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ABSTRACT
In computational and applied statistics, it is of great interest to get fast and accurate calculation for the dis-
tributions of the quadratic forms of Gaussian random variables. This article presents a novel approximation
strategy that contains two developments. First, we propose a fast numerical procedure in computing the
moments of the quadratic forms. Second, we establish a general moment-matching framework for distri-
bution approximation, which covers existing approximation methods for the distributions of the quadratic
forms of Gaussian variables. Under this framework, a novel moment-ratio method (MR) is proposed to
match the ratio of skewness and kurtosis based on the gammadistribution. Our extensive simulations show
that (i) MR is almost as accurate as the exact distribution calculation and is much faster; (ii) comparing
with existing approximation methods, MR significantly improves the accuracy of approximating far right
tail probabilities. The proposed method has wide applications. For example, it is a better choice than
existingmethods for facilitating hypothesis testing in big data analysis, where fast and accurate calculation
of very small p-values are desired. An R package Qapprox that implements related methods is available
on CRAN.
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1. Introduction

Quadratic forms of Gaussian variables appear in many sta-
tistical applications such as hypothesis testing and statistical
power calculation. For instance, recent developments in statis-
tical genetics o!en adopt the quadratic forms as test statistics
to detect associations between genetic variants and complex
phenotypes. Well-known examples include, to name a few, the
kernelmachine based score statistic for genetic pathway analysis
(Liu, Lin, and Ghosh 2007), the sequence kernel association test
statistic (SKAT) (Wu et al. 2011) and the sum of powered score
test statistic (SPU) (Pan et al. 2014) for rare-variant analysis.
These new applications of analyzing big biological data require
accurate calculation of small p-values. This requirement poses
challenges to the calculation of distribution at the far-right tail.
For example, in a typical gene-based whole-genome association
study of about 20,000 human genes, the significance threshold
under Bonferroni correction is at the level of α = 0.05/20000 =
2.5 × 10−6.

In this article, we study computationally efficient and accu-
rate algorithms to calculate the distributions of the quadratic
forms of Gaussian variables. Specifically, for a vector of d Gaus-
sian variables, X ∼ N (µ,") with mean vector µ of real num-
bers and a positive-definite covariance matrix ", its quadratic
form is

Q = X′AX, (1)

CONTACT Hong Zhang hong.zhang8@merck.com Merck Research Laboratories, 126 E Lincoln Ave, Rahway, NJ 07033.
Hong Zhang and Judong Shen are employees of Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ and shareholders in Merck & Co., Inc.,
Kenilworth, NJ.

where A is a d × d positive semi-definite matrix. The statistic
Q is o!en used in the hypothesis testing of the mean µ. An
exceedingly large Q is the evidence against the hypothesis that
µ = 0. We are interested in calculating the right tail probability
of Q, or, equivalently the p-value

P(Q > q), (2)

where q ≥ 0 is an observed value of Q.
First, note that the distribution of Q can be calculated in

an exact way. Consider a “decorrelation” of X by the inverse of
the Cholesky of ", U = ("1/2)−1X ∼ N (("1/2)−1µ, I). The
existence of ("1/2)−1 is guaranteed by the positive definiteness
of ". We can write Q = U ′MU, where M = ("1/2)′A"1/2.
Denote # the diagonal matrix of eigenvalues of M and P the
orthonormal matrix such thatM = P#P′, we have

Q d= (Z + µ̃)′#(Z + µ̃), (3)

where Z is a vector of d independent standard normal variables
and µ̃ = P′("1/2)−1µ. The formula (3) indicates that the
distribution ofQ is the same as a weighted sum of independent,
potentially noncentral, chi-squared random variables. Thus, the
cumulative distribution function (CDF) of Q can be obtained
by inverting its characteristic function numerically (Imhof
1961; Davies 1980). We call this calculation approach the exact
method since it is in theory accurate except for truncation

© 2021 Merck & Co., Inc.



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 305

errors that can be bounded in numerical procedures. However,
the exact approach is time-consuming for two reasons: (i) it
requires eigendecomposition with a computation cost in the
order of O(d3), which is heavy when d is large in big data
analysis; (ii) the algorithm’s speed is sensitive to the number
of positive eigenvalues and the point at which the CDF is to be
evaluated (Davies 1980).

To speed up the computation, various approximation meth-
ods have been proposed based on the moments of Q. In par-
ticular, the Satterthwaite–Welch method (SW) (Welch 1938;
Satterthwaite 1946) matches the first two moments of Q with
a gamma variable. The Hall–Buckley–Eagleson approximation
(HBE) (Hall 1983; Buckley and Eagleson 1988) matches the
skewness ofQwith a chi-squared variablewhile adjusting for the
mean and the variance.Wood’s F approximation (Wood) (Wood
1989) matches the first threemoments with a three-parameter F
variable. Liu–Tang–Zhangmethod (LTZ) (Liu, Tang, and Zhang
2009) tries tomatch both skewness and kurtosis ofQwith a non-
central chi-squared variable while adjusting for the mean and
the variance at the same time. A more comprehensive literature
review can be found in (Bodenham and Adams 2016). In the
applications to hypothesis testing of big data, thesemethods lack
desired accuracy for controlling the Type I error rate at small
α levels (see Figure 3). Furthermore, to obtain the moments of
Q, these methods typically use eigenvalues of A" or the trace
of (A")k, k = 1, 2, ..., which can be computationally intensive
when d is large.

To address these two issues, we first propose a numerical
procedure that calculates themoments ofQ faster in Section 2.1.
Then, in Section 2.2, we describe a general moments-matching
framework, which allows flexibly incorporating the informa-
tion of high moments to improve accuracy without increasing
computational difficulties. Within this framework, we propose
a novel approximation method in Section 2.3, that significantly
improves the accuracy in computing the distribution ofQ, espe-
cially for the far right tail probability. The computation time and
Type I error comparison results from extensive simulation study
are presented in Section 3. We conclude this article with final
remarks in Section 4.

2. Methods

2.1. Computing theMoments of Q

To approximate the distribution ofQ, the first step is to calculate
its moments. This step takes the dominate computational time
in the approximation methods. We propose a strategy to speed
up this process, which we did not see in the relevantQ distribu-
tion approximation literature yet but can be applied into these
methods to improve computational efficiency.

For a general quadratic formQ, the kth cumulant, ck, is given
by (Johnson, Kotz, and Balakrishnan 1995),

ck = 2k−1(k − 1)!
(
tr

(
#k

)
+ kµ̃′#kµ̃

)
. (4)

Subsequently, the mean µQ, variance σ 2
Q, skewness γQ and

kurtosis κQ can be calculated through ck, k = 1, 2, 3, 4:

µQ = c1, σ 2
Q = c2, γQ = c3

c3/22
, κQ = c4

c22
+ 3, (5)

The formula in (4) requires calculating the eigenvalues,
which has a computation cost in the order of O(n3) in practice.
To improve the computation, Liu, Tang, and Zhang (2009)
proposed a “trace” approach by rewriting (4) to be

ck = 2k−1(k − 1)!
(
tr

(
(A")k

)
+ kµ′(A")k−1Aµ

)
. (6)

Although formula (6) does not need eigenvalues explicitly,
the naive implementation of this approach, assuming A" is
known in advance, will require k−1matrix multiplication. This
approach could still be computationally expensive especially
when k is large. For example, it requires at least three matrix
multiplications to get c1 to c4, which is not much faster than the
eigenvalue approach (formula (4)) as evidenced by Figure 1.

We can improve the computational efficiency by not explic-
itly computing every matrix multiplication (see Lemma 2.1).
The improvement is significant when the Gaussian variables are
centered, that is, µ ≡ 0.

Lemma 2.1. Let B be a d × d matrix. B0 is defined as a d × d
identity matrix. If Bk−1 and Bk, k ≥ 1, are known, then we can
compute tr(B2k−1) and tr(B2k) in O(d2) time.

Proof. Through matrix multiplication, we have tr(B2k−1) =∑d
i=1

∑d
j=1(Bk−1)ij(Bk)ji and tr(B2k) =

∑d
i=1

∑d
j=1(Bk)ij(Bk)ji.

Lemma 2.1 says that we can compute the trace of Bk by
roughly k/2 (instead of k − 1) matrix multiplications. In par-
ticular, it only takes a single matrix multiplication to get the first
fourmoments. Thus, by using Lemma 2.1, the computation cost
of getting the first four moments is about one-third of the naive
trace approach. If only mean and variance are needed, as in the
SW method, the computational efficiency is further improved
since no matrix multiplication is needed by Lemma 2.1. As
will be shown later, SW is not very accurate for very small p-
values. However, it is still adequate when the significance level
is not too stringent, for example, α = 0.05. Because of its
fast speed, it might be useful as a screening method to speed
up the overall data analysis. For example, in the genome-wide
association studies most genes are not trait associated and thus
their p-values are expected to be relatively large. The SW can
be used to remove these genes before applying more accurate
but computationally more intensive methods to calculate small
p-values.

2.2. A General Framework forMoment-MatchingMethod

Here, we describe a general moment-matching framework that
covers the literature approximation methods in Introduction.
Note that the distribution of a quadratic form can be entirely
characterized by its moments according to the Cramer’s con-
dition (Lin 2017). Ideally, engaging more moments and more
parameters could allow more flexible distribution model and
thus provide more accuracy in general. However, the result-
ing matching equations would also be more difficult to solve,
and sometimes a solution does not exist. To ease this tradeoff,
our general moment-matching framework can engage more
moments without adding too much computational difficulty.
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Figure 1. Computation time comparison. Left: eigenvalues/moments computation comparison. Trace: naive tracemethod (formula (5)). Eigen: eigenvalue decomposition
(formula (4)). Proposed: the proposed moment computation method Lemma 2.1. Right: distribution computation comparison per 50,000 runs (average of 10 repetitions).
Exact: Davies method. F: F distribution. Chi.square: Chi-squared distribution. Gamma: Gamma distribution. d is the dimension of the correlation matrix.

Specifically, let Y be a random variable with known CDF
FY(y|θ), where θ = (θ1, ..., θm) denotes m distribution param-
eters. In this framework, we match the moments of Q with the
moments of a linear transformation of Y :

T = aY + b. (7)

Note that the standardized moments of T are always equal to
those of Y , which are functions of θ but not of a and b. That is,
for k ≥ 1,

µ̃k,Y(θ) := E
(Y − µY

σY

)k
= E

(T − µT
σT

)k
=: µ̃k,T(θ).

The advantage of matching Q with T, instead of directly
matching Q with Y , is that it has a potential to gain two “free”
parameters a and b corresponding to the mean and variance. In
other words, the means and variances of Q and T are automat-
ically matched as long as θ is available. Therefore, θ could be
determined by matching higher (k ≥ 3) standardized moments
(e.g., skewness γ = µ̃3 and kurtosis κ = µ̃4), which provides
extra flexibility of distribution especially at the tail.

Specifically, by matching the mean and variance of Q and T,
we have

a∗ = σQ
σY(θ)

, b∗ = µQ − σQ
σY(θ)

µY(θ). (8)

Now, θ could be determined by solving proper equations regard-
ing the standardized higher (k ≥ 3) moments of Q and Y . We
denote such equations in the following generic way:

gj(µ̃k,Y(θ), µ̃k,Q(θ); k = 3, 4, ...) = 0, j = 1, 2, ...,m, (9)

where the gj functions of these standardized higher moments
need to be designed properly in order to get solutions θ∗. Finally,
with the determined a∗, b∗ and θ∗ the right-tail probability ofQ
is approximated by

P(Q > q) ≈ P(T > q) = P
(
Y >

q − b∗

a∗

)
(10)

= 1 − FY
(

σY
σQ

(q − µQ)+ µY |θ∗
)
.

The existing approximation methods for Q can fit into this
general framework in (7) – (10). When choosing Y a gamma
random variable G(α, 1) with shape parameter α and scale

parameter 1, the Satterthwaite–Welch method is equivalent to
solving θ = α by fixing b∗ = 0 in (8) without engaging higher
moment information in (9). Hall–Buckley–Eagleson method
also uses the gamma variable; it is equivalent to solving α by
matching the skewness in (9). Choosing Y a noncentral chi-
squared variable χ2

d (δ) with degrees of freedom d and non-
centrality δ, Liu–Tang–Zhang method is equivalent to solving
θ = (d, δ) by matching the skewness and kurtosis in (9).
Letting Y follow an F distribution with degrees of freedom d1
and d2, Wood’s F approximation is equivalent to solving θ =
(d1, d2) by fixing b∗ = 0 in (8) and matching the skewness
in (9).

2.3. Strategies forMatching HigherMoments

Solving θ by matching standardized higher moments in (9)
is not trivial. Depending on the distribution of Y , due to
restrictions on the domains of these moments and their
interdependence, the solution to equations in (9) o!en do not
exist for many seemingly obvious choices of the g functions. For
example, one design for (9) is to match skewness and kurtosis
at the same time, such as described in the Liu-Tang-Zhang
method (Liu, Tang, and Zhang 2009). The authors provided
a nice result on the necessary and sufficient condition, that is,
3
2 c

2
3 > c4c2, for the solution of θ = (d, δ) exists. For centered

Gaussian variables, the condition becomes
(∑n

i=1 λ3i
)2

>(∑n
i=1 λ2i

) (∑n
i=1 λ4i

)
. In this case, however, a general inequality

given in Lemma 2.2 indicates that such condition will never
be met. This is somewhat surprising because Q follows a chi-
square distribution when " = I. However, when " )= I, it is
impossible to find a chi-squared distribution that matches Q’s
skewness and kurtosis by adding a noncentrality parameter.
Even for noncentral Gaussian variables, the solution still
o!en does not exist (see Duchesne and Lafaye De Micheaux
2010; Bodenham and Adams 2016 and the simulations in
Section 3). When the solution does not exist, Liu-Tang-
Zhang method steps back to matching only the skewness,
which is exactly the Hall–Buckley–Eagleson method. We can
also modify the method to matching the kurtosis instead,
which could show some improved results in some scenarios.
However, in either way it will lose the information of the
unmatched moment.
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Lemma2.2 (Littlewood’s inequality). Define Sa =
∑n

i=1 λai , a >

0, λi ≥ 0, i = 1, ..., n. Suppose 0 < a < b < c, then Sc−a
b ≤

Sc−b
a Sb−a

c . The equality holds if and only if λ1 = λ2 = · · · = λn.

Proof. The lemma follows a classic inequality that can be found
in literature (cf. Hardy, Littlewood, and Polya (1934), p.28, Th.
18). Here we show it is equivalent to the Hölder’s inequality.

Write b = ka+ (1− k)c, 0 < k < 1. Then c− b = k(c− a),
b − a = (1 − k)(c − a). The inequality is equivalent to

Sc−a
b ≤ Sk(c−a)

a S(1−k)(c−a)
c ⇐⇒

n∑

i=1
λkai λ

(1−k)c
i

≤
( n∑

i=1
λai

)k ( n∑

i=1
λai

)1−k

.

Define p = 1/k, q = 1/(1 − k), xi = λ
a/p
i , yi = λ

c/q
i , the above

inequality becomes
n∑

i=1
xiyi ≤

( n∑

i=1
xpi

)1/p ( n∑

i=1
yqi

)1/q

,

which is the Hölder’s inequality. The equality holds if and only
if xi and yi, i = 1, ..., n, are proportional which is equivalent to
λi, i = 1, ..., n, are equal to each other.

In order to overcome the difficulty of matching both skew-
ness and kurtosis, while at the same time still keeping the
information fromboth, we propose the following solution. First,
we choose the gamma distribution model, that is, Y ∼ G(α, 1).
Here we fix the gamma scale parameter to be 1 because it is
redundant with the coefficient parameter a in (7) and thus does
not affect the calculation in (10). Second, we propose two types
of g functions given below for Equation (9), which incorporate
the information of both skewness and kurtosis. We choose
gamma distribution because it is one of the extensions of chi-
square distribution such that it becomes exact when the mean
vector µ ≡ 0 and covariance matrix " = I. More importantly,
comparing with the noncentral chi-squared distribution, the
solution of our matching equation using gamma distribution
always exists. At the same time, it can be more accurate in
approximating the right tail probability in (2) at relatively large
threshold q.

Specifically, the first method is called the moment-ratio
matching (MR) method. With one parameter α, we match the
ratio between skewness and kurtosis. Define

g1(µ̃3,Y , µ̃3,Q, µ̃4,Y , µ̃4,Q) =
µ̃3,Y

µ̃4,Y − 3
− µ̃3,Q

µ̃4,Q − 3
.

The solution of Equation (9) always exists and has a simple
closed form: α∗ = 9µ̃2

3,Q
(µ̃4,Q−3)2 .

The second method is called the minimized matching error
(ME) method. That is, we choose α to minimize the Euclidean
distance between (µ̃3,Y , µ̃4,Y) and (µ̃3,Q, µ̃4,Q). For that, the
corresponding g function is the first-order derivative of the
distance as a function of α,

g1(µ̃3,Y , µ̃3,Q, µ̃4,Y , µ̃4,Q) (11)

= ∂

∂α

[
(µ̃3,Y − µ̃3,Q)

2 + (µ̃4,Y − µ̃4,Q)
2] .

Accordingly, Equation (9) becomes

µ̃3,Qα3/2 − 2(10 − 3µ̃4,Q)α − 36 = 0. (12)

Since µ̃3,Q > 0, it is straightforward to show that there exists
one and only one real root α∗ > 0.

3. Simulation Results

3.1. Computation Time Comparison

In this section, we compare the computation time of the pro-
posed moment-ratio (MR) matching method with other exist-
ing methods. The comparison is two-fold. First, we examine
the computation efficiency of different methods for obtaining
the eigenvalues or the moment estimates of Q. Second, given
the eigenvalues and moment estimates, we compare various
methods for calculating the final right-tail probability based on
different distributions.

We first consider the correlationmatrix" to be a polynomial
decaying matrix, that is, (")ij = 1/|i − j|, 1 ≤ i, j ≤ n,
d = 100, 200, . . . , 5000. The eigenvalue decomposition (for-
mula (4)), the naive trace method (formula (5)) and the pro-
posed moment computation method (Lemma 2.1) were per-
formed 1000 times and the average run times were summarized
in the le! panel of Figure 1. Next, for each d, we simulate
50,000 quadratic form of centered Gaussian variables,Q = X′X,
with correlation matrix ". The exact Davies method, the LTZ
method (based on chi-squared distribution), the HBE method
and the proposedMRmethod (gamma distribution) andWood
method (F distribution) were used to calculate the p-values
assuming the eigenvalues of " are known. The total runtimes
were recorded and summarized in the right panel of Figure 1.
For the second comparison, the Exact and LTZ methods were
implemented by a widely used R package CompQuadForm. All
other methods were implemented by the authors. All compu-
tations were completed on an Intel Core-i5 8350U processor at
1.70 GHz with 16 GB of RAM, runningMicroso! ROpen 3.5.0.

As Figure 1 shows, the computation time of the trace
approach and the eigenvalue approach is about the same
but the proposed moment calculation method can save the
computation time by 1/2 to 2/3. Compared to the exact
calculation by Davies method, the approximation methods
for calculating the final right-tail probability (based on chi-
square or gamma or F distribution) could be hundreds of times
faster. Moreover, unlike Davies method, the computation costs
of the approximation methods almost do not increase as the
dimension d increases. This is because, given the eigenvalues,
the CDF of approximation distribution is readily available
through method of moments while the Davies method needs
the input of d eigenvalues for every evaluation. Meanwhile, we
also note that the overall computation time is dominated by the
calculation of the eigenvalues/moments.

3.2. Type I Error Comparison

In this section we systematically evaluate the accuracies of the
proposed and existingQ distribution approximationmethods in
the context of hypothesis testing. Specifically, consider Q as the
test statistic and q as its observed value. The right-tail probability
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P(Q > q) can be regarded as the p-value for testing the null
hypothesis H0 : µX = µ. In the simulation study, we fix A = I
and vary the correlation matrix" (since A can be considered as
a factor that varies the correlation matrix "). For a given mean
vectorµ and correlation matrix", 2× 107 of randomGaussian
vectors X ∼ N (µ,") were generated, each led to an observed
q. Consequently, each approximation method was applied to
generate 2 × 107 p-values. The empirical Type I error rate for
a given approximation method is defined as the proportion of
rejections underH0, that is, the proportion of p-values less than
a nominal level α. A good approximation method would have
the empirical Type I error rate being close to the nominal α. If a
ratio between the empirical Type I error rate and the nominal α
is larger than 1, it indicates the approximation method leads to
a liberal test (i.e., rejecting more than appropriate); a ratio less
than 1 indicates a conservative test.

Motivated by genetic data, we examined a wide variety of
covariance patterns that are potentially with block structures.
Consider the d × d covariance matrix

" =
[
"11 "12
"′

12 "22

]
,

where each of the blocks is of size (d/2) × (d/2). Equal corre-
lation matrix Ek and polynomially decaying correlation matrix
Dk were used to define " or its blocks:

Ek(ρ) : Ek(i, j) = ρ, 1 ≤ i )= j ≤ k and 0 ≤ ρ < 1, (13)
Dk(φ) : Dk(i, j) = 1/|i − j|φ , 1 ≤ i )= j ≤ k and φ > 0.

(14)

For example, we can define entire " = Ed or Dd. Alternatively,
we may define " to be block-diagonal, for example, "11 =
"22 = Ed/2 or Dd/2. Table 1 summarizes a total of 12 cor-
relation types for ". Multiple values of the matrix parameters
ρ = 0.9, 0.5, 0.1 and φ = 0.2, 1, 3 were considered to model
the strong, moderate and weak correlations, respectively. The
dimensions d = 10, 50, 100 and 500 were considered. We
also tested three configurations of the mean vector: a central

Table 1. The correlationmatrix" used in the simulations based on the correlation
models in (13) and (14).

Type I II III

Equal(ρ) "11 = Ed/2(ρ) "11 = "22 = Ed/2(ρ) " = Ed(ρ)
Poly(φ) "11 = Dd/2(φ) "11 = "22 = Dd/2(φ) " = Dd(φ)
Inv-Equal(ρ)∗ "11 = E−1

d/2(ρ) "11 = "22 = E−1
d/2(ρ) " = E−1

d (ρ)

Inv-Poly(φ)∗ "11 = D−1
d/2(φ) "11 = "22 = D−1

d/2(φ) " = D−1
d (φ)

∗" is standardized to become a correlation matrix.
NOTE: Three types: I (upper left correlations with "22 = I, "12 = 0); II (block-
wise correlations); III (the whole correlation matrix follows the models).

Gaussian caseµ = µ1 ≡ 0, and two non-central Gaussian cases
µ = µ2 ≡ 1 and µ = µ3 = (1, ..., 1︸ ︷︷ ︸

d/2

, 0, ..., 0︸ ︷︷ ︸
d/2

). Our simulation

settings are pretty extensive; altogether there are 432 different
combinations of the mean µ and correlation matrix " for each
given d.

The approximation methods to be compared are (i) MR:
the proposed MR matching method; (ii) ME: the proposed
minimized matching error method; (iii) SW: Satterthwaite–
Welch method; (iv) HBE: Hall–Buckley–Eagleson method; (v)
Wood: Wood’s F approximation; (vi) LTZ: Liu–Tang–Zhang
method; (vii) LTZ4: modified Liu–Tang–Zhang method (i.e.,
when skewness and kurtosis could not be matched simultane-
ously, we chose tomatch kurtosis instead of skewness); and (viii)
Exact: the Davies method that inverts the characteristic func-
tion. We used R package CompQuadForm for the LTZ method
and the Exactmethod. Othermethods were implemented by the
authors.

The boxplots in Figure 2 show the comparison of all eight
methods at relatively larger nominal α levels, α = 0.05 and
0.01. Each box consists ofmultiple empirical Type I errors under
different combinations of the correlation matrix " and mean
vector µ. It is clear that there exist many scenarios in which the
Woodmethod is ultra-conservative while the SWmethod could
inflate the Type I errors at α = 0.01. The other approximation
methods seem to perform well as their empirical Type I error

Figure 2. Boxplots of the ratios between empirical Type I error rates and the nominal levels, α = 0.01 and 0.05. Exact: the Davies method. MR: moment-ratio matching
method. LTZ4:modifiedLiu–Tang–Zhangmethod.ME:minimizedmatchingerrormethod. LTZ: Liu-Tang-Zhangmethod.HBE:Hall-Buckley-Eaglesonmethod.Wood:Wood’s
F approximation. SW: Satterthwaite–Welch method.
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Figure 3. Boxplots of the ratios between empirical Type I error rates and the nominal levels, α = 2.5 × 10−6 and 1 × 10−4, stratified by the mean vector µ1 ≡ 0,
µ2 ≡ 1 and µ3 = (1, ..., 1, 0, ..., 0). Exact: the Davies method. MR: moment-ratio matching method. LTZ4: modified Liu-Tang-Zhang method. ME: minimized matching
error method. LTZ: Liu–Tang–Zhang method. HBE: Hall–Buckley–Eagleson method.

rates are within (0.8, 1.1) of the nominal levels. Unsurprisingly,
the Exact method is the most accurate method with the least
amount of variation around the nominal levels.

Next, we consider smaller nominal levels, α = 1 × 10−4

and 2.5 × 10−6. The comparison results are summarized in
Figure 3 as boxplots stratified by the mean vector µ. Each box
represents empirical Type I errors under different correlation
matrices. The SW and Wood methods were dropped because
their empirical Type I errors were further away from α. When
µ = µ1 ≡ 0 (the central Gaussian case), as expected, the
exactmethodwas accurate at both levels. The proposedmoment

ratio matching method (MR) also controlled the Type I error
rates very well. It only varied slightly more than the exact
method when α = 2.5 × 10−6 and is slightly conservative
when α = 10−4. The minimized matching error method (ME)
was slightly more inflated compared to MR. The Liu–Tang–
Zhang (LTZ)method performed the same as the Hall–Buckley–
Eagleson (HBE)method because it cannotmatch both skewness
and kurtosis whenµ ≡ 0, as proven by Lemma2.2. Therefore, in
this case it reduced to matching the skewness only. Both meth-
ods seemed to inflate the Type I errors in multiple occasions
across the dimension d. The modified Liu-Tang-Zhang (LTZ4)
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Figure 4. Boxplots of the ratios between empirical Type I error rates and the nominal levels, α = 2.5 × 10−6 and 1 × 10−4, stratified by whether skewness and kurtosis
were matched in the LTZ method. Exact: the Davies method. MR: moment-ratio matching method. LTZ4: modified Liu-Tang-Zhang method. LTZ: Liu-Tang-Zhang method.

method seemed to perform better than the original version but
still with considerable amount of inflations. When µ = µ2
or µ3 (the noncentral Gaussian case), the inflation of LTZ’s
and LTZ4’s Type I errors still existed but were greatly reduced
because now in various scenarios both skewness and kurtosis
could be matched. The proposed MR method still controlled
Type I errors well with small variation around α.

To further demonstrate the impact of unmatched moments
on the Type I errors, we present the boxplots stratified by
whether the skewness and kurtosis can bematched (“unmatched”
vs. “matched”) in the LTZ method. Figure 4 shows that when
these two moments were matched, the performance of LTZ
method is on par with the MR method and the exact method.
However, if they are not matched, choosing either skewness or
kurtosis would inflate the Type I errors while the MR method
would not.

4. Conclusion

We propose an MR matching method that improves the accu-
racy of approximating the right-tail probability of quadratic
forms of Gaussian variables. The proposed method controls the
Type I error rates almost as well as the exact method while
improving the computational efficiency by 1/2 to 2/3. This

method is expected to have broad applications in hypothe-
sis testing, such as genetic association studies where Gaussian
quadratic forms are frequently used as statistics to combine
signals from multiple sources.

Beyond the Gaussian quadratic forms, we believe the idea of
using higher-order moments without exactly matching them,
as described in Section 2.2 and 2.3, is applicable to more gen-
eral distribution approximation problems where matching both
skewness and kurtosis is difficult or even impossible. Our results
demonstrate that a wise choice of matching equation that incor-
porates both skewness and kurtosis, such as the MR match-
ing, can obtain accurate approximation like both moments are
matched.
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