
Robust P2P Connectivity Estimation for
Permissionless Bitcoin Network

Hsiang-Jen Hong∗ Wenjun Fan∗ Simeon Wuthier∗ Jinoh Kim†

Xiaobo Zhou∗ C. Edward Chow∗ Sang-Yoon Chang∗
∗ University of Colorado Colorado Springs, Colorado Springs CO, USA

{hhong, wfan, swuthier, xzhou, cchow, schang2}@uccs.edu
† Texas A&M University-Commerce, Commerce TX, USA

jinoh.kim@tamuc.edu

Abstract—Blockchain relies on the underlying peer-to-peer
(p2p) networking to broadcast and get up-to-date on the blocks
and transactions. It is therefore imperative to have high p2p
connectivity for the quality of the blockchain system operations.
High p2p networking connectivity ensures that a peer node is
connected to multiple other peers providing a diverse set of
observers of the current state of the blockchain and transactions.
However, in a permissionless blockchain network, using the
peer identifiers—including the current approach of counting the
number of distinct IP addresses and port numbers—can be
ineffective in measuring the number of peer connections and
estimating the networking connectivity. Such current approach
is further challenged by the networking threats manipulating
the identifiers. We build a robust estimation engine for the
p2p networking connectivity by sensing and processing the p2p
networking traffic. We implement a working Bitcoin prototype
connected to the Bitcoin Mainnet to validate and improve our
engine’s performances and evaluate the estimation accuracy and
cost efficiency of our estimation engine.

Index Terms—Bitcoin, Blockchain, Cryptocurrency, Peer-to-
peer networking, Permissionless, Reliability, Robustness

I. INTRODUCTION

Cryptocurrency such as Bitcoin replaces a centralized au-
thority/bank with a distributed ledger to store and process
the financial transactions to provide anonymous and censor-
less financial transactions. Enabling such properties are the
distributed consensus protocol and networking designed to
operate in permissionless environments (which lacks the regis-
tration or the identity-based control while still achieving fair-
ness across the cryptocurrency participants). The distributed
consensus protocol is based on proof of work (PoW) and
measures the fairness based on the computational power of
the participants, called miners, as opposed to their number
of identities. For example, in PoW, hundred miners each of
which has a computational power of x H/s is designed to
have the same probability of finding the block as one miner
having a computational power of 100x H/s. Such design is
the main innovation by Nakamoto in his seminal Bitcoin
paper [1], in which he reinforced the permissionless design
and the anonymity by recommending new identifiers/accounts
for every transaction. Such permissionless design motivates
our work in this paper, as we challenge the effectiveness of
the current approach based on counting distinct identities and

build peer-connectivity estimation without relying on identities
but on the networking traffic.

Underlying blockchain and the distributed consensus proto-
col is the broadcasting network based on peer-to-peer (p2p)
networking. The p2p network provides the block and the
transaction information to the peers, and the health of the p2p
network determines when they receive such information. If a
miner has an unhealthy network of peers (limited connectivity)
and does not receive the blocks on time, then it mines
on outdated blocks wasting its resources on blocks without
rewards. Newer cryptocurrencies such as Ethereum provide
partial block rewards to PoW on outdated blocks [2]–[4] to
provide greater fairness in networking health and yield some
rewards to the peers with lower p2p connectivity. However, the
newer cryptocurrencies also rely on the p2p networking and
require healthy networking connections for their operations.
The connectivity is therefore critical in the mining operations
and in ensuring the fairness between the miners.

In this work, we propose a connectivity estimation engine,
which provides accurate estimation and is effective even in
the cryptocurrencies’ permissionless and anonymous environ-
ments. Our work provides estimations of the peer connectivity
even when there is a spoofing or Sybil attacker present (ma-
nipulating the peer connections based on false identifiers/IP).
Such threats driven by malicious peers represent the worse-
case scenario where the Legacy approach of counting the
network-layer identities, e.g., IP addresses and port numbers,
becomes ineffective in measuring the health peer connection.
Our work is motivated to address the above issue. To this end,
we build the connectivity estimation engine without relying
on identities but based on analyzing the networking traffic and
behaviors for estimating the health peer-connection. To build
robustness against the threats manipulating the estimation and
the training, we include an Outlier Detection (OD) in our
proposed engine to detect outliers (§ II-B2) before making
the viable estimation decisions. Without OD, such threats can
affect the estimation result; even if the threat is intelligent
enough to forgo OD, OD can mitigate and tamper the impact
of the threats. We also show the effectiveness of OD with
prototype-based experiments (§ V-B). To validate and evaluate
our peer connectivity estimation engine, we build an imple-
mentation prototype on a Bitcoin node and test it with the
Bitcoin Mainnet networking (§ III-A).9978-0-7381-3207-5/21/$31.00 ©2021 IEEE

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS)

978-1-6654-1494-4/21/$31.00 ©2021 IEEE

20
21

 IE
EE

/A
C

M
 2

9t
h

In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
Q

ua
lit

y
of

 S
er

vi
ce

 (I
W

Q
O

S)
 |

97
8-

1-
66

54
-1

49
4-

4/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IW

Q
O

S5
20

92
.2

02
1.

95
21

28
7

Authorized licensed use limited to: UNIV OF COLORADO COLORADO SPRINGS. Downloaded on May 02,2022 at 22:19:49 UTC from IEEE Xplore. Restrictions apply.

Sensor

Reference (Training)

Data (Testing)

Estimation Rule

Connectivity Estimation Engine

Outlier
Detection Estimator

!𝑘 = −1

Is an
outlier?

Y

N

!𝑘 ∈ [0,𝑀]

Fig. 1: The Operational Flow

II. OUR CONNECTIVITY ESTIMATION ENGINE

Our estimation engine is motivated by the permissionless
and trustless properties and is designed for cryptocurrencies.
Even though our connectivity estimation engine is generally
applicable to other permissionless blockchain networks rely-
ing on its underlying p2p networking, our prototyping and
experiments focus on the Bitcoin cryptocurrency.

A. Operational Flow

Figure 1 illustrates the operational flow of our connectivity
estimation engine. It provides an overview of deploying and
utilizing our estimation engine on a Bitcoin node for users.
Users should first deploy a Sensor unit for collecting the Bit-
coin message traffic and transmitting the data to the estimation
engine. The data collected from the Sensor unit first go through
the training path (solid line). The collected data transmit
to the Reference unit for building the training references.
Sequentially, the Reference unit passes the references to the
Estimation Rule unit as the significant references for Outlier
Detection and Estimator. After finishing the training, the data
collected by the Sensor will go through the testing path (dotted
line). The Data unit processes the collected data by storing
the network-monitor outputs for testing. The result is passed
to the Outlier Detection unit to filter out the outlier that is
different from our training reference. Assume the finalized
estimation result of health peer connection is k̃. Then, the
engine will directly set k̃ as -1. Such data will not go to
the Estimator unit. Only the data that successfully passes the
Outlier Detection examination is meant to be estimated for its
health peer connection. Assume that the maximum number of
peer connections set by a Bitcoin node is M . The finalized
result of k̃ will be located within [0, M]. In summary, users
can use our engine to estimate k̃ accurately and filter out the
abnormal traffic by comparing it with the reference we built
for that specification.

B. Design of Connectivity Estimation Engine

We propose the connectivity estimation engine to estimate
the number of health peer entities connected. Our engine does
not use the identifier-based information but rather the network-
ing traffic information (which does not distinguish between the
networking streams from different nodes but aggregate them
for the networking behavior). Our estimation engine is built
on the hypothesis that the networking behavior changes with
respect to the number of connected peer entities (rather than
their identities) based on which we design our engine and

test it using a working prototype on the real-world Bitcoin
network. The engine is constituted by three components:
Per-Parameter Processing (PPP), Outlier Detection (OD), and
Estimation Aggregator (EA). We introduce these components
in detail in the following paragraphs.

1) Per-Parameter Processing (PPP): Before going to the
operation of PPP, we first investigate the networking traffic pa-
rameters that we want to measure (monitor) for our estimation.
Among the networking parameters, we focus on those that can
better inform the peer connectivity health. More specifically,
we focus on the Traffic Analyses Parameters and the Packet
(Bitcoin-specific) Analyses Parameters.

• Traffic Analyses Parameters: n and s. The networking
traffic parameters are those general networking traffic
information which popularly uses in the traffic analyses:
the count (packet) rate, n, i.e., the number of packet
arrivals per time; the aggregate networking size rate, s,
i.e., the bandwidth information.

• Packet (Bitcoin-specific) Analyses Parameters: λ and
nmi

. To better capture more useful information for es-
timation, we further analyze the Bitcoin-specific packets.
In this regard, we focus on two parameters: the relative
frequency distribution across the bitcoin p2p networking
message types, λ, and the per-message count rate, nmi

.
There are 26 message types, i.e. mi, 1 ≤ i ≤ 26, used in the

Bitcoin protocol for exchanging information between peers by
now, including those for block and transaction propagation.
Our estimation uses the above networking parameters given
from the networking sensing. We train those parameters to set
the references for estimation. For the frequency distribution,
we introduce the reference of frequency distribution when k
peers are connected to the Bitcoin node, Λk. Similarly, we
denote the count rate reference, the size rate reference, the
per-message count rate references given k peer connections
as n̄k and s̄k, n̄mi,k respectively. The above references are
derived and computed by the average values from the training
samples nk, sk, λk and nmi,k. After obtaining the references,
the PPP is ready to go. We separate the cases into PPP for EA
and PPP for OD. PPP for EA aims to output the estimation
result k̃x based on per-parameter x only. In contrast, PPP for
OD aims to provide an outlier score õx based on x.

PPP for EA: The estimation involves comparing between
the real-time testing (with a time window size of Ttest) and the
training references (with a time window size of Ttrain), which
comparison method depends on the parameters themselves.
For the packet count rate n and the networking size rate s,
the estimation is based on the rate magnitude differences.
Specifically, we will compute the difference between the
testing n and different n̄k where n̄k is computed by the
average count rate of k peer connection’s training data. The
PPP identifies the v = arg mink(|n− n̄k|). If the n− n̄v ≥ 0,
then k̃n = v + n−n̄v

n̄v+1−n̄v
. Otherwise, k̃n = v − n̄v−n

n̄v−n̄v−1
.

k̃n is defined as the k̃ when using the n parameter only. A
similar approach is also applicable to the estimation based
on size rate for obtaining k̃s and the per message count
rate for obtaining k̃nmi

. This approach makes sense if the

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS)

Authorized licensed use limited to: UNIV OF COLORADO COLORADO SPRINGS. Downloaded on May 02,2022 at 22:19:49 UTC from IEEE Xplore. Restrictions apply.

reference value has an ascending order when k increases. We
examine it and observe that the reference value of n and
s have an ascending trend when k increases. However, we
do not include those results due to space constraints. For
nmi

, we examine those messages that have this trend and
choose two messages that have the highest capabilities in
distinguishing different peer connections, which will be further
discussed in §II-B3. For the frequency distribution λ, we use
the correlation coefficient denoted as ρ for comparing λ and
Λk where Λk is the frequency distribution across the different
Bitcoin message types. The correlation magnitude of ρ is
between 0 and 1. The higher the ρ is, the greater the similarity
(between the monitored testing data and the reference). We
denote ρk as the computed correlation coefficient by λ and
Λk. Then, the estimation decides the subject Bitcoin node has
k̃λ = arg maxk(ρk) peers.

PPP for OD: We also define a per-parameter outlier score
computed based on x as õx to indicate the level of outlierness
of a sample. In OD, we use õx for making the finalized deci-
sion whether a sample should be treated as an outlier or not by
using all õx. We think that the outlierness should be checked
by comparing whether the testing sample is indeed similar
to its respective training references. Note that if k̃x = z,
only the training reference given by z peer connections will
be utilized to detect the outlier. Suppose the testing sample
is highly different from the respective training references. In
that case, it should be treated as an outlier and unable to go
into the finalized estimation, i.e., EA. We propose using the
ratio-based approach. Our engine checks the ratio between the
testing sample and its respective training reference. Take n
as instance, if n is the count rate of a testing sample with
k̃n = z, the outlier score õn will be conducted by n

n̄z
. Similar

operations can also adapt to the s and nmi
. One might notice

that λ is not suitable for the ratio-based approach. Hence,
we directly utilize ρ because the value reveals the similarity
between the testing and the training. If a testing sample with
k̃λ = z, we directly set õλ = 1−ρz to indicate its outlierness.

2) Outlier Detection (OD): As we mentioned earlier in §
II-B1, õx is computed by the ratio-based approach. Here, we
focus on how to aggregate the õx among different parameters
x and make the final decision. Note that only those testing data
pass the examination of outlier detection is viable to be further
estimated by EA. We utilize logical-OR for the aggregation of
õx scores to output õ. The output õ is a binary factor. If õ
is 1, it represents that the testing data is an outlier, and k̃ is
immediately set to -1. If õ is 0, it represents that the testing
data is not an outlier and will be sent to EA for estimation. We
use the threshold control in identifying the outliers. To be more
specific, if õx is not located within a ratio range β=[βl, βh],
then a binary factor bx representing the outlier result is set
to one. Otherwise, bx = 0 Additionally, a threshold control
is also required for õλ. We denote the threshold set for õλ as
α. If a testing sample with õλ > α, then bλ = 1. Finally, the
finalized output is conducted by a logical-OR operation, i.e.,
õ = bn ∨ bs ∨ bλ ∨ bnmi

.

3) Estimation Aggregator (EA): After filtering the outlier
traffic by OD, EA aggregates the results of k̃x from PPP and
produces the final estimation decision. We use a weighted
function between the networking parameters and make the
estimation k̃ where x ∈ {n, s, λ, nmi}. Since there are 26
message types, i is an integer located within [1, 26].

k̃ =
∑
x

wx · k̃x, x ∈ {n, s, λ, nmi}, i ∈ {i|1 ≤ i ≤ 26} (1)

≈
∑
x

wx · k̃x, x ∈ {n, s, λ, nADDR, nPONG} (2)

We actually do not select all the message types for comput-
ing nmi

for our estimation but only ADDR and PONG mes-
sages because they have higher capabilities in distinguishing
different peer connections. The finalized equation used in our
engine is summarized in Equation (2). We identify a message
type with a higher capability to distinguish different peer
connections by Kolmogorov–Smirnov test (KS test). KS test is
a standard technique in statistical analysis [5] for identifying
whether two samples’ distribution are quite different or not.
The KS test examines the shape and distance of the two
samples’ CDF distribution. It outputs a p value to measure
how similar they are. Higher p where p ∈ [0, 1] indicates
that they have more similar distributions. To use the KS test
in determining the distinguishing capability, we compute the
CDF for distribution of nmi

under k, 1 ≥ k ≥ 10 peer
connections. mi is a message type that has a monotonically
increasing trend on nmi while varying k. For each consecutive
CDF distributions of nmi

under k and k + 1, we compute
the respective p value. Then, we compute the average p
value for these nine p values computed for one specific
message type mi. The lower the average p value obtained by
a message type mi, the higher the distinguishing capability
the message mi has. Based on our obtained result, PING,
PONG, VERACK, and ADDR, have the four lowest average
p values. However, the VERACK will only be transmitted on
the Bitcoin peer connection establishment stage, i.e., one-time
transmission. Hence, it is not suitable for selecting it as a
parameter for estimation. In addition, for PING and PONG,
since PONG is the responded message type that reveals more
information about the peer’s liveness, we only select PONG.
All the weights in Equation (2) are summed up to be one.
We will further analyze the impact of the weight control in
the estimation performances in § IV. While the actual number
of peers connected is k, the estimation engine decides that
there are k̃ peer connections. Here, k̃ is not constrained to
integer. However, one can decide how to utilize the k̃, such
as computing the rounding number of k̃ and assuming the
rounding number the finalized estimated peer connection.

III. BITCOIN PEER AND CONNECTIVITY ESTIMATION
ENGINE IMPLEMENTATION

A. Prototype Implementations

We implement our Connectivity Estimation Engine proto-
type on a Bitcoin node running the Bitcoin Core (software ver-
sion Satoshi 0.18.0 and protocol version 70015). Our Bitcoin
node implementations are based on virtual machines (VM)

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS)

Authorized licensed use limited to: UNIV OF COLORADO COLORADO SPRINGS. Downloaded on May 02,2022 at 22:19:49 UTC from IEEE Xplore. Restrictions apply.

that have the same specifications using Linux Mint 19.2 Tina
(64-bit) with four processors and 6144 MB memory. We run
in private mode (have up to 10 connections and have limited
exposure to the Internet since it cannot be discovered by the
other peers from the Internet). The estimation for the public
Bitcoin nodes with 125 connections is left for future work. In
fact, similar operations and architecture can also be applied to
the public Bitcoin nodes. However, the public nodes that have
additional inbound peer connection have more unstable traffic
and require a more comprehensive analysis. In this work, we
focus on private nodes to better control the peer connections
and the networking traffic generated by our own peers. We
implement two Bitcoin nodes, including the node hosting our
estimation engine (X) and another attacking node (A). The
operation of A will be further demonstrated in § V-A. In this
section, we focus on no attack case for X . From our Bitcoin
peer X , we collect both the training data and the testing dataset
from the real-world Bitcoin Mainnet by controlling the peer
connections of X . For training, X connects to k number of
peers (0 ≤ k ≤ 10) on the Mainnet, and every training dataset
selects random k peers on the Internet due to the randomness
in the selected peers’ networking conditions.

IV. EVALUATION RESULTS

This section shows the experimental results about the esti-
mation performance and the cost-efficiency of our engine. Our
evaluation analysis builds on the prototype implementation.
We collect 1000 minutes of data for each dataset and divides
them into 800 minutes for training the references and 200
minutes for the testing purpose. For the 200 minutes of testing
data, we set Ttest = 20 minutes. In other words, we use ten
testing samples with each dataset. The ratio between training
and testing with 80% training and 20% testing is popularly
used [6]. Our work also aligns with this setting. All datasets
are separate and non-overlapping in time.

A. Estimation Metrics

We use two metrics, Mean Square Error (MSE) and ε-
Tolerance Accuracy, for evaluating the estimation perfor-
mance. Both MSE and ε-Tolerance Accuracy measure the
estimation accuracy; however, MSE is continuous, while ε-
Tolerance Accuracy is based on the discrete decision. More
specifically, MSE provides the raw error without discretization,
while ε-Tolerance Accuracy makes the discrete decision for
k̃ and derives the error based on |k̃ − k|. Because each
testing sample results in a decision that is either correct or
erroneous, the Accuracy = 1 − Pr[Error] where Pr[.] is
the empirical probability. We define the Error events to
incorporate a tolerance level of ε and call such accuracy ”ε-
Tolerance Accuracy.” More specifically, our estimation engine
allows the estimation to be off by ±ε, and Error occurs if
|k̃ − k| > ε.

B. Weight Control Schemes

Now, we introduce four weight control schemes we pro-
posed for EA. The first scheme is the Equal scheme using
equal weights. The second one is the Greedy scheme. We

examine the mean of k̃x to see which x provides the closest
mean to k and select it as a primary factor. We examine the
weight setting of wx from 0 to 1 with a granularity of 0.01.
The remaining weights are equally distributed to all the other
parameters. For instance, assume that wn is the first primary
factor. We examine which weight of wn can conduct the lowest
MSE; we directly fix the weight of wn with the lowest MSE.
And then, we select the next primary factor and make a similar
approach until we fix all the weights. The third scheme is
called Optimized scheme. We use an exhaustive search for this
scheme to examine the best weight setting obtaining the lowest
MSE. The efficiency of obtaining the optimized weight setting
by using exhaustive search should be exponentially increased
when the number of used parameters increases. However, we
only use five parameters in our scheme to obtain the result
within a reasonable time.

According to our observation, the parameters which are
useful for the lower peer connections might not still be
beneficial for the higher peer connections. Therefore, we
proposed the last 2Phases scheme. As the name indicates, the
2Phases scheme has two phases: i) the EA first classifies the
networking traffic being tested between low connectivity vs.
high connectivity and ii) then controls the parameter weights
to optimize the performances in that case. Specifically, we
separate them into the relatively lower peer connectivity case
(1 ≤ k ≤ 5) and higher peer connectivity case (6 ≤ k ≤ 10).
k = 0 produces zero networking traffic. The high connectivity
case presents a greater challenge because there are greater
peer connections, which will yield more randomness on the
Bitcoin traffic. For the first phase, we utilize Λ for the binary
classification. To be more specific, we compute the frequency
distribution references for lower and higher peer connectivity,
which are denoted as Λlow and Λhigh, respectively. These
references are computed by averaging the k cases, that is,
Λlow = (

∑i=5
i=1 Λi)/5 and Λhigh = (

∑i=10
i=6 Λi)/5. We then

compare the frequency distribution of the testing data, Λtest
with Λlow and Λhigh using the correlation coefficient ρ, simi-
larly to how we utilize the frequency distribution references for
the peer connectivity estimation. The first-phase classification
decides the low connectivity vs. the high connectivity by
choosing the case with the higher correlation ρ. For the second
phase, we optimize the weight control given whether it is the
low-connectivity or the high-connectivity. Note that we only
use the optimized approach for the two-phase to obtain a better
estimation accuracy, i.e., the lower MSE.

C. Estimation Performance

All the schemes associated with different weight settings
can all have the traffic analysis (TA) approach and the addi-
tional packet analyses (PA) approach, respectively. We denote
them as follows: Equal-TA, Equal-PA, Greedy-TA, Greedy-
PA, Optimized-TA, Optimized-PA, 2Phases-TA, and 2Phases-
PA. We measure all the above schemes to reveal the estimation
performances using different schemes. As shown in Fig-
ure 2(a), the accuracy performance is significantly improved
for PA compared to TA. To be more specific, the MSE for the

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS)

Authorized licensed use limited to: UNIV OF COLORADO COLORADO SPRINGS. Downloaded on May 02,2022 at 22:19:49 UTC from IEEE Xplore. Restrictions apply.

2Ph
ase

s-TA

Schemes

0

5

10

15
M
S
E

Ran
dom

Equ
al-T

A

Opt
imiz

ed-T
A

Gre
edy

-TA
Equ

al-P
A

Gre
edy

-PA

Opt
imiz

ed-P
A

2Ph
ase

s-PA

(a) Average MSE on All Schemes

1 3 42
Tolerance level,

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-T
ol

er
an

ce
 A

cc
ur

ac
y

2Phases-PA
Optimized-PA
Greedy-PA
Equal-PA

(b) ε-Tolerance Accuracy on PA

Fig. 2: Estimation Performance (”Random” corresponds to
randomly guessing k̃ from a uniform distribution)

PA approach was 2.2764 or lower, depending on the weight-
control algorithm. In contrast, the TA approach has MSE
performance greater than 12.2537. Undoubtedly, the Random
scheme makes a blind guess at k and therefore performs the
worst among all schemes. The Greedy-TA and Optimized-
TA have the same MSE. This is because there are only two
parameters in the TA approach. The operation for finding
the best weight setting of greedy and optimized schemes
is the same. One interesting observation is that 2Phases-TA
does not have a better result than Greedy-TA and Optimized-
TA. This is because these two parameters are not especially
sensitive to low/high peer connections. On the contrary, it
makes the estimation results worse due to the deficiency of the
comprehensive views for minimizing the error. However, in the
PA approaches, the additional used parameters are sensitive
to low/high peer connections. In this regard, the 2Phases
approach allows us to obtain a better estimation performance.

Figure 2(b) compares the performances of the estimation
schemes while varying ε from 1 to 4. We mainly focus on PA
schemes due to their superior performance compared to the TA
schemes. All schemes increase in the accuracy performances
when there is greater tolerance (increasing ε). The 2Phases-PA
scheme obtains a 97% 1-Tolerance Accuracy which is better
than other accuracy results obtained by all other schemes. The
Equal scheme does not attempt to optimize the weight but
uses equal weights. Therefore, it performs the worst accuracy
performance with only 37% in 1-Tolerance Accuracy.

D. Cost Analysis

We measure the cost of the time spent during the weight
control algorithms and the time spent on testing for Greedy-
PA, Optimized-PA, 2Phases-PA in Table. I. Even though the
costs on Optimized-PA, 2Phases-PA are significantly higher
than the greedy in the weight control stage, the estimation
accuracy for these two still outperform than the greedy one.
In other words, this is a trade-off between the estimation
performance and the pre-processing cost (i.e., Weight control).
If one wants to obtain a better estimation performance, the cost
of the exhaustive search might still be acceptable. More im-
portantly, such costs will only spend during the weight control
stage. We also check the cost spent during testing. Because
the 2Phases-PA needs additional operation in distinguishing
the low/high peer connections for the testing samples, it has

Estimation Aggregator: Greedy-PA Optimized-PA 2Phases-PA
Weight control algorithm 0.0474s 102.1649s 102.5622s
Testing 0.0787s 0.0825s 0.1057s

TABLE I: Cost Analysis among Different Schemes

a relatively high cost compared with the other two schemes.
In summary, we recommend using 2Phases-PA and Greedy-
PA for different purposes. If one aims for a better estimation
accuracy, 2Phases-PA is the best solution with the lowest MSE.
In contrast, if one aims for a decent estimation accuracy with
a less computational overhead, Greedy-PA provides a more
lightweight solution.

V. OUTLIER DETECTION FOR COUNTERING THREATS

We analyze the robustness of our connectivity estima-
tion engine in countering the worse-case networking failures
caused by the security threats. To simulate the failures caused
by security attacks, we simulate and prototype two attacks:
the man-in-the-middle attack (which is related to the recent
networking threats in blockchain such as Eclipse attack [7],
routing attack [8], and Erebus attack [9]. Specifically, our man-
in-the-middle attack builds on and uses Sybil attack for greater
threat impact. It also has the same effect as the Eclipse attack
from the receiver’s perspective since the attacker controls all
the traffic seen by the victim) and the DoS attack. In our
experiment, the threshold for õλ, α, is set to 0.5. The ratio
range β is set to β = [0.5, 1.5] for OD.

A. Prototyping

We prototype a man-in-the-middle attack where an attacker
A located between the victim X and the Bitcoin Mainnet.
All traffic communicated between X and the Bitcoin Mainnet
can be manipulated by A. Because we try to emulate the
worst case for X where k and k̃ has a large difference, the
man-in-the-middle attacker in our prototyping generates M
(the maximum peer connection of X) fake identities (Sybil
IPs) and links to the victim. Note that X only links to these
M peer connections controlled by the attacker A. If X tries
to link to some other peers, the attacker can manipulate the
traffic and make it unachievable. The above case should be
the most harmful case to the victim. In this scenario, if the
victim only utilizes the peer connection information provided
by the Legacy approach, the value should be totally different
from the health peer connection k. For ease of our exposition,
we denote the estimation provided by the Legacy approach as
k̃Legacy. In such a case, k should be zero and k̃Legacy = M
where M=10 in our experiment. In addition, the attacker will
not relay any packet from the Mainnet to the victim (to harm
the victim by restricting its information from the Mainnet) and
will not respond any message to X . However, X will send the
PING messages to all of its peers (controlled by A) to check
the liveness of the connections. The connection will be stopped
by X if A does not respond by the PONG message. In such a
case, if one of the connections is disconnected by X , A will
immediately establish a new connection to X with another
Sybil IP to maintain the worst case scenario.

We also prototype the PING DoS Attack especially using
the Bitcoin PING messages. The attacker A establish one

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS)

Authorized licensed use limited to: UNIV OF COLORADO COLORADO SPRINGS. Downloaded on May 02,2022 at 22:19:49 UTC from IEEE Xplore. Restrictions apply.

connection to the victim X . After the connection is estab-
lished, the attacker keeps sending Bitcoin PING messages to
the victim, trying to flood the victim’s memory or CPU usage.
In this scenario, X can still accept the information from the
Mainnet through other healthy peer connections. However, the
PING DoS flooding occupies the bandwidth of X and causes
slower healthy traffic received from the healthy peers.

B. Countering man-in-the-middle and DoS attack

We collect 20 samples with Ttest = 20 for both man-in-the-
middle attack and DoS attack, respectively, in this prototyping.
Our OD successfully detects the security threats among all 40
samples and sets the finalized k̃ for these samples as -1. In
contrast, if the victim uses the Legacy approach, k̃Legacy = 10
for all samples, i.e., the victim is not able to detect the threats.
We therefore incorporate OD into our estimation engine to
build robustness against threats causing abnormal outliers.

VI. RELATED WORK

For dynamic distributed network systems such as p2p net-
work, the connectivity reliability is of paramount importance
as a metric for the network system. In [10], Xiong and
Liu presented PeerTrust, a reputation-based trust supporting
framework, to estimate peers’ trustworthiness. Hao et al. [11]
presented a trust-enhanced blockchain p2p topology that accel-
erates the transmission rate and retains transmission reliability.
However, they focus on the reliability from the network-view,
whereas our work focuses on the host-view. The permission-
less property can make dynamic behavior even further and
decrease the reliability. Thus, we propose the connectivity
estimation engine to address the reliability concern.

Building on Sybil, Heilman et al. [7] propose a threat
on the bitcoin network where the attacker manipulates the
victim’s peer connections for controlling the information flow.
Such peer-connection control enables the attacker to control
the block/transaction information delivery to the victim, and
further launch selfish mining [12] or double-spending attack
[7]. Our work is robust against such identity control threats
because we estimate the connectivity from the peer itself and
use the networking traffic information (as opposed to the finer-
granular identifier-based or packet-based information). There
are some other network-based attacks in the bitcoin network,
such as routing attack [8], partitioning attack [9], and mempool
flooding [13], DDoS attack by spam transactions [14]. Those
attacks enabled by changing the normal traffic behavior, such
as increasing the per-message count rate, can possibly be
detected by our estimation engine. Our work mainly focuses
on the reliability issue raised by permissionless blockchain
networks by accurately estimating the health peer connections
and filtering out abnormal traffic.

VII. CONCLUSION

The permissionless blockchains such as those used for
Bitcoin and other cryptocurrencies forgo the reliance on a
centralized entity for providing the trust/registration and enable
anonymous and censorless transactions. However, the permis-
sionless nature of cryptocurrencies challenges the reliance on

peer identities because the peers can and are even encouraged
to use multiple identities for anonymity. In such environment,
the prior legacy approach for measuring and estimating the
peer connectivity by using the peer identifier information can
become ineffective, e.g., against identity manipulations. In this
paper, we propose a robust connectivity estimation engine by
analyzing the networking traffic and behaviors. Based on our
implementations, we recommend the 2Phases-PA scheme to
optimize the accuracy performance as it achieves 97% estima-
tion accuracy with a tolerance of one peer connection and has
the MSE of 0.18789. Moreover, we show the effectiveness of
our outlier detection (OD), especially against the networking
threats, and use it as a part of the estimation engine to enhance
the connectivity estimation.

ACKNOWLEDGMENT

This research was supported in part by Colorado State Bill
18-086 and by the National Science Foundation under Grant
No. 1922410.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Cryp-
tography Mailing list at https://metzdowd.com, 03 2009.

[2] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” 2014. [Online]. Available: http://gavwood.com/paper.pdf

[3] F. Ritz and A. Zugenmaier, “The impact of uncle rewards on selfish
mining in ethereum,” in Proceedings of the 2018 IEEE EuroS&P
Workshops, April 2018, pp. 50–57.

[4] S.-Y. Chang, Y. Park, S. Wuthier, and C.-W. Chen, “Uncle-block
attack: Blockchain mining threat beyond block withholding for rational
and uncooperative miners,” in Proceedings of the 17th International
Conference on Applied Cryptography and network Security, 2019, pp.
241–258.

[5] H. W. L., “On the kolmogorov-smirnov test for normality with mean
and variance unknown,” Journal of the American Statistical Association,
vol. 62, no. 318, pp. 399–402, 1967.

[6] Y. Ding, Y. Du, Y. Hu, Z. Liu, L. Wang, K. Ross, and A. Ghose,
“Broadcast yourself: Understanding youtube uploaders,” in Proceedings
of the ACM SIGCOMM Internet Measurement Conference, IMC, New
York, NY, USA, 2011, p. 361–370.

[7] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
bitcoin’s peer-to-peer network,” in Proceedings of 24th USENIX Security
Symposium (USENIX Security 15), Aug 2015, pp. 129–144.

[8] M. Apostolaki, A. Zohar, and L. Vanbever, “Hijacking bitcoin: Routing
attacks on cryptocurrencies,” in Proceedings of the 2017 IEEE S&P,
May 2017, pp. 375–392.

[9] M. Tran, I. Choi, G. Moon, A. V. Vu, and M. Kang, “A stealthier
partitioning attack against bitcoin peer-to-peer network,” in Proceedings
of the 2020 IEEE S&P, may 2020, pp. 515–530.

[10] L. Xiong and L. Liu, “Peertrust: supporting reputation-based trust for
peer-to-peer electronic communities,” IEEE Transactions on Knowledge
and Data Engineering, vol. 16, no. 7, pp. 843–857, 2004.

[11] W. Hao, J. Zeng, X. Dai, J. Xiao, Q. Hua, H. Chen, K. Li, and H. Jin,
“Towards a trust-enhanced blockchain p2p topology for enabling fast
and reliable broadcast,” IEEE Transactions on Network and Service
Management, vol. 17, no. 2, pp. 904–917, 2020.

[12] K. Nayak, S. Kumar, A. Miller, and E. Shi, “Stubborn mining: Generaliz-
ing selfish mining and combining with an eclipse attack,” in Proceedings
of the 2016 IEEE EuroS&P, March 2016, pp. 305–320.

[13] M. Saad, L. Njilla, C. Kamhoua, J. Kim, D. Nyang, and A. Mohaisen,
“Mempool optimization for defending against ddos attacks in pow-based
blockchain systems,” in Proceedings of the 2019 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), 2019, pp. 285–
292.

[14] J. Zhang, Y. Cheng, X. Deng, B. Wang, J. Xie, Y. Yang, and M. Zhang,
“Preventing spread of spam transactions in blockchain by reputation,”
in Proceedings of the 2020 IEEE/ACM 28th International Symposium
on Quality of Service (IWQoS), 2020, pp. 1–6.

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS)

Authorized licensed use limited to: UNIV OF COLORADO COLORADO SPRINGS. Downloaded on May 02,2022 at 22:19:49 UTC from IEEE Xplore. Restrictions apply.

		2021-08-25T13:50:41-0400
	Preflight Ticket Signature

