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Abstract
We introduce Rabia, a simple and high performance frame-
work for implementing state-machine replication (SMR)within
a datacenter. The main innovation of Rabia is in using ran-
domization to simplify the design. Rabia provides the follow-
ing two features: (i) It does not need any fail-over protocol
and supports trivial auxiliary protocols like log compaction,
snapshotting, and recon�guration, components that are of-
ten considered the most challenging when developing SMR
systems; and (ii) It provides high performance, up to 1.5x
higher throughput than the closest competitor (i.e., EPaxos)
in a favorable setup (same availability zone with three repli-
cas) and is comparable with a larger number of replicas or
when deployed in multiple availability zones.

CCSConcepts: •Computer systems organization!De-
pendable and fault-tolerant systems and networks; •
Computing methodologies! Distributed algorithms.
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1 Introduction
State-Machine Replication (SMR) uses replication to ensure
that a service is available and consistent in the presence
of failures. One popular mechanism for implementing SMR
is to use a consensus algorithm to agree on the total or-
der of client requests (or commands), namely, a log-based
SMR approach [6, 52, 60]. Paxos and variants [38, 39] had
mostly been the de facto choice for implementing SMR, e.g.,
Chubby [16], Google Spanner [22], Microsoft Azure Storage
[19]. Raft [52] recently became a popular alternative, de-
signed with understandability as the priority. Many modern
production systems choose Raft over Paxos, e.g., Redis [2],
RethinkDB [4], CockroachDB [3], and etcd [1]. In this work,
we aim to address one of the remaining challenges in build-
ing a high-performance log-based SMR system within a single
datacenter: reducing the engineering e�ort and simplifying
the integration of auxiliary protocols.

Paxos and variants are notoriously di�cult to understand
and integrate with SMR [20, 52]. Raft is sometimes consid-
ered easier to comprehend with its use of a stronger notion
of leader; however, it still requires a tremendous amount of
e�ort to develop a fully functional Raft-based SMR system
[8, 9, 32]. One root cause is that prior practical consensus al-
gorithms, including Paxos, Raft, and recent systems, require
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auxiliary protocols (e.g., leader election, snapshotting, fail-
over/recovery mechanism, log compaction/truncation) for
ensuring high performance and liveness. We will elaborate
on these challenges in Section 2.

Rabia is a simple SMR framework that ensures a total order
of client requests and achieves high performance in a single
datacenter setting. Rabia does not need any fail-over protocol
and supports trivial log compaction, recon�guration, and
snapshotting protocols. We accomplish this through a novel
implementation of consensus that leverages a RAndomized
BInary Agreement protocol.1

Randomized algorithms are known to have less stable per-
formance compared to deterministic ones. By limiting our
focus to SMR systems deployed in a datacenter where the net-
work infrastructure is stable, we can achieve higher through-
put than SMR systems implementing total order through
Multi-Paxos [38, 39], and Egalitarian Paxos (EPaxos) [48] in
a favorable setup (same availability zone with three replicas),
and have comparable performance when deployed with a
larger number of replicas or in multiple zones.
We also present RedisRabia, an integration of Rabia and

Redis, a popular distributed in-memory data store. We com-
pare RedisRabia with (i) Redis (synchronous) replication
that is used widely in production, and (ii) RedisRaft [2],
which is Redis integrated with Raft. RedisRabia has com-
parable throughput with synchronous replication with the
same fault-tolerance, and outperforms RedisRaft by 2.5x with
batching.
Challenges and Key Observation: Randomized consen-
sus algorithms are known to have a simpler structure than
deterministic consensus algorithms [11, 13]; however, there
are two major challenges in deploying them in practical
systems. First, most randomized algorithms have less stable
performance due to randomized rules that depend on the out-
come of a “coin �ip.” That is, the performance is probabilistic
in nature. Second, the latency of randomized algorithms is
sub-optimal. All randomized consensus algorithms in the lit-
erature have at least four message delays on average, whereas
prior deterministic consensus algorithms, e.g., [38, 39, 52],
have optimal fast-path latency of two message delays and
stay on the fast path when there is a stable leader.

We observe that it is possible to make a randomized binary
consensus algorithm fast in current network infrastructures.
In fact, Rabia achieves the best performance if a majority of
replicas receive a similar set of messages, which is typical in
modern networks. Rabia enables its underlying consensus
algorithm to reach agreement in three message delays on
the fast path. According to our tests using public commercial
clouds and private clusters, current network infrastructures
easily provide these characteristics (we call these networks
stable). This observation holds even with legacy network

1These algorithms are also called agreement algorithms, but we will refer
to them as consensus algorithms.

hardware (e.g., without recent RDMA cards). We also empiri-
cally show Rabia su�ers only a minor performance loss when
deployed in multiple availability zones in Google Cloud Plat-
form. This implies that the network conditions that allow
Rabia to reach consensus fast are practical, not stringent.
However, a binary consensus algorithm can only take

a binary input (0 or 1) and generate a binary output. The
log-based SMR design requires a multi-valued consensus
algorithm so that the replicas can agree on the order of client
requests. Therefore, to make use of fast randomized binary
consensus, the next technical challenge Rabia addresses is
to e�ciently convert binary consensus into a (weaker) form
of multi-valued consensus that can be used for SMR.
Key Techniques: In Rabia, a client sends requests to an
assigned replica, which then relays them to all the other
replicas. Each replica stores pending requests that are not
added to the log yet in its local min priority queue (PQ). The
key to the min PQ is the request timestamp. This design
allows the replicas to have the same head of its PQ most
of the time, even under high workload, in a stable network.
Replicas then use our new consensus algorithm,W����MVC,
to agree on the request for each slot of the log.

W����MVC is a novel implementation of a relaxed version
of multi-valued consensus. Each replica’s input to Weak-
MVC is the oldest pending request in its local PQ. The choice
of using the oldest request as the input to our algorithm
allows us to achieve high performance in a stable network.
If most replicas propose the same request, then W����MVC
terminates in three message delays. In our evaluation, stable
networks allow Rabia to use the fast path 99.58% of the time
under all open-loop experiments.

Replicas may propose di�erent requests for the same slot.
The approach to address this scenario is our second novel
design – forfeiting a slot – which is di�erent from prior con-
sensus algorithms, e.g., [26, 29, 38, 39, 48, 52, 67]. Instead of
deciding which request to agree upon, we use binary con-
sensus to determine whether there is an agreement. If not,
we choose to “forfeit fast,” i.e., allow a slot to store a NULL
value. In this case, replicas can terminate (with a forfeited
slot) also in three message delays.

The rationale behind our design is that, in a stable network
that delivers the oldest pending request A4@>;3 to all replicas
in a short time, replicas can soon reach an agreement on
A4@>;3 in a future slot, even if replicas forfeit current slot(s).
Furthermore, a stable and reliable network also avoids con-
tinuous forfeits because eventually A4@>;3 will be delivered.
Compared to spending more communication to agree on a
request, it is faster to forfeit the current slot, and move on
to the next slot.
Highlights of Rabia: Rabia has the following features de-
signed to favor widespread adoption and integration:

• No Fail-over and Simple Log Compaction: One
major challenge in implementing an SMR system is
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the integration of the auxiliary protocols, including
fail-over, recon�guration, snapshotting, and log com-
paction protocol (a garbage collection mechanism that
discards older log slots from memory) [8, 9, 20, 32, 33].
Prior consensus algorithms, including both leader-
based designs (e.g., Paxos [38, 39] and Raft [52]) and
multi-leader-based designs (e.g., Mencius [43], EPaxos
[48], M2Paxos [56], Caesar [10], and A���� [25]), re-
quire a complicated fail-over mechanism to recover
from the failure of a leader or a command leader, which
also makes other auxiliary protocols challenging.
In contrast, Rabia does not need a fail-over. Intuitively,
this is because Rabia uses randomized consensus in-
stead of deterministic consensus to agree on the order-
ing of client requests, which ensures that at all times,
non-faulty replicas are guaranteed to be able to learn
the decision. This guarantee also enables a trivial log
compaction mechanism in Rabia (which can be speci-
�ed in three lines of pseudo-code), and simple recon-
�guration and snapshotting protocols, as presented in
Section 4.

• Machine-checked proof: In Section 5, we brie�y de-
scribe how we use the Ivy [46] and Coq [62] theorem
provers to formally verify the safety of our protocol.
While a number of protocols and distributed systems
have been veri�ed, including Raft andmany variants of
Paxos [34, 53, 61, 64, 66], we are not aware of any ver-
i�cation of the multi-leader-based designs described
above that are Rabia’s closest competitors. The full
proof is presented in our technical report [54].

• High performance: We implement Rabia in Go, and
compare against Multi-Paxos and EPaxos in Google
Cloud Platform, where the network is stable. In our
setting, EPaxoswith no con�ictingworkload is the best
competitor. When deployed in the same availability
zone with three replicas, Rabia’s maximum speedup
in throughput is up to 1.5x using a close-loop test,
despite its quadratic communication complexity and
sub-optimal latency on the fast path. In other cases,
Rabia has comparable performance despite its higher
message complexity.

Outline: We �rst enumerate the challenges of implementing
existing consensus algorithms and discuss the background in
Section 2. We then present the complete framework of Rabia
and its analysis in Section 3. Practical considerations are
discussed in Section 4. The proofs of our safety and liveness
properties appear in Section 5. We evaluate Rabia in Section
6. Related work is presented in Section 7.

2 Motivation and Background
Why Another Simple Consensus Algorithm? The �rst
barrier to implementing a consensus algorithm is under-
standability [20, 33, 52, 63]. The intuition behind Paxos and

variants is di�cult to grasp. Such a challenge was perfectly
summarized by the developer of Google’s Chubby system
[20] (which is based on Multi-Paxos): “There are signi�cant
gaps between the description of the Paxos algorithm and the
needs of a real-world system . . . the �nal system will be based
on an unproven protocol.” Most recent consensus algorithms
proposed are inspired by Paxos, e.g., [25, 44, 48, 56], and
share a similar challenge in implementation.

Raft [52] addresses the understandability issue by using a
stronger notion of leader to simplify the conceptual design.
However, developing a Raft-based SMR system is still quite
challenging, even for seasoned developers, e.g., [8, 9, 32,
33]. It is because of the second barrier, namely engineering
complexity.

While the authors of Raft provided a comprehensive overview
of the necessary auxiliary protocols [32, 33], it is still di�-
cult to develop and integrate them with the core consensus
algorithm. For example, Redis [9] and RethinkDB [4] had
bugs in their preliminary integration of Raft into their re-
spective systems. In fact, even after Jepsen [9] identi�ed 21
major bugs back in June 2020, RedisRaft [2] showed several
performance bugs in our experience (e.g., frequent leader
changes when there is no failure, nor message drop). Indus-
try blog posts [8, 9, 33] identi�ed fail-over, log compaction,
recon�guration, and snapshotting as major concerns when
developing a Raft-based SMR system.
By using a randomized consensus as a core component,

Rabia does not need a fail-over protocol, and hence supports
trivial log compaction, snapshotting, and recon�guration. In
addition, Rabia uses two novel designs to achieve high perfor-
mance in a stable network. We only found two competitors
that achieve a similar goal: single-decree Paxos [38]2 and
NOPaxos (Network-Ordered Paxos) [41]. Section 7 discusses
recent Byzantine fault-tolerance systems (e.g., HoneyBad-
ger [47] and Algorand [21, 31]) that also utilize randomized
consensus algorithms.
Single-decree Paxos does not need a fail-over, because

any replica can help others recover an agreed value in any
slot. However, it su�ers from performance loss, compared
to Multi-Paxos, and in general, has unstable performance.
In fact, there is no bounded analysis on the average delay.
Rabia is proven to have �ve message delays on average, as
analyzed in Section 5. NOPaxos uses the network fabric to
sequence requests (i.e., a sequencer in switches) to simplify
design and improve performance. As a result, NOPaxos out-
performs Multi-Paxos by 4.7x in throughput [41]. However,
its fail-over and recon�guration require switches to install
new forwarding rules, which, in our opinion, make the devel-
opment more complicated. In addition, most public clouds

2Single-decree Paxos is designed to reach an agreement on a single slot,
whereas Multi-Paxos skips Phase 1 to achieve a higher performance with a
stable leader in the case of multiple slots.
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Figure 1. Multi-Paxos vs. Randomized Binary Consensus (Ben-Or’s Algorithm [13]). Multi-Paxos relies on a leader to
make a decision (for a slot), whereas Ben-Or’s algorithm requires replicas to make a “joint decision.” In the common case,
Multi-Paxos terminates in 2 message delays, whereas a randomized consensus algorithm might take multiple phases. In this
particular example, Ben-Or’s algorithm takes 2 phases (and 4 message delays) to terminate.

do not allow users to directly implement their own logic in
switches, which makes NOPaxos less adoptable in general.
SMR: State-Machine Replication (SMR) ensures that a ser-
vice is available and consistent in the presence of failures
through replication. SMR ensures linearizability, or strict
serializability in case of transactions. We adopt the log-based
SMR approach [6, 52, 60], which works as follows: (i) each
client submits a request to replicas (or servers) and waits
for a response; (ii) each replica has a log that stores client
requests; (iii) the log is divided into slots; (iv) replicas use
a consensus protocol to agree on the ordering of the client
requests, i.e., the request to be stored in each slot of the log;
(v) replicas apply the requests (i.e., execute the operations in
the request) slot by slot; and (vi) after applying the request,
a replica sends a response to the corresponding client.

Following prior works (e.g., [6, 48, 52]), Rabia stores the log
inmainmemory. This design is reliable as long as the number
of simultaneous replica failures is bounded. For deterministic
services, all the replicas have the same state after applying
the request in a given slot, because at that point, replicas
have executed the same set of operations in the same order.
Consensus: The core component of the log-based SMR de-
sign is its consensus algorithm (step (iv) above). A consensus
protocol is correct if it ensures safety and liveness properties.
For each slot of the log, liveness (or termination) ensures that
all the non-faulty replicas eventually obtain a request. Also,
for each slot, safety states two conditions: (agreement) each
non-faulty replica obtains the same request; and (validity)
each obtained request was proposed by a client.

The famous FLP result [27] implies that deterministic con-
sensus algorithms work only in partially synchronous sys-
tems. For example, Paxos (and its variants) and Raft ensure
safety at all times, but ensures liveness only when the leader
is stable and can reach a quorum of replicas.
Randomized Consensus: Another approach to circumvent
the FLP result is through randomization. Ben-Or [13] pro-
posed a simple randomized binary consensus algorithm in
PODC 1983, which achieves the following probabilistic termi-
nation property: each non-faulty replica eventually obtains a
request with probability 1 – as time proceeds, the probability
for a replica to terminate approaches 1. The reason for the

probabilistic termination is that it breaks a tie by �ipping a
coin [13]. Hence, an instance of this consensus protocol may
take an arbitrarily long time to terminate. In fact, the average
latency of Ben-Or’s original algorithm is exponential with
respect to the number of replicas, because each replica �ips
its own local coin. The latency is measured as the message
delay from one replica to the other.
Figure 1 compares the di�erence between Multi-Paxos

and Ben-Or’s algorithm. The left part illustrates Paxos (with
a stable leader). Upon receiving an acknowledgment from
another replica, the leader can safely output the value it
proposed, value “1” in this example. In comparison, Ben-
Or’s design does not rely on the notion of a leader. Instead,
all the replicas proceed in phases, in which they need to
propose and make a “joint decision.” Replicas may propose
di�erent values. In this case, replicas use a randomized rule
(i.e., the outcome of a coin �ip) to break a tie. In the example,
Replica 1 changes from “0” to “1” in Phase 2. Then, all the
replicas terminate and output 1 in this phase. In Section 3.4,
we discuss in more detail why such a “joint decision” design
does not need a fail-over protocol, and hence simplifying the
complexity in developing and integrating auxiliary protocols.
Challenges: Compared to highly optimized deterministic
consensus algorithms like Paxos and Raft, randomized al-
gorithms have a few limitations. As illustrated in Figure 1,
the latency of a randomized consensus algorithm is less pre-
dictable, because the number of rounds may depend on the
outcome of a coin �ip. Moreover, the best-case latency is
also worse than Multi-Paxos. Concretely, we identify two
major challenges in designing a high-performance SMR sys-
tem based on a randomized consensus algorithm: (i) how to
stay on the fast path as often as possible? and (ii) how to
reduce tail latency? We discuss how Rabia addresses these
challenges in Section 3.2.

3 The Rabia SMR Framework
We consider an asynchronous distributed system consisting
of = replicas (or servers). At most 5 of the replicas may fail
by crashing, i.e., a fail-stop model. Rabia ensures safety and
liveness as long as = � 25 + 1. We do not consider Byzantine
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Figure 2. Execution Flow of Rabia. The core component is our consensus algorithm – Weak-MVC – whose communication
pattern of the fast path is presented inside the red dotted box. The rules to update internal states are also listed underneath.

faults. The set of replicas is assumed to be static. An approach
for recon�guring the set of replicas is presented in Section 4.

3.1 Execution Flow
Rabia adopts the log-based SMR design [60]. Each replica
has a log, and the goal is to agree on a client request (or a
batch of requests) to be stored in each slot of the log. We
present the pseudo-code of each replica #8 in Algorithm 1.
Figure 2 illustrates the �ow and rules for Rabia to agree on
the request for a particular slot when = = 3.

Algorithm 1 Rabia: Code for Replica #8

Local Variables:
%&8 ùpriority queue, initially empty
B4@ ùcurrent slot index, initially 0

Code for Replica #8 :
1: while CAD4 do
2: ?A>?>B0;8  �rst element in %&8 that is not already in ;>6

ù?A>?>B0;8 = 8’s input to Weak-MVC
3: >DC?DC  W����MVC(?A>?>B0;8 , B4@)
4: ;>6[B4@]  >DC?DC ùAdd >DC?DC to current slot
5: if >DC?DC =? or >DC?DC < ?A>?>B0;8 then
6: %&8 .?DB⌘(?A>?>B0;8 )
7: B4@  B4@ + 1

/* Event handler: executing in background */
Upon receiving hR�����, 2i from client 2:
8: %&8 .?DB⌘(hR�����, 2i)
9: forward hR�����, 2i to all other replicas

/* Executing in background periodically */
Log Compaction:
10: for each 9-th slot in the ;>6 do
11: if ;>6[ 9] has been executed locally then
12: truncate ;>6[ 9] ùDiscard it or take a snapshot

A client sends a request to the assigned replica (a client
proxy) and waits for a response from the same replica. Upon
receiving the client request (Line 8 and 9), #8 �rst pushes
the request to a min priority queue %&8 and then forwards
it to all other replicas. #8 uses %&8 to store pending client
requests, i.e., requests that have not been stored in the log
yet. The head of the priority queue stores the oldest pending

request. That is, #8 uses the request timestamp as the key for
%&8 . For brevity, the timestamp is omitted in Algorithm 1.
Replicas use a while loop to continuously agree on the

request for each slot B4@ as long as their %& is non-empty
(Line 1 to 7). All the replicas participate in our consensus
algorithm, Weak-MVC (Weak Multi-Valued Consensus), to
agree on a request for slot B4@ (Line 2 and 3). #8 ’s input to
the Weak-MVC consists of a request extracted from %&8 , and
the current slot index B4@. Due to concurrency and message
delay, %&8 may contain some request A that is actually already
stored in the log, because replicas have already agreed to
store A in a prior slot. #8 discards such requests, and moves
to the next request in %&8 . The condition at Line 2 can be
checked e�ciently using a dictionary. Section 4 discusses
why this dictionary will not grow unbounded.

Once Weak-MVC terminates, the output is written into
the current slot (Line 4). Weak-MVC is designed in a way that
#8 obtains an output with probability 1 as long as a majority
of replicas, including 8 , are alive. The output of Weak-MVC
may be a proposal from some replica or a NULL value ?. A
key design choice is to allow a slot to store a NULL value. In
this case, #8 learns that the slot is “forfeited” and has to push
its proposal back into %&8 for a future slot (Line 6). Figure
2 illustrates the �ow of agreeing on a request for the slot
B4@. The red dotted box presents an example execution of
Weak-MVC, whose design is presented in Section 3.3.

Unlike prior SMR systems, e.g., [38, 39, 48, 52], performing
log compaction in Rabia is very simple because the agree-
ment and liveness properties of the Weak-MVC protocol
ensure that all the non-faulty replicas will eventually agree
on the same request or NULL for each slot. Therefore, each
replica can discard slot 9 or take a snapshot once it has exe-
cuted the request stored in the slot (Line 10 to 12). In prior
systems, the log compaction mechanism needs to be care-
fully integrated with a leader election or a fail-over protocol
to ensure that the discarded log can be safely recovered if
failures occur. Such integration is not always straightforward
[20, 25, 52].
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3.2 Addressing performance challenges of
randomized consensus

Before delving into details of Weak-MVC, let us �rst investi-
gate how our framework presented in Algorithm 1 addresses
the challenges mentioned in Section 2: (i) staying on the fast
path as often as possible and (ii) avoiding long tail latency in
a stable network. As it will become clear later, Weak-MVC
is guaranteed to use the fast path (which terminates in three
message delays), if

• (i) all replicas have the same proposal; or
• (ii) no majority of replicas propose the same request.

While these two conditions might not always occur, in our
experience, they were often satis�ed using a stable network.

Condition (i) together with using the oldest pending request
(stored as the head of %&8 ) as a proposal allows the agreement
to be made using mostly the fast path in a stable network.
This is based on the two following observations: �rst, each
replica forwards a request to other replicas when it receives
an incoming request (Line 9 of Algorithm 1); and second, if
message delay is small compared to the interval between
two consecutive requests, then it is highly likely that most
replicas have the same oldest pending request A in its local
priority queue shortly after that request A was sent.
Condition (ii) reduces the chance for a long tail latency.

In most randomized binary consensus algorithms (e.g., [13,
26, 29, 49]), the slow case occurs when roughly half of the
replicas propose 0 and the others propose 1. In an unlucky se-
quence of message delays and coin �ips, it might take a long
time to terminate because replicas do not observe enough
concordant values to jointly make a decision. Therefore, we
design Weak-MVC in a way that if it seems di�cult to ter-
minate fast, then replicas choose to forfeit the proposal, and
Weak-MVC outputs a NULL value ? in this case.

In our experience, it is much more e�cient to “forfeit a
slot” than to agree on some client request. Recall that the
cause behind a forfeit is that replicas had extracted di�erent
proposals. During the time that replicas forfeit a slot, the old-
est proposal that has not been agreed upon is highly likely to
be propagated to all the replicas in a stable network. These
replicas would then store this proposal in local PQs, and
Rabia can hit the fast path again on the next slot after for-
feiting. Therefore, our forfeit-fast approach is more e�cient
than agreeing on a non-NULL value at all times. The latter
approach [26, 29, 67] takes logarithmic time with respect to
the size of the client requests. Section 4 presents two other
practical solutions that further improve the fast-path latency
and reduce tail latency.

3.3 Weak-MVC
Allowing a slot to forfeit and contain a NULL value, Rabia vi-
olates the validity property by typical consensus algorithms
(i.e., an output has to be a client request). Instead, it achieves
the following relaxed version of validity:

Algorithm 2Weak-MVC: Code for Replica 8
WhenW����MVC is invoked with input @ and B4@:
1: // Exchange Stage: exchange proposals
2: Send (P�������,@) to all ù@ is client request
3: wait until receiving � = � 5 P������� messages
4: if request @ appears � b=2 c + 1 times in P�������s then
5: BC0C4  1
6: else
7: BC0C4  0
8: // Randomized Binary Consensus Stage (Phase ? � 1)
9: ?  1 ùStart with Phase 1
10: while CAD4 do
11: /* Round 1 */
12: Send (S����, ?, BC0C4) to all ùBC0C4 can be 0 or 1
13: wait until receiving � = � 5 phase-? S���� messages
14: if value E appears � b=2 c + 1 times in S����s then
15: E>C4  E
16: else
17: E>C4  ?
18: /* Round 2 */
19: Send (����, ?, E>C4) to all ùE>C4 can be 0, 1 or ?
20: wait until receiving � = � 5 phase-? ���� messages
21: if a non-? value E appears � 5 + 1 times in ����s then
22: Return F���R�����V����(E) ùTermination
23: else if a non-? value E appears at least once in ����s then
24: BC0C4  E
25: else
26: BC0C4  C�����C���F���(?) ù?-th coin flip
27: ?  ? + 1 ùProceed to next phase

Algorithm 3Weak-MVC: Helper Function
Procedure F���R�����V����(E)
1: if E = 1 then
2: Find value< that appears � b=2 c + 1 times

in P������� messages received in Phase 0
3: Return<
4: else
5: Return ? ùreturn null value

Weak Validity: the value stored in each slot of
the log must either be a request from some client
or a NULL value ?.

Our algorithm, Weak-MVC (Weak Multi-Valued Consen-
sus), achieves agreement, weak validity, and probabilistic
termination as long as a majority of replicas are correct. The
pseudo-code is presented in Algorithm 2 and 3.
Pseudo-code and Illustration: Weak-MVC has two stages:
exchange stage (Line 1 to 7 in Algorithm 2) and randomized
binary consensus stage (Line 8 to 27 in Algorithm 2). The �rst
stage takes one phase (one message delay). The second stage
takes one phase (two message delays) on the fast path and
may take more phases in an unlucky sequence of message
delays and coin �ips.

The second stage is an adaption of Ben-Or’s algorithm [13].
Intuitively, we replace the per-replica local coins used by
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Ben-Or with a common coin (Line 26 of Algorithm 2), whose
value is the same across all replicas in the same phase. Section
4 brie�y discusses an e�cient implementation of a common
coin by having all replicas use a pseudo-random number
generator or a hash with a common seed [58]. The seed can
be con�gured at deployment, so there is no communication
involved when using the common coin.
The red dotted box in Figure 2 presents the �ow and the

rules of Weak-MVC. The exchange stage and randomized
binary consensus stage are shown in the blue and green
dotted box, respectively. For brevity, we present the case
when the randomized binary consensus stage terminates in
one phase. The three green dots at the end of the red box
denote the possibility that this stage might need more phases
to agree on an output. We will prove later in Section 5 that
Weak-MVC terminates with probability 1, and its average
latency is �ve message delays.
Algorithm Description: Weak-MVC uses three types of
messages: (i) P�������message that carries a proposed value
in the exchange stage (the input to Weak-MVC); (ii) S����
message that contains the state value, denoted by the vari-
able BC0C4 in the pseudo-code; and (iii) ���� message that is
used to cast votes in each phase. The value in the P�������
message is a client request. The state value is either 0 or 1,
whereas the vote could take the value of 0, 1 or ?. The ? is a
unique symbol denoting that the replica does not vote for 0
or 1, i.e., it gives up the vote in this phase. For messages sent
in phase ? , we will refer to it as phase-? messages. Each mes-
sage is tagged with slot index B4@, phase index ? , and sender
ID. For brevity, we omit B4@ and ID in the pseudo-code.

In the exchange stage, replicas exchange their proposals (a
client request) at Line 2 of Algorithm 2, and decide the input
to the second stage by updating the BC0C4 variable based on
the received proposals. In all communication steps, replicas
wait for =� 5 messages of a certain type (Line 3, 13, and 20 of
Algorithm 2). Thus, Weak-MVC is non-blocking. Each replica
sets BC0C4 to 1 if it sees a majority of messages with the same
request @ (Line 5); otherwise, it sets BC0C4 to 0 (Line 7). Using
the majority as the threshold ensures that two replicas with
BC0C4 = 1 at the end of the exchange stage must have seen
the same proposal from a majority of replicas.

The second stage, the randomized binary consensus stage,
proceeds in phases, and each phase has two rounds. In the
�rst round of phase ? , replicas exchange their BC0C4 variables
and decide their vote for this phase. Each replica sets E>C4
to E if they have seen a majority of phase-? S���� messages
containing E , which is either 0 or 1; otherwise, the replica
updates E>C4 to ?. Using a typical quorum intersection ar-
gument on BC0C4 messages, it is guaranteed that there is at
most one non-? value in all the votes. That is, in the same
round, we have either E>C4 2 {0, ?} or E>C4 2 {1, ?} at all
the replicas. The proof of the safety property relies on this
observation.

In the second round of phase ? , replicas exchange their
votes stored in the E>C4 variable. If a non-? value E appears at
least 5 +1 times in the received ����messages, then replicas
can safely output a value using the helper function (Line 22).
If a non-? value E appears at least once, then the replica sets
BC0C4 for the next phase as E (Line 24). If all phase-? ����
messages received contain ?, then the replica �ips a common
coin to determine the state for the next phase (Line 26) – this
is the randomized rule in Weak-MVC. C�����C���F���(�)
denotes the ?-th coin �ip at each replica. A common coin
guarantees that the ?-th coin �ip at each replica returns an
identical value. That is, all the replicas that execute Line 24
in the same phase must obtain the same BC0C4 variable. Such
a coin can be easily implemented in our scenario as detailed
later in Section 4. Replicas proceed to the next phase if they
have not already terminated at Line 22.

The thresholds used ensure that all the non-? values con-
tained in phase-? ���� messages are identical. Hence, if
replicas execute Line 22 or Line 24, they will see the same E .
The beauty of Ben-Or’s design, which we borrowed, is that
replicas break a tie using a coin �ip. Recall that a non-? value
E is either 0 or 1. Hence, when replicas �ip a common coin at
Line 26, it has probability 1/2 to �ip to E and will terminate in
the next phase. Section 5 extends this observation to obtain
the probabilistic termination property.
Examples: The fast path is three message delays, as illus-
trated in Figure 2. Section 3.2mentioned two cases thatWeak-
MVC is guaranteed to use the fast path. We now present the
details. Consider the case when each replica has the same
proposal, then Weak-MVC terminates in three message de-
lays, because (i) all replicas have BC0C4 = 1 after the exchange
stage; (ii) all replicas have E>C4 = 1 after round 1 of phase 1;
and (iii) all replicas will execute Line 22 because all the ����
messages contain 1. Another case of the fast path is when
each replica has a unique proposal. In this case, (i) all replicas
have BC0C4 = 0 after the exchange stage; (ii) all replicas have
E>C4 = 0 after round 1 of phase 1; and (iii) all replicas will
execute Line 22 because all the ���� messages contain 0.

Weak-MVC might be slow if in every communication step,
only roughly half of replicas take a particular branch of the
if statements, particularly when half of the replicas execute
Line 24 and the other half execute Line 26. A slow-case ex-
ample with = = 3 is as follows: (i) two replicas have BC0C4 = 1
and one has BC0C4 = 0 at the beginning of round 1 in the
second stage; (ii) two replicas have E>C4 = ? and one has
E>C4 = 1 at the beginning of the round 2, because they ob-
served di�erent sets of S����messages; and (iii) two replicas
execute Line 24 with BC0C4 = 1, and one replica executes Line
26 by �ipping a coin and obtains 0 for its BC0C4 . Note that step
(iii) is identical to step (i). In other words, no progress has
been made. This sequence of events might repeat for a few
phases if the coin �ip is di�erent from E at Line 26. Section
5 proves that the average latency of Rabia is �ve message
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Figure 3. Fail-over in Multi-Paxos vs. No fail-over in Rabia. If the leader in Multi-Paxos fails, then the remaining replicas
need to execute a fail-over protocol to recover decisions made by the crashed leader and re-elect a new leader. Rabia does not
need any fail-over. If Replica 1 outputs a value E , then the remaining replicas are guaranteed to output E in the next phase, no
matter if Replica 1 fails or not. For brevity, only the randomized binary consensus stage of Weak-MVC is shown.

delays. Our evaluation in Section 6 shows that such a long
tail latency rarely occurs in a stable network.

3.4 No Fail-Over and Simple Log Compaction
Prior systems, e.g., [25, 38, 39, 43, 48, 52], require a compli-
cated protocol to handle failures, especially when a leader,
or a command leader in a multi-leader design, fails. Intu-
itively, this is because when a leader crashes, replicas need
to execute an instance of leader election to ensure liveness.
Meanwhile, for safety, replicas need to recover the decision(s)
that the previous leader has already made [20, 25, 33]. This
task is non-trivial since replicas may have a stale log andmay
fail again during leader election. In practical systems that
optimize throughput with pipelining and leases (for leader or
read operations), fail-over becomes even more complicated,
because some of the decisions may not have been persisted
to a quorum of replicas yet. An example scenario of a crashed
leader in Multi-Paxos is depicted in Figure 3.

Rabia does not need any fail-over protocol because it does
not rely on a notion of leader, nor command leader. To agree
on a value E for a slot, a group of replicas must cast votes
for E in some phase of the randomized binary consensus
stage; hence, even if some replica(s) fails, a replica can still
learn E from the non-faulty replicas in the group. In other
words, the use of the ���� messages ensures that no single
replica makes the decision alone, unlike prior algorithms.
In Rabia, a group of replicas makes a “joint decision.” This
design simpli�es the failure handling.
The execution on the right part of Figure 3 illustrates

the case when there are three replicas, and only Replica 1
observes two ���� messages of E and executes Line 22 of
Algorithm 2. Then, it fails shortly after it learns the output.
This scenario is analogous to the case when the only replica
that knew the output fails in Multi-Paxos. Suppose Replica 2
and 3 did not learn the decision in Phase 1 and proceed to
the next phase as described in Algorithm 2 with BC0C4 = E .
This is because they must have observed at least one ����
message of E in Phase 1. By construction, after the exchange
of phase-2 S����messages, both Replica 2 and 3 update E>C4
to E ; hence, they will output E in Phase 2. Note that these

steps are already speci�ed in Algorithm 2, and Weak-MVC
does not need an auxiliary protocol to handle failures.
Log compaction is di�cult in prior systems because a

leader needs to send a snapshot to replicas that lag behind
[3, 20]. The issue becomes even more challenging during the
process of leader re-election and recovery. In fact, Chubby
developers [20] mentioned that “(Snapshotting) mechanism
appears straightforward at �rst... However, it introduces a fair
amount of complexity into the system.” Particularly, the meta-
data needs to be stored along with the snapshot itself, which
both need to be recovered consistently if a leader failure
occurs. Rabia does not need a fail-over and does not rely on
the notion of leader; hence, it supports a simple mechanism
for log compaction. In particular, each replica has the same
responsibility in Rabia, so a slow replica can learn from any
other replica to catch up with missing slots in a stable net-
work where no message is lost between non-faulty replicas.
Once a slow replica gets to the current slot, it can participate
in the agreement process again. If messages could be lost,
then log compaction needs to be made more conservative
than the one presented in Algorithm 1 – replicas need to
make sure that a quorum has already agreed on a slot before
compacting a slot.

3.5 Performance Analysis and Trade-o�
Rabia does not need a fail-over protocol, but it demands more
communication, which we believe is a good trade-o� in the
target scenario. As we will see in Section 6, Rabia’s perfor-
mance with three replicas in the same availability zone is
better than prior systems. Although we observe a degrading
performance with a larger = or deployment across di�erent
availability zones (in a datacenter), Rabia still has perfor-
mance comparable with EPaxos.
Fast Path Case: For = = 3, we analyze the best-case per-
formance. Both Multi-Paxos and EPaxos (with zero con�ict
rate) need two message delays, whereas Rabia has three mes-
sage delays. Mutli-Paxos sends four messages, and EPaxos
sends four messages per command-leader. Rabia sends 18
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messages. Note that Weak-MVC only sends the original pro-
posal (a request) in the exchange stage and sends a message
containing 0, 1 or ? in later phases. That is, bit complexity
is dominated by client request size. Therefore, Rabia’s com-
munication overhead is not a bottleneck with small = in a
stable network.
Average and Worst Case: We prove later in Section 5 that
the average latency of Rabia is �ve message delays on aver-
age. As stated earlier, it is possible, in theory, to have a large
tail latency due to the slow case of Weak-MVC; however, we
argue that such a corner case hardly occurs in practice, as
witnessed in our evaluation. In Section 4, we present two
practical approaches to mitigate such an unlucky scenario.
Bottleneck: In our evaluation, we found that the bottle-
neck of Multi-Paxos is the leader. It requires a stable leader
to maintain high-performance; however, leader-client and
leader-replica communications, especially serialization/dese-
rialization, become the bottleneck. We see 1.5x to 3x di�er-
ence in throughput between open-loop tests and close-loop
tests. As for EPaxos, the bottleneck is local computation time,
i.e., dependency check for identifying a permissible order
across client requests. Even in the case when there is no
con�ict, EPaxos still needs to check all the dependencies to
ensure safety. The check is proportional to the number of
clients, replicas, and the number of client requests in a batch.
With 100 clients and batch size 1, the median time for EPaxos
to complete the dependency check is 0.29ms, roughly one
RTT in the current datacenter. The time increases to 1.90s
when batch size increases to 80.

There are two characteristics of Rabia that can potentially
reduce performance: message complexity and stable network.
We found the trade-o� reasonable. Rabia does not need an
auxiliary fail-over protocol; moreover, it distributesworkload
evenly to all replicas, and does not have expensive local
computation. As we will see in Section 6, these are why
Rabia outperforms Paxos and EPaxos when = = 3 in the
same availability zone.

4 Practical Considerations
We implemented Rabia in Go, version 1.15.3 The entire frame-
work, including the key-value storage on top of our system,
consists of around 2,200 lines of Go code. Go is a compiled
language and has garbage collection and built-in support for
managing high concurrency. The implementation follows
closely with the pseudo-code. We use go-routines and go-
channels for handling connection and communication. This
simpli�es the logic and increases parallelism.
CommonCoin: Rabia uses a common coin (Line 26 in Algo-
rithm 2). We implement it by using a random binary number
generator with the same seed across all replicas. This satis-
�es our purpose by (i) picking 0 or 1 randomly in each phase;

3h�ps://github.com/haochenpan/rabia/

and (ii) giving the same value to all replicas in the same
phase, i.e., all replicas have the same ?-th coin �ip. A seed is
pre-con�gured in such a way that for each slot, all replicas
use a common seed. When the system is recon�gured, the
seeds are reset using a deterministic rule, i.e., the slot index
plus the con�guration index (epoch number) decide the seed.

The implementation of our common coin is based on the
seminal work by Rabin [57] and subsequent works by Michel
Raynal [29, 30] on binary randomized Byzantine consensus.
Ben-Or’s local coin approach [13] tolerates a dynamic ad-
versary, which may determine the set of faulty replicas and
delay messages based on the coin �ip. The use of a common
coin tolerates a weaker adversary which assumes that the
faults and message delays are independent of the outcome
of the coin �ip, which is adequate in practical settings.
Dictionary: At Line 1 of Algorithm 1, Rabia uses a dictio-
nary to keep track of whether the head of the %& is already
in the log or not. Rabia only needs to store a non-? >DC?DC
(the output of W����MVC) in the dictionary at Line 6, when
this >DC?DC does not match ?A>?>B0;8 . TCP implies that the
communication is reliable, and a message is delivered ex-
actly once, if the sender is correct. Therefore, replica 8 is
guaranteed to extract >DC?DC again from its %&8 when there
is no failure. At this step, >DC?DC can be removed from the
dictionary. By assumption, up to 5 replicas may fail, so %&8

still has a bounded size if some replicas crash. In our experi-
ence, the size of the dictionary is mostly empty in a stable
network.
Batching: Following prior work, e.g., [10, 43, 48, 56], we
use batching to improve throughput and network utilization.
That is, instead of agreeing on one client request for a slot,
replicas can agree on a batch of requests. We implement two
forms of batching:

• Proxy batching: replicas batch a �xed number of client
requests before pushing it into the priority queue %&
(Line 8 of Algorithm 1), and forwarding to other repli-
cas (Line 9). Consequently, an entire batch is treated
as a proposal at Line 2. If there is no failure, then each
batch contains di�erent requests.

• Client batching: instead of sending a single request,
clients send a batch of requests (i.e., a set of operations)
in one message. In practical systems, user applications
typically communicate with a load balancing service,
which can perform this type of batching by collecting
requests from multiple clients [28, 36]. Moreover, as
outlined in the experience paper of scaling Memcache
by Facebook [51], a query touches 24 keys on average.
Such a query can be viewed as a batch of 24 requests
to the key-value storage system.

Failure Recovery by Clients: In our design, a client com-
municates with a single replica, i.e., a proxy replica. If the
proxy replica fails, then the client relies on a timeout to de-
tect the unresponsiveness. In such a case, the client re-sends
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its request to another (randomly selected) replica. To han-
dle the potential duplicated requests in the log, we use the
standard solution of embedding a unique ID (a pair of client
ID and a sequence number) in each request. When applying
requests from the log, a replica skips any duplicated request.
Recon�guring the Replicas: Since Rabia does not need
a fail-over, and all replicas essentially have equal respon-
sibility, it is simple to perform recon�guration. We treat
add-replica and remove-replica as special commands. A
system administrator (or an auxiliary automated member-
shipmanagement component) can submit a special command
2 to any of the replicas. Replicas will then useW����MVC
to agree on the slot for 2 . Eventually, all replicas will learn 2 ,
and in the next slot, if 2 is add-replica, then the new replica
will join the protocol; otherwise, the removed replica will
leave the system. The reason that the recon�guration is sim-
ple compared to prior systems [40, 48, 52] is that Rabia does
not rely on the notion of the leader; therefore, every replica
is eventually obtaining the same information, which allows
them to change to a new con�guration jointly. Prior sys-
tems need to carefully integrate recon�guration with leader
election to deal with potential leader failures [20, 33].
Tail Latency Reduction: We brie�y describe two practical
approaches to further reduce tail latency: (i) Using an eventu-
ally correct failure detector [35] to allow replicas to receive a
consistent set of messages; and (ii) using a freeze time before
participating inWeak-MVC, which allows the oldest pending
request to be delivered at replicas. The rationale behind these
two approaches is to increase the probability of having the
same head of each %&8 for replica #8 , which allows Rabia to
take the fast path. However, these two are optimizations that
are not currently implemented because the network used
in our experiments, Google Cloud Platform, shows stability,
and hence none of these optimizations should have had any
impact on our performance study.

In addition, we adopt a common optimization that allows
a slow replica to catch up by asking other replicas when it
misses the proposal from a prior slot. That is, a slow replica
that learns the decision of a slot may send a request message
to other replicas to learn the proposal that has already been
agreed upon. This allows the slow replica to participate in
the next slot without waiting for delayed messages.
Pipelining: Pipelining is a common optimization that allows
the system to proceed to the next slot(s) without learning the
output of the current slot. In other words, multiple instances
of consensus algorithms are being executed simultaneously.
This optimization increases throughput because communi-
cation latency is amortized through concurrent slots.

While Rabia’s implementation does not include pipelining,
our framework can be extended to support it. As presented in
Algorithm 1, each replica has one PQ for providing inputs to
Weak-MVC. To enable pipelining, we can have multiple PQs
for each replica. Then Rabia has one PQ to handle the request

batches from a �xed set of replicas, and multiple instances of
Weak-MVC can run concurrently and independently. Since
randomization ensures that each instance is guaranteed to
terminate, liveness still holds with this pipelining strategy.

5 Safety and Liveness Properties
The design of Rabia lends itself to formal proofs of correct-
ness. We brie�y discuss how we use Ivy and Coq to formally
verify its safety. The complete proof is presented in [54]. We
then present a simple analysis of liveness.
Formal Proof of Safety: The safety of Weak-MVC implies
the safety of Rabia. Weak-MVC’s key safety properties are
weak validity and agreement. In the discussion below, we say
that a replica “decides” on a non-? value E in phase ? if the
replica executes Line 22 of Algorithm 2 after seeing a major-
ity of phase-? ���� messages with value E . By construction,
replicas will decide on only 0 or 1.
Weak validity says that if a replica decides on a value E

other than ?, some client must have initially proposed E .
Agreement says that if a replica decides on E1 and another
replica decides on E2, then E1 = E2. These are the usual prop-
erties expected of a correct consensus algorithm, except that
weak-validity allows for replicas to decide on ?.

We prove these two safety properties using a combination
of the Ivy [46] and Coq [62] veri�cation tools. Ivy is an
automated tool that checkswhether a property is an inductive
invariant of a system, meaning that it holds before and after
every action of a replica. Automated proof search is achieved
by careful restrictions on the types of properties that can
be expressed and checked in order to ensure that they fall
within a decidable fragment of �rst-order logic. Meanwhile,
Coq is a general-purpose theorem prover, which is highly
expressive but requires a human to construct the proof.

The core part of our safety proof is showing that the ran-
domized binary consensus stage of Weak-MVC (Algorithm
2) satis�es agreement. For this, we follow the structure of
prior paper proofs of correctness for Ben-Or’s algorithm [7].
We �rst use Ivy to verify that the following four properties
are inductive invariants of the system:

1. Any two decisions within a phase must be on the same
value E .

2. Once a replica decides on a value E , the next phase is
value-locked on E , meaning that all the replicas that
have neither crashed nor decided must enter the next
phase with BC0C4 = E .

3. If a phase is value-locked on E , any decisions within
that phase must be for E .

4. If phase 8 is value-locked on E , then 8 + 1 is also value-
locked on E .

We next use Coq to prove that agreement follows from the
above four properties by induction on the phase number.
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Splitting the proof across the two tools in this way makes
use of the relative strengths of each. Checking the four prop-
erties above is straightforward in Ivy but would requiremany
lines of proof in Coq. Conversely, trying to do the induction
on the phase number within Ivy seems di�cult to do while
remaining in the supported decidable fragment.4

The Ivy part of the proof is 366 lines of code, about 150 of
which are a description of Weak-MVC in Ivy’s modeling lan-
guage. The remainder are statements of other intermediate
inductive invariants that Ivy uses to establish the four prop-
erties above. The Coq �le is 190 lines of code, with 128 lines
describing the system, axiomatizing the properties checked
by Ivy, and stating the agreement and weak validity.
Proof of Liveness: For liveness, we need to show thatWeak-
MVC terminates with probability 1, as long as the majority
of replicas are non-faulty. The proof structure follows from
prior works [11, 13, 49, 58]. We �rst prove the following
lemma and use it to prove three key theorems.

Lemma 1. Each phase has probability at least 1
2 of leading to

termination. That is, all the non-faulty replicas output a value
before or at the end of phase ? .

Theorem 1. Weak-MVC has average round complexity = 5.

Proof. Lemma 1 implies that the probability of Weak-MVC’s
Randomized Binary Consensus Stage terminating at the end
of phase C is at least

(1 � 1
2
)C�1 1

2
(1)

It follows that the number of phases until termination
is upper bounded by a geometric random variable whose
expected value is 1/2. Therefore, the average number of
phases of this stage is 2. Since each phase has two rounds
and Weak-MVC also needs one round in the Exchange Stage,
the average number of rounds is 2 · 2 + 1 = 5. ⇤

Equation (1) implies thatWeak-MVC terminates with prob-
ability 1. Since Rabia only performs communication in Weak-
MVC, the average number of rounds for Rabia to complete a
slot is 5, and each slot is completed with probability 1.

6 Performance Evaluation
We �rst evaluate Rabia by comparing it against two other
systems: Multi-Paxos and EPaxos (with no con�icting re-
quests) to understand the performance of the core consensus
component. Then, we integrate Rabia with Redis (RedisRa-
bia) and compare it with Redis. Multi-Paxos is a popular
choice in production systems [16, 19, 20]. EPaxos (with no
con�ict) is a state-of-the-art SMR system that achieves the
best performance in our setting. It obtains high performance
by achieving fast-path latency of two message delays, and
each replica can have requests in a di�erent order.
4Recent versions of Ivy have some support for including interactive proofs,
which might allow doing this proof entirely within Ivy.

The purpose of our evaluation is to understand the per-
formance of the core algorithm with minimum optimiza-
tion; hence, we choose Multi-Paxos and EPaxos that only
use pipelining and batching. Highly optimized systems, e.g.,
Compartmentalized Paxos [65], and systems that use special-
ized hardware like NOPaxos [41] could potentially achieve
higher performance.
For EPaxos and Multi-Paxos, we use the implementation

from [48]. We implement a replicated key-value store that
supports read (G��) and write (P��) operations based on
Rabia. The structure follows closely to the one from [48] so
that we can perform a fair comparison. EPaxos uses its own
GoBin library for serialization, which outperforms GoGo Pro-
tobuf,5 the library we used. However, we still choose GoGo
Protobuf because it has native support to strings, which al-
lows us to use Redis commands as inputs to Rabia directly.
In the EPaxos evaluations, all requests are non-con�icting
so that the achieved throughput is the maximum.
We evaluate our system on the Google Cloud Platform

(GCP). Each server is on an e2-highmem-4 instance (Intel
Xeon 2.8GHz, 4 vCPU, 32GB RAM) running Ubuntu-1604-
xenial-v20201014. Clients run on one to three customized e2
machines, and each machine has 30 vCPUs and 120 GB RAM.
All machines are deployed within a single availability zone
us-east1-b (except for Figure 4c). Network bandwidth was
measured in excess of 7.8 Gbits per second. The typical RTT
is about 0.25 ms. The size of a client request is 16B (except for
one experiment). We use these sizes because, for example, in
Facebook’s production TAO system [15, 42], 50% of requests
have value �eld smaller than 16B. In [12], Facebook docu-
ments the workload of the Memcached deployment; in one
of the systems, 40% of requests is less than 11B. In our setup,
we observe no di�erence between di�erent write ratios. For
the data reported, the write ratio is 50% for all three systems.
PerformancewithoutBatching:We �rst consider the case
without any form of batching, i.e., both client batch and
proxy batch are set to 1, and hence each slot contains one
request. We test EPaxos and Paxos, with and without pipelin-
ing (labeled with (NP)). As described above, Rabia does not
currently implement pipelining, and thus it processes one
slot at a time. This closed-loop test consists of three replica
machines and one client machine. We vary the load (number
of clients) on each system until a maximum throughput is
reached. The best performing number of clients varies from
two to six clients.6
Rabia is comparable with EPaxos (NP). This is because

EPaxos spends more time in local computation, whereas
Rabia has a higher communication overhead. EPaxos (NP)
has a large median latency, compared to pipelined EPaxos,

5h�ps://github.com/gogo/protobuf
6In this particular setting, EPaxos is bottlenecked by dependency checking.
The median latency of the check is 0.29 ms on the CPUs in GCP, which limits
EPaxos’s throughput. Hence, Paxos outperforms EPaxos in this evaluation.
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(a) Median Latency.
Same Zone with 3 Replicas.

(b) 99th Percentile Latency.
Same Zone with 3 Replicas.

(c) Median latency.
Multi-Zones with 3 Replicas.

(d) Median latency.
Same Zone with 5 Replicas.

Figure 4. Throughput vs. Latency plots. The deployment consists of 3 or 5 4-CPU replica machines and 3 separate client
machines. Both systems have client batch size = 10, which is reported in brackets in the legend.

Rabia EPaxos(NP) EPaxos Paxos(NP) Paxos
Thpt 2458.56 2561.3 11480.1 1209.26 12993.07
M-Lat. 1.35 3.99 0.46 2.74 0.67

Table 1. Performance without Batching. (NP) indicates
that a system has no pipelining. Throughput is represented
as req/s, and median latency is measured in ms.

because it receives more messages before processing each
slot, which increases the time for doing dependency check
(that is proportional to the requests a command leader has
seen). Naturally, the pipelined version outperforms Rabia
by 5x. However, Rabia performs well without the pipelining
optimization, considering the RTT is roughly 0.25ms. It is
close to the maximum number of slots based on the theoreti-
cal analysis – each slot takes 1.5 RTT on a fast path, which
results into around 2667 slots per second. When batching
is used, the e�ect of pipelining becomes less obvious, as
serialization of client requests becomes the bottleneck.
Throughput vs. Latency: We next con�gure Rabia, EPaxos
(with pipelining), and Paxos (with pipelining) to achieve its
maximum throughput without reaching saturation andmain-
tain a stable performance. Figure 4 presents the throughput
and latency numbers by increasing the number of concurrent
closed-loop clients (20 – 500). Interestingly, we found that an
optimal con�guration is di�erent for each system. EPaxos
and Multi-Paxos require proxy batching of size 1000 and
5000, respectively. Rabia runs best with small client batching
and proxy batching. In this particular set of tests, Rabia uses
proxy batching at 20. All systems use client batching size 10.
The maximum batch size is 1000, 5000, and 300, for EPaxos,
Paxos, and Rabia, respectively. These numbers are also used
in [48]. Following the best practice in [48], each system uses
a timeout of 5ms to batch requests if the desired batch size
is not reached.

Intuitively, di�erent systems require di�erent parameters
to achieve the maximum throughput because each system
has a di�erent performance bottleneck. The reasons behind
the choices of timeout and batch sizes, based on our experi-
ence, are: (i) Paxos has a bottleneck at the leader, so it cannot

initiate a slot too frequently; and (ii) Rabia does not imple-
ment pipelining, but distributes workload evenly at each
replica; hence, it has to agree on one slot more quickly to
obtain the maximum throughput. EPaxos falls in the middle.
Figure 4a and Figure 4b show that Rabia has a small in-

crease from the median latency to the 99th percentile latency
when all three replicas are deployed in the same availability
zone. However, if the system is overloaded, the 99th per-
centile latency becomes larger because of the increasing
chances of NULL slots. Compared to EPaxos andMulti-Paxos,
Rabia has a smaller drop in median latency because it uses
a smaller proxy batch, and timeout is not triggered when
there is a large enough number of clients.

Figure 4c shows that Rabia has a moderate degraded per-
formance, around a 23% drop, when deployed in multiple
availability zones in the same region. The deployment has
three replicas: one replica in us-east-1-b, one in us-east-1-c,
and the other in us-east-1-d. All the clients are deployed
in us-east-1-b. The average RTT across multiple zones in-
creases from 0.25 to 0.4ms, and the variance becomes larger
at 0.17ms. The limited drop in performance moving from
one to multiple availability zones also shows that the net-
work conditions that allow Rabia to reach consensus fast are
practical, not stringent, and can be met even when Rabia is
deployed beyond a single highly-connected network. Inter-
estingly, EPaxos and Paxos have improved performance. This
is because longer RTT actually reduces the communication
burden on the leader node (in Paxos) and command-leader
(in EPaxos).

Figure 4d presents the case with �ve replicas. Due to its
$ (=2) message complexity, Rabia has reduced throughput.
The median latency remains small, compared to other sys-
tems. EPaxos improves its performance, as also observed in
[48], because when there are no con�icting requests, more
requests can be handled concurrently with a larger num-
ber of replicas. Figures 4c and 4d demonstrate that Rabia
has high performance in the ideal case (same availability
zone with = = 3), but in other cases, the performance is still
comparable to EPaxos.
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Figure 5. Throughput across di�erent Redis integration. Re-
disRabia has around 1K req/s without batching, and Rabia
has around 2K req/s without batching.

Varying Data Size: Using the same con�guration in Figure
4a, we also compare all three systems with key-value pairs
with size 256B. EPaxos and Paxos su�er 71% and 56% reduc-
tion in throughput, whereas Rabia has less (47%) reduction.
Even though Rabia has a higher message complexity for each
slot, EPaxos and Paxos rely on pipelining to obtain improved
performance, which produces more messages in the same in-
terval and therefore increases network utilization, reaching
saturation faster.
Integration with Redis: In our integration, we use Redis to
store the key-value pairs instead of a map stored in memory.
RedisRabia utilizes Redis nativeMG�� andMP�� commands
to process a batch of requests. Figure 5 presents the com-
parison with native Redis-based systems: (i) synchronous-
replication with one master and one replica (Sync-Rep (1));
(ii) synchronous-replication with one master and two repli-
cas (Sync-Rep (2)); and (iii) RedisRaft, an experimental sys-
tem by Redis Labs (Raft). We implement synchronous repli-
cation using Redis’sWAIT command on top of a native asyn-
chronous replication in Redis (cluster mode). Note that data
might be lost or become stale if the master fails in this type
of replication. Rabia denotes a system without using Redis
as the storage. In all the systems, we turned o� any of the
persistence options.

Each system has two numbers, throughput with batching
(left bar) and without batching (right bar). In all systems, we
use 20 for client batching and 15 for proxy batching. The
storage engine a�ects the performance of Rabia signi�cantly
because pipelining is not currently implemented, and any
delay in completing a slot decreases throughput. Yet, RedisRa-
bia is comparable with synchronous replication. The current
implementation of RedisRaft is not optimizing throughput;
hence, its throughput is sub-par except for the no-batching
case due to its pipelining optimization. On the other hand,
RedisRaft has better latency than all other systems, including

Rabia-based ones. The reason for it is mainly the e�ect of
pipelining, as also observed in Table 1.
Internal Statistics and Network Stability Test: The per-
formance of Rabia depends on the underlying network, which
a�ects two important internal statistics: (i) the message de-
lays needed for Weak-MVC to terminate; and (ii) the per-
centage of NULL slots in the log. In summary, the maximum
number of message delays we have observed is 15, which
occurred 26 times out of 0.12 billion rounds, including the
experiments that overload Rabia. 96% of slots use the fast
path. For all the closed-loop tests, 2.22% of slots are NULL,
whereas for all the open-loop tests, 0.31% of slots are NULL.
We also conduct a simple network test in GCP and CloudLab
[24] to measure how many messages a replica needs to re-
ceive for all three replicas to have the same oldest message
in an interval. This scenario ensures that all replicas have
the same head in their respective priority queue (%&). On
average, replicas need to receive 3.1 to 3.9 messages. These
results, along with the reported internal statistics, con�rm
that the network conditions of GCP have the stability needed
to enable high performance in Rabia.

7 Related Work
SMR: State-machine replication is a popular mechanism for
making a service fault-tolerant and highly available [60].
Classical log-based SMR systems use a single leader to order
requests, e.g., [6, 37–39, 52]. The capacity of a single node
limits these systems. Recent SMR systems adopt a multi-
leader (or so-called leaderless) design that distributes the
ordering responsibility evenly to increase performance (e.g.,
Mencius [43], EPaxos [48], M2Paxos [56], Caesar [10], and
A���� [25]). At the core of the multi-leader design [59], there
is a dependency graph to keep track of the dependency be-
tween requests so that any replica can decide the order of
requests fast. As opposed to Rabia, both leader-based and
multi-leader-based SMR systems require non-trivial e�ort
[16, 20, 33] to integrate the core consensus algorithms with
an auxiliary fail-over mechanism to recover from the failure
of a leader or a command leader. Moreover, in the case of
multi-leader-based SMRs, replicas also need to spend more
computation in checking dependencies. These systems did
not use randomized consensus.

RandomizedConsensusAlgorithms: Following Ben-Or’s
work, several theoretical papers [5, 11, 26, 29, 30, 49, 57, 58,
67] have improved it in multiple aspects, including tolerating
Byzantine faults [5, 49], reducing the average number of mes-
sage delays using a common coin [5, 26, 57, 58], and taking
multi-valued inputs [67]. Ben-Or’s algorithm has been pre-
viously formally veri�ed in several systems [14, 45]. Pedone
et al. [55] investigated two relaxed randomized consensus
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algorithms based on Ben-Or’s algorithm [13] and Rabin’s al-
gorithm [57], and also exploited the weakly ordering guaran-
tees from the network layer to improve performance. Crain
[23] presented an evaluation of his binary Byzantine consen-
sus algorithm. The implementation only takes binary input
and generates a binary output. These works focused on the
single-shot consensus, and did not present an approach to
develop a practical SMR system, as Rabia does.

Practical Randomized Byzantine Fault-tolerance Sys-
tems: Randomization has been recently used in Byzantine
Fault-tolerance (BFT) systems. Cachin et al. proposed a coin-
�ipping protocol based on theDi�e-Hellman problem,which
is then used to build a Byzantine consensus protocol with
constant message delays in expectation and has message
and communication complexities close to the optimum [17].
Cachin et al. [18] introduced a protocol for cryptographically
secure randomness generation that allows users to deploy
non-deterministic applications on top of the proposed BFT
systems. Miller et al. presented HoneyBadgerBFT [47], which
also identi�ed that randomization can be used to improve
performance in SMR systems. The key technique is a ran-
domized atomic broadcast protocol that tightly integrates
random selection and encryption.

Another popular application of randomized consensus is
Blockchain. For example, the Proof-of-Work of Bitcoin [50]
and Proof-of-Stake of Algorand [21, 31] can both be viewed
as randomized consensus algorithms. These BFT systems
focus on cryptographical guarantees [17, 18], permissionless
settings [21, 31, 50], or wide-area networks [21, 31, 47, 50].
These aspects are signi�cantly di�erent from our target sce-
nario. Therefore, their techniques, including the ways that
randomization is used, are di�erent from Rabia’s. Speci�-
cally, these systems do not use relaxed consensus (with weak
validity) for improving performance.

8 Conclusion
We present the design and implementation of Rabia, a simple
SMR system that achieves high performance in favorable
settings (e.g., same availability zone with = = 3) and com-
parable performance in more general cases within a single
datacenter. By using randomized consensus as opposed to
a deterministic one, Rabia does not need any fail-over pro-
tocol and supports trivial log compaction. Our evaluation
study con�rms that in commodity networks, the belief that
randomized consensus implementations do not provide com-
petitive performance can be challenged.
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