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Abstract—While the blockchain technology provides strong
cryptographic protection on the ledger and the system operations,
the underlying blockchain networking remains vulnerable due to
potential threats such as denial of service (DoS), Eclipse, spoofing,
and Sybil attacks. Effectively detecting such malicious events
should thus be an essential task for securing blockchain networks
and services. Due to its importance, several studies investigated
anomaly detection in Bitcoin and blockchain networks, but
their analyses mainly focused on the blockchain ledger in the
application context (e.g., transactions) and targets specific types
of attacks (e.g., double-spending, deanonymization, etc). In this
study, we present a security mechanism based on the analysis of
blockchain network traffic s tatistics ( rather t han 1 edger d ata) to
detect malicious events, through the functions of data collection
and anomaly detection. The data collection engine senses the
underlying blockchain traffic a nd g enerates multi-dimensional
data streams in a periodic manner. The anomaly detection
engine then detects anomalies from the created data instances
based on semi-supervised learning, which is capable of detecting
previously unseen patterns, and we introduce our profiling-based
detection engine implemented on top of AutoEncoder (AE). Our
experimental results support the effectiveness of the presented
security mechanism for accurate, online detection of malicious
events from blockchain networking traffic d ata. W e a Iso show
further reduction in time complexity (up to 66.8% for training
and 85.7% for testing), without any performance degradation
using feature prioritization compared to the utilization of the
entire features.

Index Terms—Blockchain, Bitcoin, P2P networking, traffic
analysis, anomaly detection, machine learning, semi-supervised
learning, online detection

I. INTRODUCTION

The blockchain technology is widely applied for many
application domains, including Internet of Things (IoT), trans-
portation, software engineering, and financial technology [1],
[2]. In particular, digital currencies such as Bitcoin [3] and
Ethereum [4] build on a distributed blockchain for manag-
ing transaction records, with the provision of computational
integrity through strong hash protection. A critical security
hole is, however, the underlying blockchain networking based
on peer-to-peer (P2P) communications that may not be pro-
tected by the computational cryptography. For instance, the
distributed consensus protocol, which is the core operation
in Bitcoin, takes place with little integrity and authenticity
support (e.g., in the form of cleartext) over P2P overlays.
Previous studies have also shown not a few vulnerabilities
of blockchain infrastructures against cyberattacks, such as
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distributed denial of service (DDoS) [5], Eclipse [6], [7],
spoofing [8], and Sybil attacks [9].

Anomaly detection has long been an active research topic
to keep track of the health of the system as the second
line of defense tool [10]. This function is essential to make
timely responses by detecting malicious actions if present.
Unlike the traditional rule-based detection that is limited
to known attacks due to the reliance on pre-defined signa-
tures, anomaly detection would be capable of discriminating
previously unseen attacks from permitted actions by char-
acterizing legitimate activity patterns. With its importance,
several studies investigated anomaly detection in Bitcoin and
blockchain networks, but their analysis mainly focused on the
blockchain ledger in the application context (e.g., transactions)
and targets specific types of attacks (e.g., double-spending,
deanonymization, etc) [11]-[15]. In this study, we take a
different approach based on the measurement and analysis of
blockchain network traffic traces (rather than ledger data) to
detect malicious events for securing blockchain networks. Our
work is also different from the traditional network anomaly
detection relying on connection data (e.g., KDDCup 1999 [16]
and UNSW-NB15 [17]), since what we are interested in is not
whether a connection between a pair of nodes is anomalous,
but whether the traffic exchanged between peer nodes contains
anything harmful. This is because the connection between
two blockchain nodes is regarded as an overlay link used
to exchange application data (e.g., for broadcasting Bitcoin
messages).

In this paper, we present a security mechanism that offers
accurate, online anomaly detection from blockchain network
traffic data. Our security mechanism consists of two main
components of data collection and anomaly detection. The
data collection engine senses the underlying blockchain traffic
and generates data streams to be analyzed in a periodic manner
(e.g., one sample per second). We define a set of features to
capture the blockchain traffic characteristics (e.g., number of
packets/bytes and their differences over time), which facilitates
data-driven analysis. We introduce our prototype system that
creates data instances by sensing blockchain traffic from the
real-world Bitcoin network (Mainnet), with a collection of
datasets for both normal and attack vectors used for the
learning and evaluation.

For designing the anomaly detection engine, our primary
considerations are placed on accuracy and time complexity.
We first aim to design an anomaly detection model yield-
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ing sufficiently high detection rates while minimizing false
positives. Time complexity is a crucial concern for greater
scalability with minimal resource usage. This is particularly
critical for the testing (as opposed to the training that can
be done beforehand with plenty of computing resources often
with a relaxed time constraint) to enable real-time detection of
threats, which is a key requirement to make timely responses
that protect the system. With these considerations, we take a
semi-supervised learning approach based on the profiling of
normal activities, which is practical compared to a supervised
learning approach that requires the collection of a wide variety
of attack vectors with laborious tasks for labeling data with in-
depth domain knowledge. Our anomaly detection scheme also
contains feature prioritization to optimize training and testing
time complexities without any significant performance loss.

Contributions. The key contributions of this paper can be
summarized as follows:

o We introduce our data collection scheme with the im-
plemented prototype system that collects the traffic from
the real-world Bitcoin network (Mainnet). The collected
traffic is sanitized and transformed into a data instance,
and we define a set of features to represent traffic charac-
teristics for a given time interval (Table I). We also collect
simulated attack traffic generated in an isolated setting
disconnected from the regular service for the evaluation.

o We present our anomaly detection scheme based on a
semi-supervised learning approach with the capability for
detecting previously unseen patterns through one-class
learning. We introduce our detection engine implemented
on top of AutoEncoder (AE) for profiling background pat-
terns. The anomaly detection procedure is also discussed
with the description of the core functions.

o We evaluate the presented security mechanism using both
real and simulated traffic data and report our experimental
results with the metrics of detection performance and
time complexity. We also examine the impact of packet
counting and bandwidth features, the result of which
shows the approximate detection performance with a
signification reduction of time complexity. A comparison
study is conducted with other ML models (including both
supervised and semi-supervised) to validate the effective-
ness of our design choice based on the AE structure.

The organization of this paper is as follows. Section II pro-
vides the background of blockchain networking with the secu-
rity challenges and a summary of related studies, In Section III,
we introduce the prototype system for data measurement and
the detailed description of the dataset are introduced, and Sec-
tion IV presents our anomaly detection scheme based on AE
with the description of the procedure, and Section V evaluates
the proposed scheme in diverse settings with the comparison
study with other ML-based detection techniques. We conclude
our presentation with future directions in Section VI.

II. BACKGROUND AND RELATED WORK

Digital Currency such as Bitcoin builds on a distributed
blockchain to forgo a centralized third party (the bank) in

storing and processing financial transactions. Blockchain se-
cures the integrity of financial transactions by using the digital
signature to track the owner account of the currency and by
using the hash function to build dependency/chain across the
blocks forming an immutable ledger. In the meantime, the
underlying blockchain networking based on P2P communica-
tions lacks the security protection of the source node integrity
or authentication because it is permissionless where there is no
control in trust and identity registration (which can otherwise
be used to control and limit the participation of P2P nodes).
Due to the lack of protection, digital currency blockchain
networking is vulnerable to attacks, such as DDoS attack
[18], Eclipse attack [6], and double-spending attack [19].
In particular, Eclipse provides the attacker the capability of
completely controlling the victim’s view of the blockchain
network and of forgoing the application-layer mechanisms
to protect transaction integrity (e.g., double spending and
selfish mining). Our work is motivated with the lack of
protection for blockchain networking and designs an anomaly
detection method as a means to secure the underlying Bitcoin
networking.

There have been several studies investigated data analysis
and detection problems in the Bitcoin environment using ML
and statistical approaches and we next provide a summary of
the previous studies closely related to our work.

Un-/Semi-supervised ML for Blockchain. Hirshman et
al. [20] utilized clustering to detect anomalous behaviors from
the Bitcoin transaction data in an unsupervised manner. Bager
et al. [12] also applied k-means clustering to detect spam
transactions for DoS attacks on Bitcoin. These unsupervised
techniques would not be suitable for online detection as
clustering often assumes a batch processing after collecting
a sufficient amount of transaction records. The work of
squirRL [21] used a deep reinforcement learning approach to
detect attack activities in blockchain but focused on incentive
mechanisms, including selfish mining and block withholding
attacks in Bitcoin. The study in [22] employed a semi-
supervised learning approach using One Class-Support Vector
Machine (OC-SVM) for anomaly detection in the Bitcoin
network. While closely related to our work, the focus of this
previous work is to detect suspicious nodes and transactions
by analyzing Bitcoin transaction data (rather than analyzing
blockchain traffic to detect potential attacks). Our experimental
result also shows that OC-SVM would not be a feasible option
with unacceptable performance and highly expensive time
complexities for both training and testing, as will be discussed
in Section V.

Supervised ML for Blockchain. Another class of studies
employed supervised ML techniques for blockchain anomaly
detection. Yin and Vatrapu [13] studied cyber crimes in the
context of Bitcoin transaction data and evaluated a set of
conventional supervised ML classifiers. Harlev et al. [23]
discovered unidentified entities on the Bitcoin network us-
ing supervised ML classifiers. Tang et al. [14] presented
a deep learning approach for classifying behavior patterns
which are defined by the amount of the sequence data of
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transaction between peers. Sayadi et al. [15] used SVM to
detect anomalies in Bitcoin transactions and also applied the
k-means clustering to group similar outliers. In this work,
we are more interested in a semi-supervised approach since
supervised methods require both normal and attack instances
for creating ML models, which may be infeasible in practice
to collect samples for a wide variety of attack vectors (and it
is impossible to obtain samples for emerging ones).

Statistical Analysis for Blockchain. Several studies con-
ducted statistical analysis on Bitcoin transaction traffic. Ron
and Shamir [24] performed analysis on the statistical proper-
ties of the Bitcoin transactional graph. Koshy et al. [25] col-
lected the real-time transaction traffic and analyzed the data to
create the mapping between Bitcoin addresses to IP addresses.
Neudecker and Hartenstein [26] analyzed the P2P network
traffic to see whether it is useful in the deanonymization of Bit-
coin users. Biryukov and Tikhomirov [27] focused on the prop-
agation timing information and clustering-based mechanism
using such information for the Bitcoin user deanonymization.
The main focus in these studies is on deanonymizing Bitcoin
users through the statistical analysis on Bitcoin transaction
traffic.

Overall, previous studies rely on the chained block data
(e.g., transaction ledgers) with the knowledge of the appli-
cation context to detect specific types of attacks. Our work
in this paper focuses on blockchain networking traffic and
detects malicious events through the analysis of the statistical
information characterized from the underlying traffic data.

III. DATA COLLECTION AND PROTOTYPING

The data collection plays an essential role to facilitate the
anomaly detection process by capturing statistical characteris-
tics of blockchain traffic. In this paper, we focus on the most
typical digital currency of Bitcoin to prototype and evaluate
our security mechanism for anomaly detection. Nevertheless,
our anomaly detection engine is generally applicable to any
P2P-based blockchain networking applications where the peer
relays and communicates to other fellow peers. In this section,
we first present our Bitcoin core node implementation for data
collection, and then provide a summary of our dataset with the
description of the features defined.

A. Bitcoin Node Prototype

An active Bitcoin node is implemented for data collection
using the Bitcoin core setup (software version Satoshi 0.18.0
and protocol version 70015). The Bitcoin core implementation
has 26 Bitcoin message types for carrying out communication
between peers. The Bitcoin node is assigned by a private IP
address and maintains up to eight peer connections (which
is configurable). The node initiates those connections (i.e.
outbound connections) to the peers on the Bitcoin Mainnet as
a private node. The Bitcoin node hosts our anomaly detection
engine, as well as performing data collection.

We also implement another node (“simulated node”) for
simulating attacks, which connects to our Bitcoin node but
never connects to the Bitcoin Mainnet. Thus, the simulated

TABLE I
DESCRIPTION OF FEATURES (FEATURE 2—11 ARE COLLECTED FOR EACH
MESSAGE TYPE.)

Index| Feature Description
1 ClocksPerSec The clock cycles cost per second by the
node
2 #m The number of m messages received in all
3 # m Diff The number of m messages received for
current logging entry
4 #m ClocksSum | The aggregate clocks cost for processing the
Diff messages of m for current logging entry
5 # m ClocksAvg | The average clocks cost for processing the
Diff messages of m for current logging entry
6 m ClocksAvg The average clocks cost for processing the
messages of m
7 m ClocksMax The maximum clocks cost for processing
the messages of m
8 m  BytesSum | The aggregate Byte size of the messages of
Diff m for current logging entry
9 m  BytesAvg | The average Byte size of the messages of
Diff m for current logging entry
10 m BytesAvg The average Byte size of the messages of
m
11 m BytesMax The maximum Byte size of the messages of
m

attacks will never exfiltrate from our testnet to the public
network. More specifically, the Bitcoin node is connected to
both the peer nodes from the Bitcoin Mainnet (outside of our
control) and the simulated node we control for generating the
attacking traffic. For this, our Bitcoin node has one connection
to the simulated node and the rest of the connections to the
Bitcoin Mainnet.

B. Data Collection and Feature Extraction

The Bitcoin node described above senses blockchain traffic
from the peer connections and generates the relevant statistical
information in a periodic manner. Since a fine-grain collection
in a too short time interval may be unstable with potential
inaccuracies, we set the collection interval to one second by
default (i.e., one instance per second).

We define a set of features to represent the captured traffic.
Our data collection is not based on TCP connections but is the
aggregated statistical traffic information within the predefined
time interval. Table I shows a list of features defined in this
study to characterize blockchain traffic. In the table, feature #1
is common, while the other features (from #2 to #11) are spe-
cific to each message type. We use m € M where M is the set
of 26 Bitcoin message types'. For example, m = VERSION
while M = {VERSION,INV,TX,SENDCMPCT,...}. Since
ten features are defined for each message type, there exist
260 features for the entire message types in total. As can be
seen from the table, the defined feature set includes packet
counting and bandwidth variables in addition to clock-related
variables.

For actual data collection, the samples for the Normal
dataset were collected by our prototype node through its
natural connections to the Bitcoin Mainnet, which was then
sanitized by manual inspection. We do not attempt to dis-
tinguish between the peers (those providing large traffic vs.

Thttps://developer.bitcoin.org/reference/p2p_networking.html
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TABLE II
DATASET DESCRIPTION

Dataset Description Threat
Normal Regular networking from Bitcoin Main- | None (sanitized)
net
Abn-Ip Abnormal with only 1 peer connection | Eclipse
Abn-Syn Abnormal with continuous synchro- | Eclipse
nization
Abn-DoS Abnormal under flooding-based DoS DoS

the others with lower networking traffic) and do not arti-
ficially select the peers (e.g., to filter those which do not
relay as much). Therefore, there is no guarantee that all the
peers connected to the prototype node are well-connected.
Our approach, however, is more representative of the normal
connections made by a Bitcoin node on Mainnet using random
peer selections and our prototype node connects to the Mainnet
using the default setting. To provide greater samples to smooth
out the randomness across the connected peers, we re-select
and re-connect using the Bitcoin-default random peer selection
every 50 minutes or every five block arrivals in expectation.

We also collect attack traffic for DoS and Eclipse for
the purpose of evaluation using our simulated node. The
simulated flooding traffic provides the Abnormal-DoS dataset
(Abn-DoS). The Eclipse attack simulation generates the other
two abnormal cases. The Eclipse attacker simply limiting the
peer/networking diversity of the victim but otherwise relaying
the blocks/transactions yields the case of abnormal with only
1-peer connection (Abn-1p). Alternatively, the Eclipse attacker
controlling and delaying the block relay timing for selfish
mining and block withholding (as opposed to sharing the
blocks as they arrive) yields the case of abnormally busy with
continuous synchronization (Abn-Syn). The above mentioned
datasets as well as their related threats are described in
Table II. Finally, the total number of data instances collected
in this study is 639,360 entries (i.e., spanning over 7.4 days),
and 39.4% of the data belong to Normal (see Table III).

In this work, we focus on Bitcoin implementation for
prototyping and experiments. Nonetheless, the work is gener-
ally applicable to permissionless P2P networking applications
including other cryptocurrencies in principle, as our traffic
analyses use the standard networking parameters/features and
only distinguish the message types. Targeting other cryptocur-
rency implementations such as Ethereum would require fine-
tuning the features (while building on most of the generic
P2P-networking features) and re-training the model so that it
matches the base implementation and the Normal profile based
on the targeted implementation. More implementation-specific
studies, including identifying especially potent features for se-
cure anomaly detection and exploring application-layer deep-
packet inspection approaches, are left for future work.

IV. ANOMALY DETECTION SCHEME

A. Our Scheme Approach

This paper tackles the detection of anomalies in a per-
missionless blockchain network for digital currencies using
an ML approach. Semi-supervised learning constructs the

Decoder
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Fig. 1. AutoEncoder structure: AE consists of the encoder compressing the
input and the decoder restoring the compressed representation. This structure
shows a mixture of ReLU and tanh activation units as an example.

learning model based on the profiling of background char-
acteristics [10]. To design anomaly detection, therefore, the
semi-supervised approach is advantageous since it is less com-
plicated to collect instances for modeling legitimate patterns,
compared to ones for malicious events given a wide variety
of attack vectors that may be dynamically evolving, including
previously unseen zero-day networking exploits. We take the
semi-supervised learning approach to realize our anomaly
detection engine in this study.

One-class Support Vector Machine (OC-SVM) and AE (and
its variants such as Variational AutoEncoder) are well-known
ML algorithms that have been utilized for implementing semi-
supervised learning. As its name suggests, OC-SVM is a
variant of Support Vector Machine (SVM). Despite its popular
use, a potential weakness of OC-SVM is that it is sometimes
working unstably if the dataset contains outliers and multi-
dimensional features [28], [29]. Moreover, its complexity is
substantial, which would be a critical obstacle to employ it
for time-sensitive operations. Hence, it may not be a good
candidate to analyze our dataset, which is complex with
high dimensionality, with the real-time detection requirement.
On the other hand, AutoEncoder (AE) is based on a neural
network structure, with an encoder that learns a representation
of data for dimension reduction and a decoder that learns
how to reconstruct the input with the minimized reconstruction
error [29], [30]. Our comparison study shows that AE is more
accurate and much lighter than OC-SVM for both learning and
testing (as will be discussed in Section V-D), and we develop
our anomaly detection function on top of AE.

There exist several different variants of AE, such as denois-
ing AE (DAE), convolutional AE (CAE), and variational AE
(VAE), which have been considered for traditional network
anomaly detection [30]-[32]. For instance, VAE has been
adopted in several studies [30], [31], while some of recent
studies utilized the vanilla AE for the same purpose [33]-
[35]. VAE is known as a powerful generative method by
using a probabilistic model such as Guassian distribution for
internal representation. VAE relies on reconstruction proba-
bility (rather than reconstruction error), which indicates the
probability that the instance in question originated from the
trained distribution. This probability information is indeed
helpful for scoring anomalies as a quantitative measure. But
if the detection process performs classification based on the
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Fig. 2. Anomaly detection procedure: (1) Profiling constructs a learning model
from normal samples; (2) Threshold set-up discovers a threshold value to
discriminate anomalies; and (3) Anomaly detection tests the data point in
question to determine whether it is normal using the threshold.

reconstruction probability, a data instance lower than % from
the probability density (e.g., <5%) would be regarded as
an anomaly as previous studies assumed, which results in
approximately a 2% false positive rate if the model is trained
with normal samples. A high rate of false positives is critical in
practice considering the base-rate fallacy. Note that we train
the detection model using the sanitized normal samples as
described in Section III-A. With the standard AE, setting up
the threshold to discriminate anomalies from normal would
be relatively straightforward based on the distribution of the
reconstruction errors measured with the training samples [35].
Any data instance showing a negligible error lower than the
threshold will then be marked as ‘normal’ and vice versa. In
this study, we utilize AE to design our detection engine.

B. Anomaly Detection using AutoEncoder

We introduce the standard AE structure as the foundational
element of our scheme, and present our anomaly detection
procedure in detail with the core functions.

Fig. 1 illustrates an example of a stacked AE structure
composed of the encoder and the decoder with multiple
hidden layers internally. The encoder compresses the input
data, transforming input (x) into a compressed representation
(z'): x — 2’ and dim(z) > dim(z’), where dim(v) stands
for the dimension of variable v. The decoder performs the
reversal operation and restores the compressed representation
(z') to an expanded representation (z”'): ' — 2" and dim(x)
== dim(z"). Here, reconstruction error (¢) is defined as the
difference between the input and the restored representation:
€ = | — 2”|. Hence, € = 0 indicates a loss-less compression.

The learning process performs in a way to decrease the re-
construction error in the profiling time. The activation function
is a component that determines the output of a neural network,
and ReLU and tanh are well-known units for activating [36].
The figure shows the use of ReLU and tanh for the activation
function as an example. There can exist different settings to set
up a learning model by configuring hyperparameters, and we
will discuss the configuration of AE used for our experiments,
shortly with Table IV in Section V. Finally, AE reconstruction
errors calculated from normal samples can be used to perform
anomaly detection; that is, certain data points having relatively
high errors could be assumed that it is not from the normal
class.

C. Anomaly Detection Procedure

We next describe the details of the anomaly detection
procedure based on AE. Fig. 2 summarizes the procedure of
anomaly detection, consisting of three stages, as follows:

TABLE III
NUMBER OF INSTANCES IN TRAINING AND TESTING FILES

Normal | Abn_Ip | Abn_DoS | Abn_Syn
Training (80%) | 201,600 | 124,356 130,412 55,120
Testing (20%) 50,400 31,089 32,603 13,780
TABLE IV
AE MODEL PARAMETER SETTING

Parameter Setting

No. layers {2, 4,6, 8}

Activation {ReLU, tanh, Mix (of ReLU & tanh)}

Loss default (MSE)

Learning rate | default (0.001)

Epochs No. layers x 25

Batch size 100

Optimizer Adam

1) Profiling: This stage fully utilizes the AE learning
process, and a learning model is created from normal
samples provided for training. We will examine different
AE settings by applying different parameters.

2) Threshold set-up: In this stage, the density of recon-
struction errors is analyzed by re-applying the training
samples to the learned model (validation), in order to
discover a relevant value for threshold (7). A set of AE
models based on different configuration parameters are
compared based on the resulted distributions. We will
investigate the impact of threshold settings on detection
performance.

3) Anomaly detection: This stage actually tests the data
point in question using the threshold discovered in
the previous stage. A commonly accepted assumption
is that reconstruction errors for normal instances are
relatively low compared to anomalies. For a data point
d;, the reconstruction error ¢; is calculated by using
the constructed learning model (in Profiling). Then the
anomaly detection function determines d; is normal if
€; < T, anomalous, otherwise.

V. EVALUATION

In this section, we first describe our experimental setting,
and then report the experimental results with the metrics of
detection performance and time complexity. We also examine
the impact of packet counting and bandwidth features, which
would be crucial for optimizing time complexity. The proposed
AE model will be compared to other candidate ML models
based on semi-supervised and supervised approaches.

A. Experimental Setting

The experiments were conducted on a job submission-based
HPC system. The CPU type in the system is Intel(R) Xeon(R)
CPU E5-2698 v3 @ 2.30GHz. The system allocates 64 cores
to individual jobs by default.

The dataset is partitioned for training and testing: first 80%
of the dataset for training (to build a learning model), and
the rest 20% of the dataset for testing (to classify one into
either normal or anomaly). Table III shows the composition
of training and testing datasets with the ratio of 80%:20%.
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Fig. 3. Performance details over threshold (for the model with two layers
and tanh): TNR and FPR show the perfect result (i.e., TNR=100% and
FPR=0%) across the threshold range, whereas TPR and FNR cross over at
around 7 = 0.04 due to the incorrect classification of anomalies to normal.

For semi-supervised learning, profiling is conducted with the
normal data only, which means that attack instances in the
training set are not used in the learning phase. In contrast,
supervised learning relies on the entire samples in the training
set (including both normal and attack instances) to create a
learning model.

To measure detection performance, we use the standard
metrics of accuracy and FI score defined: Accuracy =
% and F1 score %, where
TP=true positives, FP=false positives, FN =false negatives,
and TN=true negatives. Accuracy is widely used but could
be biased if the population of the minority class (i.e., either
normal or anomaly) is too small. In contrast, F1 score is known
to be more reliable to the class imbalance problem. As can be
seen from Table III, our dataset is not significantly biased and
we observed mutually agreed results by the two metrics. For
measuring time complexity, the same experiment is executed
twice with an interval of two weeks and the smallest cost is
selected to be reported.

To configure ML parameters, we examined a set of AE
settings with different parameter values in our preliminary ex-
periment. Table IV shows the parameter space considered for
our experiments. We observed that t anh works slightly better,
while configuring a greater number of layers is not helpful to
lower reconstruction errors but increases the training time sub-
linearly. From the initial observation, we set activation=t anh
and # layers=2 as the default configuration. Additionally,
the number of neurons for each layer is simply chosen in
proportion to the number of features in the dataset (dim(F),
where F' is the input feature set), based on the following
rule: the first layer for encoder = dim(F)/2, the second
and subsequent = dim(F')/3, the size of the compressed
representation = dim(F')/4, and vice versa for decoder (i.e.,
symmetric). Although more a rigorous examination would help
discover optimal configuration settings, our interest in this
study is not in the optimization of ML models and we leave
it as one of future tasks.

B. Anomaly Detection Performance

We now report the detection performance of the proposed
AE-based anomaly detection model. Fig. 3 shows true positive
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Fig. 4. Detection accuracy for individual classes (using the model with two
layers and tanh)
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Fig. 5. Impact of counting and bandwidth features (# layers = 2 and
activation=t anh): Param 3 shows highly consistent results, while Param 1
utilizing a too small number of features shows unacceptable performance.
Param 2 works better than Param 1 but shows some degraded performance
at the early stage.

rate (TPR; actually anomaly and classified to anomaly), true
negative rate (TNR; actually normal and classified to normal),
false positive rate (FPR; actually normal but misclassified to
anomaly), and false negative rate (FNR; actually anomaly but
misclassified into normal) when using the model configured
with two layers with the tanh unit. The figure shows the per-
fect result for TNR and FPR (i.e., TNR=100% and FPR=0%)
across the threshold range, which confirms the entire normal
instances are classified correctly. However, TPR and FNR
cross over at 7 = 0.04 because certain anomalies (having
relatively low errors) are incorrectly classified and assumed as
normal. The result indicates the available value range for the
threshold is not narrow and tight.

By looking at the break-down of the accuracy based on
individual classes in Fig. 4. The normal instances (Normal)
is always correctly classified, while the attack classes show
the degraded performance as we choose a greater value to set
the threshold. The Abn-1p instances begin to be misclassified
when 7 > 0.04. To see at what point the other two classes
(Abn-Syn and Abn-DoS) become misclassified, we extend the
threshold setting to 0.1. The figure shows that reconstruction
errors for those two attack classes are considerably large.
This indicates Abn-Ip instances are closer to Normal than the
instances belonging to the other two attack classes.
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C. Impact of Counting/Bandwidth Features

We are interested in investigating the impact of the features
related to packet counting and bandwidth with their wide use
in network security and traffic analysis [37], [38]. Hence, this
investigation is connected to feature selection that discovers
relatively more important features [39]-[41]. If successful,
the learning performance resulted with the chosen feature
subset would approximate to the original (observed without
performing reduction) or even better with a reduced time
complexity for training and testing. In this study, we focus
on the following three variables related to the packet count-
ing and bandwidth: #m (Index=2), #m Diff (Index=3), m
BytesAvgDiff (Index=9), where the index comes from Table I.
Since there are 26 usable message types (as described in
Section III), the use of a single variable means the utilization
of 26 features (i.e., one feature for each message type). We
compose the following feature groups:

e Param I: Use a single variable of #m for each message
type (26 features in total; 26/261~<10%)

e Param 2: Use two variables of #m and #m Diff for
each message type (52 features in total; 52/261~20%)

e Param 3: Use all three variables for each message type
(78 features in total; 78/261230%)

e Param 4: No reduction applied (default=100%)

Fig. 5 shows the impact of the counting and bandwidth fea-
tures on detection performance. As can be seen from the figure,
utilizing a too small number of features shows completely
unacceptable performance in Param I, while Param 2 works
better but shows some degraded performance at the early
stage. From the figure, Param 3 works well consistently when
7 < 0.03. Again, Param 3 defines a subset of features related
to packet counting and bandwidth variables widely used in the
networking traffic analyses. In fact, Param 3 filters out some
redundant features that can be derived from other features in its
set. By referencing a smaller number of features, Param 3 can
reduce time complexity for executing the detection function
without any performance loss, compared to Param 4 relying on
the entire features defined in Section III, as will be discussed
shortly.

D. Comparison with Other ML Methods

We compare our proposed scheme with other ML-based
anomaly detection techniques. As mentioned, we consider
OC-SVM for profiling normal behaviors with its popular use
for that purpose. We also examine conventional supervised
learning techniques widely utilized for anomaly detection.
The supervised learning approach could be advantageous in
the presence of both normal and attack instances with the
associated label information in the training dataset. However,
obtaining samples for a wide variety of threats is not a trivial
task requiring arduous manual work to simulate such attacks
in a highly controlled setting by skilled experts. Even more
critically, supervised learning has an intrinsic weakness of
the detection of unseen attack classes (due to the lack of
the adequate information to discriminate them in the learning
model).

TABLE V
PER-INSTANCE TRAINING AND TESTING COMPLEXITIES

ML Training cost (msec) | Testing cost (usec)
algorithm Param 4 | Param 3 | Param 4 | Param 3
OC-SVM 79.9 26.5 324457 9782.4

LR 0.029 0.015 3.14 0.45

GB 0.59 0.19 5.38 2.28

RF 0.036 0.036 6.25 4.28

DNN 1.20 1.03 17.5 8.74

AE (proposed) 1.00 0.63 28.7 20.8

The ML algorithms considered in this comparison study
include One Class Support Vector Machine (OC-SVM), Logis-
tic Regression (LR), Random Forest (RF), Gradient Boosting
(GB), and Deep Neural Network (DNN). The detailed descrip-
tion of the algorithms can be found from [42]. Again, we basi-
cally utilize the default setting without intensive optimizations
for individual ML models, since the optimization is not one of
the main interests in this study. Here is a brief description of
the configuration setting. We utilize LR and OC-SVM with no
further specific settings. For GB and RF, we used 100 trees,
respectively. The hyperparameter configuration for DNN is as
follows: 4 hidden layers with ReLU for activation, sigmoid
for output layer activation, 0.2 for dropout, 50 for epochs,
0.001 for learning rate, binary cross-entropy for loss, 100 for
batch size, and Adam optimizer.

Fig. 6 compares the ML models including our proposed
detection model, with respect to detection performance in F1
score, training time, and testing time when using different
feature groups (from Param 1 to Param 4). As can be seen
from the figure, OC-SVM is not a good option showing poor
performance (less than 70% F1 score). Largely, the supervised
learning models perform very well if the feature set used is not
too small (i.e., other than Param 1), showing almost perfect
detection performance when using Param3 and Param 4. Our
AE model is configured with two layers, tanh for activation,
and threshold 7 = 0.02, and it shows comparable performance
consistently when using any feature sets other than Param 1.
Again, the ML models other than OC-SVM and AE are based
on the supervised learning approach that requires both normal
and anomalous samples for training with the associated label
information.

The training and testing complexities incur overheads in
anomaly detection, and hence, managing those complexities
is a crucial task for scalable processing in data analytics.
In particular, the testing time is critical to realize the real-
time detection. Fig. 6(b) and Fig. 6(c) show the time taken
for training and testing, respectively. OC-SVM is hugely
expensive for both training and testing. The training cost for
AE is cheaper than DNN and comparable to GB. The testing
cost for AE is slightly larger than ones for the supervised
models. Again, AE refers to the normal samples for training
(that includes both profiling and validation), while supervised
learning needs the normal and attack samples for training
(which includes learning only without validation); the equal
number of data points are tested in the testing phase.

For further analysis, Table V provides the per-instance
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Fig. 6. Comparison of anomaly detection performance and time complexity: (a) AE is comparable to the supervised ML models, while OC-SVM shows
poor detection performance; (b) The training cost for AE is cheaper than DNN and comparable to GB; (c) The testing cost for AE is slightly higher than the

supervised models but significantly lower than the cost for OC-SVM.

analysis required for training and testing. As the training
cost is generally much more expensive, the metric of training
time reported in the table is milliseconds (msec) and testing
time is in microseconds (usec). The table also shows the cost
when referencing the entire features (Param 4) and a subset
of features (Param 3) yielding the approximate detection
performance. We can see that the training complexity is several
orders of magnitude greater than the testing complexity. The
max saving is 66.8% for training (with OC-SVM) and 85.7%
for testing (with LR).

From Table V, the AE model requires 28.7 usec to test
one instance. Given the use of 64 cores in our experiment,
it may take less than 1.9 msec even on a machine with a
single core for a single test. In case of Param 3, our detection
scheme requires 52.8 usec for a single test (or <1.4 msec in
case of the use of a single core). The cost range for testing,
which scale is in msec or lower, is significantly lower than the
sensing granularity (monitoring and logging every second) or
the time-window size of the testing (processing and testing
20 minutes long data). The time cost of running our anomaly
detection is therefore sufficiently cheap to perform real-time
analysis. Our previous work analyzes the feasibility and cost
in greater details with a focus on the ML detection algorithms’
system impact on mining [43]. Further systems investigation to
control the networking parameters, analyze the corresponding
implementation costs, and compare them with the frequencies
of the networking attacks and defense on Bitcoin or other
blockchains are left for future work.

VI. CONCLUSIONS & FUTURE WORK

This paper presents a security mechanism capable of detect-
ing anomalies from the underlying blockchain network traffic
statistics focusing on cyberattacks on Bitcoin. We introduced
our data collection scheme with the implemented prototype
system that senses blockchain networking traffic and creates
multi-dimensional data streams in a periodic manner. Our
anomaly detection scheme is based on the semi-supervised
learning approach that is practical and resistant to unseen
threats through the profiling of background legitimate pat-
terns, and we presented our detection engine based on AE
as a realization of semi-supervised learning. We conducted
experiments using the real dataset collected from the public

Bitcoin network (Mainnet) with a set of simulated attack
traces. The experimental results showed that our presented
security mechanism is effective for accurate, online detection
of malicious events from blockchain networking traffic data.
In addition, our profiling-based detection engine implemented
on top of AE yields comparable or even better performance
for detecting anomalies than other candidate models based on
semi-supervised (OC-SVM) and supervised (LR, GB, RF, and
DNN) approaches. We also measured time complexity for the
detection function, and the cost range for testing is at least an
order of magnitude smaller than the sensing granularity, which
enables real-time operations for detecting anomalies. More-
over, our experimental results showed a significant reduction
of time complexity (up to 66.8% for training and 85.7% for
testing), without any performance degradation using feature
prioritization compared to the utilization of the entire features.

Our work aims to secure blockchain networking but focuses
on the specific networking application of the blockchain-based
digital currency in Bitcoin. While there is a surge of recent
blockchain research to secure the application layer (including
the cryptographic primitives and the distributed consensus
protocol), the security study in the blockchain’s underlying
P2P network is relatively lacking and largely relies on those
provided in the general networking context. We aim to address
such gap and provide a Bitcoin-focused study to facilitate
further research in securing the networking of blockchain.
There are many potential future research directions to address
the important problem, including the construction of the active
security measures and responses after using our anomaly
detection, the improvement of our anomaly detection scheme
such as the ML algorithm improvement or optimization, and
the systems investigation incorporating our scheme to the full
operational flow of a blockchain peer node.
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