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ABSTRACT

Data fusion techniques have gained special interest in remote
sensing due to the available capabilities to obtain measure-
ments from the same scene using different instruments with
varied resolution domains. In particular, multispectral (MS)
and hyperspectral (HS) imaging fusion is used to generate
high spatial and spectral images (HSEI). Deep learning data
fusion models based on Long Short Term Memory (LSTM)
and Convolutional Neural Networks (CNN) have been devel-
oped to achieve such task.

In this work, we present a Multi-Level Propagation Learn-
ing Network (MLPLN) based on a LSTM model but that can
be trained with variable data sizes in order achieve the fu-
sion process. Moreover, the MLPLN provides an intrinsic
data augmentation feature that reduces the required number of
training samples. The proposed model generates a HSEI by
fusing a high-spatial resolution MS image and a low spatial
resolution HS image. The performance of the model is stud-
ied and compared to existing CNN and LSTM approaches by
evaluating the quality of the fused image using the structural
similarity metric (SSIM). The results show that an increase
in the SSIM is still obtained while reducing of the number of
training samples to train the MLPLN model.

Index Terms— Hyperspectral image, Multispectral im-
age, Long Short Term Memory, Data fusion, Deep learning

1. INTRODUCTION

Remote sensing is experiencing rapid growth of different sen-
sor technologies available at different scales fueled in part by
new satellite system deployments that contain different opti-
cal sensors designs. As a result, these systems are capable
of collecting spectral and spatial measurements. Moreover,
a sensing system is characterizing by three main resolution
domains: spectral, spatial, and temporal. It follows, then the
quality of information gathered by a sensor is associated with
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its resolution domain. Design choices such as application
type, size, weight, and costs affect the resolution that each
sensor has across the different domains. Trade-offs associ-
ated with these choices limit high-quality information to one
or two resolution domains in sensor systems. For example,
different sensor technologies are capable of providing high
spatial and high spectral information, but such designs tend
to increase costs significantly.

Different techniques have been proposed in the literature
to overcome the absence of several resolution domains on
the collected data by combining different sensor modalities,
each contributing a high-quality resolution domain [1, 2, 3, 4].
These techniques use the data collected by different sensors
with different resolution domains over the same scene. In this
manner, we are capable of improving the resolution by merg-
ing this data. The process of integrating data from multiple
sources is known as data fusion.

Data fusion is becoming the preferred option to improve
the data collected by multi-sources. As a result, we can
achieve inferences that are not obtaining from a single source.
For example, perform a better classification, and description
of different terrestrial and atmospheric phenomenons are
tasks that use data fusion techniques to improve performance
and analysis results [5, 6]. In this manner, due to the high
spectral content of HS image, it has gained relevant atten-
tion in remote sensing for image enhancement using data
fusion techniques [7, 8, 9]. However, typical hyperspectral
sensors generate images with a high spectral resolution while
sacrificing spatial resolution. Then, to overcome the lack
of spatial resolution from the HS image, it is fuse with MS
image due to its high spatial resolution. This technique has
gained relevant attention to generate images with high-spatial
and high-spectral resolution (HSaHS) [10].

In literature, Deep Learning (DL) algorithms have gained
relevant attention for its capacity to solve problems that in-
volve data with high dimension, extract more useful infor-
mation, and auto-feed or adjust their parameters during the
training process [11]. Particularly, DL algorithms for sin-
gle image super-resolution have been proposed [12], where a
trained convolutional neural network (CNN) model is used as



an end-to-end mapping between low and high-resolution im-
ages. The model takes the low-resolution image as the input
and outputs a high-resolution image. Also, Palsson proposed
to train a convolutional neural network model (3D-CNN) for
learning filters used to fuse the MS and HS images [8].

In this work, we propose a new model called Multi-Level
Propagation Learning Network (MLPLN) that fuses HS and
MS images. The architecture of this model allows the use of
different sized patch as input for training, which provide an
intrinsic data augmentation. It also minimizes the loss of spa-
tial properties of the patch in the fusion process. These patch
are defined by two parameters, the scalability number η and
padding factor κ. In this manner, the MLPLN learns from
the smallest patch and propagates the learned information
through the network until it reaches the biggest patch. The
performance of our model is compared with recent state of
the art networks. Moreover, a thorough study of the spatial-
parameters, size of patch ζp×p, scalability number η, and
padding factor κ is presented in this work.

2. MULTI-LEVEL PROPAGATION LEARNING
NETWORK

The potential of the proposed model came from the propaga-
tion learning technique provided by LSTM, combined with a
fully connected layer, contributes to a new optimal architec-
ture for super-resolution images. The idea behind a LSTM
network is the inclusion of a self-loop that avoids the exploit-
ing gradient and vanishes gradient problems. As a result, this
network has the capability to retain information for long pe-
riods of time [13, 11]. Also, new concepts have been adopted
for our proposed approach. Thus, in order to introduce the
Multi-Level Propagation Learning Network (MLPLN), let us
define a sequence of images Λ, padding factor, and scalability
number, as follows.

Let A0 be an image of spatial size p × l, where p, l ∈ R.
A sequence of images Λ is defined as the set of images Aj ⊆
A0 , ∀j ∈ N, such that the following properties are satisfied:

• The size of Aj is p− 2j × l − 2j.

• Aj is concentric with A0.

Each set Λi, for 1 ≤ i ≤ m is defined by the following
parameters:

• Padding factor: This parameter allows cropping an
image of size p × l by a factor of κ ∈ N, the cropped
image losses 2(κ×p)+2(κ× l)−κ2×4 pixels. Where
its minimum spatial size must be 2 × 2, and the upper

boundary for κ is defined as κmax ≤
min{p, l}

2
− 1.

Figure 1 exemplifies the effect of this parameter.

• Scalability number: This parameter sets the number
of cropped images η ∈ N (|Λi| = η), taken from the

(a) κ = 2

(b) κ = 3

Fig. 1: Two samples of padding parameter for a matrix of size
p× l = 8× 13.

given image A0. Due to that the minimum spatial size
must be 2×2, the upper boundary is defined as, ηmax ≤⌈

log2

{
min{p, l} − 2

κ

}⌉
. As a result, the parameter κ

is inversely proportional to the cardinality of Λi.

In Figure 2, we provide an example of the parameter scal-
ability number. As mentioned before, this parameter contains
the information about how deep we move into the center of
the images. Also, this parameter defines the length of the se-
quences [Λ1,Λ2, . . . ,Λm], where m ∈ N. And each Λi for
1 ≤ i ≤ m is a patch with different size concentric to the
biggest patch A0.

The new proposed model to fuse MS and HS images is
configured using an input layer, a LSTM layer, a fully con-
nected layer, and a regression layer as an output layer.

The input layer receives sets Λ of patch (sequence of im-
ages), with Λi ⊂ Λ for i = 1, . . . , η. Each Λi is of a different
size, and the spatial relationship between each patch in the
set is defined by the scalability number and padding factor
parameters.

Our approach can be seen as sequences of images, where
each sequence has its own long-term spatial dependencies.
For this reason, our model uses a LSTM layer, due to its ca-
pability to allow gradient flow for a long duration. As well as,
its ability to avoid the vanishing or exploding gradient [13].
A fully connected layer is used to provide mapping features
to a more separable space. This layer sends the output of the
LSTM layer to a space that is more discriminative [14]. As
a result, the MLPLN learns the weights to predict the target
data linearly. In the last layer of the proposed model, a linear
regression technique is used, which is the adequate method
for prediction problems [15]. This layer measures how well
the model fits the training data, by using a minimization prob-
lem (RMSE) to find the values of the weights generated by the
fully connected layer.



(a) η = 9, κ = 1

(b) η = 4, κ = 2

(c) η = 2, κ = 4

(d) η = 1, κ = 6

Fig. 2: Samples of scalability parameter for a matrix of size
20× 20.

3. EXPERIMENTAL DATA

The experimental data used in this work are 2 different hy-
perspectral images: Indian Pines, and Enrique Reef. These
images are described as follows: The Indian Pines hyperspec-
tral image was gathered by the AVIRIS sensor and consists
of 145×145 pixels and 224 spectral bands in the wavelength
range 400 to 2500 nm. The number of bands were reduced
to 200 by removing high water absorption bands. This scene
has 16. The Enrique Reef hyperspectral image consists of 128
bands and it was captured using AISA Eagle sensor, this im-
age was acquired in 2007. The spatial resolution of this data
is 1m. There are 6 classes: Mangrove, Deep water, Coral,
Sand, Sea grass, and Flat reef.

All of these images are used to generate simulated data
following the procedure presented in [8, 9], a low spatial res-
olution hyperspectral image is simulated by applying image
decimation by a factor of 4 to the original dataset. Likewise, a
high spatial resolution multispectral image is simulated from
the original data set by averaging bands from different spec-
tral ranges: 1) Blue: 445-516nm, 2) Green: 506-595nm, 3)
Red: 632-698nm and 4) NIR = 757-853nm.

The performances of the proposed network is tested
using the following metric; the structural similarity index
(SSIM)[16], power signal noise ratio (PSNR)[17], and rela-
tive dimensionless global error (ERGAS) [18].

Fig. 3: MLPNL Model

Fig. 4: Figure (a) is the HSI image of Enrique and figure (b)
the MS image.

4. EXPERIMENTAL RESULTS

In our approach, we reduced the spectral dimensionality of
the hyperspectral images. We also removed redundant spec-
tral bands and kept only the bands that contained the majority
of information of the scene. For this purpose, we used SVD as
a technique that allows separating the spatial from the spec-
tral information. In this manner, given a hyperspectral image
A ∈ Rp×b where b is the number of bands and p is the number
of pixels, the SVD applied to A gives the following factoriza-
tion: A = USV T , where U ∈ Rp×p is an orthogonal matrix,
whose columns are eigenvectors of pixels, S ∈ Rp×b is a
diagonal matrix of which elements are the eigenvalues that
represent the energy of each pixel by bands, and V ∈ Rb×b

contains the spectral information. In this decomposition the
matrix Γ = US represents the spatial information. Figure 3
provides the description of the proposed model used for the
experimental results.

On the other hands, the configuration of our model is as
follow; the first layer (Input layer) receives sets of images
(patch) with different size, which are defined by the parame-
ters padding factor and scalability number. For experimen-
tal propose we are defined four different initial patch size
(20× 20), (16× 16), (12× 12) and (8× 8). The images on a
set are transformed as bands per pixel. As a result, the feature



of our network is the number of spectral bands. These patch
are the input of the second layer LSTM, where the number of
hidden units is the number of features. This layer is defined as
sequences to sequences, where the output of the LSTM layer
is received by a fully connected layer, and finally, a regression
layer is used. To provide information about the performance
of MLPLN with a different number of samples for training, a
40% and 80% of the patch are selected randomly from Γr for
each data set describe in table 1.

Experimental results for 80% and 40% of training data
for Indian Pines and Enrique Reef datasets are presented in
table 2 and table 3, respectively. The highlighted results in
the table 2 and table 3 show that parameters patch size, κ and
η are consistent to maximize the performance model.

Percent Patch size
Indian Pines

samples
Enrique Reef

samples

80%

20× 20 115 1130
16× 16 179 1772
12× 12 272 3021
8× 8 562 6750

40%

20× 20 29 332
16× 16 45 519
12× 12 84 933
8× 8 169 2114

Table 1: Representation of patch number used for training per
percent, patch size, and data set.

Parameters Metrics
SSIM RMSE PSNR ERGAS

% Patch κ η Band x̄ σ x̄ σ x̄ σ x̄ σ

80

20 1 4 20 0.902 3.6E-03 0.025 3.5E-04 29.87 0.10 6.14 1.1E-01
16 1 4 20 0.907 1.1E-03 0.024 8.8E-05 29.99 0.06 6.10 8.8E-02
12 1 4 20 0.906 1.1E-03 0.024 1.7E-04 29.98 0.06 6.13 2.7E-02
8 1 3 6 0.906 1.5E-03 0.024 1.5E-04 29.97 0.04 6.05 7.1E-02

40

20 1 4 20 0.792 1.0E-02 0.042 4.8E-03 24.99 0.55 8.00 5.7E-01
16 1 4 20 0.854 1.5E-02 0.030 8.3E-04 28.07 0.41 6.60 1.3E-01
12 1 4 20 0.895 2.0E-03 0.025 2.5E-04 29.64 0.17 6.20 1.8E-01
8 1 3 20 0.905 4.6E-03 0.024 1.3E-04 29.94 0.06 6.10 5.9E-02

Table 2: Summary of MLPLN using Indian Pines dataset.
The 40% and 80% training samples were used. The presented
values were the best performance of the proposed model com-
bining patch size, scalability, and padding factor.

Parameters Metrics
SSIM RMSE PSNR ERGAS

% Patch κ η Band x̄ σ x̄ σ x̄ σ x̄ σ

80

20 1 4 20 0.986 1.8E-04 0.010 9.0E-05 39.86 0.05 2.98 2.9E-02
16 1 4 20 0.987 1.6E-04 0.010 4.0E-05 39.88 0.03 2.97 7.7E-03
12 1 4 15 0.987 2.4E-05 0.010 1.6E-05 39.91 0.02 2.96 6.5E-03
8 1 3 20 0.987 9.5E-05 0.010 3.8E-05 39.92 0.06 2.95 8.2E-03

40

20 1 4 20 0.973 1.1E-03 0.013 2.4E-04 37.74 0.06 3.95 8.4E-02
16 1 4 15 0.975 1.3E-03 0.012 2.0E-04 38.04 0.14 3.77 7.7E-02
12 1 4 20 0.982 3.6E-04 0.011 8.3E-05 38.93 0.11 3.38 4.2E-02
8 1 3 15 0.984 5.6E-04 0.010 1.3E-04 39.43 0.19 3.16 5.3E-02

Table 3: Summary of MLPLN using the Enrique Reef
dataset. The 40% and 80% training samples were used. The
presented values were the best performance of the proposed
model combining patch size, scalability, and padding factor.

In addition, we compare the MLPLN with two methods

in state of the art. Figure 5 shows the comparison for the
Enrique Reef dataset, in this case, the MLPLN is better than
the others technique for 80% of training samples, and it is also
better when the bands selected are greater or equal to 6 taken
only 40% of training samples.

Fig. 5: Comparison best results of MLPLN with CNN and
LSTM networks, for Enrique Reef Dataset

5. CONCLUSIONS AND FUTURE WORK

In this article we present a new approach to fuse HS and MS
images. As a result, images with high spatial resolution and a
high spectral resolution were obtained. The Scalability κ and
Padding η parameters were introduced, that allow extracting
and learning features from the images, and to propagate the
learned feature through the network using the MLPLN pro-
posed. With this new approach, filtering the images is not nec-
essary, and thus the loss of spatial content is avoided. Also,
the numerical results show that our model performs better in
term of SIIM, PSRN, ERGAS, and RMSE. Consequently, we
can deliver the following analysis: SSIM value increase w.r.t.
Scalability for any patch size and padding, in all datasets, and,
the smallest RMSE value and the best PSNR were obtained
with a patch size of 8, κ = 1 and η = 3, comparable in the
cases with 80% and 40% of training samples.

With the previous numerical results we have shown the
performance of our proposed model. Which have proved the
flexibility of obtained good result using 40% of data training
combined with the news parameter κ and η.

The previous analysis shows that the performance of our
proposed model was superior to other available deep learn-
ing models. It improves the construction of the hyperspectral
cube, conserves the image’s hyperspectral (LSHS) informa-
tion, and improves the spatial resolution. This method will



allow us to obtain classification results with a higher accuracy
with will help to classify objects within the LSHS.
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