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An arrayed combination of water-soluble deep cavitands and
cationic dyes has been shown to optically sense insect pheromones
at micromolar concentration in water. Machine learning
approaches were used to optimize the most effective array
components, which allows differentiation between small structural
differences in target, including between different diastereomers,
even though the pheromones have no innate chromophore. When
combined with chiral additives, enantiodiscrimination is possible,
dependent on the size and shape of the pheromone.

Water-soluble synthetic host molecules, when paired with
fluorescent reporter molecules, are a powerful tool for sensing
biorelevant targets.! Pairing multiple synthetic hosts and
fluorescent guests enables array-based pattern recognition
sensing,2 which allows a wide scope of target sensing and can
be exploited to distinguish between extremely small differences
in structure.3 We have previously shown that arrayed water-
soluble deep cavitand hosts can be exploited as sensors for
different biomolecules,* using multivariate analysis tools such
as Principal Component Analysis (PCA).> Examples include post-
translationally modified peptides,*® nucleotides, and small
molecules such as drugs of abuse.® These sensors exploit
multiple different recognition mechanisms,** and a wide range
of targets can be sensed by changing the host and/or dye
structure. The recognition is most effective for “soft” cations
such as choline, or highly hydrophobic guests’” such as
hydrocarbons or tetrahydrocannabinol. More water-soluble,
neutral guests are challenging targets due to their weaker
affinity for the cavitand. Furthermore, discriminating between
stereoisomers (either diastereomers or enantiomers) via
molecular recognition is a significant challenge. Chiral
recognition is possible with asymmetric metal-ligand cage
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complexes,® most commonly those formed from lanthanides,s¢
but they favor charged substrates, and while H-bonded organic
capsules can show diastereoselectivity, they function best in
organic solvents.? Simple optical detection of stereocisomers of
neutral molecules via indicator displacement assays with
macrocyclic hosts in water is underexplored.
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Figure 1. Components of the host:dye array tested, pheromone targets, and indicator
displacement sensing mechanism.
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The most notable examples of optically sensing and
discrimination of stereoisomers have been demonstrated by
Anslyn, who used metal-mediated dynamic combinatorial
assembly to allow optical determination of enantiomeric
excess10 for small molecule alkanols, amines, and saccharides,
among others. That innovative and impressive work focused on
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recognizing the chiral center, and so did not effectively
discriminate between differently sized alkanols. Nau combined
decarboxylase enzymes with cucurbituril-based indicator
displacement assays, which allow determination of
enantiomeric excess (e.e.), but indirectly, as the cucurbituril
does not bind the chiral species.!! By employing host molecules
that recognize the alkyl components of the target, size- and
shape-based discrimination can theoretically be combined with
diastereo- and enantioselective discrimination between
molecules of similar structure. Here, we show that an arrayed
combination of deep cavitand hosts, dyes, and chiral additives
can optically sense and discriminate between insect pheromone
targets in aqueous solution.

An extraordinary variety of small molecules are used by insects
as pheromones for communication:12 for example, fuscumol 1
(Fig. 1) is an aggregation pheromone used by a number of
longhorn beetles (family Cerambycidae).’* We chose a selection
of suitable small molecule alkanols as targets, namely the
homochiral isomers of 1-5 (Fig. 1). These single enantiomers
were either purchased commercially or synthesized via known
methods* and their enantiopurity was determined via GC (see
Supplementary Information for details). They are suitably sized
for binding inside deep cavitands, and if a dye is present that
can competitively bind to the host, the pheromone target can
displace this dye, turning it on, allowing optical detection. By
combining multiple hosts and dyes with slight changes in
structure in an arrayed format,* small changes in pheromone
target can be sensed by multivariate analysis of the
fluorescence signals.

The choice of host:guest system was complicated by the fact
that alkanols can be weak guests for deep cavitands, therefore,
we tested a series of hosts that have been previously used for
selective sensing. All three hosts TCC, CHI, and AMI (Fig. 1) are
water-soluble and can bind suitably sized guests in their
cavities.*” Two different dyes were chosen as reporters, the
styrylpyridinium dyes DSMI and SMITE (Fig. 1). These guests
bind in water-soluble deep cavitands and show enhanced
fluorescence once bound. The initial test was a simple screening
experiment to determine whether the alkanols could provide a
fluorescence response when added to the host:guest systems.
Single enantiomers (50 uM) of 1-5 (Fig. 2) were added to a
solution of host (either TCC, CHI, or AMI at 20 uM) and guest
(DSMI or SMITE, 3 uM, which has been shown to provide the
most effective signal response when paired with these hosts?#2.b)
in 20 mM aqueous Tris buffer (pH 7.4). To further differentiate
the response and provide more possible components to an
array-based screen, we also added 50 uM heavy metal salt,
either La(NOs3)3, Ce(NO3)s3, or UO,(NO3); (as well as no metal), as
these species have been shown to coordinate to water-soluble
cavitands and modulate fluorescence response.>

As can be seen in Fig. 2 and ESI (for the full fluorescence
responses with all the array components, see Figs S-12 — S-13),
the pheromones indeed gave variable fluorescence responses
when combined with the host:dye:metal combinations. The
lowered fluorescence upon addition of pheromone indicates
competitive fluorophore displacement from the hosts. Some of
the responses were small, whereas others were quite large,

2| J. Name., 2012, 00, 1-3

notably with the AMI host. However, when the data from the
full 24-component array was subjected to Principal Component
Analysis to determine discrimination, the results were
underwhelming (Fig. 2c). While differently structured guests
could be discriminated, the diastereo-discrimination was
unsatisfactory, especially considering that a large 24-
component array was used.
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Figure 2. Initial optical detection. a) Relative fluorescence responses of HostedyeeM*
complexes to pheromones 1-5 with a) DSMI dye; b) SMITE dye. c) PCA scores plot derived
from the data in Figs. 2a, 2b and S12 — S13 using a 24-component array, ellipses indicate
95% confidence intervals. 20 mM Tris buffer, pH 7.4. [Host] = 20 uM, [Dye] = 3.0 uM,
[Metal] = 50 uM, [Pheromone] = 50 uM.

The poor discrimination seen with the full array was
unexpected, because simple visual inspection of the
fluorescence responses in Figs 2a and 2b indicated that the
different components did respond differently to the
pheromones. Evidently, however, some combinations were
ineffective and “damaged” the overall discrimination, so
identifying the most important array components became
necessary. Because manual evaluation of the data is time-
consuming, error-prone, and uses a lot of material, we applied
machine learning approaches!® to select the best array
elements from the original dataset to provide optimized sensing
and discrimination. Machine learning is especially powerful for
pattern recognition sensing, because it can detect hidden
patterns in noisy or complex data sets. We have recently used
this method to analyze DNA structures using arrayed sensors,°
and so we applied these techniques to the pheromone data to
determine an optimized sensing array. The array data were

This journal is © The Royal Society of Chemistry 20xx



treated with SVM-RFE (support vector machine recursive
feature elimination), 17 using the sklearn library in Python 3.9.
This is a supervised machine learning algorithm, in which a
linear function hyperplane is used to separate data, and selects
the optimal features by recursively removing non-important
features. The procedure is illustrated schematically in Fig. 3a:
first, StandardScaler was applied to standardize the
fluorescence data, then the SVM-RFE algorithm was applied,
and the individual sensor components were ranked. Six
combinations were chosen for optimal discrimination, and then
PCA was rerun using this optimized array. The six components
were cross-validated and showed a cross-validation score >
0.99. The PCA scores plot of the results using this 6-component
optimized array can be seen in Fig. 3b. Also, the data was
processed using “sub-optimal arrays”, i.e. the lowest ranked
components, either the lowest 6 (Fig. 3c) or 12 (ESI, Fig. S-18).
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As can be seen in Fig. 3, the optimized array was far more
successful than the full array in discriminating the pheromone
stereoisomers, including the different diastereomers of 2,3-
octanediol. Further analysis of the optimization rankings sheds
some light on the results (for the full ranking table, see Fig. S-
14). Most importantly, the cavitands are required for
discrimination; using the dyes alone gave no discrimination (see
Table S-1). The 6 most important elements were the
combinations of DSMI with AMI and Ce3*, AMI and La3*, AMI
alone, and CHI + Ce3*, as well as SMITE with CHI alone or with
AMI and Ce3*. Overall, the differences between the
combinations of DSMI/SMITE, AMI/CHI and metals were
smallest, especially compared to those containing the anionic
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TCC cavitand, which strongly populated the 6 “worst”
combinations. This was surprising, as TCC has been our
“workhorse” cavitand for biosensing in water,%% and is the most
affected by heavy metals.’> A closer look at the guest binding
properties of the cavitands sheds some light on this. The alkanol
targets bind quite weakly in the hosts: while affinity is observed
with AMI and CHI, NMR analysis shows that the guests display
fast in/out exchange in the complexes and do not form long-
lived Michaelis complexes (ESI, Figs S-8 — S-11). For example,
fitting the NMR shifts of 2-heptanol upon titration into AMI to
a 1:1 binding algorithm?8 yields K, = 350 M-, This matches well
with the DSMI/SMITE dye binding in those cavitands, as the
affinity is lower than in TCC.46 The strong DSMI/SMITE binding
affinity of TCC is a double-edged sword: while the host can bind
the targets, its affinity for the dyes is strong, and the guests are
incapable of sufficiently displacing either DSMI or SMITE from
the host. The fluorescence plots in Fig. 2a illustrate this - the
small changes in fluorescence are due to poor indicator
displacement. Even though AMI and CHI are “poor” hosts for
the targets, the affinity for dye is also poorer,
combination of dye recognition and pheromone recognition is
better matched, and so more effective discrimination occurs.
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Figure 4. Enantioselective Sensing. 1D LDA plots showing discrimination between
pheromone enantiomers. Array components: AMI, CHI hosts, DSMI dye and La(NOs)s,
Ce(NO3)s, or UO,(NOs3), metal and L-sodium potassium tartrate as chiral additive; 20 mM
Tris buffer, pH 7.4. [Host] = 20 pM, [Dye] = 3.0 uM, [Metal] = 50 uM, [Pheromone] =
uM, [Additive] = 50 uM. Red/blue dots = datapoints, curve = t-distribution probability
density, vertical markers = 95% confidence intervals.

The optimized array was effective at sensing and
discriminating the pheromone targets, but the most ambitious
and important ability is to discriminate enantiomers. As the
hosts are not homochiral, this requires an additional
component that can allow enantiodiscrimination. The presence
of heavy metals in the system introduces the possibility of
adding chiral species to the array pool that can coordinate the

metals and form larger chiral complexes, and the most
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successful additive was L-sodium potassium tartrate (NaK-Tr,
see Fig S-20 for data with other additives). This anionic species
can coordinate to the added heavy metals, creating charged
chiral complexes that can interact with the host:guest
complexes, effecting enantiodiscrimination. As the additives
change the nature of the sensing array, the array components
were varied in this case. The ML data was used to remove
cavitand TCC from the pool, and the 6-element sensing array
consisted of AMI, CHI hosts, DSMI dye and La(NOs)s, Ce(NOs)s,
or UO3(NOs),. Enantiodiscrimination requires direct comparison
between two identified components, so PCA is not suitable, and
we used supervised Linear Discrimination Analysis (LDA)%® as
the discriminant method in this case. As only 2 classes are
present the LDA reduces the data to a single dimension: the 1D
LDA plots for sensing the two enantiomers of R/S-1, R/S-2,
RR/SS-4, and R/S-5 are shown in Fig. 4, and they contain LD 1
data points, t-distribution and 95% confidence intervals. All of
the tested enantiomers could be discriminated at 95%
confidence by the LDA method. The discrimination was most
effective (Fig. 4a) for the 2-heptanol (cross-validation scores =
1.0), which positions its chiral center in the closest proximity to
the cavitand upper rim when bound. While the t-distributions
for the other guests tested were less well-separated (cross-
validation scores >0.85), they could still be discriminated at 95%
confidence on the scores plot (Fig 4a-c). The slightly weaker
discrimination of these guests is most likely due to lower affinity
and/or remote positioning of the stereocenter. Most
importantly, the presence of cavitands was essential — when
enantiodiscrimination was attempted with R/S-2 or RR/SS-4
using only dye/metal and NaK-Tr, significant overlap was
observed in the distribution (Fig. S-22). The synergistic
additive is essential
enantioselective discrimination of the pheromones.

In conclusion, we have shown that water-soluble deep
cavitands are capable of stereoselective sensing of small
molecule insect pheromone targets, when arrayed and
combined with fluorescent dyes. The pheromones possess no
optical detection motif, but can cause indicator displacement at
micromolar concentrations. The presence of chiral additives
allows enantiodiscrimination, and optimization of the sensing
components can be achieved via machine learning techniques.
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