
1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3152937, IEEE
Transactions on Dependable and Secure Computing

1

Lightweight and Identifier-Oblivious Engine for
Cryptocurrency Networking Anomaly Detection

Wenjun Fan, Hsiang-Jen Hong, Jinoh Kim, Simeon Wuthier, Makiya Nakashima,
Xiaobo Zhou, Ching-Hua Chow, and Sang-Yoon Chang

Abstract—The distributed cryptocurrency networking is critical because the information delivered through it drives the mining
consensus protocol and the rest of the operations. However, the cryptocurrency peer-to-peer (P2P) network remains vulnerable, and
the existing security approaches are either ineffective or inefficient because of the permissionless requirement and the broadcasting
overhead. We design and build a Lightweight and Identifier-Oblivious eNgine (LION) for the anomaly detection of the cryptocurrency
networking. LION is not only effective in permissionless networking but is also lightweight and practical for the computation-intensive
miners. We build LION for anomaly detection and use traffic analyses so that it minimally affects the mining rate and is substantially
superior in its computational efficiency than the previous approaches based on machine learning. We implement a LION prototype on
an active Bitcoin node to show that LION yields less than 1% of mining rate reduction subject to our prototype, in contrast to the
state-of-the-art machine-learning approaches costing 12% or more depending on the algorithms subject to our prototype as well, while
having detection accuracy of greater than 97% F1-score against the attack prototypes and real-world anomalies. LION therefore can
be deployed on the existing miners without the need to introduce new entities in the cryptocurrency ecosystem.

Index Terms—Blockchain, Cryptocurrency, Bitcoin, P2P Network, Anomaly Detection, Statistical Analysis, Traffic Analysis

F

1 INTRODUCTION

C RYPTOCURRENCY builds on a distributed blockchain
to forgo a centralized authority (e.g., a bank) in stor-

ing and processing the anonymous and censorless finan-
cial transactions. While public-key cryptography is used
to make the transaction irrevocable (for keeping track of
who owns how many coins and preventing repeated use
of the same coin as in double-spending), the nodes are
encouraged to use new accounts (i.e., hashed public keys)
for each transaction for anonymity [1]. In other words,
Bitcoin and other cryptocurrencies operate in permissionless
environment where no control exists in trust and identity
registration to join in the cryptocurrency operations. Such
permissionless and identity-trustless requirements of cryp-
tocurrency challenge the identifier-based mechanisms tradi-
tionally used in other applications, and affect the cryptocur-
rency designs including networking and the distributed
consensus protocol.

Bitcoin’s ingenious invention kicking off blockchain
technology and R&D was the utilization of proof of work
(PoW) for distributed consensus protocol to enable the
distributed and permissionless operations for high-risk fi-
nancial operations [1]. The PoW-based consensus proto-
col is built on competitions between participants (called
miners) and is computationally fair, i.e., the greater the
computational power, the more likely the miner is to find
a block (corresponding to a valid PoW solution) and earn
the financial reward. The computationally intensive nature
of PoW makes the computing resources a critical priority
for cryptocurrency operations, and therefore challenges the
usage of a security mechanism with heavy computational
overhead, because such cost is in direct competition with
that for mining, which reduces the financial profit from
the mining reward. Our work focuses on the cryptocur-
rencies based on PoW distributed consensus protocol due

to its popularity. For example, as of May, 2021, the two
most popular cryptocurrency implementations, Bitcoin and
Ethereum1, use PoW and those two cryptocurrencies alone
account for more than 62% of the entire cryptocurrency
implementations in market capitalization [2].

The distributed consensus protocol builds on the miners
participating in the peer-to-peer (P2P) network to propa-
gate the blocks/transactions to enable the synchronization
of blocks and distribution of the new yet-to-be-processed
transactions across the miner network. The P2P network-
ing is critical because it provides the information and the
inputs for the distributed consensus protocol and the rest
of the blockchain operations. An attacker controlling such
networking and information flow can breach the transaction
integrity, e.g., double spending [3], [4], waste the mining
effort [3], [5], [6], or jeopardize synchronization, e.g., by par-
titioning the network [4], [6]. Despite its critical importance,
the P2P network for blockchain remains vulnerable owing to
the permissionless requirement of cryptocurrencies and the
broadcasting overhead over a large miner network. More
specifically, the Bitcoin P2P networking messages are in
cleartext and lack authenticity since the cost overhead of
such mechanisms and the additional vulnerabilities make
them prohibitive for the Bitcoin’s broadcasting2. Due to
the lack of protection, Bitcoin networking is vulnerable to
attacks like Sybil, spoofing, DoS [8] and Eclipse [3]–[5].
To protect the vulnerable cryptocurrency P2P network by
using anomaly detection, the approach needs to address two

1. Ethereum has had plans to transition to PoS, e.g., Ethereum 2.0 and
Casper, but it is still in progress.

2. Bitcoin networking is already consuming a significant amount
of networking resources for its transaction/block propagation, and
signaling traffic [7], even without the additional overheads associated
with the security mechanisms; the Bitcoin R&D community is working
on addressing the challenge to make the networking more efficient, e.g.,
SegWit (decreasing the packet size) and sendcmp (greater efficiency in
block traffic).

Authorized licensed use limited to: UNIV OF COLORADO COLORADO SPRINGS. Downloaded on May 02,2022 at 21:38:27 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3152937, IEEE
Transactions on Dependable and Secure Computing

2

challenges: 1) cryptocurrency is permissionless that chal-
lenges the traditional identifier-based mechanism; 2) cryp-
tocurrency is incentive-based and relies on computationally
intensive mining. Though a number of anomaly detection
approaches were proposed to secure the blockchain P2P
network, they focused on identifying the cryptocurrency
network entities and the user’s behavior [9], [10]. Thus,
they are often ineffective in the permissionless network
environment. Also, they often use machine learning-based
approaches [11]–[14] which unfortunately compete with the
mining operations on the computational resources.

In this paper, we aim to secure the P2P network via de-
tection while ensuring that the detection engine is practical
to cryptocurrency nodes, tackling their unique challenges.
To this end, we introduce the Lightweight and Identifier-
Oblivious Engine (LION) that outperforms from the pre-
vious research and detection mechanisms to achieve the
following two goals. First, LION is efficient in permission-
less environment. It uses the networking information and
avoids identifier-based analyses to defend against Sybil,
spoofing, and Eclipse attacks, which are enabled in the
cryptocurrency’s permissionless environment because of the
lack of identity- and registration-based trusts. Second, LION
is lightweight so that we can practically deploy it on the
existing miners as opposed to requiring separate entities
for deployment. To achieve these design properties, LION
is based on anomaly detection for modeling the normal
networking behaviors to avoid modeling the ever-growing
anomaly space in blockchain, and uses statistical analy-
ses rather than machine learning to make it simple and
lightweight in computations and deployable to the miners.

We take an empirical systems approach for performing
the research. First, we prototype LION and incorporate it
into an active Bitcoin node. Second, we test our scheme with
real-world Bitcoin traffic, e.g., the milestone event of Bitcoin
halving. Third, we prototype the networking threats on Bit-
coin based on the current state of the art research in the field
to further evaluate the scheme. LION is anomaly detection
and therefore does not use the knowledge/signatures of the
threats and can defend against other threats including those
which are unknown or under-analyzed. Fourth, we include
the system analysis and study how the scheme implemen-
tation affects the mining process and rate. Consequently,
the experimental results show that LION yields less than
0.95% of mining rate reduction, in contrast to the state-of-
the-art machine-learning approaches costing 12% or more
depending on the algorithms, while having detection accu-
racy of greater than 97% F1-score against attack prototypes
and real-world anomalies.

The contributions of this paper can be summarized as
follows:

• We build a lightweight and Identifier-Oblivious En-
gine (LION) for anomaly detection in cryptocur-
rency blockchain P2P network addressing the unique
challenges in cryptocurrency networking including
those from the requirements of permissionless and
computational resource efficiency.

• We analyze the LION design and study the design
parameters (including the parameter choices, detec-
tion threshold, and detection time window size) and
their impacts on the LION performance.

• We build a LION prototype on an active Bitcoin
node and run the prototype on the real-world Bitcoin
Mainnet to sense and collect the networking data. We
use the prototype for evaluation and system analysis.

• We conduct a data-driven study and evaluation of
LION. The evaluation includes separate attack pro-
totypes attacking the LION-hosting node, and the
testing of LION against the attack prototypes. We
test LION not only using the attack prototypes but
also against the real-world events without the attack
prototypes.

The remainder of the paper is structured as follows:
Section 2 describes the challenges, the motivation, and the
threat model and scope. Section 3 proposes the design
of LION including the architecture and the parameters
and rules for detection. Section 4 shows the data collec-
tion and anomaly prototypes. Section 5 prototypes LION
and analyzes the different parameters for detection. Sec-
tion 6 presents the experimental results. Section 7 analyzes
the LION’s cost efficiency and mining impact. Section 8
presents the reactive peer connection rebuilding as an active
countermeasure extending the anomaly detection. Section 9
presents the related work. Section 10 draws the conclusion
to the paper.

2 CHALLENGES, MOTIVATIONS AND SCOPE

This section describes the unique challenges in mining-
based cryptocurrency and motivates the design of LION.
More specifically, the cryptocurrency characteristics and re-
quirements drive the LION to be anomaly-detection based,
identifier-oblivious, and computationally efficient. Built on
that, we also present the threat model and scope.

2.1 Cryptocurrency Networking Challenges
Cryptocurrency is permissionless challenging the
identifier-based security models Cryptocurrencies
are designed for the anonymity of the transactions
to prevent regulations and censorship, for example,
Bitcoin recommends using new keys/accounts for each
transaction [1]. Such requirement to forgo centralized
control and regulation makes the cryptocurrency operate
in a distributed fashion with no explicit registration
control, thus enforcing the permissionless nature of
the cryptocurrency network. The participants instead
generate their own identifiers and credentials3. Because the
permissionless cryptocurrencies lack the trust in registration
and identities (often provided by the trusted authority in
other applications, e.g., web security), the traditional
authentication or other identifier- or credential-based
mechanisms are not viable to deter or prevent the threats

3. Blockchain applications to build decentralized applications beyond
cryptocurrency applications, such as consortium blockchains, can op-
erate in the permissioned environment with registration control. How-
ever, cryptocurrencies to generate new currencies and process financial
transactions without a trusted bank generally operate in permission-
less environment to avoid the centralization/regulation issues on the
registration. There are exceptions even within the financial processing
applications which uses permissioned blockchain, including Diem [15]
which plans to implement a private cryptocurrency but does not exist
yet, and BDB [16] which does not generate new currencies but just
processes financial transactions using existing currencies.

Authorized licensed use limited to: UNIV OF COLORADO COLORADO SPRINGS. Downloaded on May 02,2022 at 21:38:27 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3152937, IEEE
Transactions on Dependable and Secure Computing

3

against source integrity, such as spoofing or Sybil. To
demonstrate such threats, we prototype threats violating
the source integrity in spoofing and Sybil attacks. Because
the source integrity is not preserved, we design LION which
is oblivious to the information provided by the identifiers
but uses the networking traffic information instead.
Cryptocurrency is incentive-based and relies on computa-
tionally intensive mining Cryptocurrency relies on the
participation of the distributed set of nodes, driven by the
reward incentives. For example, double-spending becomes
feasible if the cryptocurrency network does not have many
nodes (and much computational power) participating in the
PoW consensus protocol. Though cryptocurrency could use
other lightweight consensus protocols for processing blocks,
PoW is still the most widely used consensus protocol by the
cryptocurrency P2P networks. Thus, in this paper, we focus
on the PoW-based cryptocurrencies. Due to the absence of
the centralized authority for governance, the incentives for
implementing a security mechanism needs to be aligned
with the interests of the subject node using the mechanism.
Thus, we design LION which is lightweight and practical
for the computation-intensive miners.

2.2 Motivations for LION

Because of the challenges aforementioned, LION is for
anomaly detection and uses networking traffic information
to analyze the behavior as opposed to using identifiers. It
is also designed for efficiency so that it can be practically
deployed on miners who prioritizes computational effort for
mining and earning rewards.
Efficiency The efficiency and lightweight design is im-
portant to our design goal because we envision LION to
be deployed on resource-frugal miners. LION is lightweight
in its algorithmic implementation and execution by using
anomaly detection, statistical analyses (as opposed to ML),
and simpler rules and logic (e.g., limiting the number of
parameters). We compare our approach with the prior ML-
based approaches because of the popular use of ML in
cryptocurrency networking security.

Anomaly detection Anomaly detection models the normal
behavior as the reference profile to detect the anomaly
if the event diverges from the normal reference profile,
in contrast to the signatures or heuristics-based detection
approaches modeling the abnormal/attack pattern or be-
havior. Anomaly detection is advantageous in both the
simplicity in the reference modeling and the generality over
the abnormal behaviors. The simplicity of LION makes it
lightweight in overheads. Anomaly-based LION can also
be applied for the unprecedented events, which lacks a
prior knowledge of potential patterns and thus is difficult
to establish the pattern/signature for the model in advance.
Anomaly detection also provides greater resiliency against
adversarial learning threats where the attacker tampers the
training and the model. Furthermore, any message traffic
anomalies should be concerning for bitcoin/cryptocurrency
node. On the one hand, the network attacks incurred by
the permissionless P2P network can be reflected by the
message traffic state change. On the other hand, the message
traffic state change involving anomalous block/transaction
messages arrival will surely impact the Bitcoin node mining
efficiency no matter what event is causing it.

TABLE 1
Bitcoin message types with the numerical indices.

Index Message Type Notion
1 VERSION HandShake Initiation
2 VERACK Response to the VERSION
3 ADDR Send a max of 1000 IP addresses
4 INV Send a max of 50000 trans./blocks
5 GETDATA Response to INV with a max of 50000 entries
6 GETHEADERS Request up to 2000 headers after a given hash
7 TX Response to GETDATA with a trans.
8 HEADERS Response to GETHEADERS with trans. count
9 BLOCK Response to GETDATA with non-compressed data
10 GETADDR Request IPs from the peer’s buckets of IPs
11 MEMPOOL Request trans. from peer’s mempool
12 PING Request PONG
13 PONG Response to PING
14 NOTFOUND Response to GETDATA when has no that data
15 SENDHEADERS Request headers
16 FEEFILTER Ignores trans less than 8bytes
17 SENDCMPCT Request a compact block
18 CMPCTBLOCK Response to SENDCMPCT using short trans. IDs
19 GETBLOCKTXN Request a BLOCKTXN message
20 BLOCKTXN Response to GETBLOCKTXN (block and trans.)
21 REJECT Inform the peer its sending message rejected
22 MERKLEBLOCK Response to GETDATA using the inventory type
23 GETBLOCKS Request up to 500 blocks after a given hash
24 FILTERLOAD Set the filter that filters INV
25 FILTERADD Add a bloom filter
26 FILTERCLEAR Clear bloom filter

Use networking traffic information We use the param-
eters measured from the networking traffic to drive our
detection engine. The networking traffic information focuses
on the frequency, timing, and size of the cryptocurrency
application-layer messages, e.g., the Bitcoin’s messages [17]
are described in Table 1 with indices, as opposed to fur-
ther inspecting the IP packets (e.g., distinguishing them by
the source peers). We use the traffic information because
our target application is in permissionless cryptocurrency,
which makes spoofing or Sybil feasible. Against an attacker
generating multiple fake identities in a permissionless envi-
ronment lacking a prior trust, the identifier-based or packet-
based approaches to distinguish the incoming networking
arrivals to multiple distinct streams/sources and analyzing
them based on such finer-granular streams can become
ineffective. By stressing on the identifier-oblivious message
traffic information rather than packet- or identifier-based
information, LION is robust against such threats.

Incentives aligned to miners We implement LION
on the existing miners who are also the beneficiaries of
the detection and securing their networking connections.
Because introducing separate entities implementing LION
outside the miners can cause incentive issues (i.e., how to
incentivize such security implementations especially while
they may not benefit from the security implementation),
we consider the LION implementation on miners4. LION
should therefore be practical for the miners’ deployment,
providing constraints on the LION computational costs
because the costs for the security mechanisms are in direct
competition to those for mining. We therefore build LION
to be computationally efficient and minimally intrusive of
the miners’ effort to mine and earn rewards.

4. Extending the LION implementation beyond the miner nodes,
e.g., to build network-level security intelligence and analyses, is an
interesting future work direction and is outside of scope for this paper.

Authorized licensed use limited to: UNIV OF COLORADO COLORADO SPRINGS. Downloaded on May 02,2022 at 21:38:27 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3152937, IEEE
Transactions on Dependable and Secure Computing

4

Bitcoin
Mainnet Dataset

(Testing)

Profile
(Training)

Detection Rule
(Analyzing)

Detection Engine

Response Engine

Monitor LION

Bitcoin Node

Node
Operations

Bitcoin Core

Alert
Command

Fig. 1. An overview of the LION architecture.

2.3 Threat Model and Scope

Our work is applicable to a wide spectrum of threats be-
cause our detection engine is based on anomaly detection
and focuses on the networking traffic on the victim. In fact,
our detection can also be used against anomalies that are
not caused by a malicious source. Because our work is
not tied to a specific networking attack, the threat model
includes any active networking node which can connect and
inject networking communications to the victim node, e.g.,
supporting the Bitcoin Mainnet protocol and sending peer
connection requests to the victim node. The permissionless
aspect of the cryptocurrency P2P network, enabling the
attacker to spoof or launch Sybil attack, makes the general
threat model easy to realize for the attacker. Our threat
model presents a low barrier and thus includes the threats
requiring greater setup requirements for the active network
adversaries, such as those requiring compromise in routing
and networking service infrastructure [4], [6].

3 LION DESIGN

In this section, we propose the design of the Lightweight
and Identifier-Oblivious Engine (LION) to detect anomalies
in permissionless cryptocurrency P2P network.

3.1 LION Architecture

This section describes the architecture of LION. Fig. 1
graphically presents an overview of the architecture, which
contains two major components: Monitor and Detection
Engine, while the architecture also includes several external
connecting components which are Response Engine and
Node Operations.

On the one hand, from a development perspective, Mon-
itor and Node Operations are actually two functional mod-
ules of the Bitcoin Core application. In other words, they
are already developed by Bitcoin Core, and we just make
use of them when the Bitcoin node is running. By contrast,
Detection Engine and Response Engine are the components
developed by us from scratch. In particular, Detection En-
gine is designed to achieve the goal of detecting anomaly on
the message traffic, and so it even emphasizes the internal
components including Profile, Dataset, and Detection Rule.
On the other hand, from a functionality perspective, this
paper focuses on presenting Monitor and Detection Engine,
since they mainly provide the functions for anomaly detec-
tion on the message traffic, while the subsequent use of the
detection output for the active defense measure is achieved
by Response Engine and Node Operations, which will be
described in Section 8 as a complement to LION.

Further, we present the workflow of LION involving
these corresponding components to accomplish the anomaly
detection purposes, which includes three phases:
Phase I: Training Phase I stresses on training the model
in order to create the normal reference profile for detection.

1) The Bitcoin node gets started to run and connects
to the Bitcoin Mainnet, whereby Monitor can sense
and collect all the arrival messages that include
the traffic information like the message type, times-
tamp, byte size, clock cycle, etc.

2) Meanwhile, Dataset is used to store the data in a
suitable format for the sake of being processed by
other components.

3) Once enough data has been collected, Profile can
train the model over the data to get the normal
reference profile, which can be updated by training
the model on the newly collected data.

4) The collected data stored by Dataset is mainly used
for testing, in particular, the data observed during
the run-time. Also, Dataset computes the thresholds
of the model by comparing the training data and
the testing data. We use three parameters to form
the thresholds, which are described in Section 3.2.

5) Detection Rule includes the normal reference profile
and the corresponding thresholds which formulate
the detection rules for analyzing the run-time mes-
sage traffic in order to perform anomaly detection.
Thus, the outputs of Profile and Dataset are the
inputs of Detection Rule.

Phase II: Detection Phase II focuses on using the LION’s
Detection Engine to perform anomaly detection on the mes-
sage traffic.

1) Monitor keeps on capturing the message traffic and
stores the data into Dataset.

2) After a certain timing window of data collection,
Detection Rule starts to analyze the collected data
within the window size and compare the results
with the thresholds to determine whether the net-
working is anomaly or not.

3) If any anomaly is detected, Detection Engine will
send an alert to Response Engine to notify it to take
reaction against the anomaly.

Phase III: Response Phase III emphasizes the response after
an anomaly is detected.

1) If Response Engine receives an alert from Detection
Engine, it will process the alert and decide the
reaction. Thereafter, Response Engine will send a
command to Node Operations to inform the Bitcoin
Core application to carry out the reaction.

2) Eventually, Node Operations will execute the com-
mand to perform the response in order to protect
the Bitcoin node from the anomaly networking.

In addition to the workflow, we would like to clarify
that LION can be deployed anywhere in the cryptocurrency
P2P network (i.e., Bitcoin Mainnet in our case) as long as
it has both the network sensor capability (represented by
Monitor) for observing information transmission and the
algorithmic computing capability (represented by Detection
Rule) for analyzing the message traffic. Moreover, we focus

Authorized licensed use limited to: UNIV OF COLORADO COLORADO SPRINGS. Downloaded on May 02,2022 at 21:38:27 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3152937, IEEE
Transactions on Dependable and Secure Computing

5

on the LION’s implementation on the miner nodes because
the miners both participate in the computation-intensive
PoW consensus and relay the blocks and transactions via
the P2P network. Therefore, in Fig. 1, all the components
are inside the Bitcoin node. However, the design is not
limited to deploying them into the miner node altogether
as a monolithic system. They can be separated and placed
in front of the miner node.

3.2 LION Parameters and Detection Rule
LION uses the Bitcoin’s message traffic information and
particularly the following parameters for the networking
anomaly detection: the count rate n (the rate of message
packet arrivals), the size rate s (bandwidth), and the rela-
tive frequency distribution Λ (distinguishing between the
message types towards a Bitcoin node). These are standard
parameters for traffic analyses, and the prototype evaluation
in Section 6 provides high performances by using these
parameters. There can be other useful parameters for de-
tection, e.g., our dataset further includes timestamps for
message arrival (such as instantaneous inter-arrival rates),
clock cycles for processing received message, and peer con-
nections, but we limit the number of parameters to make
LION efficient and lightweight.

LION is based on the comparison of the current ob-
servation and the training-provided reference profile. For
the volume-based parameters, i.e. the count-rate of arrivals
(n) and the size-rate for networking bandwidth (s), there
are ranges of networking volumes which are considered
as normal. More specifically, τn = [τn,min, τn,max] and
τs = [τs,min, τs,max] are the ranges for n and s, respectively.
For example, if n > τn,max, then the message packet
counts of the arrival traffic is abnormally high and thus
the anomaly is detected. For the relative frequency distri-
bution across the message types (Λ), we use the correlation
coefficient ρ to compare the observed/tested network traffic
with the reference profile. The correlation magnitude ρ
is between 0 and 1 where ρ = 0 indicates no correla-
tion/similarity and ρ = 1 indicates that they are exactly
identical, e.g., ρ(Λtrain,Λtrain) = 1. Hence, if such corre-
lation between the testing and the training profile is less
than the LION’s frequency-distribution threshold τΛ, i.e.,
ρ(Λtest,Λtrain) < τΛ, then an anomaly is detected. LION
detection rule aggregates the detection results from every
parameter; such aggregation for the final detection output
depends on the application requirement and the trade-off
for the error types, as we investigate further in Section 5.

In addition, we define the time window size of the train-
ing dataset (Ttrain) and the time window size of the testing
data (Ttest). In other words, the detection engine makes
the detection decision using the networking occurred in the
past time window size of Ttest. This also means that LION
uses the entire entries within the timing window rather than
per-entry to profile the features of the networking message
traffic in order to perform the anomaly detection. All the
variable notations are summarized in Table 2.

4 DATA COLLECTION AND ANOMALY PROTO-
TYPES

This section presents the Bitcoin node implementation first,
and built on that, it describes the anomaly prototypes and

TABLE 2
Variable Notations.

Variable Description Section
n Packet count rate over all messages (num/min) §3.2, §5.1
s Bandwidth size over all messages (Bytes/min) §3.2, §5.2
Λ Relative frequency distribution among messages §3.2, §5.3
τn,min Threshold for the message counts (lower bound) §3.2, §5.1
τn,max Threshold for the message counts (upper bound) §3.2, §5.1
τn Threshold of n, i.e., [τn.min, τn.max] §3.2, §5.1
τs,min Threshold for the message size (lower bound) §3.2, §5.2
τs,max Threshold for the message size (upper bound) §3.2, §5.2
τs Threshold of s, i.e., [τs.min, τs.max] §3.2, §5.2
τΛ Threshold for the relative frequency distributions §3.2, §5.3
x Range ratio for tuning τn §6.1.1
τ ′
n The tuned range after x is applied to τn §6.1.1
ρ(α, β) Correlation coefficient magnitude between vec-

tors/distributions α and β
§3.2, §5.3

Ttrain Time window size of the training data §3.2, §5.4
Ttest Time window size of the testing data §3.2, §5.4

TABLE 3
Machine Specification.

Operating system Linux Mint 19.2 Tina (64-bit)
CPU Intel Core i7 4GHz
Processor number 8
Memory 10 GB
Network Adapter Intel PRO/1000 MT Desktop

the data collection. The networking data are collected from
both the real-world Bitcoin Mainnet and the networking-
anomaly prototypes (an attacker node introduced to the
Mainnet-connected victim), informed by the research in
Bitcoin P2P security. We train LION using the Normal data
but control and configure the parameters and the detection
thresholds using both the Normal data and the Abnormal
data involving our attack prototyping. We then use LION
to detect the real-world networking without our attacker
prototype. This section provides the bases for the following
sections, including the LION implementation prototype in
Section 5 and the LION evaluation and analyses in Section 6.

4.1 Bitcoin Node Implementation

Our Bitcoin node implementation is based on Bitcoin Core
(software version Satoshi 0.18.0 and protocol version 70015)
with its default setting. We implement the Bitcoin nodes
with equal specifications (see Table 3). In addition to the
Bitcoin node hosting the LION engine, we implement other
nodes for generating anomalies, and all the nodes have
equal machine specifications.

Regarding the testbed setup, we implement multiple
nodes and separately control each node’s connections. We
configure LION miner node’s peer connectivity via random
IP/peer selection while configuring the attacker node to
only connect to our LION-hosting miner node. This en-
ables us to better control the attack traffic so that any
anomaly/attack traffic generated by our prototype is com-
pletely contained in our testbed and never spills over to the
Bitcoin Mainnet to negatively impact the public Internet.

4.2 Networking Threat Prototypes

We prototype the networking anomalies by implementing
the threats of denial of service (DoS) and Eclipse, which
are actively being studied in cryptocurrency R&D. We also
implement the more conventional threat vectors of spoofing
and Sybil in Bitcoin because such attacks can nullify the
identifier-based detection and used for DoS and Eclipse.

Authorized licensed use limited to: UNIV OF COLORADO COLORADO SPRINGS. Downloaded on May 02,2022 at 21:38:27 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3152937, IEEE
Transactions on Dependable and Secure Computing

6

TABLE 4
LION Dataset Description (All the datasets are generated using the real-world Mainnet).

Dataset Section Description Motivation Training Testing Control Attack Prototype
Normal §4.3 Connected normally Normal networking ◦ ◦ ◦
Abn-1p §4.3 Only 1 peer connection alive Eclipse attack ◦ ◦ ◦
Abn-Syn §4.3 Continuous block synchronization Eclipse attack ◦ ◦ ◦
Abn-DoS §4.3 Under the DoS flooding attack DoS threats ◦ ◦ ◦
Bitcoin Halving §4.4 Bitcoin reward halving on May 11,

2020 (occurs every 4 years)
Historical system-level change ◦

Public Node §4.4 Additionally enable inbound con-
nection requests

Miner node setup change ◦

Eclipse Attack §4.4 Eclipse attack with random drop-
ping of packets with 0.5 drop rate

Security (Eclipse attack) ◦ ◦

4.2.1 Denial of Service (DoS)
The traffic flooding-based DoS corresponds to the repeated
transmissions of the networking messages to overwhelm
the receiving node’s networking or computation resources.
We use the Bitcoin PING message in our prototype even
though any message can be used for flooding. PING is
specific to the Bitcoin application and is different from the
ICMP ping at the network-layer. Such flooding-based DoS
changes the relative frequency across the messages because
the flooded message type becomes the dominant (most
frequent) networking message, which shifts the relative
frequency distribution. The idea to detect such an anomaly
is to find out the abnormal message frequency distribution
compared by the normal frequency distribution. Further,
to defend against the message flooding-based DoS attack,
instead of using an external firewall to filter the traffic, the
Bitcoin node can disconnect the peer connection directly.

4.2.2 Eclipse Attack
Eclipse attacker controls the peer connections to a victim
node so that all the victim’s connections go through the
attacker [3]–[5]. When we talk about the Eclipse attack here,
we focus on the Eclipse state/result instead of the specific
Eclipse approach, since we use our prototype to make the
Eclipse state. The attacker pretends to be multiple nodes
using Sybil and manipulates the victim node’s peer-table by
populating it with its own IP addresses. Eclipse is powerful
to have a range of devastating aftermath impacts, including
the application-layer attacks of double spending and mining
wastage. We focus on two threat vectors enabled by the
Eclipse attack. The first threat is simply limiting the peer
diversity of the victim node but relaying the blocks and
transactions, and such threat yields unhealthy connectivity
to the victim node, because the Bitcoin P2P network relies on
the diversity of the peers, and the greater the independently-
operating peers the victim node connects to, the more reli-
able block/transaction propagation it has. The second threat
is to manipulate the block relaying for selfish mining [5], [18]
or block withholding [19]–[21]. Such threat withholds the
blocks but relays them sporadically and in groups and are
devastating because they have the victim mine on outdated
blocks wasting and undermining the victim node’s mining
effort. Our testing datasets described in Section 4.3 reflect
these two networking threats and anomalies. If the Eclipse
attack towards a Bitcoin node is detected, to make the
node escape from the Eclipse state (i.e., the node is isolated
from the rest of the Bitcoin network), all the current peer
connections should be dropped immediately, and then new
peer identifiers (which are not compromised by the Eclipse
attacker) should be selected to re-establish peer connections

in order to reach out to the rest of the Bitcoin network and
synchronize the blockchain ledger.

4.2.3 Spoofing and Sybil Attack
Bitcoin P2P network does not offer authenticity protection
on the networking credentials. Thus, the threats based on
false identifiers are effective. Spoofing corresponds to im-
personating a known node (in this case, already connected
to the receiving node hosting LION) and Sybil attack con-
structs an entirely new identifier (i.e., the IP address and the
TCP port number). Because the Bitcoin P2P network uses
the Transmission Control Protocol (TCP), spoofing requires
knowing the TCP sequence number at the time of attack;
the spoofing attacker needs to use the expected seqnum
and acknum to inject the spoofed TCP segment into the
target connection processed by victim node. Sybil attack,
in contrast, does not even require such effort because the at-
tacker can simply construct a new TCP connection by using
a new IP address with a private TCP port. We implement
both the Sybil and spoofing attacks as proof of concepts
and use them to motivate LION. Spoofing and Sybil are
quite general threats in permissionless networks, a direct
way to defend against them is to provide cryptographic
protection to connection, which however is very costly for
a P2P network. Thus, an identifier-oblivious detection ap-
proach is proposed in this paper, and based on the detection
results, the Bitcoin node can also choose to drop all the peer
connections to resist against the spoofing and Sybil attacks.

4.3 Data for LION Training and Control

Our datasets are generated from the natural Bitcoin Mainnet
activities through monitoring the Bitcoin messages on the
public Internet. Table 4 describes the datasets used in this
paper, including the typical adversary cases existing in the
context of cryptocurrency.

We distinguish between the data for training and control
so that the training of LION is for setting up the normal
reference profile, which is a prerequisite for carrying out
anomaly detection, and thus it only uses the Normal net-
working data. LION detects anomaly if the testing data
diverges from the normal reference profile. On the other
hand, the control involves the control and the configuration
of the parameters and the detection threshold, to increase
the detection performances. Because we control the attack-
ing prototype and therefore know the ground truth of the
data, we use the data involving the attack prototype for
control in this case. After the LION’s parameter control and
configuration, we use it to test the real-world networking
which does not involve our attacker prototype in Section 4.4.

Authorized licensed use limited to: UNIV OF COLORADO COLORADO SPRINGS. Downloaded on May 02,2022 at 21:38:27 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3152937, IEEE
Transactions on Dependable and Secure Computing

7

0 10 20 30 40 50 60 70 80 90 100
Time (minute)

0

1

2

3

4

A
gg

re
ga

te
 M

es
sa

ge
C

ou
nt

, n

104

n.max

n.min

(a) n (Training)

0 10 20 30 40 50 60 70 80 90 100
Time (minute)

0

0.5

1

1.5

2

2.5

A
gg

re
ga

te
 M

es
sa

ge
S

iz
e,

 s
 (

B
yt

es
)

107

n.max

n.min

(b) s (Training)

0 10 20 30 40 50 60 70 80 90 100

Time (minute)

0

5

10

15

A
gg

re
ga

te
 M

es
sa

ge
C

ou
nt

, n

104

Normal
Abn-1p
Abn-Syn
Abn-DoS

n

(c) n (Testing and the range of τn)
Fig. 2. n and s training and testing.

The training for constructing the LION reference profile
precedes the testing, and they occur separately in time. For
training, the reference profile for LION is based on the
networking monitoring of the real-world Bitcoin Mainnet,
excluding the aforementioned attacker node that we con-
trol. Because the Bitcoin Mainnet is not free of attacking
traffic, when collecting so-called normal networking date,
we make the Bitcoin node proactively refresh all connections
to randomly selected peers in every 50 minutes to prevent
continuously connecting with misbehaving peers.

Thus, for the LION training and control, we monitor the
LION node’s connections for the Normal environment with
no attack traffic (Normal). The Bitcoin PING message traf-
fic flooding-based DoS threat provides the Abnormal-DoS
dataset (Abn-DoS). Notice that the flooding traffic never ex-
filtrates to the Bitcoin Mainnet. The Eclipse attack prototype
generates the other two abnormal cases. The Eclipse attacker
simply limiting the peer diversity of the victim relaying the
blocks/transactions yields the case of abnormal with only 1-
peer connection (Abn-1p). Alternatively, the Eclipse attacker
controlling and delaying the block relay timing for selfish
mining and block withholding (as opposed to sharing the
blocks as they arrive) yields the case of abnormally busy
with continuous synchronization (Abn-Syn).

The ground truths of the above datasets are known (i.e.
normal or abnormal) so that we use the Normal case to
train the reference profile and use the abnormal cases to
refine the detection thresholds for the LION engine. Our
data collection includes the following information, which
is richer/broader than what is required for the LION as
is presented in this paper: the aggregate message count,
summed message size in Bytes, clock cycles for processing
the overall messages by the current interval; arrival message
count, arrival message size and clock cycles during the
current interval. Section 6 studies the importance of the
parameter choices for the anomaly detection. The size of the
dataset increases by 3.48 MB/hour, and we run our Bitcoin
node to collect real-world data for more than 10 days.

For the testing results analyses in Section 5 and Section 6,
we test 20 distinct datasets for each of the four testing
scenarios: Normal, Abn-DoS, Abn-1p, and Abn-Syn. Each of
the testing datasets is collected over the period of 10 block
arrivals in expectation (Ttest = 100 minutes since each block
arrives in every 10 minutes on average by the PoW design)
while the training dataset is collected over Ttrain = 2, 000
minutes unless otherwise noted, e.g., Section 5.4 varies the
timing window sizes for the training and testing to study
their impacts.

4.4 Data for LION Run for Real-World Testing

In addition to the LION training and control datasets that
we know the ground truths for controlling the LION engine,
we sense and collect other datasets including those whose
anomaly source is not controlled by our prototype, e.g.,
Bitcoin Halving and Public Node, which are also included
in Table 4.

Bitcoin Halving refers to the historical system-level
change of Bitcoin, which made the 12.5 BTC block reward go
down to 6.25 BTC and occurred at block height 630000 and
at 2020-05-11 13:23 in our Bitcoin prototype. Such change
in the block reward is configured in the genesis block (the
original block in the Bitcoin blockchain) and is scheduled
to occur every four years. Due to the significance of such
event since Bitcoin and cryptocurrencies are driven by such
financial incentives, as the distributed miners uphold the in-
tegrity of the transactions because of such financial rewards,
we study such case to investigate whether it has an effect on
the networking.

Public Node results from the change on the miner node
setup, which enables/allows inbound connection requests.
While the other datasets were connected to the nodes on
the Bitcoin Mainnet, the connections were initiated by the
LION node. In contrast, this Public Node dataset allows
inbound connections and thus has greater fluctuations in the
number of P2P connections. “Public Node” demonstrates a
kind of event that the network setting of a node is changed
by assigning a public IP address to it, whereby the node
can be publicly reachable/routable. A private node (using a
private IP address) has upto 10 outbound peer connections,
while a public node can have more than that, in addition
to outbound peer connections, it will have inbound peer
connections. Normally, a public node would have more than
20 inbound peer connections, e.g., 22 [22], 24 [7].

Eclipse Attack builds on our attacker prototype (also used
in Section 4.2) but the prototype behaves differently and
simply drops the incoming relaying message packets from
the Bitcoin Mainnet with a probability of 0.5. Such attack
causes an inconsistency with the number of peers being
tracked and the anomaly networking traffic. Section 6.2
presents the detection results involving the detection results
when running LION against these scenarios.

5 LION PROTOTYPE AND ANALYSES

This section provides the prototype- and experiment-based
analyses of the different components of LION. We imple-
ment the LION prototype building on the Bitcoin node
implementation. In this section, we focus on the per-testing
analyses (except for the CDF in Fig. 4). The analyses em-
phasize the parameters of the message arrival rate (n), the

Authorized licensed use limited to: UNIV OF COLORADO COLORADO SPRINGS. Downloaded on May 02,2022 at 21:38:27 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3152937, IEEE
Transactions on Dependable and Secure Computing

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Message Type

10-3

10-2

10-1

100

F
re

qu
en

cy

(a) Normal with ρ = 0.993

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Message Type

10-2

10-1

100

F
re

qu
en

cy

(b) Abn-1p with ρ = 0.946

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Message Type

10-4

10-3

10-2

10-1

100

F
re

qu
en

cy

(c) Abn-Syn with ρ = 0.074

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Message Type

10-5

10-4

10-3

10-2

10-1

100

F
re

qu
en

cy

(d) Abn-DoS with ρ = 0.02
Fig. 3. The sample frequency distributions Λ of the four Testing cases described in Table 4 and the corresponding ρ from the Analyzer. The testing
datasets are color-coded, i.e., blue for Normal, magenta for Abn-1p, brown for Abn-Syn, red for Abn-DoS.

bandwidth (s), and the message frequency distribution (Λ),
as described in Section 3.2. We divide the analysis of each
of these parameters in to Training, Analyzer, and Testing.
We also analyze the impacts of the timing window size for
training and testing, which are Ttrain and Ttest respectively.

5.1 Analysis of Packet Count Rate, n
Training Fig. 2(a) shows the n collected during training.
More specifically, the n collected during training is divided
into non-overlapping time window segments whose length
is equal to Ttest = 100 minutes. Because there are 20 such
windows, Fig. 2(a) includes 20 curves corresponding to each
segment samples in training.
Analyzer The training provides the maximum of the
n samples, τn,max (the n corresponding to the greatest
slope) and the minimum, τn,min (the n corresponding to
the smallest slope), as highlighted in the legends in Fig. 2(a).
We use τn = [τn,min, τn,max] to define the reference range as
we discussed in Section 3.2. Based on the collected data for
training, τn,min = 252 messages per minute, τn,max = 390
messages per minute, and τn = [252, 390].
Testing Fig. 2(c) shows the n for the four testing sce-
narios for control in Table 4. Abn-DoS provides the greatest
message arrival rate because of the Bitcoin PING message
traffic flooding to the LION node. Abn-Syn also provides
abnormally large number of message arrival rate because
the attacker causes continuous synchronization by with-
holding the previous blocks and submitting them alto-
gether to the LION node. Fig. 2(c) additionally includes
τn = [τn,min, τn,max] = [252, 390] (which has been derived
from training depicted in Fig. 2(a)), and Normal dataset
stays within τn. In contrast, Abn-1p shows an abnormally
low number of message arrivals as there is only 1 peer
connection.

5.2 Analysis of Bandwidth Size, s
The analysis for bandwidth size, s is similar to the n analysis
described in Section 5.1, and thus it is only briefly summa-
rized in this section. Fig. 2(b) plots the s collected during
training (Training), which includes the reference range of
τs (Analyzer), and that in turn can be used in detecting
anomalies which have the networking bandwidth outside
of the normal reference range of τs (Testing).

5.3 Analysis of Frequency Distribution Across Mes-
sages, Λ

Training The training provides the message frequency
distribution, and so the Λ of the reference profile is gener-
ated by the networking traffic from the Bitcoin Mainnet.
Testing The testing measures the normalized frequency

0 0.05 0.1 0.15
Correlation Coefficient,

0

0.2

0.4

0.6

0.8

1

C
D

F

Abn-Syn
Abn-DoS

(a) ρ of Abn-DoS and Abn-Syn

0.95 0.96 0.97 0.98 0.99 1
Correlation Coefficient,

0

0.2

0.4

0.6

0.8

1

C
D

F

Normal
Abn-1p

(b) ρ of Abn-1p and Normal

Fig. 4. CDF of ρ over 20 testing datasets.

6 25 100 400 1600
T

test
 (minute)

0.992

0.994

0.996

0.998

1

C
or

re
la

tio
n

C
oe

ffi
ci

en
t,

(a) Varying Ttest while fixing
Ttrain=2000 minutes

3 16 80 400 2000
T

train
 (minute)

0.9957

0.9958

0.9959

0.996

0.9961

0.9962

0.9963

C
or

re
la

tio
n

C
oe

ffi
ci

en
t,

(b) Varying Ttrain while fixing
Ttest=100 minutes

Fig. 5. The timing windows for testing/training vs. ρ when testing the
Normal case.

distribution of the incoming message traffic across the test-
ing datasets. Fig. 3 shows the sample frequency distribu-
tions, Λ for the four different testing cases described in
Table 4. The horizontal axis indicates the different Bitcoin
message types, while the vertical axis is the normalized
frequency distribution and is plotted in logarithmic scale.
It is worth mentioning that the message types that we focus
on are from index 1 to index 21 shown in Table 4, because
the other five message types are not used by default. Thus,
Fig. 3 includes 21 message types which are enabled by the
default Bitcoin implementation.
Analyzer To test incoming networking traffic, LION
stores the message traffic in testing datasets and tracks the
frequency occurrences of each message types, Λtest. LION
then compares the normalized frequency distribution from
testing dataset, Λtest, with the reference profile from the
training dataset, Λtrain, by computing the similarity in the
correlation coefficient, ρ. Fig. 3 presents these ρ values when
the Analyzer compares the tested traffic with the training-
generated reference distribution. The Normal case shows
the highest ρ at 0.993 (Fig. 3(a)). The Abn-1p also shows
high similarity with the reference distribution at ρ = 0.946
(Fig. 3(b)) because Abn-1p decreases the number of peer
connections, and the frequencies are normalized, indicating
that the inter-frequency between the Bitcoin message types
a peer sends is similar from one peer to another. By contrast,
Abn-Syn significantly shifts the distribution and lowers the
correlation at ρ = 0.074 as it increases the Block message
(with index 9 in Fig. 3(c)). Abn-DoS floods the PING message
(with index 12 in Fig. 3(d)) to shift the frequency distribu-
tion, resulting in ρ = 0.02.

Our insights for each of the networking anomalies ex-
tend to multiple testing dataset samples. Fig. 4 shows the

Authorized licensed use limited to: UNIV OF COLORADO COLORADO SPRINGS. Downloaded on May 02,2022 at 21:38:27 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3152937, IEEE
Transactions on Dependable and Secure Computing

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y TN (Normal)

FP (Normal)

(a) TN and FP for Normal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0

0.2

0.4

0.6

0.8

1

P
ro
ba
bi
lit
y

TP(Abn-1p)
FN(Abn-1p)

TP(Abn-Syn)
FN(Abn-Syn)

TP(Abn-DoS)

(b) TP, FN for Abn-1p, Abn-Syn, Abn-DoS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0.7

0.8

0.9

1

D
et

ec
tio

n
P

er
fo

rm
an

ce

Acuracy

Precision

Recall

F1

(c) Accuracy, Precision, Recall and F1-score

Fig. 6. Detection performances for controlling τn using the x factor (x increases by 0.01 each time).

cumulative distribution function (CDF) of the ρ between
Λtrain and Λtest for the small ρ values for Abn-DoS and
Abn-Syn (Fig. 4(a)) and for the large ρ values for Normal
and Abn-1p (Fig. 4(b)). These measurements across mul-
tiple testing samples inform the selection for τΛ to be
compared with ρ between Λtrain and Λtest; any threshold
τΛ ∈ [0.9605, 0.9857] can be used to correctly distinguish
Normal and Abn-1p (and by extending Abn-Syn and Abn-
DoS, which shift the Λtest even greater from Λtrain than
Abn-1p and thus have even smaller ρ < 0.125).

5.4 Analysis of Timing Windows, Ttrain and Ttest
The timing windows for training and testing, Ttrain and
Ttest respectively, affect the LION performances. More
specifically, increasing the timing window sizes increases
the detection performances although there is a tradeoff in
cost-efficiency (i.e., greater dataset sizes requires more pro-
cessing as we will later study in Section 7.1). Fig. 5 increases
the Ttest and Ttrain and plots the ρ between the training-
generated reference and the testing of Normal. Because it
tests the normal case, the greater the ρ is, the better the
detection performance gets. The ρ increases with both the
Ttest and Ttrain. At the Ttest and Ttrain being the greatest
in our experiment at 1000 minutes and 2000 minutes, re-
spectively, we observe the maximum ρ > 99.9%. However,
ρ 6= 100% even if larger Ttest and Ttrain are used because
of the natural randomness in the Bitcoin networking, and
the training and the testing are done in independent and
non-overlapping times. Because we see that when Ttest is
fixed at 100 minutes, then train window from 80 minutes to
2000 minutes remain almost constant, so we use Ttest=100
minutes for the LION performance evaluation.

6 LION DETECTION PERFORMANCES

In this section, we evaluate the LION’s detection perfor-
mance by testing multiple datasets, and also show the
experimental results about detection performance.

6.1 Detection Performance: Networking Threats
We evaluate the detection performance in terms of the
confusion matrix, i.e. true positive (TP), true negative (TN),
false positive (FP) and false negative (FN). Based on them,
we derive the metrics of Accuracy, Precision, Recall and F1-
score (F1 for short in this paper) while varying the detection
thresholds. We focus on presenting the detection perfor-
mance for τΛ and τn individually and omit the evaluation
of τs, since analyzing τs is similar to the results of τn and
provides limited values for the anomaly detection against
our testing scenarios (see Section 6.1.3). We then combine the

0.975 0.98 0.985 0.99 0.995 1
0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

TN (Normal)
FP (Normal)

(a) Normal

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
ro
ba
bi
lit
y

TP(Abn-1p)
FN(Abn-1p)
TP(Abn-Syn)
FN(Abn-Syn)
TP(Abn-DoS)
FN(Abn-DoS)

(b) Abn-1p, Abn-Syn, Abn-DoS

Fig. 7. TP, TN, FP, FN while varying τΛ.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n
P

er
fo

rm
an

ce

Acuracy
Precision
Recall
F1

(a) Original plot

0.9 0.92 0.94 0.96 0.98 1
0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n
P

er
fo

rm
an

ce

Acuracy
Precision
Recall
F1

(b) Zoom-in plot

Fig. 8. Detection performance evaluations while varying τΛ. The four
vertical lines from left to right correspond to the the average and max-
imum ρ of Abn-1p, the minimum and average ρ of Normal. The middle
two dotted lines correspond to yield zero-error.

parameters for the final detection decision, which provides
high detection performance in our testing.

6.1.1 Evaluation for τn
Fig. 6 shows the detection performance for varying τn. We
introduce x as a range ratio for tuning τn to generate the
range τ ′n for LION, which is defined as: τ ′n = [τn,min +
1−x

2 · (τn,max − τn,min), τn,max − 1−x
2 · (τn,max − τn,min)].

For example, if x = 0.5, τ ′n is half the length as the τn range
while the center of τn is fixed.

Fig. 6(a) presents the performance testing the Normal
case and because it is given Normal datasets, we either have
TN or FP. TN increases and FP decreases as x increases
because more testing will be decided as normal when in-
creasing x. By contrast, Fig. 6(b) shows the anomaly cases,
which yields TP and FN. TP decreases and FN increases as x
increases because there are greater occurrence for deciding
that the tested traffic is normal with increasing x.

Fig. 6(c) combines the testing cases and measures the
Accuracy, Precision, Recall, and F1-score with increasing x.
We observe that the trade-off between Precision (focusing
on FP) and Recall (focusing on FN) as Precision increases
with x increasing while Recall decreases with x increasing.
In other words, as we become more conservative in detect-
ing anomalies with increasing x (less probability to detect
anomalies), FP decreases (resulting in Precision increasing)
and FN increases (resulting in Recall decreasing). We prior-
itize the F1-score as our evaluation metric because it is the
harmonic mean between Recall and Precision. We choose
x = 0.7 yielding the maximum F1-score (see Fig. 6(c)), i.e.,

Authorized licensed use limited to: UNIV OF COLORADO COLORADO SPRINGS. Downloaded on May 02,2022 at 21:38:27 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3152937, IEEE
Transactions on Dependable and Secure Computing

10

1 2 3
Number of Parameters

0.75

0.8

0.85

0.9

0.95

1
D

et
ec

tio
n

P
er

fo
rm

an
ce

F1 (AND)
Precision (AND)
Recall (AND)

F1(OR)
Precision(OR)
Recall(OR)

(a) Using multiple parameters

1 2 3

Number of Parameters

0.4

0.6

0.8

1

D
et

ec
tio

n
P

er
fo

rm
an

ce
 -

 F
1

LION(OR)
OC-SVM
AE(95%)
AE(99%)

(b) F1-score
Fig. 9. Detection performance: parameter analysis (Figure 9(a)) and the
comparison with semi-supervised ML.

when using the n for LION, we use 70% (x = 0.7) of τn for
the rest of the paper.

6.1.2 Evaluation for τΛ
Fig. 7 presents the detection performance while varying τΛ
for various testing datasets. Fig. 7(a) shows the performance
of Normal, in which TN decreases and FP increases with
increasing τΛ. Fig. 7(b) shows the abnormal cases, where TP
increases and FN decreases with increasing τΛ.

Fig. 8 shows the Accuracy and F1-score performances
while varying τΛ. Unlike the case with τn, we can select τΛ
so that it maximizes all of Accuracy, Precision, Recall, and
F1-Score. Regarding τn, there are some overlaps between the
normal and abnormal cases, which causes false detection,
i.e., leaning in FP or FN depends on the user, which re-
sults in the mutual constraint between Precision and Recall.
Whereas, τΛ can drastically distinguish the normal and
abnormal cases, and there is no overlap between them, so it
does not suffer the mutual constraint. The Λ comparison and
the corresponding ρ provides a strong indicator for LION,
and there is no tradeoff between Precision and Recall, i.e.,
we can choose τΛ to maximize the performances according
to all four metrics. According to our experiments, Abn-1p
provides the hardest case for detection (because it merely
reduces the connection diversity where the Eclipse attacker
behaves normally). In Fig. 8(b), we can select any threshold
value τΛ (for comparing it with the ρ) between the two ver-
tical dash lines, and such selection will provide optimal per-
formances; we therefore choose such τΛ ∈ [0.9605, 0.9857]
and more specifically τΛ = 0.9731, which is the middle
center in that range.

6.1.3 Evaluation for Combining the Parameters
We use multiple measurable parameters from the network-
ing traffic, i.e., n, s and Λ. In this section, we combine their
use for the eventual detection decision. We provide two
mechanisms for combining them: the logical AND across
the three parameters (“AND”) and the logical OR across the
three parameters (“OR”). For example, if one or more of the
parameters decides that there is anomalous, then the “OR”-
based LION decides that it detects an anomaly.

As seen in Fig. 2(c), τn is not able to fully classify Abn-Syn
and Normal, but τΛ can easily distinguish them. However, it
increases the FP rate when testing the Normal because, as
long as one parameter considering it as abnormal, LION
detects that networking traffic as abnormal.

Fig. 9(a) presents the detection performances while using
different combinations of our parameters for LION. The hor-
izontal axis indicates the number of parameters used where
#“1” means only applying n (and τn) for detection, #“2”

denotes combining n (and τn) and Λ (and τΛ) for detection,
and #“3” stands for combining all of them, i.e., n (and τn), Λ
(and τΛ) and s (and τs) for executing the LION Analyzer. Be-
cause Precision focuses on the FP inverse impact and Recall
focuses on the FN inverse impact, Fig. 9(a) shows that, when
using the logical OR combination on Recall, the FN rate
reduces which increases the Recall. Conversely, when using
the logical AND combination, the FP rate decreases and the
Precision increases. Using the two parameters of n and Λ
and combining the decisions through logical OR provides
us with the highest F1-score performance at 97.18% in our
testing cases, including both normal and abnormal cases.
Because adding additional parameters do not necessarily
improve the detection performance but will increase the
analysis complexity and make LION heavyweight, we stop
from further increasing the parameter complexity and focus
on the two parameters, n and Λ.

In addition, we compare the detection performance of
LION with semi-supervised ML in term of using multiple
parameters. The ML methods use the same datasets as
input to train and test the model in terms of the same
parameter combination, i.e., #“1” means only using the data
reflecting n, #“2” means using the data reflecting both n
and Λ, and #“3” means using the data reflecting all of
n, Λ and s. Regarding AE, we consider two AE models
with different threshold ranges of 95% and 99% to detect
outliers. AE(95%) rejects 5% extremes while AE(99%) rejects
1% only. 95% and 99% are widely being used in statistics for
measuring confidence intervals [23]. More details about the
implementation of the ML methods refer to Section 7.2.

Fig. 9(b) present F1-score measurements respectively in
terms of using different number of parameters to reach
the optimal performance. LION provides 97.18% F1-score
using two parameters, OC-SVM provides the same 76.34%
F1-score using both two and three parameters, AE(95%)
provides 67.22% F1-score using two parameters and 97.92%
F1-score using three parameters, and AE(99%) provides
68.3% F1-score using two parameters and 74.37% F1-score
using three parameters. Thus, LION provides 97.18% F1-
score which is comparable to the best-case ML providing
97.9%.

6.2 Detection Performance: Other Anomaly Events

We build LION on the previous analyses and control, e.g.,
τΛ = 0.9731, τn = [27239, 36917] (the same optimal choice
but proportionally greater by Ttest, and x = 0.7 is applied)
and Ttest = 100 minutes (a sliding time-window for testing
is used with the overlapping time windows), and run it
against the scenarios described in Section 4.4. The whole
testing/observing time is 30 hours for Normal, Bitcoin Halv-
ing, Public Node respectively, and 15 hours for Eclipse Attack.
The timing window Ttest = 100 minutes slides forward
during the testing time (15 or 30 hours). The detection
results are shown in Fig. 10. The Normal is collected the
same way as before, and LION decides normal and thus
no anomaly detected, i.e., the detection probability is 0, as
shown in Fig. 10(a).

Fig. 10(b) shows the detection result of Bitcoin Halving.
LION was monitoring the traffic while the Bitcoin Halving
event occurred (which time is indicated by the red dotted
vertical line in the plot). LION decided normal networking

Authorized licensed use limited to: UNIV OF COLORADO COLORADO SPRINGS. Downloaded on May 02,2022 at 21:38:27 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3152937, IEEE
Transactions on Dependable and Secure Computing

11

0 5 10 15 20 25 30
Time (hour)

0

1

D
et

ec
tio

n
R

es
ul

t Normal

(a) Normal with Pr(Detect)=0

0 5 10 15 20 25 30
Time (hour)

0

1

D
et

ec
tio

n
R

es
ul

t Bitcoin Halving

(b) Bitcoin Halving with
Pr(Detect)=0

0 5 10 15 20 25 30
Time (hour)

0

1

D
et

ec
tio

n
R

es
ul

t Public Node

(c) Public Node with
Pr(Detect)=0.4031

0 2.5 5 7.5 10 12.5 15
Time (hour)

0

1

D
et

ec
tio

n
R

es
ul

t Eclipse Attack

(d) Eclipse Attack with
Pr(Detect)=0.9998

Fig. 10. LION detection results: 0 indicates normal and 1 indicates anomaly; Pr(Detect) denotes the detection probability.

(no anomaly detection) despite the significant shift in the
block reward, indicating that there are no noticeable changes
in the Bitcoin networking (generally affected by the transac-
tion generation and Bitcoin commerce) immediately before
or after the Bitcoin Halving event on May 11th, 2020. To put
the time scale of our testing in to perspective, the Bitcoin
protocol changes its mining block difficulty (determining
the load of the miner network in the expected number of
hash computations to find a valid block) every two weeks,
which is longer than our testing period in the scale of hours.
Bitcoin halving is a real-world event, and we also had no
idea if it would bring any message traffic anomaly before
we used LION to examine it. That means that we can use
LION to examine the event that we do not know its ground-
truth, which shows a practical use of LION. If such an event
is even not detected as anomaly by an anomaly detector
(which often has certain false positive ratio), i.e., by our
LION, we can say this event is normal in the perspective
of the application-layer message traffic.

Fig. 10(c) presents the detection result when we use
LION with a public node changing the node setup from
the training. The public node not only has outbound con-
nections but also accepts inbound connection requests from
Mainnet. The inbound connections are dynamically chang-
ing, so n and Λ of the collected data fluctuate dynamically,
thus triggering LION to detect anomaly when the peer
connections diverge too much from the reference training.
For instance, we observed a correlated behavior between
the LION detecting anomalies and the frequency of the
“invalid block” messages to the LION node; more “invalid
block” messages indicating the misbehaving peers getting
banned were observed when LION detected anomaly (“1”)
than normal (“0”). The detection probability was 40.31%,
i.e., LION detected anomaly 40.31% of the testing instances.

Fig. 10(d) shows the LION detection when the LION
node is under Eclipse attack where the attacker is randomly
dropping half the packets. LION detected anomaly with
a detection probability of 99.98% since the Eclipse attack
changed the networking.

7 LION COST-EFFICIENCY PERFORMANCES AND
MINER SYSTEM ANALYSIS

In this section, we analyze the computational cost overhead
of LION in processing, e.g., CPU usage, memory usage,
and time latency. We further include the system analysis to
measure how the LION detection implementation affects the
other Bitcoin node performance. More specifically, we study
how LION minimally affects the mining operation when it
is enabled and run in parallel. The analysis is important
because mining yields the reward profit and incentives
the participation to the blockchain operations. To further
highlight the efficiency of LION, we compare its efficiency

1200 1400 1600 1800 2000
T

train
(minute)

0

2

4

6

8

La
te

nc
y

(s
ec

on
d)

10-4

FileReading ProfileUpdating

(a) Training: Profile Updating

500 1000 1500 2000
T

test
 (minute)

0

2

4

6

La
te

nc
y

(s
ec

on
d)

10-4

FileReading
Featuring

Detecting

(b) Testing: Anomaly Detecting
Fig. 11. LION latency with ascending timing windows.

with the ML-based detection, adopted by previous research
(see Section 9).

7.1 Cost-Efficiency Performance
We test LION’s computational overhead to demonstrate its
cost efficiency and to establish the practicality of the LION
deployment to the cryptocurrency miners.

We present the cost efficiency results with respect to
the timing windows. We separate the tasks within training
and testing and generate 10,000 experimental samples by
running them repeatedly and include the 95% confidence
interval in the plots. One of the dominant factors for the
cost overhead is the dataset/file reading after the Monitor
stores them. For the training, in Fig. 11(a), The File Reading
grows relatively slower than The Profile Updating, the latter
of which is after the File Reading and includes deriving
τΛ and τn. For the testing, in Fig. 11(b), the growth of
the tasks is even less sensitive to the timing windows. The
File Reading of the testing datasets is the dominant cost
factor compared to the Featuring and the Detection. The
Featuring (for deriving the τΛ and τn) costs less processing
time than the Detection (which computes, e.g., ρ, compares,
and combines the multiple parameters). The aggregate cost
for testing is 5.23 · 10−4 seconds. The CPU processing usage
(per processor) is 0.6% and the MEM usage is 30.72 MB,
which includes testing and training given our machine
specification in Table 3.

7.2 System Analysis for Mining Impact and Compari-
son with Machine Learning
We analyze the mining impact by the LION implementation
and compare LION with the machine learning (ML)-based
approaches for detection. Section 9 discusses the related
work using ML for securing cryptocurrency, motivating
our trial implementations based on ML. As discussed in
Section 2, we focus on the comparison with semi-supervised
ML, in particular, with One-class SVM (OC-SVM) [24]–
[26] and AutoEncoder (AE) [23], [24], because the pop-
ular anomaly detection approaches in particular use OC-
SVM [11]–[13] and AE [14] in the context of cryptocurrency
blockchains.

Authorized licensed use limited to: UNIV OF COLORADO COLORADO SPRINGS. Downloaded on May 02,2022 at 21:38:27 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3152937, IEEE
Transactions on Dependable and Secure Computing

12

TABLE 5
Resource usage: LION vs Semi-supervised ML.

LION OC-SVM AE
CPU (%) 0.6 (1x) 12.5 (20.83x) 23.75 (39.58x)
MEM (MB) 30.72 (1x) 1689.6 (55x) 1740.8 (56.67x)

1 2 3

Number of Parameters

10-5

100

105

T
im

e
fo

r
T

ra
in

in
g

(s
ec

on
d)

LION(no mining)
LION(mining)
OC-SVM(no mining)
OC-SVM(mining)
AE(no mining)
AE(mining)

(a) Time for training

1 2 3

Number of Parameters

10-5

100

105

T
im

e
fo

r
T

es
tin

g
(s

ec
on

d)

LION(no mining)
LION(mining)
OC-SVM(no mining)
OC-SVM(mining)
AE(no mining)
AE(mining)

(b) Time for testing

Fig. 12. The comparison of time consumption. The solid line shows the
time overhead while running the mining in parallel, and the dotted line
corresponds to the time overhead while the mining is disabled.

The comparison between LION and ML methods is fair
in the machine setup and the datasets including the data
that reflect the three parameters (i.e., n, s and Λ as for LION)
used in the algorithms. In other words, the modular nature
of LION enables us to swap it with the other ML algorithms
and we tested the performance comparison on the same
platform building on our Bitcoin node implementation.

We configured and fine-tuned the ML algorithms using
the Bitcoin networking data for its analyses. To provide
more details, for OC-SVM, we chose the radial basis func-
tion (RBF) kernel to consider non-linearity with the recipro-
cal of the number of features for the kernel coefficient. For
AutoEncoder, we accept the instance in question as normal
if its reconstruction error is located within the pre-calculated
distribution from the normal data, while any instance out
of the distribution is regarded as an anomaly. To consider
outliers in the normal profile, we reject both extremes (either
1% or 5% in two experimental settings, respectively), rather
than taking the minimum and maximum values in the dis-
tribution as the threshold. The implementation details of the
AutoEncoder model is as follows. The AutoEncoder model
has been configured with three hidden layers (since there
are three parameters, which require three hidden layers) and
the number of neurons at each layer was chosen based on
the number of features: 〈 12 ,

1
4 ,

1
2 〉× number of features, from

the first hidden layer to the last layer. We used a mixture
of ReLU and tanh as the activation of AE for non-linearity
with Mean Squared Error (MSE) to calculate the loss.

Table 5 about the resource usage for training shows
the CPU consumption of the detection engines up to the
significant digits. LION’s processing consumption in CPU
is 0.6% (per CPU), which is substantially smaller than the
ML algorithms whose CPU consumptions are between 20
times and 40 times greater than LION. Even with the more
CPU-efficient OC-SVM, it consumes 12.5% (per CPU) which
could have otherwise been used for mining. Also, the ML
algorithms consume more memory by 55-57 times than
LION; such memory efficiency of LION is more helpful to
the newer-generation cryptocurrencies, e.g. Ethereum [27]
incorporates proof-of-memory to the PoW to discourage the
use of ASIC hardwares for the decentralization of mining.

Fig. 12 compares the time consumption for processing
the detection while simultaneously mining (“mining”) and

None LION OC-SVM AE
Detection Approaches

0

2

4

6

8

H
as

h
R

at
e

(h
/s

)

105

Fig. 13. The comparison of mining rate reduction.

not (“no mining”). More specifically, the time consumption
is measured from the time that LION accepts the inputs
to the time that LION creates the reference profile for
model training or to the time that LION makes detection
decision for model testing, and both of them are based on
the default implementation without optimizing the CPU
processing (e.g., if we optimize the processing, then we
may be able to reduce the time consumption). Fig. 12(a)
compares the LION’s and the semi-supervised approaches’
time latency for training the detection model. The LION’s
training-time cost is seven orders of magnitude smaller than
the semi-supervised approaches. Fig. 12(b) shows that the
LION’s processing-time cost for testing is five orders of
magnitude smaller than the more time-efficient algorithms,
AE, while eight orders of magnitude smaller than the less
time-efficient one, OC-SVM. LION takes ten-thousandth of
seconds (i.e., on the scale of 1/10,000 seconds), the AE
executions take tens of seconds and OC-SVM takes tens
of minutes. It is worth recalling that the measured time is
the aggregated result for training and testing the “entire”
entries within the timing window, which means that this is
not a “per-entry” cost. Thus, the ML methods need hours
to process the entire entries. Furthermore, we notice that
between the two ML methods, OC-SVM spends more time
to process the training and testing data (which corroborates
the result presented in [28]), even though it uses less com-
putation resource than AE in terms of Table 5. As state in
[29], SVM is known to be an time expensive algorithm.

Fig. 13 compares the Bitcoin mining rate for our Bitcoin
node implementation when there is no detection mechanism
running in parallel (the miner at “None” computes 8.077·105

h/s), LION running in the background (the miner computes
8.00·105 h/s), OC-SVM running (7.091·105 h/s), and AE
running (6.714·105 h/s). Because PoW is computational-
power-fair, i.e., the chance of finding the valid block and
earning the reward is proportional to the mining rate in h/s,
the financial mining reward reduction is less than 0.95% for
LION while that is 12.21% for OC-SVM and 16.88% for AE.
Compared to LION having less than 1% financial reward
reduction, the reward reduction cost is vitally greater than
OC-SVM and AE. Fig. 13 is consistent with Table 5 showing
OC-SVM uses less computational resources so as to reduce
less mining rate.

LION is drastically superior to the existing ML-based de-
tection mechanisms in the execution costs in computations,
memory, and time latency. Efficiency and low costs in such
resources is critical for the practicality of LION to deploy
it in the miner nodes, since such resources are valuable for
miners due to their participation in the resource-intensive
distributed consensus protocol. For miners with high com-

Authorized licensed use limited to: UNIV OF COLORADO COLORADO SPRINGS. Downloaded on May 02,2022 at 21:38:27 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3152937, IEEE
Transactions on Dependable and Secure Computing

13

LION Node Old Peer

TIM
E TCP three-way

handshake
(TCP protocol)

Bitcoin
VERSION/VERACK
handshake
(Bitcoin protocol)

SYN

SYN,ACK
ACK

VERSION

VERSION

VERACK

VERACK

Peer connection
building phase

Bitcoin message
exchange phase

SENDHEADERS
SENDCMPT

GETADDR…

TX …

New Peer

FIN,ACK

ACK
FIN,ACK
ACK

…

Response engine
action phase

Ti
m

e
co

st
 fo

r t
he

 p
ee

r
co

nn
ec

tio
n

re
bu

ild
in

g

Ti
m

e
co

st
 fo

r t
he

fir

st
 T

X
ar

riv
al

Fig. 14. Illustration of peer connection rebuilding: the connection failure
may happen in either the TCP three-way handshake or the Bitcoin
VERSION/VERACK handshake. If the connection building fails, the LION
node will look up another IP address from its peer table to have another
try of peer connection. If there is no failure during these two handshakes,
the peer connection buidling phase succeeds, and the Bitcoin message
exchange phase will follow up.

putational power resources (such as those based on GPU
and ASIC), ML-based anomaly detection may become feasi-
ble, as increasing the system computing power can reduce
the relative detection cost; however, LION provides a much
more lightweight detection scheme which can extend its
application/use more generally to other miners, contribut-
ing to further decentralization of the mining ecosystem [30],
[31]. Making LION deployment-friendly for such existing
miners (e.g., our prototype builds on the miner implemen-
tation based on Bitcoin Core) enables us to leverage the
existing Bitcoin ecosystem and to forgo introducing separate
entities implementing security.

8 BUILDING TOWARDS ACTIVE DEFENSE

The anomaly detection is a passive operation, rather than
the active operations for mitigation or prevention. This
section presents and discusses the potential active responses
based on the peer-connection control to protect the Bitcoin
node extending the anomaly detection.

Our response engine uses the reactive response approach
for mitigating and recovering from the networking threats
on the victim node. The reactive response approach means
that the Bitcoin node takes the action after LION detects the
anomaly as a response to the detection. Such reactive re-
sponse mechanism builds on detection and provides greater
cost-effectiveness than more proactive approaches such as
dynamic randomization based on moving-target defense. In
our active defense, once detecting anomaly, the miner drops
all the connections, and reconnects to freshly and randomly
selected peers. This eliminates the potential vulnerability
for exploiting the individual connections, in contrast to the
alternative approaches of prioritizing and distinguishing
between the connections.

We implement the response engine by integrating it
with LION and the Bitcoin node operations. The active
measures from the response engine disconnects and then re-
establishes the Bitcoin connections with a new set of random
peers via the Bitcoin console. The LION node controls the

1 10

Number of Peer Connections

0
20
40
60
80

100
120
140
160
180
200
220
240
260

T
im

e
(s

ec
on

ds
)

Peer-connection rebuiding
First TX arrival

Fig. 15. Time cost for peer reestablishment as active countermeasure.

outbound connections for the active defense, and there are
ten connections by the default Bitcoin setting.

Fig. 14 illustrates the peer connection rebuilding after
the response engine takes action. Once the old peer (de-
tected as anomaly) gets dropped, the LION node starts to
reach out to new peer. The peer connection building phase
includes the TCP three-way handshake and the Bitcoin
VERSION/VERACK handshake, but both could fail due to
any availability or networking issues. Thus, the peer con-
nection rebuilding will not succeed until the LION node
eventually find a new peer that can finish the two hand-
shakes with it. With that, we define the time cost for the
peer connection rebuilding as from the time point that the
response takes action to the time point that the eventual new
peer finishes the two handshakes. Also, we define the time
cost for the first TX arrival as from the time point that the
response takes action to the time point that the LION node
receives the first TX sent by the eventual new peer.

Fig. 15 shows the time cost overhead for the peer re-
establishment from the time that LION triggers the response
engine to the time that the connection(s) are re-established.
We test when the Bitcoin node has 10 outbound peer con-
nections which is set as default and when the Bitcoin node
has only 1 outbound peer connection for comparison. The
experimental results show that the Bitcoin node takes 16.18
seconds on average for reestablishing one new outbound
peer connection, while it uses 194.43 seconds on average for
rebuilding 10 outbound peer connections after the reactive
response is triggered via LION. Such re-establishment re-
quires trial-and-error in selecting/establishing the new peer
connections, as not all peers are available at the time of
the connection request, and thus typically requires trans-
mitting multiple initial requests. As seen in Fig. 14, once
the other peer responds, the new connection gets estab-
lished via the TCP three-way handshake and via the Bitcoin
VERSION/VERACK handshake. When the connection gets
re-established, the LION node can begin receiving Bitcoin-
relevant and beneficial communications. Having greater
connections make the receiving time quicker as there is
greater connectivity to the rest of the Bitcoin Mainnet. In
our experiment, it takes 23.17 seconds for the Bitcoin node
to receive the first viable TX message after the response
starts when there is only one peer connection, while it takes
13.71 seconds to get the first effective TX message after the
response begins when there are 10 peer connections.

Though the peer reconnection as the active counter-
measure is not free, it is worth doing that. Because it is
temporary loss vs. permanent loss: if we don’t drop the
malicious peer connections to the miner node, the miner
would even continue to waste mining power (e.g., mining
on the out-of-date block due to block withholding), and

Authorized licensed use limited to: UNIV OF COLORADO COLORADO SPRINGS. Downloaded on May 02,2022 at 21:38:27 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3152937, IEEE
Transactions on Dependable and Secure Computing

14

leads to extremely more loss of mining reward. In practice,
there is no really free security protection approach, and
every security approach has its own cost. However, as
long as the whole system can save more cost by using
the security approach than the system without using the
security approach (suffering more cost owing to the attack),
then the security approach should be adopted. In addition,
the reconnection process actually enforces the LION-using
node to establish healthy peer connections to the rest of
the P2P network timely, which will make the P2P network
converge into a stable state.

9 RELATED WORK

We perform a related work review including the anomaly
detection in cryptocurrency, the statistical analysis for
deanonymizing Bitcoin users, and the Bitcoin message anal-
ysis for discovering P2P topology.
Anomaly detection in cryptocurrency Successfully ap-
plied to anomaly detection in general computer networking,
e.g., [23], [32], [33], machine learning (ML) has been pro-
posed to secure cryptocurrency. Previous literature suggests
using machine learning for anomaly detection in Bitcoin and
other cryptocurrencies, including a comprehensive survey
in Rahouti et al. [34].

In supervised environment knowing what to detect and
being able to train the decision engine accordingly, previous
research included the investigation of the anomalies created
by cybercrime activities [35] and using Bitcoin transaction
information to infer the user behavior [10]. using ML to
de-anonymize the entities in Bitcoin [9]. However, more
closely related to our model is the unsupervised or semi-
supervised ML algorithms where the data for the detection
training are limited; such approaches also enable the detec-
tion of unknown anomalies or zero-day attacks. In such an
environment, the research projects [11], [12] applied unsu-
pervised ML to detect suspicious users and transactions in
Bitcoin transition network. They typically used One-Class
Supported Vector Machine (OC-SVM) to extract features
from the unlabeled data for anomaly detection and used
k-means to help cluster similar features into groups (note
that k-means itself is not a method for anomaly detection).
Similarly, in [13], OC-SVM was used to detect the anomalies
in Bitcoin transactions collaborating with k-means cluster-
ing to group similar outliers. SquirRL [36] used a deep
reinforcement learning to detect selfish mining and block
withholding attacks in Bitcoin, which introduced an agent to
implement the security mechanism and monitor the errors
and the block rewards. Also, Scicchitano et al. [14] proposed
an Ensemble Deep Learning to detect deviant behaviors
on Ethereum [27] blockchain, where the base learner is the
AutoEncoder (AE). Most recently, Kim et al. [37], [38] also
proposed an anomaly detection engine on top of AE, which
is able to effectively detect the message-based DoS attack.
However, such a ML-based detection engine is computa-
tionally intensive, which often suffers the long-term training
and testing latencies and effects the mining operation.

These previous research motivate us to explore using
learning approach for anomaly detection against the cryp-
tocurrency networking threats. However, due to the chal-
lenges of such ML-based detection for cryptocurrency appli-

cations, we propose LION, an efficient statistical-analyses-
based anomaly detection engine.

Statistical analysis for deanonymizing Bitcoin users We
reviewed the prior research using statistical analysis on
Bitcoin transaction traffic. Ron and Shamir [39] analyzed
the statistical properties of the Bitcoin transactional graph.
In [40], the authors collected and analyzed the real-time
transaction traffic to create the mapping between Bitcoin
addresses to IP addresses, i.e., to deanonymize Bitcoin
users. Neudecker and Hartenstein [41] analyzed the P2P
network traffic to see whether it can also be useful in the
deanonymization of Bitcoin users. According to their dis-
covery, a small number of participants exhibit correlations. It
makes them susceptible to network-based deanonymization
attacks. In [42], the authors focused on the propagation tim-
ing information and clustering-based mechanism using such
information for the Bitcoin user deanonymization. These lit-
erature used the transaction message traffic to deanonymize
Bitcoin users, in contrast to LION in its purpose of anomaly
detection using different messages.
Bitcoin message analysis for discovering P2P topology
Other research utilizes Bitcoin networking messages to in-
fer the P2P topology, which includes using the transac-
tion accumulation of double-spending transactions [43] and
the orphan transactions which arrive out of order [44].
Grundmann et al. [43] aimed at inferring the topology of
Bitcoin P2P network by exploiting transaction accumulation
of double-spending transactions. Delgado-Segura et al. [44]
further proposed a novel technique called TxProbe, pro-
viding a stronger result with full network topology using
orphan transactions (that arrive out of order). Comparing
with that, Grundmann et al. only targeted neighborhood
discovery. Arthur et al. [45] presented the hourly traffic dis-
tribution of a Bitcoin node concerning three message types
(INV, TX and BLOCK) to demonstrate their observation that
the transmission of blocks consumes most of the bandwidth.
However, their research mainly focus on discoveries that
an adversary can exploit the current scalability measures to
delay the transactions/blocks propagation to specific nodes
instead of doing analyses over various message types.

10 CONCLUSION

Bitcoin and other cryptocurrencies are permissionless and
trustless by design, and their underlying P2P network lacks
the cryptographic protection and the trust in the peer’s
identifiers. Cryptocurrencies rely on the P2P network to
provide the information to drive the rest of the cryptocur-
rency operations. Any message traffic anomalies should be
concerning for bitcoin/cryptocurrency node. Not only the
network-layer attacks incurred by the unprotected P2P net-
work can be reflected by the anomalous message traffic, but
also the message traffic state change involving anomalous
block/transaction messages arrival will definitely impact
the Bitcoin node mining efficiency no matter what event is
causing it. Due to such a vital importance of the message
traffic on the P2P network of cryptocurrencies, we propose
LION to build anomaly detection using networking traffic
information and statistical analysis so that LION is effi-
cient for the permissionless blockchains. LION focuses on
anomaly detection on the application-layer message traffic,
while we broaden its use to examine the message traffic

Authorized licensed use limited to: UNIV OF COLORADO COLORADO SPRINGS. Downloaded on May 02,2022 at 21:38:27 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3152937, IEEE
Transactions on Dependable and Secure Computing

15

state when some other typical events occur in order to show
whether the event brings anomaly or not in the message
traffic perspective.

We implement LION on the active Bitcoin miner node
connected to the the Bitcoin Mainnet and test it with the
data collected from both the Mainnet and from our anomaly
prototypes. The experimental results show that LION is ef-
ficient against networking anomalies and gains high detec-
tion performance, i.e., 97.18% F1-score. Furthermore, LION
has a significantly superior cost-efficiency in computation,
execution time, and mining reduction cost (when LION
runs alongside mining), compared to the machine learning
(ML)-based approaches (adopted in the state-of-the-art for
securing blockchain networking). Our experimental results
show that the mining rate reduction (and therefore the
financial block reward reduction) is limited to 0.95% for
LION, while the reduction costs for running the ML-based
detection is 12% or greater. Such cost efficiency is critical
to enable its deployment on the existing miners (whose
computational resources are of premier importance), as op-
posed to introducing separate entities for implementing the
anomaly detection.

ACKNOWLEDGMENTS

This research was supported in part by Colorado State Bill
18-086 and by the National Science Foundation under Grant
No. 1922410.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
2008.

[2] CoinMarketCap, “Cryptocurrency prices, charts and
market capitalizations,” 2021. [Online]. Available:
https://coinmarketcap.com/

[3] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse at-
tacks on bitcoin’s peer-to-peer network,” in 24th USENIX Security
Symposium (USENIX Security 15), 2015.

[4] M. Tran, I. Choi, G. J. Moon, A. V. Vu, and M. S. Kang, “A stealthier
partitioning attack against bitcoin peer-to-peer network,” in IEEE
Symposium on Security and Privacy (IEEE S&P), 2020.

[5] K. Nayak, S. Kumar, A. Miller, and E. Shi, “Stubborn mining: Gen-
eralizing selfish mining and combining with an eclipse attack,” in
2016 IEEE European Symposium on Security and Privacy (EuroS&P),
2016.

[6] M. Apostolaki, A. Zohar, and L. Vanbever, “Hijacking bitcoin:
Routing attacks on cryptocurrencies,” in 2017 IEEE Symposium on
Security and Privacy (S&P), 2017.

[7] C. Decker and R. Wattenhofer, “Information propagation in the
bitcoin network,” in IEEE P2P 2013 Proceedings, 2013.

[8] M. Vasek, M. Thornton, and T. Moore, “Empirical analysis of
denial-of-service attacks in the bitcoin ecosystem,” in Financial
Cryptography and Data Security, 2014.

[9] M. Harlev, H. Sun Yin, K. Langenheldt, R. Mukkamala, and
R. Vatrapu, “Breaking bad: De-anonymising entity types on the
bitcoin blockchain using supervised machine learning,” in 51st
Hawaii International Conference on System Sciences, 2018.

[10] H. Tang, Y. Jiao, B. Huang, C. Lin, S. Goyal, and B. Wang,
“Learning to classify blockchain peers according to their behavior
sequences,” IEEE Access, vol. 6, 2018.

[11] J. Hirshman, Y. Huang, and S. Macke, “Unsupervised approaches
to detecting anomalous behavior in the bitcoin transaction net-
work,” 3rd ed. Technical report, Stanford University, 2013.

[12] T. Pham and S. Lee, “Anomaly detection in bitcoin network using
unsupervised learning methods,” arXiv preprint arXiv:1611.03941,
2016.

[13] S. SAYADI, S. B. REJEB, and Z. CHOUKAIR, “Anomaly de-
tection model over blockchain electronic transactions,” in 15th
International Wireless Communications Mobile Computing Conference
(IWCMC), 2019.

[14] F. Scicchitano, A. Liguori, M. Guarascio, E. Ritacco, and
G. Manco, “Deep autoencoder ensembles for anomaly detection
on blockchain,” in 25th International Symposium on Methodologies
for Intelligent Systems, 2020.

[15] P. Chatzigiannis and K. Chalkias, “Proof of assets in the diem
blockchain,” in Applied Cryptography and Network Security Workshop
on AIBlock, 2021.

[16] W. Fan, S.-Y. Chang, S. Emery, and X. Zhou, “Blockchain-based
distributed banking for permissioned and accountable financial
transaction processing,” in 2020 29th International Conference on
Computer Communications and Networks (ICCCN), 2020.

[17] BitcoinProject, “The set of 26 bit-
coin message types,” 2020. [Online]. Available:
https://developer.bitcoin.org/reference/p2p networking.html

[18] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” Commun. ACM, vol. 61, no. 7, 2018.

[19] M. Rosenfeld, “Analysis of bitcoin pooled mining reward
systems,” CoRR, vol. abs/1112.4980, 2011. [Online]. Available:
http://arxiv.org/abs/1112.4980

[20] Y. Kwon, D. Kim, Y. Son, E. Vasserman, and Y. Kim, “Be selfish and
avoid dilemmas: Fork after withholding (faw) attacks on bitcoin,”
in 2017 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2017.

[21] S.-Y. Chang, Y. Park, S. Wuthier, and C.-W. Chen, “Uncle-block
attack: Blockchain mining threat beyond block withholding for
rational and uncooperative miners,” in Applied Cryptography and
Network Security, 2019.

[22] W. Fan, S. Chang, X. Zhou, and S. Xu, “Conman: A connection
manipulation-based attack against bitcoin networking,” in IEEE
Conference on Communications and Network Security (CNS), 2021.

[23] Q. P. Nguyen, K. W. Lim, D. M. Divakaran, K. H. Low, and M. C.
Chan, “Gee: A gradient-based explainable variational autoencoder
for network anomaly detection,” in 2019 IEEE Conference on Com-
munications and Network Security (CNS), 2019.

[24] Y. Bengio and Y. LeCun, “Scaling learning algorithms towards ai,”
Large-scale kernel machines, vol. 34, no. 5, 2007.

[25] M. Amer, M. Goldstein, and S. Abdennadher, “Enhancing one-
class support vector machines for unsupervised anomaly detec-
tion,” in ACM SIGKDD Workshop on Outlier Detection and Descrip-
tion, 2013.

[26] R. Chalapathy, A. K. Menon, and S. Chawla, “Anomaly detection
using one-class neural networks,” arXiv preprint arXiv:1802.06360,
2018.

[27] G. Wood, “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, vol. 151, no. 2014, 2014.

[28] W. Fan, J. Kim, I. Kim, X. Zhou, and S.-Y. Chang, “Performance
analyses for applying machine learning on bitcoin miners,” in 2021
International Conference on Electronics, Information, and Communica-
tion (ICEIC), 2021.

[29] F. Nie, W. Zhu, and X. Li, “Decision tree svm: an extension of
linear svm for non-linear classification,” Neurocomputing, vol. 401,
2020.

[30] V. Buterin, “A next-generation smart contract and decentralized
application platform,” Ethereum project white paper, vol. 3, no. 37,
2014.

[31] L. Luu, Y. Velner, J. Teutsch, and P. Saxena, “Smartpool: Practical
decentralized pooled mining,” in 26th USENIX Security Symposium
(USENIX Security 17), 2017.

[32] R. Sommer and V. Paxson, “Outside the closed world: On using
machine learning for network intrusion detection,” in 2010 IEEE
Symposium on Security and Privacy (S&P), 2010.

[33] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly
detection and diagnosis from system logs through deep learning,”
in 2017 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2017.

[34] M. Rahouti, K. Xiong, and N. Ghani, “Bitcoin concepts, threats,
and machine-learning security solutions,” IEEE Access, vol. 6, 2018.

[35] H. Sun Yin and R. Vatrapu, “A first estimation of the proportion
of cybercriminal entities in the bitcoin ecosystem using supervised
machine learning,” in 2017 IEEE International Conference on Big
Data (Big Data), 2017.

[36] C. Hou, M. Zhou, Y. Ji, P. Daian, F. Tramer, G. Fanti, and A. Juels,
“Squirrl: Automating attack discovery on blockchain incentive
mechanisms with deep reinforcement learning,” arXiv preprint
arXiv:1912.01798, 2019.

[37] J. Kim, M. Nakashima, W. Fan, S. Wuthier, X. Zhou, I. Kim, and
S.-Y. Chang, “Anomaly detection based on traffic monitoring for
secure blockchain networking,” in IEEE International Conference on
Blockchain and Cryptocurrency (ICBC), Sydney Australia, May 2021.

Authorized licensed use limited to: UNIV OF COLORADO COLORADO SPRINGS. Downloaded on May 02,2022 at 21:38:27 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3152937, IEEE
Transactions on Dependable and Secure Computing

16

[38] J. Kim, M. Nakashima, W. Fan, S. Wuthier, X. Zhou, I. Kim, S.-Y.
Chang, “A machine learning approach to anomaly detection
based on traffic monitoring for secure blockchain net-working,”
IEEE Transactions on Network and Service Management, 2022.
Accepted.

[39] D. Ron and A. Shamir, “Quantitative analysis of the full bitcoin
transaction graph,” in International Conference on Financial Cryptog-
raphy and Data Security (FC), 2013.

[40] P. Koshy, D. Koshy, and P. McDaniel, “An analysis of anonymity
in bitcoin using p2p network traffic,” in International Conference on
Financial Cryptography and Data Security (FC), 2014.

[41] T. Neudecker and H. Hartenstein, “Could network information
facilitate address clustering in bitcoin?” in International Conference
on Financial Cryptography and Data Security (FC), 2017.

[42] A. Biryukov and S. Tikhomirov, “Transaction clustering using
network traffic analysis for bitcoin and derived blockchains,” in
IEEE Conference on Computer Communications Workshops (INFO-
COM WKSHPS), 2019.

[43] M. Grundmann, T. Neudecker, and H. Hartenstein, “Exploiting
transaction accumulation and double spends for topology infer-
ence in bitcoin,” in International Conference on Financial Cryptogra-
phy and Data Security (FC), 2019.

[44] S. Delgado-Segura, S. Bakshi, C. Pérez-Solà, J. Litton, A. Pachulski,
A. Miller, and B. Bhattacharjee, “Txprobe: Discovering bitcoin’s
network topology using orphan transactions,” in International
Conference on Financial Cryptography and Data Security (FC), 2019.

[45] A. Gervais, H. Ritzdorf, G. O. Karame, and S. Capkun, “Tampering
with the delivery of blocks and transactions in bitcoin,” in 22nd
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2015.

Wenjun Fan is currently an assistant pro-
fessor with Xi’an Jiaotong-Liverpool University
(XJTLU). Before joining XJTLU, he worked with
University of Kent, Canterbury as postdoc 2017-
2019, and University of Colorado, Colorado
Springs as research associate 2019-2021. He
received the Ph.D. degree in telematics sys-
tems engineering from Technical University of
Madrid (UPM) in 2017. His research interests
include cybersecurity, cloud computing, network
softwarization, blockchain, and machine learn-

ing. He is a member of the IEEE.

Hsiang-Jen Hong received the Ph.D. degree
from the National Taiwan University of Science
and Technology, Taiwan, in 2018. He is currently
a post-doctoral associate at the University of
Colorado, Colorado Springs. His research inter-
ests are services computing, applied cryptogra-
phy, and combinatorial optimization.

Jinoh Kim received his Ph.D. degree in Com-
puter Science from University of Minnesota, Twin
Cities. He is currently an Associate Professor
of Computer Science at Texas A&M University-
Commerce. His main research interest lies in the
area of networked systems with the focuses on
performance, reliability, scalability, visibility, and
security.

Simeon Wuthier is a Ph.D. student from the De-
partment of Computer Science at the University
of Colorado, Colorado Springs. His research is in
theoretical computer science, cryptography, and
distributed ledger technology.

Makiya Nakashima received his Master’s de-
gree in Computer Science from Texas A&M
University-Commerce in 2020. While obtaining
his Master’s degree, he was a graduate research
assistant at Texas A&M University-Commerce
for 2019-2020.He is currently a bioinformatics
technician at Cleveland Clinic Foundation. His
research interests are in image analysis, com-
puter vision and machine learning.

Xiaobo Zhou obtained the BS, MS, and PhD
degrees in Computer Science from Nanjing Uni-
versity, in 1994, 1997, and 2000, respectively.
Currently he is a professor of the Department of
Computer Science, University of Colorado, Col-
orado Springs. His research lies in Cloud com-
puting and datacenters, BigData parallel and dis-
tributed processing, autonomic and sustainable
computing. He was a recipient of the NSF CA-
REER Award in 2009. He is a senior member of
the IEEE.

Ching-Hua Edward Chow is Professor of Com-
puter Science at the University of Colorado Col-
orado Springs. He got his PhD in Computer Sci-
ence Degree from University of Texas at Austin
1985. He served as a Member of Technical Staff
with Bell Communications Research 1986-1991.
His research is focused on the improvement of
the security, reliability and performance of net-
work systems.

Sang-Yoon Chang (M’14) received the B.S. and
Ph.D. degrees from the Department of Electri-
cal and Computer Engineering at University of
Illinois at Urbana-Champaign in 2007 and 2013,
respectively. He is an assistant professor at the
Computer Science Department at University of
Colorado Colorado Springs. He was a post-
doctoral fellow with the Advanced Digital Sci-
ences Center. His research is in security, net-
working, wireless, cyber-physical systems, and
applied cryptography.

Authorized licensed use limited to: UNIV OF COLORADO COLORADO SPRINGS. Downloaded on May 02,2022 at 21:38:27 UTC from IEEE Xplore. Restrictions apply.

