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Abstract. This paper develops new techniques for studying smooth dynamical systems
in the presence of a Carnot–Carathéodory metric. Principally, we employ the theory
of Margulis and Mostow, Métivier, Mitchell, and Pansu on tangent cones to establish
resonances between Lyapunov exponents. We apply these results in three different
settings. First, we explore rigidity properties of smooth dominated splittings for Anosov
diffeomorphisms and flows via associated smooth Carnot–Carathéodory metrics. Second,
we obtain local rigidity properties of higher hyperbolic rank metrics in a neighborhood of
a locally symmetric one. For the latter application we also prove structural stability of the
Brin–Pesin asymptotic holonomy group for frame flows. Finally, we obtain local rigidity
properties for uniform lattice actions on the ideal boundary of quaternionic and octonionic
symmetric spaces.
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1. Introduction
Totally non-integrable k-plane distributions E on a manifold N have been of considerable
interest in partial differential equations, geometry and control theory. In particular,
they play a central role in Hörmander’s work on hypoelliptic partial differential
operators (e.g. [Hör67]). Such operators arise naturally from nilpotent groups.
Fundamental work of Folland, Goodman, Kohn, and Rothchild and Stein developed a
converse.

Later on, Gromov [Gro81] introduced tangent cones for general metric spaces and found
criteria for their existence. Namely, for a metric space (X, d) a tangent cone at p ∈ X is
a convergent limit in the pointed Gromov–Hausdorff topology of the sequence of pointed
metric spaces (X, p, λd) as λ → ∞. Note that tangent cones do not always exist, and
when they do exist, they are not always unique. Spun from a key result of Métivier [Mét76],
Gromov, Mitchell, Margulis and Mostow, and Pansu, among others, have investigated the
existence, uniqueness and structure of the pointed tangent cones for Carnot–Carathéodory
metrics [Gro81, Gro96, MM00, MM95, Mit85, Pan89].

In the present paper we explore these tangent cones with the goal of establishing
new techniques for the study of Lyapunov exponents of dynamical systems respecting
sub-Riemannian metrics. We suspect that such systems will typically possess algebraic
features. For example, we use these techniques to establish criteria for the Lyapunov spectra
to be arithmetic progressions. This fits into the scope of the recent dueling programs
between flexibility and rigidity of Lyapunov exponents. Indeed, pointwise arithmeticity
of the Lyapunov spectrum sometimes leads to complete rigidity of the dynamics [But19,
But18]. Further afield, constancy or extremality of the Lyapunov spectrum in certain cases
yields local rigidity (cf. [Con03, DeW19, DSLVY20, GKS11, GKS20, SY19]). These
contrast with results about flexibility of the Lyapunov spectrum for tori and surfaces, (see
[BE20, BKH21, CS21, EK19]).

The arithmeticity of Lyapunov spectra has ramifications for both Riemannian geometry
and group actions. Indeed, we will discuss rigidity of hyperbolic rank structures in §1.3
and local rigidity of projective actions in §1.4.
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1.1. Sub-Riemannian geometry. We recall that a smooth manifold N is called a
sub-Riemannian manifold if
(1) N is equipped with a smooth distribution E, called a horizontal distribution, which

satisfies Hörmander’s condition (i.e., vector fields tangent to E and their iterated
brackets generate T N) and

(2) E is endowed with a smooth Riemannian metric 〈·, ·〉x .
The Carnot–Carathéodory metric dC on N between a pair of points x and y is defined as
the infimum of length of curves tangent to E from x to y. By a theorem of Chow [Cho39],
the Carnot–Carathéodory metric dC is finite on connected components of N.

For a horizontal distribution E, at each point x ∈ N and i ≥ 1 we define Ei
x to be the

subspace of TxN spanned by all i-fold commutators of vector fields tangent to E. We call a
horizontal distribution E generic (of order r) at a point p ∈ N if on a neighborhood U of p
the subspaces Ei

x fit together to form a strictly increasing sequence of (smooth) subbundles

E = E0 ⊂ E1 ⊂ · · · ⊂ Er = T U .

In this setting, Mitchell [Mit85] showed that the tangent cones at generic points of N
are graded nilpotent Lie groups equipped with left-invariant Carnot–Carathéodory metrics
which are unique by Margulis and Mostow [MM00]. Following Pansu [Pan89], Margulis
and Mostow also developed the notion of a Pansu derivative of a quasi-conformal map on
a sub-Riemannian manifold. We will be applying this construction to maps preserving a
distribution.

We develop these ideas to understand the dynamics of differentiable maps preserving
suitable distributions. Combining the main theorem of Mitchell [Mit85] together with
Proposition 3.4 and analyzing (cf. Proposition 3.8) the proof of the main theorem of
Margulis and Mostow [MM95] provides the catalyst for our investigations.

THEOREM 1.1. (Tangent cone structure theorem) Let f : N → N be a local C∞ diffeo-
morphism of a sub-Riemannian manifold N preserving the horizontal distribution E. Then
the set ! := {x ∈ N : E is generic at x} is open dense and f-invariant. Moreover, we have
the following statements.
(1) For every x ∈ !, the tangent cone T CxN of N at x exists, is a graded nilpotent Lie

group with a left invariant Carnot–Carathéodory metric and the tangent cones vary
continuously on ! with respect to the Gromov–Hausdorff topology.

(2) The map f induces a graded Lie group isomorphism (f∗)x : T CxN → T Cf (x)N

between the tangent cones T CxN of N at x ∈ ! and T Cf (x)N of N at f (x). We
call (f∗)x the Carnot derivative of f at x.

With substantially more work, we later prove a foliated version of this theorem
(Theorem 4.2). Applying this to an unstable foliation will provide applications in the
dynamical setting.

Next we consider the relation between the Carnot derivative and the ordinary one.
In the following three theorems we employ a detailed investigation of the proof of the
Margulis–Mostow theorem [MM95].
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THEOREM 1.2. (Subadditivity of the spectrum at periodic points) Let f : N →
N be a local C∞ diffeomorphism of a sub-Riemannian manifold N preserving
the horizontal distribution E. Assume that E is generic at a point p ∈ N where
f (p) = p. Suppose the tangent cone T CpN is (r + 1)-step and set n−1 = 0
and ni = dim Ei(p) for i ∈ {0, . . . , r}. If Dpf |Ei

p
has Lyapunov exponents

(log λ1, log λ2, . . . , log λn0 , log λn0+1, . . . , log λn1 , . . . , log λni ) listed with multiplic-
ity and with log λnj−1+1, . . . , log λnj in non-decreasing order for each j ∈ {0, . . . , i},
then for each i ∈ {0, . . . , r} and j ∈ {ni−1 + 1, . . . , ni} we have (i + 1) log λ1 ≤
log λj ≤ (i + 1) log λn0 .

Note that at a fixed point, the Lyapunov exponents simply amount to being the logs of
the magnitude of the eigenvalues of Dpf . In the special case when the tangent cone is the
Heisenberg group with its standard contact structure and Carnot–Carathéodory metric, we
have a stronger statement.

THEOREM 1.3. (Additivity of the spectrum for Heisenberg cones at periodic points) Let
f : N → N be a local C∞ diffeomorphism of a sub-Riemannian manifold N preserving
the horizontal distribution E. Assume that E is generic at a point p ∈ N where f (p) = p.
Suppose the tangent cone T CpN is isomorphic to the Heisenberg group H 2n+1. If
log λ1, log λ2, . . . , log λ2n are the Lyapunov exponents of Dpf |E listed with multiplicity
and log λ2n+1 is the remaining Lyapunov exponent of Dpf , then log λ1 + log λ2 + · · · +
log λ2n = n log λ2n+1.

For our next result, given an (r + 1)-step graded nilpotent Lie group N , we denote its
graded Lie algebra by n = ⊕r

i=0 ni where n0, n1 = [n0, n0], . . . , nr = [nr , n0]. Suppose
f : N → N is a diffeomorphism of a sub-Riemannian manifold N preserving its distribu-
tion E. If the Carnot derivative of f at a fixed point where E is generic is a homothety, then
the Lyapunov spectrum is arithmetic.

THEOREM 1.4. (Arithmeticity of the spectrum at periodic points) Let f : N → N be
a local C∞ diffeomorphism of a sub-Riemannian manifold N preserving the horizontal
distribution E. Assume that E is generic at a point p ∈ N where f (p) = p, and that
the graded automorphism f∗ : T CpN → T CpN induced from f is a homothety. Then
there exists a λ > 1 such that Dpf |Ei

p
has Lyapunov exponents log λ, 2 log λ, . . . , (i +

1) log λ with corresponding multiplicities dim n0, . . . , dim ni for i = 0, . . . , r .

We call a graded nilpotent Lie group asymmetric (cf. Definition 2.6 and Lemma
2.7) if its group of graded automorphisms consists of homotheties with respect to some
Carnot–Carathéodory metric induced by an inner product on n0. The asymmetric groups
are open in the space of isomorphism classes of nilpotent groups with a given grading, and
sometimes non-empty (cf. Examples 2.8 and Corollary 2.10). Since Theorem 1.4 holds for
any choice of sub-Riemannian metric on N, induced from an inner product on E, we have
the following corollary.
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618 C. Connell et al

COROLLARY 1.5. In the above theorem, when T CpN is an asymmetric nilpotent group,
the conclusion holds without the assumption that the induced graded automorphism f∗ is
a homothety.

We will apply the natural extension of this theorem to the case of a C1 diffeomorphism
f : X → X (or flow ϕt : X → X) leaving invariant a foliation F with C∞ leaves tangent
to a continuous distribution D. If E ⊆ D is a df -invariant continuous subdistribution, we
define the set

! = {v ∈ X : E is C∞ in a neighborhood of v in F(v)

and is horizontal and generic there}.

Suppose that the distribution E is uniformly Ck along F (cf. Definition 4.4) for a
sufficiently large k and that F is transversally Hölder continuous. Also assume that f (or the
flow ϕt ) is C∞ along leaves, topologically transitive, satisfies the stable closing property
(cf. Definition 4.7), and that df |D is transversally Hölder continuous.

In this setting, the foliated tangent cone structure theorem (Theorem 4.2; cf. Corollary
4.6) provides a common isomorphism class, associated to the distribution D, of graded
nilpotent Lie group structures for all tangent cones T CvF(v) with v ∈ ! and whose
metrics vary continuously on !. This leads to our main rigidity result for Lyapunov
exponents along leaves of the foliation.

THEOREM 1.6. (Arithmeticity of the Lyapunov spectrum) Suppose that the graded
nilpotent group associated to D on ! is asymmetric and (r + 1)-step. Let µ be any
finite f-invariant (respectively, ϕt -invariant) ergodic measure whose support Supp(µ)

satisfies Supp(µ) ∩! -= ∅. Then the Lyapunov exponents of f (respectively, φ1)
along F are log λ, 2 log λ, . . . , (r + 1) log λ with multiplicities dim E, dim E1 −
dim E, . . . , dim Er − dim Er−1 for some λ = λµ > 1.

We now consider some applications of the above results.

1.2. Smooth slow distributions. One family of examples where asymmetric nilpotent
groups naturally arise are the quaternionic hyperbolic and octonionic hyperbolic symmet-
ric spaces. Here the tangent cones of the stable and unstable foliations of a geodesic flow on
compact quotients of these spaces are naturally isomorphic to certain asymmetric nilpotent
groups of Heisenberg type (see Examples 2.8 below) corresponding to the nilradical of the
full isometry group.

In the case when a flow nearby one of these symmetric flows still has smooth slow
distribution we show it is orbit equivalent to the symmetric one.

THEOREM 1.7. Let φ0
t be the geodesic flow on a locally quaternionic hyperbolic or

octonionic hyperbolic closed manifold M. Then if φt is any C∞ flow C1-close to φ0
t for

which Eu
slow,φt

remains C∞ along unstable leaves and is sufficiently uniformly C1-close
(in the sense of Definition 5.2) to that of φ0

t , then φt is C∞ orbit equivalent to φ0
t .
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We suspect that strong rigidity properties hold whenever slow (un)stable distributions
are smooth along leaves of the (un)stable foliation.

Questions 1.8. Can we characterize Anosov or partially hyperbolic diffeomorphisms
or flows with smooth Eu

slow distributions along the unstable foliation? When are these
smoothly orbit equivalent to algebraic ones? Is it sufficient that Eu

slow be smooth along
unstable leaves and completely non-integrable there?

Note that there are simple non-algebraic examples coming from smooth time changes
and suspensions of products (see §5.1). We also remark that there are numerous algebraic
Anosov examples (e.g. on tori or products) where the slow distribution is integrable.

We obtain stronger rigidity properties if we restrict to geodesic flows.

THEOREM 1.9. Let g0 be a locally quaternionic hyperbolic or octonionic hyperbolic
metric on a smooth closed manifold M. Then g0 is locally rigid within the family of
C2-close C∞ metrics whose Eu

slow remains C∞ along unstable leaves and is sufficiently
uniformly C1-close (in the sense of Definition 5.2) to that of g0.

Another class we can handle are Anosov diffeomorphisms on nilmanifolds arising from
asymmetric nilpotent groups. Let M be a closed manifold and let f0 be a transitive C∞

Anosov diffeomorphism such that tangent cones of unstable leaves exist everywhere and
are isomorphic to a fixed asymmetric (r + 1)-step Carnot nilpotent Lie group N. Let
Eu

slow,f0
be the horizontal distribution along unstable leaves that gives rise to the (graded)

structure of N. (As it turns out, Eu
slow,f0

is the slow distribution of smallest dimension
which is still horizontal.) We obtain the following local spectral rigidity theorem.

THEOREM 1.10. There is a C1 open neighborhood U of f0 in Diff∞(M) such that
if f ∈ U admits a smooth splitting Eu

f = Eu
fast,f ⊕ Eu

slow,f along unstable leaves with
dim(Eu

slow,f ) = dim(Eu
slow,f0

), and Eu
slow,f is sufficiently uniformly Cr -close along unsta-

ble leaves to Eu
slow,f0

, then for any invariant ergodic measure µ there is λµ > 1 such that
the unstable Lyapunov exponents of f with respect to µ, are log λµ, 2 log λµ, . . . , (r +
1) log λµ occurring with the same multiplicities as for f0.

We may apply the above theorem to certain Anosov diffeomorphisms that arise on
compact nilmanifolds arising as quotients of products of asymmetric nilpotent groups.

COROLLARY 1.11. Let N be an asymmetric r-step Carnot rational nilpotent group. Let
$ be the lattice and f0 the Anosov automorphism of M = (N × N)/$ obtained from
Example 5.12. Then there is a C1 open neighborhood U of f0 in Diff∞(M) such that
if f ∈ U admits a smooth splitting Eu

f = Eu
fast,f ⊕ Eu

slow,f along unstable leaves and
Eu

slow,f is sufficiently uniformly Cr -close along unstable leaves to Eu
slow,f0

, then for any
invariant ergodic measure µ there is λµ > 1 such that the unstable Lyapunov exponents
of f with respect to µ are log λµ, 2 log λµ, . . . , (r + 1) log λµ with the corresponding
multiplicities as for f0.

Using Theorem 1.3, we obtain a similar corollary to the one above, but for an Anosov
automorphism of a nilmanifold arising as a quotient of a non-asymmetric nilpotent group.
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COROLLARY 1.12. Let N be the three-dimensional Heisenberg group. Let $ be the lattice
and f0 the Anosov automorphism of M = (N × N)/$ obtained from Example 5.14. Then
there is a C1 open neighborhood U of f0 in Diff∞(M) such that if f ∈ U admits a smooth
splitting Eu

f = Eu
fast,f ⊕ Eu

slow,f along unstable leaves and Eu
slow,f is sufficiently uniformly

C1-close along unstable leaves to Eu
slow,f0

, then for any invariant ergodic measure µ the
unstable Lyapunov exponents for f are log λ1, log λ2 and log λ1 + log λ2 for some λ1 > 1
and λ2 > 1 depending on µ.

1.3. Hyperbolic rank rigidity. A Riemannian manifold M has higher hyperbolic rank
if every geodesic c(t) in M has a Jacobi field J (t) that makes sectional curvature
κ ∼= −1 with c′(t) where J (t) -= 0. Clearly, all rank-one locally symmetric spaces of
negative curvature have higher hyperbolic rank after a trivial rescaling of the metric.
We made the following conjecture regarding the converse in our recent paper [CNS20,
Conjecture 1.3].

Conjecture 1.13. A closed Riemannian manifold with sectional curvatures κ ≥ −1 has
higher hyperbolic rank only if it is locally symmetric.

In that paper, we also proved the special case of Conjecture 1.13 when the sectional
curvatures satisfy − 1

4 ≥ κ ≥ −1 [CNS20, Theorem 1.1]. Using ergodicity of 2-frame
flows, Constantine [Con08, Corollary 1] had already characterized constant curvature
manifolds by the hyperbolic rank condition for either odd-dimensional manifolds, just
assuming non-positive curvature, or under strong pinching assumptions on the curvature,
−(.93)2 ≥ κ ≥ −1. We refer to [CNS20] for more historical discussion, in particular of
Hamenstädt’s hyperbolic rank rigidity theorem when the curvature is bounded above by –1.

The current paper began as a sequel to our previous work on the hyperbolic rank rigidity
conjecture [CNS20], and indeed we do achieve new results towards Conjecture 1.13. Along
the way, we also advance techniques surrounding the Brin–Pesin asymptotic holonomy
group for frame flows. We further establish various versions of local rigidity of geodesic
flows near the rank-one locally symmetric ones.

One of the main results of the current paper, arising as an application of the results
above, is the following local rigidity result for perturbations of locally symmetric metrics
with higher hyperbolic rank.

THEOREM 1.14. Let (M , g0) be a closed quaternionic or octonionic hyperbolic locally
symmetric manifold. Then there is an open C3 neighborhood U of g0 such that, for any
g ∈ U , if (M , g) has higher hyperbolic rank and κg ≥ −1 then (M , g) is locally
symmetric.

By Mostow rigidity, it follows that (M , g) is isometric to (M , g0). This of course fails
for hyperbolic surfaces. Nevertheless, local rigidity in the real hyperbolic case already
follows from our previous paper [CNS20].

Our methods do not give us full local rigidity of higher hyperbolic metrics nearby the
complex hyperbolic metric. However, we still obtain equality of the Liouville measure and
the Bowen–Margulis measure (the unique measure of maximal entropy) for higher-rank
perturbations.
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THEOREM 1.15. Let (M , g0) be a closed complex hyperbolic manifold. There is an open
neighborhood U of g0 in the C3 topology among C∞ metrics with the following property:
for g ∈ U with higher hyperbolic rank and sectional curvature κ ≥ −1, the Liouville
measure on SM coincides with the (unique) measure of maximal entropy for the geodesic
flow of g on SM .

1.4. Local rigidity of projective actions. Sullivan initiated the study of local rigidity
of lattice actions on boundary spheres in [Sul85]. There have since appeared a number
of results of this kind in various contexts (see, for example, [Asa17, Ghy93, Yue95]).
We use our methods to establish local rigidity for certain lattice actions on spheres. First
recall that the identity component G of the isometry group of a symmetric space acts by
diffeomorphisms on its ideal boundary sphere preserving a smooth distribution E0, the
projection of the slow distribution. This action may also be described in an algebraic way
as follows. If P < G is any minimal parabolic subgroup, then we may identify the ideal
boundary sphere with G/P on which G naturally acts on the left. We will refer to this
action by G, or any subgroup of G, as a projective action.

THEOREM 1.16. Let ρ0 : $ → Diff ∞(Sk) for k = 4n − 1 (respectively, k = 15) be the
projective representation of a cocompact lattice $ < Sp(n, 1) (respectively, $ < F−20

4 ).
Let ρ : $ → Diff ∞(Sk) be a C1-close perturbation of ρ0. If ρ preserves a C∞ distribution
E, C1-close to E0, then ρ is C∞ conjugate to ρ0.

We note that for a sufficiently small C1 perturbation ρ of ρ0 there always exists a
distribution E which is C0-close to E0 by stability of dominated splittings (see §2.1).

2. Background
2.1. Dynamics: dominated splittings. We begin by reviewing some basic definitions
and results about dominated splittings. We will be using these in some of the arguments
below.

Definition 2.1. Let V → X be a C0 vector bundle equipped with a continuously varying
norm on fibers over a compact smooth manifold X and' ⊂ X be an closed invariant subset
for a flow ϕt : X → X. We say that' admits a dominated splitting of index k for a cocycle
α : V × R → V over ϕt provided:
(1) V restricted to' splits into two continuous subbundles V |' = E ⊕ F , both invariant

under αt and with dim E = k; and
(2) there exist C > 0 and 0 < λ < 1 such that for any x ∈ ',

‖αt |Ex
‖‖α−t |Fϕt (x)

‖ ≤ Cλt for all t ≥ 0. (2.1)

Morally, this definition states that any vector not in E converges uniformly exponentially
fast to the subbundle F under αt .

Examples of dominated splittings include:
• Anosov geodesic flows ϕt on X where V = T X, E = Ecs = Es ⊕ Ec center (weak)

stable distribution, F = Eu strong unstable distribution and α = dϕt ;
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• geodesic flows of locally symmetric manifolds M of non-constant negative curvature
restricted to the unstable bundle where X = SM , the unit tangent bundle, V = Eu

strong unstable distribution, E = Eu
slow, F = Eu

fast and α = dϕt ;
• a one-parameter semisimple subgroup ϕt of a semisimple Lie group where X = G/$

for a cocompact lattice $ < G, V = Eu strong unstable distribution, E = Eu
<λ, F =

Eu
≥λ for any λ in the interior of the Lyapunov spectrum and α = dϕt ;

• geodesic flows of non-constant negatively curved manifolds with higher hyperbolic
rank where V = Eu, E = Eu

slow, F = Eu
fast and α = dϕ· (cf. §6).

An important property of dominated splittings is that they are stable under perturba-
tions (cf. [Sam16, Proposition 2.3] for the case of a derivative of a map and [CP15,
Corollary 2.8] applied to the time-one map of a flow). The proofs of the following
proposition were written for the case of tangent bundles and derivative cocycles but apply
equally well to the case of general vector bundles and cocycles as in Definition 2.1 (see
also [BPS19]).

PROPOSITION 2.2. [CP15, Sam16] Any sufficiently small C0 perturbation of a cocycle
admitting a dominated splitting also admits a dominated splitting of the same index.

2.2. Algebra: varieties of Lie algebras and automorphism groups. The space of
n-dimensional Lie algebras can be identified with the space of Lie brackets on Rn. Thus it
is

Ln = {c ∈ Hom('2Rn, Rn) : c(c(u, v), w) + c(c(v, w), u) + c(c(w, u), v) = 0

for all u, v, w ∈ Rn}.

Since the defining condition is a quadratic polynomial in the structure coefficients
of the bracket c relative to the standard basis of Rn, Ln is an affine subvariety of
Hom('2Rn, Rn). The space of n-dimensional nilpotent Lie algebras is

NLn = {c ∈ Ln : c(c(. . . c(c(u1, u2), u3), . . .), un) = 0 for all u1, . . . , un ∈ Rn}.

This is an algebraic affine subvariety of Ln since the defining condition is polynomial in
the structure coefficients.

Two Lie algebras on Rn are isomorphic if and only if there is general linear transforma-
tion of Rn that maps one Lie bracket to the other Lie bracket. Thus, the moduli space of
isomorphism classes of nilpotent Lie algebras of dimension n is NLn/GL(n, R).

We will need the following in §4.

THEOREM 2.3. ([BS64], cf. [Zim84, Theorem 3.1.3]) Orbits of real points of an algebraic
group acting on the real points of a real algebraic variety are locally closed in the
Hausdorff topology.

As a consequence, the orbits of GL(n, R) on NLn are locally closed and
NLn/GL(n, R) is countably separated and hence Hausdorff.

We now discuss the automorphism group of a Lie group. We start with the following
proposition.
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PROPOSITION 2.4. Let G be a connected and simply connected Lie group with Lie algebra
g. Then the automorphism group Aut(G) is naturally isomorphic as a Lie group to Aut(g)
and the latter is a real algebraic variety in GL(g).

Proof. For connected G, Aut(G) is a closed subgroup of Aut(g) with Lie algebra Der(g)
and these coincide when G is simply connected (cf. [Var84, Theorem 2.75]). Picking
a basis of the Lie algebra, a Lie algebra automorphism is completely determined by
its associated matrix with respect to this basis. The bracket relations on basis elements
give us quadratic polynomial relations in these matrix coefficients. Moreover, any matrix
satisfying these relations induces an automorphism. Hence, these polynomial relations
provide Aut(g) with the structure of a real affine variety in GL(g) ⊂ P(dim g)2

R .

A nilpotent Lie algebra g is graded if it admits a decomposition g = ⊕r
i=0 gi where

[gi , gj ] ⊆ gi+j for all i, j ≥ 0 with i + j ≤ r and [gi , gj ] = 0 otherwise. We call a
nilpotent Lie algebra g Carnot if it is graded and [g0, gj ] = gj+1 for all 0 ≤ j ≤ r − 1. A
nilpotent Lie group G is called graded (respectively, Carnot) if its Lie algebra is graded
(respectively, Carnot). We also call an automorphism of a graded Lie algebra g graded if
it respects the grading. Finally, an automorphism of a connected graded nilpotent group G
is graded if its corresponding automorphism in Aut(g) is graded.

PROPOSITION 2.5. Let G be a connected and simply connected graded nilpotent Lie
group with Lie algebra g = ⊕r

i=0 gi . Then the graded automorphism group Autg(G) is
isomorphic as a Lie group to the graded automorphism group Autg(g) of the Lie algebra
and the latter is a real algebraic variety in

⊕r
i=0 GL(gi ) < GL(g). In particular, Autg(g)

is a real algebraic group.

Proof. It is clear that automorphisms preserving the grading are a subgroup of automor-
phisms lying in

⊕r
i=0 GL(gi ) < GL(g). It is easy to check that the subgroup Autg(g) <

Aut(g) corresponds to the subgroup Autg(G) < Aut(G) under the natural isomorphism
given by the previous proposition. It remains to show that Autg(g) is a subvariety of
Aut(g). However, as the graded subspaces are linear, the additional defining equations
for the corresponding matrix elements are linear relations. Hence Autg(g) is also a real
algebraic subvariety. Lastly, groups which are real algebraic subvarieties of an algebraic
group are themselves algebraic groups.

When G is a simply connected graded nilpotent Lie group we can define a
one-parameter group of automorphisms δs : G → G called the dilations whose associated
Lie algebra automorphisms δs : g → g are the linear maps given by δs(x) = six for all
x ∈ gi . We denote the group of all dilations by D = {δs : s ∈ R+} and observe that it
is isomorphic to the multiplicative group R+. The dilations are always in the center of
Autg(g) since they are multiples of the identity on each level.

If g is a Carnot Lie algebra then any automorphism in Autg(g) <
⊕r

i=0 GL(gi ) is
completely determined by its component in GL(g0). Consequently, we may identify
Autg(g) with a subgroup of Autg(g0) and write Autg(g) = LD where L < SL±(g0). (Here
SL±(g0) is the subgroup of GL(g0) with elements of determinant ±1.) Henceforth we set
di = dim gi for i = 0, . . . , r .
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Definition 2.6. We call a graded nilpotent Lie group G, and its Lie algebra g, asymmetric if
its graded automorphism group has the form Autg(g) = LD where L belongs to a compact
subgroup of SL±(d0, R).

Recall that a surjective map f : X → Y between metric spaces is a homothety if
d(f (x), f (y)) = Cd(x, y) for some constant C > 0 and every x, y ∈ X. If a graded nilpo-
tent Lie group G is Carnot, then we may equip G with a left-invariant Carnot–Carathéodory
metric arising from the right invariant distribution corresponding to g0 equipped with any
inner product. In this case, the dilations δs are homotheties as they simply act by the
appropriate scalar multiple of the identity on each level preserving the bracket relations.
While other non-trivial automorphisms may be homotheties, for example those that restrict
to an isometry on the first level, in general they need not all be homotheties. The next
lemma shows that being asymmetric is equivalent to Autg(g) consisting of homotheties for
some Carnot–Carathéodory metric.

LEMMA 2.7. Let g be a Carnot Lie algebra equipped with a right invariant
Carnot–Carathéodory metric. If Autg(g) consists entirely of homotheties, then g is
asymmetric. Conversely, if g is an asymmetric Carnot Lie algebra then Autg(g) consists of
homotheties with respect to some right invariant Carnot–Carathéodory metric.

Proof. If Autg(g) = LD consists of homotheties of a Carnot–Carathéodory metric, then
L < SL±(g0) and each element of L is uniquely determined by its action on g0. Moreover,
each element of L must be an isometry with respect to the given inner product 〈·, ·〉0 on g0.
Hence L belongs to the compact group O(d0, 〈·, ·〉0).

Conversely, if Autg(g) = LD where L < K for some compact subgroup K <

SL±(d0, R), then K is conjugate into O(d0, R). Equivalently, K belongs to O(d0, 〈·, ·〉0)

for the inner product on g0 conjugate to the standard one. This inner product then induces
a Carnot–Carathéodory metric for which Autg(g) are homotheties.

Asymmetric Carnot nilpotent groups may at first appear to be somewhat special.
However, there are many examples and these algebras are generic in many situations.

Examples 2.8. The following classes of graded nilpotent Lie groups G are asymmetric.
(1) [Pan89, Proposition 13.1] G belongs to a certain Zariski open dense subset of all

2-step groups with grading g = g0 ⊕
g1 where dim g0 ≥ 10 and is even and 3 ≤

dim g1 ≤ 2 dim g0 − 4,
(2) [Pan89, Proposition 10.1] G is the (2-step) maximal unipotent subgroup of the

isometry group of Hn
H or H2

O for any n ≥ 2,
(3) [Pan89, §13] G has an exceptional (r + 1)-step filiform algebra (r ≥ 3) of even

dimension r + 3 given by g = ⊕(r+1)
i=0 gi with g0 = span{y0, z0} and gi = span{yi}

for 1 ≤ i ≤ r + 1 with bracket relations [z0, yi] = yi+1 and [yi , yr−i] = (−1)iyr+1
for 0 ≤ i ≤ r and all other brackets 0. (The filiform algebras are the graded algebras
with minimal possible dimensions of each grading stratum; there are two in each even
dimension and one in each odd dimension [Ver70]. However the non-exceptional
ones admit non-trivial unipotent graded automorphisms.)
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(4) [LDOW14, Theorem 1.2] any G with Aut(G) = D. Such groups are called ultrarigid
nilpotent groups. There are examples of these in at least dimensions 16 and 17
[LDOW14, Examples 3.4 and 3.5].

We do not know if asymmetry is always a generic property of Carnot nilpotent groups
with respect to the Zariski topology in sufficiently high dimensions. It it is an open
condition in the Hausdorff topology (see Corollary 2.10).

We observe that the underlying space of all Lie algebras g ∈ NLn is Rn. In particular,
we have Autg < GL(g) = GL(n, R). We will thus use the topology of pointed Hausdorff
convergence on (closed) subgroups of GL(n, R) which by abuse of notation we call the
‘Hausdorff topology’. In this topology, a sequence of groups Gi converges to G if the
Hausdorff distance dH (Gi ∩ B(1, r), G ∩ B(1, r)) tends to 0 as i → ∞ for each r > 0,
where B(1, r) is the ball of radius r around the identity in GL(n, R) with respect to the
operator norm.

We now show that automorphism groups vary semicontinuously in this topology for
nilpotent G.

PROPOSITION 2.9. Let (Gk) be a sequence of connected n-dimensional graded nilpotent
Lie groups whose Lie algebras converge to the Lie algebra g of G in NLn. Then the
corresponding graded automorphism groups Autg(gk) converge to a Lie subgroup of
Autg(g) < GL(g) with respect to the topology of pointwise convergence.

Proof. By continuity of the defining polynomial relations satisfied by the matrices in
Autg(gk), any element of the limit will satisfy the polynomial relations required to be
in Autg(g). Let H ⊂ Autg(g) be the collection of limit points. By definition this is a
closed subset of Autg(g). Considered as equivalence classes of convergent sequences, it
is elementary to verify that the product structure given by [{an}] ∗ [{bn}] = [{anbn}] is
well defined and gives H a group structure compatible with that of Autg(g). Hence H is a
Lie subgroup of Autg(g).

As a corollary, we deduce that the property of being asymmetric is stable in the variety
of nilpotent Lie groups/algebras.

COROLLARY 2.10. Let G be a connected and simply connected Carnot Lie group of
dimension n. If G is asymmetric then there is a neighborhood U of G in the variety of
n-dimensional Carnot Lie groups such that U consists of asymmetric groups.

Proof. Let (gk) be a sequence of Carnot Lie algebras converging to g in NLn. Write
Autg(g) = LD where L = Autg(g) ∩ SL±(d0, R) lies in some compact group K. Without
loss of generality, we may assume after a conjugation that L < K = O(d0, R). Similarly,
let Autg(gk) = LkD for Lk = Autg(gk) ∩ SL±(d0, R).

By Proposition 2.9, the Lk converge to a subgroup of L. We wish to show that Lk

belongs to a compact subgroup. We will first consider L0
k , the connected component of

the identity of Lk . We fix a norm on Rn. If the L0
k are not contained in a compact group,

then the operator norm, ‖·‖op is unbounded on L0
k . Then L0

k admits a path whose elements
have norms taking on all values in [1, ∞), and in particular there is an element ak with
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‖ak‖op = 2. The sequence {ak} admits a convergent subsequence to an element of
determinant ±1, but which does not have norm one, leading to a contradiction.

By Proposition 2.5, Autg(gk) and thus Lk are algebraic groups. An algebraic group has
only finitely many connected components by [Whi57, Theorem 3]. Therefore Lk must lie
in a compact subgroup.

3. Tangent cones of sub-Riemannian manifolds
In this section we analyze the structure of tangent cones and relate the derivatives of
smooth maps preserving the horizontal distribution to the Carnot derivatives. Under
suitable assumptions, this leads to resonances and even arithmeticity of the Lyapunov
spectrum.

Throughout this section we will be exploiting the properties of sub-Riemannian
manifolds equipped with the generic and horizontal distribution as defined in §1.1. Toward
this end, we first recall the notion of a tangent cone.

Definition 3.1. Let (X, d) be a metric space and x ∈ X. We call any pointed
Gromov–Hausdorff limit of (X, p, td) when t → ∞ a tangent cone of X at p.

In general, tangent cones of metric spaces at a point may not exist, and when they do,
they may not be unique. However, in the setting of sub-Riemannian manifolds, Mitchell
[Mit85] showed that they exist, and Margulis and Mostow [MM00] proved that they are
unique.

THEOREM 3.2. ([Mit85, Theorem 1], [MM00]) Let (N , dC) be a sub-Riemannian
manifold. Suppose that the metric dC comes from a smooth horizontal distribution E. If the
distribution E is generic in a neighborhood of p ∈ N then the tangent cone of N at p exists,
is unique and is a Carnot nilpotent Lie group with a right-invariant Carnot–Carathéodory
metric induced from the distribution of homogeneous degree-one vector fields tangent to E
with the inner product inherited from E.

The very last statement of the above theorem is not stated explicitly in the cited
references, but follows from the construction as will be explained in §3.1. There we will
also define the notion of homogeneous vector fields.

We next discuss the construction and structure of this nilpotent group and its relation-
ship to the tangent cone at each point p ∈ N (cf. [Mit85, §3]). We will need these details
for our application to sub-Riemannian dynamics in §4.

3.1. Carnot metrics and the Métivier correspondence. Métivier developed a correspon-
dence between iterated brackets of horizontal vector fields in a neighborhood of a given
point p ∈ N and certain homogeneous vector fields possessing nilpotent bracket relations.
We present here a compressed summary of the details.

Let Xi , i = 1, . . . , d0 = dim E, be smooth vector fields on N that are tangent to
and form a basis for the horizontal distribution in a neighborhood U of a point p ∈ N .
After possibly shrinking the neighborhood U, among the commutators of the Xi we
may choose an ordered subset Y1, . . . , Yn that form a basis of TyN at each point y ∈ U
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and such that Y1 = X1, . . . , Yd0 = Xd0 , and together with the next ordered subcollection
(Yd0+1, . . . , Yd0+d1 ) form a basis for the first commutator subbundle E1(y), and so on. We
call such a moving frame a graded basis. We sometimes index this basis according to the
level as (Y0,1, . . . , Yr ,dr ).

For any smooth vector field X on N, let s 4→ exp sX be the one-parameter subgroup
of diffeomorphisms acting on N induced by the flow of X, that is, along integral curves
of X. For each y in the neighborhood U of p the map y = exp(

∑
i yiYi)(p) 4→ (yi) ∈ Rn

is a diffeomorphism from U to some neighborhood of 0 in Rn. We call the collection
of components yi normal coordinates on U. We emphasize that normal coordinates do
not define (commuting) coordinates in the ordinary sense since the distribution is not
integrable.

For a generic horizontal distribution E, we define the partition floor function to be
[i]E := k + 1 if dim Ek−1(x) < i ≤ dim Ek(x) for k = 0, . . . , r and where we adopt the
convention that dim E−1 = 0. When the distribution E is understood we simply write [i]
instead of [i]E . We define a dilatation δs : U → N for s ∈ [0, ∞) in terms of normal
coordinates by taking δs(yi) = s[i]yi . The δs are local diffeomorphisms for s > 0.

For a vector field of the form X = y
α1
i1

· · · y
αk
ik

Yj , written in terms of the fields Yj and
their associated normal coordinate functions yj , we define the degree of X to be [j ] −∑k

m=1 αm[im]. By taking the maximum degree over monomial terms we can extend the
notion of degree to vector fields of the form X = ∑

i pi(y1, . . . , yn)Yi for polynomials
pi . Finally, we can extend this notion to arbitrary smooth vector fields in a neighborhood
of p by considering the degree of vanishing at p (see [MM00, §3] for details). A vector
field is homogeneous of degree i if each of its component terms has degree exactly i. We
can decompose each vector field X into its homogeneous components. If X has degree at
most q and X(q) denotes the homogeneous degree-q part of X at p, and similarly Y has
degree at most s at p and Y (s) is its homogeneous degree-s part, then by [MM00, §3] the
bracket [X, Y ] has degree at most q + s at p and, moreover,

[X, Y ](q+s) = [X(q), Y (s)]. (3.1)

For each horizontal vector field X on a neighborhood of p, we obtain a homogeneous
degree-one vector field X̂p = limt→∞ t−1(δt )∗(X) on N (see [Mét76, equation (3.2), p.
487]). The vector field X̂p is precisely the homogeneous degree-one part at p of the
horizontal vector field X. Moreover, the following lemma shows that if X1 and X2 are
two horizontal fields with X1(p) = X2(p), then X̂1;p = X̂2;p.

LEMMA 3.3. If X1, . . . , Xk is a basis of horizontal vector fields in a neighborhood of
p ∈ N for a sub-Riemannian manifold N, and X = ∑d0

i=1 aiXi is any horizontal vector
field on N, then X̂p = ∑d0

i=1 ai(p)X̂i;p.

Proof. Since X is horizontal it has degree at most one, and we can write it in the basis as
X(y) = ∑

i ai(y)Xi for functions ai on the neighborhood U of p. Express this as X(y) =∑
i ai(p)Xi + ∑

i (ai(y) − ai(p))Xi . Since the functions ai(y) − ai(p) vanish at p, they
have degree at most −1 at p and the Xi have degree 1. Hence

∑
i (ai(y) − ai(p))Xi has

degree at most 0 and X̂p = ∑
i ai(p)X̂i;p.
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Métivier [Mét76, Théorème 3.1] showed that the homogeneous vector fields X̂i;p
generate a nilpotent Lie algebra through taking commutators, and Mitchell [Mit85,
Lemmas 3.1 and 3.2] showed that the corresponding simply connected nilpotent group
with its corresponding Carnot–Carathéodory metric is isometric and isomorphic to the
tangent cone at p. By Lemma 3.3, for any horizontal field X we have that X̂p is in the span
of X̂i;p.

The homogeneous degree-one part X̂p of a horizontal field X thus corresponds to a right
invariant field X on T CpN . In other words, X belongs to the Lie algebra of T CpN , which
we denote by np = Lie(T CpN). Let n0

p ⊂ np be the subspace spanned by the set of all X,
and inductively set ni

p = [n0
p, ni−1

p ] ⊂ np for i ∈ {1, . . . , r}. The degree of homogeneity
of the vector fields provides a natural grading for the Lie algebra np as pointed out in
[MM95, §8.2] and [MM00, §4], furnishing np with a Carnot nilpotent structure.

Among the k-fold commutators of X̂i;p we may choose a set of vector fields
X̂k,j ;p whose corresponding right invariant fields Xk,j form a basis of the kth
commutator space nk

p ⊂ np of n0
p respecting the grading. In particular, we may

choose indices so that X̂0,j ;p = X̂j ;p. This provides an isomorphism of Lie algebras,
Mp : span{X̂0,1;p, . . . , X̂r ,dr ;p} → np, where the domain is a Lie algebra of vector fields
under the ordinary bracket. We name this identification between linear combinations
of the {X̂k,j ;p} and elements of np the Métivier correspondence at p. Note that this
correspondence depends on the choice of graded basis. By Lemma 3.3, the Métivier
correspondence induces a linear inclusion ı : E(p) → np with image n0

p by X(p) 4→
X = Mp(X̂p). We will omit the p subscript on vector fields when the base point of the
tangent cone is understood.

Following [MM00], define an equivalence class on curves of M by α ∼ β if and only if

lim
s→0

1
s
dC(α(s), β(s)) = 0.

The tangent cone T CpN can be considered as the space of equivalence classes of curves
[α] with α(0) = p which are equivalent to a dilatation orbit curve at p, [δsy] for some
y ∈ N , with the distance

d([α], [β]) = lim
s→0

s−1dC(α(s), β(s)). (3.2)

The above interpretation generalizes a standard interpretation of the tangent space to a
differentiable manifold as the space of equivalence classes of differentiable curves.

In the next proposition we will consider the subspace topology on NLn ⊂
Hom('2Rn, Rn) instead of the coarser Zariski topology of the variety.

PROPOSITION 3.4. Let (N , dC) be a smooth sub-Riemannian manifold. Suppose that
the metric dC comes from a generic smooth horizontal distribution E. Then the metrics,
nilpotent structures, and the corresponding isomorphism classes, of the tangent cones of
N vary continuously on N.

Proof. We need only show that the isomorphism class of the tangent cones vary contin-
uously locally. By Theorem 3.2, the nilpotent structures depend only on the horizontal
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distribution, not the choice of basis above used to construct the structure. Hence we may
choose the initial basis freely. We now refer back to the notation at the beginning of §3.1.

For a neighborhood U of a point p ∈ N , by the genericity assumption, we may choose
the basis of fields Xi for i = 1, . . . , d0 so that the commutators of Xi in Ek do not
degenerate to Ek−1 at any point of U if they do not do so at the point p. In particular,
the same indices can be used to choose the same fields Yi , for i = 1, . . . , n at each point
x ∈ U . Therefore, the construction of all the X̂k,j ;x varies smoothly in a neighborhood of
p. This implies that the structure constants of the Lie algebras of the tangent cones vary
smoothly on U and hence this implies that the nilpotent structure varies continuously on
the space of nilpotent structures described in §2.2. This continuity thus passes to the orbit
quotient space of nilpotent isomorphism classes as well.

Lastly, since the metric on T CxN is a Carnot–Carathéodory metric for the distributions
induced by the inclusion of E(x) in nx , the metric also varies continuously on U, and thus
on all of N.

Remark 3.5. Observe that continuity in the subspace topology on NLn equipped with
metrics coming from the inner product on E as it varies in an open set implies continuity
in the pointed Gromov–Hausdorff topology as it implies convergence on metric nets.

By Theorem 3.2, the metric on T CpN is a Carnot–Carathéodory metric for the right
invariant distribution induced from n0

p ⊂ np. Next, we identify the norm on the distribution
that gives rise to the metric.

LEMMA 3.6. The Carnot–Carathéodory metric on T CpN is induced by the right invariant
distribution corresponding to n0

p ⊂ np equipped with the Riemannian inner product
coming from E(p) under the above identification.

We will denote the norm on E(p) by ‖·‖p and that on n0
p by ‖·‖n0

p
.

Proof. Given a unit-speed sub-Riemannian geodesic segment γ starting at p, let X be
its tangent field extended to a smooth horizontal field on the neighborhood U of p. By
[MM00, Proposition 5.6], the Carnot–Carathéodory metric induced on T CpN does not
depend on the choice of basis vector fields (satisfying certain assumptions). Using X as a
coordinate field, we obtain

dC(p, δs exp(X)(p)) = dC(p, exp(sX)(p)) = dC(p, γ (s)) = s.

This implies in T CpN that d([p], [δs exp(X)(p)]) = 1 by (3.2). Since the identity element
in T CpN is the class [p] of the constant curve, and X̂ = X along its integral curve,
[δs exp(tX)(p)] = etX and therefore d(1, etX) = t . The induced norm on the first level
n0

p of the Lie algebra then gives ‖X‖n0
p

= 1.
Thus the identification preserves the norm of vectors. Since inner products are uniquely

determined by their norms, the inner products are preserved as well.

3.2. Carnot derivatives of maps preserving horizontal distributions. Next we recall the
notion of the Carnot derivative which will be crucial to our purposes. This object was

�����	����������������������������������������������������

������������������������

https://doi.org/10.1017/etds.2021.116


630 C. Connell et al

first introduced by Pansu in the setting of nilpotent Lie groups in [Pan89] based on earlier
work of Mostow on quasiconformal maps of boundaries of rank-one symmetric spaces
[Mos73]. We will need the following version due to Margulis and Mostow in the setting of
sub-Riemannian manifolds.

Definition 3.7. [MM95, Definition 10.3.1] Let (N , dC) and (N ′, d ′
C) be sub-Riemannian

manifolds, and let f : (N , dC) → (N ′, d ′
C) be a map. For every p ∈ N , we denote by

ft : (N , p, tdC) → (N ′, f (p), td ′
C) the induced map for every t > 0. The function f is

called Carnot differentiable at p if the sequence ft converges uniformly as t → ∞ on
compact sets to a map between tangent cones at p and at f (p). And we call f Carnot
differentiable if it is Carnot differentiable at every point.

In the next few propositions we explore the relationship between the Carnot derivative
and the ordinary derivative.

PROPOSITION 3.8. Let f : (N , dC) → (N ′, d ′
C) be a C1 local diffeomorphism between

sub-Riemannian manifolds generated by generic horizontal distributions E and E′. If f
preserves the distributions, that is, Df (E) = E′, then f is Carnot differentiable every-
where. Moreover, the Carnot derivative f∗ is an isomorphism between the corresponding
tangent cones.

Proof. Since the statement is local, it is enough to consider any sufficiently small
precompact neighborhood U of an arbitrary point p ∈ N where f is a diffeomorphism and
we use f |U instead of f. We assume U is chosen such that there exist smooth horizontal
vector fields X1, . . . , Xd0 on U which form a basis for E(x) at each x ∈ U . We let
X′

i = Df (Xi) for each i = 1, . . . , d0. By hypothesis, {X′
1, . . . , X′

d0
} forms a basis of

E′(y) at each y ∈ U ′. As above, these vector fields give us normal coordinates and we use
them to define our respective dilatations δs on U and δ′s on U ′ = f (U).

We note that f : U → U ′ is a quasi-conformal diffeomorphism since f has uniformly
bounded derivatives on the compact set U . By [MM95, Theorem 10.5] and its proof,
f induces an isomorphism of tangent cones at each point x belonging to a certain full
measure set U0 ∩ f −1(!X′

1
∩ · · · ∩!X′

d0
) to be defined shortly. (Note that the f −1 was

inadvertently left off of the !X′
i

in the proof of [MM95].) We will show that both U0 and
f −1(!X′

i
) for any i = 1, . . . , d0 are all of U in our case.

The definition of U0 given in [MM95, §10.1] simplifies in our situation. It consists of
the density points for the Hausdorff measure of dC (cf. [MM95, Definition 2.1.4]) for the
set A where the Lipschitz constant of f is uniformly bounded. However, since f is C1 with
uniformly bounded derivatives, A = U . Moreover, every point x ∈ U is a density point
since U is open.

We now recall the definition of the !X′
i

from [MM95]. For i = 1, . . . , d0, the right

invariant vector fields X
′
i ∈ ny on T CyU

′ correspond to the homogeneous degree-one
fields X̂′

i;y , namely X
′
i = My(X̂

′
i;y). Recall that the X′

i were used to define the normal
coordinates and the dilatation δ′s . Hence, along the integral curve of X′

i through y, we have
1/t (δ′t )∗X

′
i = X′

i , and hence X̂′
i;y = limt→∞ 1/t (δ′t )∗X

′
i = X′

i along the same curve. Let
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esX
′
i denote the one-parameter subgroup in T CyU

′ of the right invariant field X
′
i , viewed

as an element of the Lie algebra ny . Furthermore, following [MM95, §8.6], let εy denote
the homeomorphism of a neighborhood of 1 ∈ T CyU

′ to U ′ which takes the equivalence
class of the path {δ′sz}s∈[0,1] in T CyU

′ to the point z ∈ U ′. (The equivalence classes of
the germs as s → 0 of the paths δ′sz correspond to points in the tangent cone by [Mit85,
Lemmas 3.1 and 3.2].)

As in [MM95], for i = 1, . . . , d0 let AX′
i

be the set consisting of all points y ∈ U ′ such

that s−1d ′
C((exp sX′

i )(y), εy(esX
′
i )) tends to 0 uniformly as s → 0. Finally, the set !X′

i

consists of all the density points in AX′
i

for the Hausdorff measure of d ′
C .

Finally, observe that since X̂′
i;y = X′

i along its integral curve through y, we have

δ′t exp(sX′
i )(y) = δ′t exp(sX̂′

i;y)(y).

The latter curve in s converges in the pointwise Gromov–Hausdorff sense through the
metric spaces (U ′, y, (d ′/t)) to the curve esX′

i ∈ T CyN
′ as t → 0. In other words, the

curve εy(esX′
i ) coincides with the curve exp(sX′

i )(y) for every y ∈ U ′. In particular, AX′
i
=

U ′ and therefore !X′
i
= U ′ since every point of U ′ is a density point for the Hausdorff

measure.

Diffeomorphisms preserving the horizontal distribution E share certain properties with
their corresponding automorphisms. To investigate this relationship we will need to make
certain correspondences more explicit.

Definition 3.9. Let f : N → N ′ be a diffeomorphism of sub-Riemannian manifolds send-
ing the horizontal distribution E to the horizontal distribution E′. Assume that E is generic
at a point p ∈ N . For a graded basis Y1, . . . , Yn of coordinate vector fields on N around
p (respectively, Y ′

1, . . . , Y ′
n around f (p)) with X1 = Y1, . . . , Xd0 = Yd0 horizontal, let

Mp : span{X̂0,1, . . . , X̂r ,dr } → np be the induced Métivier correspondence. We then
define

f̂∗ : span{X̂0,1, . . . , X̂r ,dr } → span{X̂′0,1, . . . , X̂′
r ,dr }

by setting f̂∗(Z) = M−1
f (p) ◦ df∗ ◦ Mp(Z) where df∗ : np → n'f (p) is the Lie derivative

of the isomorphism f∗ : T CpN → T Cf (p)N
′.

LEMMA 3.10. Let f : N → N ′ be a local C∞ diffeomorphism of sub-Riemannian
manifolds N and N ′ sending the horizontal distribution E of N to the horizontal distribution
E′ of N ′. Assume that E is generic at a point p ∈ N , and let f∗ : T CpN → T Cf (p)N

′ be
the induced isomorphism. For any horizontal vector field X we have

f̂∗X̂ = D̂f (X).

Moreover, if (X0,1, . . . , Xr ,dr ) is a graded basis around p then f̂∗[X̂i,k , X̂j ,l] =
[f̂∗X̂i,k , f̂∗X̂j ,l].

Proof. By Proposition 3.8 the limit of the maps ft given in Definition 3.7 exists and is
f∗ : T CpN → T Cf (p)N

′.
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The push-forward under f of a horizontal vector field X is also horizontal and therefore
converges under metric rescaling to a right invariant horizontal field Df (X) by [MM95,
Proposition 8.10]. As shown in the proof of [MM95, Theorem 10.5], the image under f∗ of
the one-parameter subgroup esX is the one-parameter subgroup of this limit push-forward
field. In other words, for all g ∈ T CpN and s ∈ R, we have

f∗(esXg) = esDf (X)f∗(g).

Taking Lie derivatives, we have df∗(X) = Df (X) and therefore under the Métivier
correspondence we have f̂∗X̂ = D̂f (X) as claimed.

The second statement follows directly from the Métivier correspondence and (3.1) and
the fact that df ∗[Xi,k , Xj ,l] = [df ∗Xi,k , df ∗Xj ,l].

By Lemma 3.6 the inclusion ı : E(p) ↪→ np defined earlier is an isometry onto
its image n0

p with respect to the Riemannian norm and the norm inducing the
Carnot–Carathéodory metric. The following corollary gives further relationships between
some of the objects defined thus far.

COROLLARY 3.11. In the setting of Proposition 3.8, the following diagram commutes:

E(p) E′(f (p))

np n'f (p)

T CpN T Cf (p)N
′

ı

Dpf

ı′

d(f∗)

exp exp

f∗

where exp is the Lie exponential map exp(X) = eX. Moreover, for all ξ ∈ E(p), we have
‖Dpf (ξ)‖f (p) = ‖df∗(ıξ)‖n'0f (p)

.

Proof. The lower part of the diagram commutes as a standard consequence of Lie theory.
By Lemma 3.10, we have f̂∗X̂ = D̂f (X). Since X(p) = X̂p(p) ∈ E(x) for a horizontal

field X, we have

df∗(ı(X(p)) = df∗(X) = df∗Mp(X̂) = Mf (p)f̂∗X̂ = Mf (p)D̂f (X)

= Df (X) = ı′(Dpf (X(p))),

where the third equality is by the definition of f̂∗. This establishes commutativity of the
upper diagram.

The final statement follows from the commutativity of the diagram and the fact that the
inclusions are isometric.

The following relationship between the differential of a local C∞ diffeomorphism
at a fixed point and its induced automorphism will prove to be crucial. A priori there
is no clear connection between the Carnot derivative and the ordinary derivative of a
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smooth sub-Riemannian map. However, we are able to establish such a connection in some
important special cases.

PROPOSITION 3.12. Let f : N → N be a local C∞ diffeomorphism of a sub-Riemannian
manifold N preserving the horizontal distribution E. Assume that E is generic at a point
p ∈ N where f (p) = p, and let f∗ : T CpN → T CpN be the induced automorphism.
If df∗|n0 is diagonalizable with real eigenvalues (λ1, . . . , λd0), then there exists a
basis of TpN such that Dpf : TpN → TpN is upper triangular with diagonal values
(λ1, . . . , λd0 , λi1λi2 , . . . , λi1λi2λi3 , . . .).

Proof. Again let U ⊂ N be a small neighborhood around the point p and X1, . . . , Xn

be a graded basis where X1, . . . , Xd0 are horizontal vector fields spanning E on U.
As above, normal coordinates define a dilatation δt : U → N . Then if X and Y are
horizontal, by Métivier [Mét76], X and Y are vector fields of degree at most 1 at p and
X̂ = limt→∞ 1/t (δt )∗X is the homogeneous degree-one part of X. Note that [X, Y ] is
a vector field of degree at most 2 and we denote the homogeneous degree-two part by
[X, Y ](2) = limt→∞ 1/t2(δt )∗[X, Y ].

Without loss of generality we may assume that fields X1, . . . , Xd0 in the chosen basis
have corresponding right invariant fields Xi which diagonalize f∗ on the first level of
the Lie algebra n. Indeed, by assumption, there are λi ∈ R such that df∗Xi = λiXi for
i = 1, . . . , d0.

By Corollary 3.11, for i = 1, . . . , d0 we have ıDpf (Xi(p)) = df∗(ı(Xi(p))) =
df∗(Xi) = λiXi . Taking ı−1, we have Dpf (Xi(p)) = λiXi(p).

By Lemma 3.10, if [Xi , Xj ] is a graded basis element, then f̂∗[X̂i , X̂j ] =
[f̂∗X̂i , f̂∗X̂j ]. Therefore we have

df∗Mp[X̂i , X̂j ] = Mp[f̂∗X̂i , f̂∗X̂j ],

df∗[MpX̂i , MpX̂j ] = Mp[D̂f Xi , D̂f Xj ],

[df∗Xi , df∗Xj ] = Mp[Df Xi , Df Xj ](2),

λiλj [Xi , Xj ] = Mp[Df Xi , Df Xj ](2).

It then follows that

[Df Xi , Df Xj ](2) = λiλjM−1
p [Xi , Xj ] = λiλj [X̂i , X̂j ] = λiλj [Xi , Xj ](2). (3.3)

By hypothesis {X1, . . . , Xd0} ∪ {[Xi , Xj ] : 1 ≤ i, j ≤ d0} spans E1. Since the homo-
geneity degree of Df [Xi , Xj ] = [Df (Xi), Df (Xj )] and [Xi , Xj ] at p is at most 2,
Df [Xi , Xj ] − λiλj [Xi , Xj ] has homogeneity degree at most 1. Evaluating (3.3) at p, we
have [Df (Xi), Df (Xj )](p) − λiλj [Xi , Xj ](p) ∈ E(p) = E0(p).

Continuing by induction, if Xi and Xj are graded basis fields of degree at most q and s
respectively such that [Xi , Xj ] is a basis field, then a nearly identical computation shows

[Df Xi , Df Xj ](q+s) = σiσj [Xi , Xj ](q+s),

where by the inductive hypothesis σi = λi1 · · · λiκ and σj = λj1 · · · λjτ for some indices
i1, . . . , iκ and j1, . . . , jτ .
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This shows that in the {Xi(p)} basis, Df is upper triangular. If, restricted to the
horizontal distribution, the diagonal values are λ1, . . . , λd0 , then other diagonal elements
are products of the λi as claimed.

Now we are equipped to prove Theorem 1.4 in the introduction.

THEOREM 1.4. Let f : N → N be a local C∞ diffeomorphism of a sub-Riemannian
manifold N. Assume that the horizontal distribution is generic at a point p ∈
N where f (p) = p, and that the graded automorphism f∗ : T CpN → T CpN

induced from f is a homothety. Then for some λ > 1, Dpf |Ei
p

has Lyapunov
exponents log λ, 2 log λ, . . . , (i + 1) log λ with corresponding multiplicities d0 =
dim n0, . . . , di = dim ni for i = 0, . . . , r .

Proof. Let (X0,1, . . . , Xr ,dr ) be a graded basis of N in a neighborhood of p. As before, we
let Mp : span{X̂0,1, . . . , X̂r ,dr } → np be the Métivier correspondence. We will show that
with respect to the basis (X0,1(p), . . . , Xr ,dr (p)), the matrix for Dpf is a block upper
triangular matrix. Suppose that f∗ = δλh, where δλ is the dilation of scale λ > 0 and h
is an isometry of the Carnot–Carathéodory metric of T CpN which necessarily lies in a
compact subgroup of the graded automorphism group.

By Lemma 3.10, f̂∗X̂0,j = ̂Df (X0,j ). Thus,

̂Df (X0,j ) = Mpdf∗M−1
p X̂0,j = Mpdf∗X0,j = λMpdhX0,j = λMpdhM−1

p X̂0,j .

Letting d̂h = MpdhM−1
p , we can rewrite the above equation as ̂Df (X0,j ) = λd̂hX̂0,j .

Since dh is a graded Lie algebra homomorphism, d̂h is also a graded Lie algebra homo-
morphism of span{X̂0,1, . . . , X̂r ,dr }. In particular, d̂h preserves span{X̂i,1, . . . , X̂i,di } for
every i = 0, . . . , r . It follows that d̂hX̂0,j ∈ span{X̂0,1, . . . , X̂0,d0} for
every j = 1, . . . , d0. Therefore, Dpf (X̂0,j (p)) = ̂Df (X0,j )(p) = (d̂hX̂0,j )(p) ∈
span{X̂0,1(p), . . . , X̂0,d0(p)} = E(p).

Consider X1,l . Suppose that X1,l = [X0,i , X0,j ]. By Lemma 3.10, f̂∗X̂1,l =
f̂∗[X̂0,i , X̂0,j ] = [f̂∗X̂0,i , f̂∗X̂0,j ] = [D̂f X0,i , D̂f X0,j ]. And thus,

(Df [X0,i , X0,j ])(2) = [Df X0,i , Df X0,j ](2) = [D̂f X0,i , D̂f X0,j ] = λ2d̂hX̂1,l . (3.4)

Set V (i)(p) = span{Xi,1(p), . . . , Xi,di (p)} so that Ei(p) = V (0)(p) ⊕ · · · ⊕ V (i)(p).
We note that d̂hX̂0,l ∈ span{X̂0,1, . . . , X̂0,d0} since d̂h is a graded Lie algebra
homomorphism. We observe that for every l = 1 . . . , d1, we have X̂1,l (p) ∈ span{X1,l (p),
X0,1(p), . . . , X0,d0(p)}. It follows that (Df [X0,i , X0,j ])(2)(p) ∈ span{X̂0,1(p), . . . ,
X̂0,d0(p), X̂1,1(p), . . . , X̂1,d1(p)} = E1(p). On the other hand,

(Df [X0,i , X0,j ])(p) = (Df [X0,i , X0,j ])(2)(p) + (Df [X0,i , X0,j ])(≤1)(p),

where (Df [X0,i , X0,j ])(≤1) is the homogeneous part of (Df [X0,i , X0,j ]) of degree at
most 1. Evaluating a vector field of degree at most 1 at p, we get a vector in E(p) =
span{X̂0,1(p), . . . , X̂0,d0(p)}. Therefore, (Df [X0,i , X0,j ])(p) ∈ span{X̂0,1(p), . . . ,
X̂0,d0(p), X̂1,1(p), . . . , X̂1,d1(p)} = E1(p).
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Inductively, for Xm+1,l = [Xm,i , X0,j ], we obtain

(Df [Xm,i , X0,j ])(m+2) = [Df Xm,i , Df X0,j ](m+2)

= [(Df Xm,i )
(m+1), D̂f X0,j ] = λm+2d̂hX̂m+1,l . (3.5)

And it follows that

(Dpf )((Xm+1,l )(p)) = λm+2(d̂hX̂m+1,l )(p) + (Df Xm+1,l)
(≤m+1)(p) ∈ Em+1(p),

(3.6)

where the notation Y (≤m+1) indicates the sum of the homogeneous parts of any vector field
Y of degree at most m + 1.

Therefore, with respect to the basis (X0,1(p), . . . , Xr ,dr (p)), Dpf is a block upper
triangular matrix. We let Ai be the blocks on the diagonal of Dpf corresponding to the
basis elements {Xi,1(p), . . . , Xi,di (p)}, for every i = 0, . . . , r . We note that the size of
Ai is dim(ni

p) × dim(ni
p). Since (Df Xm+1,l)

(≤m+1)(p) ∈ Em(p), equation (3.6) implies
that

projV (m+1)(p)(Dpf )((Xm+1,l )(p)) = projV (m+1)(p)(λ
m+2(d̂hX̂m+1,l )(p)),

where projV (m+1)(p) is the projection of TpN onto V (m+1)(p) along the subspace
V̌ (m+1)(p) := V (0)(p) ⊕ · · · ⊕ V (m)(p) ⊕ V (m+2)(p) ⊕ · · · ⊕ V (r)(p). Thus the (j , l)

entry of the block matrix Am+1 is the Xm+1,j (p) component of λm+2(d̂hX̂m+1,l)(p), for
j , l ∈ {1, . . . , dm+1}.

Next, we estimate Lyapunov exponents of block matrices A0, . . . , Ar . Applying
equation (3.5) for f n instead of f, we obtain

(Df n[Xm,i , X0,j ])(m+2) = [Df nXm,i , Df nX0,j ](m+2)

= [(Df nXm,i )
(m+1), D̂f nX0,j ] = λn(m+2)d̂h

n
X̂m+1,l . (3.7)

Since

(Df n[Xm,i , X0,j ])(p) = (Df n[Xm,i , X0,j ])(m+2)(p) + (Df n[Xm,i , X0,j ])(≤m+1)(p)

and

(Df n[Xm,i , X0,j ])(≤m+1)(p) ∈ Em(p),

the projection of (Df n[Xm,i , X0,j ])(p) along V̌ (m+1)(p) onto V (m+1)(p) is the same as
the projection of λn(m+2)d̂h

n
X̂m+1,l (p) to V (m+1)(p) along V̌ (m+1)(p).

We claim that

span{X̂m+1,1(p), . . . , X̂m+1,km+1(p)} ∩ V̌ (m+1)(p) = {0}. (3.8)

Indeed, we have span{X̂0,1(p), . . . , X̂i,di (p)} = span{X0,1(p), . . . , Xi,di (p)} for all i =
0, . . . , m + 1. Moreover, these sets of vectors form bases of their corresponding spanned
vector spaces. This implies the claim.

This claim implies that for every w -= 0 in span{X̂m+1,1(p), . . . , X̂m+1,dm+1(p)}, its
projection to V (m+1)(p) along V̌ (m+1)(p) is non-zero. For every v -= 0 in V (m+1)(p),
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there are c1, . . . , cdm+1 ∈ R not all being zero such that v = c1Xm+1,1(p) + · · · +
cdm+1Xm+1,dm+1(p). We then have

Dpf nv = c1(Df nXm+1,1)(p) + · · · + ckm+1(Dpf nXm+1,km+1(p))

= c1(Df nXm+1,1)
(m+2)(p) + · · · + ckm+1(Dpf nX

(m+2)
m+1,km+1

(p))

+ c1(Df nX
(≤m+1)
m+1,1 )(p) + · · · + ckm+1(Dpf nX

(≤m+1)
m+1,km+1

)(p)

= λn(m+2)d̂h
n
(c1X̂m+1,1(p) + · · · + ckm+1X̂m+1,km+1(p))

+ c1(Df nX
(≤m+1)
m+1,1 )(p) + · · · + ckm+1(Dpf nX

(≤m+1)
m+1,km+1

)(p).

By same argument as above, Dpf nv and λn(m+2)d̂h
n
(c1X̂m+1,1(p) + · · · + cdm+1

X̂m+1,dm+1(p)) have the same projection onto span{Xm+1,1(p), . . . , Xm+1,dm+1(p)}
along span{X1,1(p), . . . , Xm,dm(p)}. Since c1, . . . , cdm+1 are not all zero, the vector
c1X̂m+1,1(p) + · · · + cdm+1X̂m+1,dm+1(p) is non-zero, and thus has a non-zero projection
on span{Xm+1,1(p), . . . , Xm+1,dm+1(p)} by (3.8).

Since h is in a compact subgroup of GL(n, R), there is a subsequence (nk) such that
d̂h

nk converges to the identity. Choose an arbitrary norm ‖ · ‖ on V (m+1)(p). Therefore,
we may find two constants C1, C2 > 0 independent of k such that

C1‖v‖ < ‖ projV (m+1)(p)(d̂h
nk (v))‖ < C2‖v‖.

Hence,

C1λ
nk(m+2)‖v‖ < ‖ projV (m+1)(p)(Dpf nkv)‖ < C2λ

nk(m+2)‖v‖,

for every v -= 0 in V (m+1)(p). It follows that Am+1 has all Lyapunov exponents equal to
(m + 2) log λ.

Finally, as is well known, the Lyapunov exponents of a block upper triangular matrix
are the same as those of the corresponding block diagonal matrix.

If f∗ fails to be a homothety, we are still able to recover a system of inequalities among
the Lyapunov exponents. This is Theorem 1.2 from the introduction.

THEOREM 1.2. Let f : N → N be a local C∞ diffeomorphism of a sub-Riemannian
manifold N. Assume that the horizontal distribution is generic at a point p ∈ N

where f (p) = p. Suppose the tangent cone T CpN is (r + 1)-step and set n−1 = 0
and ni = dim Ei(p) for i ∈ {0, . . . , r}. If Dpf |Ei

p
has Lyapunov exponents

(log λ1, log λ2, . . . , log λn0 , log λn0+1, . . . , log λn1 , . . . , log λni ) listed with multiplic-
ity and with log λnj−1+1, . . . , log λnj in non-decreasing order for each j ∈ {0, . . . , i},
then for each i ∈ {0, . . . , r} and j ∈ {ni−1 + 1, . . . , ni} we have (i + 1) log λ1 ≤
log λj ≤ (i + 1) log λn0 .

Proof. By switching f with f −1 we observe that it is sufficient to prove just the lower
bound. Let {X0,1, . . . , Xr ,dr } be a graded basis of N in a neighborhood of p. We
let Mp : span{X̂0,1, . . . , X̂r ,dr } → np be the Métivier correspondence. Note that ni =∑i

j=0 di for i = 0, . . . , r .
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Our assumptions imply that the induced map f∗ exists as a graded automorphism. Its
derivative df∗ and the corresponding f̂∗ = M−1

f (p) ◦ df∗ ◦ Mp are graded Lie algebra
automorphisms. With respect to the basis (X̂0,1, . . . , X̂r ,dr ), f̂∗ is a block diagonal matrix.
We further assume that we have chosen the initial horizontal basis X0,1, . . . , X0,d0 so that
f̂∗ is in real Jordan canonical form with respect to X̂0,1, . . . , X̂0,d0 .

We note that for every 0 ≤ j ≤ r , span{X̂0,1(p) . . . , X̂j ,dj (p)} = span{X0,1(p), . . . ,
Xj ,dj (p)} ⊂ TpN . Since f̂∗ is a block diagonal matrix, (f̂∗X̂j ,l)(p) ∈ span{X̂j ,1(p), . . . ,
X̂j ,dj (p)} for every 1 ≤ l ≤ dj . On the other hand, (Df Xj ,l − f̂∗X̂j ,l )(p) ∈
span{X̂0,1(p), . . . , X̂j−1,dj−1(p)} by Lemma 3.10. Here we used the convention that
span{X̂0,1(p), . . . , X̂j−1,dj−1(p)} = {0} when j = 0. By replacing f by f n, we have that
(Df nXj ,l − f̂ n

∗ X̂j ,l )(p) ∈ span{X̂0,1(p), . . . , X̂j−1,dj−1(p)} for every n ∈ N. In particu-
lar, in the X̂j ,l basis, Dpf is block upper triangular and with diagonal blocks coinciding
with the matrix of f̂∗ in this basis. Because f̂ n

∗ X̂j ,l (p) ∈ span{X̂j ,1(p), . . . , X̂j ,dj (p)}
and span{X̂j ,1(p), . . . , X̂j ,dj (p)} ∩ span{X̂0,1(p), . . . , X̂j−1,dj−1(p)} = {0}, the growth
rate of Df nXj ,l (p) = Dpf (Xj ,l (p)) is at least as large as the growth rate of f̂ n

∗ X̂j ,l (p)

for all 1 ≤ l ≤ dj . Hence for any v = ∑dj

i=1 aiXj ,1(p) the growth rate of Df nv is at least
as large as the growth rate of f̂ n

∗ (w) where w = ∑dj

i=1 aiX̂j ,1(p). By the block upper
triangular structure of Dpf , it follows that the growth rate of Dpf n(v) is at least as large
as the minimum of the growth rates of f̂ n

∗ restricted to span{X̂j ,1(p), . . . , X̂j ,dj (p)}.
The conclusion now follows from the fact that the growth rate of f̂ n

∗ X̂j ,i (p) is at
least j + 1 times the minimum of growth rates of f̂ n

∗ X̂0,1(p), . . . , f̂ n
∗ X̂0,d0(p) due

to the bracket relations. (Recall from the choice of initial basis that f̂∗ achieves its
minimal growth rate on one of the vectors X̂0,1, . . . , X̂0,d0 .) Since X0,1, . . . , X0,d0

are horizontal, f̂ n
∗ X̂0,i (p) = Dpf n(X0,i (p)). Thus, the minimum of growth rates of

f̂ n
∗ X̂0,1(p), . . . , f̂ n

∗ X̂0,d0(p) is at least log λ1.

Remark 3.13. Note also that in the ordering of the Lyapunov exponents given in Theorem
1.2, we may have λdi+1 < λdi . We note that since Dpf n(Xj ,l (p)) = f̂ n

∗ X̂j ,l (p) + Yn for
some Yn ∈ span{X̂0,1(p), . . . , X̂j−1,dj−1(p)}, the iterates of the Yn component may grow
faster than f̂ n

∗ X̂j ,l(p) except when l = dj . Hence we may not have (i + 1) log λ2 ≤ log λj

for any j ∈ {ni + 1, . . . , ni+1}.

Remark 3.14. We note that Proposition 3.12 and Theorem 1.4 may be combined and
slightly generalized as follows. Suppose df∗ : np → np has the form df∗ = D · h where
D is diagonalizable with positive diagonal values (λ1, . . . , λk) when restricted to n0

p and
h is an isometry that preserves the eigenspaces of D. Then we obtain Lyapunov exponents
of dpF of the form

∑k
j=0 log λij for k ≤ r and certain combinations of indices ij .

Next we present the proof of Theorem 1.3.

THEOREM 1.3. Let f : N → N be a local C∞ diffeomorphism of a sub-Riemannian
manifold N. Assume that the horizontal distribution E is generic at a point p ∈ N where
f (p) = p. Suppose the tangent cone T CpN is isomorphic to the Heisenberg group
H 2n+1. If log λ1, log λ2, . . . , log λ2n are the Lyapunov exponents of Dpf |E listed with
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multiplicity and log λ2n+1 is the remaining Lyapunov exponent of Dpf , then log λ1 +
log λ2 + · · · + log λ2n = n log λ2n+1.

Proof. The Heisenberg group H 2n+1 has a distinguished basis of right invariant vector
fields, X1, . . . , Xn, Y 1, . . . , Yn, Z such that [Xi , Y j ] = δijZ and [Xi , Xj ] = [Y i , Y j ] =
[Xi , Z] = [Z, Y j ] = 0. By assumption, T CpN is isomorphic to H 2n+1. Hence in a
neighborhood of p there is a graded basis of fields X1, . . . , Xn, Y1, . . . , Yn, Z = [X1, Y1]
such that Mp(X̂i) = Xi , Mp(Ŷi) = Y i and Mp([X̂i , Ŷi]) = Z for i ∈ {1, . . . , n}. In
other words, setting Ẑ = [X̂1, Ŷ1], we have [X̂i , Ŷj ] = δij Ẑ and [X̂i , X̂j ] = [Ŷi , Ŷj ] =
[X̂i , Ẑ] = [Ẑ, Ŷj ] = 0 for all i, j ∈ {1, . . . , n}. Note that by the identity (3.1), we have
Z(2) = Ẑ.

With respect to the chosen basis we have an identification np = R2n ⊕ R. The
graded automorphism group of H 2n+1 is Z2 # (Sp(2n, R) × Dil) where Sp(2n, R) is the
symplectic group, Dil ∼= R+ are the dilations and the Z2 generator switches Xi and Y i

for i = 1, . . . n [Til70]. Since df∗ : np → np is a graded automorphism, there is an A ∈
Sp(2n, R), a block matrix U =

[ 0 In
In 0

]
or U = I2n, and σ > 0 such that df∗ has the form

df∗(x, z) = (σUAx, σ 2z). (Here the U matrix represents the corresponding element of
Z2.) Since Lyapunov exponents of f 2 are twice those of f and (UA)2 ∈ Sp(2n, R), without
loss of generality we may replace f with f 2 and assume df∗(x, z) = (σAx, σ 2z). Next
we show that with respect to the basis {X1(p), . . . , Xn(p), Y1(p), . . . , Yn(p), Z(p)} of
TpN , Dpf =

[
σA B
0 σ 2

]
for some 2n × 1 matrix B.

It follows that with respect to the basis {X̂1, . . . , X̂n, Ŷ1, . . . , Ŷn}, f̂∗(X̂i) =
σAX̂i and f̂∗(Ŷj ) = σAŶj . We note that X̂i(p) = Xi(p) and Ŷj (p) = Yj (p). By
Lemma 3.10, f̂∗(X̂i) = D̂f Xi and f̂∗(Ŷj ) = D̂f Yi . Thus with respect to the basis
{X1(p), . . . , Xn(p), Y1(p), . . . , Yn(p)}, by restricting of Dpf on span{X1(p), . . . ,
Xn(p), Y1(p), . . . , Yn(p)}, we have Dpf (Xi(p)) = AXi(p) and Dpf (Yj (p)) =
AYj (p).

Moreover, we have

σ 2Z(2) = f̂∗(Z(2)) = f̂∗([X̂1, Ŷ1]) = [f̂∗X̂i , f̂∗Ŷi]

= [D̂f X1, D̂f Y 1] = (Df [X1, Y1])(2) = (Df Z)(2).

Thus,

Dpf (Z(p))=Df Z(p)= (Df Z)(2)(p) + (Df Z)(≤1)(p)=σ 2Z(2)(p) + (Df Z)(≤1)(p).

We note that (Df Z)(≤1)(p) ∈ span{X1(p), . . . , Xn(p), Y1(p), . . . , Yn(p)}. Also, Z =
Z(2) + Z(≤1) with Z(≤1)(p) ∈ span{X1(p), . . . , Xn(p), Y1(p), . . . , Yn(p)}. Hence, with
respect to the basis {X1(p), . . . , Xn(p), Y1(p), . . . , Yn(p), Z(p)} of TpN , there is a
2n × 1 matrix B such that Dpf =

[
σA B
0 σ 2

]
.

Now it follows that the Lyapunov exponents of f are 2 log σ and the logarithms of the
moduli of the eigenvalues of σA. Since det(σA) = σ 2n, we conclude that n log λ2n+1 =
2n log σ is equal to the sum of all other exponents.
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4. Sub-Riemannian dynamics
We will apply the ideas from the previous section to distributions tangent to foliations
invariant under flows and diffeomorphisms. We start with a very general and abstract
statement which we then develop in the context of hyperbolic dynamics. We will make
the following hypotheses throughout this section.

Standing Hypotheses 4.1.
• X is a smooth compact manifold with f : X → X a C1 diffeomorphism.
• F is an f -invariant foliation tangent to a continuous distribution D.
• The leaves of F are C∞ and f is C∞ along leaves.
• There is a df -invariant continuous subdistribution E ⊆ D.

We define

! = {v ∈ X : E is C∞, horizontal and generic in a neighborhood of v in F(v)}.
Moreover, at each point v ∈ F(v) we have a filtration

E(v) = E0(v) ⊂ E1(v) ⊂ E2(v) ⊂ · · ·
of vector subspaces of TvF(v) that are formed by taking the span of i-fold brackets of
vector fields tangent to E at v. These form well-defined distributions Ei on ! and we let
r = r(v) be the index such that Er(v) = TvF(v) for v ∈ !. Observe that r is constant on
each connected component of F(v) ∩!.

We first establish the following generalization of Theorem 1.1.

THEOREM 4.2. (Foliated tangent cone structure theorem) Assume Hypotheses 4.1. Then
we have the following statements.
(1) ! is f-invariant and intersects every leaf of F in a (possibly empty) open set.
(2) For every v ∈ !, the tangent cone T CvF(v) of F(v) at v exists, is a Carnot nilpotent

Lie group with a left invariant Carnot–Carathéodory metric and varies continuously
on the intersection of ! with each leaf.

(3) The map f induces a Lie group isomorphism between the tangent cones T CvF(v)

of F(v) at v ∈ ! and T Cf (v)F(f (v)) of F(f (v)) at f (v). We call this the Carnot
derivative of f at v.

(4) If for a sufficiently large k, the distribution E is uniformly Ck along F (see Definition
4.4 below), then ! is open in X and the tangent cone T CvF(v) varies continuously
in v ∈ !.

Similarly, for a C1 flow ϕt : X → X and flow invariant distributions E ⊆ D the analogous
statements hold.

Inspecting the proof below, it will be clear that the degree of uniform regularity Ck of
E suffices to be one less than the maximum nilpotency degree of the tangent cones on
!. These nilpotency degrees are in turn all bounded by the dimension of the leaves of F
minus one.

We will break the proof into two main lemmas.

LEMMA 4.3. Assume Hypotheses 4.1. Statements (1)–(3) of Theorem 4.2 hold.
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Proof. For every w ∈ F(v), we let Ei(w) be the subspace of D(w) spanned by all brackets
of vector fields tangent to E(w) of orders at most i. Let ni(w) = dim Ei(w). Then ni(w)

is f -invariant by the f -relation of brackets (df [X, Y ] = [df (X), df (Y )]). Moreover, ni is
lower semicontinuous. Indeed, if a bracket of vector fields of order i does not vanish at a
point then it does not vanish in a neighborhood in the unstable manifold of that point. The
semicontinuity of ni implies that ni is locally constant on an open set of each leaf for every
i. This latter open subset of each leaf is the intersection of ! with that leaf. Because ni is
f -invariant, ! is also f -invariant.

For every v ∈ !, we consider a small enough neighborhood of v in F(v). This
neighborhood is a sub-Riemannian manifold on which the horizontal distribution E is
C∞ and generic. By Theorem 3.2, the tangent cone T CvF(v) exists. The continuity of
tangent cones follows from Proposition 3.4. Moreover, the map f is a C1 diffeomorphism
from this neighborhood of v in F(v) onto a neighborhood of f (v) ∈ ! in F(f (v)). The
map f preserves the distribution E, and so by Proposition 3.8, df induces an isomorphism
(df )∗ : T CvF(v) → T Cf (v)F(f (v)).

The flow case follows by restricting to a single time map f = ϕt .

Note that while ! is open in each leaf, the entire ! may not be open in X. Next, we will
discuss the continuity of tangent cones transversely to the foliation F . We first recall the
relevant topology.

Definition 4.4. Assume a foliation F of X has Ck leaves. A function on X is called
(transversely) uniformly Ckalong F if its kth-order derivatives exist along leaves of the
foliation and are continuous on X. A distribution is called uniformly Ck along F if there
are local vector fields forming a basis of the distribution that are uniformly Ck along F .

We complete the proof of Theorem 4.2 with the following lemma.

LEMMA 4.5. Assume Hypotheses 4.1. If the distribution E is uniformly Ck along F for
a sufficiently large k, then the set ! is open in X and the tangent cone T CvF(v) varies
continuously in v ∈ !. In particular, statement (4) of Theorem 4.2 holds.

Proof. Let v ∈ !. The distribution E is horizontal and generic in a neighborhood of v in
F(v). Since E is uniformly Ck , a neighborhood of v in X is contained in ! and thus ! is
open.

For the second claim, choose v0 ∈ !. As in the proof of Proposition 3.4, on any
sufficiently small neighborhood U ⊂ ! of v0 we may choose a basis X1, . . . , Xd0 of
vector fields spanning E such that:
(1) the Xj vary continuously in the Ck topology; and
(2) if {(j1, . . . , ji)} ⊂ {1, . . . , d0}i is a family of indices whose corresponding iterated

brackets [X̂j1 , [X̂j2 , [X̂j3 , . . .] . . .]] form the chosen basis {X̂i,j } of M−1
v0

(ni−1
v0

),
then the corresponding brackets also form a basis of M−1

v (ni−1
v ) for all v ∈ U .

Indeed, for any fixed index j the vector fields X̂j = X̂j ,v vary continuously in v, as do
the bracket operations, and thus the non-degeneracy of these iterated brackets is an open
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condition. It follows that the corresponding nilpotent structures vary continuously, as do
the isomorphism classes of the nilpotent tangent cones.

Since the metric on each tangent cone T CvF(v) is the Carnot–Carathéodory metric for
the distributions induced by the inclusion of E(v) in the Lie algebra nv of T CvF(v), the
metric also varies continuously on the neighborhood U, and thus on all of !.

Combining this result with good dynamical properties, we obtain the following
corollary.

COROLLARY 4.6. Assume Hypotheses 4.1. If the distribution E is uniformly Ck for a
sufficiently large k, then the isomorphism class of tangent cones T CvF(v) is continuous
and f-invariant for v ∈ !. Moreover, if f is transitive and E is C∞ somewhere on a leaf
then ! is open and dense and the isomorphism class of any tangent cone is constant on!.
The same statements hold for f replaced by a flow ϕt .

In this setting, we call the isomorphism class of tangent cones obtained in Corollary 4.6
the Carnot nilpotent structure associated to for ϕt .

Proof. The first claim follows from Theorem 4.2. The topological transitivity of f implies
that there is a dense orbit in X which must intersect ! since ! is open. If E is C∞ on any
open set of a leaf then ! is also non-empty and therefore dense since it is invariant under
f. The isomorphism class of tangent cones on ! is constant because isomorphism classes
are constant on a dense orbit, depend continuously on the underlying point, and the space
of isomorphism classes is Hausdorff by Theorem 2.3. Lastly, the proof holds verbatim for
flows by replacing f by ϕt .

Kalinin [Kal11] defined a notion of closing property for diffeomorphisms. We define
the analogous notion of closing property for flows.

Definition 4.7. A flow ϕt : X → X of a compact manifold X has the stable closing
property (with exponent λ) if there are c, λ, δ0 > 0 with λ > 0 such that for every x ∈ X

and some T ∈ R with d(x, ϕT (x)) < δ0 there are p, y ∈ X such that
(1) p is periodic with period T0 where |T0 − T | < δ0, and
(2) d(ϕt (x), ϕt (p)) < ce−λ min{t ,T0−t}d(x, ϕT (x)) for 0 ≤ t ≤ T0, and
(3) d(ϕt (p), ϕt (y)) < ce−λt d(x, ϕT (x)) and d(ϕt (x), ϕt (y)) < ce−λ(T0−t)d(x, ϕT (x)).

Here y plays a connecting role of being stably related to p and unstably related to x.
Examples of dynamical systems having the closing property include Anosov flows and

diffeomorphisms and flows over subshifts of finite type (cf. [Kal11]).
We deduce Theorem 1.6 from the introduction as a conclusion of this section.

THEOREM 1.6. Assume Hypotheses 4.1. Suppose the distribution E is uniformly Ck

for a sufficiently large k and F is transversally Hölder continuous. Also assume that
the C1 diffeomorphism f (or flow ϕt ) is topologically transitive, satisfies the stable
closing property and that df |D is transversally Hölder continuous. Lastly, suppose that
the graded nilpotent group associated to D on ! is asymmetric and (r + 1)-step. Let
µ be any finite f-invariant (respectively, ϕt -invariant) ergodic measure whose support
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Supp(µ) satisfies Supp(µ) ∩! -= ∅. Then the Lyapunov exponents of f (respectively,
φ1) along F are log λ, 2 log λ, . . . , (r + 1) log λ with multiplicities dim E, dim E1 −
dim E, . . . , dim Er − dim Er−1 for some λ = λµ > 1.

Proof. Recall that ! is the subset obtained from Corollary 4.6. Let v ∈ ! be a periodic
point of period T. It follows that (f T |F(v))∗ : T CvF(v) → T CvF(v) is a graded auto-
morphism of the nilpotent group T CvF(v). On the other hand, the isomorphism class
of T CvF(v) is asymmetric. Hence (f T |F(v))∗ is a homothety. Suppose T CvF(v) is an
(r + 1)-step Carnot nilpotent Lie group. By Theorem 1.4, there exists λ(v) such that
the Lyapunov exponents of f T along F for v are T log λ(v), 2T log λ(v), . . . , (r + 1)T

log λ(v).
Since Supp(µ) ∩! -= ∅, ! has full µ-measure as it is invariant and µ is ergodic.

By [Kal11, Proposition 3.2], Lyapunov exponents of df |D with respect to any invariant
ergodic measure are approximated by those at periodic points. (This proposition is stated
for standard GL(n, R)-valued cocycles; however, following the discussion after [GS97,
Proposition 2.6] these estimates may be applied to derivative cocycles as well.) Therefore,
there is λ > 1 such that Lyapunov exponents of f along F with respect to µ are
log λ, 2 log λ, . . . , (r + 1) log λ. The proof in the case of flows follows verbatim after
replacing f by ϕt .

While we need greater regularity in Theorem 1.6, the Hölder continuity of E often
follows from the dominated splitting assumption. For example, we have the following
theorem (cf. also [BP07, Theorem 5.3.2]).

THEOREM 4.8. [CP15, Theorem 4.11 and Remark 4.12] Let f : X → X be a C2

diffeomorphism and ' ⊂ X a compact f-invariant set admitting a dominated splitting of
the form T'X = E ⊕ F . Then there is θ ∈ (0, 1] such that the bundles E and F are θ
Hölder continuous. Moreover, θ ∈ (0, 1] can be chosen to be any number such that, for all
sufficiently large N ≥ 1,

‖Df N
|E(x)‖‖Df N

|F(x)‖θ < ‖Df −N
|F(x)‖−1 for every x ∈ '.

Remark 4.9. The analogous statement for flows ϕt : X → X follows from the above result
applied to the time-one map. Moreover, the same proof works for arbitrary Cα cocycles
over C1 diffeomorphisms or flows admitting a dominated splitting for α ∈ (0, 1].

Lastly, note that Anosov flows with E = Es is a special case (cf. [Bal95, Appendix by
Brin, Proposition 4.4]).

In the next sections we consider applications of our previous results to sundry geometric
settings.

5. Application: local rigidity of smooth dominated splittings
In this section we will present some cases where the existence of a leafwise smooth
invariant splitting of the unstable bundle leads to some form of rigidity. This provides
some evidence for positive answers to Questions 1.8. However, we first show that smooth
time changes of flows with uniformly Ck slow distributions along the unstable foliation
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maintain this property. Hence, in general, the best rigidity we may expect is smooth orbit
equivalence.

5.1. Time changes. Let ϕt : N → N be the C∞ flow generated by the vector field
x 4→ Xx . Given a positive C∞ function 2 : N → (0, ∞), consider the C∞ flow ψt whose
generating vector field is x 4→ 2(x)Xx . The cumulative time change τ : N × R → R
is given by τ (x, t) =

∫ t
0 2(ψsx) ds, and hence ψt (x) = ϕτ (x,t)(x). The inverse function

σ (x, t) = τ−1(x, t) satisfies ϕt (x) = ψσ (x,t)(x) and corresponds to the cumulative time
change for the field rescaling function k(x) = 1/2(x).

Anosov and Sinai [AS67] showed that if ϕt is a C∞ Anosov flow and ψt is obtained
from ϕt by the multiplication of speeds by 2, then ψt is Anosov. In fact, they showed that
we have a hyperbolic splitting

T N = Eu
ψt

⊕ Es
ψt

⊕ E0
ψt

for Dψt where

Eu
ψt

(x) = {v + z(x, v)Xx : v ∈ Eu
ϕt

(x)}
for some real-valued function z(x, ·) : Eu

ϕt
(x) → R which is linear in its second argument

and continuous in x. Following Parry [Par86], we may express the function z as

z(x, ξ) = −2(x)

∫ ∞

0
(Dϕsξ(2)/2(ϕsx)2) ds = 2(x)

∫ ∞

0
ξ(k ◦ ϕs) ds.

We now observe that if 2 is smooth then so are τ , k and σ as functions on N or N × R.
Moreover, if the invariant splitting for Eu

ϕt
= Eu

slow,ϕt
⊕ Eu

fast,ϕt
is leafwise smooth, then

the graphs

Eu
slow,ψt

= {v + z(x, v)Xx : v ∈ Eu
slow,ϕt

},
Eu

fast,ψt
= {v + z(x, v)Xx : v ∈ Eu

fast,ϕt
}

remain leafwise smooth and invariant under ψt . This last statement follows from the
formula

Dψσ (x,t)(v + z(x, v)Xx) = Dϕt v + z(ϕt x, Dϕt v)Xϕt (x)

which we apply in forward time to Eu
slow,ψt

and in backward time in the case of Eu
fast,ψt

.
From the explicit formula for z(x, v) we see that its overall regularity restricted to the
subbundle Eu

slow,ϕt
will be the same as that of Eu

slow,ϕt
since 2, k and ϕs are smooth.

We summarize this discussion in the following proposition.

PROPOSITION 5.1. If a C∞ Anosov flow ϕt has a uniformly Ck slow unstable distribution
along its unstable foliation, then a smooth time change ψt also has this property.

Observe that, in general, such C∞ time changes ψt are not conjugate to ϕt as periodic
orbits may have different periods. To obtain explicit examples, we may apply the above
proposition to geodesic flows of compact locally symmetric spaces or suspensions of
Anosov diffeomorphisms with smooth slow distributions. Flows of the latter type arise
from algebraic examples of splittings, for example from products or toral automorphisms.
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5.2. Geodesic flows. We next apply the discussion on sub-Riemannian dynamics from
the previous section to geodesic flows of closed manifolds of negative sectional curvature.
We will prove a local rigidity statement for certain perturbations of a locally quaternionic
hyperbolic or octonionic hyperbolic closed manifold.

Definition 5.2. Let A be a topological space and let {Fρ}ρ∈A be a parametrized family
of foliations of a manifold M. We say that a parametrized family of dominated splittings
{TFρ = Eρ ⊕ Fρ}ρ∈A is uniformly Ck continuous in the parameter if Eρ and Fρ are Ck

along each leaf of the foliation Fρ and their derivatives up to order k vary continuously in
the parameter ρ with respect to the given topology on the index set A. We say two splittings
Eρ ⊕ Fρ and Eρ0 ⊕ Fρ0 from a uniformly Ck family of splittings are ε-uniformly Ck-close
if their derivatives up to order k along their respective foliations Fρ and Fρ0 are ε-close.

Remark 5.3. By the permanence theorem [HPS77, Theorem 6.8] the Wu
g foliations for

the geodesic flow of g, though only transversely Hölder on all of M, have leafwise smooth
distributions that vary continuously in the Ck topology as g varies continuously in the
Ck+1 topology. Even though Eu

fast,g is uniformly Ck along Wu
g on each (M , g), Eu

slow,g is
only continuous along Wu

g in general. However, even when Eu
slow,g is assumed to be C∞

along leaves of Wu
g , it is not necessarily uniformly Ck on M and may not even be uniformly

Ck in the metric parameter g as it varies in the Ck+1 topology for any k > 0. We will need
to assume the latter property in some of the statements below.

Consider a smooth n-manifold X. For n1 ≤ n2 ≤ dim X, let Flag(n1, n2) → X be the
smooth fiber bundle whose fiber Flagx(n1, n2) is the space of all 2-flags of n1-dimensional
subspaces of n2-dimensional subspaces of TxX. Now let EF be the subset of C0 sections
x → (Ex ⊂ Fx) ∈ Flagx(n1, n2) such that the corresponding distribution F generates a
C0 foliation F with C∞ leaves and the E distribution is C∞ along the leaves of the foliation
F . We write these sections as E ⊂ F for corresponding distributions E and F. The C0,k

topology on EF is the maximal refinement of the subspace topology inherited from the
compact-open topology on C0 sections of Flag(n1, n2) such that the partial derivatives up
to order k of E along the leaves of F vary continuously.

LEMMA 5.4. Let X be a smooth closed manifold with a pair of distributions (E0 ⊂ F0) ∈
EF such that E0 restricted to each leaf is generic of order r + 1 along the leaves of F .
Then there is an open set U ⊂ EF in the C0,r topology such that each (E ⊂ F) ∈ U is
generic of order r + 1 and the subbundles E = E0, E1, . . . , Er of iterated bracket spaces
vary continuously as subbundles of T X.

Proof. Since X is closed, F0 defines a foliation F , and E0 is a given distribution, we
may find a finite open cover of foliation charts for (X, F) where on each open chart V,
the distribution E0 is spanned by continuous vector fields X1, . . . , Xd0 which are C∞

on each leaf of F and whose successive brackets at each point x generate a filtration
E0(x) = E0

0(x) ⊂ E1
0(x) ⊂ Er

0(x) = Fx and fit together to form subbundles locally and
hence globally.

Since the Xi vary continuously and the iterated brackets along each leaf vary continu-
ously in the parameters of the C0,r topology, there is an open neighborhood U ⊂ EF of
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(E0 ⊂ F0) in the C0,r topology for which the iterated brackets of the nearby Xi spanning E
continue to be non-zero on all of V. (For sufficiently close foliations F for the distribution
F, the open set V still serves as a chart.)

Since there are only finitely many charts V, by intersecting the resulting open sets U we
may find a common neighborhood.

LEMMA 5.5. Let (M , g0) be a closed negatively curved manifold admitting a leafwise
C∞ dominated splitting Eu

φ0
t

= Eu
fast,φ0

t
⊕ Eu

slow,φ0
t

for its geodesic flow φ0
t . Assume that

(Eu
slow,φ0

t
⊂ Eu

φ0
t
) ∈ EF and that Eu

slow,φ0
t

is generic and horizontal of order r + 1 along

the leaves of Wu
φ0

t
. Recall that by Proposition 2.2 there is a C1 neighborhood U of φ0

t such
that any flow (SM , φt ) ∈ U has a dominated splitting Eu

fast,φt
⊕ Eu

slow,φt
. If we further

assume that this splitting is C∞ along unstable leaves and sufficiently uniformly Cr -close
(along the unstable foliation) to that of φ0

t then (Eu
slow,φt

⊂ Eu
φt

) ∈ EF and Eu
slow,φt

is
generic and horizontal of order r + 1 along the leaves of F . Furthermore, the tangent
cone map v 4→ T CvW

u
φt

associated to (M , φt ) exists and is C0-close to v 4→ T CvW
u
φ0

t
,

the tangent cone map for φ0
t , with respect to the Hausdorff topology on the moduli space

NLn−1/GL(n − 1, R).

Proof. Recall that the dominated splitting condition is an open condition in the Cr

topology and thus it holds on some neighborhood U of φ0
t .

As in the proof of Lemma 4.5, we exploit the fact that both the Carnot metric and the
algebraic structure of the tangent cone depend on the construction of the Métivier fields
X̂j ,k;x .

By assumption, the 2-flag of distributions Eu
slow,φt

⊂ Eu are C∞ along Wu
φt

and
uniformly close to Eu

slow,φ0
t

⊂ Eu
φt

in the Cr topology. Provided they are close enough,
then by Lemma 5.4 Eu

slow,φt
is generic of order r + 1, with nearby subbundles of iterated

bracket spaces. In particular, Eu
slow,φt

is horizontal as well. Moreover, the construction of
the X̂r−i,j ;x for i = 0, . . . , r varies continuously in the Ci topology on the vector fields
X0,1;x , . . . , X0,d0;x locally spanning Eu

slow,φt
. By hypothesis the latter fields depend contin-

uously in the Cr topology in φt . We conclude as in the proof of Lemma 4.5 and Proposition
3.4 that the nilpotent structure in NLn−1/GL(n − 1, R) is C0-close as claimed.

Remark 5.6. We observe that if metrics vary in the Cr+1 topology, then the geodesic flows
vary in the Cr topology. Hence the same lemma holds for metrics except that U is a C2

neighborhood of g0.

THEOREM 1.7. Let φ0
t be the geodesic flow on a locally quaternionic hyperbolic or

octonionic hyperbolic closed manifold M. Then if φt is any C∞ flow C1-close to φ0
t for

which Eu
slow,φt

remains C∞ along unstable leaves and is sufficiently uniformly C1-close
(in the sense of Definition 5.2) to that of φ0

t , then φt is C∞ orbit equivalent to φ0
t .

Proof. We observe that the symmetric flow φ0
t has a dominated splitting Eu = Eu

fast ⊕
Eu

slow which is globally C∞ and for which Eu
slow is generic of order one and horizontal. By

Lemma 5.5 there is a C1 open neighborhood U of φ0
t where Eu

slow,φt
is generic of order one
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and horizontal whenever φt ∈ U has a dominated splitting which is C∞ along unstable
leaves and uniformly C1-close along the unstable foliation to that of φ0

t . Moreover, the
associated tangent cones T CvW

u(v) for φt are C0-close to those of φ0
t .

Recall that by Examples 2.8 the tangent cone associated to (M , φ0
t ) is asymmetric. By

Corollary 2.10, after possibly shrinking U, the tangent cone associated to (M , φt ) is also
asymmetric. We can shrink U to an even smaller set so that the tangent cone associated to
(M , φt ) is 2-step. Thus by Theorem 1.6, the unstable Lyapunov exponents are log λ and
2 log λ for a λ > 1. The multiplicity of the exponents are the dimensions of the slow and
the fast unstable distribution. Therefore, the Lyapunov spectra of the geodesic flows on
(M , φt ) and (M , φ0

t ) are proportional.
We wish to apply [But19, Theorem 3.2] which is stated for the so-called horizontal

measure, µM . We need to verify that this measure has full support. We observe that by
[But19, §2.8] this is a Gibbs state for a Hölder potential. These have full support in our
setting ([PPS15, p. 50] or [CPZ19, Theorem 4.11]).

Remark 5.7. By the Livsic theorem, whenever two orbit equivalent flows have the same
periods on periodic points they are conjugate. The regularity of the conjugacy will be at
least one less than the regularity of the time change.

THEOREM 1.9. Let g0 be a locally quaternionic hyperbolic or octonionic hyperbolic
metric on a smooth closed manifold M. Then g0 is locally rigid within the family of
C2-close C∞ metrics whose Eu

slow remains C∞ along unstable leaves and is sufficiently
uniformly C1-close (in the sense of Definition 5.2) to that of g0.

Remark 5.8. The above theorem is reminiscent of the global rigidity result (Theorem 3) in
[BFL92]. While we do not assume any transverse regularity of the splitting in our theorem,
we do require that the metric is nearby the locally symmetric one. We also note that there
is a C2 open neighborhood of g0 such that the unstable distributions of the perturbed
manifolds admit dominated splittings by Proposition 2.2.

Proof. The proof is nearly identical to that of Theorem 1.7, except that we note by Remark
5.6 there is a C2 open neighborhood U of g0 with the desired properties. Moreover, we
finish using Theorem 1.5 of [But19] instead of Theorem 3.2.

Remark 5.9. If g0 is any metric as in Lemma 5.5 whose associated nilpotent tangent cone
has an asymmetric Lie algebra, then by Theorem 1.6 its unstable Lyapunov spectrum is of
the form log λ, 2 log λ, . . . , (r + 1) log λ for some λ > 1. We can conclude by the proof
of Theorem 1.9 that any metric that is sufficiently uniformly C2-close along unstable leaves
will also have a Lyapunov spectrum of the same form.

5.3. Diffeomorphisms of nilmanifolds. In this section we apply our results to perturba-
tions of automorphisms of certain nilmanifolds with smooth dominated splittings.

Standing assumption: Let M be a closed manifold and let f0 be a transitive C∞ Anosov
diffeomorphism such that tangent cones of unstable leaves exist everywhere and are
isomorphic to a fixed asymmetric (r + 1)-step Carnot nilpotent Lie group N. Let Eu

slow,f0
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be the horizontal distribution along unstable leaves that gives rise to the tangent cone
structure.

We obtain the following local rigidity theorem.

THEOREM 1.10. There is a C1 open neighborhood U of f0 in Diff∞(M) such that
if f ∈ U admits a smooth splitting Eu

f = Eu
fast,f ⊕ Eu

slow,f along unstable leaves with
dim(Eu

slow,f ) = dim(Eu
slow,f0

), and Eu
slow,f is sufficiently uniformly Cr -close along unsta-

ble leaves to Eu
slow,f0

, then for any invariant ergodic measure µ there is λµ > 1 such that
the unstable Lyapunov exponents of f with respect to µ, are log λµ, 2 log λµ, . . . , (r +
1) log λµ with the same multiplicity as for f0.

Proof. By the construction of f0, tangent cones of unstable manifolds of f0 exist
everywhere and are isomorphic as graded nilpotent Lie groups to N.

We argue as in the proof of Theorem 1.9. The tangent cones of unstable manifolds of f
exist everywhere, and such tangent cones are close to N in the variety of Carnot nilpotent
Lie groups. By Corollary 2.10, those tangent cones are asymmetric. By Theorem 1.6,
there is λµ > 1 such that all unstable Lyapunov exponents, without multiplicity, of f with
respect to µ, are log λµ, 2 log λµ, . . . , (r + 1) log λµ. The multiplicities are given by the
dimensions of the bracket spaces starting with Eu

slow,f which have the same dimensions as
for f0.

Recall that for any transitive Anosov diffeomorphism f there is a unique invariant
Sinai–Ruelle–Bowen (SRB) measure, which we call σ (see [KH95, 20.3.8] and [Sin72]).
For f0 as in Theorem 1.10, we denote by σ0 the unique SRB measure for f0. In the next
corollary we obtain a rigidity statement under an additional assumption which is analogous
to a higher hyperbolic rank condition (cf. below).

COROLLARY 5.10. Suppose we are in the setting as Theorem 1.10 with M a nilmanifold
and f0 an automorphism. In addition, assume λσ (f ) ≥ λσ0(f0). Then σ is the measure of
maximal entropy for f and has the same Lyapunov spectrum as σ0 for f0.

Proof. Set dim E−1 = 0 and let di = dim Ei − dim Ei−1 for i = 0, . . . , r . By the Pesin
formula and Theorem 1.10, we also have hσ (f ) = ∑r

i=0(i + 1) log λσ (f )di . Moreover,
by structural stability f and f0 are conjugate and so they share the same topological
entropies htop(f ) = htop(f0). Since f0 is algebraic, the Lyapunov exponents are indepen-
dent of the measure and so Haar measure σ0 is the measure of maximal entropy. Together
with our assumptions, we have

htop(f ) ≥ hσ (f ) =
∑

i

i log λσ (f )di

≥
∑

i

i log λσ0(f0)di = hσ0(f0) = htop(f0) = htop(f ).

Hence all of the inequalities are equalities. Therefore htop(f ) = hσ (f ) and hence σ is
the measure of maximal entropy for f. Moreover, λσ (f ) = λσ0(f0) and so the spectra
coincide.

As an application we describe a class of examples of special Anosov nil-automorphisms.
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Definition 5.11. A nilpotent Lie algebra n is called rational if it is a Lie algebra over Q.
A nilpotent Lie group N is called rational if there is a rational Lie algebra n such that
Lie(N) = n ⊗ R.

Example 5.12. [Lau03, Theorem 3.1] Let N be a graded rational nilpotent group. Then
there is a lattice $ < N × N such that the nilmanifold M = (N × N)/$ admits an
Anosov automorphism in which unstable and stable manifolds are vertical and horizontal
copies of N.

We obtain the following as an immediate corollary to Theorem 1.10.

COROLLARY 1.11. Let N be an asymmetric k-step Carnot rational nilpotent group. Let
f0 be the Anosov automorphism of M = (N × N)/$ obtained from Example 5.12.
Then there is a C1 open neighborhood U of f0 in Diff∞(M) such that if f ∈ U

admits a smooth dominated splitting Eu
f = Eu

fast,f ⊕ Eu
slow,f along unstable leaves and

Eu
slow,f is sufficiently uniformly Cr -close along unstable leaves to Eu

slow,f0
, then for any

invariant ergodic measure µ there is λµ > 1 such that the unstable Lyapunov exponents
of f with respect to µ are log λµ, 2 log λµ, . . . , (r + 1) log λµ with the corresponding
multiplicities as for f0.

Remark 5.13. In the above corollary, one may replace the hypothesis of a smooth
dominated splitting with that of a slow distribution Eu

slow,f smooth along unstable leaves.
This readily follows from Proposition 2.2.

Even though the Heisenberg group is not asymmetric, we may still obtain resonance of
Lyapunov exponents for Anosov diffeomorphisms on products of this group.

Example 5.14. The following example due to Borel [Sma67, Example 1 in I-(3.8)]
provides an Anosov diffeomorphism on a nilmanifold whose unstable tangent cones are not
asymmetric nilpotent groups. Let N be the three-dimensional Heisenberg group. Consider
(N × N)/$ where $ is the lattice subgroup whose elements (with respect to the standard
basis on the Lie algebra) are of the form (α, β, γ , ασ , βσ , γ σ ) for α, β, γ ∈ Z[

√
3]

and where σ represents the Galois automorphism with (a + b
√

3)σ = a − b
√

3. Let f0
be the Anosov diffeomorphism induced from the Lie algebra map A(a, b, c, d , e, f ) =
(λa, λ2b, λ3c, λ−1d , λ−2e, λ−3f ) for λ = 2 +

√
3. Here the unstable distribution cor-

responds to the first factor of N with coordinates (a, b, c) and the slow distribution has
coordinates (a, b) which is the standard horizontal (and generic) distribution of N.

We may obtain a similar corollary to Corollary 1.11 for the above example.

COROLLARY 1.12. Let N be the three-dimensional Heisenberg group. Let $ be the lattice
and f0 the Anosov automorphism of M = (N × N)/$ obtained from Example 5.14. Then
there is a C1 open neighborhood U of f0 in Diff∞(M) such that if f ∈ U admits a smooth
splitting Eu

f = Eu
fast,f ⊕ Eu

slow,f along unstable leaves and Eu
slow,f is sufficiently uniformly

C1-close along unstable leaves to Eu
slow,f0

, then for any invariant ergodic measure µ the
unstable Lyapunov exponents for f are log λ1, log λ2 and log λ1 + log λ2 for some λ1 > 1
and λ2 > 1 depending on µ.
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Proof. We note that this result follows immediately from the analogue of Theorem 1.10 for
Heisenberg groups in place of asymmetric groups and resonance in place of arithmeticity
in the conclusion. The proof may be duplicated except for two points.

First, we need to show that, under the perturbation, the unstable tangent cones for f are
still isomorphic to the Heisenberg group. Since Eu

slow,f is sufficiently uniformly C1-close
along unstable leaves to Eu

slow,f0
, the horizontal distribution of T CvW

u
f (v) remains

codimension-one, horizontal and generic. Hence T CvW
u
f (v) is a 2-step Carnot nilpotent

Lie group with one-dimensional center for every v ∈ SM . Moreover, the tangent cones for
f are C0-close to those for f0. The Lie bracket induces a bilinear form [·, ·] : n0

v × n0
v → n1

v

between the first and second levels n0
v and n1

v of the Lie algebra nv of T CvW
u
f (v), and it

remains non-degenerate. Consequently, as the center is one-dimensional and there is only
one non-degenerate skew symmetric bilinear form on n0

v for every v ∈ SM , T CvW
u(v) is

isomorphic as a graded nilpotent group to the Heisenberg group N.
Second, we need an analogous result to Theorem 1.6. In turn, we observe that in the

proof of Theorem 1.6, we may replace Theorem 1.4 with Theorem 1.3 to obtain the
corresponding analogue for the Heisenberg group in the hypotheses and the resonance
in the conclusion. Having done so, the analogous result follows.

It is easy to construct examples of Anosov diffeomorphisms with integrable slow
distributions on tori or products of nilmanifolds. One might ask whether for irreducible
Anosov automorphisms of non-abelian nilpotent groups the slow distribution must be
horizontal and generic. However, this is not the case. Indeed, the slow unstable distribution
of [Shu69, Example 2 on p. 189] is integrable.

As our final application of smooth splittings we will investigate the local rigidity of the
projective action of a quaternionic or octonionic hyperbolic lattice on its ideal boundary
sphere.

5.4. Local rigidity of projective boundary actions. Sullivan [Sul85] initiated the study
of local rigidity of lattice actions on the boundary. Ghys [Ghy93] introduced a suspension
construction which relates actions of fundamental groups of surfaces on the circle to
Anosov flows. This was later adapted by Yue [Yue95] to the study of lattice actions on
higher-dimensional spheres. We will employ this construction to obtain a rigidity theorem
for boundary actions (cf. also [Asa17, Theorem 6.1]).

Consider a rank-one symmetric space X with connected component G < Isom(X) of its
isometry group. As is well known, the ideal boundary ∂X of X may be identified as ∂X =
G/P for a (minimal) parabolic subgroup P. For a discrete subgroup $ < Isom(X), let ρ0
be the action of $ on ∂X induced from the action of $ on X. Note that ρ0 is nothing but the
left action on G/P and thus is C∞. This action preserves the projection to the boundary
of the slow unstable distribution E0 for the geodesic flow since the stable foliation and the
holonomy along it are C∞ and $-equivariant.

We briefly recall the suspension construction mentioned above. Let ρ : $ →
Diff ∞(∂X) be a C1-close perturbation of ρ0. More precisely, we assume that ρ is C1-close
to ρ0 on a fixed finite set of generators of $ (we recall that lattices in semisimple groups are
always finitely generated). Consider the unit tangent bundle SM for the locally symmetric
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space and note M̃ = X. We have a diffeomorphism between SX and (∂X × ∂X\D) × R
where D is the diagonal of ∂X × ∂X.

We also have a diffeomorphism q̂ : SX → X × ∂X via v 4→ q̂(v) = (π(v), v(∞)),
where π(v) is the projection of v to its base point. The map q̂ descends to a diffeomorphism
q : SM → (X × ∂X)/ρ̂0 where ρ̂0(γ )(x, ξ) = (γ x, ρ0(γ )ξ) for all γ ∈ $ and (x, ξ) ∈
X × ∂X. (Here $ = π1(M) acts by deck transformations on X.)

As ρ is C1-close to ρ0, there is a C∞ diffeomorphism f : (X × ∂X)/ρ̂ → (X × ∂X)/ρ̂0
where ρ̂(γ )(x, ξ) = (γ x, ρ(γ )ξ) by Proposition A.1. Observe that the actions of ρ̂ and
ρ̂0 both preserve the leaves of the first-factor foliation {X × {ξ} : ξ ∈ ∂X}. Moreover, the
map f maps horizontal leaves in (X × ∂X)/ρ̂ to leaves that are C1-close to horizontal
leaves in (X × ∂X)/ρ̂0. The manifolds q̂−1(X × {ξ}), as ξ varies, are the leaves of the
center-stable foliation Wcs for the geodesic flow φt . For each x ∈ X we let σx : ∂X → ∂X

be the map which takes ξ ∈ ∂X to the opposite endpoint of the geodesic line through
x and ξ . Then q̂−1({(y, σy ◦ σx(ξ)) : y ∈ X}) is precisely the center-unstable manifold
Wcu(̂q−1(x, ξ)) ⊂ SX for the geodesic flow φt on SM̃ .

Let V cs be the C∞ foliation of SM whose leaves for v ∈ SM are the manifolds
V cs(v) = q−1 ◦ f ([X × v(∞)]), where square brackets denote the ρ̂-equivalence class.
Note similarly that the center-stable foliation Wcs on SM for the locally symmetric metric
has leaves Wcs(v) = q−1([X × v(∞)]) where square brackets denote the ρ̂0-equivalence
class.

Intersecting V cs ∩ Wcu gives a C∞ one-dimensional foliation F which is C1-close to
the locally symmetric geodesic foliation. Note that for all y in the geodesic line through x
and ξ , σy ◦ σx(ξ) = ξ . Hence the foliation F is the image under q−1 ◦ f of the quotient
by ρ̂ of the symmetric geodesic foliation (of the first factor) in X × ∂X.

Using the locally symmetric metric, we obtain a norm on the tangent space to F from
which we may construct a unit vector field Y on SM tangent to these curves. By structural
stability, the field Y defines a smooth Anosov flow ψt which is Hölder orbit equivalent to
the locally symmetric flow φt . (Note that by invariance of V cs and Wcu, and the fact that
ψt is C1-close to φt , it follows that V cs and Wcu are the center-stable and center-unstable
foliations for ψt .)

THEOREM 1.16. Let X be a quaternionic hyperbolic space or the Cayley plane, and let
M = X/$ for a cocompact lattice $ < Isom(X). Let ρ : $ → Diff ∞(∂X) be a C1-close
perturbation of ρ0 which still preserves a C∞ distribution E nearby to E0. Then ρ is C∞

conjugate to ρ0.

Proof. Consider the slow distribution Eu
slow for ψt . Since V cs is C∞, the center-stable

holonomy is C∞. Moreover, Eu
slow ⊂ V u is holonomy invariant (e.g. by [FK90, Lemma

4]; cf. [CNS20, Lemma 5.5]). Since φt has a dominated splitting on Wu and is C1-close
to ψt , the latter flow also admits a dominated splitting of V u ⊂ Wcu and Eu

slow ⊂ V u is
also continuous. In what follows let ψρ0

t denote the flow on (X × ∂X)/ρ̂0 given by pulling
back ψt under q−1. Similarly, let ψρt denote the flow on (X × ∂X)/ρ̂ given by pulling
back ψρ0

t under f.
It is easier to understand the center-stable holonomy using ψρt instead of ψt . The

center-stable leaves on (X × ∂X)/ρ̂ are quotients of leaves of form X × {b}, for b ∈ ∂X.
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The center-stable holonomy on the cover X × ∂X of (X × ∂X)/ρ̂ is the map preserving
the second component in ∂X. There is also a smooth map from each stable leaf in X × ∂X

into ∂X by projecting to the second factor. This map is invariant under center-stable
holonomy and ψρt . It follows that df −1 ◦ q(Eu

slow) projects to a well-defined and smooth
distribution on ∂X. Consequently, we get a distribution on ∂X that is C1-close to E and
invariant under ρ($). Inverses of projections from the boundary ∂X onto unstable leaves
maps E to a subdistribution of Eu that is C1-close to df −1 ◦ q(Eu

slow) and is invariant
under the flow ψ

ρ
t . Thus these two distributions coincide. It follows that df −1 ◦ q(Eu

slow)

projects to E under the projection onto the second factor ∂X. Since E is C∞ and is C1-close
to E0, we have that Eu

slow is horizontal and generic everywhere. By Theorem 3.2, we
therefore have a tangent cone at each point of the leaves of V cs and this is a perturbation
of the quaternionic or octonionic Heisenberg group by Corollary 4.6. The corresponding
nilpotent group is asymmetric by Corollary 2.10. Finally, by Proposition 3.12, the Lyapunov
exponents all have ratio two.

By [But19, Theorem 3.6], the flow ψt is C∞ orbit equivalent to the flow φt by a
diffeomorphism G : SM → SM . We lift G to the universal covers and conjugate by
q̂ to obtain a diffeomorphism Ĝ : X × ∂X → X × ∂X which intertwines (q−1)∗φt and
ψ
ρ
t as well as their corresponding center-stable foliations whose leaves are of the form

X × {b} for b ∈ ∂X. Thus Ĝ induces a well-defined diffeomorphism from ∂X to ∂X
that intertwines the ρ0 and ρ actions. In other words, the perturbed $-action is smoothly
conjugate to the original $-action.

6. Local hyperbolic rank rigidity
In this section we prove the local rigidity results of Theorems 1.14–1.16. We first show in
§6.1 that perturbations of locally symmetric metrics with higher hyperbolic rank have the
same hyperbolic rank as the locally symmetric metric. This is a key step for Theorem 1.14,
whose proof we provide in §6.2.

We begin by recalling some facts from [CNS20] about hyperbolic rank.

LEMMA 6.1. Suppose M is a closed Riemannian manifold of hyperbolic rank k and with
sectional curvatures 0 > κ ≥ −1. Let Ê(v) ⊂ v⊥ be the subspace consisting of initial
vectors w of unstable Jacobi fields of the form t 4→ et‖ϕt vw.
(1) Ê(v) is of dimension at least k for every v, by definition.
(2) The set R̂ ⊂ SM where Ê(v) is of constant dimension k is open and dense by

[CNS20, Lemma 2.4].
(3) The map v 4→ Ê(v) is C∞ on R̂ by [CNS20, Proposition 3.3].
(4) The lift Eu

1 (v) of Ê(v) to TvW
u(v) = Eu(v) ⊂ T SM is a distribution on R̂ which

is uniformly C∞ along Wu restricted to R̂ which consists precisely of the Lyapunov
spaces in Eu of exponent 1, by [CNS20, Lemma 4.2]. (We will sometimes refer to
the Eu

1 (v) space as Eu
fast(v).)

(5) Denote by Ê(v)⊥ the orthogonal complement of Ê(v) within v⊥ with respect to the
Sasaki metric. The lift Eu

<1 of Ê⊥ to Eu is the direct sum of unstable Lyapunov spaces
of exponents different from 1, by [CNS20, Lemma 4.3]. (We will sometimes refer to
the Eu

<1(v) space as Eu
slow(v).)
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We remark that Eu
<1 is uniformly C∞ along Wu restricted to R̂ since it is orthogonal to

Eu
1 in Eu.

6.1. Holonomy groups of perturbations and hyperbolic rank. The goal of this subsection
is to prove the following proposition and its Corollary 6.10.

PROPOSITION 6.2. Let (M , g0) be a closed complex, quaternionic or octonionic hyper-
bolic locally symmetric manifold. Then there is an open C2 neighborhood U of g0 such
that, for any g ∈ U , if (M , g) has higher hyperbolic rank and κg ≥ −1 then (M , g) has
hyperbolic rank at least 1, 3 or 7, respectively.

The proof of this proposition will rely on an analysis of the Brin–Pesin asymptotic
holonomy group. Before giving the proof we will establish some notation and several
lemmas.

Let FM → SM denote the full orthonormal frame bundle which is a (right) principal
SO(n − 1) bundle over SM . Let F2M denote the 2-frame bundle over SM which is a
fiberwise quotient of FM by SO(n − 2) acting on the right, that is, we have bundle quotient
maps

FM F2M = FM/SO(n − 2)

SM = FM/SO(n − 1)

πn→1

πn→2

π2→1

We endow FM and F2M with the natural extensions of the Liouville measure by the
Haar measures on the fiber. These measures are invariant under their respective frame
flows. The k-frame flows commute with the corresponding right action of SO(n − 1) on
FkM . Consider the ergodic component E(v, w) of the 2-frame flow containing (v, w) with
respect to this measure. Moreover, assume (v, w) is a generic 2-frame in the ergodic
component E(v, w). (This means that time averages over the orbit of (v, w) coincide
with the space average over E(v, w) with respect to its ergodic measure.) Without loss
of generality we may assume (v, w) is the first two vectors of a full frame f which is also
generic in its ergodic component E(f ) ⊂ FM for the full frame flow. Lemmas 5.1 (see the
formulation of the ergodic component Q(ω) in the proof) and 5.2 of Brin [Bri82] show
that

E(f ) =
⋃

t∈R
7t (C(f ))

where C(f ) is the smallest set saturated by entire leaves of Ws
f , Wu

f and containing f.
Moreover, there is a compact subgroup B∞

f < SO(n − 1), called the ergodic component
group, satisfying

E(f ) ∩ π−1
n→1(v) = f · B∞

f .
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This immediately implies that

E(v, w) ∩ π−1
2→1(v) = πn→2(E(f )) ∩ π−1

2→1(v)

= πn→2(f · B∞
f ) ∩ π−1

2→1(v) = f · B∞
f SO(n − 2).

It is clear that if f ′ = f · h for h ∈ SO(n − 1) then B∞
f ′ = h−1B∞

f h. And by definition if f
and f ′ are in the same ergodic component, then B∞

f = B∞
f ′ . We call B∞

f the (Brin–Pesin)
asymptotic holonomy group, and denote its conjugacy class in SO(n − 1) by B∞.

Suppose v ∈ SM and v′ ∈ Ws
φt

(v). Fix k ∈ {2, . . . , n} and let p(v, v′) be the map from
the fiber of the k-frame bundle, FkM , over v to the fiber over v′ that takes each frame f to
p(v, v′)(f ) = π−1

k→1(v
′) ∩ Ws

7t
(f ). The map p(v, v′) corresponds to a unique isometry

between v⊥ and v′⊥ which commutes with the right action of SO(n − 1). We will mainly
consider the case of the map for k = 2. After lifting to the universal cover, one can think
of p(v, v′)(f ) as the result of ‘parallel transporting’ f along γv(t) out to the boundary at
infinity of M̃ and then back to v′ along γv′(t).

Similarly, when v′ and v belong to the same leaf of Wu
φt

, there is a map p(v, v′)(f ) =
π−1

k→1(v
′) ∩ Wu

7t
(f ). Following Brin (see [Bri82, Definition 4.4]) we define the transitivity

group at v as follows.

Definition 6.3. Given any sequence σ = {v0, v1, . . . , vk} with v0 = v, vk = φT (v) for
some T ∈ R such that each pair {vi , vi+1} lies on the same leaf of Ws

φt
or Wu

φt
, we have an

isometry of v⊥ given by

I (σ , T ) = 7−T ◦
r∏

i=0

p(vi , vi+1).

The closure of the group generated by all such isometries with v0 = v is denoted by Hv <

Isom(v⊥) and is called the transitivity group.

After picking an orthonormal full frame f with v as its first vector, Hv can be identified
as a subgroup of SO(n − 1). This identification depends on the choice of frame f. Different
choices give conjugate identifications. It is well known that the ergodic component group
B∞

f < SO(n − 1) at a frame f over v coincides with the transitivity group Hv under this
identification (see the remark before Lemma 5.2, or Remark 2 of [Bri75a] and Proposition
2 of [Bri75b]). For clarity, we provide the details of this equivalence below.

LEMMA 6.4. For each k ∈ {2, . . . , n}, the ergodic component group coincides with
the transitivity group at each v ∈ SM and f ∈ π−1

k→1(v), that is, B∞
f = Hv , using the

identification provided by the frame f.

Proof. Fix v ∈ SM , and consider any continuous function α on the homogeneous space
π−1

k→1(v)/Hv . Lift α to a function α : π−1
k→1(v) → R. Using the maps p(v, v′) for v ∈ SM ,

we obtain a continuous extension α̂ : FkM → R given by α̂(f ′) = α(p(v′, v)(f ′)) for
any f ′ ∈ π−1

k→1(v
′). Observe that α̂ is well defined and invariant under both the action

of Hv and the frame flow. Since continuous functions on π−1
k→1(v)/Hv separate points,
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and continuous flow invariant functions on FkM are constant on ergodic components,
we obtain a surjection from the space of ergodic components to π−1

k→1(v)/Hv . Therefore,
B∞

f < Hv for any f ∈ π−1
k→1(v). On the other hand, as explained in [Bri75a, Remark 2],

we also have Hv < B∞
f .

Remark 6.5. Note that the entire formulation of the ergodic component groups, asymptotic
holonomy groups and transitivity groups makes sense in the broader context of compact
(isometric) group extensions of Anosov flows. Moreover, the above lemma also holds (see
[Bri75b]).

For the next lemma, recall that an ε-net F ⊂ X of a metric space X is a subset whose
points are pairwise separated with distance at least ε, and such that every point x ∈ X is at
distance at most ε to a point of F.

LEMMA 6.6. For any connected semisimple Lie subgroup K < SO(n − 1), let F ⊂ K be
a δ-net of K that generates a dense subgroup of K. There is a sufficiently small ε0 > 0 such
that for any ε < ε0 every ε-perturbation of F generates a subgroup of SO(n − 1) whose
closure contains a conjugate hεKh−1

ε of K. Moreover, hε can be chosen so that hε → e as
ε → 0.

Proof. First suppose there is no such ε0. Then there is a sequence εn → 0 and an
εn-perturbation Fεn ⊂ SO(n − 1) of F, with respect to the Hausdorff metric on closed
subsets, such that the closure of the group generated by Fεn does not contain a conjugate of
K. Let Hn = 〈Fεn〉

0 be the identity component of the closure of the group generated by Fεn .
Consider the Levi decomposition of the connected Lie group Hn, namely Hn = Hss

n Ha
n

where Hss
n is maximal semisimple and Ha

n is a closed connected solvable normal subgroup
(see [Var84, Theorem 3.18.13] and [Gor94, Theorem 1.4.3]). Since Ha

n is compact
connected and solvable, it is an abelian torus. The automorphism group of this torus is
discrete. Since Hn is connected the image of the conjugation action Hn → Aut(Ha

n ) is
trivial. Note also that Hss ∩ Ha is semisimple and therefore trivial. This implies that Hn

is a group product of Hss
n and Ha

n .
Since the topology induced by the Hausdorff metric on compact subsets of a compact

space is compact, we may pass to a subsequence such that Hn converges to H = limn Hn.
Let Hss = limn Hss

n and Ha = limn Ha
n . The limit of abelian groups is abelian so Ha is

abelian. Hence H = HssHa since the limit of a product is a product. Since the generators
converge, H therefore contains 〈F 〉0, but this is just K. The projection of K to Ha is trivial
since K is semisimple and Ha is connected, and hence Hss contains K.

There are only finitely many conjugacy classes of connected semisimple subgroups of
SO(n − 1). For each n the corresponding connected semisimple group Hss

n must belong
to one of these. Since Hss contains K, the groups Hss

n must eventually belong to the same
conjugacy class, also containing Hss . Therefore for all sufficiently large n, the group Hss

n

must contain a conjugate of K. This contradiction establishes the existence of ε0.
Moreover, we have shown that for every ε < ε0, if Fε is an ε-perturbation of F

generating a subgroup with closure Hε < SO(n − 1), then Hss
ε = hεQεh

−1
ε for a compact

semisimple group Qε containing K and belonging to one of finitely many conjugacy
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classes. In particular, hεKh−1
ε < Hss

ε . Moreover, Qε is close to Hss
ε as ε → 0, and so

we may assume we have chosen hε so that hε → e as ε → 0.

Given two Riemannian metrics g, g′ ∈ Sym(T ∗M ⊗ T ∗M), there is a unique
positive-definite vector bundle endomorphism A of T M such that g′

x(v, w) = gx(Axv, w)

at each point x ∈ M . Let q : T M → T M be the bundle endomorphism q := A− 1
2 . If f

is a g-orthonormal frame then q(f ) is a g′-orthonormal frame. Thus q defines a smooth
SO(n)-equivariant map of g-orthonormal frames to g′-orthonormal frames. In other words,
q induces a principal SO(n)-bundle isomorphism qF : (FM)g → (FM)g′ (see [BG92,
Proposition 1]).

Now consider a C2 perturbation gε through C∞ metrics of a negatively curved metric
g0. As indicated above, there is a vector bundle isomorphism qε : T M → T M which
restricts to a fiber bundle isomorphism qε : (SM)ε → (SM)0 between the unit tangent
bundle (SM)ε → M for the metric gε and (SM)0 → M for the metric g0. Moreover,
we have a principal SO(n)-bundle isomorphism qF

ε : (FM)ε → (FM)0 between the
orthonormal frame bundles (FM)ε → (SM)ε and (FM)0 → (SM)0 which fibers over
qε . We may conjugate the geodesic flow φεt for gε by qε to obtain a flow φ̂εt : (SM)0 →
(SM)0. Similarly, we may conjugate the frame flow 7εt for gε by qF

ε to obtain a flow
7̂εt : FM → FM which extends φ̂εt .

Using Remark 6.5, we may consider the transitivity group H ε
v < Isom(v⊥) for the flow

7̂εt . Also, since the map qF
ε is equivariant with respect to the right SO(n) action, the

asymptotic holonomy group for 7εt is the same as B∞
ε up to conjugacy.

LEMMA 6.7. Let gε be a C2 perturbation through C∞ metrics of a negatively curved
metric g0. Let H ε

v be the transitivity group of a vector v for the metric gε , and suppose
transitivity group H 0

v for g0 is connected and semisimple. Then for all sufficiently small ε,
H ε

v contains a conjugate of H 0
v which limits to H 0

v as ε → 0.

Proof. In order to show there is a relation between H ε
v for different ε, we use the descrip-

tion of the transitivity group. Namely, we may construct a net of elements in H ε
v by follow-

ing a sequence of paths along leaves of Wu
7̂t

and Ws
7̂t

starting from v which lie in a compact
set. By the permanence theorem [HPS77, Theorem 6.8], the unstable and stable manifolds
for 7̂εt , as a compact extension of φ̂εt on (SM)0, vary continuously in the C1 topology
under C2 perturbations. As these manifolds converge on compacta, using sufficiently long
u–s paths, we obtain for any ε > 0 an ε-net in H ε

v that is ε-close to an ε-net in H 0
v .

By assumption, the transitivity group H 0
v is connected and semisimple. Consequently,

by Lemma 6.6, the transitivity group H ε
v contains a conjugate of H 0

v for sufficiently small
perturbation parameter ε > 0, and these subgroups converge to H 0

v as ε → 0.

The following lemma can be found in [Con08]; we provide a short proof for conve-
nience. We say that a 2-frame (u, w) has higher hyperbolic rank if the sectional curvatures
satisfy κ(φt (u) ∧ ‖tw) ≡ −1 for all t ∈ R where ‖t is parallel translation along φt (u).

LEMMA 6.8. For a flow-invariant, full Liouville-measure subset of v ∈ SM , Hv sends
higher hyperbolic rank 2-frames over v to higher hyperbolic rank 2-frames over v.
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Proof. The set of 2-frames (u, w) of higher hyperbolic rank remains invariant under
parallel transport. Any 2-frame (u′, w′) forward asymptotic to the parallel frame field
of (u, w) must therefore also have curvature limiting to −1. If (u′, w′) is recurrent then
(u′, w′) must have higher hyperbolic rank. If (u′′, w′′) forward limiting to the parallel
frame field of (−u′, w′) is recurrent then it must similarly have higher hyperbolic rank. If
the frame (−u, ρw) for ρ ∈ Hu < Isom(u⊥) which forward limits to (u′′, w′′) is recurrent
then it has higher hyperbolic rank as well. Finally, the set of bi-recurrent vectors is a
flow-invariant full Liouville measure set.

The following lemma is trivial, but we include it for completeness.

LEMMA 6.9. If a sequence of subgroups Kn < SO(n) converges to K < SO(n), and a
sequence of vectors vn converges to a vector v, then the stabilizers in Kn of vectors vn,
StabSO(n)(vn) ∩ Kn, converge to a subgroup of StabSO(n)(v) ∩ K .

Proof. If kn ∈ StabSO(n)(vn) ∩ Kn converges to k ∈ K , then clearly k ∈ StabSO(n)(v).

Before proving Proposition 6.2, we describe the Brin–Pesin groups and their actions in
the locally symmetric case.

Let (M , g0) be a closed complex, quaternionic or octonionic hyperbolic locally
symmetric manifold. Hence M = $\M̃ for a cocompact lattice $ < G := Isom0(M̃ , g0),
and let Kx < G be the stabilizer of a point x and Lv < Kx the stabilizer of a tangent
vector v ∈ TxM . Observe that the left action of G on the full (oriented) orthonormal frame
bundle decomposes (FM̃)g0 into G-orbits, which descend to closed subsets of (FM)g0

since G acts cocompactly on (FM̃)g0 . Since the frame flow corresponds to a right action
by the one-parameter split Cartan subgroup, by Moore’s theorem [Zim84, Theorem 2.2.6]
the quotients of the G orbits by $ coincide with the ergodic components of the frame flow
on (FM)g0 for the lift of the Liouville measure. Since the intersection of the fiber over v
with a G orbit coincides with the action of the stabilizer Lv , which is faithful on frames,
we have Hv = Lv .

For the quaternionic hyperbolic space M̃ = Hn
H we have Hv = Lv

∼= B∞ = Sp(n −
1)Sp(1) (here Sp(k) := Sp(2k, C) ∩ U(2k)), and for the Cayley plane M̃ = H2

O we have
Hv = Lv

∼= B∞ = Spin(8)Spin(1). Quaternionic symmetric space comes endowed with
a quaternionic Kähler structure and the Cayley plane with an octonionic Kähler structure
(see, for example, [Bes87]). These structures are parallel and thus preserved under the
full holonomy group. Thus each higher hyperbolic rank 2-frame is fixed by Sp(n − 1)

and Spin(8), respectively. However, the set of all such frames is acted on transitively by
the Sp(1) and Spin(1) groups of dimension 3 and 7 respectively, since these groups act
transitively on the perpendicular to v in the H-line (respectively, O-line) through v.

Proof of Proposition 6.2. By the hyperbolic rank condition, the statement for the complex
hyperbolic case is trivial. We proceed by contradiction and suppose there is a sequence
of metrics gεn of higher hyperbolic rank with ‖gεn − g0‖C2 < εn where εn tends to 0, but
whose hyperbolic ranks are all less than the hyperbolic rank of g0.

By Lemma 6.8, for almost every v ∈ SM , Hεn,v preserves the hyperbolic rank 2-frames
over v. Consider a sequence of generic 2-frames (vn, wn) for gεn that limit to a hyperbolic
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2-frame (v, w) for g0. By Lemma 6.7, if εn is sufficiently small, the asymptotic holonomy
group Hεn,vn for the perturbed metric gεn contains a conjugate copy Lεn of Hv , and these
converge to Hv as εn → 0. Let Qεn < Lεn be the stabilizers in Lεn of (vn, wn). By Lemma
6.9, Qεn converges to a subgroup of a conjugate of Sp(n − 1) or Spin(8), respectively.
Hence if εn is sufficiently small and (vn, wn) is chosen to be a hyperbolic 2-frame for gεn
then the Lεn-orbit of (vn, wn), consisting of hyperbolic 2-frames, has dimension at least
as large as the dimension of the Hv-orbit of (v, w). This contradicts the assumption that
hyperbolic ranks of gεn are less than that of g0.

COROLLARY 6.10. Let (M , g0) be a closed complex, quaternionic or octonionic hyper-
bolic locally symmetric manifold. Then there is an open C2 neighborhood U of g0 such
that, for any g ∈ U , if (M , g) has higher hyperbolic rank and κg ≥ −1 then the hyperbolic
rank of every tangent vector to (M , g) is exactly 1, 3 or 7, respectively.

Proof. If v is a unit tangent vector of (M , g0) then v⊥g0 = Êg0(v) ⊕ Êg0(v)⊥g0 , where the
sectional curvature κ(v ∧ w) = −1 for every w ∈ Êg0(v) and κ(v ∧ u) = − 1

4 for every
u ∈ Êg0(v)⊥g0 .

Similarly, if v is a unit tangent vector of (M , g), we also have v⊥g = Êg(v) ⊕ Êg(v)⊥g ,
where the sectional curvature κ(v ∧ w) = −1 for every w ∈ Êg(v). Since g is sufficiently
C2-close to g0, the continuity of curvatures in the C2 topology of Riemannian metrics
implies that dim(Êg(v)) ≤ dim(Êg0(v)) for every v. In particular, the hyperbolic rank of
every tangent vector of (M , g) is at most the hyperbolic rank of (M , g0).

On the other hand, by Proposition 6.2, the hyperbolic rank of (M , g) is not smaller than
the hyperbolic rank of (M , g0). By item (1) of Lemma 6.1, the hyperbolic rank of every
tangent vector of (M , g) is exactly the hyperbolic rank of (M , g0).

6.2. Quaternionic and octonionic hyperbolic local rigidity. We are now ready to prove
the main result about higher hyperbolic rank stated in the introduction.

THEOREM 1.14. Let (M , g0) be a closed quaternion or octonionic hyperbolic locally
symmetric manifold. Then there is an open C3 neighborhood U of g0 such that, for any
g ∈ U , if (M , g) has higher hyperbolic rank and κg ≥ −1 then (M , g) is locally symmetric
and isometric to (M , g0).

Proof of Theorem 1.14. By Corollary 6.10, we may choose U such that the hyperbolic rank
of every tangent vector of (M , g) is the same as the hyperbolic rank of (M , g0).

Next, let Jξ (t) denote the unstable Jacobi field along φt (v) with initial vector ξ ∈ Ê(v).
By Lemma 6.1, we can make the following observations about Oseledets spaces:

Eu
1 (v) = {(ξ , J ′

ξ (0)) : ξ ∈ Ê(v)} and Eu
slow(v) = {(ξ , J ′

ξ (0)) : ξ ∈ Ê(v)⊥}.

By Corollary 6.10, dim Eu
1 is constant, and by Lemma 6.1, Eu

1 is a globally C∞ distribution
on SM . In particular, Eu

1 is uniformly C∞ along Wu for each such metric g. Moreover,
as the curvature operator, and hence Jacobi fields, vary C1 in the C3 topology on smooth
metrics, Eu

1 and its first derivatives along Wu vary continuously in the metric parameter
with respect to the C3 topology on smooth metrics. By [CNS20, Lemma 4.3], Eu

1 and Eu
slow
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are perpendicular with respect to the Sasaki metric for g. Hence the dominated splitting
Eu = Eu

1 ⊕ Eu
slow is uniformly C∞ along unstable leaves. By the permanence theorem

[HPS77, Theorem 6.8], Eu
slow has C1 dependency on g as g varies in the C3 topology.

Therefore by Theorem 1.9, M is symmetric for sufficiently C3 nearby smooth metrics.

Remark 6.11. One can show that Eu
1 varies continuously in the C1 topology as the metric g

varies in the C2 topology. However, since Eu may not vary continuously in the C1 topology
as the metric g varies in the C2 topology, we are not able to conclude that Eu

slow varies C1

in this topology. The latter is necessary to obtain the isomorphism of tangent cones. Hence
we require the metrics to be C3-close.

We next observe that the higher hyperbolic rank condition in the last theorem may be
replaced by a condition on Lyapunov exponents.

COROLLARY 6.12. In Theorem 1.14, the conclusion still holds if the higher hyperbolic
rank assumption is replaced with the assumption that some ergodic measure of full support
has a Lyapunov exponent equal to 1.

This follows from the following lemma, whose proof is essentially that of [CNS20,
Corollary 1.4]. (See also [Con03, Theorem 1.3] for the case κ ≤ −1.)

LEMMA 6.13. Let M be a closed Riemannian manifold with κ ≥ −1. If, with respect to
the geodesic flow on SM , some ergodic measure of full support has a Lyapunov exponent
equal to 1, then M has higher hyperbolic rank.

6.3. Measure of maximal entropy for perturbations. For the case of complex hyperbolic
metrics, we are not able to obtain full local rigidity. Indeed, our methods require that
the tangent cones of unstable leaves are asymmetric, which the Heisenberg group is
not. However, we still obtain equality of the Liouville measure and the Bowen–Margulis
measure (the unique measure of maximal entropy) for a higher-rank perturbation. The
precise result of this subsection is Theorem 1.15 from the introduction.

THEOREM 1.15. Let (M , g0) be a closed complex hyperbolic manifold. There is an open
neighborhood U of g0 in the C3 topology among C∞ metrics such that if g ∈ U and (M , g)

has higher hyperbolic rank and sectional curvature κ ≥ −1 then the Liouville measure on
SM coincides with the (unique) measure of maximal entropy for the geodesic flow of g on
SM .

Proof. We first show that the tangent cone T CvW
u(v) exists for every v ∈ SM .

By Corollary 6.10, Eu
1 ⊂ Eu is one-dimensional everywhere. By (4) of Lemma 6.1, Eu

1
forms a smooth distribution along each leaf of the foliation Wu. By (5) of Lemma 6.1, the
lift Eu

slow = Eu
<1 of Ê⊥ to Eu is the direct sum of unstable Lyapunov spaces of exponents

different from one. Therefore, Eu
slow is uniformly C∞ along Wu since it is orthogonal to

Eu
1 in Eu with respect to the Sasaki metric.
By the same argument used in the proof of Theorem 1.14, Eu

slow has C1 dependency on
g as g varies in the C3 topology. In particular, Eu

slow is generic everywhere on SM . Also,
by Theorem 3.2, the tangent cone T CvW

u
g exists everywhere.
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By Corollary 6.10, the horizontal distribution of T CvW
u
g (v) has codimension one.

Hence T CvW
u
g (v) is a 2-step Carnot nilpotent Lie group with one-dimensional center

for every v ∈ SM . By Lemma 5.5, T CvW
u
g (v) depends continuously on the metric g in

the C3 topology. Recall that the Lie bracket induces a bilinear form [·, ·] : n0
v × n0

v → n1
v

between the first and second levels n0
v and n1

v of the Lie algebra nv of T CvW
u
g (v).

As it is non-degenerate for g0, it will also be non-degenerate for g sufficiently close
to g0. Consequently, as the center is one-dimensional and there is only one, up to
isomorphism, non-degenerate skew symmetric bilinear form on n0

v for every v ∈ SM ,
T CvW

u(v) is isomorphic as a graded nilpotent group to the Heisenberg group H 2k−1

where dim M = 2k.
By Theorem 1.3, if v ∈ SM is a periodic vector then the sum of the positive Lyapunov

exponents (with multiplicity) at v is k. By [Kal11, Theorem 1.4], it follows that with respect
to any ergodic invariant probability measure, the entropy of geodesic flow is bounded above
by k. On the other hand, by Pesin’s entropy formula, the entropy of the geodesic flow
with respect to Liouville measure (rescaled to have total volume one) is k. Therefore the
(rescaled) Liouville measure is the measure of maximal entropy.

Remark 6.14. Local rigidity for higher hyperbolic rank metrics near the complex hyper-
bolic one would follow from Katok’s well-known entropy conjecture stating that the
Liouville measure has maximal entropy precisely for locally symmetric manifolds among
closed negatively curved manifolds. Alternately, and possibly more simply, it would follow
from strict convexity of the difference of topological and measure-theoretic entropy near
the complex hyperbolic metric. For real hyperbolic metrics, this was proven by Flaminio
[Fla95, Theorem A].

Remark 6.15. As in Corollary 6.12, we may replace the condition on higher hyperbolic
rank in Theorem 1.15 with the condition that there is a Lyapunov exponent equal to 1 for
some invariant ergodic measure of full support.
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A. Appendix. A variation on Benveniste’s lemma
In this appendix we present the proof of the following proposition which may be considered
by some to be folklore. However, we could not locate a precise reference for it in the
literature. (For the case of C0 semiconjugacy, see [BM19].) In what follows, if $ acts by
Ck diffeomorphisms on a C∞ manifold X, and τ : $ → Diff k(F ) is a representation for
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a C∞ manifold F, then we denote by τ̂ : $ → Diff k(X × F) the representation given by
τ̂ (γ )(x, f ) = (γ x, τ (γ )(f )).

PROPOSITION A.1. (Cf. [Ben00, Lemma 5.2]) Suppose $ acts freely, properly discontin-
uously and cocompactly by Ck diffeomorphisms on a C∞ manifold X for k ≥ 1. Let F be
a closed C∞ manifold. Let τ0 and τ be homomorphisms from $ → Diff k(F ) such that τ
be C2-close to τ0 for 2 ≥ 1. Then there is C∞ diffeomorphism between suspensions f :
(X × F)/τ̂ → (X × F)/τ̂0. Moreover, the push-forward by f of the horizontal foliation
{X × {z} : z ∈ F } in (X × F)/τ̂ is C2-close to the horizontal foliation in (X × F)/τ̂0.

Here the map f is C∞ with respect to the unique compatible C∞ structures on (X ×
F)/τ̂ and (X × F)/τ̂0 compatible with the respective Ck structures. The above result was
proved by Benveniste in the C∞ case in [Ben00] using the tame Fréchet group structure
of Diff∞(F ) and the Hamilton–Nash–Moser implicit function theorem. We follow his
argument closely. However, even though the Banach manifolds arising in the Ck setting
are still tame Fréchet manifolds, Diffk(F ) is not a tame Fréchet Lie group and we must
instead use implicit function theorems for Banach manifolds in Lemma A.2.

LEMMA A.2. Let X , Y , and Z be Banach manifolds, and H : X → Y and G : Y → Z
be C1 maps such that G ◦ H(x) = z0 for every x ∈ X . Suppose that P : TH(x0)Y → Tx0X
and Q : Tz0Z → TH(x0)Y are bounded linear transformations such that Dx0H ◦ P + Q ◦
DH(x0)G = id. Then there exist neighborhoods U and V of x0 and H(x0) respectively such
that G−1(z0) ∩ V ⊂ H(U).

Proof. Using local charts, we can assume that X , Y , Z are Banach spaces and
x0, H(x0), z0 are zero vectors in the Banach spaces. Since G ◦ H = 0 we have
im D0H ⊂ ker D0G. On the other hand, if there is v ∈ ker D0G − im D0H , then v =
id(v) = D0H ◦ P(v) + Q ◦ D0G(v) ∈ im D0H , which is not possible. Thus, im D0H =
ker D0G. Now the conclusion follows immediately from [AN09, Theorem 2.1].

Given closed manifolds M and N, Diffk(M , N) is a Banach manifold for every k ∈ N
[Wit19]. We note that by a Banach manifold we always mean a Banach manifold of
class C∞.

We also need a discussion about the space of mappings. Let E be a Banach space and
let U be a domain in Rn or in a smooth manifold such that U has smooth boundary. For
2 ∈ N, we let C2(U , E) denote the space of C2 functions from the closure of U to E. Then
C2(U , E) is a Banach space. By [Eli67, Theorem 5.1] (with S = Ck and s = ∞) and the
remark before [Eli67, Theorem 5.2], if D is a smooth Banach manifold admitting a C∞

connection, then C2(U , D) is a smooth Banach manifold. This condition is satisfied for
D = Diffk(F ). Indeed, the latter is open in Ck(F , F) for k ≥ 1 by the inverse function
theorem and Ck(F , F) satisfies the condition by the discussion at the top of p. 170 in
[Eli67]. In particular, C2(U , Diffk(F )) is a smooth Banach manifold. Moreover, by [Eli67,
Theorem 5.2], the tangent bundle to C2(U , D) is naturally isomorphic to C2(U , T D). We
note that if h ∈ C2(U , Diffk(F )) then the map U × F < (u, f ) 4→ (u, h(u)(f )) ∈ U × F

is Cmin{2,k}.
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LEMMA A.3. Let F → P → M be a fiber bundle, where F and M are closed manifolds.
Let {U1, . . . , Uk} be a cover of M so that P |Uα is trivializable for each α. Let {φα} be
trivializations, and let {φαβ} be the corresponding transition functions. Let {φ′

αβ} be a
collection of transition functions which are close to the {φαβ} in the C2 topology. Let Vα ⊂
Uα be compactly contained open sets such that {Vα} cover M. Then there are maps {hα :
Vα → Diffk(F )}, C2-close to the constant map to the identity, such that hα(u)φαβ(u) =
φ′
αβ(u)hβ(u) for all u ∈ Vα ∩ Vβ , and all α and β.

Proof. For each α, we let Wα be an open set with a smooth boundary such that
Vα ⊂⊂ Wα ⊂⊂ Uα . Inductively, we choose Wα0α1···αi with smooth boundary such that
Vα0 ∩ Vα1 ∩ · · · ∩ Vαi ⊂⊂ Wα0···αi ⊂⊂ Wα0···αi− ∩ Uαi . For each i = 0, 1, . . . , we let
Ci = ⊕α0 -=α1 -=···-=αi C

2(Wα0···αi , Diffk(F )). Each of Ci is a Banach manifold. Hence, we
have

T Ci = ⊕α0 -=α1 -=··· -=αi C
2(Wα0···αi , T Diffk(F )).

We define the coboundary maps

80 : C0 → C1

by (80(u))αβ = uαφαβu
−1
β for every u ∈ C0, and

81 : C1 → C2

by (81(v))αβγ = vαβvβγ v−1
αγ for every v ∈ C1. We note that since {φαβ} and {φ′

αβ} are
transition maps of fiber bundles,81(φ) = 81(φ′) = id, where id here denotes the constant
map to the identity of Diffk(F ). Moreover, we also have 80(id) = φ. To see that 8i are
C2 maps, we may compute the derivatives

(Du8
0(ξ))αβ = ξα(φαβu

−1
β ) − (uαφαβ)ξβ

for every ξ ∈ TuC0, and

Dv8
1(ζ )αβγ = ζαβ(vβγ v−1

αγ ) + vαβ(ζβγ v−1
αγ ) − (vαβvβγ )ζαγ

for every ζ ∈ T1C1, where we have used the following conventions: if u : Q → Q and
v : Q → Q are smooth maps and ξ is a section of v∗T Q, we write uξ for the section of
(uv)∗T Q defined by uξ(x) = dux(ξx) and write ξu for the section of (uv)∗T Q given by
ξu(x) = ξu(x).

From the formulas, we see that Du8
0 and Dv8

1 are bounded and continuous in u ∈ C0

and v ∈ C1, respectively.
Let {λα} be a partition of unity subordinate to the cover {Vα}. We define maps κ0 :

TφC1 → TidC0 and κ1 : TφC2 → TidC1 by the formula:

(κ0(ζ ))α =
∑

γ

λγ ζαβφ
−1
αγ

and

(κ1(σ ))αβ =
∑

γ

λγ σαβγ φαβ .

�����	����������������������������������������������������

������������������������

https://doi.org/10.1017/etds.2021.116


662 C. Connell et al

It follows that κ0 and κ1 are bounded.
Following the proof given in [Ben00, p. 523] verbatim, these satisfy the identity

Did8
0 ◦ κ0 + κ1 ◦ Dφ8

1 = idTφC1 .

By Lemma A.2, there is an h = {hα} ∈ C0-close to {id} ∈ C0 such that 80(h) = φ′.
Equivalently, hα(u)φαβ(u) = φ′

αβ(u)hβ(u) for all u ∈ Vα ∩ Vβ , and all α and β.

We are now in a position to finish the proof of the main result of this appendix.

Proof of Proposition A.1. Let π : X → X/$ be the natural covering map. Following
[Ben00], we start with an appropriately chosen open cover {Uα} of X/$ with lifts
{Ũα ⊂ X} such that Ũα → Uα is a C∞ diffeomorphism for each index α. The choice of Ũα
determines trivializations of the bundles (X × F)/τ̂0 → X/$ and (X × F)/τ̂ → X/$.
If Uα ∩ Uβ -= ∅, then π |−1

Ũβ
◦ π |Ũα∩π−1(Uβ ) is the restriction of an element γαβ ∈ $.

The transition functions for the bundles (X × F)/τ̂0 and (X × F)/τ̂ are τ0(γαβ) and
τ (γαβ) respectively. By Lemma A.3, there exists an open cover Vα ⊂⊂ Uα of X/$ and a
family {hα : Vα → Diffk(F )} of C2 maps that are C2-close with the constant map to the
identity. Since hατ0(γαβ) = τ (γαβ)hβ , the family {hα} defines a C2 bundle isomorphism
f ′ : (X × F)/τ̂ → (X × F)/τ̂0 covering the identity map on X.

By Whitney’s Theorem, the manifolds (X × F)/τ̂0 and (X × F)/τ̂ admit C∞ struc-
tures compatible with their natural Ck structures. Moreover, there is a C∞ diffeomorphism
f that is C2-close to f ′ since 2 ≥ 1. The last statement regarding the foliations follows
immediately.
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