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ABSTRACT. We show that for a generic conformal metric perturbation of a compact hyper-
bolic 3-manifold ¥ with Betti number b1, the order of vanishing of the Ruelle zeta function
at zero equals 4 — by, while in the hyperbolic case it is equal to 4 — 2b;. This is in contrast
to the 2-dimensional case where the order of vanishing is a topological invariant. The proof
uses the microlocal approach to dynamical zeta functions, giving a geometric description of
generalized Pollicott—Ruelle resonant differential forms at 0 in the hyperbolic case and using
first variation for the perturbation. To show that the first variation is generically nonzero
we introduce a new identity relating pushforwards of products of resonant and coresonant
2-forms on the sphere bundle SY with harmonic 1-forms on 3.

Let (¥, g) be a compact connected oriented 3-dimensional Riemannian manifold of negative
sectional curvature. The Ruelle zeta function

N =[]@ =€), Imr>1 (1.1)
gl
is a converging product for Im A large enough and continues meromorphically to A € C
as proved by Giulietti-Liverani-Pollicott [GLP13] and Dyatlov—Zworski [DZ16]. Here the
product is taken over all primitive closed geodesics v on (X, g) and T is the length of ~.

In this paper we study the order of vanishing of (g at A = 0, defined as the unique integer
mg(0) such that A=) (R (\) is holomorphic and nonzero at 0. Our main result is

Theorem 1. Let (X,gn) be a compact connected oriented hyperbolic 3-manifold and b1 (X)
be the first Betti number of 3. Then:

1. For (¥, gm) we have my(0) =4 — 2b1(X).

2. There ezists an open and dense set 0 C C*°(X;R) such that for any b € O, there
exists € > 0 such that for any 7 € (—e,e) \ {0} and g, := e *"Pgy, the manifold (X, g;) has
mr(0) = 4 — by ().

Part 1 of Theorem 1 was proved by Fried [Fri86a, Theorem 3] using the Selberg trace
formula. The novelty is part 2, which says that for generic conformal perturbations of
the hyperbolic metric the order of vanishing of (g equals 4 — b1(X). In particular, when
b1(X) > 0 (fulfilled in many cases, in particular for mapping tori over pseudo-Anosov maps
[FM12, Theorem 13.4]), mg(0) is not topologically invariant. Theorem 1 is the first result
on instability of the order of vanishing of (g at 0 for Riemannian metrics. It is in contrast
to the 2-dimensional case, where Dyatlov—Zworski [DZ17] showed that mg(0) = b1(X) — 2

for any compact connected oriented negatively curved surface (X, g), and is complementary
1
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to a recent breakthrough on the (acyclic) Fried conjecture by Dang—Guillarmou—Riviere—
Shen [DGRS20], see §1.3 below.

A result similar to Theorem 1 holds for contact perturbations of 5%, see Theorem 4 in §4.

1.1. Outline of the proof. We now outline the proof of Theorem 1. We use the microlocal
approach to Pollicott—Ruelle resonances and dynamical zeta functions, which we review here —
see §2 for details and §1.3 for a historical overview. Let M = S¥ be the sphere bundle of
(2,9) and X € C°(M;TM) be the generator of the geodesic flow. The geodesic flow is a
contact flow, i.e. there exists a 1-form aw € C°°(M;T*M) such that txa =1, txda = 0, and
aAdaAda is a nonvanishing volume form. When ¢ has negative curvature, the geodesic flow
is Anosov, i.e. the tangent spaces T,,M decompose into a direct sum of the flow, unstable, and
stable subspaces. Denote by E!, E¥ the dual unstable/stable subbundles of the cotangent
bundle T*M, that is, E}, E* are the annihilators of unstable/stable plus flow directions;
these define closed conic subsets of T*M.

Define the spaces of resonant k-forms at 0
Rest := {u € D'(M; Q%) | ixu=0, Lxu =0, WF(u) C E}}. (1.2)

Here QF is the (complexified) bundle of k-forms, Lx = dix + txd is the Lie derivative with
respect to X, and for any distribution u € D'(M;QF) we denote by WF(u) C T*M \ 0 the
wavefront set of u, see for instance [Hor03, Chapter 8]. The wavefront set condition makes
Reslg into a finite dimensional space, which is a consequence of the interpretation of Reslg
as the eigenspace at 0 of the operator Py := —iLx acting on certain anisotropic Sobolev
spaces tailored to the flow (see [F'S11, Theorem 1.7] and [DZ17, Lemma 2.2]). We similarly
define the spaces of generalized resonant k-forms at 0

Res(l?é = {u € D'(M; O | exu=0, L5u=0, WF(u) C E;}, Reslg’oo = U Reslg’e.
£>1
The semisimplicity condition for k-forms states that Reslg’oc> = Reslg , which means that the

operator Py, o has no nontrivial Jordan blocks at 0. We also have the dual spaces of generalized
coresonant k-forms at 0, replacing F;: with E? in the wavefront set condition:

Rests’ = {u, € D'(M; ) | ixu, = 0, Liu. =0, WF(u) C EZ}.

Since E}NE% = {0}, wavefront set calculus makes it possible to define uAu, as a distributional
differential form as long as WF(u) C E, WF(u.) C E}.

The order of vanishing of the Ruelle zeta function at 0 can be expressed as the alternating
sum of the dimensions of the spaces of generalized resonant k-forms, see (2.59):
4
mi(0) =Y (—1)" dim Resy™ .
k=0

Thus the problem reduces to understanding the spaces Resg’oO for k=0,1,2,3,4. The proof
of Theorem 1 computes their dimensions, listed in the table below, from which the formulas
for mg(0) follow immediately. See Theorem 2 in §3 for the hyperbolic case and Theorem 3
in §4, as well as §4.4, for the case of generic perturbations.
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Dimension of ‘ Hyperbolic ‘ Perturbation

Res) = Resg’Oc> 1 1

Resp = Resp™ | 2b1(2) b ()
Res? b1(2) + 2 b1(2) + 2
Res(z)’2 = Res.?)’Oo 201(X)+2 | bi(X)+2
Resg = Resg™ | 261 (D) b ()
Resj = Resg™ | 1 1

Note that the semisimplicity condition holds for £ = 0,1,3,4 in both the hyperbolic case
and for generic perturbations. However, semisimplicity fails for & = 2 in the hyperbolic case
(assuming b1(X) > 0), and it is restored for generic perturbations. Also, since by(M) =
b1(X) + 1 (see (2.28)), we may interpret the dimension of Res3 in the perturbed case as the
‘topological part’ coming from the bijection with H?(M) and the extra invariant form da.

The cases k = 0,4 of the above table are well-known: the semisimplicity condition holds
and Resg, Resé are spanned by 1, da A da, see Lemma 2.4. One can also see that the map
u — da A u gives an isomorphism from Res(l)’e to Resg’e. Thus it remains to understand the
spaces Reslg’oo for £k = 1,2 and this is where the situation gets more complicated.

The spaces Res.lo€ Nker d of resonant states that are closed forms play a distinguished role
in our argument. Similarly to [DZ17] we introduce linear maps 7 from ReskNkerd to
the de Rham cohomology groups H¥(M;C), see (2.61). We show that the map 7 is an
isomorphism, see Lemma 2.8. This gives the dimension of the space of closed forms in Res}:
since b1 (M) = b1 (%),

dim(Res} Nker d) = by(%).

In the hyperbolic case, the other b;(X)-dimensional space of non-closed forms in Res} is
obtained by rotating the closed forms by 7/2 in the dual unstable space, see §3.3. This
rotation commutes with the geodesic flow because the geodesic flow is conformal on the
stable/unstable spaces, see (3.7). This additional symmetry, which is only present in the
hyperbolic case, is related to the presence of a closed 2-form 1 € C°°(M;Q?) which is
invariant under the geodesic flow and is not a multiple of da, see §3.2.3. The space Resg is
spanned by da, v, and the differentials du where u are the non-closed forms in Res(l], see §3.4.
We also show in §3.4 that each du € d(Res}) lies in the range of Lx, producing b1(¥) Jordan
blocks for the operator Psg.

In the case of the perturbation g, = e 2™Pgy, we use first variation techniques and make
the following nondegeneracy assumption (see §4.4): for the spaces Res(l), Resé* and the contact
form « defined using the hyperbolic metric gz, and denoting by 7y : M = S¥ — X the
projection map, we assume that

(du, duy) — / (mb)a A du A du,  defines a nondegenerate pairing (1.3)
M :

on d(Resp) x d(Resg,).
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Under the assumption (1.3), we show that the non-closed 1-forms in Res} move away once 7
becomes nonzero (i.e. they turn into generalized resonant states for nonzero Pollicott—Ruelle
resonances), see §4.1. Thus for 0 < |7] < € all the resonant 1-forms are closed and we get
dim Res} = b1(¥). Further analysis shows that semisimplicity is restored for k& = 2 and
dim Res? = b1 () + 2.

It remains to show that the nondegeneracy assumption (1.3) holds for a generic choice of
the conformal factor b € C°°(X;R). The difficulty here is that b can only depend on the
point in 3 and not on elements of SY. which is where o A du A du, lives. We reduce (1.3)
to the following statement on nontriviality of pushforwards (see Proposition 4.10): for each
real-valued resonant 1-form for the hyperbolic metric u € Res(l) we have

du#0 = 7y (aANduNT*(du)) #0. (1.4)

Here J : (z,v) — (x,—v) is the antipodal map on M = S¥ and my, is the pushforward
of differential k-forms on M to (k — 2)-forms on ¥ obtained by integrating along the fibers,
see (2.19).

The statement (1.4) concerns resonant 1-forms for the hyperbolic metric g = g7, which are
relatively well-understood. However, it is complicated by the fact that 7y, (a A du A T*(du))
is merely a distribution, so we cannot hope to show it is nonzero by evaluating its value at
some point. Instead we pair it with functions in C°°(X) which have to be chosen carefully so
that we can compute the pairing. More precisely, we prove the following identity (Theorem 5
in §5):

QuF = —3Aglo|? where wy, (o AduAT*(du)) = F dvoly. (1.5)

Here dvol, is the volume form on (X, g), A4 is the Laplace-Beltrami operator, Q4 : D'(X) —
C°(X) is a naturally defined smoothing operator, and

0 :=my,(daANu) e CF(E;T*YE)

is proved to be a nonzero harmonic 1-form on (3, gg). The identity (1.5) implies the non-
triviality statement (1.4): if F' = 0 then |0‘|§ is constant, but hyperbolic 3-manifolds do not
admit harmonic 1-forms of nonzero constant length as shown in Appendix A. This finishes
the proof of Theorem 1.

If one is interested instead in conformal perturbations of the contact form «, then one
needs to show that a A du A du, is not identically 0 assuming that u € Res(l), Uy € Res(l)*
and du # 0, dus, # 0. The latter follows from the full support property for Pollicott—Ruelle
resonant states proved by Weich [Weil7]. See Theorem 4 in §4 for details.

We finally note that it would have been possible to introduce a flat unitary twist in our
discussion. Namely, we can consider a Hermitian vector bundle over ¥ endowed with a
unitary flat connection A. Resonant spaces can be defined using the operator d4 and the
holonomy of A provides a way to twist the Ruelle zeta function as well, we refer to [CP20)]
for details. We do not pursue this extension here in order to simplify the presentation.

1.2. A conjecture. Theorem 1 can be interpreted as follows: the hyperbolic metric has
non-closed resonant states due to the extra symmetries, and by destroying these symmetries
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we make all resonant states closed. We thus make the following conjecture about generic
contact Anosov flows:

Conjecture 1. Let M be a compact 2n + 1 dimensional manifold and o a contact 1-form
on M such that the corresponding flow is Anosov with orientable stable/unstable bundles.
Define the spaces Res§, 0 < k < 2n, by (1.2) and let 7, : ReskNkerd — H*(M;C) be
defined by (2.61). Then for a generic choice of a we have:

(1) the semisimplicity condition holds in all degrees k =0,...,2n;

(2) d(Resk) =0 for allk =0,...,2n;

(3) for k = 0,...,n the map m is onto, kermp = da A ResSiQ, and dimkerm, =
dim Reslg_Q.

Denoting by b (M) the k-th Betti number of M, we then have

[k/2]
dim Resf = Z bi_2;(M), 0<k<mn; dimRes2" "= dimRes (1.6)
=0

and the order of vanishing of the Ruelle zeta function at 0 is given by (see [D716, (2.5)])

2n n
mr(0) =Y (—1)F " dimResg = > (=1 (n+ 1 — k)b (M). (1.7)
k=0 k=0

The proof of part 2 of Theorem 1 (see Theorem 3 in §4, as well as §4.4) shows that
Conjecture 1 holds for n = 2 and geodesic flows of generic nearly hyperbolic metrics (while the
conjecture is stated for generic metrics that do not have to be nearly hyperbolic). Moreover,
[DZ17] shows that Conjecture 1 holds for n =1 and any contact Anosov flow.

Note that the conditions (1) and (2) of Conjecture 1 imply (3). Indeed, by the work of
Dang-Riviere [DR20, Theorem 2.1] the cohomology of the complex (Res>°, d), with Res">
defined in (2.38) below with Ag := 0, is isomorphic to the de Rham cohomology of M (with the
isomorphism mapping each closed form in Res® to its cohomology class). By (2.43) and the
semisimplicity condition (1), we have Res®> = Resk @(aAResh 1), By condition (2), we have
d(u+aAv) =daAv for all u € Resf, v € Resf !, If k < n, then daA : Resj ' — Resf ™ is
injective, so Res®> Nkerd = Resf and d(Res*~1°°) = da A Resy 2. This gives condition (3).

Note also that for n = 2 the set of contact forms satisfying Conjecture 1 is open in
C>®°(M;TM). Indeed, by the perturbation theory discussed in §4.1, more specifically (4.18),
if we take a sufficiently small perturbation of a contact form satisfying Conjecture 1, then
dim Resy™ < b1 (M) and dim Resg™ < by(M)+1. By Lemma 2.8 we see that semisimplicity
holds for k = 1 and d(Res}) = 0. Then Lemma 2.11 together with Lemma 2.4 give all the
conclusions of Conjecture 1. A similar argument might work in the case of higher n. Thus
the main task in proving the conjecture is to show that (1) and (2) hold on a dense set of
contact forms.

One can make a similar conjecture for geodesic flows of generic negatively curved compact
orientable n + 1-dimensional Riemannian manifolds (X, g), with M = S¥. In particular, if
n = 2m is even, then 3 is odd dimensional and thus has Euler characteristic 0. By the Gysin
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exact sequence we have by, (M) = bi(X) for 0 < k < n and b, (M) = b,(2)+bo(X). Moreover,
) =

by Poincaré duality we have bg(X) = b1 (X). Thus (1.7) becomes

mg(0) = bo(X +Z )F(2m + 1 — 2k)bi(2).
k=0

This is in contrast to the hyperbolic case, where by [Fri86a, Theorem 3]

m

= (=1)F(2m + 2 - 2k)by(%).
k=0

Note that we only expect Conjecture 1 to hold for generic flows/metrics rather than, say, all
non-hyperbolic metrics: for n = 2 the proof of Theorem 1 uses first variation which by the
Implicit Function Theorem suggests that there is a ‘singular submanifold’ of metrics passing
through the hyperbolic metric on which Conjecture 1 fails.

1.3. Previous work. The treatment of Pollicott—Ruelle resonances of an Anosov flow as
eigenvalues of the generator of the flow on anisotropic Banach and Hilbert spaces has been
developed by many authors, including Baladi [Bal05], Baladi-Tsujii [BT07], Blank—Keller—
Liverani [BKLO02], Butterley-Liverani [BLO7], Gouézel-Liverani [GLO06], and Liverani [Liv04,
Liv05] (some of the above papers considered the related setting of Anosov maps). In
this paper we use the microlocal approach to dynamical resonances, introduced by Faure—
Sjostrand [FS11] and developed further by Dyatlov—Zworski [DZ16]; see also Faure—Roy—
Sjostrand [FRS08], Dyatlov—Guillarmou [DG16], as well as Dang—Riviere [DR19] and Med-
dane [Med21] for the treatment of Morse-Smale and Axiom A flows.

The study of the relation of the vanishing order mg(0) to the topology of the underlying
manifold M has a long history, going back to the works of Fried [Fri86b, Fri86a] for geodesic
flows on hyperbolic manifolds. The paper [Fri86a] also related the leading coefficient of
(r at 0 to Reidemeister torsion, which is a topological invariant of M. It considered the
more general setting of a twisted zeta function corresponding to a unitary representation.
One advantage of such twists is that one can choose the representation so that the twisted de
Rham complex is acyclic, i.e. has no cohomology, and then one expects (g to be holomorphic
and nonvanishing at 0.

In [Fri&87, p. 66] Fried conjectured a formula relating the Reidemeister torsion with the
value (g(0) for geodesic flows on all compact locally homogeneous manifolds with acyclic
representations. Fried’s conjecture was proved by Shen [Shel8] for compact locally sym-
metric reductive manifolds, following earlier contributions by Bismut [Bis11] and Moscovici—
Stanton [MS91]. The abovementioned works [Fri86h, Fri&6a, Bis11, MS91, Shel8] used repre-
sentation theory and Selberg trace formulas, which do not extend beyond the class of locally
symmetric manifolds.

In recent years much progress has been made on understanding the relation between the
behavior of (r at 0, as well as the dimensions of Reslg’g, with topological invariants for general
(not locally symmetric) negatively curved Riemannian manifolds and Anosov flows:
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e Dyatlov—Zworski [DZ17] computed mg(0) for any contact Anosov flow in dimension 3
with orientable stable/unstable bundles, including geodesic flows on compact oriented
negatively curved surfaces;

e Dang-Riviere [DR20, Theorem 2.1} showed that the chain complex (Res®**°, d), where
Res®> = Res?*>°(0) is defined in (2.39) below, is homotopy equivalent to the usual de
Rham complex and hence their cohomologies agree. One can see that Conjecture 1
is compatible with this result, using (2.43) and the fact that (dan)* : QF % — QoFk
is a bundle isomorphism for 0 < k < n;

e Hadfield [Hadl8] showed a result similar to [DZ17] for geodesic flows on negatively
curved surfaces with boundary;

e Dang—Guillarmou—Riviere-Shen [DGRS20] computed dim Resg’oo for hyperbolic 3-
manifolds and proved Fried’s formula relating (g (0) to Reidemeister torsion for nearly
hyperbolic 3-manifolds in the acyclic case; see also Chaubet—Dang [CD20];

e Kiister—Weich [KW20] obtained several results on geodesic flows on compact hyper-
bolic manifolds and their perturbations, in particular showing that dim Res} = b1 (X)
when dim 3 # 3;

e Ceki¢—Paternain [CP20] studied volume preserving Anosov flows in dimension 3, giv-
ing the first example of a situation where mg(0) jumps under perturbations of the
flow and thus is not topologically invariant;

e Borns-Weil-Shen [BWS21] proved a result similar to [DZ17] for nonorientable sta-
ble/unstable bundles.

Our Theorem 1 gives a jump in mg(0) for geodesic flows on 3-manifolds and indicates that
the situation for the hyperbolic case is different from that in the case of generic metrics.
We stress that it is more difficult to obtain results for generic metric perturbations (such as
Theorem 1) than for generic perturbations of contact forms (such as Theorem 4 in §4) due
to the more restricted nature of metric perturbations.

One of our main technical results (Theorem 5) bears (limited) similarities to known pairing
formulas for Patterson—Sullivan distributions such as those established by Anantharaman—
Zelditch [AZ07], Hansen—Hilgert—Schroder [HHS12], Dyatlov—Faure-Guillarmou [DFG15],
and Guillarmou-Hilgert—Weich [GHW21]. We briefly discuss this in the Remark after The-
orem 5.

1.4. Structure of the paper.

e §2 discusses contact Anosov flows on 5-manifolds and sets up the scene for the rest
of the paper. In particular, it introduces Pollicott—Ruelle resonances, (co-)resonant
states, dynamical zeta functions, de Rham cohomology, and geodesic flows. It also
proves various general lemmas about the maps m; and semisimplicity.

e §3 gives a complete description of generalized resonant states at 0 for hyperbolic 3-
manifolds, proving part 1 of Theorem 1. The approach in this section is geometric,
as opposed to the algebraic route taken in [Fri86a] and [DGRS20].

e §4 discusses contact perturbations of geodesic flows on hyperbolic 3-manifolds. It
proves Theorem 3 which is a general perturbation statement using the nondegeneracy
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condition (1.3), as well as Theorem 4 on generic contact perturbations. It also gives
the proof of part 2 of Theorem 1, relying on the key identity (1.5).

e §5 contains the proof of the identity (1.5) (stated in Theorem 5), using a change of
variables, a regularization procedure, and the results of §3.

e Finally, Appendix A gives a proof of the fact that hyperbolic 3-manifolds have no
nonzero harmonic 1-forms of constant length.

2. CONTACT 5-DIMENSIONAL FLOWS

In this section we study general contact Anosov flows on 5-dimensional manifolds. Some
of the statements below apply to non-contact Anosov flows and to other dimensions, however
we use the setting of 5-dimensional contact flows for uniformity of presentation.

2.1. Contact Anosov flows. Assume that M is a compact connected 5-dimensional C'*°
manifold and o € C*°(M;T*M) is a contact 1-form on M, namely
dvoly := a ANda ANda # 0  everywhere.

We fix the orientation on M by requiring that dvol, be positively oriented. Let X €
C>°(M;TM) be the associated Reeb field, that is the unique vector field satisfying

ixa=1, txda=0. (2.1)
Note that this immediately implies (where L£x denotes the Lie derivative)
Lxo=dixa+ txdoa =0.
We assume that the flow generated by X,
o ::etX:M—>M,

is an Anosov flow, namely there exists a continuous flow/unstable/stable decomposition of
the tangent spaces to M,

T,M = Eo(p) ® Eulp) © Es(p), p€M, Fo(p) = RX(p) (2.2)
and there exist constants C, 60 > 0 and a smooth norm | e | on the fibers of 7'M such that for
allpe M, {€T,M, and ¢
t<0, {€Ey(p) or

t>0, €€ Bp). 23

|@@Ms&*wmif{

The flow/unstable/stable decomposition gives rise to the dual decomposition of the cotangent

spaces to M,
T:M = Ej(p) © Ey(p) ® EX(p),  Ej = (B ® Ea)",

E: = (Fy® E,*, E!:=(Ey®E,)".
Since Lxa = 0, we see from (2.3) that a|g,er, = 0 and thus

Ej = Ra.

(2.4)

Since « is a contact form and da vanishes on F, x E, and on Es x Fy (as follows from (2.3)
and the fact that Lxda = 0), we have dim E,, = dim Es = 2.
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2.1.1. Bundles of differential forms. We define the vector bundles over M
QF .= AM(T*M), QF = {we Q| ixw =0} ~AFE: @ E?). (2.5)
Note that smooth sections of Q¥ are differential k-forms on M.
We use the de Rham cohomology groups

~ {ue C®(M;QF) | du =0}
 {dv|veC®(M; Q1))

H*(M;C) : (2.6)

Unless otherwise stated, we will always take QF to be complexified. We define the Betti
numbers

bi(M) := dim H*(M; C).
Since M is connected and by Poincaré duality we have
bo(M) =1, bp(M) = bs—(M).
The bundles QF and Q’g are related as follows:
QF ~ Ok @ Qf!
with the canonical isomorphism and its inverse given by
ur (u—aANixu,txu), (v,w)—=v+aAw. (2.7)

Denote by daA the map u — da A u and by daA? the map u — da A da A u, then we
have linear isomorphisms (as both maps are injective and image and domain have the same

dimension)
dan: Qf — Q3. dan?: Q) — Q. (2.8)
We also have a nondegenerate bilinear pairing between sections of Qé’ and Qé_k given by
u € C®(M;Q8), ue € C°(M; 7% = (u,u.) == /Ma Au A s (2.9)

which in particular identifies the dual space to L?(M; QF) with L2(M; Q7). Tf A : O=(M; Q) —
D'(M ;QS) is a continuous operator, where D’ denotes the space of distributions, then its
transpose operator is the unique operator AT : C°°(M; Q%fk) — D' (M; Qéfk) satisfying

(Au,us) = (u, ATu,)  for all u e C®°(M;0E), u, € C°(M;Q47%). (2.10)

2.2. Geodesic flows. A large class of examples of contact Anosov flows is given by geodesic
flows on negatively curved manifolds, which is the setting of the main results of this paper.
More precisely, assume that (¥, g) is a compact connected oriented 3-dimensional Riemannian
manifold. Define M to be the sphere bundle of ¥ and let 7y be the canonical projection:

M :=8Y ={(z,v) eTE: [v|g =1}, 7x: M —=X.
Define the canonical, or tautological, 1-form a on M as follows: for all § € T(, )M,
<Oé(.%',U),f> = <’U,d7‘f‘2(3§,v)f>g. (211)

Then « is a contact form, the corresponding flow ¢; is the geodesic flow, and dvol,, is the
standard Liouville volume form up to a constant, see for instance [Pat99, §1.3.3]. If the
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metric g has negative sectional curvature, then the flow ¢; is Anosov, see for instance [K1i95,
Theorem 3.9.1].

We have the time reversal involution
J:M—=M, J(xv)=(x,—v) (2.12)
which is an orientation reversing diffeomorphism satisfying
J'a=—-a, JTX=-X, ¢poJ=TJ0op (2.13)
and the differential of J maps Ey, E,, Es into Ey, Es, E,,.

2.2.1. Horizontal and vertical spaces. Recall from (2.2) that an Anosov flow induces a split-
ting of the tangent bundle T'M into the flow, unstable, and stable subbundles. For geodesic
flows there is another splitting, into horizontal and vertical subbundles, which we briefly
review here. See [Pat99, §1.3.1] for more details.

Let (z,v) € M = SX. The vertical space at (x,v) is the tangent space to the fiber S, 3:
V(z,v) :=kerdns(z,v) C T(g.,)M.

To define a complementary horizontal subspace of T{,, ) M, we use the metric. The connection
map of the metric is the unique bundle homomorphism K : TM — T covering the map 7y,
such that for any curve on M written as

p(t) = (2(t),v(t), x(t) €2, v(t) € Sy
we have
K(p()it) = Dyo(t) € TyS (2.14)
where Dyv(t) denotes the Levi-Civita covariant derivative of the vector field v(t) along

the curve z(t) (see e.g. [dC92, Proposition 2.2] for a precise definition). Note that since
di(v(t),v(t))y = 0, the range of IC(x,v) is g-orthogonal to v.

We now define the horizontal space as
H(z,v) := ker K(z,v) C Ty M.

We have the splitting

TowyM = H(z,v) ® V(2,v), dimH(x,v) =3, dimV(r,v)=2
and the isomorphisms (here {v}* is the g-orthogonal complement of v in T},X)

drsy(x,v) : H(z,v) = T2, K(z,v): V(z,v) = {v}*+
which together give the following isomorphism T(, M — T, X @ {v}t:
£ (Em,&v), &n =dms(z,v)§, &v =K(z,v)¢ (2.15)

We use the map (2.15) to identify T(, , M with T3 & {v}+.

Under the identification (2.15), the contact form « and its differential satisfy (see [Pat99,
Proposition 1.24])
a(z,0)(§) = (€r,v)g,

dax(,v)(E,m) = {EvsmitYg — (€11, (2.16)
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Using the splitting (2.15), we define the Sasaki metric (e, ®)s on M as follows:

(& m)s = Emnm)g + Ev,nv)g- (2.17)

We finally remark that the generator X of the geodesic flow has the following form under
the isomorphism (2.15):
X(z,v)g =v, X(z,v)y =0. (2.18)

2.2.2. De Rham cohomology of the sphere bundle. We now describe the de Rham cohomology
of M = S% in terms of the cohomology of 3. To relate the two, we use the pullback operators

T O (5 0F) — C®°(M;QF), 0<k<3
and the pushforward operators defined by integrating along the fibers of S%
Ts, : O°(M; QF) — C®(%;Q82), 2<k <5, (2.19)

Here the orientation on each fiber S.Y is induced by the orientation on X: if v,v1,v2 is a
positively oriented orthonormal basis of 1,3, then the vertical vectors corresponding to vy, vo
form a positively oriented basis of T, (S;X). The pushforward operation can be characterized
as follows: if X7q,..., X._o are vector fields on X and )~(1, . ,Xk_g are vector fields on M
projecting to X1, ..., Xg_o under dry, then for any w € C®°(M;QF) and 2 € &

Tyw(x) (X1, ...y Xk—2) :/ g, bR
Sz2

Another characterization of my, is that for any w € C*°(M;QF) and any compact k — 2
dimensional oriented submanifold with boundary Y C X, we have

/ w:/ Ty W. (2.20)
75 (Y) Y

Here the orientation on 7y 1(Y) is induced by the orientation on Y. If Y = ¥ is the entire
base manifold, then the orientation on 74! (X) = S featured in (2.20) is opposite to the
usual orientation on M = S¥, induced by dvol, = a A da A da. In fact, using (2.16) we can
compute that

Ty,dvol, = —8mdvol, (2.21)

where dvol, is the volume form on ¥ induced by g and the choice of orientation, by applying
dvol, to the vectors X = (v,0), (v1,0), (v2,0), (0,v1), (0,v2) written using the horizon-
tal/vertical decomposition (2.15), where v, v1, vy is a positively oriented g-orthonormal basis
on X.

The pushforward map has the following properties (see for instance [BT82, Proposi-
tions 6.14.1 and 6.15] for the related case of vector bundles):

dﬂ'z* = Wz*d, (222)
Te (W1 A (Thw2)) = (Tg,w1) A ws. (2.23)

Note that the maps 7y, , 75, can also be defined on distributional forms. For 7y, this follows
from the fact that pushforward is always well-defined on distributions as long as the fibers are
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compact and for the pullback 7% this follows from the fact that 7y, is a submersion [Hor03,
Theorem 6.1.2].

Since the map J defined in (2.12) is an orientation reversing diffeomorphism of the fibers
of SY, we also have

Since pullbacks commute with the differential d, and by (2.22), the operations 73, 7y,
induce maps on de Rham cohomology, which we denote by the same letters:

7% H¥(3;C) — H¥(M;C), my, : H*(M;C) — H*%(3;C).

From the Gysin exact sequence (see for instance [BT82, Proposition 14.33], where the Euler
class is zero since Y is three-dimensional; alternatively one can use Kiinneth formulas and
the fact that every compact orientable 3-manifold is parallelizable) we have isomorphisms

& HY(X;C) — HY(M;C), my, : HY(M;C) — H*(%;C) (2.25)

and the exact sequences

0 = H2(;C) = H(M;C) = HO(S;C) — 0, (2.26)
0 = H3(x;C) =5 H3(M;C) =% H'(S:C) - 0. (2.27)

In particular, we get formulas for the Betti numbers of the sphere bundle M:

bo(M) = bs(M) =1, by (M) =by(M) =0by(S), by(M)=bg(M)=1bi(Z)+1. (2.28)

2.3. Pollicott—Ruelle resonances. We now review the theory of Pollicott—Ruelle reso-
nances in the present setting. Define the first order differential operators

Py = —iLlx : C(M;QF) — C™(M; QF),
Py = —ilx : C®(M;QF) — C>®(M;Qf).
Note that Py is the restriction of Py to C*°(M; QF) which is the space of all u € C>(M; QF)
which satisfy txu = 0.

For A € C with Im X large enough, the integral
Ri(\) :=i / eMe P gt - L2(M; QF) — L2(M; QF) (2.29)
0

converges and defines a bounded operator on L? which is holomorphic in A\. Here the evolution
group e~k is given by e "Fky = ¢* ,u. It is straightforward to check that Rj()\) is the
L?-resolvent of Pj:

Ri(\) = (P — )71 LA(M;QF) — L2(M;QF), ImA>1 (2.30)

where we treat P as an unbounded operator on L? with domain {u € L?(M;QF) | Pyu €
L?(M;QF)} and Pyu is defined in the sense of distributions.
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2.3.1. Meromorphic continuation. Since ¢ is an Anosov flow, the resolvent Ry (\) admits a
meromorphic continuation
Ri(\) : C®°(M;QF) — D/(M;Q%), XeC,
see for instance [DZ16, §3.2] and [FS11, Theorems 1.4, 1.5]. The proof of this continuation
shows that Rj(\) acts on certain anisotropic Sobolev spaces adapted to the stable/unstable
decompositions, see e.g. [DZ16, §3.1]; this makes it possible to compose the operator Ry (\)
with itself. Instead of introducing these spaces here, we use the spaces of distributions
DL(M;QF) = {u e D'(M;QF) | WF(u) Cc T} (2.31)
where I' C T*M \ 0 is a closed conic set and WF(u) denotes the wavefront set of a distribu-

tion u. These spaces come with a natural sequential topology, see [Hor03, Definition 8.2.2].

We have the wavefront set property of Ry(\) proved in [DZ16, (3.7)]:

WF/ (Rp(\) € # :=A(T*M)UY, U (E; x EY) (2.32)
where A(T*M) C T*M x T*M is the diagonal and Y1 = {(¢¢(z),dpi(x)"T& 2,6) | t >
0, £(X(z)) = 0}; for an operator B : C°°(M) — D'(M) with Schwartz kernel K € D'(M x
M), we denote WF/(B) = {(z,6,y,~1) | (5,6,5,1) € WF(Kp)} C T*(M x M). The
Schwartz kernel of Ry () is meromorphic in A with values in D), where #' := {(z,&,y, —7) |
(z,&,y,m) € #'}. By the wavefront set calculus [Hor03, Theorem 8.2.13] and since EX NE?Y =
0, Ri(A) defines a meromorphic family of continuous operators

Ri(X) : Dl (M; Q%) — Dl (M; QF) (2.33)
where we view E;; C T*M as a closed conic subset and define D};ﬁ by (2.31).
Note that differential operators (in particular, d,tx,Lx) define continuous maps on the
regularity classes D;.. We have
Ri(M) (P — Mu = (Py = N Re(\u=u  for all u € D (M; Q). (2.34)
For ImA > 1 and u € C*(M;QF) this follows from (2.30); the general case follows from
here by analytic continuation and since C* is dense in Dbf.
We also have the commutation relations
AR, (MNu = Rpy1(Ndu, txRp(\u= Ri_1(MNuxu for all u e Dy (M;QF).  (2.35)
As with (2.34) it suffices to consider the case Im A > 1 and u € C°°(M;QF), in which (2.35)
follows from (2.29) and the fact that d and ¢x commute with ¢*,.

The poles of the family of operators Ry(\) are called Pollicott—Ruelle resonances on k-
forms. At each pole Ao € C we have an expansion (see for instance [DZ16, (3.6)])

Jk (o) j—
Ry(\) = Ri' (A ) — Y i _(i‘]_) A;;I.’“(AO) (2.36)

j=1
where R (X X\o) : D (M;QF) — D (M;QF) is a family of operators holomorphic in a
neighborhood of Ao, Jx(Ao) > 1 is an integer, and IIj (o) : D). (M;QF) — Dl (M;QF) is a
finite rank operator commuting with Pj, and such that (P, — Ag)”*(A0)1I, () = 0.
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Taking the expansions of (2.35) at A9 we see that
de()\()) = Hk+1(/\0)d, Lxﬂk(ko) = kal()\O)LX- (2.37)

2.3.2. Resonant states. The range of the operator II;(\g) is equal to the space of generalised
resonant states (see for instance [DZ16, Proposition 3.3])

Res™™ (Ag) := |_J Res™(Xo) (2.38)
>1
where we define
Res™(\o) := {u € Dl (M; Q%) | (P — o) u = 0}. (2.39)
We define the algebraic multiplicity of \g as a resonance on k-forms by
my(Xo) == rank IT;(Ag) = dim Res™>(\o). (2.40)

The geometric multiplicity is the dimension of the space of resonant states
Res®(\g) := Res"(\g) = {u e Dl (M; Q) | (Py — \o)u = 0}.
We say a resonance g of Py is semisimple if the algebraic and geometric multiplicities

coincide, that is Res®™()\g) = Res®()\g). This is equivalent to saying that J(\g) = 1
in (2.36). Another equivalent definition of semisimplicity is

u € D (M;Q%), (Pe—X)?u=0 = (Pr—Ao)u=0. (2.41)
We note that the operators IIx(\g) are idempotent. In fact, applying the Laurent expan-
sion (2.36) at Ao to u € Res™‘(\;) and using the identity Rj(\)u = — Z?;é()\—)\l)*jfl(Pk —
A1)/u we see that
I (Ao) if A1 = Ao,

(2.42)
0 if A1 # Ao

I (Ao)IIg (A1) = {

2.3.3. Operators on the bundles ng. The above constructions apply equally as well to the
operators Py (except that the operator d does not preserve sections of QS, so the first
commutation relation in (2.37) does not hold, and the second one is trivial); we denote the
resulting objects by

Rio(N), Jio(Xo)s REG(AXo). Tio(Xo), Resh(Ao), mio(Xo)-

Under the isomorphism (2.7) the operator P, is conjugated to Py @ Py_1,0. Therefore (2.7)
gives an isomorphism

Res™(\g) ~ Rest (M) @ Resg ™ (o). (2.43)
Moreover, we get for all u € D}, (M;QF)
Hk()\o)u = Hho()\o)(u —aAN LXu) +aA sz—l,O()\O)LXU- (2.44)

Since Lxda = 0, the operations (2.8) give rise to linear isomorphisms
dan : Resy“ (M) = Resi®(No),  dan? : Resy” (Ao) — Resg (M) (2.45)
which in particular give the equalities

m10(Ao) =m30(Ao),  m0,0(A0) = ma0(No)- (2.46)
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2.3.4. Transposes and coresonant states. Since Lxa = 0 and fM Lxw = 0 for any 5-form w,
we have

(Pk,O)T = _P4—/€,07 k= 0,1, 27 37 47 (247)

where the transpose is defined using the pairing ((e,e)), see (2.10). Thus the transpose of
the resolvent (Ryo()))T is the meromorphic continuation of the resolvent corresponding to
the vector field —X; the latter generates an Anosov flow with the unstable and stable spaces
switching roles compared to the ones for X. Similarly to (2.33) we have

(Reo(A\)" : Do (M;Q57%) = Dl (M;257) (2.48)
where DjE* is the space of distributional sections with wavefront set contained in E%. Same
applies to the transposes of the operators R ()\ o) and I o(Ao) appearing in (2.36). The
range of (Il (Ao))? is the space of genemlzsed coresonant states Resé‘,k k. *?(Ao) where

Reso; : U Reso* (Ao),
>1
Res; (Ao) = {us € Dl (M;Q8) | (Pho + Xo) us = 0}
The space of coresonant states is defined as
Resf, (M) := Reso* (Mo) = {ux € D+ (M; QF) | (Pro + Xo)us = 0}.
Similarly to (2.45) we have the isomorphisms
da : Res(l)’f(/\o) — Resgf()\o), dan? : Resgf()\o) — Reséf()\o). (2.49)

In the special case when ¢, is a geodesic flow with the time reversal map J defined in (2.12),
the pullback operator J* gives an isomorphism between D/,. (M; Q) and Dl (M; QF). More-
over, J*Pyo = — P 0J". This gives rise to isomorphisms between the spacses of generalised
resonant and coresonant states

T* : Rese (M) — Resf (Mo). (2.50)

2.3.5. Coresonant states and pairing. Since E; and E} intersect only at the zero section,
we can define the product u A u, € D'(M;Q8) and thus the pairing ((u,u)) for any u €
D%Z(M; Qk), u, € D) g(M; Qéfk), see [Hor03, Theorem 8.2.10]. Note that this pairing is
nondegenerate since both D%, and D, contain C*°, and the transpose formula (2.10) still
holds since C"*° is dense in Dg;ﬁ and in SD’E*. In particular, we have a pairing

u € Resg’oo()\o) Uy € Resé* o) = (u,u) € C. (2.51)

This pairing is nondegenerate. Indeed, assume that u € Reslg’oo()\o) and (u, us)) = 0 for all
Uy € Resé* R ()\o). Since Resé* R ()\o) is the range of (k.0 (X)) T, we have

0 = ((u, (Mro(X0)) @) = (Mro(Ao)u, o) = (u, @) for all p € OF(M;Q57")

where the last equality follows from the fact that IIx0(Ag)? = ITx0(Ao) and u is in the range
of I o(Ao). It follows that u = 0. Similarly one can show that if ((u,u.)) = 0 for some
Uy € Resé* F:%(\o) and all u € Resg’oo()\o), then u, = 0.
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Consider the operators on finite dimensional spaces

Pro — Ao : Resg™™(Xo) — Resg™™ (o), (2.52)

— P40 — Ao : Resy. "™ (X)) = Resy. "™ (Ao) (2.53)

which are transposes of each other with respect to the pairing (2.51). The kernels of /-th pow-
ers of these operators are Resg’é()\o) and Res?);k’g()\g), thus (using the isomorphisms (2.49))
dim Resf! (Ao) = dim Resg, (X)) = dim Resf:’ (Ao). (2.54)

We now give a solvability result for the operators Py, . It follows from the Fredholm property
of these operators on anisotropic Sobolev spaces but we present instead a proof using the
Laurent expansion (2.36).

Lemma 2.1. Assume that w € Dl (M;QF). Then the equation
(Peo— Ao)u=w, u € Dy (M;Q) (2.55)
has a solution if and only if w satisfies the condition

(w,ue) =0 for all u. € Resg, * (o). (2.56)

Proof. First of all, if (2.55) has a solution u, then for each u. € Resg, *(\o) we have

<<w7 U*>> = <<(Pk,0 — Xo)u, u*» = —<(u, (P4*k,0 + )‘O)U*» =0,
that is the condition (2.56) is satisfied.

Now, assume that w satisfies the condition (2.56); we show that (2.55) has a solution. We
start with the special case when w € Res’g’oo()\o). We use the pairing (2.51) to identify the
dual space to Resg’oo()\o) with Reségk’oo()\o). By (2.56), w is annihilated by the kernel of
the operator (2.53). Therefore w is in the range of the operator (2.52), that is (2.55) has a

. k,00
solution u € Resy™ (Ag).

We now consider the case of general w satisfying (2.56). Taking the constant term in the
Laurent expansion of the identity (2.34) at A = A\, we obtain

(Pro — Ao)RkH,o(Ao; Ao)w = w — g o(Ao)w. (2.57)

We have ITj o(Ao)w € Resg’oo()\o) and it satisfies (2.56), thus (2.55) has a solution with this
right-hand side. Writing w = IIj o(Ao)w + (Id —Hk,o(/\o))’w, we may take as u the sum of
this solution and R (Ao; Ado)w. O

Lemma 2.1 implies the following criterion for semisimplicity:

Lemma 2.2. The semisimplicity condition (2.41) holds for the operator Py if and only if
the restriction of the pairing (2.51) to Resk(Xo) x Resg, "(\o) is nondegenerate.

Proof. The condition (2.41) is equivalent to saying that the intersection of Resk(\g) with
the range of the operator Py o — Ao : D}E;(M; Q) — D;Ji(M; QF) is trivial; that is, for each
w € Resf(No) \ {0} the equation (2.55) has no solution. By Lemma 2.1, this is equivalent to
saying that w does not satisfy the condition (2.56), i.e. there exists v € Resa, "(\g) such that
{(w,v) # 0. This is equivalent to the nondegeneracy condition of the present lemma. O
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2.3.6. Zeta functions. We now discuss dynamical zeta functions. We assume that the un-
stable/stable bundles E,, Fs are orientable (the non-orientable case is covered by [BWS21]);
this is true for the case of geodesic flows on orientable manifolds as follows from the fact
that the vertical bundle trivially intersects the weak unstable bundle RX & E,, (see [GLP13,
Lemma B.1)).

We say v : [0,Ty] — M is a closed trajectory of the flow ¢; of period T, > 0 if y(t) =
©¢(7(0)) and y(T}) = v(0). We identify closed trajectories obtained by shifting t. The
primitive period of a closed trajectory, denoted by Twﬁ, is the smallest positive £ > 0 such that
v(t) = v(0). We say ~ is a primitive closed trajectory if T, = Tﬁg.

Define the linearised Poincaré map Py := do_1,(7(0))|g,sr,. We have det P, = 1 since
the restriction of da A da to E, & Ej is a p-invariant nonvanishing 4-form. Since ¢; is an

Anosov flow, the map I — P, is invertible (in fact P, has no eigenvalues on the unit circle).

For 0 < k < 4, define the zeta function

_ TE tr(AFP,) e T
Cu(A) = exp < -3 Tdet(l - 7)) )" Im\>1 (2.58)

where the sum is over all the closed trajectories 7. The series in (2.58) converges for suffi-

ciently large Im A, see e.g. [DZ16, §2.2].

The zeta function (j continues holomorphically to A € C and for each Ag € C, the multi-
plicity of A as a zero of (j, is equal to my, (o), the algebraic multiplicity of Ag as a resonance
of the operator Py o defined similarly to (2.40) — see [DZ16, §4] for the proof.

By Ruelle’s identity (see e.g. [DZ16, (2.5)]) the Ruelle zeta function defined in (1.1) fac-
torizes as follows:

C(A)E2(N)¢a(N)
w=Ta0a0)
Using (2.46) we see that the order of vanishing of the function (g at \g is equal to
4
mgr (o) = Z(—l)km;@o()\g) = 2mp,0(Ao) — 2m1,0(Ao) + m2,0(Xo). (2.59)
k=0

2.4. Resonance at 0. This paper focuses on the resonance at 0, which is why we henceforth
put Ag := 0 unless stated otherwise. For instance we write

RE (N) == RE (X0), Tl :=10(0), Resg” := Resg(0).

Our main goal is to study the order of vanishing of the Ruelle zeta function at 0, which
by (2.59) is equal to

mR(O) = 2m0,0(0) — 2m1,0(0) + m270(0), mk70(0) = dim Reslg,oo .
Since Lx = dvx + txd, the space of resonant states at 0 for the operator P is

Rest = {u € Dips (M; OF) | ixu =0, txdu =0} (2.60)
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In particular, the exterior derivative defines an operator d : Reslg — Res’é“. (Unfortunately
this is no longer true for the spaces of generalised resonant states Resg’g with ¢ > 2, since d

does not necessarily map these to the kernel of ¢ x.)

2.4.1. 0-forms and 4-forms. We first analyze the resonance at 0 for the operators Fyo and
Py . The following regularity result is a special case of [DZ17, Lemma 2.3] (see also [FRS08,
Lemma 4] for a similar statement in the case of Anosov maps):

Lemma 2.3. Assume that
ue DEZ(M; C), XueC™(M;C), Re<XU7u>L2(M;dvola) <0.
Then u € C*(M;C).

Using Lemma 2.3 we show the following statement similar to [DZ17, Lemma 3.2] (we note
that it straightforwardly generalizes to other dimensions, which was known already to [Liv04,
Corollary 2.11)):

Lemma 2.4. The semisimplicity condition (2.41) holds at \g = 0 for the operators Py, Py
and

mo,0(0) = ma(0) = 1.
Moreover, Res) = Res), is spanned by the constant function 1 and Resy = Resg, is spanned
by the form da A da.

Proof. We only give the proof for O-forms (i.e. functions); the case of 4-forms follows from
here using the isomorphisms (2.45), (2.49).

Assume that v € Res). Then Xu = 0, so Lemma 2.3 implies that u € C*(M;C).
Thus the differential du € C*°(M; Q) is invariant under the flow ¢;; the stable/unstable
decomposition (2.4) gives that du € Ej at every point. Together with the equation Xu = 0,
this implies that du = 0 and thus (since M is connected) u is constant. We have shown that
Res8 is spanned by the function 1; applying the above argument to —X we see that Resg* is
spanned by 1 as well.

To show the semisimplicity condition (2.41), assume that u € Dy, (M; C) satisfies X?u = 0.

Then Xu € Res)), so Xu is constant. Together with the identity J3;(Xw) dvol, = 0 this gives
Xu =0 as needed. ([l

2.4.2. Closed forms. We now study resonant states which are closed, that is elements of the
space

Resf Nkerd = {u € Dl (M; Q) | txu =0, du=0}.
We use a special case of [DZ17, Lemma 2.1] which shows that de Rham cohomology in the
spaces D). (M;QF) is the same as the usual de Rham cohomology defined in (2.6):

Lemma 2.5. Assume that u € D, ;;(M;Qk) and du € C®(M;QF ). Then there erist
v e C®(M;QF), w e Dy (M; Q1) such that u = v + dw.
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Similarly to [DZ17, §3.3] we introduce the linear map
T : Resk Nkerd — H¥(M;C), mp(u) = [v] g (2.61)
where u=v+dw, ve C®(M;Q"), wGDjEZ(M;Qk_l). '

Here v, w exist by Lemma 2.5. To show that the map 7y, is well-defined, assume that ©v = v+
dw = v'+dw' where v,v' € C®°(M;QF) and w,w' € D) - (M QF1). Then d(w—w') =v'—v €
C>=(M;QF), thus by Lemma 2.5 we may write w —w’ = w1 +dws where wy € C™(M;QF 1),
wy € D ;(M;Qk_g). Then v/ — v = dw; where w; is smooth, so [v]gr = [V] k.

Similar arguments apply to the spaces Reslg* Nker d of closed coresonant k-forms; we denote
the corresponding maps by

T - Resg, Nkerd — HY(M;C).
From Lemma 2.4 we see that 7 is an isomorphism and hence by (2.45) that w4 = 0.

We now establish several properties of the spaces Res](‘j Nkerd and the maps 7g; some of
these are extensions of the results of [DZ17, §3.3].

Lemma 2.6. The kernel of 7 satisfies
d(Resf™) C ker 7y, € d(Res® 1),
Proof. The first containment is immediate. For the second one, assume that u € Reslg Nkerd

and mx(u) = 0. Then u = v + dw where v € C®(M;QF) satisfies [v]yx = 0 and w €
Dl (M; QF=1). We have v = d( for some ¢ € C°(M;QF1) and by (2.37)

u = Ilu = de(C + w) = de:—l(C + w).
Therefore u € d(Res* 1), O

We note that the case k = 0 of the following lemma holds trivially.

Lemma 2.7. Assume that for some k all the coresonant states in Resg,:k are exact forms.

Then the map m is onto.
Proof. Take arbitrary v € C°(M;QF) such that dv = 0. We will construct u € Resk Nkerd
such that m;(u) = [v]gx by putting
u:=v+dw forsome w € Dp.(M; Q1.

Such « is automatically closed, so we only need to choose w so that txu = 0, that is

txdw = Lxw = —ixv (2.62)
where the first equality is immediate because ¢txw = 0.

To solve (2.62), we use Lemma 2.1. It suffices to check that the condition (2.56) holds:
(txv,ue) =0 for all u, € Res). ™.

We compute

(exv,us) = /Ma A (Lxv) A uy = /Mv Ay = 0.
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Here in the second equality we used that txu, = 0 (thus ¢x of the 5-forms on both sides are
the same) and in the last equality we used that v is closed and, by the assumption of the
lemma, u, is exact. (Il

Lemma 2.8. The maps w1, T« are isomorphisms, in particular

dim(Res} Nker d) = dim(Res, Nker d) = by (M).
Proof. We only consider the case of 71, with 71, handled similarly. To show that 7y is one-
to-one, we use Lemma 2.6 and the fact that Res®> = Res) consists of constant functions by

Lemma 2.4. To show that 7 is onto, it suffices to use Lemma 2.7: by Lemma 2.4, the space
Resg, is spanned by da A da = d(a A da). O

Lemma 2.9. We have d(Res3) = d(Res3,) = 0.

Proof. We only consider the case of Resy, with Resj, handled similarly. Assume that u €
Resj. Then du € Resy, so by Lemma 2.4 we have du = cda A da for some constant c. It

c/ dvola—/ a/\du-/da/\u-O
M M M

where in the second equality we integrated by parts and in the third equality we used that
tx(da A u) =0, thus da Au = 0. O

remains to use that

We also have the following nondegeneracy result for the pairing between closed resonant
and coresonant forms when k = 1:

Lemma 2.10. The pairing induced by {(e,®) on (ResyNkerd) x (da A (Resy, Nkerd)) is
nondegenerate.
Proof. We show the following stronger statement: for each closed but not exact v € C*(M;Q'),

Re((my ! ([]m), do A ([0 m)) < 0. (2.63)
Here we used that the map m; is an isomorphism, as shown in Lemma 2.8. We have

() = v +df,  m([Olm) = v+ dg
where f € D, (M;C), g € Dj.(M;C) satisfy
Xf=Xg=—uxv. (2.64)

We compute

Re({(m  ([v]g), da A n M (0] ) = Re/Ma ANda A (v+df) A (v+dg)

Re/ aANda A (df NT+vAdg+df Adg)
M

Re/ da Ada A (fv —gv — gdf)
M

= Re/M (fexT —guxv — (X f)g)dvola

== R6<Xf’ f)LQ(M;dvola)'
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Here in the second line we used that Re(v Av) = 0. In the third line we integrated by parts
and used that dv = 0. In the fourth line we used that txda = 0 (the 5-forms under the
integral are equal as can be seen by taking tx of both sides). In the last line we used the
identity (2.64).

Thus, if (2.63) fails, we have Re(X f, f)12(am;dvol,) < 0 which by Lemma 2.3 implies that
f € C®(M;C) and thus u := m; *([v] 1) lies in Resy NC™=(M;Q'). Now the fact that u is
invariant under the flow ¢; and the stable/unstable decomposition (2.4) imply that u € Ej
at each point, and the fact that .xu = 0 then gives u = 0. This shows that v is exact, giving
a contradiction. O

We finally give the following result in the case when all forms in Res(l) are closed:

Lemma 2.11. Assume that Res} consists of closed forms, i.e. d(Res)) = 0. Then:
1. The semisimplicity condition (2.41) holds at \g = 0 for the operators Pi o and Ps.
2. d(ReS%) =0, mo is onto, and ker o is spanned by dc.
3. m10(0) = m30(0) = by (M), dim Res = ba(M) + 1, and 73 = 0.

Remark. Lemma 2.11 does not provide full information on the resonance at 0 since it does
not prove the semisimplicity condition for the operator P, and only assumes that resonant
forms Res} are closed (in fact we will see that d(Res}) # 0 and Py g is not semisimple in the
hyperbolic case when b1 (M) > 0, see §3).

Proof. 1. Since dim(ResjNkerd) = dim(Res}, Nkerd) by Lemma 2.8, and dimRes} =
dim Resg, by (2.54), we have d(Res},) = 0. By (2.49) we have Res3, = da A Res(,. Now
Lemma 2.10 shows that ((e,e)) defines a nondegenerate pairing on Res} x Resy,, which by
Lemma 2.2 shows that the semisimplicity condition (2.41) holds at A\g = 0 for the operator
Py o. By (2.45) semisimplicity holds for P3 o as well.

2. We first show that Res? consists of closed forms. Assume that ¢ € Res2, then d¢ € Resj.
By (2.45), d¢ = da A u for some u € Res}. Take arbitrary u, € Res,. Then

<<u,da/\u*>>:/Ma/\dCAu*:/Mda/\C/\u*zo (2.65)

Here in the second equality we integrate by parts and use that du, = 0; in the last equality
we use that ¢x applied to the 5-form under the integral is equal to 0. Now by Lemma 2.10
we have u = 0, which means that d¢ = 0 as needed.

Next, by Lemma 2.6 we have ker o C d(Res>™). By (2.43), Lemma 2.4, and the fact that
Res(l)’Oo = Res} we have Res!™ = Res} @Ca. Since d(Resp) = 0 and da € ker 7o, we see that
ker o is spanned by da.

Finally, to show that 79 is onto, it suffices to use Lemma 2.7: since all elements of Resp,
are closed, all elements of Res}, = da A Res}, are exact.

3. This follows immediately from the above statements and Lemma 2.8. To show that w3 = 0
we note that Resj = da A Res} consists of exact forms. g
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2.4.3. Summary. We now briefly summarize the contents of this section. Lemma 2.2 will
often be used to interpret the semisimplicity condition (2.41) via the more tractable nonde-
generacy of the pairing (2.9). Next, Lemma 2.4 provides us with a definitive understanding
of Resg’oo and Resé’oo7 which by the isomorphisms (2.49) reduces the problem to studying
Res(l)’oo and Resg’oo. As Theorem 1 shows, this is a complicated question, but Lemma 2.8
says that Res(l) Nkerd is ‘stably topological’, that is, it is always mapped isomorphically by 7y
to H'(M). Moreover, if one can show d(Res}) = 0, Lemma 2.11 shows that semisimplicity
for 1-forms is valid, which will be used in the perturbed picture in §4. Under the same
assumption, we also know that Res? is spanned by the ‘topological part’ m, YH?(M)) and
the form da. Thus, to compute (2.59) it suffices to study conditions under which forms in
Res(l) are closed, and semisimplicity conditions for P . This will be done in two steps: in §3
we will first develop a detailed understanding when ¢, is the geodesic flow of a hyperbolic
3-manifold, and later in §4 we will study the perturbed picture.

3. RESONANT STATES FOR HYPERBOLIC 3-MANIFOLDS

In this section we study in detail the Pollicott—Ruelle resonant states at 0 for geodesic
flows on hyperbolic 3-manifolds. The theorem below summarizes the main results. Here
Res’{j = Res.lg’1 are the spaces of resonant k-forms, Reslg’g are the spaces of generalized resonant
k-forms (see §2.4), and 7y, : Resk Nkerd — H¥(M;C) are the maps defined in (2.61). The
maps 7y, Ty, are defined in §2.2.2.

Theorem 2. Let M = S% where X is a hyperbolic 3-manifold and s be the geodesic flow
on Y. Then:

1. There exists a 2-form 1 € C°°(M;Q2) which is closed but not exact, s, () = —4,
and 1 is invariant under ;.

2. Res}y = C @ Cy is 2b1(X)-dimensional where C := Res{ Nker d is by (X)-dimensional and
Cy is another bi(X)-dimensional space characterized by the identity do A Cy = 1 AC.

3. The semisimplicity condition (2.41) holds at \g = 0 for the operators Pi o and Ps.

4. Rest = Cda @ Cy @ dCy, is bi(X) + 2-dimensional and consists of closed forms. The
map m has kernel Cda @ dCy and range C[)] .

d. Resg’o0 = Res(z)’2 is 2b1(X) + 2-dimensional. The range of the map Lx : Resg’2 — Res?
is equal to dCy.

6. Resg = da A Resé is 2b1(X)-dimensional and consists of closed forms. The map T3

has kernel da A C and its range is a codimension 1 subspace of H3(M;C) not containing
[rEdvolg]ys.

7. The map s, annihilates da AC and is an isomorphism from do A\ Cy onto the space of
harmonic 1-forms on X.

Theorem 2 together with Lemma 2.4 and (2.59) give part 1 of Theorem 1:
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Corollary 3.1. Under the assumptions of Theorem 2, the algebraic multiplicities of 0 as a
resonance of the operators Py are

m070(0) = M470(0) = 1, mLo(O) = m370(0) = 2()1(2), mg,o(O) = 2[)1(2) + 2 (31)
and the order of vanishing of the Ruelle zeta function (g at 0 is equal to

mR(O) = Qmojo(O) — 2m170(0) + m270(0) =4 - le(Z).

Previously (3.1) was proved in [DGRS20, Proposition 7.7] using different methods. Here
we give a more refined description: we construct the resonant forms, prove pairing formulas,
and study the existence of Jordan blocks. We emphasize that these properties are of crucial
importance for the perturbation arguments in §4 and were not known prior to this work.

This section is structured as follows: in §3.1 we review the geometric features of hyperbolic
3-manifolds used here. In §3.2 we construct the smooth invariant 2-form 1 and study its
properties, proving part 1 of Theorem 2. In §3.3 we study the resonant 1-forms and 3-forms,
proving parts 2, 3, and 6 of Theorem 2. In §3.4 we study the resonant 2-forms, proving
parts 4 and 5 of Theorem 2. Finally, in §3.5 we show that the pushforward operator my,,
maps elements of Resj to harmonic 1-forms on (X, g), proving part 7 of Theorem 2.

3.1. Hyperbolic 3-manifolds. We first review the geometry of hyperbolic 3-manifolds, fol-
lowing [DFG15, §3]. We define a hyperbolic 3-manifold to be a nonempty compact connected
oriented 3-dimensional Riemannian manifold 3 with constant sectional curvature —1. Each
such manifold can be written as a quotient

¥ =T\H?

where H? is the 3-dimensional hyperbolic space and I' C SO, (1, 3) is a discrete torsion-free
co-compact subgroup. We will use the hyperboloid model

H? = {z ¢ R | (z,2)13 =1, 29 > 0}

where R13 = R* is the Minkowski space, with points denoted by = = (0,1, z2,23) and the
Lorentzian inner product
(x,2)13 = 23 — 2% — 23 — 23

The group SO (1, 3) is the group of linear transformations on RY3 (that is, 4 x4 real matrices)
which preserve the inner product (e, e); 3, have determinant 1, and preserve the sign of xg
on elements of H3. The Riemannian metric on H? is the restriction of — (e, e)13; the group
SO, (1,3) acts on H? by isometries, so the metric descends to the quotient . Note that we
may write H3 ~ SO, (1,3)/SO(3) as a homogeneous space for the SO, (1, 3)-action, since
SO(3) is the stabilizer of the point (1,0,0,0) € H3.

3.1.1. Geodesic flow. We now study the geodesic flow on 3, using the notation of §2.2. The
sphere bundle SY is the quotient

Sy =T\ SH? (3.2)
where the sphere bundle SH? ¢ R x RY? has the form

SHS3 = {(z,v) € R13 x RL3 | (z,2)13 =1, (v,0)13=—1, (z,0)13=0}.
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Note that we may write SH® ~ SO, (1,3)/SO(2) as a homogeneous space for the SO, (1, 3)-
action, since SO(2) is the stabilizer of the point (1,0,0,0,0,1,0,0) € SH3. The contact form
o, defined in (2.11), and the generator X of the geodesic flow are

a=—(v,dz)13, X=v-0p+x-0, (3.3)

where ‘-’ denotes the (positive definite) Euclidean inner product on R'3. The geodesic flow
is then given by
ot(z,v) = (zcosht + vsinh ¢,z sinh ¢ + v cosh ).

As a corollary, the distance function on H? with respect to the hyperbolic metric is given by
coshdys (x,y) = (z,y)13 forall z,y € H. (3.4)
The tangent space T(w,v)(SH?’) consists of vectors (£;,&,) € R @ R such that
(T,8x)13 = (v,&)13 = (T, &)1,3 + (v, 82013 = 0.

The connection map (2.14) is given by
K(z,v) (& &) = &0 — (2, 60)13 7 = &u + (0, 62)1,32.

Here and throughout we note that the addition of points z and vectors &, (or &) has to be
understood in R'®. The horizontal and vertical spaces H(z,v), V(z,v) C T(,,)(SH?) are

then
H(z,v) = {(§ &) | <xa£x>l,3 =0, & = _<Ua§x>1,3 x},

Vi, 0) ={(0,&) | (x,80)1.3 = (v,&)13 = 0}

and the horizontal-vertical splitting map (2.15) takes for £ = (&, &) € T(y ) (SH?) C RV &
R the form
§H = §z7 €V = §v + <'U,§$>173 Z.
The Sasaki metric (2.17) is for &, € T(, ) (SH?) given by
(€&ms == )13 — (o mo)1,3 + (v, &a)1,3(0, M) 3.

The unstable/stable subspaces E,, Es from (2.2) on SH? are given by

Eyu(z,v) = {(w,w) | w e R (w,z)13 = (w,v)1 3 = 0}, (3.5)
Ey(z,v) = {(w, —w) | w € RY, (w,z)13 = (w,v)13 = 0}. '

In terms of the horizontal-vertical splitting (2.15) they can be characterized as follows:

E,={& =&}, Es={& =—-&u}. (3.6)

A distinguished feature of hyperbolic manifolds is that the restriction of the differential of the
geodesic flow to the unstable/stable spaces is conformal with respect to the Sasaki metric:

eléls, €€ Ey(z,v);
e tels, €€ Eg(z,v).

The objects discussed above are invariant under the action of SO4(1,3) and thus descend
naturally to the quotients X, SX.

|dipi(z,v)¢]s = { (3.7)
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3.1.2. The frame bundle and canonical vector fields. A convenient tool for computations on
M = SY. is the frame bundle FX, consisting of quadruples (x,v1,ve,v3) where z € ¥ and
v1, 2, v3 € T3 form a positively oriented orthonormal basis. We have

FY =T\FH?} FH?~S0,(1,3)

where the frame bundle FH? is identified with the group SO, (1,3) by the following map
(where eg = (1,0,0,0),e; = (0,1,0,0),...)

v e SO+(17 3) = (7€0a Ye1, e, 763)' (38)
Under this identification, the action of SO (1,3) on FH? corresponds to the action of this
group on itself by left multiplications. Therefore, SO, (1, 3)-invariant vector fields on FH?
correspond to left-invariant vector fields on the group SO (1, 3), that is to elements of its Lie

algebra so(1, 3). We define the basis of left-invariant vector fields on SO (1, 3) corresponding
to the following matrices in so(1, 3):

0100 00 0 0 0 0 -1 0
1000 00 0 0 0 0 -1 0

X = R= Ut =
000 0] 00 0 1]’ 1 11 0 o]
00 00 00 -1 0 0 0 0 0
0 00 —1 0 0 —-10 0 0 0 -1
0 00 —1 0 0 1 0 0O 0 0 1

Ul = U= = U, =

2 o o0 o ! -1 -1 0 o) 7? 0O 0 0 0
-1 10 0 0 0 0 0 -1 -1 0 0

Under the identification (3.8), and considering FH? as a submanifold of (R!3)* we can write
using coordinates (,v1,vs,v3) € (R?)* and writing ¢’ for the Euclidean inner product

X:U1~8x—|—:6-av1, R:’Ug'avs—’vg'aw,
Uf = w9 -0y — -0y & (V2 -y — 01 - Bup)y, UL = —03 -0y — 2+ Dy £ (v3- Oy, — V1 - D).
Since the vector fields above are invariant under the action of SO4 (1, 3), they descend to the
frame bundle of the quotient, F.

The commutation relations between these fields are (as can be seen by computing the
commutators of the corresponding matrices, or by using the explicit formulas above)
(X, U] = +UF, U, U] =2X, (U, UF] = 2R,
+ 77t + + + + (3.9)
[XvR]:[UwUQ]:Oa [R7U1]:_U2> [RaUz]:Ul-
The map
7w (x,v1,09,03) € FX — (z,v1) € S8
is a submersion, with one-dimensional fibers whose tangent spaces are spanned by the field R.
Thus, if a vector field on F¥ commutes with R then this vector field descends to the sphere
bundle S3. In particular, the vector field X descends to the generator of the geodesic flow
(which we also denote by X).
The vector fields Uii do not commute with R and thus do not descend to S¥. However,
the vector space Span(UlJr , U2Jr ) is R-invariant and descends to the stable space Es on SY.
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Similarly, the space span(U; ,U, ) descends to E,. Because of this we think of Ul+ , U2+ as
stable vector fields and U; ,U, as unstable vector fields.

3.1.3. Canonical differential forms. We next introduce the frame of canonical differential
1-forms on FX

a, R*, U, U
which is defined as a dual frame for the vector fields X, R, U;", Uy, in the sense compatible
with the definition of the dual stable/unstable bundles (2.4), as follows:

(0, X) = (R*, R) = (U, Uf") = (U3, U) = 1 (3.10)
and all the other pairings between the 1-forms and the vector fields in question are equal
to 0. In particular, (U, UF) = 0.

Using the following identity valid for any 1-form £ and any two vector fields Y, Z
dp(y, z) =Y B(2) - ZB(Y) = B([Y, Z]), (3.11)

the commutation relations (3.9), and the duality relations (3.10), we compute the differentials
of the canonical forms:

do=2U* AU+ US*ANUS™), dR* =2(Uy, " AU+ U AU,
dUF™ = 2a AUT™* — R*ANUT™,  dUY™* = 2o AU + R*ANUT™.
It follows that

(3.12)

LxU™ =+U, LpUT" =-Uy*, LpUy* =Ur™ (3.13)

If w is a differential form on F¥, then w descends to S¥ (i.e. it is a pullback by 7r of a
form on SY) if and only if tpw = 0, Lrw = 0. In particular the form o on F¥ descends to
the contact form on S, which we also denote by «.

3.1.4. Conformal infinity. Following [DFG15, §3.4] we consider the maps
dy: SH? — (0,00), By :SH? — S? (3.14)
where S? is the unit sphere in R3, defined by the identities
z+tv=>0y(x,v)(1,Bi(x,v)) forall (z,v)e SH. (3.15)

Note that B (z,v) is the limit as ¢ — Foo of the projection to H? of the geodesic o (x,v)
in the compactification of the Poincaré ball model of H?. Let

(S xS?)_ i={(v_,vy) €S xS* | v_ # vy}
In fact, the maps By yield the following diffeomorphism of SH? (see [DFG15, (3.24))):
Z:SH? 3 (y,v) = (v_, vy, t) € (S x $?)_ xR
o, (y,v) ) (3.16)

1
ith vy = Be(y,v), t=-1 (7
wi vy +(y,v) 5 og S (y,0)

The geometric interpretation of = is as follows: vi are the limits on the conformal bound-
ary S? of the geodesic ¢4(y,v) as s — Fo00 and t is chosen so that ¢_;(y, v) is the closest point
to ep on that geodesic (as can be seen from (5.30) below and noting that Xt =1 by (3.22)).
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We have the identity [DFG15, (3.23)]
O_(2,0)P (z,0)|B_(z,v) — By(z,0)|* = 4 (3.17)
where | o | denotes the Euclidean distance on R? O S2.
We also introduce the Poisson kernel
P(z,v) = (&, (Lv))hs) ' >0, zeH’, veS?cR. (3.18)
The following relations hold [DFG15, (3.21)]:
¢ (x,v) = P(x, Bi(z,v)). (3.19)

If we fix x € H3, then the maps v — B4 (x,v) are diffeomorphisms from the fiber S,H?
onto S?. The inverse maps are given by v+ v4(x,v) where [DFG15, (3.20)]

vi(z,v) = Fo £ P(z,v)(1,v) € S;H3,  Bi(z,vi(z,v)) =v. (3.20)

The diffeomorphisms v +— B (x, v) are conformal with respect to the induced metric on S, H?
and the canonical metric | ® |s2: by [DFG15, (3.22)]) we have

1l

|0y B+ (x,v)n|s2 = By (r.0) for all 7 € T,(S,H?). (3.21)
Next, we have by (3.3) and (3.5)
X0y =+dy, dP_|p, = dd,|p, = 0. (3.22)

The maps B+ are submersions with connected fibers, the tangent spaces to which are de-
scribed in terms of the stable/unstable decomposition (2.2) as follows: for each v € S?

T(BY'(v) = (B0 ® Bl g1,y T(BZ'(v) = (Eo © o)l g1y, (3.23)

This can be checked using (3.5), see [DFG15, (3.25)]. The action of the differential dB
on E,, and of dB_ on Ej, can be described as follows: for any (z,v) € SH? and w € R!3
such that (z,w)13 = (v,w)1,3 =0,

2(w" — woBy(x,v))
Oy (z,0)

dBy(z,v)(w, tw) = where w = (wp, w'). (3.24)

We next briefly discuss the action of the group SO, (1,3) on the conformal infinity S2,
referring to [DFG15, §3.5] for details. For any v € SO4(1, 3), define
N,:S* = (0,00), L,:S*—=§?
by the identity (where on the left is the linear action of v on (1,v) € R3)
v (1,v) = Ny(v)(1,Ly(v)) forall veS?

The maps L., define an action of SO (1,3) on S?. This action is transitive and the stabilizer
of e; € S% is the group of matrices A € SO (1,3) such that A(1,1,0,0)" = 7(1,1,0,0)" for
some 7 > 0, which may be shown to be isomorphic to the group of similarities of the plane
Sim(2), giving S? ~ SO, (1, 3)/Sim(2) the structure of a homogeneous space.
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This action is by orientation preserving conformal transformations, more precisely

|dL,(v)C|s2 = z‘vi'(SZ) for all (v,¢) € TS (3.25)

Moreover, the maps B+ have the equivariance property

Bi(v- (z,v)) = Ly(Bi(w,v)) forall (x,v)€ SH”. (3.26)

We finally use the maps B4 to describe a special class of differential forms on S defined
as follows (c.f. [KW20, DFG15]):

Definition 3.2. We call a k-form u € D'(S%;QF) stable if it is a section of AFEX C Qb
where EY C T*(SX) is the annihilator of Ey @ Es (see (2.4)). We call u unstable if it is a
section of A\*E} where E} is the annihilator of Eo ® E,.

We call a form u totally (un)stable if both u and du are (un)stable.

The lemma below (see also [KW20, §§2.3-2.4]) shows that totally (un)stable k-forms
on SY, ¥ = I'\H?, correspond to I'-invariant k-forms on S?. Denote by 7r : SH? — SY the
covering map.

Lemma 3.3. Let u € D'(SX;QF) be totally stable. Then the lift mu has the form

miu= Biw where w € D' (S% 0k, Liw=w forall yeT. (3.27)

Conversely, each form Biw, where w satisfies (3.27), is the lift of a totally stable k-form
on S¥. A similar statement holds for totally unstable forms, with By replaced by B_.

Proof. We only consider the case of totally stable forms, with totally unstable forms handled
similarly. First of all, note that lifts of totally stable k-forms on S are exactly the I'-
invariant totally stable k-forms on SH?®. Next, by (3.23), a k-form ¢ € D'(SH?; QF) is totally
stable if and only if ty( = 0, Ly { = 0 for any vector field Y tangent to the fibers of the
map By, which is equivalent to saying that ( = Biw for some w € D’ (S%,Q%). Finally,
by (3.26), I'-invariance of ¢ is equivalent to I'-invariance of w. O

Lemma 3.3 implies that

every totally stable u € D'(S¥;QF) lies in Dl (S%; Qr),

(3.28)

every totally unstable u € D'(S¥;QF) lies in DE;(SEQ Qb).
Indeed, assume that u is totally stable. Write mju = Bjw for some w € D’ (S?;,QF), then
we have WF(mju) = 7 WF(u) (as 7r is a local diffeomorphism). From the behavior of
wavefront sets under pullbacks [H6r03, Theorem 8.2.4], we know that WF(m{u) is contained
in the conormal bundle of the fibers of the submersion By. From (3.23) and (2.4) we then
have WF(u) C E¥. A similar argument works for the totally unstable case.
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3.2. Additional invariant 2-form. The space of smooth flow invariant 2-forms on S¥ is
known to be 2-dimensional, see Lemma 3.7 below, [[Kan93, Claim 3.3] or [Ham95], thus there
exists a smooth invariant 2-form which is not a multiple of da. In this section we introduce
such a 2-form 1) and study its properties; these are crucial for the study of Pollicott—Ruelle
resonances at zero in §§3.3-3.4 below.

3.2.1. A rotation on B, ® Es. Let x € 3. For any two v, w € T3, we may define their cross
product v X w € T,%, which is uniquely determined by the following properties: v X w is
g-orthogonal to v and w; the length of v x w is the area of the parallelogram spanned by v, w
in T,3; and v, w,v X w is a positively oriented basis of 1,3 whenever v x w # 0.

For future use we record here an identity true for any v, wi, wo, w3, ws € T, % such that
|v|g =1 and wy, we, w3, wy are g-orthogonal to v:

(v X wi, wa)g(v X w3, wa)g = (W1, w3)g{wWa,Ws)g — (W2, W3)g{W1, Wa)g- (3.29)
Using the horizontal /vertical decomposition (2.15), we define the bundle homomorphism
Z:TSY—=T8%, I(x,v)(éu,&v) = (v x &v,v x Ex). (3.30)

From (2.18) and (3.6) we see that Z preserves the flow/stable/unstable decomposition (2.2).
Moreover, it annihilates Fy = RX and it is a rotation by 7/2 on E,, and on E; (with respect

to the Sasaki metric), so in particular it satisfies Z2 = —Id on ker o = E, @ E,; however, the
direction of the rotation is opposite on F, and on FE; if we identify them by (3.5).
The map Z is invariant under the geodesic flow ¢; = e!X:
LxT =0. (3.31)

This follows from the conformal property of the geodesic flow (3.7) and the description of
the action of 7 on Ey, E,, Es in the previous paragraph.

For any point (z,v1,ve,v3) in the frame bundle F3, we have (using the horizontal /vertical
decomposition)
Z(z,v1)(ve, £v2) = £(v3, £v3), Z(z,v1)(v3, £v3) = F(v2, £v2). (3.32)
It follows that (see §3.1.2 for the definition of the vector fields U on FX))
Z(z,v1)(drrULE (2,01, v2,v3)) = Fdn U (x,v1,v2,v3),

+ + (333)
Z(z, n)(drrUs (x,v1,v2,v3)) = £drnrUi (z,v1,v2,v3).

3.2.2. Relation to conformal infinity. The homomorphism 7 lifts to TSH?. If By : SH? — S?
are the maps defined in (3.14) and ‘x’ denotes the cross product on R3, then for all (x,v) €
SH? and ¢ € T(I7U)5H3 we have

dBx(z,v)(Z(z,v)§) = Bx(z,v) x dBx(z,v)(£). (3.34)
To see this, we use (3.23), and the fact that Z preserves the flow/stable/unstable decompo-
sition, to reduce to the case & = (w, +w), where z, v, w is an orthonormal set in R:3. By the

equivariance (3.26) of B4 under SO4 (1, 3), the fact that the action L, of any v € SO, (1, 3)
on S? is by orientation preserving conformal maps, and the equivariance of Z under SO (1, 3)
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we can reduce to the case © = ey, v = e, w = ey, where e, e1, €2, eg is the canonical basis of
RY3. In the latter case (3.34) is verified directly using (3.24) and (3.32).

Let % be the Hodge star operator on 1-forms on the round sphere S?. It may be expressed
as follows: for any w € C*°(S%; Q') and (v, () € T'S? we have

((kw) (), () = =(w(v), v x ().

From (3.34) we get the following relation of Z to : for any 1-form w on S? we have

(Biw)oZ = —B}(*w) (3.35)
where for any 1-form 8 on SH? the 1-form 3o Z on SH? is defined by
(BoI)(x,v),§) = (B(z,v),I(z,v)E). (3.36)

3.2.3. The new invariant 2-form. We next define the 2-form ¢ € C*°(S%; Q?) as follows: for
all (z,v) € S¥ and &,n € T(,,,)SY,

w(%v)(&"?) = do‘(xvv)(z(xvv)§>n)' (3'37)

To see that 1) is indeed an antisymmetric form, we may use (2.16) and (3.30) to write it in
terms of the horizontal/vertical decomposition of &, 7:

P(@,v)(§m) = (v x &,y — (v X Ev,mv)g. (3.38)

Using (3.12), (3.33) we may also compute the lift of ¢ to the frame bundle F¥, which we
still denote by :
Y =2U" AU *+ U ANUS™). (3.39)
We have
ix¥ =0, Lxy¥=0. (3.40)
The first of these statements is checked directly using (2.18). The second statement can be
verified using (3.13) and (3.39), or using that LxZ = 0 and Lxda = 0.
We now establish several properties of the form 1. We will use the following corollaries
of (2.16), (3.38):
da\HxH = 0, dOz|V><V = O, ¢’H><V =0 (3.41)
where the horizontal /vertical spaces H, V are defined in §2.2.1.

Lemma 3.4. We have

dy =0, (3.42)
Y A =da A da, (3.43)
d(a A ) = 0. (3.44)

Proof. By (3.40) we have txdi) = 0. Therefore, di)(x,v)(£1,82,83) = 0for £1,82,83 € T(30) ST
such that one of these vectors lies in Ey. Next, Lxdiy = 0, that is di is invariant under the
geodesic flow. Using this invariance for time ¢t — +oo together with (3.7) and the fact that 3
is an odd number, we see that di(z,v)(&1,&2,&3) = 0 also when each of the vectors £, &2, &3
lies in either E,(x,v) or Eg(x,v). It follows that (3.42) holds.
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To check (3.43), we first note that tx of both sides is zero. Thus it suffices to check that

T;Z) A ¢(an U)(éla 527 53» 64) =da A dOK(CL‘, U)(gb g?a 537 54) (345)
for some choice of basis {1, &2, 3,84 € T(;,,)S% of the kernel of a. We take

51 = (’11)1,0), 52 = (w270)a 63 = (O,U)g), 64 = (0,’(04)
under the horizontal /vertical decomposition (2.15), where each w; € T3 is orthogonal to v.
By (2.16), (3.38)
1/} A 7/’(1’7 U)(gh 527537 §4) = _2<U X wy, w2>g<v X ws, U)4>g,

do A da(z,v)(€1,62,€3,€4) = 2((we, w3) g (w1, wa) g — (w1, w3)g(we, ws)y)

and (3.45) follows from (3.29).

Finally, to show (3.44) it suffices to prove that da A1) = 0. To show this we may argue
similarly to the proof of (3.43) above, using (3.41).

Alternatively, (3.42)—(3.44) can be checked by lifting to the frame bundle F¥ and us-
ing (3.12) and (3.39). O

The next lemma studies the relation of 1 to the de Rham cohomology of M = S%; in
particular, its first item and (3.40) give the first item of Theorem 2. Recall the pullback and
pushforward operators m3,, 7y, defined in §2.2.2 and denote by dvol, the volume 3-form on
> induced by g and the choice of orientation.

Lemma 3.5. We have:
1. 7y, () = —4m. In particular, []g2 # 0.
2. 7y, (@ Np) =0.
3. Ty, (a Ada) = 0.
4. aNdo N do = 29 A\ w5 (dvoly).
5. la NYlgs = 2[m5(dvoly)]gs.

Proof. 1. Let (x,v) € S¥ and wvg,v3 be a positively oriented g-orthonormal basis of the
tangent space to the fiber T,(S;X). We consider vg, v3 as vertical vectors in T{, ,)SY, as well
as vectors in T,3. The triple v, vo, v3 is a positively oriented g-orthonormal basis of T3, so
by (3.38)

Y(x,v)(v2,v3) = —(v X v2,v3)y = —1.

Thus the restriction of ¢ to each fiber S, ¥ is —1 times the standard volume form on S, % ~ S?,
which implies that 7y, (1)) = —4n. It now follows from (2.22) that [¢)] 2 # 0.

2. Fix x € ¥, v1 € T,;2. Let v € 5,3 and v9,v3 be a positively oriented g-orthonormal
basis of the tangent space T, (S;X) as in part 1 of this proof. Let £&; = (v1,0) be the horizontal
lift of v1 to T(,,,)(S%). By (2.16) and (3.38) we compute

a ANp(x,v) (€1, v2,v3) = —(v1, ) g (v X V2, V3)g = —(V1, V).
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Since v +— (v1,v)g is an odd function on 5,3, we have
(o ) @)w) = [ (o1, dvolv) =0,
523

3. If &1, 82,83 € T(3,)(SX) and &2, &3 are vertical, then by (2.16) we have
a N dOé(I, ’U)(f]_,fz, 63) =0

which implies that 7y, (o A da) = 0.

4. Let x € ¥ and w,vo,v3 be a positively oriented g-orthonormal basis of T,X. Let
¢ = X(z,v),&,&3 be the horizontal lifts of v, ve,vs to T20)S%; we treat ve, v as vertical
vectors in T, ,yS¥. Using (2.16) and (3.38), we compute

aAda A do(z,v)(§, &2, 83, v2,v3) = —2 = 2¢ Ay (dvolg) (z,v) (€, &2, &3, v2, v3).
5. Using the exact sequence (2.27) and the fact that 7y, (o A ¢) = 0, we see that

[a AY]ys = clms(dvoly)] s
for some constant ¢. To determine ¢, note that o A ¢ A ¢ has the same integral over S¥ as

cp Ay (dvolg). Since a AP A = a Ada Ada = 2 A 75(dvoly), we get ¢ = 2. O

We also have the following identity relating the operators daA and A on 1-forms in Qf:

Lemma 3.6. For any 1-form 5 on SX such that tx 8 = 0, we have
daNB =N (BoT) (3.46)
where the 1-form o Z is defined by (3.36).

Proof. Tt is easy to see that tx of both sides of (3.46) is equal to 0. It is thus enough to
check that

da \ B(x,0) (€1, 62,€3) = ¥ A (B o I)(x,0)(61, 2, 83) (3.47)

for any three vectors &1, &2, &3, each of which is either horizontal or vertical under the decom-
position (2.15). Moreover, we may assume that the horizontal components of these vectors
lie in the orthogonal complement {v}* to v in T, X. It suffices to consider the following two
cases:

Case 1: B(z,v)(€) = (€m,wy)y for some wy € {v}t. By (3.30) and (3.41), both sides
of (3.47) are equal to 0 unless two of &1, &2, &3 are horizontal and one is vertical; we write

51 = (wlyo)a 52 = (U]Q,O), 53 = (0711)3)
where w; € {v}+. We compute using (2.16), (3.30), and (3.38)

do A B(xa U)(glv {27 53) = <w17 w3>g<w27 w4>g - <w27 w3>g<w17 w4>97
1/} A (B OI)(x7U)(€17€27§3) = <U X w17w2>g<v X w37w4>9
and (3.47) follows from (3.29).
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Case 2: B(z,v)(&) = (£v,ws), for some wy € {v}+. By (3.30) and (3.41), both sides
of (3.47) are equal to 0 unless two of &1, &2, &3 are vertical and one is horizontal; we write
& =(0,w1), &= (0,wa), &= (ws0)
where w; € {v}+. We compute using (2.16), (3.30), and (3.38)
da A B(z,v) (€1, €2, §3) = (wa, w3)g(wi, wa)g — (w1, w3)g{w2, wa)g,
YA (BoI)(x,v)(&1,E2,&) = —(v X wi,wa)g(v X w3, Wa)g
and (3.47) again follows from (3.29).

Alternatively, we may lift both sides of (3.46) to the frame bundle FX: it suffices to
consider the cases when ( is replaced by one of the forms Uii*, in which case (3.46) is
checked by a direct calculation using (3.12), (3.33), and (3.39). O

3.2.4. Characterization of all smooth flow-invariant 2-forms. We finally give

Lemma 3.7. Assume that u € C°°(SX; Q%) satisfies Lxu = 0. Then u is a linear combina-
tion of dav and 1.

Proof. Without loss of generality we assume that u is real valued. Since da A ¥ = 0 and
YA =daANda by (3.43)—(3.44), we may subtract from u a linear combination of da and
to make

/a/\daAu:/a/\z/J/\u:O. (3.48)
M M
We will show that under the condition (3.48) we have u = 0.

Since a ANdaAu, a Ay Au, a AuAu are smooth 5-forms on S invariant under the geodesic
flow, by Lemma 2.4 (we identify Q° and ° via the volume form dvol,) we have

aNdahNu=aAPpANu=0, aAuAu=cdvol, (3.49)

for some constant ¢ € R.

Next, txu € C®(S%; Q) and Lxixu = 0, so by (2.3) (similarly to the last step of the
proof of Lemma 2.10) we get txu = 0. Also by (2.3) we obtain u|g,x g, = 0 and u|g,xg, = 0.
Therefore, it is enough to show that u|g, « g, = 0.

Since da is nondegenerate on E; x E,, (as follows for instance from (2.16) and (3.6)), there
exists unique smooth bundle homomorphism A : E; — E, such that

u(z,v)(&,n) =da(A(z,v)€,n) forall (z,v)e€ SE, £ € Es(x,v), n€ Ey(z,v).
It remains to show that A = 0.
Take any (z,v) € SX, assume that v, w;,wy is a positively oriented orthonormal basis
of T,%, and define using the horizontal /vertical decomposition and (3.6)
g] = (wja_w]) GES(JE,'U), nj = ('UJ],U]]) EEu(x’U)a J=12

Applying (3.49) to the vectors X (x,v),&1,&2,m1,1n2 and using (2.16), (3.32), and (3.37), we
get
trA(z,v) =0, A(z,v) = A(z,v), detA(z,v)=c (3.50)
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where the transpose is with respect to the restriction of the Sasaki metric to Es(x,v).

If ¢ = 0, then (3.50) implies that A = 0. Assume that ¢ # 0, then by (3.50) we have ¢ < 0
and A has eigenvalues ++v/—c. The eigenspace of A(z,v) corresponding to the eigenvalue
v/—c is a one-dimensional subspace of Es(z,v) depending continuously on (z,v). This is
impossible since by restricting to a single fiber S;3 C SY and projecting E; onto the vertical
space V we would obtain a continuous one-dimensional subbundle of the tangent space to
the 2-sphere. O

3.3. Resonant 1-forms and 3-forms. In this section we apply the properties of the 2-form
1 defined in (3.37) to determine the precise structure of resonant 1-forms on M = S¥. Let
us introduce some notation for (co-)resonant 1-forms (see (3.36) for the definition of u o Z)

Cry) = Res(l)(*) Nkerd, Cyuy:={uoZ|ueCCu}

where the subscript (x) means we either suppress the star or we include it, respectively
corresponding to resonances or co-resonances; we apply this convention to other notions
appearing in this section. We remark that the use of subscript ¢ in Cy is motivated by the
property da ACy = 1 AC demonstrated in (3.58) below; in fact we initially used this relation
as the definition of Cy, before coming to the interpretation via the map 7.

Since Z is invariant under the geodesic flow by (3.31) and annihilates X, we have
1
By Lemma 2.8 and (2.28) we have

We next show that all resonant 1-forms lie in the direct sum C®Cy. This is done in Lemma 3.9
below but first we need

Lemma 3.8. Assume thatu € Resy. Then u is totally unstable in the sense of Definition 3.2.
Simalarly, if u € Res(l)*, then u is totally stable.

Remark. Lemma 3.8 was previously proved by Kiister—Weich [KW20, §2.6].

Proof. We consider the case u € Res(l), with the case u € Res(l)* handled in the same way.

We first show that u is unstable in the sense of Definition 3.2. For that it is enough to
prove that u(Y) = 0 for any ¥ € C*(M; Ey & E,). Since txu = 0, we may assume that
Y € C*°(M; E,). By the integral formula (2.29) for the Pollicott-Ruelle resolvent Ry (),
we have for Im A > 1 and any w € C®(M;Q}), pe M

(Rup(\w, Y)(p) = i /0 T M w(pi(p), dp—i(0)Y (p)) dt.

Since Y is a section of the unstable bundle, by (3.7) we have [(w(v—t(p)),dp—(p)Y (p))] <
Ce~! for some constant C and all t > 0, p € M. Therefore, the integral above converges
uniformly in p for ImA > —1, which implies that A — (Rjo(A)w,Y’) is holomorphic in
Im A\ > —1. If IT; ¢ is the projector appearing in the Laurent expansion of Rj () at A =0,



THE RUELLE ZETA FUNCTION AT ZERO FOR NEARLY HYPERBOLIC 3-MANIFOLDS 35

defined in (2.36), then tyIl; o = 0. Since Res(l) is contained in the range of II; g, we get
u(Y) = 0 as needed.

We now analyze du. First of all, txdu = 0 since u € Res}. Next, we have du|g, xg, = 0.
This can be seen by following the argument above, or using that w(Y) = 0 for any ¥ €
C>*(M; Ey® E,), the identity (3.11), and the fact that the class C*°(M; Ey & E,,) is closed
under Lie brackets (as follows from (3.23)).

It remains to show that du|g,x g, = 0. Let ¢ be the restriction of du to E,, X Ey, considered
as a section in DY, (M; Ef ® E}). (Here E}, E; are dual to E,, E, as in (2.4).) We endow
E} ® E; with the inner product which is the tensor product of the dual Sasaski metrics on
EY and E}. The operator

P:=—ilx:C®(M;E;®E}) - C*(M;E;®E})
is formally self-adjoint as follows from (3.7), and P{ = 0. Then by [DZ17, Lemma 2.3] the
section ( is in C'*°.

Let us now consider ( = du|g,xp, as a smooth 2-form on M (i.e. tx( =0, (|, xE, =
Cle.xE, = 0, and (|g,xE, = du|lg,xE,), then Lx{ = 0 and by Lemma 3.7 we see that
¢ = ada + by for some constants a,b. We claim that a = b = 0. This follows from (3.43)—
(3.44) and the identities

/oz/\doz/\C:/ aAdaAdu=0, (3.52)
M M

/a/\q/)/\C:/ a AN Adu=0. (3.53)
M M

Here the first identity in each line follows from the fact that da|g,xg, = ¥|g,xE, = 0
(which can be verified using (2.16), (3.6), and (3.37)). More precisely, it suffices to observe
that a A da A (du — ¢) and a A dip A (du — () are pointwise zero, as du — ( is supported on
Es x Es by definition. The second identity in each line follows by integration by parts and
the fact that da Ada Au =da AN Au =0 (as tx of both of these 5-forms is equal to 0).
Now, a = b = 0 implies that { = 0, that is du|g,xg, = 0 as needed. ]

We are now ready to prove

Lemma 3.9. We have C(*) N Clb(*) = {0} and ReS(l)(*) = C(*) &) C¢(*)'

Proof. We consider the case of Res(l), with Res.(l)>k handled similarly. We need to prove that
each u € Res(l) can be expressed uniquely as a sum of elements in C and Cy. By Lemma 3.8,
w is totally unstable. By Lemma 3.3, the lift of u to SH? has the form

mhu = B*w for some I-invariant w € D'(S?%;QY),

where I' C SO, (1, 3) is the discrete subgroup such that ¥ = T'\H3. Take the Hodge decom-
position of w:

w = wi +*we where wi,wy € D'(SQ; Ql), dwy = dwy = 0. (3.54)

Since T' acts on S? by orientation preserving conformal transformations L. (see (3.25)),
its action commutes with the Hodge star x. Since H'(S?) = 0, the Hodge decomposition
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above is unique, which implies that w,we are I'-invariant. Applying Lemma 3.3 again and
using (3.28), we see that

* * / 1
BXwj = mpu; for some  ui,uz € D, (M;Qy).

Since dw; = 0, we have du; = 0, which together with the fact that :xu; = 0 shows that
ui,u2 € C. Finally, by (3.35) and (3.54) we may express u uniquely as

u=uy —ug0Z, uy €C, wugol €y,

finishing the proof. O

The next lemma establishes semisimplicity on resonant 1-forms:

Lemma 3.10. The semisimplicity condition (2.41) holds at Ao = 0 for the operators P
and P370.

Proof. By (2.45) it suffices to establish semisimplicity for P;o. By Lemma 2.2 it suffices
to show that the pairing ((e, ) on Res} x Resj, is nondegenerate. Recall from (2.49) that
Res3, = da A Res},. By Lemma 2.10 the pairing ((e, ®)) is nondegenerate on C x (da A C,).
Therefore, it suffices to show the following diagonal structure of the pairing with respect to
the decompositions Res(l)(*) = C(4) @ Cy«) established in Lemma 3.9:

(u,daAuy) =0 forall uweC, uy, € Cyy (3.55)
(u,daAuy)) =0 forall u e Cy, u, €Cy (3.56)
(u,da AN uy))y = —(uoZ,da A (usoZ)) forall weC, u, €Cs. (3.57)

We first show (3.55). By Lemma 2.5 and (2.25) we may write
uw=myw+df forsome weC™(E;QY), dw=0, f€ Dy (M;C),
e 0 T = mywy + df.. for some w, € C®(%;QY), dw, =0, f. € D (M;C).

We now compute

(fuy da Aug)) = (u, A (us 0 T)) = /Ma A A (T + df) A (miw. + df.)

:/ a/\i/)/\ﬂg(w/\w*):—/Wz*(a/mb)/\w/\w*zo.
M b

Here the first equality used Lemma 3.6. The third equality used integration by parts
and (3.44). The fourth equality used (2.20) and (2.23), with the negative sign explained
in the paragraph following (2.20). The fifth equality used part 2 of Lemma 3.5. A similar
argument proves (3.56).

Finally, to show (3.57) we compute
A ) = (0,6 A (0 ) = (0 Aty e 0 T) = —((dev A (w0 T), e 0 T)

using Lemma 3.6 and the fact that uoZ oZ = —u. (]
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We finally discuss the properties of the maps 3, : Resg( 5 H3(M;C); as explained
at the top of §3.3, recall that the subscript (%) denotes the corresponding resonance or co-
resonance space, so we can include both in the discussion. Recall that all forms in Resg(*) are

closed by Lemma 2.9 and Resg(*) =da A Res(l](*) by (2.45), (2.49). Moreover, by Lemma 3.6
and the definition of Cy )
dac A Cw(*) =Y A C(*). (3.58)
We have 73(,)(da A C(y)) = 0. Assume now that u € Cy, then uoZ € C, and by Lemma 2.5
and (2.25) we may write
uwol =myw+df forsome we C®(%;0Y), dw=0, f€ Dy (M;C).

Wedging with ¢, taking 7y, and using (2.22)—(2.23), part 1 of Lemma 3.5, and Lemma 3.6
we get
T3 (da A u) = w5, (Y A Toyw) = —4mw,

which (together with a similar argument for coresonant states) immediately shows that

T T3(x) © A A Cyp(s) — H'(X;C) is an isomorphism. (3.59)
This implies that

ker m3(,) = dav A Cy) (3.60)

and so by (2.27) the range of m3(,) is a codimension 1 subspace of H*(M;C) which does not
contain [m3dvolg]ys.

Summarizing the contents of §3.3, we note that the second item of Theorem 2 follows from
(3.58), Lemma 3.9, Lemma 2.8, and (2.28), the third item by Lemma 3.10, and the sixth
item by the discussion in the preceding paragraph.

3.4. Resonant 2-forms. We next study resonant 2-forms. We start with

Lemma 3.11. We have d(Resg(*)) = 0 and ker my(,y = Cda®dCy,) has dimension by (X)+1.

Proof. We consider the case of resonant 2-forms, with the case of coresonant 2-forms handled
similarly. We first show that d(Res3) = 0, arguing similarly to the proof of Lemma 2.11.
Take ¢ € Res?, then by the definition (2.61) of 73 we have d¢ € kerms. Thus by (3.60),
d¢ = da A u for some u € C. Take arbitrary u, € Cy, then precisely as in (2.65)

<<u,da/\u*)>:/MaAdC/\u*:/Mda/\C/\u*ZO.

Now Lemma 2.10 implies that v = 0 and thus d{ = 0 as needed.

Next, if u € Cy, then using the same argument of integration by parts as in (3.52) yields
/ aNdaAdu=0.
M

Therefore, du cannot be a nonzero multiple of do, which means that Cda N dCy, = {0}. We
have da € ker mo and by Lemma 2.6 we have dCy C ker my as well.

It remains to show that kermy C Cda @ dCy. By Lemma 2.6, kerms is contained in
d(Res"™). By (2.43) and Lemmas 2.4, 3.9, and 3.10, we have Res"® = Ca & C ® Cy. Then
d(Res!">) = Cda @ dC,, which finishes the proof. O
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We next establish the following auxiliary result:
Lemma 3.12. Assume that n € C*®(%;Q?), dnp =0, and w € D, ;(M; QY satisfy
Lx (msm + dw) = 0. (3.61)

Then n s exact.

Remark. The proof of Lemma 3.12 uses the 2-form v which is only available in the case
of constant curvature. By contrast, Lemma 3.12 is false if Res[l)* consists of closed forms
and b1(X) > 0; in fact the equation (3.61) then has a solution w € D ;(M;Qtl)) for any
closed 7. Indeed, in this case (txmsn, da Au) = [y, 750 Ada Au, = 0 for any u, € Resj,
by integration by parts, and the existence of w now follows from Lemma 2.1.

Proof. Put ¢ := m&n + dw, then tx( = 0. Take arbitrary closed 1, € C*(2;Q!) and put

Uy 1= 7T1_*1([7T§77*]H1) € C,. Then u, = m§n, + dw, for some w, € D;ES* (M;C). We compute

0:/ w/\C/\u*:/ YA TR A TS

M M

——/(Wz*¢)nAn*—47r/nM7*-
> >

Here the first equality follows since the 5-form under the integral lies in the kernel of ¢x.
The second equality follows by integration by parts, using that 1, n, 7. are closed. The third
equality follows from (2.20) and (2.23). The fourth equality follows from part 1 of Lemma 3.5.

We see that n A n, integrates to 0 on X for any closed smooth 1-form 7,. This implies
that n is exact; indeed, we can reduce to the case when n is harmonic and take 7, to be the
Hodge star of n (we note that this final argument is just a form of Poincaré duality). O

We now describe the space of resonant 2-forms (recalling the convention (x) at the top
of §3.3):

Lemma 3.13. The range of Ty, is equal to C[th| 2, and Resg(*) = Cda @& Cy & dCy(y). In
particular, dim Resg(*) =01(¥) + 2.

Proof. We consider the case of resonant 2-forms, with the case of coresonant 2-forms handled
similarly. First of all, ¢ € Res2, thus [¢)]y2 = m2(¢) is in the range of m. Next, by (2.26)
and part 1 of Lemma 3.5 we have

H?*(M:;C) = m5H*(Z;C) & C[Y)] 2.

To show that the range of o is equal to C[¢)] g2, it remains to prove that the intersection of
this range with 75 H?(32;C) is trivial. Take u € Res? and assume that mo(u) = [7&n] 2 for
some n € C°(X%;0?), dp = 0. Then u = 7&n+ dw for some w € Dl (M; Q). Since txu =0,
Lemma 3.12 implies that 7 is exact, that is m2(u) = 0 as needed. ’

Finally, the statement that Res% = Cda @® Cy ® dCy follows from the first statement of
this lemma together with Lemma 3.11. O
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The next lemma describes the space of generalized resonant states Resg’2 (see (2.39)
and §2.3.3). It implies in particular that the operator P does not satisfy the semisim-
plicity condition (2.41), assuming that by (%) > 0:

Lemma 3.14. 1. The pairing (e, e)) on Res3 x Res3, has the following form in the decom-
position of Lemma 3.13:

<<da7da>> = <<¢, ¢>> = VOla(M) > 07 <<d047¢>> = «1/%6104» = 07 (3'62)
(¢, &) =0 forall ¢€dCy, (€ Res,, (3.63)
(¢, &) =0 forall ¢€Rest, € dCys. (3.64)

2. The range of the map
2,2
Lx : Resy,) — Resg(*) (3.65)

is equal to dCy,). We have dim Resg’(i) =201(2) +2.

Proof. 1. The identities (3.62) follow immediately from (3.43) and (3.44). We next show (3.63),
with (3.64) proved similarly. Let ( = du where u € Cy,. We compute

<<CaC*>>=/Mda/\u/\C*:0

Here in the first equality we integrate by parts and use that d{, = 0 by Lemma 3.11. The
second equality follows from the fact that tx(da Au A () = 0.

2. We consider generalized resonant states, with generalized coresonant states handled sim-

ilarly. First, assume that ¢ € Res(z)’2, then Lx( € Res%. Moreover, since the transpose of Lx
is equal to —Lx (see §2.3.4) we compute

(£xC,¢) = —(¢, LxC) =0 forall ¢, € Resg, . (3.66)

Using this for (. = da and (. = v together with (3.62)-(3.63), we see that Lx( € dCy. That
is, the range of the map (3.65) is contained in dCy.

Now, take arbitrary n € dCy. By (3.63), we have (1, () = 0 for all ¢, € Res?,. Then by
Lemma 2.1 there exists ( € D, (M;Q3) such that Lx( = 7. Since n € Res2, we see that

¢ e Resg’2. This shows that the range of the map (3.65) contains dCy.

Finally, the equality dim Resy? = 2b1(X) + 2 follows from Lemma 3.13 and the fact that
the kernel of the map (3.65) is given by Resg. O

We finally show that there are no higher degree Jordan blocks, completing the analysis of
the generalized resonant states of P> at 0:

Lemma 3.15. We have Resg’((f)) = Resg’(i).

Proof. We consider the case of generalized resonant states, with generalized coresonant states
handled similarly. It suffices to prove that Resg’3 C Res§’2. Take n € Resg’3 and put
(:=LxnE€ Resﬁ’Z. Exactly as in (3.66), the pairing of ¢ with any element of Res2, is equal
to 0. In particular

(¢, dus)) =0 for all wu, € Res},.
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By part 2 of Lemma 3.14, we have Lx( = du for some u € Cy. Put

w:=d(¢{ +aAu) € D (M; Q7).
Then txw = txd( — du = 0. Since w is exact we have Lxw = 0 and moreover that
w € ker 3 C Resy. By (3.60), we then have w € da A C.

We now compute

0= ((,dus)) = — /Ma AdC A ue = ((uyda A ug)) — (W, ug).

Here in the second equality we integrated by parts and used that the 5-form da A ( A u, lies
in the kernel of tx and thus equals 0. Using the identities (3.55)—(3.57) and Lemma 2.10,
recalling that v € Cy, w € daw A C, and using that u, can be chosen as an arbitrary element
of Cx or Cys, we see that u = 0 and w = 0. Just using that u = 0 implies E?Xn =Lx( =0,
that is n € Resg’2 as needed. O

3.5. Relation to harmonic forms. In this section we show that pushforwards of elements
of Res§ = da A (C®Cy) to the base ¥ are harmonic 1-forms. Recall that a 1-form h is called
harmonic if dh = 0 and d * h = 0, where * is the Hodge star on (X, g). We will denote the
set of such forms as H!(X). We start with the following identity:

Lemma 3.16. Assume that u € Dy, (M;Q}) is unstable in the sense of Definition 3.2 and
B e C®(2;QY). Then
YAuNTH(*xB) = —aANdaAuATsf, (3.67)
da NuNms(*8) = a AN Au ATy, (3.68)

Proof. We first show (3.67). Take arbitrary (z,v) € M = S¥ and assume that v, w;,ws is a
positively oriented g-orthonormal basis of T, Y. It suffices to prove that

(@Z’ /\u/\TI’g(*ﬁ))(ﬁ,U)(X, £1a€27£3a£4) = —(Oé /\da/\U/\WEm(w,U)()Q £1a£2a£3a£4) (369)

where we write in terms of the horizontal/vertical decomposition (2.15)

X =(0,0), & =(w,0), &= (w20), &=(0,w1), & = (0,wa).
Using (3.38), (3.41), the fact that dmy(z,v)(&m,&v) = &, the condition txu = 0, and the
identities
(*B) () (v, w1) = B(x)(we),  (+B)(x)(v, w2) = —=B(x)(w1)
we see that the left-hand side of (3.69) is equal to
—u(z,v)(§1)B(@)(w1) — u(z,v)(§2) B(x)(w2).
Using (2.16), we next see that the right-hand side of (3.69) is equal to

w(z,v)(§3)B(x)(w1) + u(z, v)(§4) B(x) (wa2).
It remains to note that by (3.6) the vectors & + &3 and & + &4 lie in Ey(x,v) and thus
u(z,v) (&1 + &3) = ulz,v)(§2 + 1) = 0 since u is unstable.
The identity (3.68) is verified by a similar calculation, or simply by applying (3.67) to uoZ
and using Lemma 3.6 and the fact that uoZ oZ = —u. O
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We can now prove item 7 of Theorem 2:

Lemma 3.17. The map 7y, annihilates doa A Cyy and it is an isomorphism from do A Cyyy)
onto the space H'(X). In particular, by Lemma 5.9 we have Ty, : da A Res(l)(*) — HY(D).

Proof. We consider the case of resonant 3-forms, with coresonant 3-forms handled similarly
(using a version of Lemma 3.16 for stable 1-forms). We first show that for any v € C, the
push-forwards to ¥ of da A v and ¥ A u are coclosed, that is

d* s, (daNu) =0, dxmy,(YAu)=0. (3.70)
To show the first equality in (3.70), it suffices to prove that

/ s (da Au) Axdf =0 forall fe C®(%;C).
b
Using (2.20) and (2.23), we compute this integral as

—/ da/\u/\w%(*df):—/ a/\dJ/\u/\d(TrEf):/ T fda NP Au=0
M M M

Here in the first equality we used (3.68), where u is unstable by Lemma 3.8. In the second
equality we integrated by parts and used that diy = 0 and du = 0. In the third equality we
used that ¢x of the 5-form under the integral is equal to 0. The second equality in (3.70) is
proved similarly, using (3.67) instead of (3.68).

Next, by (2.22), since all forms in da A C are exact, their pushforwards to ¥ are exact
as well. Since these pushforwards are also coclosed, we get 7y, (da A C) = 0. Similarly, all
forms in da A Cy, = ¢ A C are closed, so their pushforwards are closed as well; since these
pushforwards are also coclosed, we get my, (da A Cy) C HY(Z).

Finally, by (3.59) we see that my,, is an isomorphism from da A Cy onto H1(X). O

We finally remark that for any 1-form u € D'(M; Q) we have
T (@ Au) =0. (3.71)

Indeed, by (2.16) we see that «, and thus a A u, vanish when restricted to the tangent spaces
of the fibers S,¥. From (3.71) and (2.22) we get for any u € D'(M; Q)

Ty (da A u) = 75, (a A du). (3.72)

4. CONTACT PERTURBATIONS OF GEODESIC FLOWS ON HYPERBOLIC 3-MANIFOLDS

Let M = SY. where (3, g) is a hyperbolic 3-manifold and «y be the contact form on M
corresponding to the geodesic flow on X, see §§2.2,3.1. In this section we study Pollicott—
Ruelle resonances at A = 0 for perturbations of «g. Ultimately, we will study perturbations
of the metric, but via perturbations of the contact form. In particular, we give the proof of
Theorem 1 in §4.4 below, relying on Theorem 5 (in §5) and Proposition A.1 proved later.

Let
ar € C¥(M;T*M), 1€ (—¢,¢)
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be a family of 1-forms depending smoothly on 7. We may shrink € > 0 so that each «a; is a
contact form on M and the corresponding Reeb vector field

X, € C®°(M;TM)

is Anosov; the latter follows from stability of the Anosov condition under perturbations (see
for instance [FH19, Corollary 5.1.12] or [IKH95, Corollary 6.4.7] for the related case of Anosov
diffeomorphisms).

We will use first variation methods, introducing the 1-form
B = Orar|;—g € C°°(M;QY).

We use the subscript or superscript (7) to refer to the objects corresponding to the contact
manifold (M, «;) and the flow <p§7) := !X, For example, we use the operators (see §2.3)

P =ity P, RPN, 17 :=1(0),

the spaces of (generalized) resonant states at A =0
k0 k0
ReS(T)7 Reso(T)7 Resl(‘;), Reslg(T),

)
0

and the algebraic multiplicities of 0 as a resonance of the operators P,gT), P,E
m(0), m)(0).

When we omit 7 this means that we are considering the unperturbed hyperbolic case 7 = 0,
that is

a:=ay, P:= P,go), Ry = R,go), Res®! := Res™* II; .= H,(CO), e (4.1)

(0)’
The first result of this section, proved in §4.1 below, is the following theorem. (Here the
maps 7T,(€T) : Res]g(T) Nkerd — H*(M;C) are defined in (2.61).)

Theorem 3. Let the assumptions above in this section hold. Assume moreover the following
nondegeneracy condition:

(1xBe, o) defines a nondegenerate pairing on  d(Res)) x d(Resp,). (4.2)

Then there exists €9 > 0 such that for all T with 0 < |7| < €9 we have:
1. d(Res(l)(T)) =0 and thus by Lemma 2.8 and (2.28) we have dim Res(l)(T) = b1 (D).
2. d(Resg(T)) =0, dim Resgm = 01(X)+2, and the map 7T§T) is onto and has kernel Cda.
3. d(Resg(T)) =0 and the map 7[';(;—) is equal to 0.
4. The semisimplicity condition (2.41) holds at A9 = 0 for the operators P,go) for all
k=0,1,2,3, 4.

Theorem 3 together with Lemma 2.4 and (2.59) give the following
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Corollary 4.1. Under the assumptions of Theorem 3 we have for 0 < || < &
mg3(0) = mi3(0) =1, mi(0) = m3(0) = bi(). myP(0) = bi(%) +2
and the order of vanishing of the Ruelle zeta function (g at 0 is

mr(0) = 2m{)(0) — 2m{7J(0) + my (0) = 4 — by ().

Corollary 4.1 is in contrast with the hyperbolic case 7 = 0, where Corollary 3.1 gives the
order of vanishing 4 — 2b;(X).

To give an application of Theorem 3 which is simpler to prove than Theorem 1, we show

in §§4.2—4.3 below that the nondegeneracy condition (4.2) holds for a large set of conformal

perturbations of the contact form o'

Theorem 4. Let M = SY. where (3, g) is a hyperbolic 3-manifold. Fixz a nonempty open set
U C M, and denote by C° (% ;R) the space of all smooth real-valued functions on M with
support inside % , with the topology inherited from C*°(M;R).

Then there exists an open dense subset of C°(%;R) such that for any a in this set,
the 1-form (B := aa« satisfies the condition (4.2). It follows that for T # 0 small enough
depending on a the contact flow on M corresponding to the contact form o := e"?« satisfies
the conclusions of Theorem 3, in particular the Ruelle zeta function has order of vanishing
4 — bl(Z) at 0.

4.1. Proof of Theorem 3. We first prove an identity relating the action of the vector field
Y =0 X;|r=0 € C*°(M;TM) (4.3)

on resonant and coresonant 1-forms to the bilinear form featured in (4.2). It reformulates
the pairing (4.2) and will subsequently (see Lemma 4.4) be used to show that the non-closed
1-forms may be perturbed away.

Lemma 4.2. For all u € Res} and u. € Res},, we have

(I Ly Ihiu, doa A uy)) = (Lyu, da Aug) = ((exB)du, duy)). (4.4)

Proof. 1. To show the first equality in (4.4), we note that by the decomposition (2.44) and
Lemma 2.4 we have for all w € Dy, (M; Q1)

Mw =11 o(w — (txw)a) + VOL.I(J\/[) (/M LxW dvola)oz.
We now compute
/ aNda A (I LyIhu) Aue = (I10(Lyu — (ex Lyu)a), da A uy))
M
= (Lyu — (txLyu)a,da A us))

:/ aANda N Lyu N us.
M

1By the Gray Stability Theorem (see [Gei08, Theorem 2.2.2]), any perturbation of a contact form is a
conformal perturbation up to pullback by a diffeomorphism.
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Here in the first equality we used that u € Res(l] and thus ITju = w. In the second equality
we used that da A u, € Res3, and thus (I3 0)7 (da A us) = do A wse (see §2.3.4). This proves
the first equality in (4.4).
2. We now show the second equality in (4.4). Differentiating the relations tx_a, = 1 and
tx,dar =0 (see (2.1)) at 7 =0, we get

tya = —u1xf, tyda= —u1xdfS. (4.5)
Note also that

aANdaANdu=aANdaNdu, =0 (4.6)
as follows from Lemma 2.4 as the 5-forms above are in Resg dvol,, respectively Resg* dvolg,

and integrate to 0 on M using integration by parts (since the 5-forms da AdaAu, daAdo Ay
lie in the kernel of tx and thus are equal to 0).

We have

/a/\da/\ﬁyu/\u*—/ a/\da/\Lydu/\u*—i—/ a Ada Adiyu N us. (4.7)
M M M

We first compute

/a/\da/\Lydu/\u*:—/ a/\Lyda/\du/\u*—/(Lyu*)a/\doz/\du
M M M

:/ a/\LXdB/\du/\u*:/ dB N du N uy (4.8)
M M

:/ B/\du/\du*:/ (txB)a A du A duy.
M M

Here in the first equality we used that the 5-form da A du A u, lies in the kernel of tx and
is thus equal to 0, implying vy (da A du A uy) = 0. In the second equality we used the
identities (4.5) and (4.6). In the third equality we used that a AtxdBSAduNu, = dBAduu,
as the difference of the two forms belongs to ker tx, by txdu = 0 and txus = 0. In the fourth
equality we integrated by parts, and in the fifth equality we used that ¢x of the integrated
5-forms are equal.

We next compute
/ aAdaNdiyu N uy :/ wyu(da ANda ANuy —a Ada A duy) = 0. (4.9)
M M

Here in the first equality we integrated by parts and in the second one we used (4.6) and the
fact that da A da A ux = 0 (as tx of this 5-form is equal to 0).

Plugging (4.8)—(4.9) into (4.7), we get the second equality in (4.4). O

The pairing in (4.4) controls how the resonance at 0 for the operator Pl(,TO) moves as we
perturb 7 from 0, and the nondegeneracy condition (4.2) roughly speaking means that the
multiplicity of 0 as a resonance of Pl(z)) drops by dimd(Res}) = b1(X). This observation
is made precise in Lemma 4.4 below, but first we need to review perturbation theory of
Pollicott—Ruelle resonances. It will be more convenient for us to use the operators P,gT)

rather than P,gTO) since the latter act on the T-dependent space of k-forms annihilated by ¢x_ .
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In the rest of this section we assume that g > 0 is chosen small, with the precise value
varying from line to line.

We will use the perturbation theory developed in [Bon20]. For an alternative approach,
see [DGRS20, §6]. Since we are interested in the resonance at 0, we may restrict ourselves to
the strip {Im A > —1}. Following the notation of [CP20, §6.1], we consider the T-independent
anisotropic Sobolev spaces

Hog.s(M;QF) == e "OPEOHS(M; QF), r>0, seR. (4.10)

Here Op is a quantization procedure on M, G(p, &) = m(p, &) log(1+ [£]) is a logarithmically
growing symbol on the cotangent bundle T*M, |£| denotes an appropriately chosen norm on
the fibers of T*M, and the function m(p, &), homogeneous of order 0 in &, satisfies certain
conditions [Bon20, (4)] with respect to the vector field X, for all 7 € (—¢eg,£0). The space
H? is the usual Sobolev space of order s. Denote the domain of P,ET) on H,qs by

DY (M;9F) = {u € Hys(M;QF) | Bw € Mo o (MO8}

The following lemma summarizes the perturbation theory used here. For details see for
example [Bon20, Theorem 1 and Corollary 2] or [CP20, Lemma 6.1 and §6.2].

Lemma 4.3. There exists a constant Cy such that for r > Co + |s| and 7 € (—¢o,€0), the
operator

PV = XD (M%) = oo (M;QF), TmA > —1 (4.11)

T

is Fredholm and its inverse (assuming X is not a resonance) is given by R,(;)()\). Moreover,

the set of pairs (1,\) such that X\ is a resonance of P]gT) is closed and the resolvent R,(CT)()\) :
Hrgs = Hra,s 15 bounded locally uniformly in 7, X outside of this set.

Since R,(;) (A) is the inverse of P,gT) — X on anisotropic Sobolev spaces, we have the resolvent
identity for all 7,7’ € (—eg, o)

RO = R0 =RO0W@T) - PRI (), Ima > -1 (4.12)

Here the right-hand side is well-defined since for » > Cj + |s| + 1 the operator R,(CT/)()\) maps
Hra,s to itself, P,gT) and P,ET/) map H.gs to Hras—1, and R,(;)(/\) maps Hrgs—1 to itself.
Using (4.12) we see that for r > Cy + |s| + 1 the family R,(CT)()\) : Hra,s = Hra,s—1 is locally
Lipschitz continuous in 7. Next, recalling (4.3) and that PIET) = —iLx_, we have by (4.12)

0, R ()]r—o = iRL(N) Ly Re(\) (4.13)

as operators H,qs = Hrg,s—2 when r > Cy + |s| + 2.

Fix a contour v in the complex plane which encloses 0 but no other resonances of the
unperturbed operators P, = P,EO). For |7| < &9, no resonances of P,gT) lie on the contour 7,
so we may define the operators

(7 1 T
) .— R (A) dA.

211 y
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Unlike the spectral projectors H,(;) corresponding to the resonance at 0, the operators ﬁ,(;)

depend continuously on 7, since R,(;) (A) is continuous in 7. Moreover, the rank of ﬁ,(;) is

constant in 7 € (—¢p,€p), see [CP20, Lemma 6.2]. By (2.36) we have
% = 10, := T0,(0)

so the rank of ﬁg) can be computed using the algebraic multiplicities of 0 as a resonance in
the unperturbed case 7 = 0 (using (2.43)):

rank T\ = 1, (0) = my.0(0) + mi_1.0(0). (4.14)
By (2.36), we also have
o7 =" o’ (4.15)
AETE

where T is the set of resonances of the operator P,gT) which are enclosed by the contour ~.
Note that by (4.15) and (2.42)

IO\ =117 (\) forall A e Y (4.16)

and the range of f[,(;) is the direct sum of the ranges Res](:’io()\) of H,(;)()\) over A € Tk, In

particular, using (2.43) we get
rank H,(;) = Z (m,(;’())()\) + m,(CT_)LO()\)). (4.17)
AETE
Together with (4.14) and induction on k this implies for |7| < g9
37 m{y(N) = mio(0). (4.18)
AeYk
We are now ready to show that under the condition (4.2) the space Res(l)(T) of resonant
1-forms at 0 for the perturbed operator PI(I)), T # 0, consists of closed forms:

Lemma 4.4. Under the assumptions of Theorem 3, there exists g > 0 such that for 0 <
|7| < eo we have d(Res(l)(T)) =0.

Proof. 1. Define the operator
Z(1) = Pl(T)ﬁgT).
Roughly speaking this operator contains information about the nonzero resonances of PI(T)

enclosed by +; in particular, each of the corresponding spaces of generalized resonant states
is in the range of Z(7) as can be seen from (4.16).

In the hyperbolic case 7 = 0, the semisimplicity condition (2.41) holds for the operator P;
at A = 0, as follows from Lemmas 2.4 and 3.10 together with (2.43). Therefore, the range of
Hgo) =11, is contained in Res!, implying that

Z(0)=0. (4.19)
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By (4.14), the rank of ﬁgﬂ can be computed using the algebraic multiplicities of 0 as a
resonance in the hyperbolic case 7 = 0, which are known by (3.1):

rank I1") = 2b1 (%) + 1. (4.20)

The intersection of the range of fIET) with the kernel of Pl(T) is equal to Res%T). By (2.43)
and Lemma 2.4 we have Res%T) = Res(l)(T) ®Ca,. Next, by Lemma 2.8 and (2.28) we have
dim Res(l)(T) = 01(X¥) + dim d(Res(l)(T)). Therefore

dim Res() = b1 (%) + 1 + dim d(Resg,)-
By the Rank-Nullity Theorem and (4.20) we then have

rank Z(7) = b1(X) — dim d(Res[l)(T)). (4.21)
2. Since (Pl(T) — )\)RY)()\) is the identity operator, we have for all 7

1 .
2(r) = —5 - AR () dA.
ol

Using (4.13) we now compute the derivative
1
aﬂm:—%f}mumﬂmnw:_m¢ﬂh
gl

Here in the second equality we used the Laurent expansion (2.36) for Rj(\) at \op = 0
(recalling that J;(0) =1 by semisimplicity).

By Lemma 4.2, for any u € Res}, u. € Resj, we have
/ aNda A (0:Z(0)u) Au, = —i{{(txB)du, duy)). (4.22)
M

By the nondegeneracy assumption (4.2) the bilinear form (4.22) is nondegenerate on u € Cy,
Uy € Cyy. This implies that

rank 0, Z(0) > dimCy, = b1(X). (4.23)
Together (4.19) and (4.23) show that for 0 < |7] < &9
rank Z (1) > b1 (2).
Then by (4.21) we have dim d(Res(l)(T)) =0 for 0 < |7| < g9 which finishes the proof. O
Remark. Lemma 4.4 holds more generally whenever P o is semisimple. If for all contact
perturbations (a;)r we would have that (4.2) is trivial, this would imply that du A du, = 0

for all u € Res} and u, € Resy,. When (3, g) is hyperbolic, we will show in §4.2 that this is
impossible, while for general (X, g) proving such a statement seems out of reach for now.

Together with Lemma 2.4, Lemma 2.9, Lemma 2.11, and (2.28) Lemma 4.4 gives all
the conclusions of Theorem 3 except semisimplicity on 2-forms. In particular we have for
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0 < |7| < ep (using (2.43))
. ) o
dim Resg,y = b1(2) + 2, (4.24)

d(Res%;‘;o) = Cda. (4.25)

To finish the proof of Theorem 3 it remains to establish semisimplicity on 2-forms:

Lemma 4.5. Under the assumptions of Theorem 3, there exists €9 > 0 such that for 0 <

|T| < e the semisimplicity condition (2.41) holds at Ay = 0 for the operator P2(,To)-

Proof. We first claim that for 0 < |7| < g
rank (a; A (ﬁg) - HéT))) > rank (o A d(ﬁgﬂ - HY))) > b1 (X). (4.26)

Indeed, by (2.37) and (4.15) we have d(I1{"” — TI{”) = (11" — 11I{”))d which implies the first
inequality in (4.26). Next, we have rank(a/\dﬁgo)) = b1(X)+1 as the range of dﬁgo) is equal to
dRes! = Cda @ dC,. Since ﬁgﬂ depends continuously on 7, we see that rank(a, A dﬁgﬂ) >
b1(X) + 1 for all small enough 7. On the other hand, for 7 small but nonzero we have
rank ngT) =1 by (4.25). Together these imply the second inequality in (4.26).

Now, by (4.15) and (2.43) the range of a, A (ﬁg) — HgT)) is contained in the sum of the
spaces ar A Res2 ™ (X) over A € Y2\ {0}. Therefore (4.26) implies that for 0 < |7] < &g

0(r)
S w0 = hi(). (4.27)
A€T2\{0}

From (4.18) and (3.1) we see that

Z mgg(/\) =ma,(0) = 2b1(X) + 2
AeY2

therefore by (4.27) we have mgg(O) < b1(X) + 2. Since dim Resg(T) =b1(X) +2 by (4.24), we

showed that the algebraic and geometric multiplicities for 0 as a resonance of P2(,TO) coincide,
finishing the proof. g

4.2. The full support property. In this section, we prove a full support statement which
will be used in the proof of Theorem 4. In fact, we recall that we need to prove the nonde-
generacy assumption (4.2), that is, that ((tx e, e)) is nondegenerate on d Res}, xd Res},, and
the support properties of elements of dResé(*) will be useful. In §§4.2-4.4 we assume that
M = S¥. where (X, g) is a hyperbolic 3-manifold and the contact form a and the spaces of
(co-)resonant states at zero Res}, Res}, are defined using the geodesic flow on (%, g).

Proposition 4.6. For all u € Res}, u. € Resp, with du # 0, du, # 0, the distributional
5-form a A du A dus fulfills supp(a A du A duy) = M.

To show Proposition 4.6, we first study properties of the 2-forms du and du,. Define the
smooth 2-forms

wy € C°(M;02)
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by requiring that £y @ F, be in the kernel of w_, Ey @ E; be in the kernel of w, and, using
the horizontal/vertical decomposition (2.15)

w4 (z,v) ((wy, £wy), (we, Tws)) = (v X wi,wa)y for all wy,wy € o}t Cc T, (4.28)

where ‘X’ denotes the cross product on T,.Y defined in §3.2.1. In terms of the canonical
1-forms on the frame bundle F¥ defined in §3.1.3 the lifts of wi to FX are given by

wy = U AU (4.29)
One can think of wy as canonical volume forms on the stable/unstable spaces.
By (4.29) and (3.12) we compute
dwt = 20 A w. (4.30)
Lemma 4.7. Assume that u € Res[l), Uy € Rescl)*. Then
du=fw_, du,= frwy; (4.31)
aNdu A du, = —%f_f+dvola (4.32)

where the distributions f— € Dy (M;C), fy € D%.(M;C) satisfy for any vector fields U_ €
C>®(M; E,), Uy € C®(M; Es)

(X+£2)f+ =0, Uyfy=0. (4.33)
Proof. We consider the case of du, with du, studied similarly. From Lemma 3.8 we know
that u is a totally unstable 1-form, which implies that du is a section of E;, A E. The latter

is a one-dimensional vector bundle over M and w_ is a nonvanishing smooth section of it, so
du = f_w_ for some f_ € Dp.(M;C). Using (4.30) we compute

0=d(fow_)=(df- —2f-a) Nw_.

Taking ¢x and (y_ of this identity and using that txw_ = 1y_w_ = (y_a = 0 (recalling the
definitions of U™, UF* in (3.10) and below), we get (4.33).

Finally, (4.32) follows from (4.31) and the following identity which can be verified using
either (4.28) and (2.16) or (4.29) and (3.12):

aNw_Nwy = —%dvola.

O

We can now finish the proof of Proposition 4.6. Given (4.32) it suffices to prove that,
assuming that f_ # 0 and f # 0,

supp(f_f+) = M. (4.34)

Let 7p : SH? — S¥ = M be the covering map corresponding to (3.2) and @4, By be defined
in (3.14). Then by (3.22) and (4.33) we have for any U_ € C®(SH3; E,), U, € C®(SH?; E,)

X(®L(fr omr)) = U(®L(fromr)) =0,
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that is ®2(fy o mr) is totally stable and ®2(f_ o mr) is totally unstable in the sense of
Definition 3.2. Similarly to Lemma 3.3 we can then describe the lifts of f+ to SH? in terms
of some distributions g+ on the conformal infinity S?:

frompr = ®;%(g+ 0o By) forsome gy € D'(S%C). (4.35)

Since f4 are resonant states of X, a result of Weich [Weil7, Theorem 1] shows that supp f =
supp f— = M, which from (4.35) and the facts that &1+ > 0, and that By are submersions
which map SH? onto S?, implies that

supp g4+ = supp g = S2. (4.36)

We will now use the coordinates (v_,v4,t) € (S? x S?)_ x R on SH? introduced in (3.16).
Then by (4.35) and (3.17) we can write in these coordinates

(f-f+) omr = qglv- — vyt (v-)gs ().

By (4.36), we see that the support of the tensor product g— ® g4 (v—,vy) = g—(v-)g+(vy4) is
equal to the entire S? x S?, which implies that supp(f_ f1)onr = SH? and thus supp(f_ fy) =
M. This shows (4.34) and finishes the proof.

4.3. Proof of Theorem 4. We first remark that in the special case dim d(Res}) = b1(X) =
1, it is straightforward to see that Proposition 4.6 implies the following simplified version of
Theorem 4: for each nonempty open set Z C M there exists a € C°°(M;R) with suppa C %
and such that B := aa satisfies (4.2). Indeed, it suffices to fix any nonzero du € d(Res}),
du, € d(Res},), and choose a such that fM aa A du A du, # 0. We note that there are
examples of hyperbolic 3-manifolds with b;(X) = 1, see for instance [FM12, Theorem 13.4].

For the general case, we will use the following basic fact from linear algebra:

Lemma 4.8. Denote by @C" the space of complex n x n matrices. Assume that V C @*C"
is a subspace such that for each vi,vo € C"\ {0} there exists B € V' such that (Bvi,va) # 0.
(Here (e,®) denotes the canonical bilinear inner product on C"™.) Then the set of invertible
matrices in V is dense.

Proof. Let 0 be a nonempty open subset of V. We need to show that & contains an invertible
matrix. Assume that there are no invertible matrices in ¢. Let A be a matrix of maximal
rank in @, then k := rank A < n since A cannot be invertible. There exist bases eq,..., e,
and e], ..., ey of C" such that

1 ifj=0<k;

0 otherwise.

(Aej, ep) = {

By the assumption of the lemma, there exists B € V such that (Bey1,ej ;) # 0. Consider
the matrix A; = A+t¢B which lies in & for sufficiently small ¢, and let b(¢) be the determinant
of the matrix ((Atej,eZ))ﬁF:ll. Then b(0) = 0 and b'(0) = (Begy1,¢e5,,) # 0. Therefore, for
small enough ¢ # 0 we have b(t) # 0, which means that rank A; > k + 1. This contradicts

the fact that k was the maximal rank of any matrix in &. O
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We are now ready to give the proof of Theorem 4. For a € C*°(M;R), define the bilinear
form

Sa : d(Res}) x d(Resp,) = C,  Sa(du,du,) = / aa A du A duy.
M

To prove Theorem 4, it then suffices to show that the set of a € C°(%;R) such that S,
is nondegenerate is open and dense. Since nondegeneracy is an open condition, this set is
automatically open. To show that it is dense, consider the finite dimensional vector space

V:i={Sa|acCX(%;R)}.

Choosing bases of the b; (¥)-dimensional spaces d(Res}) and d(Resg, ), we can identify V' with
a subspace of ®2C** ). Let du € d(Res}), du, € d(Res(,) be nonzero, then by Proposition 4.6
we have supp(a A du A duy) = M, so there exists a € C°(%;R) such that Sa(du, dus) # 0.
Then by Lemma 4.8 the set of nondegenerate bilinear forms in V is dense.

Let U be a nonempty open subset of C°(%;R). Then {S, | a € U} is a nonempty open
subset of V. Thus there exists a € U such that S, is nondegenerate, which finishes the proof.

4.4. Proof of Theorem 1. We now give the proof of part 2 of Theorem 1, relying on
Theorem 5 (in §5) and Proposition A.1 below, combined together in Corollary 5.1. (Part 1
of Theorem 1 was proved in Corollary 3.1 above.)

We start by computing how a general metric perturbation affects the contact form for
the geodesic flow. Let (X, g) be any compact 3-dimensional Riemannian manifold and the
contact form « and the generator X of the geodesic flow on S¥ be defined as in §2.2. Let

gr, TE(—g,¢)
be a family of Riemannian metrics on ¥ depending smoothly on 7, such that gg = g. The
associated geodesic flows act on the 7-dependent sphere bundles
SO = {(z,v) € TS: |v|, = 1}.

To bring these geodesic flows to S, we use the diffeomorphisms
. (7) _ v

O, : 58 - STE, P (r,v) = (1:, m )
Vg,

Denote by o the contact form on ST corresponding to g,. Then

ar =P,
is a contact 1-form on S¥ and the corresponding contact flow is the geodesic flow of (3, g;)
pulled back by ®...

Let W(ET) : S(7% — ¥ be the projection map. Using (2.11) and the fact that W(ET) o®, is

equal to 7y 1= 7'('(20), we compute for all (z,v) € S¥ and § € T(,,)(5%)

<Ua dmy; (.7}, 'U)§>g7- ]

MQT

Recalling drs(z,v) X (z,v) = v (see (2.18)) and using go(v,v) = 1, it follows that

(ar(z,0),8) =

~ 1
anTaT‘TZO(‘T? 'U) = aTgT(”, 'U)|T:0 - 590(”7 U) ’ 87'97’('07 v)’TZO = 87"'0‘97‘7':0- (437)
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e 2™¢  where

In particular, if the metric g, is given by a conformal perturbation g, =
b € C*(%;R), then

tx0r0r|r=o(z,v) = —b o7y (4.38)

We are now ready to prove Theorem 1. Assume that (X, g) is a hyperbolic 3-manifold as

—27b; By Theorem 3 applied to the family of contact forms

defined in §3.1 and put g, (=€
ar, with = 0-a.|r—o satisfying (4.38), it suffices to show that for b in an open and dense

subset of C>°(X;R) the bilinear form

(du,du*)»—>/ (boms)a AduA du,
M

is nondegenerate on d(Res}) x d(Resp, ).

The space Resé is preserved by complex conjugation as follows from its definition (2.60);
here we use that for any u we have WF(a) = {(p, =€) | (p,€) € WF(u)}. Denote by Resig the
space of real-valued 1-forms in Res} and let J(z,v) = (x, —v) be the map defined in (2.12).
By (2.50), the pullback J* is an isomorphism from Res} onto Resj,. Thus it suffices to show
that for b in an open and dense subset of C*°(3;R) the real bilinear form

Sp(du, du’) := / (boms)aAduAJ*(du)
M

is nondegenerate on d(Reslg) x d(Resjg).

Since b o 7y is J-invariant, J*a = —a, and J is an orientation reversing diffeomorphism
on M, we see that §b is a symmetric bilinear form. Unlike in the contact perturbation case
in §4.3, we will not be able to produce for every pair (du,du’) € d(Reslg) x d(Reslg) an
element b € C*°(X;R) such that §b(du, du’) # 0. Instead, we will only produce b such
that Sp(du, du) # 0. Hence, we will need the following variant of Lemma 4.8 for symmetric
matrices:

Lemma 4.9. Denote by ®%R" the space of real symmetric n X n matrices. Assume that
V C ®%R" is a subspace such that for each w € R™\ {0} there exists B € V such that
(Bw,w) # 0. Then the set of invertible matrices in V is dense.

Proof. Similarly to the proof of Lemma 4.8, assume that & is a nonempty open subset of V'
which does not contain any invertible matrices and A is a matrix in & of maximal rank k < n.
Since A is symmetric, it can be diagonalized, i.e. there exists an orthonormal basis eq, ..., e,
of R™ such that Ae; = Aje; where \; are real and, since rank A = k, we may assume that
Ay oo A F0and Agpg =---= A, =0.

By the assumption of the lemma, there exists B € V such that (Bey1,ext+1) # 0. Consider
the matrix A; = A + tB which lies in & for sufficiently small ¢, and let b(¢) be the determi-
nant of the matrix ((4;e;,e;))¥ . Then b(0) = 0 and ¥'(0) = A1 - \g(Begs1, ept1) # 0.

ij=1"
Therefore, for small enough ¢ # 0 we have b(t) # 0, which means that rank A; > k + 1. This
contradicts the fact that k£ was the maximal rank of any matrix in 0. O

Now to show Theorem 1 it remains to follow the argument at the end of §4.3, with
Lemma 4.8 replaced by Lemma 4.9 and using the following
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Proposition 4.10. Assume that u € Resiy and du # 0. Then there exists b € C®°(%;R)
such that Sy (du, du) # 0.

Proof. Using the pushforward map my,, defined in (2.19) we compute by (2.20) and (2.23)

S (du, du) = — /E brrs,. (A du A T*(du)). (4.39)

By Corollary 5.1 below we have 7y, (A du A J*(du)) # 0 which finishes the proof. O

5. THE PUSHFORWARD IDENTITY
In this section we prove an identity, Theorem 5, used in Proposition 4.10 above which is

a key component in the proof of our main Theorem 1.

We assume throughout this section that (X,g) is a compact hyperbolic 3-manifold as
defined in §3.1 and write ¥ = I'\H?® where I' C SO (1, 3). For s > 2, define the operator

Qu: CX(HY) —» C(HY), Quf(@) = [ (coshdum(e.) " fly)dvoly). (51

As shown in §5.1.2 below, the operator Q, can be extended to I'-invariant distributions on H?
and it is smoothing, so it descends to an operator

Qs : D'(X;C) — C*(%;C). (5.2)
Let Ay be the (nonpositive) Laplace-Beltrami operator on (X, g). Recall the pushforward

map on forms 7y, defined in (2.19) and the spaces of (co-)resonant k-forms Res§, Resk, on
M = S¥ associated to the geodesic flow on (3, g), see §§2.2-2.3.

The main result of this section is the following

Theorem 5. Assume that u € Res}, u. € Resj,. Define the pushforwards

o_ =my,(daANu), oy :=my,(doAuy) (5.3)
which are harmonic 1-forms on ¥ by Lemma 3.17. Define F € D'(X;C) by
Ty, (@ Adu A duy) = F dvolg . (5.4)
Then we have
QuF = —{Ay(o- - 04) (5.5)

where the inner product o_ -0 is the function on ¥ defined by o_ -0 (x) = (0_(z),04(x))g.

Remark. By (4.39) and since Q4 is self-adjoint we can rewrite (5.5) as follows: for each b €
D'(%),
1

/ bAy(o_ -0o4)dvoly = / (m5,Qab)a A du A dus. (5.6)
6 Jx Sx

One can think of the right-hand side of (5.6) as the integral of 75Q4b against a Patterson—
Sullivan distribution A du A du, (note that this distribution is invariant under the geodesic
flow) and the left-hand side of (5.6) as a topological quantity because it features harmonic
1-forms. Then (5.6) bears some similarity to the result of Anantharaman-Zelditch [AZ07,
Theorem 1.1] for the symbol a := 7§,b; the latter is in the setting when X is a surface and the
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left-hand side there has a spectral interpretation because it features an eigenfunction of the
Laplacian. However, the operator L, used in [AZ07] is different in nature from the operator
Q4 featured in (5.6): for our application is crucial that the right-hand side of (5.6) depends
only on the pushforward of a A du A du, to ¥ and that does not seem to typically be the
case for the right-hand side of [AZ07, Theorem 1.1]. See also the work of Hansen—Hilgert—
Schroder [HHS12] giving an asymptotic statement for higher dimensional situations.

The formula (5.6) in the special case b = 1 (which is trivial in our situation because
both sides are equal to 0) also has some similarity to the pairing formulas of Dyatlov—Faure—
Guillarmou [DFG15, Lemma 5.10] and Guillarmou-Hilgert—Weich [GHW21, Theorem 5].
In this vague analogy between Theorem 5 and the results of [AZ07, DFG15, GHW21] our
setting would correspond to an exceptional value of the spectral parameter: comparing (5.32)
with [AZ07, (1.3)] gives the value s = —2 (in the notation of [AZ07]).

Together with Proposition A.1, Theorem 5 gives the following statement which is used in
the proof of Proposition 4.10. Recall the map J(z,v) = (2, —v) defined in (2.12).

Corollary 5.1. Assume that u € Res) is real-valued and du # 0. Then s, (a A du A
J*(du)) # 0.

Proof. Put u, = J*u € Res{,. By (2.13) and (2.24) we have oy = o_ where the 1-forms o4
are defined in (5.3). By Lemma 3.17, 0 = 04 = o_ is a real-valued harmonic 1-form on ¥,
and du # 0 implies that o # 0.

Let F be defined in (5.4), then by Theorem 5 we have
QuF = —§Ag|ol2. (5.7)
Now, by Proposition A.1 we see that |a|§ is not constant, that is Ag|a|§ # 0. Therefore,

Q4F # 0 which implies that F' # 0. U

5.1. Preliminary steps. We first prove several preliminary statements. We will use the
hyperboloid model of §3.1.

5.1.1. Hyperbolic Laplacian. We first write the Laplacian A, of the hyperbolic metric on H?
using the hyperboloid model. Consider the open cone
Cy = {(%0,7") € RYM: &g > |#']}.
Each point # € C4 can be written in polar coordinates as
F=rz, r>0 zecH.

Define the d’Alembert operator on Cy as [ = 8%0 — 8%1 — 8%2 — 8%3. In polar coordinates it
can be written as

O =r2((rd,)% + 2rd, — A,) (5.8)
where the hyperbolic Laplacian A, acts in the = variable.

Using (5.8), we derive the following useful identity: for any 1 € C*°((0,0)) and y € H?
— Agu((z.y)13) = D({x,y)1s) where D) := (1= p" )" (p) = 3p0'(p)  (5.9)
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and the operator A, acts in the z variable (note that J(p) is given by the radial part of —A,
applied to ¥ (p) by (3.4)). Indeed, it suffices to apply (5.8) to the function f(z) := ¥ ((Z,y)1.3),
z € Cy, and use that Of(2) = ¢"((Z,y)1,3). Taking in particular ¢(p) = p~* where s € C,
we get

( — Ay —s(2— s))(m,y)fg =s(s+ 1)<$,y>i§*2. (5.10)
Similarly, if v_, v, € S C R3, then by applying (5.8) to the function
- - . -1 .
fV_,V+(I) = (<SU,(171/_)>]_73 <x7(]—7y+)>1,3> ; $€C+

and using that Of,_,, =2(1-v_-vy) ff_v,, .» Where we recall -” denotes the Euclidean inner

product, we get
— Ay (P(z,v_)P(z,v1)) = 2(1 —v_ - vy) (P(z,v_ ) P(z,vy))? (5.11)

where the Poisson kernel P(z,v) is defined in (3.18) and the Laplacian A, acts in the x
variable.

5.1.2. Properties of the operators Qs. Let Qs : C°(H?) — C*°(H?) be the operator defined
in (5.1). Using (3.4) we can rewrite it as

Quf@) = [ () i5(0) dvoly (). (512)
Note that the operator @ is equivariant under the action of the group SO (1, 3):

Qv f) =7 (Quf) forall € SOL(L,3). (5.13)

For s > 2, the function y — (z,y);3 lies in LY(H?3;dvoly) and its L' norm is independent
of z; indeed, using the SO (1, 3)-invariance we may reduce to the case x = (1,0,0,0), which
can be handled by an explicit computation. Therefore, Qs : L°°(H3) — L*°(H?).

The space L>(X) is isomorphic to the space of I-invariant functions in L (H?3). Us-
ing (5.13), we see that Q, descends to the quotient ¥ = I'\H? as an operator

Qs : L¥(2) = L2(%), s> 2. (5.14)

Next, using (5.10), we get the following identity relating the operators Qs with the hyperbolic
Laplacian A, on X:

(—Ag—5(2—5))Qs = Qs(—Ag — 5(2—5)) = (s + 1)Qs42. (5.15)

Putting together (5.14) and (5.15) and using elliptic regularity, we see that for any s > 2,
Qs in fact extends to a smoothing operator D'(X) — C*°(X), proving (5.2).

We now show that for f € D/(X) one can obtain Qsf as a limit of cutoff integrals:

Lemma 5.2. Fiz a cutoff function x(p) € C°(R) such that x = 1 near 0. For e > 0 and
s > 2, define the operator

Qo : D/(H) = CX(H), Qupef(a) = /H X(e@y)s) (@, y) i f (y) dvoly(y).
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Note that Qs satisfies the equivariance relation (5.13) and thus descends to an operator
D'(X) — C®°(X). Then we have for all f € D'(X)

Qsxef = Qsf in C®(X) as e — 40. (5.16)
Proof. Tt suffices to show that for all n > 0,

HAZ(QS - Qs,x,E)AZ”LOO(E)—woo(z) —0 as e&— +0.

By (5.9) with ¢(p) := p~*(1 — x(ep)) we have (with each instance of A, in Ag” below acting
in either z or y)

AT () 151 = x(e(@,v)18)) = (@, 0) 5000 (@, v)13)
where, putting T := p*((1 — p2)8ﬁ —3p0,)p~%,
O (p) = T2"(1 = x(e9))(p)- (5.17)

For any f € L*(H3) we have (integrating by parts in y and using the fact that A, is formally
self-adjoint)

Ag(Qs = Qsxe)Ag f2) = /H3 (,9) 1508 (@, y)1,8) £ (y) d voly (y).

Estimating the L;OL; norm of the integral kernel of the latter operator we get for any
d € (0,5 —2) (we will use that 6 > 0 at the end of the proof) and for some Css5 > 0
depending only on s, §

[1AG(Qs — Qs x,e)AY || oo () 1oo(z) < Cso sup 2% (p). (5.18)
p>

For k € Ny and ¢ € C*°((0,00)), define the seminorm
K2

0<j<k

|56 := max sup [p~*(pd,) 1) (p)|.
SR p>1

We have ||Tst||5x < Cs5kl|Y]5,k+2. Therefore

sp [P~ U< ()] < Cognlll = X(eP) lsn = O("), (5.19)
p>
which finishes the proof. O

5.1.3. Spherical convolution operators. Let k € C°°([0,4]). Define the smoothing operator
A D'(SH = C®(S?), A.f(v) = / k(v = VA ) dS(). (5.20)
SQ

Here |v — /| denotes the Euclidean distance between the points v,/ € S? C R3.

In this section we prove an estimate on the norm of A, between Sobolev spaces, Lemma 5.5,
which is used in the regularization argument in §5.2.3 below. Before we state this estimate,
we establish a few basic properties of A:

Lemma 5.3. We have

| Asllr2(s2)—r2s2) < 7llEl L1 ((0,4)-
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Proof. By Schur’s lemma we have

Akl 22y r2s2) < sup [ |&(lv = V']*)|dS(v).
v'eS? JS2
By SO(3)-invariance we see that the integral above is independent of v/. Choose v/ =
(0,0,—1) and use spherical coordinates v = (sin 6 cos ¢, sin 8 sin ¢, cos §) to compute

s 4
/ |k(jv = V'[*)]dS(v) = 27r/ |(2 + 2 cos 6)| sinf df = 7r/ |k(r)| dr
s2 0 0
which finishes the proof. ([l

Lemma 5.4. Denote by Ag2 the (nonpositive) Laplace—Beltrami operator on S?. Then
AglAge = Age Ay = Az, R(r) = (4 —nr)re”"(r) + (4 = 2r)K'(r). (5.21)

Proof. Tt is enough to show that, with Ag2 acting in the v variable,
Agz (k(jv = V'[*)) = &(lv = V'?).

Similarly to the proof of Lemma 5.3, by SO(3)-invariance we may reduce to the case v/ =
(0,0, —1) and take spherical coordinates (6, ¢) for v, in which the Laplace operator is Agz =
(sin 0) 10y sin 09y + (sin §) 207 and |v — v/|* = 24 2cos §. Then we compute

1
Ag (k(lv — V') = m@g sin 00y (2 + 2 cos 6)
= 4sin? OK" (2 + 2 cos ) — 4 cos Ok’ (2 + 2 cos 0)
= R(2+ 2cosb)

which finishes the proof. O

We can now give

Lemma 5.5. Assume that s1, 82 € R and sy — s1 = 20 for some £ € Ng. Then there exists a
constant C' depending only on s1, s2 such that for all k € C*°([0,4])

20

Akl ros g2y mroas2) < C Y ™00k (r) | L1 0.4y (5.22)
=0

Proof. Define the differential operator arising from (5.21) (corresponding to 1 — Age2)
W= (r — 4)rd? + (2r — 4)9, + 1.

Denote by C' a constant depending only on s1, s2, whose precise value may change from line
to line. We have

[ Al rer 52 mroa 82y < CII(1 — Ag2)*>/2 A (1 — Aga) ™/2|| f2s2), £2(s2)
= C||(1 - Ag2) Al z2(s2) 5 12(s2)
= CllAwegllr2(s2)= L2(s2)
< C|W*s| 1 (0.4
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Here in the second equality we used that A, commutes with Ag2 by Lemma 5.4. In the third
inequality we used Lemma 5.4 again. In the last inequality we used Lemma 5.3.

By induction in £ we see that W is a linear combination with constant coefficients of the
operators 7°97 where 0 < j < 2¢ and k > max(j —¢,0). Therefore, \|W€/<;||L1([0,4]) is bounded
by the right-hand side of (5.22), which finishes the proof. O

5.2. Proof of Theorem 5. Here we give the proof of Theorem 5, proceeding in several
steps. In §5.2.1 we write both sides of (5.5) as integrals featuring some distributions g4
on S?. In §5.2.2 we introduce a change of variables which shows that the two integrals are
formally equal. In §5.2.3 we prove that regularized versions of the two integrals are equal
and show convergence of the regularization to finish the proof.

Denote by 71 the covering maps H® — ¥ and SH?® — M = S (which one is meant will

be clear from the context). Since we can choose the representation of ¥ as the quotient I'\H?
arbitrarily, for any given z € ¥ we may arrange that 7r(eg) = x where

eo == (1,0,0,0) € H>. (5.23)
Therefore, in order to prove Theorem 5 it suffices to consider the case z = 7mr(eg), i.e. to

show that
Tt QuF (e0) = —AmiAg(0- - o)) (co). (5.24)

5.2.1. Reduction to the conformal boundary. We first express both sides of (5.24) in terms
of some distributions g+ on the conformal boundary S2.

Let u € Res{, u. € Res),. By Lemma 4.7 we have
du=f_w_, du,= frwy, aAduldu,= —%f_f+dvola,

where by (4.35), the lifts of f— € Dp.(M;C), fi+ € Dy.(M;C) to the covering space SH?
have the form (recalling the definitions (3.14) of &4, By)

i fe = ®1*(94 0 Bx) for some gu € D'(S%C). (5.25)

Arguing similarly to (2.21), we see that the distribution F' € D'(X;C) defined in (5.4) can
be written as the pushforward

F(x)=- f-(z,v) f+(z,v)dS(v), x€X
4 Js,=
where dS is the canonical volume form on the spherical fiber S,>. Therefore, the lift of F’
to H? has the form
1

mEF() = § /S (@@ )@ 0) (B ()94 (Bi (e, ) dS(). (5:26)

We next express the harmonic 1-forms o4 defined in (5.3) in terms of the distributions g4 :

Lemma 5.6. Using the hyperbolic metric, identify the pullbacks mjo+ with vector fields
on H3. Then for any x € H3

ot (x) = i/SQ g+ (V)vs(z,v)dS(v)
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where vy (z,v) € S, C T,H? is defined in (3.20).

Proof. By (3.72) and since du = f_w_, du, = frw;+ we have

oy =Ty, (fraAw).

Recall the horizontal /vertical decomposition (2.15). For any (z,v) € M =S¥, & = (g,&v) €
T(zv)M, and a positively oriented g-orthonormal basis v, v1,ve € T we compute by (2.16)
and (4.28)

(a N Wi)(ﬂl‘, U)(éa (07 Ul)? (Oa /UQ)) = %<€H7 v>g-

Using the metric g, we identify o4 with a vector field on ¥. Then

1
otr(r) =~ fe(z,v)vdS(v), z=€X.
4 Js,»
It follows that for each x € H?
x 1 -
ros(r) = § / Do (2, 0) 294 (B (x, v))0 dS(v)
SpH3
1

=7 /S2 g+ (W)ve(z,v)dS(v).

Here in the first equality we used (5.25). In the second equality we made the change of
variables v = By (z,v) and used (3.21). O

We note that by the preceding lemma vy (x,v) define vector-valued Poisson kernels in the
sense of [O1b95, KW19]. From Lemma 5.6 we get the following formula for the right-hand
side of (5.24) in terms of the distributions g4 :

Lemma 5.7. We have (here eq is defined in (5.23))

1

—ri Ao o) = g [ (=) (e () dSdS (). (527

Proof. By (3.20) we have for each v_,v; € S? and z € H?

(v—(z,v-),v4 (2, V—l—))g = _<v—(x7V—)aU+($7V+)>1,3 = P(z,v_)P(z,vi)(1 —v_-vy) — 1.

With the hyperbolic Laplacian A, acting in the x variable, we then compute by (5.11)

—Ag(v_(z,v_), v (2,v4))g = 2(1 — v_ - v4)? (P(x,v_) P(x, 1/+))2.

Now (5.27) follows from Lemma 5.6 by integration and using that P(eg,v+) = 1 by (3.18). O

5.2.2. Change of variables. By (5.26) and (5.12) we can formally write the left-hand side
of (5.24) as follows:

T Q4F (eo)
1

o4 -2 (5.28)
=7 o ¥ (®—(y,0)®4(y,v)) "9-(B-(y,v))g+(Bs(y,v))dS(v)dvoly(y),
where we recall y = (yo,¥1,y2,y3) € H3. Note that one has to take care when defining the

integral above, as g+ are distributions and SH? is noncompact, see §5.2.3 below.
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On the other hand, the right-hand side of (5.24) can be expressed using (5.27) as an
integral over (v_,vy) € S? x S2. To prove (5.24) and relate the two integrals we will use
the change of variables Z : (y,v) — (v_,v4,t), where t € R, introduced in (3.16). The basic
properties of = are collected below in

Lemma 5.8. 1. Let (v_,v4,t) = E(y,v). Then

4 2
d_ d = = 5.29
(y,v) +(y,v) ’V_ —I/_,_’Q 1_ 1 -I/_,_’ ( )
2cosht
Y= ——""-"'. (5.30)
v — vy

(As before, we write elements of H® as y = (yo, y1,y2,y3) € RY3.)

2. The Jacobian of = at (y,v) with respect to the densities dvoly(y)dS(v) and dS(v—)dS(vy)dt
is equal to 4(P_(y,v)P4(y,v))

Remark. The identity in part 2 of the above is well-known, see [Nic89, Theorem 8.1.1 on
p. 131].

Proof. 1. The identity (5.29) follows immediately from (3.17), noting that |[v_ — vy |* =
2(1 —v_ - vy4). To see (5.30), we compute by (5.29) and (3.16)
2ett
i(y,v) =
v — vy

which by (3.15) gives
O_(y,v) + D4 (y,v) 2cosht

o 2 AN

2. Take (y,v) € SH?. Let w € T,H? satisfy (v, w); 3= 0. Then

2wl
X (yv U) .
Here in the first equality we write (w, fw) = (w, Fw) £ 2(0,w) and use that by (3.23),
dB4(y,v)(w,Fw) = 0. In the second equality we use (3.21). Denoting by X the generator
of the geodesic flow and defining ¢ by (3.16), we also have by (3.22) and (3.23)

dB:I:(Z/?”)(X(yaU)) =0, dt(X(y,'l))) =1L

|dB+(y,v)(w, tw)|sz = 2|dBy(y,v)(0,w)|sz = (5.31)

Fix a g-orthonormal basis v, vy, ve of T, yH3 and consider the following basis of T (y,v)S]HI3 :

fo=X(yv), & = (v, %v1), & = (v2,+va).
Since & A {j = 2(v;,0) A (0,v;), the value of the density dvoly(y)dS(v) on &, &7, &5, &, &5
is equal to 4. On the other hand, writing (n—(£),n+(£),7(£)) = d=(y,v)(£), we have
ne(&5) =n+(&) =0, 7(&) =1
and the vectors 7+ (67), 7+ (£5) are orthogonal to each other and have length 2®. (y,v)~
each by (5.31). It follows that the value of the density dS(v_)dS(v4)dt on the images of
0,60, , &, &5 under d=(y, v) is equal to 16(‘I>_(y, U)(I>+(y,v))72. Thus the Jacobian of 2
at (y,v) is equal to 4(<IL(y,v)<I’+(y, v))_Q. d

1
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Using Lemma 5.8 and (5.28), we can formally write the left-hand side of (5.24) as

1 Q4F (e) = 6i4 /

(S2xS?)_xR

(1—vvy)?
9-(v-)g+(vy) dS(v-)dS(vy )dt. (5.32)

Using the change of variables s = tanht, we compute

dt 1 5 4
= 1-s%)ds=—. 5.33
/Rcosh4t /_1( 57) ds 3 ( )

Comparing (5.32) with (5.27), we formally obtain the identity (5.24). However, our argument
is incomplete since the integrals in (5.28) and (5.32) are over the noncompact manifolds SH?,
(S? x §?)_ x R and g+ are distributions. Thus one cannot immediately apply the change of
variables formula to get (5.32) from (5.28), or Fubini’s Theorem to get (5.24) from (5.32).
To deal with these issues, we will employ a regularization procedure.

5.2.3. Regularization and end of the proof. Fix a cutoff function
X € C(?O(Ra [07 1])7 supp x C [_272]7 X‘[—l,l] =1

For € > 0, define the integral
L= /3 X(ey0)y “TiF (y) d voly(y).
H

(As before, we embed H? into R and we have yo = (eg, y)1,3 where ¢y = (1,0,0,0).) By
Lemma 5.2 with « = ep, I converges to the left-hand side of (5.24):

I. — WFQ4F(€0) as € — +0. (534)

By (5.34) and (5.27), the proof of (5.24) (and thus of Theorem 5) is finished once we show
that

I. - — / (1—v_-v)2g (v )gs(vy)dS(v_)dS(vy) as e — +0. (5.35)

By (5.26) we have the following regularized version of (5.28):

1

L=7 / X(ey0)uy (B (5, )B4 (5, v) g (B(y.v)) 9+ (B (. v)) dS (v)d voly (y).
SH3

Making the change of variables (v_,v;,t) = E(y,v) and using Lemma 5.8, we then get the
following regularized version of (5.32) (we keep in mind that g4 are merely distributions so
that all of the integrals around these lines are understood in the distributional sense):

COS —V_ U 2
Lo [ (B g aste st

64 lv_ — vy cosh*t
S2xSZxR
For r > 0, define the function
3 2e cosht _
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Note that 1. € C°°([0, 00)) and (1) = 0 for r < £2. We now have

I. = % / Gelv- = vi )1 = v - vy)%g- (v-) g+ (vy) dS(v-)dS(vy). (5.37)
S2x§?

Recalling that |v_ — v |2 = 2(1 — v_ - vy), we see from (5.37) that it suffices to prove the
following version of (5.35):

(L= (v — vy ) v — viltg_ (v )gi(vy)dS(v_)dS(vy) =0 as e — +0. (5.38)
$2xS?

If g1 were smooth functions on S?, then (5.38) would follow from the Dominated Convergence
Theorem since by (5.33) we have ¢.(r) — 1 as € — 40 for all » > 0. However, g+ are merely
distributions, so one has to be more careful. We start by establishing the Sobolev regularity
of g1 by following the standard proof of the Fredholm property in anisotropic Sobolev spaces.
(We use the proof in [DZ16]; one could alternatively carefully examine the proof in [F'S11].)
See the papers of Adam-Baladi [AB18, §3.3], Guillarmou—Poyferré~-Bonthonneau [GdP21,
Appendix A}, and Dyatlov [Dya21] for a general discussion of Sobolev regularity thresholds
for the Pollicott—Ruelle resolvent.

Lemma 5.9. We have g+ € H=279(S?) for all § > 0.

Proof. We show the regularity of g_, with g handled similarly. Recall that g_ is related to
the distribution f_ € D%.(M;C) by (5.25). Since ®_ is smooth and B_ is a submersion, it
suffices to show that f_ € H=279(M).

By Lemma 4.7, we have (X — 2)f_ = 0, that is f_ is a Pollicott—Ruelle resonant state
for the operator P = —iX corresponding to the resonance A\g = —2i, see §2.3.2. Given
that Pollicott—Ruelle resonant states are eigenfunctions of P on anisotropic Sobolev spaces
(see (4.10)), it suffices to show that one can choose the order function m in the definition of
the weight G(p, &) = m(p, &) log(1+ [£]|) such that the Fredholm property (4.11) holds on the
anisotropic Sobolev space Hq,p for ImA > —2 and Hgo C H —2-9. the latter is equivalent to
requiring that m > —2 — § everywhere.

In [DZ16, §§3.3-3.4] the Fredholm property (4.11) is shown using propagation of singular-
ities and microlocal radial estimates. Following the proof of [DZ16, Proposition 3.4], we see
that one only needs to check that the low regularity radial estimate [DZ16, Proposition 2.7]
applies to the operator P — A\ (where Im A > —2) at the radial sink E (see (2.4)) in the space
H~279, (The high regularity radial estimate [DZ16, Proposition 2.6] would apply once m is
sufficiently large on E?, which can be arranged.) The threshold regularity for this estimate
is computed in [DZ19, Theorem E.54]. In our setting, since the operator P is symmetric on
L?(M;dvol,) and it has order k = 1, it is enough that

H,
‘?’5’ <0 on EI

where p(p,&) = (X(p),&) is the principal symbol of P and its Hamiltonian flow is given
by efr(p,€) = (@i(p), der T (p)€), see [DZ16, §3.1]. Choosing the norm |¢| induced by the

24 (=2 4)
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Sasaki metric and using (3.7), we see that

il o g
€l b

which means that the threshold regularity condition for the radial estimate is satisfied and
the proof is finished. O

Coming back to the proof of (5.38), we rewrite it as
(Ak.9—,F¥)12s2) — 0 as e —+0 (5.39)
where the operator A, is given by (5.20):

A f(ry) = /S el = v P dS()

and the function k. € C([0,4]) is given by (using (5.33) and (5.36) in the second equality

below)
ety o= g =) = [ (1 () Yot

Using Lemma 5.9, we have in particular g+ € H~5/2(S?). Thus to finish the proof of (5.39),

_4

and thus of Theorem 5, it remains to prove the norm bound
||AK/5”H75/2(S2)_>H5/2(SQ) —0 as e — +0. (5.40)
To show (5.40), we will bound the norms of A,_ between Sobolev spaces using Lemma 5.5.
To do this we estimate the derivatives of k.:
Lemma 5.10. Let j, k € Ng. Then there exists C depending only on j,k such that for all
e €(0,1]
Cet, k> j;
I 08 (r) Loy < 4 Cetlog(1/e), k= j— 1; (5.41)
Ce2B+k=0) k< j— 2
Proof. Throughout the proof we denote by C' a constant depending only on j, k whose precise

value might change from line to line.

1. For any G(s) € C*°([0,00)) which is constant near s = co define

2cosht 4
Oi(7) .—/RG( NG )cosh tdt, 7>0.

We have the identity

70,0 = —1dy. . (5.42)
Moreover, we have the estimate
_ ClCl~
1472
which can be proved by bounding |®g(7)| by |G|z~ times the integral of cosh™tdt over
the set of ¢ such that cosht > /7/2 and using that | cosh™tdt = tanht — % tanh®¢ 4 C and
m—%(l—)\)3/2=%+0()\2) as A=12 - 0.

Gl =0 = [2a(7) (5.43)
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2. We have
ke(r) = r?®1_\ (e 2r).

By (5.42) for each j > 0

(10, Y ke(r) = r2(rd, + 2) (<I>1 v(e” 2r)) —7‘2<I>G (e72r)

where  Gj(s) := (2 — £59,)7(1 — x)(s).

Since x|(—1,1) = 1, we have G;|_; ;) = 0. Thus by (5.43)
. Cr?
(10 ) ke (r)| < 1442

Writing /& as a linear combination of (ro,)? with 0 < ¢ < j, we get
. C',"Q_j 4 i
‘8ﬂ/€5(7“)’ S w S CE T ‘7.
Since supp x C [—2, 2], we have by (5.33)

ke(r) = %7"2 for 0<r<e

Therefore
4

) e? . .
||7"kaan’€s(7")”Ll([0,4]) < C/o k7 (r2) dr + 054/ rk=3 dr

2

which gives (5.41). O

Combining Lemma 5.5 and Lemma 5.10, we get
A || g-s/2_s oz < C%, || Aw|l g—ss2_y g2 < C.
By interpolation in Sobolev spaces (taking f € H~%/%(S?) and using that HvHip(SQ) is bounded
by (1 = Age)v,0) pae2) < Cllvll 22 [[0]l 2(s2) for v = (1 — Ag2)¥/* A, f) we then have
[ Al r-5/2 pros2 < Ce.

=

This gives (5.40) and finishes the proof of Theorem 5

APPENDIX A. HARMONIC 1-FORMS OF CONSTANT LENGTH

The purpose of this appendix is to give an elementary proof of the fact that there are no
harmonic 1-forms of constant non-zero length on closed hyperbolic 3-manifolds:

Proposition A.1. Let (X,g) be a compact hyperbolic 3-manifold (see §5.1). Assume that
w e C®(E;T*Y) is a harmonic 1-form such that its length |wl|y is constant. Then w = 0.

Remark. Proposition A.1 follows directly from the more general work of [Zeg93]. The
presentation in the appendix borrows from ideas in [HP16].

To prove Proposition A.1 we argue by contradiction. Assume that w # 0; dividing w by
its length we arrange that, where § = — x dx is the formal adjoint of d (here * is the Hodge
star)

dw =0, ow=0, |wly=1.
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Using the metric g, define the dual vector field to w,
WeC®(;TY), [Wlg=wW)=1.

Lemma A.2. There exist one-dimensional smooth subbundles E+ C TY such that TY =
RWeE, dFE_.

Proof. 1. The Levi-Civita covariant derivative VW is an endomorphism on the fibers of T3.
This endomorphism is symmetric with respect to the metric g; indeed we compute for any

two vector fields YV, Z € C*(3; T%)
= dw(Y, Z2) =Yg(W, 2) = Zg(W,Y) — g(W,[Y, Z]) (A1)
=g9(VyW,2) — g(VzW,Y). '

Taking Z := W and using that g(VyW, W) = %Yg(VV, W) = 0 we see that the vector field W
is geodesible, that is

VwW =0. (A.2)
Since dw = 0, the vector field W is also divergence free; that is,
tr(VW) = 0. (A.3)
2. We next claim that
tr((VIW)?) = 2. (A.4)

To see this, take locally defined vector fields Y7, Y2 such that W, Y7, Y5 is a g-orthonormal
frame and Vy'Y; = 0. These can be obtained using parallel transport along the flow lines
of W (which are geodesics since ViyW = 0). We compute

1= g(VWVYjW — VijWW + Vvijw — VVWYjVV, Y])

= Wg(vyj w, Y]) - g<ijI/V’ vWY}) + g(VvijVV, YJ) - g(vaYjW7 YJ)

= Wy(Vy,W.Y)) + g(VW)?*Y}, Y)).
Here in the first line we used that X has sectional curvature —1, in the second line we
used (A.2), and in the last line we used that Vi Y; = 0. Summing over j = 1,2 and using
again (A.2) we get

2 = Wtr(VW) + tr((VW)?)

and (A.4) now follows from (A.3).

3. From (A.2), (A.3), and (A.4) we see that VW has eigenvalues 0,1, —1. It remains to
let £+ be the eigenspaces of VW with eigenvalues +1. g

We are now ready to finish the proof of Proposition A.1. We can approximate the 1-form w
by a closed 1-form with rational periods (integrals over closed curves on X); indeed, for an
appropriate choice of linear isomorphism H!(¥;C) ~ CP1(%) the forms with rational periods
correspond to points in Q). In particular, we can find a number ¢ € N and a closed
1-form @ with integer periods such that

Slzlp lw—q @], < 3. (A.5)
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Since w has integer periods, we can write w = df for some smooth map f from X to the circle
S! =R/Z. Since w(W) = 1, (A.5) implies that W f = (W) > 0 which in turn gives df # 0
everywhere, that is f is a fibration. Next, for each x € ¥ define the one-dimensional spaces

Ey(2) = (RW(2) @ Ea()) Nker df (),

then the tangent bundle of each fiber f~!(c) decomposes into a direct sum E+ @& E_. Since &
is orientable, so is f~!(c), which implies that f~!(c) is topologically a torus. Then ¥ is a torus
bundle over a circle, which gives a contradiction because such bundles do not admit hyperbolic
metrics: by the homotopy long exact sequence of a fibration the fundamental group of X
contains a subgroup isomorphic to Z @ Z, which is impossible for compact negatively curved
manifolds by Preissman’s Theorem [Leel8, Theorem 12.19].
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