur-
rent tasks at server pool i, and suppose that we resort to
a utility metric u(Xi) � g(1=Xi) as a proxy for measuring
the quality of service experienced by a task assigned to
server pool i, as a function of its resource share. Provid-
ed that g is a concave and increasing function, the over-
all utility

∑n
i�1Xiu(Xi) is a Schur-concave function of

X � (X1, : : : ,Xn) and is thus maximized by balancing
the number of tasks among the various server pools.

The vector-valued process X describing the number
of tasks at each of the n server pools constitutes a
continuous-time Markov chain when the dispatching
decisions are based on the current number of tasks at
each server pool. It is, however, more convenient to
adopt an aggregate state description, denoting by
Qn(i) the number of server pools with at least i tasks,
as illustrated in Figure 1. In view of the symmetry of
the model, the infinite-dimensional process Qn �
Qn(i) : i ≥ 0
{ }

also constitutes a continuous-time Mar-
kov chain. We will often consider the normalized pro-
cesses qn(i) �Qn(i)=n and qn � qn(i) : i ≥ 0

{ }
; the former

corresponds to the fraction of server pools with at least
i tasks.

2.2. Threshold-Based Load-Balancing Policy
All server pools together constitute an infinite-server
system, and thus the total number of tasks in statio-
narity is Poisson distributed with mean nλ. In order
to motivate our dispatching rule, let us briefly assume
that nλ ∈ N. If at a given time the total number of tasks
in the system was exactly nλ, then the diagram of
Figure 1 would ideally consist of rows with either �λ�
or �λ� tasks, where �·� and �·� denote the floor and ceil-
ing functions, respectively. This load distribution cor-
responds to the sequence q∗ defined as

q∗(i) � 1 if i ≤ �λ�, q∗ �λ� + 1( ) � λ− �λ� and

q∗(i) � 0 if i > �λ� + 1:
(1)

Figure 1. Schematic Representation of the System State

Notes. White circles represent servers, and black circles represent
tasks. Each row corresponds to a server pool, and these are arranged
so that the number of tasks increases from top to bottom. The number
of tasks in column i equalsQn(i).
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When the dispatching rule is JSQ, it is shown in
Mukherjee et al. (2020) that qn has a stationary distri-
bution for each n and that these stationary distribu-
tions converge to the Dirac probability measure con-
centrated at q∗ as n→∞. However, this comes at the
expense of a significant communication burden, as ob-
served in Section 1.

The total number of tasks fluctuates over time, but
if tasks are dispatched in a suitable way, then it is pos-
sible that all server pools have either �λ� or �λ� tasks
most of the time and that only the fraction of server
pools with each of these occupancy levels fluctuates.
To achieve this, we propose a dispatching rule based
on a threshold ℓ ∈ N and the current system occupan-
cy; for brevity, we also define h � ℓ+ 1. This policy is
as follows:

• If q(ℓ) < 1, then some server pool has strictly less
than ℓ tasks. In this case, new tasks are assigned to a
server pool with strictly less than ℓ tasks, chosen uni-
formly at random.

• If q(ℓ) � 1 and q(h) < 1, then all server pools have at
least ℓ tasks, and at least one server pool has exactly ℓ

tasks. In this case, incoming tasks are sent to a server
pool chosen uniformly at random among those with
exactly ℓ tasks.

• If q(h) � 1, then all server pools have more than ℓ

tasks. In this case, new tasks are assigned to a server
pool with more than ℓ tasks, chosen uniformly at
random.

At this point, the main question is if there exists a
threshold for which this policy results in an even dis-
tribution of the load. Before addressing this question,
though, we propose a token-based implementation of
this policy, which involves a small communication
overhead.

In this implementation, the dispatcher stores at
most two tokens per server pool, labeled “green” and
“yellow.” A server pool has a green token at the dis-
patcher if it has strictly less than ℓ tasks, and it has a
yellow token if it has strictly less than h tasks; note
that a server pool with strictly less than ℓ tasks will
have both a green and a yellow token. When a task ar-
rives to the system, the dispatcher uses these green
and yellow tokens as follows:

• In the presence of green tokens, the dispatcher
picks one uniformly at random and sends the task to
the corresponding server pool; the token is then
discarded.

• If the dispatcher only has yellow tokens, then one
of these tokens is chosen uniformly at random and the
task is sent to the corresponding server pool; the token
is then discarded.

• In the absence of tokens, the task is sent to a server
pool chosen uniformly at random.

In order to maintain accurate state information at
the dispatcher, the server pools send messages with

updates about their status. A server pool with exactly
h tasks that finishes one of its tasks will send a yellow
message to the dispatcher in order to generate a yel-
low token. Similarly, a server pool with exactly ℓ tasks
that finishes one of these tasks will send a green mes-
sage to the dispatcher to generate a green token. In ad-
dition, green messages are also triggered by arrivals
when the number of tasks in the server pool receiving
the new task is still strictly less than ℓ after the arrival;
in this way, the green token discarded by the dis-
patcher is replaced.

With this implementation, a given task may trigger
at most two messages: one upon arrival and one after
leaving the system; that is, the communication over-
head is at most two messages per task. Also, note that
the amount of memory needed at the dispatcher cor-
responds to 2n tokens. In the next section, we will es-
tablish that our policy is optimal on the fluid and dif-
fusion scales for a suitable threshold. This powerful
combination of optimality and low communication
overhead resembles the properties of JIQ, as consid-
ered in the context of single-server queues; see Lu et al.
(2011) and Stolyar (2015).

3. Optimality Analysis
In this section, we prove that our policy is optimal on
the fluid and diffusion scales, provided that the
threshold is chosen suitably. In Section 3.1, we obtain
a fluid model of the system based on a differential
equation arising from a fluid limit. This fluid model is
used in Section 3.2 to prove that there exist thresholds
such that the solutions to the differential equation
converge over time to the even distribution of the
load q∗. In particular, we prove that ℓ � �λ� has this
property for all λ ≥ 0, and that it is the unique thresh-
old with this property unless λ ∈ N; in the latter spe-
cial case, ℓ � λ− 1 is also fluid-optimal. In Section 3.3,
we establish that ℓ � �λ� is optimal on the diffusion
scale for all λ ≥ 0.

3.1. Fluid Limit
Next we state a functional strong law of large numbers,
also called the fluid limit, for the occupancy processes
qn � qn(i) : i ≥ 0

{ }
. These processes take values in

Q� q ∈ [0,1]N : q(i+1) ≤ q(i) ≤ q(0) � 1for all i≥ 1
{ }

⊂R
N,

and their sample paths can be constructed on a
common probability space for all n, as described in
Section A.1 of the online supplement. The space of
sample paths over a finite interval of time [0,T] may
be endowed with the metric ρ∞

u defined in Section A.2
of the online supplement, which corresponds to uni-
form convergence in the product topology of RN. The
next result holds for any finite time horizon T, any
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threshold ℓ ∈ N, and any random limiting initial con-
dition q(0); a proof is provided in Section A.3 of the
online supplement. Informally, this result establishes
that the processes qn approach solutions of a certain
system of differential equations as n grows large.

Theorem 1. Suppose that qn(0) → q(0) in the product to-
pology with probability one, and let qn|[0,T] denote the re-
striction of qn to [0,T]. Then qn|[0,T] : n ≥ 1

{ }
is almost

surely relatively compact with respect to the metric ρ∞u .
Furthermore, the limit of each convergent subsequence is a
function q : [0,T] →Q with Lipschitz coordinates and
such that

q̇(i) � λpi(q, ℓ) − i q(i) − q(i+ 1)[ ]
for all i ≥ 1 (2)

almost everywhere on [0,T], with respect to the Lebesgue
measure. The functions pi in the aforementioned differential
equations are defined as follows:

a. If q(ℓ) < 1, then

pi(q,ℓ) �
q(i− 1) − q(i)

1− q(ℓ) if 1 ≤ i ≤ ℓ,

0 if i ≥ h:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
b. If q(ℓ) � 1 and q(h) < 1, then

pi(q,ℓ) �
ℓ

λ
1− q(h)[ ]

if i � ℓ,

1− ℓ

λ
1− q(h)[ ]

if i � h,

0 if i≠ ℓ,h:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
c. If q(h) � 1, then

pi(q,ℓ) �
h
λ

1−q(h+1)[ ]
if i� h,

[1− h
λ

1−q(h+1)( )] q(i−1)−q(i)[ ]
if i≥ h+1,

0 if 1≤ i≤ ℓ:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
The fluid dynamics of Equation (2) have a simple in-
terpretation: the derivative of q(i) is the rate at which
new tasks arrive to server pools with exactly i− 1
tasks minus the rate at which tasks leave from server
pools with precisely i tasks. The term i[q(i) − q(i+ 1)]
corresponds to the cumulative departure rate from
server pools with exactly i tasks. Indeed, this quantity
equals the total number of tasks in server pools with
precisely i tasks, and each of these tasks has unit de-
parture rate. The term pi(q, ℓ) may be interpreted as
the probability that a new task is assigned to a server
pool with exactly i− 1 tasks in fluid state q with
threshold ℓ in force, and thus λpi(q,ℓ) corresponds to
the arrival rate of tasks to server pools with i− 1 tasks.
More specifically, the expressions listed in Theorem 1
correspond to the following situations, respectively:

a. If q(ℓ) < 1, then new tasks are sent to server pools
with strictly less than ℓ tasks, chosen uniformly at ran-
dom. So pi(q,ℓ) � 0 if i ≥ h and pi(q,ℓ) is the fraction of

pools with exactly i− 1 tasks divided by the fraction of
pools with at most ℓ− 1 tasks if 1 ≤ i ≤ ℓ.

b. If q(ℓ) � 1, then the arrival rate to server pools with
precisely ℓ− 1 tasks must equal the departure rate from
server pools with exactly ℓ tasks, which gives pℓ(q,ℓ). If
q(h) < 1 and all server pools have at least ℓ tasks, then in-
coming tasks are sent to server pools with exactly ℓ tasks,
so ph(q,ℓ) � 1− pℓ(q, ℓ) and pi(q, ℓ) � 0 for all i≠ ℓ,h.

c. If q(h) � 1, then the right-hand side of (2) equals
zero for i � h, which yields ph(q,ℓ). The incoming tasks
that are not sent to server pools with exactly ℓ tasks are
sent to server pools with h or more tasks, and this hap-
pens with probability 1− ph(q,ℓ). Among these server
pools, a server pool with exactly i > h tasks is chosen
with probability q(i− 1) − q(i), which corresponds to
uniform random routing.

The quantity pi(q, ℓ) may lie outside [0, 1] for some i,
q, and ℓ. However, if q : [0,T] →Q is the limit of a con-
vergent subsequence as in Theorem 1, then pi(q(t), ℓ) ∈
[0, 1] for all i ≥ 1 and all t ∈ [0,T] outside a set of zero
Lebesgue measure.

The proof of Theorem 1 uses a methodology devel-
oped in Bramson (1998) to prove the almost-sure rela-
tive compactness of sample paths and to establish that
the limit of each convergent subsequence has Lip-
schitz coordinates. These limits are then characterized
by a careful analysis in neighborhoods of the points
where the derivatives of all coordinates exist, using
the stochastic dynamics of the system. The differential
Equation (2) results from this analysis; details are pro-
vided in Section A.3 of the online supplement.

3.2. Fluid-Optimal Thresholds
A threshold ℓ is said to be fluid-optimal if all solutions
q : [0,∞)→Q of (2) satisfy

lim
t→∞q(t, i) � q∗(i) for all i ≥ 0;

recall that q∗ was defined in (1) and optimizes the
overall quality of service.

Remark 1. Theorem 1 implies that solutions to (2), de-
fined on [0,∞), exist for any threshold and initial con-
dition; we do not claim, however, that these solutions
are unique.

To identify the fluid-optimal thresholds, we fix ℓ ∈ N

and a solution q : [0,∞)→Q of (2). We introduce the
next functions to analyze how q evolves over time.

Definition 1. Define u,vj : [0,∞)→ R by u(t) �∑∞
i�1q(t, i) and vj(t) � ∑∞

i�jq(t, i) for all j ≥ 1. These are
the total mass function and tail mass functions,
respectively.

The total mass function u corresponds to the total
number of tasks normalized by the number of server
pools. The tail mass function vj has a similar interpre-
tation if we visualize tasks as in Figure 1. Namely, it
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corresponds to the total number of tasks located in
column j of the diagram or further to the right, also
normalized by the number of server pools.

By taking the sum over i ≥ 1 on both sides of (2), we
obtain u̇(t) � λ− u(t) for all t ≥ 0. This differential
equation corresponds to the fluid limit of the total
number of tasks in an infinite-server system, which
makes obvious sense, reflecting a prelimit dynamics
property. Thus, u(t) � λ+ [u(0) −λ]e−t for all t ≥ 0,
and, in particular, u(t) → λ as t→∞. We will use this
fact to establish asymptotic upper bounds for vh(t)
and vh+1(t) when h ≥ λ.

Proposition 1. Let x+ denote max{x, 0}. If h > λ, then
there exists t0 ≥ 0 such that

vh(t) ≤ (λ− ℓ)+ + e−(t−t0) vh(t0) − (λ− ℓ)+[ ]
, (3a)

vh+1(t) ≤ e−(t−t0)vh+1(t0), (3b)

for all t ≥ t0. The last inequality also holds if h ≥ λ, with
t0 � 0.

Proof. Summing both sides of (2) over i ≥ h+ 1, we obtain

v̇h+1(t) � λ− h 1− q(t,h+ 1)( )[ ]
1 q(t,h)�1{ } − hq(t,h+ 1)

−vh+1(t) ≤ λ− h 1− q(t,h+ 1)( )[ ]+ − hq(t,h+ 1)
−vh+1(t) ≤ (λ− h)+ − vh+1(t): (4)

If h ≥ λ, then (λ− h)+ � 0 and we get (3b) with t0 � 0.
If h > λ, then q(t,h) ≤ u(t)=h and u(t) → λ as t→∞ im-
ply that there exists t0 ≥ 0 such that q(t,h) < 1 for all
t ≥ t0. Similar to (4), we conclude that

v̇h(t) ≤ λ− ℓ 1− q(t,h)( )[ ]+ − ℓq(t,h) − vh(t)
≤ (λ− ℓ)+ − vh(t)
for all t ≥ t0:

This implies (3a), and clearly (3b) also holds. w

A consequence of this proposition is that the frac-
tion of server pools with more than h tasks vanishes
as t→∞ when h ≥ λ. We will use Proposition 1 to
prove that, for some suitable values of the threshold,
q(t, i) → q∗(i) as t→∞ for all i.

Theorem 2. We have that ℓ � �λ� is fluid-optimal for all λ
and that ℓ � λ− 1 is fluid-optimal if λ ∈ N.

Proof. Suppose that ℓ � �λ�. Proposition 1 implies that
vh+1(t) → 0 as t→∞, and hence

liminf
t→∞ q(t,h) +∑ℓ

i�1
q(t, i)

[ ]
� lim

t→∞ u(t) − vh+1(t)
[ ]

� lim
t→∞u(t) � λ:

It follows from Proposition 1 that the limit superior of
q(t, h) is upper-bounded by λ− �λ�, and evidently∑ℓ

i�1q(t, i) ≤ ℓ � �λ�. Thus, q(t,h) → λ− �λ� and∑ℓ
i�1q(t, i) → �λ� as t→∞. This implies that q(t, i) →

q∗(i) as t→∞ for all i. The proof is similar when λ ∈ N

and the threshold is ℓ � λ− 1. w

The following two examples show that the thresh-
olds mentioned in Theorem 2 are the only thresholds
for which all solutions of (2) converge to q∗. In both
cases, we exhibit equilibrium solutions of (2) that are
different from q∗.

Example 1 (Large Threshold). Suppose that ℓ > �λ�, and
let θ ∈ (0, 1) be a solution of

λ

x
�∑ℓ

i�1

ℓ!

(ℓ− i)!
1− x
λ

( )i−1
: (5)

Such a solution always exists, because the right-hand
side has a finite limit as x→ 0+, and it converges to
ℓ > λ as x→ 1−. Let us define q(0) ∈Q such that
q(0, i) � 0 for all i > ℓ and

q(0, ℓ− i)−q 0, ℓ− (i− 1)( ) � ℓ!

(ℓ− i)!
1−θ

λ

( )i
θ

for all 0 ≤ i ≤ ℓ. In order to see that q(0) indeed lies in
Q, observe that q(0, ℓ) � θ and that

1 � θ+∑ℓ
i�1

ℓ!

(ℓ− i)!
1−θ

λ

( )i
θ �∑∞

i�0
q(0, i) − q(0, i+ 1)[ ]

� q(0, 0),

where the first equality follows from (5). Also, if we
let π(j) � q(0, j) − q(0, j+ 1) for all 0 ≤ j ≤ ℓ, then π is
the stationary distribution of an Erlang-B system
with ℓ servers and offered traffic λ=(1−θ). More-
over, θ � q(0, ℓ) is the blocking probability of this sys-
tem. Loosely speaking, each server pool behaves as a
blocking system with ℓ servers and an offered traffic
that is larger than λ, because tasks that find a full
server pool are not discarded but sent to a server
pool with idle servers.

It is possible to verify that our construction of the
initial condition q(0) is a fixed point of (2), so the cons-
tant function q : [0,∞)→Q such that q(t) � q(0) for all
t ≥ 0 solves (2). In addition, note that q(0) corresponds
to a suboptimal distribution of the load where the
fraction of server pools with exactly i tasks is positive
for all 0 ≤ i ≤ ℓ; see Figure 2.

In the previous example, the maximum number of
tasks across server pools is ℓ > �λ�. If the goal is to avoid
concentrations of tasks, then this situation is nearly opti-
mal when ℓ is close to �λ�; note that the even distribution
of the load q∗ achieved when the threshold ℓ � �λ� is
fluid-optimal involves server pools with �λ� + 1 tasks.
The most problematic situations arise, instead, when the
threshold is lower than the optimal value. Intuitively, in
these cases all server pools have more than ℓ tasks most
of the time, because the threshold is smaller than the load.
As a result, the system has to resort to random routing
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very often, which is known to be highly inefficient. In the
large-scale limit, this translates into the number of tasks
across server pools being unbounded.

Example 2 (Small Threshold). Suppose that ℓ < �λ� and
λ ∉ N or, alternatively, that ℓ < λ− 1 and λ ∈ N. In ad-
dition, let θ ∈ (0, 1) solve

∑∞
i�h

h!
i!

λ− h(1− x)[ ]i−h(1− x) � 1: (6)

A solution always exists, because the left-hand side is
strictly larger than one for x � 0 and equal to zero for
x � 1. We define q(0) ∈Q such that q(0, i) � 1 for all 1 ≤
i ≤ h and

q(0,i)−q(0,i+1)�h!
i!

λ−h(1−θ)[ ]i−h(1−θ) forall i≥h:

By setting i � h in the last equation, we observe that 1−
θ is the fraction of server pools with at most h tasks.
Furthermore, using (6), we conclude that π(j) �
q(0, j) − q(0, j+ 1) for all j ≥ h is the stationary distribu-
tion of the birth-death process with death rate j at state j
and birth rate λ− h(1−θ) at each state. Loosely speak-
ing, tasks are sent to a server pool chosen uniformly at
random when all server pools have at least h tasks. The
fraction of server pools with at least h tasks operates at
one, and server pools with exactly ℓ tasks receive new
tasks at rate λph(q(0), ℓ) � h(1−θ) < λ. The remaining
tasks are sent to a server pool chosen uniformly at ran-
dom, so server pools with h or more tasks receive new
tasks at rate λ− h(1−θ).

As in Example 1, the initial condition q(0) is a fixed
point of (2), and so the constant function q : [0,∞)→
Q such that q(t) � q(0) for all t ≥ 0 solves (2). Also, q(0)
is an occupancy state for which the fraction of server
pools with exactly i tasks is positive for all i ≥ h; an oc-
cupancy state of this kind is depicted in Figure 2.

The next corollary is a consequence of Theorem 2
and the two examples.

Corollary 1. If λ ∉ N, then �λ� is the unique fluid-optimal
threshold. In the special case where λ ∈ N, there exist exact-
ly two fluid-optimal thresholds: λ− 1 and λ.

3.3. Diffusion-Scale Optimality
We have already proved that our policy is fluid-
optimal when ℓ � �λ�, and we establish here that our
policy is optimal on the diffusion scale as well for this
value of the threshold. This is done by proving that our
policy has the same behavior as JSQ on the diffusion
scale; indeed, the optimality properties of JSQ estab-
lished in Menich and Serfozo (1991) and Sparaggis et al.
(1993) are stronger than diffusion-scale optimality and,
in particular, imply that JSQ is optimal on the diffusion
scale. Specifically, suppose that λ ∉ N, and let

Ȳn �
∑�λ�
i�1

n−Qn(i)
logn

, Z̄n �Qn(�λ�) − (λ− �λ�)n��
n

√ ,

Q̄n(i) �Qn(i)��
n

√ for all i > �λ�:
(7)

These random variables have the same asymptotic be-
havior both for JSQ and our threshold-based policy,
as stated in the following theorem.

Theorem 3. Suppose that λ ∉ N, ℓ � �λ�, and that
Ȳn(0), Z̄n(0), and Q̄n(0, i), for all i > �λ�, have a limit in
distribution as n→∞; denote these limits by Ȳ(0), Z̄(0),
and Q̄(0, i), respectively.

a. The sequence Ȳn : n ≥ 1
{ }

is stochastically bounded in
the Skorokhod space DR[0,∞).

b. Z̄n converges weakly in DR[0,∞) as n→∞ to an
Ornstein-Uhlenbeck process Z, which satisfies the stochastic
differential equation dZ � −Zdt+ ����

2λ
√

dW; here W denotes
a standardWiener process.

c. Provided that Q̄n(0, i) converges in probability to zero,
Q̄n(i) converges weakly in DR[0,∞) to the identically zero
process; this holds for all i > �λ�.

The proof of Theorem 3 is carried out in Section B.1
of the online supplement through a stochastic cou-
pling between a system that uses our policy and a

Figure 2. (Color online) Equilibrium Solutions Computed in Examples 1 and 2 for λ � 5:5

Note. The left plot corresponds to the case of a large threshold, whereas the right plot corresponds to the case of a small threshold.

Goldsztajn et al.: Self-Learning Threshold-Based Load Balancing
8 INFORMS Journal on Computing, Articles in Advance, pp. 1–16, © 2021 INFORMS



system that uses the JSQ policy; the diffusion limit of
JSQ, which coincides with Theorem 3, was derived in
Mukherjee et al. (2020). Loosely speaking, Theorem 3
implies that, for large enough n, and after sufficient
time, the number of server pools with �λ� tasks is (λ−
�λ�)n+O( ��

n
√ ) and the number of server pools with

fewer than �λ� tasks is O(logn). Also, if the system
starts with no server pools with more than �λ� tasks,
then it will remain so.

The diffusion-scale optimality of the threshold ℓ �
�λ� can also be established in the special case λ ∈ N, and
this is done in Appendix B of the online supplement.

4. Learning the Optimal Threshold
In this section, we propose a control rule for adjusting
a dynamic threshold over time, to learn the optimal
threshold value when λ is unknown. This rule is ex-
plained in Section 4.1 and then analyzed through a
fluid-limit approach in the following sections. Specifi-
cally, a fluid model for systems with dynamic thresh-
olds is introduced in Section 4.2 and is then justified
in Section 4.3 through a fluid limit. The evolution of
the dynamic threshold over time is analyzed through
the fluid model in Section 4.4, where we establish that
the threshold always reaches an equilibrium. In Sec-
tion 4.5, we explain how to tune our learning rule so
that the equilibrium threshold is always nearly opti-
mal, and we prove that this tuning yields in fact an
optimal equilibrium threshold in most situations. In
addition, the time required for the threshold to settle
is analyzed in Section 4.6.

4.1. Learning Rule
In Section 3, we showed that our threshold policy is
fluid and diffusion-optimal, provided that ℓ � �λ�.
However, these optimality properties critically rely on
the threshold being strictly equal to �λ�, as was shown
by Examples 1 and 2. Furthermore, in actual system
deployments, discrepancies between an a priori cho-
sen threshold and the optimal value �λ� may occur
due to the following two reasons:

1. In general, it is difficult to estimate λ in advance,
and a slightly inaccurate estimate may result in a
wrong choice of the threshold. The worst performance
repercussions occur if λ is underestimated and a low
threshold is chosen, as explained before Example 2.

2. Even if the threshold equals �λ� initially, λ could
change due to fluctuations in the overall demand for
service. These fluctuations could result in a mismatch
between ℓ and �λ�, with the corresponding adverse
consequences in terms of performance.

Remark 2. We have adopted the common assumption
of unit-mean service times, which amounts to a conve-
nient choice of time unit. In view of this, it is worth ob-
serving that the optimal threshold is determined by the

offered load, rather than the arrival rate of tasks. Specifi-
cally, if service times had mean 1=μ, then the optimal
threshold would be ℓ � �ρ�, with ρ � λ=μ the offered
load. In particular, it is the offered load that has to be esti-
mated rather than the arrival rate of tasks, which exacer-
bates the issues mentioned earlier. Although we assume
unit-mean service times, our results easily generalize to a
generic service rate μ without changing the control rule
that we describe next, which is designed to track the of-
fered load rather than the arrival rate of tasks.

To achieve optimality, it is necessary to actively learn
the optimal threshold. To this purpose, we propose a
control rule for adjusting the threshold in an online
fashion. To explain this rule, let us denote the threshold
in a system with n server pools by ℓn(t), which is now
time-dependent; as before, we also introduce the notation
hn(t) � ℓn(t) + 1 for convenience. Our control rule de-
pends on a parameter α ∈ (0, 1), and it adjusts the
threshold only at arrival epochs, right after dispatching
the new task. If an arrival occurs at time τ, then the
threshold is adjusted as follows:

• The threshold is increased by one if the number of
server pools with at least hn tasks, measured right be-
fore time τ, is greater than or equal to n− 1.

• The threshold is decreased by one if the fraction of
server pools with at least ℓn tasks, measured right be-
fore time τ, is smaller than or equal to α.

•Otherwise, the threshold remains unchanged.
This control rule only relies on knowledge of the to-

kens that are maintained by the dispatcher when the
implementation of Section 2.2 is adopted. Specifically,
the threshold is increased if and only if the number of
yellow tokens was smaller than or equal to one prior
to the arrival, and the threshold is decreased if and
only if the number of green tokens was larger than or
equal to (1− α)n right before the arrival occurred.

Suppose that λ is unknown, either because it was not
possible to estimate the offered load in advance or be-
cause it recently changed. As tasks arrive to the system,
the control rule that we have just described adjusts the
threshold in steps of one unit. At this point, the most
relevant question is whether it is possible to choose α so
that these updates eventually cease, with the threshold
settling at the optimal value. Another important ques-
tion is how long it takes for the threshold to settle. In-
deed, after each update, the new threshold must be
communicated to all server pools and the information
stored at the dispatcher must be updated. Fast conver-
gence of the threshold is thus desired.

4.2. Fluid Systems
In this subsection, we introduce the notion of a fluid
system, which will help us model the behavior of
large-scale systems that use our adaptive threshold
policy through differential equations.
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Definition 2. Consider sequences τj : 0 ≤ j < η
{ }

and
ℓj ∈ N : 0 ≤ j < η
{ }

of increasing times and thresholds,
respectively. Suppose that τ0 � 0, and let τη �∞ if η <
∞ and τη � limj→∞τj otherwise. We define ℓ : [0,τη) →
N such that ℓ(t) � ℓj for all t ∈ [τj,τj+1) and all 0 ≤ j < η,
and given q : [0,τη) →Q, we say that s � (q,ℓ) is a fluid
system if the following hold:

a. q(t,ℓ(t)) ≥ α for all t ∈ [0,τη) and q(h) < 1 almost ev-
erywhere on [0,τη) with respect to the Lebesgue mea-
sure; as usual, we define hj � ℓj + 1 and h(t) � ℓ(t) + 1.

b. Either q(τj+1,ℓj) � α or q(τj+1,hj) � 1 for all
0 ≤ j < η− 1. Moreover,

ℓj+1 � ℓj − 1 if q(τj+1, ℓj) � α,
ℓj+1 � ℓj + 1 if q(τj+1,hj) � 1:

c. The coordinate functions q(i) are absolutely contin-
uous, and

q̇(i) � λpi(q, ℓj) − i q(i) − q(i + 1)[ ]
for all i ≥ 1 (8)

almost everywhere on [τj,τj+1) for all 0 ≤ j < η.
A fluid system consists of a function q, which repre-

sents the system occupancy, and a piecewise constant
function ℓ, which represents the time-dependent thresh-
old; the times τj correspond to threshold updates. Be-
tween τj and τj+1, the threshold is constant, equal to ℓj,
and the system behaves according to the differential
equation of Theorem 1. In addition, the threshold is up-
dated according to the control rule explained earlier: in-
formally, the threshold increases when q(h) reaches one,
and it decreases when q(ℓ) drops below α.

In Definition 2, the possibly finite τη accounts for
the possibility of infinitely many updates in finite
time; we will prove, however, that this in fact cannot
happen. To this end, we resort to the total mass func-
tion u : [0,τη) → R of Definition 1. As in Section 3.2,

u(t) � λ+ [u(0) −λ]e−t for all t ∈ [0,τη): (9)

Indeed, for each 0 ≤ j < η, we see that u̇(t) � λ− u(t)
for all t ∈ [τj,τj+1) by taking the sum over i ≥ 1 on both
sides of (8). The following proposition establishes that
the threshold of a fluid system cannot change infinite-
ly many times in finite time.

Proposition 2. All fluid systems have τη �∞.

Proof. Consider a fluid system with η �∞; otherwise,
the claim holds by Definition 2. It follows from (9)
that u(t) is upper-bounded by some constant M ≥ 0.
Since the sequence q(t) ∈Q is nonincreasing for each
time t, we have α ≤ q(t, ℓj) ≤ u(t)=ℓj ≤M=ℓj for all t ∈
[τj,τj+1) and all j ≥ 0. Therefore, ℓj : j ≥ 0

{ }
is a bound-

ed set, and, as a result, the set L � ℓ ∈ N :{ ℓj �
ℓ for infinitely many j} is nonempty and bounded. We
define m �maxL, and we observe that there exists
j0 ≥ 0 such that ℓj ≤m for all j ≥ j0.

Fix any index j > j0 such that ℓj �m. By (8), we
know that

q̇(m) � λpm(q,ℓj) −m q(m) − q(m+ 1)[ ] ≥ −m
almost everywhere on [τj,τj+1). The thresholds ℓj−1
and ℓj+1 are equal to m− 1 by definition of j0. In partic-
ular, q(τj,m) � 1 and q(τj+1,m) � α, which implies that

α � q(τj+1,m) ≥ q(τj,m) −m(τj+1 − τj) � 1−m(τj+1 − τj):

By the definition of m, there exist infinitely many in-
dexes j > j0 such that ℓj �m. For these indexes, we
have proved that τj+1 − τj ≥ (1−α)=m, and therefore
τj →∞ as j→∞.

w

4.3. Fluid Limit
Next, we provide a fluid limit that justifies the use of
fluid systems as an asymptotic approximation to the be-
havior of the discrete system (qn,ℓn) as n grows large.
Before stating this fluid limit, we must introduce a few
technical definitions. Namely, for each finite time hori-
zon T, consider the space DR[0,T] of all real càdlàg
functions on [0,T], and endow it with the metric ρs de-
fined in (Billingsley 2013, section 12), which is complete
and corresponds to the Skorokhod J1-topology. In addi-
tion, recall the metric ρ∞

u mentioned in Section 3.1 and
defined rigorously in Section A.2 of the online supple-
ment; this metric is defined on the Skorokhod space
D

R
N[0,T] of all càdlàg functions with values in R

N.
For each discrete system sn � (qn,ℓn), the restriction

sn|[0,T] is a random function lying in the space
S �D

R
N[0,T] ×DR[0,T], which we endow with the

following metric:

� (p,x), (q,y)( ) �max ρ∞
u (p,q),ρs(x,y)

{ }
:

Observe that a sequence (pn,xn) ∈ S : n ≥ 1
{ }

con-
verges with respect to � if and only if pn converges
uniformly over [0,T], with respect to the product
topology of RN, and xn converges in the Skorokhod
J1-topology.

As in Section 3.1, it is possible to construct the sam-
ple paths of sn on a common probability space for all
n. We adopt such a construction to state the next re-
sult, which holds for any pair of random elements q(0)
and ℓ(0) taking values in Q and N, respectively.

Theorem 4. Suppose that qn(0) → q(0) in the product to-
pology and ℓn(0) → ℓ(0) almost surely as n→∞. Then
sn|[0,T] : n ≥ 1
{ }

is almost surely relatively compact with re-
spect to � and the limit s ∈ S of each convergent subse-
quence can be extended to a fluid system.

The almost-sure relative compactness of qn|[0,T] :
{

n ≥ 1} with respect to ρ∞
u can be obtained using the

methodology of Bramson (1998), as indicated in
Section 3.1. Given a sample path such that the latter
relative compactness holds, the challenge is to
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demonstrate that, for each convergent subsequence
qnk |[0,T] : k ≥ 1
{ }

, the associated thresholds converge
with respect to ρs, and to characterize the limits of
qnk |[0,T] and ℓnk |[0,T] jointly. This is done inductively, by
approaching sn by systems where only finitely many
threshold updates occur, starting with systems where
the threshold is constant over time as in Section 3.1.
The proof of this result is provided in Section A.4 of
the online supplement.

4.4. Convergence of the Threshold
In the statement of Theorem 4, the limit s of a conver-
gent subsequence is the restriction to the interval
[0,T] of a fluid system. Next, we will show that the
time-dependent threshold of any fluid system eventu-
ally settles at an equilibrium value. For this purpose,
we fix a fluid system s � (q,ℓ), and we consider the as-
sociated total mass and tail mass functions, as in Defi-
nition 1. The next result provides upper bounds for
the tail mass functions.

Proposition 3. Suppose that there exist m ≥ 0 and 0 ≤ a <
b such that ℓ(t) ≤m for all t ∈ (a,b). Then the following in-
equalities hold for all t ∈ [a,b]:
vm+1(t) ≤ (λ−m)+ + e−(t−a) vm+1(a) − (λ−m)+[ ]

, (10a)

vm+2(t) ≤ e−(t−a)vm+2(a): (10b)

If, in addition, q(t,m) < 1 for all t ∈ (a,b), then
vm+1(t) ≤ e−(t−a)vm+1(a) for all t ∈ [a,b]: (11)

Proof. Recall from Definition 2 that q(h) < 1 almost ev-
erywhere. For each t ∈ (a,b), we have h(t) ≤m+ 1, so
λpm+1(s) ≤ λ−m 1− q(m+ 1)( )[ ]+ and pi(s) � 0 for all i ≥
m+ 2 almost everywhere on (a, b). The proof of (10)
proceeds as in Proposition 1, and (11) follows similar-
ly, by noting that q(m) < 1 implies that pi(s) � 0 for all
i ≥m+ 1.

w

We now prove that the threshold settles; the next re-
sult holds for all λ ≥ 0.

Theorem 5. There exist teq ≥ 0 and ℓeq ∈ N such that
ℓ(t) � ℓeq for all t ≥ teq.

Proof. By (9), there exists t0 ≥ 0 such that u(t) < �λ� + 1
for all t ≥ t0. Hence,

τj ≥ t0 and ℓj ≥ �λ� imply

q(t,hj) ≤ u(t)
hj

< 1 for all t ∈ [τj,τj+1): (12)

Hence, one of the next situations occurs: the next
threshold update happens at τj+1 <∞ and it corre-
sponds to a threshold decrease, or no further updates
occur and τj+1 �∞.

We now consider two alternative scenarios. First,
suppose that ℓ(t) ≥ �λ� for all t ≥ t0. The previous

observation implies that ℓ is nonincreasing,
integer-valued, and lower-bounded along the in-
terval [t0,∞). Therefore, ℓ(t) settles at some
ℓeq ≥ �λ�. Alternatively, assume that there exists
t1 ≥ t0 such that ℓ(t1) < �λ�. If ℓ reaches �λ� after t1,
then ℓ cannot increase any further by (12), so ℓ(t) ≤
�λ� for all t ≥ t1.

In the latter case, Proposition 3 holds with m � �λ�,
a � t1, and b �∞. In particular,

v�λ�+1(t)≤λ−�λ�+ v�λ�+1(t1)− λ−�λ�( )[ ]
e−(t−t1)

for all t ≥ t1. The right-hand side converges to λ− �λ�
over time, and u(t) → λ over time by (9). As a result,
there exists t2 ≥ t1 such that u(t) − v�λ�+1(t) > �λ�−
(1−α) for all t ≥ t2.

Suppose that τj ≥ t2. Then q(t,ℓj) ≥ u(t) − (�λ� − 1) −
v�λ�+1(t) > α for all t ∈ [τj,τj+1), because ℓj ≤ �λ�. This
implies that one of the following two situations oc-
curs: the next threshold update happens at τj+1 <∞
and it is a threshold increase, or no further updates oc-
cur and τj+1 �∞.

Concluding, if ℓ(t1) < �λ� for some t1 ≥ t0, then there
exists t2 ≥ t1 such that the threshold is nondecreasing
along the interval [t2,∞) and is bounded above by
�λ�. Thus, ℓ settles in this case as well, at some value
ℓeq ≤ �λ�. w

4.5. Tuning of the Learning Rule
Theorem 5 does not provide any information about
ℓeq or teq. Particularly, we would like to know how
these values depend on α, to set this parameter in a
suitable manner. To shed some light on this matter,
we first investigate the possible values of ℓeq. We pro-
vide lower and upper bounds, which are in turn used
to obtain a criterion for setting α.

Proposition 4. If λ ∉ N, then ℓeq ≥ �λ�, and if λ ∈ N, then
ℓeq ≥ λ− 1.

Proof. Let us define heq � ℓeq + 1 and suppose that
λ ∉ N; the proof is similar if λ ∈ N. Proposition 3, with
m � ℓeq, a � teq, and b �∞, implies that vheq+1(t) ≤
vheq+1(teq)e−(t−teq) for all t ≥ teq. This in turn implies
that u(t) − vheq+1(t) → λ over time. As a result, we
have

heq ≥ limsup
t→∞

∑heq
i�1

q(t, i) � lim
t→∞ u(t) − vheq+1(t)

[ ] � λ:

Since λ ∉ N, we conclude that heq ≥ �λ�, and thus
ℓeq ≥ �λ�. w

Proposition 5. The equilibrium threshold satisfies
ℓeq ≤ λ=α, both for λ ∉ N and λ ∈ N.

Proof. Recall from the proof of Proposition 4 that
u(t) − vheq+1(t) → λ as t→∞. Also, q(t, i) ≥ q(t,ℓeq) ≥ α
for all t ≥ teq and all i ≤ ℓeq by Definition 2.
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Consequently,

0 ≤ limsup
t→∞

q(t,heq)

� limsup
t→∞

u(t) − vheq+1(t) −
∑ℓeq
i�1

q(t, i)
[ ]

≤ λ− αℓeq,

and this completes the proof.
w

Assume that an upper bound of λ is known, say,
λmax . We propose to set α such that

α >
λmax

λmax + 1
; (13)

the assumption that λ ≤ λmax is not strong in practice,
especially since the aforementioned criterion can be
used even if the upper bound λmax is chosen
conservatively.

The right-hand side of (13) is increasing in λmax ,
which implies that α > λ=(λ+ 1) for all offered loads
λ ≤ λmax . Recall that ℓeq ≤ λ=α < λ+ 1 by Proposition 5,
and thus ℓeq ≤ �λ� for all λ; that is, the equilibrium
threshold is at most the optimal threshold plus one.
More specifically, �λ� ≤ ℓeq ≤ �λ� if λ ∉ N and λ− 1 ≤
ℓeq ≤ λ in the special case λ ∈ N.

We claim that this criterion guarantees nearly-
optimal behavior on the fluid scale. To see why, ob-
serve that ℓeq ≤ �λ�. Thus, Proposition 3, with
m � �λ�, a � teq, and b �∞, implies that v�λ�+2(t) ≤
e−(t−teq)v�λ�+2(teq) for all t ≥ teq. Hence, after the thresh-
old settles, the fraction of server pools with more than
�λ� + 1 tasks decays at least exponentially fast to zero.
Although the system may not attain the ideal distribu-
tion of the load defined in (1), the fraction of server
pools with �λ� tasks or more vanishes over time.

If (13) holds, then the threshold settles at a nearly-
optimal value. However, in many situations, the
threshold will in fact settle at the optimal value. This
is established in the next corollary, which is a straight-
forward consequence of Propositions 4 and 5.

Corollary 2. Suppose that

λ

�λ� + 1
< α: (14)

This condition implies that ℓeq � �λ� if λ ∉ N or ℓeq ∈
{λ− 1,λ} if λ ∈ N.

This corollary tells us that the optimality of the equi-
librium threshold may be lost only when λ is close
enough to an integer from below. For each α, it is possi-
ble to find values of λ that violate (13). However, the
set of such λ decreases to the empty set as α→ 1.

4.6. Convergence Time
Assuming that λ ∉ N and that the optimality condition
(14) holds, we now focus on the asymptotic time teq
required by our learning rule to reach an equilibrium.

In particular, the next proposition provides an upper
bound t̄eq for this time.

Proposition 6. Suppose that λ ∉ N and (14) holds. Then,
for all

t ≥ t̄eq �
log

λ

λ− �λ�
( )

if u(0) ≤ λ,

log u(0)−λ
α�λ�−λ
( )[ ]+ + log

λ

λ− �λ�
( )

if u(0) > λ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(15)

we have ℓ(t) � �λ� and q(t, �λ�) � 1. In particular, ℓ settles
at teq ≤ t̄eq.

Proof. Similar to (12), we may write

q(t, ℓj) ≤ u(t)
ℓj

� λ + [u(0) − λ]e−t
ℓj

for all t ∈ [τj, τj+1) and 0 ≤ j < η;

where we used (9) for the last step. We now choose s0
so that the right-hand side is strictly less than α if ℓj ≥
�λ� and t > s0. Specifically, using (14), we set

s0 � 0 if u(0) ≤ λ,

s0 � log
u(0) −λ

α�λ� −λ

( )[ ]+
if u(0) > λ:

Note that ℓ(t) ≤ �λ� for all t > s0 necessarily. To see
why, recall that Definition 2 imposes q(ℓ) ≥ α at all
times, and then note that ℓ(t) ≥ �λ� and t > s0 would
imply q(t, ℓ(t)) < α. In the special case �λ� � 0, this ob-
servation implies that ℓ(t) � �λ� for all t > s0. In partic-
ular, ℓ(t) � �λ� and q(t, �λ�) � 1 (trivially) for all t ≥ t̄eq.
Thus, we assume in what follows that �λ� > 0.

Let w � u− v�λ�. Summing over 1 ≤ i ≤ �λ� on both
sides of (8), we obtain

ẇ(t) �∑�λ�
i�1

q̇(t, i) ≥ λ− �λ� > 0

whenever ℓ(t) ≤ �λ� and q(t, �λ�) < 1,

which implies that w is nondecreasing after s0. Indeed,
ℓ(t) ≤ �λ� after s0, so ẇ is positive unless q(�λ�) � 1,which
is equivalent tow attaining itsmaximumvalue �λ�.

Suppose that q(t, �λ�) < 1 for all t ∈ [s0, t̄eq]. This im-
plies that (11) holds withm � �λ�, a � s0, and b � t̄eq. Us-
ing (9) as well, we arrive at the following contradiction:

w t̄eq
( )

� u t̄eq
( )

− v�λ� t̄eq
( )

≥ λ+ u(s0) −λ
[ ]

e− t̄eq−s0( ) − v�λ�(s0)e− t̄eq−s0( ) ≥ �λ�:

Thus, there exists s1 ∈ [s0, t̄eq] such that q(s1, �λ�) � 1.
Since w(s1) � �λ� is at its maximum, q(�λ�) cannot de-
crease. This implies that ℓ(t) � �λ� and q(t, �λ�) � 1 for
all t ≥ t̄eq. w
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The expressions for t̄eq provided in (15) consist of
two terms: the first one upper-bounds the time until the
threshold falls and remains below �λ�, and the second
one accounts for the additional amount of time until the
threshold reaches �λ� and settles. The first term is zero
when u(0) ≤ λ; in this case, ℓ can never exceed �λ�, since
u is upper-bounded by λ; here the expression in (15)
corresponds to the time needed by u to reach �λ� when
u(0) � 0. When u(0) > λ, the two terms are positive. The
first one increases with the initial total mass, as one
would expect, and, more interestingly, also depends on
α�λ� −λ. Loosely speaking, if the fractional part of λ is
large, then it might take longer for q(�λ�) to drop below
α and trigger a threshold update from �λ� to �λ�. The
second term is the same as in the case where u(0) ≤ λ
and could possibly be reduced.

The next corollary uses the upper bound t̄eq to
summarize the asymptotic optimality properties of
our policy when λ ∉ N and (14) holds. Informally,
this corollary states that the threshold settles at the
optimal value �λ� before t̄eq in all sufficiently large
systems and that the occupancy approaches q∗ over
time at least exponentially fast. The proof is a
straightforward consequence of Theorem 4 and
Propositions 3 and 6.

Corollary 3. Suppose that λ ∉ N and (14) holds. There ex-
ists a constant c > 0 such that

lim
n→∞ sup

t∈[t̄eq,T]
|ℓn(t) − �λ�| � 0,

lim
n→∞ sup

t∈[t̄eq,T]
|qn(t, i) − q∗(i)| � 0 for all i ≤ �λ�,

limsup
n→∞

sup
t∈[t̄eq,T]

|qn(t, i) − q∗(i)|et−t̄eq ≤ c for all i ≥ �λ�,

almost surely for all T ≥ t̄eq; and c may be expressed in
terms of α, λ, and u(0) alone.

5. Simulations
In this section, we investigate the threshold policy
through several numerical experiments.

2
The first set

of experiments evaluates the fluid and diffusion ap-
proximations suggested by our theoretical results.

Next, we examine the user-perceived performance of
several dispatching policies, including the threshold
policy; we present a histogram of the empirical distri-
bution of the fraction of resources received by a user
in stationarity. Finally, we show that the threshold
policy copes effectively with highly variable demand
patterns.

First, we investigate how large n must be for ℓn to
settle, as stated in Theorem 5 for the fluid limit. To
this end, we consider systems with λ � 2:9 and differ-
ent values of n; in Figure 3 we plot trajectories of two
of these systems. In the system with n � 100, the
threshold hovers around the optimal value, oscillating
between �λ� − 1 � 1 and �λ� � 3. In the system with n
� 400, the threshold stays at �λ� � 2 most of the time,
with sporadic and brief excursions to �λ� � 3. The os-
cillations disappear completely when n � 500; this is
not shown in Figure 3 but can be checked in the other
experiments presented in this section, which corre-
spond to n � 500.

Besides the number of server pools, the conver-
gence of ℓn depends on the fractional part of λ. Specif-
ically, the larger λ− �λ� is, the larger n will have to be
for ℓn to settle; observe that λ− �λ� is relatively large
in Figure 3. To understand this behavior, suppose that
ℓn has reached �λ�; then Theorem 3 suggests that
qn(�λ�) will oscillate around λ− �λ� with deviations of
order 1=

��
n

√
. If λ− �λ� is large, then n must also be

large in order to prevent qn(�λ�) from reaching one
with high probability.

We proceed to assess the upper bound (15) for the
time until the threshold settles. Figure 4 shows trajec-
tories of two systems with λ � 5:5, n � 500, and differ-
ent initial conditions; in both cases, α � 0:93 satisfies
(14). Whereas in the initially empty system ℓn settles
at �λ� � 5 almost exactly at t̄eq, in the initially over-
loaded system, ℓn settles several units of time before
t̄eq. In both cases, the threshold settles quickly in less
than the average time needed to execute three tasks.
In Figure 4, we can also see the trajectories of qn(�λ�)
and qn(�λ�) after the threshold has settled at the
optimal value. The former trajectories present very
subtle oscillations, whereas the latter exhibit more

Figure 3. (Color online) Evolution of ℓn over TimeWhen λ � 2:9 and α � 0:97

Notes. On the left, n� 100, and the threshold fluctuates between �λ� − 1 and �λ�. On the right, n� 400, and the threshold stays at �λ�most of the time.
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variability. This coincides with Theorem 3, which sug-
gests that the deviations of qn(�λ�) from one are of or-
der log (n)=n and that those of qn(�λ�) from λ− �λ� are
of order 1=

��
n

√
.

We now evaluate the quality of service experi-
enced by users. To this end, we ran long simula-
tions for several dispatching policies in stationar-
ity, and we computed the empirical distribution of
the fraction of resources received by an arbitrary
user. We assumed the resources of any given serv-
er pool were equitably distributed among the tasks
sharing it and we computed at each instant of time
the number of tasks receiving a certain fraction of
resources. We then integrated these quantities over
time and normalized them to add up to one, as
shown in Figure 5. The policy that assigns tasks to
server pools chosen uniformly at random exhibits
the largest variance, with some tasks receiving all
the resources of a given server pool and some
others contending for resources with as many as 15
tasks. Users are treated more fairly when tasks are
sent to the least congested of two server pools cho-
sen uniformly at random, but still some tasks share
a server pool with as many as 13 other tasks.

Finally, the fraction of resources assigned to tasks
is either 1/10 or 1/11 for virtually all tasks when
the threshold policy or JSQ are used. For these two
policies, the load is evenly distributed and tasks
are thus treated fairly; no users experience an infe-
rior quality of service. In particular, the Schur-
concave utilities mentioned in Section 1, which
measure the overall experienced performance, are
maximal.

We conclude by investigating the response of the
threshold policy to highly variable demand patterns.
The trajectories depicted in Figure 6 correspond to a
system where λ is time-varying and α was chosen ac-
cording to (13) for λmax � 10. We observe that the sys-
tem copes effectively with drastic and abrupt load
variations, as the ones occurring around t � 0, 20, 30;
in all these cases, ℓn quickly reaches the new optimal
value. Also, the small but swift load fluctuations with-
in the interval [2, 15] do not move the threshold away
from the optimal value, which remains constant along
the entire interval. Finally, ℓn adjusts to the slow load
variations within [33, 45], which, in this case, result in
changes of the optimal value. Along with the thresh-
old, m(t) �max i : qn(t, i) > 0

{ }
and the quadratic error

Figure 4. (Color online) Time Until the Threshold Settles When λ � 5:5, α � 0:93, and n � 500

Notes. The system on the left is initially empty, and (15) is tight. On the right, all server pools have nine tasks initially, and (15) is not tight.

Figure 5. (Color online) User-Perceived Performance Under
Different Dispatching Rules

Notes. All policies were simulated with λ � 10:5 and n � 500. Simula-
tion for n � 500 and α � 0:91 Chosen from (13) for λmax � 10.

Figure 6. (Color online) Response of the Threshold Policy to
a Highly Variable Demand Pattern
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e(t) � ||qn(t) − q∗(t)||2 are plotted; here q∗(t) is computed
in terms of λ(t) from (1). We observe that m(t) � �λ(t)�
most of the time and that e(t) is generally small, with
its peak values coinciding with the most drastic
changes of λ(t); that is, concentrations of tasks at indi-
vidual server pools are avoided and the loads are
close to balanced most of the time.

6. Conclusions
In this paper, we examined a self-learning threshold-
based policy for dispatching tasks in a system of par-
allel server pools, with the aim of balancing the total
number of tasks evenly. We proved that this policy
achieves the latter objective asymptotically, both on
the fluid and the diffusion scales. These results were
supported by several numerical experiments that
showed that the optimality properties can already be
seen in systems with a few hundred server pools, and
we presented additional simulations that indicate that
our policy copes effectively with highly variable de-
mand patterns. Also, we provided a token-based im-
plementation that involves at most two messages per
task and storage of only little state information at the
dispatcher, in the form of two tokens per server pool.

Our self-learning scheme adjusts the threshold over
time to find an optimal value and, when an update oc-
curs, the new threshold must be known by the dis-
patcher and all server pools. Synchronizing the
threshold value of these entities could introduce a
considerable communication burden during threshold
updates. Although these updates occur only a few
times before the threshold settles, a distributed proce-
dure for adjusting the threshold could reduce the
communication burden, and the design of such a pro-
cedure is a topic for future research. Another possible
line of future inquiry is to study whether our adaptive
load-balancing policy can be combined with mecha-
nisms for adjusting the number of server pools over
time, particularly in cloud computing deployments
where the processing capacity is elastic. Specifically,
the overall quality of service can be unacceptable if
the offered load is too large, even if tasks are evenly
distributed. In order to overcome this situation, the ca-
pacity of the system could be increased by deploying
more server pools.

Throughout the paper, we considered systems of in-
finite server pools. Our self-learning threshold-based
policy can be extended to scenarios where the maxi-
mum number of flows in each of the server pools is
subject to a finite upper bound B, by imposing that
the threshold cannot be increased beyond B− 1. Un-
like the infinite-server setting, this model allows to
consider heavy-traffic regimes where the difference
between the total number of servers nB and the arrival
rate λn of the nth system grows sublinearly with n. A

topic of future research is the blocking probability of
our threshold policy in these regimes, particularly in
the Halfin-Whitt regime where (λn − nB)= ��

n
√

has a fi-
nite limit as n grows to infinity.

Additional directions of future research concern ex-
tensions of our model to systems of heterogeneous
server pools. One source of heterogeneity could be the
way in which the service rate of tasks depends on the
number of concurrent tasks at each server pool; in our
model, the service rate is equal to the number of tasks.
The fluid limits derived in this paper carry over to the
general setting, but establishing that the learning rule
for adjusting the threshold always reaches an equilib-
rium requires nontrivial additional arguments, since
our proof relies on the property of infinite-server sys-
tems that the total number of tasks is not affected by
the assignment decisions. Another source of heteroge-
neity could be the utility function u mentioned in
Section 2.1 as a proxy for measuring quality of service.
It would be interesting to investigate how the results
in this paper generalize to systems where the experi-
enced performance depends on the type of server
pool, and thus evenly balancing the load may not
maximize the overall quality of service.

Endnotes
1 All the data depicted in the plots presented in this paper, and the
code used to generate these data, are available at https://github.
com/diegogolds/self-learning-threshold-policy.
2 All the data depicted in the plots presented in this section, and the
code used to generate these data, are available at https://github.
com/diegogolds/self-learning-threshold-policy.
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