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Besides conventional electrical properties, materials for emerging artificial synaptic devices in brain-inspired
neuromorphic systems need to have properties analogous to those of biological synapses, such as synaptic
plasticity. In this work, we investigated, for the first time, the synaptic properties of a natural bio-organic ma-
terial — honey. The honey film was sandwiched between Ag and ITO to form a structure resembling biological
synapse. Neural facilitation, an essential synaptic plasticity, was demonstrated by honey thin film with a larger

facilitation index, wider interval time range and higher dynamic filtering gain than other natural bio-organic
materials. The results indicate that honey is promising for renewable artificial synaptic devices.

1. Introduction

Brain-inspired neuromorphic computing has emerged as one of the
solutions to overcome the von Neumann bottleneck in energy con-
sumption. Such analog systems require artificial synaptic devices, the
fundamental hardware components, to have properties analogous to
those of biological synapses. The resistive random access memory
(RRAM) based artificial synaptic devices [1] resemble “point-to-point”
connected biological synapses and are able to mimic synaptic functions
because of their tunable resistance. Inorganic, polymer, and natural bio-
organic materials [2] have been investigated as the key resistive
switching layer in RRAM. Among these materials, natural bio-organic
materials are sustainable, biodegradable, environmentally and biologi-
cally friendly for “green” artificial synaptic devices.

RRAM based on a natural bio-organic material — honey thin film has
been demonstrated in our previous report [3]. In this paper, we study for
the first time the neural facilitation, an essential synaptic plasticity, in
honey thin film. Neural Facilitation, also known as paired-pulse facili-
tation (PPF), is an important short-term plasticity [4] for neural tasks
such as learning, information processing, sound or visual source locali-
zation, etc. Compared with RRAM and transistors based on other natural
bio-organic materials [5-9], honey RRAM devices demonstrated a larger
PPF index, wider interval time range, and higher gain in high-pass
synaptic filtering. These results suggest that honey is promising for the
development of artificial synaptic devices in renewable neuromorphic
systems.
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2. Experimental

A glass slide was used as the substrate and cleaned in an ultrasonic
bath by acetone, isopropyl alcohol and D.I. water. An ITO thin film with
a sheet resistance of 10 Q/sq was deposited on the glass as the bottom
electrode (BE) through a stencil mask. Commercial honey was mixed
carefully with D.I. water for a 30% concentration by weight and without
honey crystal and air bubbles. The honey solution was spin-coated on
the ITO/glass at 1000 rpm for 90 s, followed by drying on a hotplate at
90 °C for 9 h in air. A 100 nm-thick Ag film was sputtered as the top
electrode (TE) through the same stencil mask rotated by 90° to form a
crossbar array. Schematic and microscopic images of the Ag/honey/ITO
crossbar RRAM and its resemblance to a biological synapse are illus-
trated in Fig. 1.

Surface roughness and morphology of the dried honey film were
characterized by AFM and SEM, and the thickness was measured by a
stylus surface profiler. Switching and PPF characterization was per-
formed on a probe-station at room temperature in air using a semi-
conductor characterization system, an arbitrary function generator and
an oscilloscope. The bias voltages were applied on the TE and ground on
the BE.

3. Results and discussion

The SEM image in Fig. 2(a) was taken at the edge of the honey film on
the glass substrate. Thickness of the dried honey film was measured with
an average value of 2.5 um after 10 scans along the edge by surface
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Fig. 1. (a) Schematic crossbar structure of Ag/honey/ITO RRAM and (b) microscopic image (x500) of the device after fabrication. (c) The cross-point of honey

RRAM and its resemblance to a biological synapse.
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Fig. 2. (a) SEM images of the honey film on a glass substrate. (b) AFM tapping mode images of the dried honey film without crystals. (c) Analog switching
characteristics of Ag/honey/ITO RRAM device.
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Fig. 3. PPF behaviors of the honey RRAM device with (a) postsynaptic EPSC
triggered by a pair of presynaptic spikes with different interval times and (b)
PPF index (black squares) as a function of inter-spike interval time. The red
curve represents the exponential fit by Eq. (2).

profiler. Surface roughness was measured in a 90 pm x 90 pm area as
shown in Fig. 2(b) with smooth and uniform honey film surface. The
average (R,) and root mean square (R;p) roughness of the honey film
were 35 nm and 42 nm, respectively. With sufficient mixing, honey can
dissolve in D.I. water completely and no honey crystal was visible in the
dried honey film. The typical I-V characteristics of the Ag/honey/ITO
RRAM synaptic device under DC sweeping voltage at a rate of 1 V/s is
shown in Fig. 2(c) with the voltage sweep sequence numbered. A current
compliance of 1 mA was applied to avoid current overshooting in the
positive voltage sweep. The device demonstrated analog bipolar
switching characteristics with current change gradually in both SET and
RESET process, which is different from the digital switching of our
previously reported Cu/honey/CuyO [3] with abrupt current change.
Such analog switching is essential for RRAM to mimic synaptic plas-
ticity. The current conduction is attributed to the electrochemical for-
mation and dissolution of metal filaments in honey film due to the redox
process of top metal electrode [10].

Fig. 3 shows the PPF demonstrated by honey RRAM. Two sequential
voltage pulses (0.5 V, 100 ms) with interval time At from 20 to 2000 ms
emulated pre-neuron spikes. The current in the honey film emulated the
excitatory postsynaptic current (EPSC) in the post-neuron. Fig. 3(a)
shows clearly PPF by the larger second than the first EPSC spike till At =
2000 ms. PPF effect is quantified by the PPF index, I/I;, the absolute
amplitudes of the first and the second EPSC spike, respectively. Fig. 3(b)
summarizes the PPF index with the interval time At. With a larger PPF
index, a higher postsynaptic weight enhancement can be obtained when
At reduces, a similar trend to that observed in biological systems
[11-12]. Compare to other natural organic materials such as chicken
albumen [5], the honey demonstrates PPF effect in a larger At range.
Also, at the interval time of 20 ms, the honey device shows the PPF index
comparable to chicken albumen device [5] but much larger than lignin
device [7]. It is also noted that the power dissipated in the honey RRAM
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Fig. 4. (a) Dynamic filtering of honey RRAM triggered by a presynaptic spike
train with 10 voltage pulses at different frequencies. (b) The dynamic filtering
gain as a function of the frequency.

is about 10 uyW and energy is about 200 nJ, comparable with other
CMOS and memristor based artificial synaptic devices [13]. In biological
synapses, PPF index can be modeled by a double exponential decay

[14,15]: PPF = F; en + er%zl + 1, where F; and F, are the initial
facilitation magnitudes of the rapid phase and slow phase, t; and 14 are
the characteristic relaxation times of the rapid phase and slow phase.
The modeled PPF was plotted as the red curve in Fig. 3(b), which fits the
measurements very well. The PFF index of honey RRAM decays with a
fast phase (F; = 5%, 11 = 40 ms) and a slow phase (F, = 145%, t5 = 303
ms), agreeing with the biological synapses at the normal levels of
extracellular calcium concentration [Ca2+]e [16,17].

Since the synaptic weight is activity-dependent, synapses can act as
dynamic filters for information transmission [18,19] depending on the
frequency: high (low)-pass filters when the synapse selectively responds
to high (low)-frequency signals. Fig. 4(a) shows the EPSC responses to a
10-pulse spike train (0.6 V, 100 ms) at different frequencies. The peak
value increases with the frequency. The gain of dynamic filtering is
defined as I;0/1;, the ratio of the peak amplitudes between the tenth
spike (I;0) and the first spike (I;). Fig. 4(b) summarizes the gain at
different frequencies. The increased gain values indicate that the honey
RRAM can act as a dynamic high-pass frequency filter-like synapse with
potential for applications in neural network and algorithm level such as
non-linear autonomous learning component in neuromorphic systems
[20]. The results also demonstrates the potential that higher gains can be
achieved from the honey RRAM (20 at 15 Hz) than other natural bio-
organic materials such as chicken albumen (2.5 at 15 Hz) [5] and chi-
tosan (3.5 at 15 Hz) [6]. As biological synapses have both short term and
long term plasticity, besides PPF and filter dynamics of short term
plasticity, the long term plasticity behaviors by honey RRAM are
currently under investigation.
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4. Conclusions

This work explored the potential of honey for artificial synaptic de-
vices. The Ag/honey/ITO RRAM demonstrated bipolar analog switching
behaviors. PPF and synaptic filtering were emulated, with a larger PPF
index, wider interval time range, and higher dynamic filtering gain than
other natural bio-organic materials. The two exponential phases of PPF
demonstrated by honey synaptic device is analogous to the PPF of bio-
logical synapses. Our results prove that as a natural bio-organic material
of sustainable, biodegradable, environmentally and biologically
friendly, honey is promising for developing artificial synapses in
renewable neuromorphic systems.
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