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An arrayed combination of water-soluble deep cavitands and 
cationic dyes has been shown to optically sense insect pheromones 
at micromolar concentration in water. Machine learning 
approaches were used to optimize the most effective array 
components, which allows differentiation between small structural 
differences in target, including between different diastereomers, 
even though the pheromones have no innate chromophore. When 
combined with chiral additives, enantiodiscrimination is possible, 
dependent on the size and shape of the pheromone.  

Water-soluble synthetic host molecules, when paired with 
fluorescent reporter molecules, are a powerful tool for sensing 
biorelevant targets.1 Pairing multiple synthetic hosts and 
fluorescent guests enables array-based pattern recognition 
sensing,2 which allows a wide scope of target sensing and can 
be exploited to distinguish between extremely small differences 
in structure.3 We have previously shown that arrayed water-
soluble deep cavitand hosts can be exploited as sensors for 
different biomolecules,4 using multivariate analysis tools such 
as Principal Component Analysis (PCA).5 Examples include post-
translationally modified peptides,4a nucleotides, and small 
molecules such as drugs of abuse.6 These sensors exploit 
multiple different recognition mechanisms,4b and a wide range 
of targets can be sensed by changing the host and/or dye 
structure. The recognition is most effective for “soft” cations 
such as choline, or highly hydrophobic guests7 such as 
hydrocarbons or tetrahydrocannabinol. More water-soluble, 
neutral guests are challenging targets due to their weaker 
affinity for the cavitand. Furthermore, discriminating between 
stereoisomers (either diastereomers or enantiomers) via 
molecular recognition is a significant challenge. Chiral 
recognition is possible with asymmetric metal-ligand cage 

complexes,8 most commonly those formed from lanthanides,8c 
but they favor charged substrates, and while H-bonded organic 
capsules can show diastereoselectivity, they function best in 
organic solvents.9 Simple optical detection of stereoisomers of 
neutral molecules via indicator displacement assays with 
macrocyclic hosts in water is underexplored. 

Figure 1. Components of the host:dye array tested, pheromone targets, and indicator 
displacement sensing mechanism.  

The most notable examples of optically sensing and 
discrimination of stereoisomers have been demonstrated by 
Anslyn, who used metal-mediated dynamic combinatorial 
assembly to allow optical determination of enantiomeric 
excess10 for small molecule alkanols, amines, and saccharides, 
among others. That innovative and impressive work focused on 
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recognizing the chiral center, and so did not effectively 
discriminate between differently sized alkanols. Nau combined 
decarboxylase enzymes with cucurbituril-based indicator 
displacement assays, which allow determination of 
enantiomeric excess (e.e.), but indirectly, as the cucurbituril 
does not bind the chiral species.11 By employing host molecules 
that recognize the alkyl components of the target, size- and 
shape-based discrimination can theoretically be combined with 
diastereo- and enantioselective discrimination between 
molecules of similar structure. Here, we show that an arrayed 
combination of deep cavitand hosts, dyes, and chiral additives 
can optically sense and discriminate between insect pheromone 
targets in aqueous solution. 
An extraordinary variety of small molecules are used by insects 

as pheromones for communication:12 for example, fuscumol 1 
(Fig. 1) is an aggregation pheromone used by a number of 
longhorn beetles (family Cerambycidae).13 We chose a selection 
of suitable small molecule alkanols as targets, namely the 
homochiral isomers of 1-5 (Fig. 1). These single enantiomers 
were either purchased commercially or synthesized via known 
methods14 and their enantiopurity was determined via GC (see 
Supplementary Information for details). They are suitably sized 
for binding inside deep cavitands, and if a dye is present that 
can competitively bind to the host, the pheromone target can 
displace this dye, turning it on, allowing optical detection. By 
combining multiple hosts and dyes with slight changes in 
structure in an arrayed format,4 small changes in pheromone 
target can be sensed by multivariate analysis of the 
fluorescence signals. 

The choice of host:guest system was complicated by the fact 
that alkanols can be weak guests for deep cavitands, therefore, 
we tested a series of hosts that have been previously used for 
selective sensing. All three hosts TCC, CHI, and AMI (Fig. 1) are 
water-soluble and can bind suitably sized guests in their 
cavities.4,7 Two different dyes were chosen as reporters, the 
styrylpyridinium dyes DSMI and SMITE (Fig. 1). These guests 
bind in water-soluble deep cavitands and show enhanced 
fluorescence once bound. The initial test was a simple screening 
experiment to determine whether the alkanols could provide a 
fluorescence response when added to the host:guest systems. 
Single enantiomers (50 μM) of 1-5 (Fig. 2) were added to a 
solution of host (either TCC, CHI, or AMI at 20 μM) and guest 
(DSMI or SMITE, 3 μM, which has been shown to provide the 
most effective signal response when paired with these hosts4a,b) 
in 20 mM aqueous Tris buffer (pH 7.4). To further differentiate 
the response and provide more possible components to an 
array-based screen, we also added 50 μM heavy metal salt, 
either La(NO3)3, Ce(NO3)3, or UO2(NO3)2 (as well as no metal), as 
these species have been shown to coordinate to water-soluble 
cavitands and modulate fluorescence response.15 
As can be seen in Fig. 2 and ESI (for the full fluorescence 

responses with all the array components, see Figs S-12 – S-13), 
the pheromones indeed gave variable fluorescence responses 
when combined with the host:dye:metal combinations. The 
lowered fluorescence upon addition of pheromone indicates 
competitive fluorophore displacement from the hosts. Some of 
the responses were small, whereas others were quite large, 

notably with the AMI host. However, when the data from the 
full 24-component array was subjected to Principal Component 
Analysis to determine discrimination, the results were 
underwhelming (Fig. 2c). While differently structured guests 
could be discriminated, the diastereo-discrimination was 
unsatisfactory, especially considering that a large 24-
component array was used.  

 
Figure 2. Initial optical detection. a) Relative fluorescence responses of Host•dye•M+ 
complexes to pheromones 1-5 with a) DSMI dye; b) SMITE dye. c) PCA scores plot derived 
from the data in Figs. 2a, 2b and S12 – S13 using a 24-component array, ellipses indicate 
95% confidence intervals. 20 mM Tris buffer, pH 7.4. [Host] = 20 µM, [Dye] = 3.0 µM, 
[Metal] = 50 µM, [Pheromone] = 50 µM. 

The poor discrimination seen with the full array was 
unexpected, because simple visual inspection of the 
fluorescence responses in Figs 2a and 2b indicated that the 
different components did respond differently to the 
pheromones. Evidently, however, some combinations were 
ineffective and “damaged” the overall discrimination, so 
identifying the most important array components became 
necessary. Because manual evaluation of the data is time-
consuming, error-prone, and uses a lot of material, we applied 
machine learning approaches16 to select the best array 
elements from the original dataset to provide optimized sensing 
and discrimination. Machine learning is especially powerful for 
pattern recognition sensing, because it can detect hidden 
patterns in noisy or complex data sets. We have recently used 
this method to analyze DNA structures using arrayed sensors,4b 
and so we applied these techniques to the pheromone data to 
determine an optimized sensing array. The array data were 
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treated with SVM-RFE (support vector machine recursive 
feature elimination), 17 using the sklearn library in Python 3.9. 
This is a supervised machine learning algorithm, in which a 
linear function hyperplane is used to separate data, and selects 
the optimal features by recursively removing non-important 
features. The procedure is illustrated schematically in Fig. 3a: 
first, StandardScaler was applied to standardize the 
fluorescence data, then the SVM-RFE algorithm was applied, 
and the individual sensor components were ranked. Six 
combinations were chosen for optimal discrimination, and then 
PCA was rerun using this optimized array. The six components 
were cross-validated and showed a cross-validation score > 
0.99. The PCA scores plot of the results using this 6-component 
optimized array can be seen in Fig. 3b. Also, the data was 
processed using “sub-optimal arrays”, i.e. the lowest ranked 
components, either the lowest 6 (Fig. 3c) or 12 (ESI, Fig. S-18). 

 

Figure 3. Machine-Learning Optimized Sensing. a) Flowchart illustrating the SVM-RFE 
process. b) PCA scores plots derived from the data in Figs. 2a, 2b and S12, S13 using b) 
an optimized array of the 6 most important components; c) PCA scores plot using a “sub-
optimal” array of the 6 least important components selected by SVM-RFE; ellipses 
indicate 95% confidence intervals, 20 mM Tris buffer, pH 7.4. [Host] = 20 µM, [Dye] = 3.0 
µM, [Metal] = 50 µM, [Pheromone] = 50 µM.   

As can be seen in Fig. 3, the optimized array was far more 
successful than the full array in discriminating the pheromone 
stereoisomers, including the different diastereomers of 2,3-
octanediol. Further analysis of the optimization rankings sheds 
some light on the results (for the full ranking table, see Fig. S-
14). Most importantly, the cavitands are required for 
discrimination; using the dyes alone gave no discrimination (see 
Table S-1). The 6 most important elements were the 
combinations of DSMI with AMI and Ce3+, AMI and La3+, AMI 
alone, and CHI + Ce3+, as well as SMITE with CHI alone or with 
AMI and Ce3+. Overall, the differences between the 
combinations of DSMI/SMITE, AMI/CHI and metals were 
smallest, especially compared to those containing the anionic 

TCC cavitand, which strongly populated the 6 “worst” 
combinations. This was surprising, as TCC has been our 
“workhorse” cavitand for biosensing in water,4,6 and is the most 
affected by heavy metals.15 A closer look at the guest binding 
properties of the cavitands sheds some light on this. The alkanol 
targets bind quite weakly in the hosts: while affinity is observed 
with AMI and CHI, NMR analysis shows that the guests display 
fast in/out exchange in the complexes and do not form long-
lived Michaelis complexes (ESI, Figs S-8 – S-11). For example, 
fitting the NMR shifts of 2-heptanol upon titration into AMI to 
a 1:1 binding algorithm18 yields Ka = 350 M-1. This matches well 
with the DSMI/SMITE dye binding in those cavitands, as the 
affinity is lower than in TCC.4b,6 The strong DSMI/SMITE binding 
affinity of TCC is a double-edged sword: while the host can bind 
the targets, its affinity for the dyes is strong, and the guests are 
incapable of sufficiently displacing either DSMI or SMITE from 
the host. The fluorescence plots in Fig. 2a illustrate this - the 
small changes in fluorescence are due to poor indicator 
displacement. Even though AMI and CHI are “poor” hosts for 
the targets, the affinity for dye is also poorer, so the 
combination of dye recognition and pheromone recognition is 
better matched, and so more effective discrimination occurs.  

Figure 4. Enantioselective Sensing. 1D LDA plots showing discrimination between 
pheromone enantiomers. Array components: AMI, CHI hosts, DSMI dye and La(NO3)3, 
Ce(NO3)3, or UO2(NO3)2 metal and L-sodium potassium tartrate as chiral additive; 20 mM 
Tris buffer, pH 7.4. [Host] = 20 µM, [Dye] = 3.0 µM, [Metal] = 50 µM, [Pheromone] = 50 
µM, [Additive] = 50 µM. Red/blue dots = datapoints, curve = t-distribution probability 
density, vertical markers = 95% confidence intervals. 

The optimized array was effective at sensing and 
discriminating the pheromone targets, but the most ambitious 
and important ability is to discriminate enantiomers. As the 
hosts are not homochiral, this requires an additional 
component that can allow enantiodiscrimination. The presence 
of heavy metals in the system introduces the possibility of 
adding chiral species to the array pool that can coordinate the 
metals and form larger chiral complexes, and the most 
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successful additive was L-sodium potassium tartrate (NaK-Tr, 
see Fig S-20 for data with other additives). This anionic species 
can coordinate to the added heavy metals, creating charged 
chiral complexes that can interact with the host:guest 
complexes, effecting enantiodiscrimination. As the additives 
change the nature of the sensing array, the array components 
were varied in this case. The ML data was used to remove 
cavitand TCC from the pool, and the 6-element sensing array 
consisted of AMI, CHI hosts, DSMI dye and La(NO3)3, Ce(NO3)3, 
or UO2(NO3)2. Enantiodiscrimination requires direct comparison 
between two identified components, so PCA is not suitable, and 
we used supervised Linear Discrimination Analysis (LDA)5b as 
the discriminant method in this case. As only 2 classes are 
present the LDA reduces the data to a single dimension: the 1D 
LDA plots for sensing the two enantiomers of R/S-1, R/S-2, 
RR/SS-4, and R/S-5 are shown in Fig. 4, and they contain LD 1 
data points, t-distribution and 95% confidence intervals. All of 
the tested enantiomers could be discriminated at 95% 
confidence by the LDA method. The discrimination was most 
effective (Fig. 4a) for the 2-heptanol (cross-validation scores = 
1.0), which positions its chiral center in the closest proximity to 
the cavitand upper rim when bound. While the t-distributions 
for the other guests tested were less well-separated (cross-
validation scores >0.85), they could still be discriminated at 95% 
confidence on the scores plot (Fig 4a-c). The slightly weaker 
discrimination of these guests is most likely due to lower affinity 
and/or remote positioning of the stereocenter. Most 
importantly, the presence of cavitands was essential – when 
enantiodiscrimination was attempted with R/S-2 or RR/SS-4 
using only dye/metal and NaK-Tr, significant overlap was 
observed in the distribution (Fig. S-22). The synergistic 
combination of host and chiral additive is essential for 
enantioselective discrimination of the pheromones.  

In conclusion, we have shown that water-soluble deep 
cavitands are capable of stereoselective sensing of small 
molecule insect pheromone targets, when arrayed and 
combined with fluorescent dyes. The pheromones possess no 
optical detection motif, but can cause indicator displacement at 
micromolar concentrations. The presence of chiral additives 
allows enantiodiscrimination, and optimization of the sensing 
components can be achieved via machine learning techniques. 
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