
THE RUELLE ZETA FUNCTION AT ZERO

FOR NEARLY HYPERBOLIC 3-MANIFOLDS

MIHAJLO CEKIĆ, BENJAMIN DELARUE, SEMYON DYATLOV, AND GABRIEL P. PATERNAIN

Abstract. We show that for a generic conformal metric perturbation of a compact hyper-

bolic 3-manifold Σ with Betti number b1, the order of vanishing of the Ruelle zeta function

at zero equals 4 − b1, while in the hyperbolic case it is equal to 4 − 2b1. This is in contrast

to the 2-dimensional case where the order of vanishing is a topological invariant. The proof

uses the microlocal approach to dynamical zeta functions, giving a geometric description of

generalized Pollicott–Ruelle resonant differential forms at 0 in the hyperbolic case and using

first variation for the perturbation. To show that the first variation is generically nonzero

we introduce a new identity relating pushforwards of products of resonant and coresonant

2-forms on the sphere bundle SΣ with harmonic 1-forms on Σ.

Let (Σ, g) be a compact connected oriented 3-dimensional Riemannian manifold of negative

sectional curvature. The Ruelle zeta function

ζR(λ) =
∏
γ

(
1− eiλTγ

)
, Imλ� 1 (1.1)

is a converging product for Imλ large enough and continues meromorphically to λ ∈ C
as proved by Giulietti–Liverani–Pollicott [GLP13] and Dyatlov–Zworski [DZ16]. Here the

product is taken over all primitive closed geodesics γ on (Σ, g) and Tγ is the length of γ.

In this paper we study the order of vanishing of ζR at λ = 0, defined as the unique integer

mR(0) such that λ−mR(0)ζR(λ) is holomorphic and nonzero at 0. Our main result is

Theorem 1. Let (Σ, gH) be a compact connected oriented hyperbolic 3-manifold and b1(Σ)

be the first Betti number of Σ. Then:

1. For (Σ, gH) we have mR(0) = 4− 2b1(Σ).

2. There exists an open and dense set O ⊂ C∞(Σ;R) such that for any b ∈ O, there

exists ε > 0 such that for any τ ∈ (−ε, ε) \ {0} and gτ := e−2τbgH , the manifold (Σ, gτ ) has

mR(0) = 4− b1(Σ).

Part 1 of Theorem 1 was proved by Fried [Fri86a, Theorem 3] using the Selberg trace

formula. The novelty is part 2, which says that for generic conformal perturbations of

the hyperbolic metric the order of vanishing of ζR equals 4 − b1(Σ). In particular, when

b1(Σ) > 0 (fulfilled in many cases, in particular for mapping tori over pseudo-Anosov maps

[FM12, Theorem 13.4]), mR(0) is not topologically invariant. Theorem 1 is the first result

on instability of the order of vanishing of ζR at 0 for Riemannian metrics. It is in contrast

to the 2-dimensional case, where Dyatlov–Zworski [DZ17] showed that mR(0) = b1(Σ) − 2

for any compact connected oriented negatively curved surface (Σ, g), and is complementary
1
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to a recent breakthrough on the (acyclic) Fried conjecture by Dang–Guillarmou–Rivière–

Shen [DGRS20], see §1.3 below.

A result similar to Theorem 1 holds for contact perturbations of SΣ, see Theorem 4 in §4.

1.1. Outline of the proof. We now outline the proof of Theorem 1. We use the microlocal

approach to Pollicott–Ruelle resonances and dynamical zeta functions, which we review here –

see §2 for details and §1.3 for a historical overview. Let M = SΣ be the sphere bundle of

(Σ, g) and X ∈ C∞(M ;TM) be the generator of the geodesic flow. The geodesic flow is a

contact flow, i.e. there exists a 1-form α ∈ C∞(M ;T ∗M) such that ιXα = 1, ιXdα = 0, and

α∧dα∧dα is a nonvanishing volume form. When g has negative curvature, the geodesic flow

is Anosov, i.e. the tangent spaces TρM decompose into a direct sum of the flow, unstable, and

stable subspaces. Denote by E∗u, E∗s the dual unstable/stable subbundles of the cotangent

bundle T ∗M , that is, E∗u, E∗s are the annihilators of unstable/stable plus flow directions;

these define closed conic subsets of T ∗M .

Define the spaces of resonant k-forms at 0

Resk0 := {u ∈ D′(M ; Ωk) | ιXu = 0, LXu = 0, WF(u) ⊂ E∗u}. (1.2)

Here Ωk is the (complexified) bundle of k-forms, LX = dιX + ιXd is the Lie derivative with

respect to X, and for any distribution u ∈ D′(M ; Ωk) we denote by WF(u) ⊂ T ∗M \ 0 the

wavefront set of u, see for instance [Hör03, Chapter 8]. The wavefront set condition makes

Resk0 into a finite dimensional space, which is a consequence of the interpretation of Resk0
as the eigenspace at 0 of the operator Pk,0 := −iLX acting on certain anisotropic Sobolev

spaces tailored to the flow (see [FS11, Theorem 1.7] and [DZ17, Lemma 2.2]). We similarly

define the spaces of generalized resonant k-forms at 0

Resk,`0 := {u ∈ D′(M ; Ωk) | ιXu = 0, L`Xu = 0, WF(u) ⊂ E∗u}, Resk,∞0 :=
⋃
`≥1

Resk,`0 .

The semisimplicity condition for k-forms states that Resk,∞0 = Resk0, which means that the

operator Pk,0 has no nontrivial Jordan blocks at 0. We also have the dual spaces of generalized

coresonant k-forms at 0, replacing E∗u with E∗s in the wavefront set condition:

Resk,`0∗ := {u∗ ∈ D′(M ; Ωk) | ιXu∗ = 0, L`Xu∗ = 0, WF(u) ⊂ E∗s}.

Since E∗u∩E∗s = {0}, wavefront set calculus makes it possible to define u∧u∗ as a distributional

differential form as long as WF(u) ⊂ E∗u, WF(u∗) ⊂ E∗s .

The order of vanishing of the Ruelle zeta function at 0 can be expressed as the alternating

sum of the dimensions of the spaces of generalized resonant k-forms, see (2.59):

mR(0) =

4∑
k=0

(−1)k dim Resk,∞0 .

Thus the problem reduces to understanding the spaces Resk,∞0 for k = 0, 1, 2, 3, 4. The proof

of Theorem 1 computes their dimensions, listed in the table below, from which the formulas

for mR(0) follow immediately. See Theorem 2 in §3 for the hyperbolic case and Theorem 3

in §4, as well as §4.4, for the case of generic perturbations.
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Dimension of Hyperbolic Perturbation

Res0
0 = Res0,∞

0 1 1

Res1
0 = Res1,∞

0 2b1(Σ) b1(Σ)

Res2
0 b1(Σ) + 2 b1(Σ) + 2

Res2,2
0 = Res2,∞

0 2b1(Σ) + 2 b1(Σ) + 2

Res3
0 = Res3,∞

0 2b1(Σ) b1(Σ)

Res4
0 = Res4,∞

0 1 1

Note that the semisimplicity condition holds for k = 0, 1, 3, 4 in both the hyperbolic case

and for generic perturbations. However, semisimplicity fails for k = 2 in the hyperbolic case

(assuming b1(Σ) > 0), and it is restored for generic perturbations. Also, since b2(M) =

b1(Σ) + 1 (see (2.28)), we may interpret the dimension of Res2
0 in the perturbed case as the

‘topological part’ coming from the bijection with H2(M) and the extra invariant form dα.

The cases k = 0, 4 of the above table are well-known: the semisimplicity condition holds

and Res0
0, Res4

0 are spanned by 1, dα ∧ dα, see Lemma 2.4. One can also see that the map

u 7→ dα ∧ u gives an isomorphism from Res1,`
0 to Res3,`

0 . Thus it remains to understand the

spaces Resk,∞0 for k = 1, 2 and this is where the situation gets more complicated.

The spaces Resk0 ∩ ker d of resonant states that are closed forms play a distinguished role

in our argument. Similarly to [DZ17] we introduce linear maps πk from Resk0 ∩ ker d to

the de Rham cohomology groups Hk(M ;C), see (2.61). We show that the map π1 is an

isomorphism, see Lemma 2.8. This gives the dimension of the space of closed forms in Res1
0:

since b1(M) = b1(Σ),

dim(Res1
0 ∩ ker d) = b1(Σ).

In the hyperbolic case, the other b1(Σ)-dimensional space of non-closed forms in Res1
0 is

obtained by rotating the closed forms by π/2 in the dual unstable space, see §3.3. This

rotation commutes with the geodesic flow because the geodesic flow is conformal on the

stable/unstable spaces, see (3.7). This additional symmetry, which is only present in the

hyperbolic case, is related to the presence of a closed 2-form ψ ∈ C∞(M ; Ω2) which is

invariant under the geodesic flow and is not a multiple of dα, see §3.2.3. The space Res2
0 is

spanned by dα, ψ, and the differentials du where u are the non-closed forms in Res1
0, see §3.4.

We also show in §3.4 that each du ∈ d(Res1
0) lies in the range of LX , producing b1(Σ) Jordan

blocks for the operator P2,0.

In the case of the perturbation gτ = e−2τbgH , we use first variation techniques and make

the following nondegeneracy assumption (see §4.4): for the spaces Res1
0,Res1

0∗ and the contact

form α defined using the hyperbolic metric gH , and denoting by πΣ : M = SΣ → Σ the

projection map, we assume that

(du, du∗) 7→
∫
M

(π∗Σb)α ∧ du ∧ du∗ defines a nondegenerate pairing

on d(Res1
0)× d(Res1

0∗).

(1.3)
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Under the assumption (1.3), we show that the non-closed 1-forms in Res1
0 move away once τ

becomes nonzero (i.e. they turn into generalized resonant states for nonzero Pollicott–Ruelle

resonances), see §4.1. Thus for 0 < |τ | < ε all the resonant 1-forms are closed and we get

dim Res1
0 = b1(Σ). Further analysis shows that semisimplicity is restored for k = 2 and

dim Res2
0 = b1(Σ) + 2.

It remains to show that the nondegeneracy assumption (1.3) holds for a generic choice of

the conformal factor b ∈ C∞(Σ;R). The difficulty here is that b can only depend on the

point in Σ and not on elements of SΣ which is where α ∧ du ∧ du∗ lives. We reduce (1.3)

to the following statement on nontriviality of pushforwards (see Proposition 4.10): for each

real-valued resonant 1-form for the hyperbolic metric u ∈ Res1
0 we have

du 6= 0 =⇒ πΣ∗(α ∧ du ∧ J ∗(du)) 6= 0. (1.4)

Here J : (x, v) 7→ (x,−v) is the antipodal map on M = SΣ and πΣ∗ is the pushforward

of differential k-forms on M to (k − 2)-forms on Σ obtained by integrating along the fibers,

see (2.19).

The statement (1.4) concerns resonant 1-forms for the hyperbolic metric g = gH , which are

relatively well-understood. However, it is complicated by the fact that πΣ∗(α∧ du∧J ∗(du))

is merely a distribution, so we cannot hope to show it is nonzero by evaluating its value at

some point. Instead we pair it with functions in C∞(Σ) which have to be chosen carefully so

that we can compute the pairing. More precisely, we prove the following identity (Theorem 5

in §5):

Q4F = −1
6∆g|σ|2g where πΣ∗(α ∧ du ∧ J ∗(du)) = F d volg . (1.5)

Here d volg is the volume form on (Σ, g), ∆g is the Laplace–Beltrami operator, Q4 : D′(Σ)→
C∞(Σ) is a naturally defined smoothing operator, and

σ := πΣ∗(dα ∧ u) ∈ C∞(Σ;T ∗Σ)

is proved to be a nonzero harmonic 1-form on (Σ, gH). The identity (1.5) implies the non-

triviality statement (1.4): if F = 0 then |σ|2g is constant, but hyperbolic 3-manifolds do not

admit harmonic 1-forms of nonzero constant length as shown in Appendix A. This finishes

the proof of Theorem 1.

If one is interested instead in conformal perturbations of the contact form α, then one

needs to show that α ∧ du ∧ du∗ is not identically 0 assuming that u ∈ Res1
0, u∗ ∈ Res1

0∗
and du 6= 0, du∗ 6= 0. The latter follows from the full support property for Pollicott–Ruelle

resonant states proved by Weich [Wei17]. See Theorem 4 in §4 for details.

We finally note that it would have been possible to introduce a flat unitary twist in our

discussion. Namely, we can consider a Hermitian vector bundle over Σ endowed with a

unitary flat connection A. Resonant spaces can be defined using the operator dA and the

holonomy of A provides a way to twist the Ruelle zeta function as well, we refer to [CP20]

for details. We do not pursue this extension here in order to simplify the presentation.

1.2. A conjecture. Theorem 1 can be interpreted as follows: the hyperbolic metric has

non-closed resonant states due to the extra symmetries, and by destroying these symmetries
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we make all resonant states closed. We thus make the following conjecture about generic

contact Anosov flows:

Conjecture 1. Let M be a compact 2n + 1 dimensional manifold and α a contact 1-form

on M such that the corresponding flow is Anosov with orientable stable/unstable bundles.

Define the spaces Resk0, 0 ≤ k ≤ 2n, by (1.2) and let πk : Resk0 ∩ ker d → Hk(M ;C) be

defined by (2.61). Then for a generic choice of α we have:

(1) the semisimplicity condition holds in all degrees k = 0, . . . , 2n;

(2) d(Resk0) = 0 for all k = 0, . . . , 2n;

(3) for k = 0, . . . , n the map πk is onto, kerπk = dα ∧ Resk−2
0 , and dim kerπk =

dim Resk−2
0 .

Denoting by bk(M) the k-th Betti number of M , we then have

dim Resk0 =

bk/2c∑
j=0

bk−2j(M), 0 ≤ k ≤ n; dim Res2n−k
0 = dim Resk0 (1.6)

and the order of vanishing of the Ruelle zeta function at 0 is given by (see [DZ16, (2.5)])

mR(0) =

2n∑
k=0

(−1)k+n dim Resk0 =

n∑
k=0

(−1)k+n(n+ 1− k)bk(M). (1.7)

The proof of part 2 of Theorem 1 (see Theorem 3 in §4, as well as §4.4) shows that

Conjecture 1 holds for n = 2 and geodesic flows of generic nearly hyperbolic metrics (while the

conjecture is stated for generic metrics that do not have to be nearly hyperbolic). Moreover,

[DZ17] shows that Conjecture 1 holds for n = 1 and any contact Anosov flow.

Note that the conditions (1) and (2) of Conjecture 1 imply (3). Indeed, by the work of

Dang–Rivière [DR20, Theorem 2.1] the cohomology of the complex (Resk,∞, d), with Resk,∞

defined in (2.38) below with λ0 := 0, is isomorphic to the de Rham cohomology ofM (with the

isomorphism mapping each closed form in Resk,∞ to its cohomology class). By (2.43) and the

semisimplicity condition (1), we have Resk,∞ = Resk0 ⊕(α∧Resk−1
0 ). By condition (2), we have

d(u+ α ∧ v) = dα ∧ v for all u ∈ Resk0, v ∈ Resk−1
0 . If k ≤ n, then dα∧ : Resk−1

0 → Resk+1
0 is

injective, so Resk,∞ ∩ ker d = Resk0 and d(Resk−1,∞) = dα∧Resk−2
0 . This gives condition (3).

Note also that for n = 2 the set of contact forms satisfying Conjecture 1 is open in

C∞(M ;TM). Indeed, by the perturbation theory discussed in §4.1, more specifically (4.18),

if we take a sufficiently small perturbation of a contact form satisfying Conjecture 1, then

dim Res1,∞
0 ≤ b1(M) and dim Res2,∞

0 ≤ b2(M)+1. By Lemma 2.8 we see that semisimplicity

holds for k = 1 and d(Res1
0) = 0. Then Lemma 2.11 together with Lemma 2.4 give all the

conclusions of Conjecture 1. A similar argument might work in the case of higher n. Thus

the main task in proving the conjecture is to show that (1) and (2) hold on a dense set of

contact forms.

One can make a similar conjecture for geodesic flows of generic negatively curved compact

orientable n + 1-dimensional Riemannian manifolds (Σ, g), with M = SΣ. In particular, if

n = 2m is even, then Σ is odd dimensional and thus has Euler characteristic 0. By the Gysin
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exact sequence we have bk(M) = bk(Σ) for 0 ≤ k < n and bn(M) = bn(Σ)+b0(Σ). Moreover,

by Poincaré duality we have bk(Σ) = bn+1−k(Σ). Thus (1.7) becomes

mR(0) = b0(Σ) +
m∑
k=0

(−1)k(2m+ 1− 2k)bk(Σ).

This is in contrast to the hyperbolic case, where by [Fri86a, Theorem 3]

mR(0) =

m∑
k=0

(−1)k(2m+ 2− 2k)bk(Σ).

Note that we only expect Conjecture 1 to hold for generic flows/metrics rather than, say, all

non-hyperbolic metrics: for n = 2 the proof of Theorem 1 uses first variation which by the

Implicit Function Theorem suggests that there is a ‘singular submanifold’ of metrics passing

through the hyperbolic metric on which Conjecture 1 fails.

1.3. Previous work. The treatment of Pollicott–Ruelle resonances of an Anosov flow as

eigenvalues of the generator of the flow on anisotropic Banach and Hilbert spaces has been

developed by many authors, including Baladi [Bal05], Baladi–Tsujii [BT07], Blank–Keller–

Liverani [BKL02], Butterley–Liverani [BL07], Gouëzel–Liverani [GL06], and Liverani [Liv04,

Liv05] (some of the above papers considered the related setting of Anosov maps). In

this paper we use the microlocal approach to dynamical resonances, introduced by Faure–

Sjöstrand [FS11] and developed further by Dyatlov–Zworski [DZ16]; see also Faure–Roy–

Sjöstrand [FRS08], Dyatlov–Guillarmou [DG16], as well as Dang–Rivière [DR19] and Med-

dane [Med21] for the treatment of Morse–Smale and Axiom A flows.

The study of the relation of the vanishing order mR(0) to the topology of the underlying

manifold M has a long history, going back to the works of Fried [Fri86b, Fri86a] for geodesic

flows on hyperbolic manifolds. The paper [Fri86a] also related the leading coefficient of

ζR at 0 to Reidemeister torsion, which is a topological invariant of M . It considered the

more general setting of a twisted zeta function corresponding to a unitary representation.

One advantage of such twists is that one can choose the representation so that the twisted de

Rham complex is acyclic, i.e. has no cohomology, and then one expects ζR to be holomorphic

and nonvanishing at 0.

In [Fri87, p. 66] Fried conjectured a formula relating the Reidemeister torsion with the

value ζR(0) for geodesic flows on all compact locally homogeneous manifolds with acyclic

representations. Fried’s conjecture was proved by Shen [She18] for compact locally sym-

metric reductive manifolds, following earlier contributions by Bismut [Bis11] and Moscovici–

Stanton [MS91]. The abovementioned works [Fri86b, Fri86a, Bis11, MS91, She18] used repre-

sentation theory and Selberg trace formulas, which do not extend beyond the class of locally

symmetric manifolds.

In recent years much progress has been made on understanding the relation between the

behavior of ζR at 0, as well as the dimensions of Resk,`0 , with topological invariants for general

(not locally symmetric) negatively curved Riemannian manifolds and Anosov flows:
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• Dyatlov–Zworski [DZ17] computed mR(0) for any contact Anosov flow in dimension 3

with orientable stable/unstable bundles, including geodesic flows on compact oriented

negatively curved surfaces;

• Dang–Rivière [DR20, Theorem 2.1] showed that the chain complex (Res•,∞, d), where

Resk,∞ = Resk,∞(0) is defined in (2.39) below, is homotopy equivalent to the usual de

Rham complex and hence their cohomologies agree. One can see that Conjecture 1

is compatible with this result, using (2.43) and the fact that (dα∧)k : Ωn−k
0 → Ωn+k

0

is a bundle isomorphism for 0 ≤ k ≤ n;

• Hadfield [Had18] showed a result similar to [DZ17] for geodesic flows on negatively

curved surfaces with boundary;

• Dang–Guillarmou–Rivière–Shen [DGRS20] computed dim Resk,∞0 for hyperbolic 3-

manifolds and proved Fried’s formula relating ζR(0) to Reidemeister torsion for nearly

hyperbolic 3-manifolds in the acyclic case; see also Chaubet–Dang [CD20];

• Küster–Weich [KW20] obtained several results on geodesic flows on compact hyper-

bolic manifolds and their perturbations, in particular showing that dim Res1
0 = b1(Σ)

when dim Σ 6= 3;

• Cekić–Paternain [CP20] studied volume preserving Anosov flows in dimension 3, giv-

ing the first example of a situation where mR(0) jumps under perturbations of the

flow and thus is not topologically invariant;

• Borns-Weil–Shen [BWS21] proved a result similar to [DZ17] for nonorientable sta-

ble/unstable bundles.

Our Theorem 1 gives a jump in mR(0) for geodesic flows on 3-manifolds and indicates that

the situation for the hyperbolic case is different from that in the case of generic metrics.

We stress that it is more difficult to obtain results for generic metric perturbations (such as

Theorem 1) than for generic perturbations of contact forms (such as Theorem 4 in §4) due

to the more restricted nature of metric perturbations.

One of our main technical results (Theorem 5) bears (limited) similarities to known pairing

formulas for Patterson–Sullivan distributions such as those established by Anantharaman–

Zelditch [AZ07], Hansen–Hilgert–Schröder [HHS12], Dyatlov–Faure–Guillarmou [DFG15],

and Guillarmou–Hilgert–Weich [GHW21]. We briefly discuss this in the Remark after The-

orem 5.

1.4. Structure of the paper.

• §2 discusses contact Anosov flows on 5-manifolds and sets up the scene for the rest

of the paper. In particular, it introduces Pollicott–Ruelle resonances, (co-)resonant

states, dynamical zeta functions, de Rham cohomology, and geodesic flows. It also

proves various general lemmas about the maps πk and semisimplicity.

• §3 gives a complete description of generalized resonant states at 0 for hyperbolic 3-

manifolds, proving part 1 of Theorem 1. The approach in this section is geometric,

as opposed to the algebraic route taken in [Fri86a] and [DGRS20].

• §4 discusses contact perturbations of geodesic flows on hyperbolic 3-manifolds. It

proves Theorem 3 which is a general perturbation statement using the nondegeneracy



8 MIHAJLO CEKIĆ, BENJAMIN DELARUE, SEMYON DYATLOV, AND GABRIEL P. PATERNAIN

condition (1.3), as well as Theorem 4 on generic contact perturbations. It also gives

the proof of part 2 of Theorem 1, relying on the key identity (1.5).

• §5 contains the proof of the identity (1.5) (stated in Theorem 5), using a change of

variables, a regularization procedure, and the results of §3.

• Finally, Appendix A gives a proof of the fact that hyperbolic 3-manifolds have no

nonzero harmonic 1-forms of constant length.

2. Contact 5-dimensional flows

In this section we study general contact Anosov flows on 5-dimensional manifolds. Some

of the statements below apply to non-contact Anosov flows and to other dimensions, however

we use the setting of 5-dimensional contact flows for uniformity of presentation.

2.1. Contact Anosov flows. Assume that M is a compact connected 5-dimensional C∞

manifold and α ∈ C∞(M ;T ∗M) is a contact 1-form on M , namely

d volα := α ∧ dα ∧ dα 6= 0 everywhere.

We fix the orientation on M by requiring that d volα be positively oriented. Let X ∈
C∞(M ;TM) be the associated Reeb field, that is the unique vector field satisfying

ιXα = 1, ιXdα = 0. (2.1)

Note that this immediately implies (where LX denotes the Lie derivative)

LXα = dιXα+ ιXdα = 0.

We assume that the flow generated by X,

ϕt := etX : M →M,

is an Anosov flow, namely there exists a continuous flow/unstable/stable decomposition of

the tangent spaces to M ,

TρM = E0(ρ)⊕ Eu(ρ)⊕ Es(ρ), ρ ∈M, E0(ρ) := RX(ρ) (2.2)

and there exist constants C, θ > 0 and a smooth norm | • | on the fibers of TM such that for

all ρ ∈M , ξ ∈ TρM , and t

|dϕt(ρ)ξ| ≤ Ce−θ|t| · |ξ| if

{
t ≤ 0, ξ ∈ Eu(ρ) or

t ≥ 0, ξ ∈ Es(ρ).
(2.3)

The flow/unstable/stable decomposition gives rise to the dual decomposition of the cotangent

spaces to M ,
T ∗ρM = E∗0(ρ)⊕ E∗u(ρ)⊕ E∗s (ρ), E∗0 := (Eu ⊕ Es)⊥,

E∗u := (E0 ⊕ Eu)⊥, E∗s := (E0 ⊕ Es)⊥.
(2.4)

Since LXα = 0, we see from (2.3) that α|Eu⊕Es = 0 and thus

E∗0 = Rα.

Since α is a contact form and dα vanishes on Eu×Eu and on Es×Es (as follows from (2.3)

and the fact that LXdα = 0), we have dimEu = dimEs = 2.
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2.1.1. Bundles of differential forms. We define the vector bundles over M

Ωk := ∧k(T ∗M), Ωk
0 := {ω ∈ Ωk | ιXω = 0} ' ∧k(E∗u ⊕ E∗s ). (2.5)

Note that smooth sections of Ωk are differential k-forms on M .

We use the de Rham cohomology groups

Hk(M ;C) :=
{u ∈ C∞(M ; Ωk) | du = 0}
{dv | v ∈ C∞(M ; Ωk−1)}

. (2.6)

Unless otherwise stated, we will always take Ωk to be complexified. We define the Betti

numbers

bk(M) := dimHk(M ;C).

Since M is connected and by Poincaré duality we have

b0(M) = 1, bk(M) = b5−k(M).

The bundles Ωk and Ωk
0 are related as follows:

Ωk ' Ωk
0 ⊕ Ωk−1

0

with the canonical isomorphism and its inverse given by

u 7→ (u− α ∧ ιXu, ιXu), (v, w) 7→ v + α ∧ w. (2.7)

Denote by dα∧ the map u 7→ dα ∧ u and by dα∧2 the map u 7→ dα ∧ dα ∧ u, then we

have linear isomorphisms (as both maps are injective and image and domain have the same

dimension)

dα∧ : Ω1
0 → Ω3

0, dα∧2 : Ω0
0 → Ω4

0. (2.8)

We also have a nondegenerate bilinear pairing between sections of Ωk
0 and Ω4−k

0 given by

u ∈ C∞(M ; Ωk
0), u∗ ∈ C∞(M ; Ω4−k

0 ) 7→ 〈〈u, u∗〉〉 :=

∫
M
α ∧ u ∧ u∗ (2.9)

which in particular identifies the dual space to L2(M ; Ωk
0) with L2(M ; Ω4−k

0 ). IfA : C∞(M ; Ωk
0)→

D′(M ; Ωk
0) is a continuous operator, where D′ denotes the space of distributions, then its

transpose operator is the unique operator AT : C∞(M ; Ω4−k
0 )→ D′(M ; Ω4−k

0 ) satisfying

〈〈Au, u∗〉〉 = 〈〈u,ATu∗〉〉 for all u ∈ C∞(M ; Ωk
0), u∗ ∈ C∞(M ; Ω4−k

0 ). (2.10)

2.2. Geodesic flows. A large class of examples of contact Anosov flows is given by geodesic

flows on negatively curved manifolds, which is the setting of the main results of this paper.

More precisely, assume that (Σ, g) is a compact connected oriented 3-dimensional Riemannian

manifold. Define M to be the sphere bundle of Σ and let πΣ be the canonical projection:

M := SΣ = {(x, v) ∈ TΣ: |v|g = 1}, πΣ : M → Σ.

Define the canonical, or tautological, 1-form α on M as follows: for all ξ ∈ T(x,v)M ,

〈α(x, v), ξ〉 = 〈v, dπΣ(x, v)ξ〉g. (2.11)

Then α is a contact form, the corresponding flow ϕt is the geodesic flow, and d volα is the

standard Liouville volume form up to a constant, see for instance [Pat99, §1.3.3]. If the
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metric g has negative sectional curvature, then the flow ϕt is Anosov, see for instance [Kli95,

Theorem 3.9.1].

We have the time reversal involution

J : M →M, J (x, v) = (x,−v) (2.12)

which is an orientation reversing diffeomorphism satisfying

J ∗α = −α, J ∗X = −X, ϕt ◦ J = J ◦ ϕ−t (2.13)

and the differential of J maps E0, Eu, Es into E0, Es, Eu.

2.2.1. Horizontal and vertical spaces. Recall from (2.2) that an Anosov flow induces a split-

ting of the tangent bundle TM into the flow, unstable, and stable subbundles. For geodesic

flows there is another splitting, into horizontal and vertical subbundles, which we briefly

review here. See [Pat99, §1.3.1] for more details.

Let (x, v) ∈M = SΣ. The vertical space at (x, v) is the tangent space to the fiber SxΣ:

V(x, v) := ker dπΣ(x, v) ⊂ T(x,v)M.

To define a complementary horizontal subspace of T(x,v)M , we use the metric. The connection

map of the metric is the unique bundle homomorphism K : TM → TΣ covering the map πΣ

such that for any curve on M written as

ρ(t) = (x(t), v(t)), x(t) ∈ Σ, v(t) ∈ Sx(t)Σ

we have

K(ρ(t))ρ̇(t) = Dtv(t) ∈ Tx(t)Σ (2.14)

where Dtv(t) denotes the Levi–Civita covariant derivative of the vector field v(t) along

the curve x(t) (see e.g. [dC92, Proposition 2.2] for a precise definition). Note that since

dt〈v(t), v(t)〉g = 0, the range of K(x, v) is g-orthogonal to v.

We now define the horizontal space as

H(x, v) := kerK(x, v) ⊂ T(x,v)M.

We have the splitting

T(x,v)M = H(x, v)⊕V(x, v), dim H(x, v) = 3, dim V(x, v) = 2

and the isomorphisms (here {v}⊥ is the g-orthogonal complement of v in TxΣ)

dπΣ(x, v) : H(x, v)→ TxΣ, K(x, v) : V(x, v)→ {v}⊥

which together give the following isomorphism T(x,v)M → TxΣ⊕ {v}⊥:

ξ 7→ (ξH , ξV ), ξH = dπΣ(x, v)ξ, ξV = K(x, v)ξ. (2.15)

We use the map (2.15) to identify T(x,v)M with TxΣ⊕ {v}⊥.

Under the identification (2.15), the contact form α and its differential satisfy (see [Pat99,

Proposition 1.24])
α(x, v)(ξ) = 〈ξH , v〉g,

dα(x, v)(ξ, η) = 〈ξV , ηH〉g − 〈ξH , ηV 〉g.
(2.16)
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Using the splitting (2.15), we define the Sasaki metric 〈•, •〉S on M as follows:

〈ξ, η〉S := 〈ξH , ηH〉g + 〈ξV , ηV 〉g. (2.17)

We finally remark that the generator X of the geodesic flow has the following form under

the isomorphism (2.15):

X(x, v)H = v, X(x, v)V = 0. (2.18)

2.2.2. De Rham cohomology of the sphere bundle. We now describe the de Rham cohomology

of M = SΣ in terms of the cohomology of Σ. To relate the two, we use the pullback operators

π∗Σ : C∞(Σ; Ωk)→ C∞(M ; Ωk), 0 ≤ k ≤ 3

and the pushforward operators defined by integrating along the fibers of SΣ

πΣ∗ : C∞(M ; Ωk)→ C∞(Σ; Ωk−2), 2 ≤ k ≤ 5. (2.19)

Here the orientation on each fiber SxΣ is induced by the orientation on Σ: if v, v1, v2 is a

positively oriented orthonormal basis of TxΣ, then the vertical vectors corresponding to v1, v2

form a positively oriented basis of Tv(SxΣ). The pushforward operation can be characterized

as follows: if X1, . . . , Xk−2 are vector fields on Σ and X̃1, . . . , X̃k−2 are vector fields on M

projecting to X1, . . . , Xk−2 under dπΣ, then for any ω ∈ C∞(M ; Ωk) and x ∈ Σ

πΣ∗ω(x)(X1, . . . , Xk−2) =

∫
SxΣ

ι
X̃k−2

. . . ι
X̃1
ω.

Another characterization of πΣ∗ is that for any ω ∈ C∞(M ; Ωk) and any compact k − 2

dimensional oriented submanifold with boundary Y ⊂ Σ, we have∫
π−1

Σ (Y )
ω =

∫
Y
πΣ∗ω. (2.20)

Here the orientation on π−1
Σ (Y ) is induced by the orientation on Y . If Y = Σ is the entire

base manifold, then the orientation on π−1
Σ (Σ) = SΣ featured in (2.20) is opposite to the

usual orientation on M = SΣ, induced by d volα = α ∧ dα ∧ dα. In fact, using (2.16) we can

compute that

πΣ∗d volα = −8πd volg (2.21)

where d volg is the volume form on Σ induced by g and the choice of orientation, by applying

d volα to the vectors X = (v, 0), (v1, 0), (v2, 0), (0, v1), (0, v2) written using the horizon-

tal/vertical decomposition (2.15), where v, v1, v2 is a positively oriented g-orthonormal basis

on Σ.

The pushforward map has the following properties (see for instance [BT82, Proposi-

tions 6.14.1 and 6.15] for the related case of vector bundles):

dπΣ∗ = πΣ∗d, (2.22)

πΣ∗
(
ω1 ∧ (π∗Σω2)

)
= (πΣ∗ω1) ∧ ω2. (2.23)

Note that the maps πΣ∗, π
∗
Σ can also be defined on distributional forms. For πΣ∗ this follows

from the fact that pushforward is always well-defined on distributions as long as the fibers are
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compact and for the pullback π∗Σ this follows from the fact that πΣ is a submersion [Hör03,

Theorem 6.1.2].

Since the map J defined in (2.12) is an orientation reversing diffeomorphism of the fibers

of SΣ, we also have

πΣ∗(J ∗ω) = −πΣ∗ω. (2.24)

Since pullbacks commute with the differential d, and by (2.22), the operations π∗Σ, πΣ∗
induce maps on de Rham cohomology, which we denote by the same letters:

π∗Σ : Hk(Σ;C)→ Hk(M ;C), πΣ∗ : Hk(M ;C)→ Hk−2(Σ;C).

From the Gysin exact sequence (see for instance [BT82, Proposition 14.33], where the Euler

class is zero since Σ is three-dimensional; alternatively one can use Künneth formulas and

the fact that every compact orientable 3-manifold is parallelizable) we have isomorphisms

π∗Σ : H1(Σ;C)→ H1(M ;C), πΣ∗ : H4(M ;C)→ H2(Σ;C) (2.25)

and the exact sequences

0→ H2(Σ;C)
π∗Σ−−→ H2(M ;C)

πΣ∗−−→ H0(Σ;C)→ 0, (2.26)

0→ H3(Σ;C)
π∗Σ−−→ H3(M ;C)

πΣ∗−−→ H1(Σ;C)→ 0. (2.27)

In particular, we get formulas for the Betti numbers of the sphere bundle M :

b0(M) = b5(M) = 1, b1(M) = b4(M) = b1(Σ), b2(M) = b3(M) = b1(Σ) + 1. (2.28)

2.3. Pollicott–Ruelle resonances. We now review the theory of Pollicott–Ruelle reso-

nances in the present setting. Define the first order differential operators

Pk := −iLX : C∞(M ; Ωk)→ C∞(M ; Ωk),

Pk,0 := −iLX : C∞(M ; Ωk
0)→ C∞(M ; Ωk

0).

Note that Pk,0 is the restriction of Pk to C∞(M ; Ωk
0) which is the space of all u ∈ C∞(M ; Ωk)

which satisfy ιXu = 0.

For λ ∈ C with Imλ large enough, the integral

Rk(λ) := i

∫ ∞
0

eiλte−itPk dt : L2(M ; Ωk)→ L2(M ; Ωk) (2.29)

converges and defines a bounded operator on L2 which is holomorphic in λ. Here the evolution

group e−itPk is given by e−itPku = ϕ∗−tu. It is straightforward to check that Rk(λ) is the

L2-resolvent of Pk:

Rk(λ) = (Pk − λ)−1 : L2(M ; Ωk)→ L2(M ; Ωk), Imλ� 1 (2.30)

where we treat Pk as an unbounded operator on L2 with domain {u ∈ L2(M ; Ωk) | Pku ∈
L2(M ; Ωk)} and Pku is defined in the sense of distributions.
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2.3.1. Meromorphic continuation. Since ϕt is an Anosov flow, the resolvent Rk(λ) admits a

meromorphic continuation

Rk(λ) : C∞(M ; Ωk)→ D′(M ; Ωk), λ ∈ C,

see for instance [DZ16, §3.2] and [FS11, Theorems 1.4, 1.5]. The proof of this continuation

shows that Rk(λ) acts on certain anisotropic Sobolev spaces adapted to the stable/unstable

decompositions, see e.g. [DZ16, §3.1]; this makes it possible to compose the operator Rk(λ)

with itself. Instead of introducing these spaces here, we use the spaces of distributions

D′Γ(M ; Ωk) := {u ∈ D′(M ; Ωk) |WF(u) ⊂ Γ} (2.31)

where Γ ⊂ T ∗M \ 0 is a closed conic set and WF(u) denotes the wavefront set of a distribu-

tion u. These spaces come with a natural sequential topology, see [Hör03, Definition 8.2.2].

We have the wavefront set property of Rk(λ) proved in [DZ16, (3.7)]:

WF′(Rk(λ)) ⊂ W := ∆(T ∗M) ∪Υ+ ∪ (E∗u × E∗s ) (2.32)

where ∆(T ∗M) ⊂ T ∗M × T ∗M is the diagonal and Υ+ = {(ϕt(x), dϕt(x)−T ξ, x, ξ) | t ≥
0, ξ(X(x)) = 0}; for an operator B : C∞(M)→ D′(M) with Schwartz kernel KB ∈ D′(M ×
M), we denote WF′(B) = {(x, ξ, y,−η) | (x, ξ, y, η) ∈ WF(KB)} ⊂ T ∗(M × M). The

Schwartz kernel of Rk(λ) is meromorphic in λ with values in D′W ′ where W ′ := {(x, ξ, y,−η) |
(x, ξ, y, η) ∈ W }. By the wavefront set calculus [Hör03, Theorem 8.2.13] and since E∗u∩E∗s =

0, Rk(λ) defines a meromorphic family of continuous operators

Rk(λ) : D′E∗u(M ; Ωk)→ D′E∗u(M ; Ωk) (2.33)

where we view E∗u ⊂ T ∗M as a closed conic subset and define D′E∗u by (2.31).

Note that differential operators (in particular, d, ιX ,LX) define continuous maps on the

regularity classes D′E∗u . We have

Rk(λ)(Pk − λ)u = (Pk − λ)Rk(λ)u = u for all u ∈ D′E∗u(M ; Ωk). (2.34)

For Imλ � 1 and u ∈ C∞(M ; Ωk) this follows from (2.30); the general case follows from

here by analytic continuation and since C∞ is dense in D′E∗u .

We also have the commutation relations

dRk(λ)u = Rk+1(λ)du, ιXRk(λ)u = Rk−1(λ)ιXu for all u ∈ D′E∗u(M ; Ωk). (2.35)

As with (2.34) it suffices to consider the case Imλ� 1 and u ∈ C∞(M ; Ωk), in which (2.35)

follows from (2.29) and the fact that d and ιX commute with ϕ∗−t.

The poles of the family of operators Rk(λ) are called Pollicott–Ruelle resonances on k-

forms. At each pole λ0 ∈ C we have an expansion (see for instance [DZ16, (3.6)])

Rk(λ) = RHk (λ;λ0)−
Jk(λ0)∑
j=1

(Pk − λ0)j−1Πk(λ0)

(λ− λ0)j
(2.36)

where RHk (λ;λ0) : D′E∗u(M ; Ωk) → D′E∗u(M ; Ωk) is a family of operators holomorphic in a

neighborhood of λ0, Jk(λ0) ≥ 1 is an integer, and Πk(λ0) : D′E∗u(M ; Ωk)→ D′E∗u(M ; Ωk) is a

finite rank operator commuting with Pk and such that (Pk − λ0)Jk(λ0)Πk(λ0) = 0.
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Taking the expansions of (2.35) at λ0 we see that

dΠk(λ0) = Πk+1(λ0)d, ιXΠk(λ0) = Πk−1(λ0)ιX . (2.37)

2.3.2. Resonant states. The range of the operator Πk(λ0) is equal to the space of generalised

resonant states (see for instance [DZ16, Proposition 3.3])

Resk,∞(λ0) :=
⋃
`≥1

Resk,`(λ0) (2.38)

where we define

Resk,`(λ0) := {u ∈ D′E∗u(M ; Ωk) | (Pk − λ0)`u = 0}. (2.39)

We define the algebraic multiplicity of λ0 as a resonance on k-forms by

mk(λ0) := rank Πk(λ0) = dim Resk,∞(λ0). (2.40)

The geometric multiplicity is the dimension of the space of resonant states

Resk(λ0) := Resk,1(λ0) = {u ∈ D′E∗u(M ; Ωk) | (Pk − λ0)u = 0}.

We say a resonance λ0 of Pk is semisimple if the algebraic and geometric multiplicities

coincide, that is Resk,∞(λ0) = Resk(λ0). This is equivalent to saying that Jk(λ0) = 1

in (2.36). Another equivalent definition of semisimplicity is

u ∈ D′E∗u(M ; Ωk), (Pk − λ0)2u = 0 =⇒ (Pk − λ0)u = 0. (2.41)

We note that the operators Πk(λ0) are idempotent. In fact, applying the Laurent expan-

sion (2.36) at λ0 to u ∈ Resk,`(λ1) and using the identity Rk(λ)u = −
∑`−1

j=0(λ−λ1)−j−1(Pk−
λ1)ju we see that

Πk(λ0)Πk(λ1) =

{
Πk(λ0) if λ1 = λ0,

0 if λ1 6= λ0.
(2.42)

2.3.3. Operators on the bundles Ωk
0. The above constructions apply equally as well to the

operators Pk,0 (except that the operator d does not preserve sections of Ωk
0, so the first

commutation relation in (2.37) does not hold, and the second one is trivial); we denote the

resulting objects by

Rk,0(λ), Jk,0(λ0), RHk,0(λ;λ0), Πk,0(λ0), Resk,`0 (λ0), mk,0(λ0).

Under the isomorphism (2.7) the operator Pk is conjugated to Pk,0⊕Pk−1,0. Therefore (2.7)

gives an isomorphism

Resk,`(λ0) ' Resk,`0 (λ0)⊕ Resk−1,`
0 (λ0). (2.43)

Moreover, we get for all u ∈ D′E∗u(M ; Ωk)

Πk(λ0)u = Πk,0(λ0)(u− α ∧ ιXu) + α ∧Πk−1,0(λ0)ιXu. (2.44)

Since LXdα = 0, the operations (2.8) give rise to linear isomorphisms

dα∧ : Res1,`
0 (λ0)→ Res3,`

0 (λ0), dα∧2 : Res0,`
0 (λ0)→ Res4,`

0 (λ0) (2.45)

which in particular give the equalities

m1,0(λ0) = m3,0(λ0), m0,0(λ0) = m4,0(λ0). (2.46)
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2.3.4. Transposes and coresonant states. Since LXα = 0 and
∫
M LXω = 0 for any 5-form ω,

we have

(Pk,0)T = −P4−k,0, k = 0, 1, 2, 3, 4, (2.47)

where the transpose is defined using the pairing 〈〈•, •〉〉, see (2.10). Thus the transpose of

the resolvent (Rk,0(λ))T is the meromorphic continuation of the resolvent corresponding to

the vector field −X; the latter generates an Anosov flow with the unstable and stable spaces

switching roles compared to the ones for X. Similarly to (2.33) we have

(Rk,0(λ))T : D′E∗s (M ; Ω4−k
0 )→ D′E∗s (M ; Ω4−k

0 ) (2.48)

where D′E∗s is the space of distributional sections with wavefront set contained in E∗s . Same

applies to the transposes of the operators RHk,0(λ;λ0) and Πk,0(λ0) appearing in (2.36). The

range of (Πk,0(λ0))T is the space of generalised coresonant states Res4−k,∞
0∗ (λ0) where

Resk,∞0∗ (λ0) :=
⋃
`≥1

Resk,`0∗ (λ0),

Resk,`0∗ (λ0) := {u∗ ∈ D′E∗s (M ; Ωk
0) | (Pk,0 + λ0)`u∗ = 0}.

The space of coresonant states is defined as

Resk0∗(λ0) := Resk,10∗ (λ0) = {u∗ ∈ D′E∗s (M ; Ωk
0) | (Pk,0 + λ0)u∗ = 0}.

Similarly to (2.45) we have the isomorphisms

dα∧ : Res1,`
0∗ (λ0)→ Res3,`

0∗ (λ0), dα∧2 : Res0,`
0∗ (λ0)→ Res4,`

0∗ (λ0). (2.49)

In the special case when ϕt is a geodesic flow with the time reversal map J defined in (2.12),

the pullback operator J ∗ gives an isomorphism between D′E∗u(M ; Ωk
0) and D′E∗s (M ; Ωk

0). More-

over, J ∗Pk,0 = −Pk,0J ∗. This gives rise to isomorphisms between the spaces of generalised

resonant and coresonant states

J ∗ : Resk,`0 (λ0)→ Resk,`0∗ (λ0). (2.50)

2.3.5. Coresonant states and pairing. Since E∗u and E∗s intersect only at the zero section,

we can define the product u ∧ u∗ ∈ D′(M ; Ω4
0) and thus the pairing 〈〈u, u∗〉〉 for any u ∈

D′E∗u(M ; Ωk
0), u∗ ∈ D′E∗s (M ; Ω4−k

0 ), see [Hör03, Theorem 8.2.10]. Note that this pairing is

nondegenerate since both D′E∗u and D′E∗s contain C∞, and the transpose formula (2.10) still

holds since C∞ is dense in D′E∗u and in D′E∗s . In particular, we have a pairing

u ∈ Resk,∞0 (λ0), u∗ ∈ Res4−k,∞
0∗ (λ0) 7→ 〈〈u, u∗〉〉 ∈ C. (2.51)

This pairing is nondegenerate. Indeed, assume that u ∈ Resk,∞0 (λ0) and 〈〈u, u∗〉〉 = 0 for all

u∗ ∈ Res4−k,∞
0∗ (λ0). Since Res4−k,∞

0∗ (λ0) is the range of (Πk,0(λ0))T , we have

0 = 〈〈u, (Πk,0(λ0))Tϕ〉〉 = 〈〈Πk,0(λ0)u, ϕ〉〉 = 〈〈u, ϕ〉〉 for all ϕ ∈ C∞(M ; Ω4−k
0 )

where the last equality follows from the fact that Πk,0(λ0)2 = Πk,0(λ0) and u is in the range

of Πk,0(λ0). It follows that u = 0. Similarly one can show that if 〈〈u, u∗〉〉 = 0 for some

u∗ ∈ Res4−k,∞
0∗ (λ0) and all u ∈ Resk,∞0 (λ0), then u∗ = 0.
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Consider the operators on finite dimensional spaces

Pk,0 − λ0 : Resk,∞0 (λ0)→ Resk,∞0 (λ0), (2.52)

−P4−k,0 − λ0 : Res4−k,∞
0∗ (λ0)→ Res4−k,∞

0∗ (λ0) (2.53)

which are transposes of each other with respect to the pairing (2.51). The kernels of `-th pow-

ers of these operators are Resk,`0 (λ0) and Res4−k,`
0∗ (λ0), thus (using the isomorphisms (2.49))

dim Resk,`0 (λ0) = dim Res4−k,`
0∗ (λ0) = dim Resk,`0∗ (λ0). (2.54)

We now give a solvability result for the operators Pk,0. It follows from the Fredholm property

of these operators on anisotropic Sobolev spaces but we present instead a proof using the

Laurent expansion (2.36).

Lemma 2.1. Assume that w ∈ D′E∗u(M ; Ωk
0). Then the equation

(Pk,0 − λ0)u = w, u ∈ D′E∗u(M ; Ωk
0) (2.55)

has a solution if and only if w satisfies the condition

〈〈w, u∗〉〉 = 0 for all u∗ ∈ Res4−k
0∗ (λ0). (2.56)

Proof. First of all, if (2.55) has a solution u, then for each u∗ ∈ Res4−k
0∗ (λ0) we have

〈〈w, u∗〉〉 = 〈〈(Pk,0 − λ0)u, u∗〉〉 = −〈〈u, (P4−k,0 + λ0)u∗〉〉 = 0,

that is the condition (2.56) is satisfied.

Now, assume that w satisfies the condition (2.56); we show that (2.55) has a solution. We

start with the special case when w ∈ Resk,∞0 (λ0). We use the pairing (2.51) to identify the

dual space to Resk,∞0 (λ0) with Res4−k,∞
0∗ (λ0). By (2.56), w is annihilated by the kernel of

the operator (2.53). Therefore w is in the range of the operator (2.52), that is (2.55) has a

solution u ∈ Resk,∞0 (λ0).

We now consider the case of general w satisfying (2.56). Taking the constant term in the

Laurent expansion of the identity (2.34) at λ = λ0, we obtain

(Pk,0 − λ0)RHk,0(λ0;λ0)w = w −Πk,0(λ0)w. (2.57)

We have Πk,0(λ0)w ∈ Resk,∞0 (λ0) and it satisfies (2.56), thus (2.55) has a solution with this

right-hand side. Writing w = Πk,0(λ0)w +
(

Id−Πk,0(λ0)
)
w, we may take as u the sum of

this solution and RHk,0(λ0;λ0)w. �

Lemma 2.1 implies the following criterion for semisimplicity:

Lemma 2.2. The semisimplicity condition (2.41) holds for the operator Pk,0 if and only if

the restriction of the pairing (2.51) to Resk0(λ0)× Res4−k
0∗ (λ0) is nondegenerate.

Proof. The condition (2.41) is equivalent to saying that the intersection of Resk0(λ0) with

the range of the operator Pk,0 − λ0 : D′E∗u(M ; Ωk
0) → D′E∗u(M ; Ωk

0) is trivial; that is, for each

w ∈ Resk0(λ0) \ {0} the equation (2.55) has no solution. By Lemma 2.1, this is equivalent to

saying that w does not satisfy the condition (2.56), i.e. there exists v ∈ Res4−k
0∗ (λ0) such that

〈〈w, v〉〉 6= 0. This is equivalent to the nondegeneracy condition of the present lemma. �
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2.3.6. Zeta functions. We now discuss dynamical zeta functions. We assume that the un-

stable/stable bundles Eu, Es are orientable (the non-orientable case is covered by [BWS21]);

this is true for the case of geodesic flows on orientable manifolds as follows from the fact

that the vertical bundle trivially intersects the weak unstable bundle RX ⊕Eu (see [GLP13,

Lemma B.1]).

We say γ : [0, Tγ ] → M is a closed trajectory of the flow ϕt of period Tγ > 0 if γ(t) =

ϕt(γ(0)) and γ(Tγ) = γ(0). We identify closed trajectories obtained by shifting t. The

primitive period of a closed trajectory, denoted by T ]γ , is the smallest positive t > 0 such that

γ(t) = γ(0). We say γ is a primitive closed trajectory if Tγ = T ]γ .

Define the linearised Poincaré map Pγ := dϕ−Tγ (γ(0))|Eu⊕Es . We have detPγ = 1 since

the restriction of dα ∧ dα to Eu ⊕ Es is a ϕt-invariant nonvanishing 4-form. Since ϕt is an

Anosov flow, the map I − Pγ is invertible (in fact Pγ has no eigenvalues on the unit circle).

For 0 ≤ k ≤ 4, define the zeta function

ζk(λ) := exp

(
−
∑
γ

T ]γ tr(∧kPγ)eiλTγ

Tγ det(I − Pγ)

)
, Imλ� 1 (2.58)

where the sum is over all the closed trajectories γ. The series in (2.58) converges for suffi-

ciently large Imλ, see e.g. [DZ16, §2.2].

The zeta function ζk continues holomorphically to λ ∈ C and for each λ0 ∈ C, the multi-

plicity of λ0 as a zero of ζk is equal to mk,0(λ0), the algebraic multiplicity of λ0 as a resonance

of the operator Pk,0 defined similarly to (2.40) – see [DZ16, §4] for the proof.

By Ruelle’s identity (see e.g. [DZ16, (2.5)]) the Ruelle zeta function defined in (1.1) fac-

torizes as follows:

ζR(λ) =
ζ0(λ)ζ2(λ)ζ4(λ)

ζ1(λ)ζ3(λ)
.

Using (2.46) we see that the order of vanishing of the function ζR at λ0 is equal to

mR(λ0) =

4∑
k=0

(−1)kmk,0(λ0) = 2m0,0(λ0)− 2m1,0(λ0) +m2,0(λ0). (2.59)

2.4. Resonance at 0. This paper focuses on the resonance at 0, which is why we henceforth

put λ0 := 0 unless stated otherwise. For instance we write

RHk,0(λ) := RHk,0(λ; 0), Πk,0 := Πk,0(0), Resk,`0 := Resk,`0 (0).

Our main goal is to study the order of vanishing of the Ruelle zeta function at 0, which

by (2.59) is equal to

mR(0) = 2m0,0(0)− 2m1,0(0) +m2,0(0), mk,0(0) = dim Resk,∞0 .

Since LX = dιX + ιXd, the space of resonant states at 0 for the operator Pk,0 is

Resk0 = {u ∈ D′E∗u(M ; Ωk) | ιXu = 0, ιXdu = 0}. (2.60)
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In particular, the exterior derivative defines an operator d : Resk0 → Resk+1
0 . (Unfortunately

this is no longer true for the spaces of generalised resonant states Resk,`0 with ` ≥ 2, since d

does not necessarily map these to the kernel of ιX .)

2.4.1. 0-forms and 4-forms. We first analyze the resonance at 0 for the operators P0,0 and

P4,0. The following regularity result is a special case of [DZ17, Lemma 2.3] (see also [FRS08,

Lemma 4] for a similar statement in the case of Anosov maps):

Lemma 2.3. Assume that

u ∈ D′E∗u(M ;C), Xu ∈ C∞(M ;C), Re〈Xu, u〉L2(M ;d volα) ≤ 0.

Then u ∈ C∞(M ;C).

Using Lemma 2.3 we show the following statement similar to [DZ17, Lemma 3.2] (we note

that it straightforwardly generalizes to other dimensions, which was known already to [Liv04,

Corollary 2.11]):

Lemma 2.4. The semisimplicity condition (2.41) holds at λ0 = 0 for the operators P0,0, P4,0

and

m0,0(0) = m4,0(0) = 1.

Moreover, Res0
0 = Res0

0∗ is spanned by the constant function 1 and Res4
0 = Res4

0∗ is spanned

by the form dα ∧ dα.

Proof. We only give the proof for 0-forms (i.e. functions); the case of 4-forms follows from

here using the isomorphisms (2.45), (2.49).

Assume that u ∈ Res0
0. Then Xu = 0, so Lemma 2.3 implies that u ∈ C∞(M ;C).

Thus the differential du ∈ C∞(M ; Ω1) is invariant under the flow ϕt; the stable/unstable

decomposition (2.4) gives that du ∈ E∗0 at every point. Together with the equation Xu = 0,

this implies that du = 0 and thus (since M is connected) u is constant. We have shown that

Res0
0 is spanned by the function 1; applying the above argument to −X we see that Res0

0∗ is

spanned by 1 as well.

To show the semisimplicity condition (2.41), assume that u ∈ D′E∗u(M ;C) satisfiesX2u = 0.

Then Xu ∈ Res0
0, so Xu is constant. Together with the identity

∫
M (Xu) d volα = 0 this gives

Xu = 0 as needed. �

2.4.2. Closed forms. We now study resonant states which are closed, that is elements of the

space

Resk0 ∩ ker d = {u ∈ D′E∗u(M ; Ωk) | ιXu = 0, du = 0}.

We use a special case of [DZ17, Lemma 2.1] which shows that de Rham cohomology in the

spaces D′E∗u(M ; Ωk) is the same as the usual de Rham cohomology defined in (2.6):

Lemma 2.5. Assume that u ∈ D′E∗u(M ; Ωk) and du ∈ C∞(M ; Ωk+1). Then there exist

v ∈ C∞(M ; Ωk), w ∈ D′E∗u(M ; Ωk−1) such that u = v + dw.
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Similarly to [DZ17, §3.3] we introduce the linear map

πk : Resk0 ∩ ker d→ Hk(M ;C), πk(u) = [v]Hk

where u = v + dw, v ∈ C∞(M ; Ωk), w ∈ D′E∗u(M ; Ωk−1).
(2.61)

Here v, w exist by Lemma 2.5. To show that the map πk is well-defined, assume that u = v+

dw = v′+dw′ where v, v′ ∈ C∞(M ; Ωk) and w,w′ ∈ D′E∗u(M ; Ωk−1). Then d(w−w′) = v′−v ∈
C∞(M ; Ωk), thus by Lemma 2.5 we may write w−w′ = w1 +dw2 where w1 ∈ C∞(M ; Ωk−1),

w2 ∈ D′E∗u(M ; Ωk−2). Then v′ − v = dw1 where w1 is smooth, so [v]Hk = [v′]Hk .

Similar arguments apply to the spaces Resk0∗ ∩ ker d of closed coresonant k-forms; we denote

the corresponding maps by

πk∗ : Resk0∗ ∩ ker d→ Hk(M ;C).

From Lemma 2.4 we see that π0 is an isomorphism and hence by (2.45) that π4 = 0.

We now establish several properties of the spaces Resk0 ∩ ker d and the maps πk; some of

these are extensions of the results of [DZ17, §3.3].

Lemma 2.6. The kernel of πk satisfies

d(Resk−1
0 ) ⊂ kerπk ⊂ d(Resk−1,∞).

Proof. The first containment is immediate. For the second one, assume that u ∈ Resk0 ∩ ker d

and πk(u) = 0. Then u = v + dw where v ∈ C∞(M ; Ωk) satisfies [v]Hk = 0 and w ∈
D′E∗u(M ; Ωk−1). We have v = dζ for some ζ ∈ C∞(M ; Ωk−1) and by (2.37)

u = Πku = Πkd(ζ + w) = dΠk−1(ζ + w).

Therefore u ∈ d(Resk−1,∞). �

We note that the case k = 0 of the following lemma holds trivially.

Lemma 2.7. Assume that for some k all the coresonant states in Res5−k
0∗ are exact forms.

Then the map πk is onto.

Proof. Take arbitrary v ∈ C∞(M ; Ωk) such that dv = 0. We will construct u ∈ Resk0 ∩ ker d

such that πk(u) = [v]Hk by putting

u := v + dw for some w ∈ D′E∗u(M ; Ωk−1
0 ).

Such u is automatically closed, so we only need to choose w so that ιXu = 0, that is

ιXdw = LXw = −ιXv (2.62)

where the first equality is immediate because ιXw = 0.

To solve (2.62), we use Lemma 2.1. It suffices to check that the condition (2.56) holds:

〈〈ιXv, u∗〉〉 = 0 for all u∗ ∈ Res5−k
0∗ .

We compute

〈〈ιXv, u∗〉〉 =

∫
M
α ∧ (ιXv) ∧ u∗ =

∫
M
v ∧ u∗ = 0.
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Here in the second equality we used that ιXu∗ = 0 (thus ιX of the 5-forms on both sides are

the same) and in the last equality we used that v is closed and, by the assumption of the

lemma, u∗ is exact. �

Lemma 2.8. The maps π1, π1∗ are isomorphisms, in particular

dim(Res1
0 ∩ ker d) = dim(Res1

0∗ ∩ ker d) = b1(M).

Proof. We only consider the case of π1, with π1∗ handled similarly. To show that π1 is one-

to-one, we use Lemma 2.6 and the fact that Res0,∞ = Res0
0 consists of constant functions by

Lemma 2.4. To show that π1 is onto, it suffices to use Lemma 2.7: by Lemma 2.4, the space

Res4
0∗ is spanned by dα ∧ dα = d(α ∧ dα). �

Lemma 2.9. We have d(Res3
0) = d(Res3

0∗) = 0.

Proof. We only consider the case of Res3
0, with Res3

0∗ handled similarly. Assume that u ∈
Res3

0. Then du ∈ Res4
0, so by Lemma 2.4 we have du = cdα ∧ dα for some constant c. It

remains to use that

c

∫
M
d volα =

∫
M
α ∧ du =

∫
M
dα ∧ u = 0

where in the second equality we integrated by parts and in the third equality we used that

ιX(dα ∧ u) = 0, thus dα ∧ u = 0. �

We also have the following nondegeneracy result for the pairing between closed resonant

and coresonant forms when k = 1:

Lemma 2.10. The pairing induced by 〈〈•, •〉〉 on (Res1
0 ∩ ker d) × (dα ∧ (Res1

0∗ ∩ ker d)) is

nondegenerate.

Proof. We show the following stronger statement: for each closed but not exact v ∈ C∞(M ; Ω1),

Re〈〈π−1
1 ([v]H1), dα ∧ π−1

1∗ ([v]H1)〉〉 < 0. (2.63)

Here we used that the map π1 is an isomorphism, as shown in Lemma 2.8. We have

π−1
1 ([v]H1) = v + df, π−1

1∗ ([v]H1) = v + dg

where f ∈ D′E∗u(M ;C), g ∈ D′E∗s (M ;C) satisfy

Xf = Xg = −ιXv. (2.64)

We compute

Re〈〈π−1
1 ([v]H1), dα ∧ π−1

1∗ ([v]H1)〉〉 = Re

∫
M
α ∧ dα ∧ (v + df) ∧ (v + dg)

= Re

∫
M
α ∧ dα ∧ (df ∧ v + v ∧ dg + df ∧ dg)

= Re

∫
M
dα ∧ dα ∧ (fv − gv − gdf)

= Re

∫
M

(
fιXv − gιXv − (Xf)g

)
d volα

= −Re〈Xf, f〉L2(M ;d volα).
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Here in the second line we used that Re(v ∧ v) = 0. In the third line we integrated by parts

and used that dv = 0. In the fourth line we used that ιXdα = 0 (the 5-forms under the

integral are equal as can be seen by taking ιX of both sides). In the last line we used the

identity (2.64).

Thus, if (2.63) fails, we have Re〈Xf, f〉L2(M ;d volα) ≤ 0 which by Lemma 2.3 implies that

f ∈ C∞(M ;C) and thus u := π−1
1 ([v]H1) lies in Res1

0 ∩C∞(M ; Ω1). Now the fact that u is

invariant under the flow ϕt and the stable/unstable decomposition (2.4) imply that u ∈ E∗0
at each point, and the fact that ιXu = 0 then gives u = 0. This shows that v is exact, giving

a contradiction. �

We finally give the following result in the case when all forms in Res1
0 are closed:

Lemma 2.11. Assume that Res1
0 consists of closed forms, i.e. d(Res1

0) = 0. Then:

1. The semisimplicity condition (2.41) holds at λ0 = 0 for the operators P1,0 and P3,0.

2. d(Res2
0) = 0, π2 is onto, and kerπ2 is spanned by dα.

3. m1,0(0) = m3,0(0) = b1(M), dim Res2
0 = b2(M) + 1, and π3 = 0.

Remark. Lemma 2.11 does not provide full information on the resonance at 0 since it does

not prove the semisimplicity condition for the operator P2,0, and only assumes that resonant

forms Res1
0 are closed (in fact we will see that d(Res1

0) 6= 0 and P2,0 is not semisimple in the

hyperbolic case when b1(M) > 0, see §3).

Proof. 1. Since dim(Res1
0 ∩ ker d) = dim(Res1

0∗ ∩ ker d) by Lemma 2.8, and dim Res1
0 =

dim Res1
0∗ by (2.54), we have d(Res1

0∗) = 0. By (2.49) we have Res3
0∗ = dα ∧ Res1

0∗. Now

Lemma 2.10 shows that 〈〈•, •〉〉 defines a nondegenerate pairing on Res1
0×Res3

0∗, which by

Lemma 2.2 shows that the semisimplicity condition (2.41) holds at λ0 = 0 for the operator

P1,0. By (2.45) semisimplicity holds for P3,0 as well.

2. We first show that Res2
0 consists of closed forms. Assume that ζ ∈ Res2

0, then dζ ∈ Res3
0.

By (2.45), dζ = dα ∧ u for some u ∈ Res1
0. Take arbitrary u∗ ∈ Res1

0∗. Then

〈〈u, dα ∧ u∗〉〉 =

∫
M
α ∧ dζ ∧ u∗ =

∫
M
dα ∧ ζ ∧ u∗ = 0 (2.65)

Here in the second equality we integrate by parts and use that du∗ = 0; in the last equality

we use that ιX applied to the 5-form under the integral is equal to 0. Now by Lemma 2.10

we have u = 0, which means that dζ = 0 as needed.

Next, by Lemma 2.6 we have kerπ2 ⊂ d(Res1,∞). By (2.43), Lemma 2.4, and the fact that

Res1,∞
0 = Res1

0 we have Res1,∞ = Res1
0⊕Cα. Since d(Res1

0) = 0 and dα ∈ kerπ2, we see that

kerπ2 is spanned by dα.

Finally, to show that π2 is onto, it suffices to use Lemma 2.7: since all elements of Res1
0∗

are closed, all elements of Res3
0∗ = dα ∧ Res1

0∗ are exact.

3. This follows immediately from the above statements and Lemma 2.8. To show that π3 = 0

we note that Res3
0 = dα ∧ Res1

0 consists of exact forms. �
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2.4.3. Summary. We now briefly summarize the contents of this section. Lemma 2.2 will

often be used to interpret the semisimplicity condition (2.41) via the more tractable nonde-

generacy of the pairing (2.9). Next, Lemma 2.4 provides us with a definitive understanding

of Res0,∞
0 and Res4,∞

0 , which by the isomorphisms (2.49) reduces the problem to studying

Res1,∞
0 and Res2,∞

0 . As Theorem 1 shows, this is a complicated question, but Lemma 2.8

says that Res1
0 ∩ ker d is ‘stably topological’, that is, it is always mapped isomorphically by π1

to H1(M). Moreover, if one can show d(Res1
0) = 0, Lemma 2.11 shows that semisimplicity

for 1-forms is valid, which will be used in the perturbed picture in §4. Under the same

assumption, we also know that Res2
0 is spanned by the ‘topological part’ π−1

2 (H2(M)) and

the form dα. Thus, to compute (2.59) it suffices to study conditions under which forms in

Res1
0 are closed, and semisimplicity conditions for P2,0. This will be done in two steps: in §3

we will first develop a detailed understanding when ϕt is the geodesic flow of a hyperbolic

3-manifold, and later in §4 we will study the perturbed picture.

3. Resonant states for hyperbolic 3-manifolds

In this section we study in detail the Pollicott–Ruelle resonant states at 0 for geodesic

flows on hyperbolic 3-manifolds. The theorem below summarizes the main results. Here

Resk0 = Resk,10 are the spaces of resonant k-forms, Resk,`0 are the spaces of generalized resonant

k-forms (see §2.4), and πk : Resk0 ∩ ker d → Hk(M ;C) are the maps defined in (2.61). The

maps π∗Σ, πΣ∗ are defined in §2.2.2.

Theorem 2. Let M = SΣ where Σ is a hyperbolic 3-manifold and ϕt be the geodesic flow

on Σ. Then:

1. There exists a 2-form ψ ∈ C∞(M ; Ω2
0) which is closed but not exact, πΣ∗(ψ) = −4π,

and ψ is invariant under ϕt.

2. Res1
0 = C ⊕ Cψ is 2b1(Σ)-dimensional where C := Res1

0 ∩ ker d is b1(Σ)-dimensional and

Cψ is another b1(Σ)-dimensional space characterized by the identity dα ∧ Cψ = ψ ∧ C.

3. The semisimplicity condition (2.41) holds at λ0 = 0 for the operators P1,0 and P3,0.

4. Res2
0 = Cdα ⊕ Cψ ⊕ dCψ is b1(Σ) + 2-dimensional and consists of closed forms. The

map π2 has kernel Cdα⊕ dCψ and range C[ψ]H2.

5. Res2,∞
0 = Res2,2

0 is 2b1(Σ) + 2-dimensional. The range of the map LX : Res2,2
0 → Res2

0

is equal to dCψ.

6. Res3
0 = dα ∧ Res1

0 is 2b1(Σ)-dimensional and consists of closed forms. The map π3

has kernel dα ∧ C and its range is a codimension 1 subspace of H3(M ;C) not containing

[π∗Σd volg]H3.

7. The map πΣ∗ annihilates dα∧C and is an isomorphism from dα∧Cψ onto the space of

harmonic 1-forms on Σ.

Theorem 2 together with Lemma 2.4 and (2.59) give part 1 of Theorem 1:
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Corollary 3.1. Under the assumptions of Theorem 2, the algebraic multiplicities of 0 as a

resonance of the operators Pk,0 are

m0,0(0) = m4,0(0) = 1, m1,0(0) = m3,0(0) = 2b1(Σ), m2,0(0) = 2b1(Σ) + 2 (3.1)

and the order of vanishing of the Ruelle zeta function ζR at 0 is equal to

mR(0) = 2m0,0(0)− 2m1,0(0) +m2,0(0) = 4− 2b1(Σ).

Previously (3.1) was proved in [DGRS20, Proposition 7.7] using different methods. Here

we give a more refined description: we construct the resonant forms, prove pairing formulas,

and study the existence of Jordan blocks. We emphasize that these properties are of crucial

importance for the perturbation arguments in §4 and were not known prior to this work.

This section is structured as follows: in §3.1 we review the geometric features of hyperbolic

3-manifolds used here. In §3.2 we construct the smooth invariant 2-form ψ and study its

properties, proving part 1 of Theorem 2. In §3.3 we study the resonant 1-forms and 3-forms,

proving parts 2, 3, and 6 of Theorem 2. In §3.4 we study the resonant 2-forms, proving

parts 4 and 5 of Theorem 2. Finally, in §3.5 we show that the pushforward operator πΣ∗
maps elements of Res3

0 to harmonic 1-forms on (Σ, g), proving part 7 of Theorem 2.

3.1. Hyperbolic 3-manifolds. We first review the geometry of hyperbolic 3-manifolds, fol-

lowing [DFG15, §3]. We define a hyperbolic 3-manifold to be a nonempty compact connected

oriented 3-dimensional Riemannian manifold Σ with constant sectional curvature −1. Each

such manifold can be written as a quotient

Σ = Γ\H3

where H3 is the 3-dimensional hyperbolic space and Γ ⊂ SO+(1, 3) is a discrete torsion-free

co-compact subgroup. We will use the hyperboloid model

H3 = {x ∈ R1,3 | 〈x, x〉1,3 = 1, x0 > 0}

where R1,3 = R4 is the Minkowski space, with points denoted by x = (x0, x1, x2, x3) and the

Lorentzian inner product

〈x, x〉1,3 := x2
0 − x2

1 − x2
2 − x2

3.

The group SO+(1, 3) is the group of linear transformations on R1,3 (that is, 4×4 real matrices)

which preserve the inner product 〈•, •〉1,3, have determinant 1, and preserve the sign of x0

on elements of H3. The Riemannian metric on H3 is the restriction of −〈•, •〉1,3; the group

SO+(1, 3) acts on H3 by isometries, so the metric descends to the quotient Σ. Note that we

may write H3 ' SO+(1, 3)/SO(3) as a homogeneous space for the SO+(1, 3)-action, since

SO(3) is the stabilizer of the point (1, 0, 0, 0) ∈ H3.

3.1.1. Geodesic flow. We now study the geodesic flow on Σ, using the notation of §2.2. The

sphere bundle SΣ is the quotient

SΣ = Γ\SH3 (3.2)

where the sphere bundle SH3 ⊂ R1,3 × R1,3 has the form

SH3 = {(x, v) ∈ R1,3 × R1,3 | 〈x, x〉1,3 = 1, 〈v, v〉1,3 = −1, 〈x, v〉1,3 = 0}.
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Note that we may write SH3 ' SO+(1, 3)/ SO(2) as a homogeneous space for the SO+(1, 3)-

action, since SO(2) is the stabilizer of the point (1, 0, 0, 0, 0, 1, 0, 0) ∈ SH3. The contact form

α, defined in (2.11), and the generator X of the geodesic flow are

α = −〈v, dx〉1,3, X = v · ∂x + x · ∂v (3.3)

where ‘·’ denotes the (positive definite) Euclidean inner product on R1,3. The geodesic flow

is then given by

ϕt(x, v) = (x cosh t+ v sinh t, x sinh t+ v cosh t).

As a corollary, the distance function on H3 with respect to the hyperbolic metric is given by

cosh dH3(x, y) = 〈x, y〉1,3 for all x, y ∈ H3. (3.4)

The tangent space T(x,v)(SH3) consists of vectors (ξx, ξv) ∈ R1,3 ⊕ R1,3 such that

〈x, ξx〉1,3 = 〈v, ξv〉1,3 = 〈x, ξv〉1,3 + 〈v, ξx〉1,3 = 0.

The connection map (2.14) is given by

K(x, v)(ξx, ξv) = ξv − 〈x, ξv〉1,3 x = ξv + 〈v, ξx〉1,3x.

Here and throughout we note that the addition of points x and vectors ξv (or ξx) has to be

understood in R1,3. The horizontal and vertical spaces H(x, v),V(x, v) ⊂ T(x,v)(SH3) are

then
H(x, v) = {(ξx, ξv) | 〈x, ξx〉1,3 = 0, ξv = −〈v, ξx〉1,3 x},
V(x, v) = {(0, ξv) | 〈x, ξv〉1,3 = 〈v, ξv〉1,3 = 0}

and the horizontal-vertical splitting map (2.15) takes for ξ = (ξx, ξv) ∈ T(x,v)(SH3) ⊂ R1,3 ⊕
R1,3 the form

ξH = ξx, ξV = ξv + 〈v, ξx〉1,3 x.
The Sasaki metric (2.17) is for ξ, η ∈ T(x,v)(SH3) given by

〈ξ, η〉S = −〈ξx, ηx〉1,3 − 〈ξv, ηv〉1,3 + 〈v, ξx〉1,3〈v, ηx〉1,3.

The unstable/stable subspaces Eu, Es from (2.2) on SH3 are given by

Eu(x, v) = {(w,w) | w ∈ R1,3, 〈w, x〉1,3 = 〈w, v〉1,3 = 0},

Es(x, v) = {(w,−w) | w ∈ R1,3, 〈w, x〉1,3 = 〈w, v〉1,3 = 0}.
(3.5)

In terms of the horizontal-vertical splitting (2.15) they can be characterized as follows:

Eu = {ξV = ξH}, Es = {ξV = −ξH}. (3.6)

A distinguished feature of hyperbolic manifolds is that the restriction of the differential of the

geodesic flow to the unstable/stable spaces is conformal with respect to the Sasaki metric:

|dϕt(x, v)ξ|S =

{
et|ξ|S , ξ ∈ Eu(x, v);

e−t|ξ|S , ξ ∈ Es(x, v).
(3.7)

The objects discussed above are invariant under the action of SO+(1, 3) and thus descend

naturally to the quotients Σ, SΣ.
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3.1.2. The frame bundle and canonical vector fields. A convenient tool for computations on

M = SΣ is the frame bundle FΣ, consisting of quadruples (x, v1, v2, v3) where x ∈ Σ and

v1, v2, v3 ∈ TxΣ form a positively oriented orthonormal basis. We have

FΣ = Γ\FH3, FH3 ' SO+(1, 3)

where the frame bundle FH3 is identified with the group SO+(1, 3) by the following map

(where e0 = (1, 0, 0, 0), e1 = (0, 1, 0, 0), . . . )

γ ∈ SO+(1, 3) 7→ (γe0, γe1, γe2, γe3). (3.8)

Under this identification, the action of SO+(1, 3) on FH3 corresponds to the action of this

group on itself by left multiplications. Therefore, SO+(1, 3)-invariant vector fields on FH3

correspond to left-invariant vector fields on the group SO+(1, 3), that is to elements of its Lie

algebra so(1, 3). We define the basis of left-invariant vector fields on SO+(1, 3) corresponding

to the following matrices in so(1, 3):

X =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , R =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

 , U+
1 =


0 0 −1 0

0 0 −1 0

−1 1 0 0

0 0 0 0

 ,

U+
2 =


0 0 0 −1

0 0 0 −1

0 0 0 0

−1 1 0 0

 , U−1 =


0 0 −1 0

0 0 1 0

−1 −1 0 0

0 0 0 0

 , U−2 =


0 0 0 −1

0 0 0 1

0 0 0 0

−1 −1 0 0

 .

Under the identification (3.8), and considering FH3 as a submanifold of (R1,3)4, we can write

using coordinates (x, v1, v2, v3) ∈ (R1,3)4 and writing ‘·’ for the Euclidean inner product

X = v1 · ∂x + x · ∂v1 , R = v2 · ∂v3 − v3 · ∂v2 ,

U±1 = −v2 · ∂x − x · ∂v2 ± (v2 · ∂v1 − v1 · ∂v2), U±2 = −v3 · ∂x − x · ∂v3 ± (v3 · ∂v1 − v1 · ∂v3).

Since the vector fields above are invariant under the action of SO+(1, 3), they descend to the

frame bundle of the quotient, FΣ.

The commutation relations between these fields are (as can be seen by computing the

commutators of the corresponding matrices, or by using the explicit formulas above)

[X,U±i ] = ±U±i , [U+
i , U

−
i ] = 2X, [U±1 , U

∓
2 ] = 2R,

[X,R] = [U±1 , U
±
2 ] = 0, [R,U±1 ] = −U±2 , [R,U±2 ] = U±1 .

(3.9)

The map

πF : (x, v1, v2, v3) ∈ FΣ 7→ (x, v1) ∈ SΣ

is a submersion, with one-dimensional fibers whose tangent spaces are spanned by the field R.

Thus, if a vector field on FΣ commutes with R then this vector field descends to the sphere

bundle SΣ. In particular, the vector field X descends to the generator of the geodesic flow

(which we also denote by X).

The vector fields U±i do not commute with R and thus do not descend to SΣ. However,

the vector space span(U+
1 , U

+
2 ) is R-invariant and descends to the stable space Es on SΣ.
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Similarly, the space span(U−1 , U
−
2 ) descends to Eu. Because of this we think of U+

1 , U
+
2 as

stable vector fields and U−1 , U
−
2 as unstable vector fields.

3.1.3. Canonical differential forms. We next introduce the frame of canonical differential

1-forms on FΣ

α, R∗, U±∗1 , U±∗2

which is defined as a dual frame for the vector fields X,R,U∓1 , U
∓
2 , in the sense compatible

with the definition of the dual stable/unstable bundles (2.4), as follows:

〈α,X〉 = 〈R∗, R〉 = 〈U±∗1 , U∓1 〉 = 〈U±∗2 , U∓2 〉 = 1 (3.10)

and all the other pairings between the 1-forms and the vector fields in question are equal

to 0. In particular, 〈U±∗i , U±i 〉 = 0.

Using the following identity valid for any 1-form β and any two vector fields Y,Z

dβ(Y,Z) = Y β(Z)− Zβ(Y )− β([Y,Z]), (3.11)

the commutation relations (3.9), and the duality relations (3.10), we compute the differentials

of the canonical forms:

dα = 2(U+∗
1 ∧ U−∗1 + U+∗

2 ∧ U−∗2 ), dR∗ = 2(U−∗2 ∧ U+∗
1 + U+∗

2 ∧ U−∗1 ),

dU±∗1 = ±α ∧ U±∗1 −R∗ ∧ U±∗2 , dU±∗2 = ±α ∧ U±∗2 +R∗ ∧ U±∗1 .
(3.12)

It follows that

LXU±∗j = ±U±∗j , LRU±∗1 = −U±∗2 , LRU±∗2 = U±∗1 . (3.13)

If ω is a differential form on FΣ, then ω descends to SΣ (i.e. it is a pullback by πF of a

form on SΣ) if and only if ιRω = 0, LRω = 0. In particular the form α on FΣ descends to

the contact form on SΣ, which we also denote by α.

3.1.4. Conformal infinity. Following [DFG15, §3.4] we consider the maps

Φ± : SH3 → (0,∞), B± : SH3 → S2, (3.14)

where S2 is the unit sphere in R3, defined by the identities

x± v = Φ±(x, v)(1, B±(x, v)) for all (x, v) ∈ SH3. (3.15)

Note that B±(x, v) is the limit as t → ±∞ of the projection to H3 of the geodesic ϕt(x, v)

in the compactification of the Poincaré ball model of H3. Let

(S2 × S2)− := {(ν−, ν+) ∈ S2 × S2 | ν− 6= ν+}.

In fact, the maps B± yield the following diffeomorphism of SH3 (see [DFG15, (3.24)]):

Ξ : SH3 3 (y, v) 7→ (ν−, ν+, t) ∈ (S2 × S2)− × R

with ν± = B±(y, v), t =
1

2
log
(Φ+(y, v)

Φ−(y, v)

)
.

(3.16)

The geometric interpretation of Ξ is as follows: ν± are the limits on the conformal bound-

ary S2 of the geodesic ϕs(y, v) as s→ ±∞ and t is chosen so that ϕ−t(y, v) is the closest point

to e0 on that geodesic (as can be seen from (5.30) below and noting that Xt = 1 by (3.22)).
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We have the identity [DFG15, (3.23)]

Φ−(x, v)Φ+(x, v)
∣∣B−(x, v)−B+(x, v)

∣∣2 = 4 (3.17)

where | • | denotes the Euclidean distance on R3 ⊃ S2.

We also introduce the Poisson kernel

P (x, ν) =
(
〈x, (1, ν)〉1,3

)−1
> 0, x ∈ H3, ν ∈ S2 ⊂ R3. (3.18)

The following relations hold [DFG15, (3.21)]:

Φ±(x, v) = P (x,B±(x, v)). (3.19)

If we fix x ∈ H3, then the maps v 7→ B±(x, v) are diffeomorphisms from the fiber SxH3

onto S2. The inverse maps are given by ν 7→ v±(x, ν) where [DFG15, (3.20)]

v±(x, ν) = ∓x± P (x, ν)(1, ν) ∈ SxH3, B±(x, v±(x, ν)) = ν. (3.20)

The diffeomorphisms v 7→ B±(x, v) are conformal with respect to the induced metric on SxH3

and the canonical metric | • |S2 : by [DFG15, (3.22)]) we have

|∂vB±(x, v)η|S2 =
|η|g

Φ±(x, v)
for all η ∈ Tv(SxH3). (3.21)

Next, we have by (3.3) and (3.5)

XΦ± = ±Φ±, dΦ−|Eu = dΦ+|Es = 0. (3.22)

The maps B± are submersions with connected fibers, the tangent spaces to which are de-

scribed in terms of the stable/unstable decomposition (2.2) as follows: for each ν ∈ S2

T (B−1
+ (ν)) = (E0 ⊕ Es)|B−1

+ (ν), T (B−1
− (ν)) = (E0 ⊕ Eu)|B−1

− (ν). (3.23)

This can be checked using (3.5), see [DFG15, (3.25)]. The action of the differential dB+

on Eu, and of dB− on Es, can be described as follows: for any (x, v) ∈ SH3 and w ∈ R1,3

such that 〈x,w〉1,3 = 〈v, w〉1,3 = 0,

dB±(x, v)(w,±w) =
2(w′ − w0B±(x, v))

Φ±(x, v)
where w = (w0, w

′). (3.24)

We next briefly discuss the action of the group SO+(1, 3) on the conformal infinity S2,

referring to [DFG15, §3.5] for details. For any γ ∈ SO+(1, 3), define

Nγ : S2 → (0,∞), Lγ : S2 → S2

by the identity (where on the left is the linear action of γ on (1, ν) ∈ R1,3)

γ · (1, ν) = Nγ(ν)(1, Lγ(ν)) for all ν ∈ S2.

The maps Lγ define an action of SO+(1, 3) on S2. This action is transitive and the stabilizer

of e1 ∈ S2 is the group of matrices A ∈ SO+(1, 3) such that A(1, 1, 0, 0)T = τ(1, 1, 0, 0)T for

some τ > 0, which may be shown to be isomorphic to the group of similarities of the plane

Sim(2), giving S2 ' SO+(1, 3)/Sim(2) the structure of a homogeneous space.
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This action is by orientation preserving conformal transformations, more precisely

|dLγ(ν)ζ|S2 =
|ζ|S2

Nγ(ν)
for all (ν, ζ) ∈ TS2. (3.25)

Moreover, the maps B± have the equivariance property

B±(γ · (x, v)) = Lγ(B±(x, v)) for all (x, v) ∈ SH3. (3.26)

We finally use the maps B± to describe a special class of differential forms on SΣ defined

as follows (c.f. [KW20, DFG15]):

Definition 3.2. We call a k-form u ∈ D′(SΣ; Ωk
0) stable if it is a section of ∧kE∗s ⊂ Ωk

0

where E∗s ⊂ T ∗(SΣ) is the annihilator of E0 ⊕ Es (see (2.4)). We call u unstable if it is a

section of ∧kE∗u where E∗u is the annihilator of E0 ⊕ Eu.

We call a form u totally (un)stable if both u and du are (un)stable.

The lemma below (see also [KW20, §§2.3–2.4]) shows that totally (un)stable k-forms

on SΣ, Σ = Γ\H3, correspond to Γ-invariant k-forms on S2. Denote by πΓ : SH3 → SΣ the

covering map.

Lemma 3.3. Let u ∈ D′(SΣ; Ωk
0) be totally stable. Then the lift π∗Γu has the form

π∗Γu = B∗+w where w ∈ D′(S2; Ωk), L∗γw = w for all γ ∈ Γ. (3.27)

Conversely, each form B∗+w, where w satisfies (3.27), is the lift of a totally stable k-form

on SΣ. A similar statement holds for totally unstable forms, with B+ replaced by B−.

Proof. We only consider the case of totally stable forms, with totally unstable forms handled

similarly. First of all, note that lifts of totally stable k-forms on SΣ are exactly the Γ-

invariant totally stable k-forms on SH3. Next, by (3.23), a k-form ζ ∈ D′(SH3; Ωk) is totally

stable if and only if ιY ζ = 0, LY ζ = 0 for any vector field Y tangent to the fibers of the

map B+, which is equivalent to saying that ζ = B∗+w for some w ∈ D′(S2; Ωk). Finally,

by (3.26), Γ-invariance of ζ is equivalent to Γ-invariance of w. �

Lemma 3.3 implies that

every totally stable u ∈ D′(SΣ; Ωk
0) lies in D′E∗s (SΣ; Ωk

0),

every totally unstable u ∈ D′(SΣ; Ωk
0) lies in D′E∗u(SΣ; Ωk

0).
(3.28)

Indeed, assume that u is totally stable. Write π∗Γu = B∗+w for some w ∈ D′(S2; Ωk), then

we have WF(π∗Γu) = π∗Γ WF(u) (as πΓ is a local diffeomorphism). From the behavior of

wavefront sets under pullbacks [Hör03, Theorem 8.2.4], we know that WF(π∗Γu) is contained

in the conormal bundle of the fibers of the submersion B+. From (3.23) and (2.4) we then

have WF(u) ⊂ E∗s . A similar argument works for the totally unstable case.
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3.2. Additional invariant 2-form. The space of smooth flow invariant 2-forms on SΣ is

known to be 2-dimensional, see Lemma 3.7 below, [Kan93, Claim 3.3] or [Ham95], thus there

exists a smooth invariant 2-form which is not a multiple of dα. In this section we introduce

such a 2-form ψ and study its properties; these are crucial for the study of Pollicott–Ruelle

resonances at zero in §§3.3–3.4 below.

3.2.1. A rotation on Eu⊕Es. Let x ∈ Σ. For any two v, w ∈ TxΣ, we may define their cross

product v × w ∈ TxΣ, which is uniquely determined by the following properties: v × w is

g-orthogonal to v and w; the length of v×w is the area of the parallelogram spanned by v, w

in TxΣ; and v, w, v × w is a positively oriented basis of TxΣ whenever v × w 6= 0.

For future use we record here an identity true for any v, w1, w2, w3, w4 ∈ TxΣ such that

|v|g = 1 and w1, w2, w3, w4 are g-orthogonal to v:

〈v × w1, w2〉g〈v × w3, w4〉g = 〈w1, w3〉g〈w2, w4〉g − 〈w2, w3〉g〈w1, w4〉g. (3.29)

Using the horizontal/vertical decomposition (2.15), we define the bundle homomorphism

I : TSΣ→ TSΣ, I(x, v)(ξH , ξV ) = (v × ξV , v × ξH). (3.30)

From (2.18) and (3.6) we see that I preserves the flow/stable/unstable decomposition (2.2).

Moreover, it annihilates E0 = RX and it is a rotation by π/2 on Eu and on Es (with respect

to the Sasaki metric), so in particular it satisfies I2 = − Id on kerα = Eu⊕Es; however, the

direction of the rotation is opposite on Eu and on Es if we identify them by (3.5).

The map I is invariant under the geodesic flow ϕt = etX :

LXI = 0. (3.31)

This follows from the conformal property of the geodesic flow (3.7) and the description of

the action of I on E0, Eu, Es in the previous paragraph.

For any point (x, v1, v2, v3) in the frame bundle FΣ, we have (using the horizontal/vertical

decomposition)

I(x, v1)(v2,±v2) = ±(v3,±v3), I(x, v1)(v3,±v3) = ∓(v2,±v2). (3.32)

It follows that (see §3.1.2 for the definition of the vector fields U±i on FΣ)

I(x, v1)(dπFU
±
1 (x, v1, v2, v3)) = ∓dπFU±2 (x, v1, v2, v3),

I(x, v1)(dπFU
±
2 (x, v1, v2, v3)) = ±dπFU±1 (x, v1, v2, v3).

(3.33)

3.2.2. Relation to conformal infinity. The homomorphism I lifts to TSH3. If B± : SH3 → S2

are the maps defined in (3.14) and ‘×’ denotes the cross product on R3, then for all (x, v) ∈
SH3 and ξ ∈ T(x,v)SH3 we have

dB±(x, v)(I(x, v)ξ) = B±(x, v)× dB±(x, v)(ξ). (3.34)

To see this, we use (3.23), and the fact that I preserves the flow/stable/unstable decompo-

sition, to reduce to the case ξ = (w,±w), where x, v, w is an orthonormal set in R1,3. By the

equivariance (3.26) of B± under SO+(1, 3), the fact that the action Lγ of any γ ∈ SO+(1, 3)

on S2 is by orientation preserving conformal maps, and the equivariance of I under SO+(1, 3)
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we can reduce to the case x = e0, v = e1, w = e2, where e0, e1, e2, e3 is the canonical basis of

R1,3. In the latter case (3.34) is verified directly using (3.24) and (3.32).

Let ? be the Hodge star operator on 1-forms on the round sphere S2. It may be expressed

as follows: for any w ∈ C∞(S2; Ω1) and (ν, ζ) ∈ TS2 we have

〈(?w)(ν), ζ〉 = −〈w(ν), ν × ζ〉.

From (3.34) we get the following relation of I to ?: for any 1-form w on S2 we have

(B∗±w) ◦ I = −B∗±(?w) (3.35)

where for any 1-form β on SH3 the 1-form β ◦ I on SH3 is defined by

〈(β ◦ I)(x, v), ξ〉 = 〈β(x, v), I(x, v)ξ〉. (3.36)

3.2.3. The new invariant 2-form. We next define the 2-form ψ ∈ C∞(SΣ; Ω2) as follows: for

all (x, v) ∈ SΣ and ξ, η ∈ T(x,v)SΣ,

ψ(x, v)(ξ, η) = dα(x, v)(I(x, v)ξ, η). (3.37)

To see that ψ is indeed an antisymmetric form, we may use (2.16) and (3.30) to write it in

terms of the horizontal/vertical decomposition of ξ, η:

ψ(x, v)(ξ, η) = 〈v × ξH , ηH〉g − 〈v × ξV , ηV 〉g. (3.38)

Using (3.12), (3.33) we may also compute the lift of ψ to the frame bundle FΣ, which we

still denote by ψ:

ψ = 2(U+∗
1 ∧ U−∗2 + U−∗1 ∧ U+∗

2 ). (3.39)

We have

ιXψ = 0, LXψ = 0. (3.40)

The first of these statements is checked directly using (2.18). The second statement can be

verified using (3.13) and (3.39), or using that LXI = 0 and LXdα = 0.

We now establish several properties of the form ψ. We will use the following corollaries

of (2.16), (3.38):

dα|H×H = 0, dα|V×V = 0, ψ|H×V = 0 (3.41)

where the horizontal/vertical spaces H,V are defined in §2.2.1.

Lemma 3.4. We have

dψ = 0, (3.42)

ψ ∧ ψ = dα ∧ dα, (3.43)

d(α ∧ ψ) = 0. (3.44)

Proof. By (3.40) we have ιXdψ = 0. Therefore, dψ(x, v)(ξ1, ξ2, ξ3) = 0 for ξ1, ξ2, ξ3 ∈ T(x,v)SΣ

such that one of these vectors lies in E0. Next, LXdψ = 0, that is dψ is invariant under the

geodesic flow. Using this invariance for time t→ ±∞ together with (3.7) and the fact that 3

is an odd number, we see that dψ(x, v)(ξ1, ξ2, ξ3) = 0 also when each of the vectors ξ1, ξ2, ξ3

lies in either Eu(x, v) or Es(x, v). It follows that (3.42) holds.
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To check (3.43), we first note that ιX of both sides is zero. Thus it suffices to check that

ψ ∧ ψ(x, v)(ξ1, ξ2, ξ3, ξ4) = dα ∧ dα(x, v)(ξ1, ξ2, ξ3, ξ4) (3.45)

for some choice of basis ξ1, ξ2, ξ3, ξ4 ∈ T(x,v)SΣ of the kernel of α. We take

ξ1 = (w1, 0), ξ2 = (w2, 0), ξ3 = (0, w3), ξ4 = (0, w4)

under the horizontal/vertical decomposition (2.15), where each wj ∈ TxΣ is orthogonal to v.

By (2.16), (3.38)

ψ ∧ ψ(x, v)(ξ1, ξ2, ξ3, ξ4) = −2〈v × w1, w2〉g〈v × w3, w4〉g,
dα ∧ dα(x, v)(ξ1, ξ2, ξ3, ξ4) = 2(〈w2, w3〉g〈w1, w4〉g − 〈w1, w3〉g〈w2, w4〉g)

and (3.45) follows from (3.29).

Finally, to show (3.44) it suffices to prove that dα ∧ ψ = 0. To show this we may argue

similarly to the proof of (3.43) above, using (3.41).

Alternatively, (3.42)–(3.44) can be checked by lifting to the frame bundle FΣ and us-

ing (3.12) and (3.39). �

The next lemma studies the relation of ψ to the de Rham cohomology of M = SΣ; in

particular, its first item and (3.40) give the first item of Theorem 2. Recall the pullback and

pushforward operators π∗Σ, πΣ∗ defined in §2.2.2 and denote by d volg the volume 3-form on

Σ induced by g and the choice of orientation.

Lemma 3.5. We have:

1. πΣ∗(ψ) = −4π. In particular, [ψ]H2 6= 0.

2. πΣ∗(α ∧ ψ) = 0.

3. πΣ∗(α ∧ dα) = 0.

4. α ∧ dα ∧ dα = 2ψ ∧ π∗Σ(d volg).

5. [α ∧ ψ]H3 = 2[π∗Σ(d volg)]H3.

Proof. 1. Let (x, v) ∈ SΣ and v2, v3 be a positively oriented g-orthonormal basis of the

tangent space to the fiber Tv(SxΣ). We consider v2, v3 as vertical vectors in T(x,v)SΣ, as well

as vectors in TxΣ. The triple v, v2, v3 is a positively oriented g-orthonormal basis of TxΣ, so

by (3.38)

ψ(x, v)(v2, v3) = −〈v × v2, v3〉g = −1.

Thus the restriction of ψ to each fiber SxΣ is−1 times the standard volume form on SxΣ ' S2,

which implies that πΣ∗(ψ) = −4π. It now follows from (2.22) that [ψ]H2 6= 0.

2. Fix x ∈ Σ, v1 ∈ TxΣ. Let v ∈ SxΣ and v2, v3 be a positively oriented g-orthonormal

basis of the tangent space Tv(SxΣ) as in part 1 of this proof. Let ξ1 = (v1, 0) be the horizontal

lift of v1 to T(x,v)(SΣ). By (2.16) and (3.38) we compute

α ∧ ψ(x, v)(ξ1, v2, v3) = −〈v1, v〉g〈v × v2, v3〉g = −〈v1, v〉g.
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Since v 7→ 〈v1, v〉g is an odd function on SxΣ, we have

(πΣ∗(α ∧ ψ))(x)(v1) =

∫
SxΣ
−〈v1, v〉g d vol(v) = 0.

3. If ξ1, ξ2, ξ3 ∈ T(x,v)(SΣ) and ξ2, ξ3 are vertical, then by (2.16) we have

α ∧ dα(x, v)(ξ1, ξ2, ξ3) = 0

which implies that πΣ∗(α ∧ dα) = 0.

4. Let x ∈ Σ and v, v2, v3 be a positively oriented g-orthonormal basis of TxΣ. Let

ξ = X(x, v), ξ2, ξ3 be the horizontal lifts of v, v2, v3 to T(x,v)SΣ; we treat v2, v3 as vertical

vectors in T(x,v)SΣ. Using (2.16) and (3.38), we compute

α ∧ dα ∧ dα(x, v)(ξ, ξ2, ξ3, v2, v3) = −2 = 2ψ ∧ π∗Σ(d volg)(x, v)(ξ, ξ2, ξ3, v2, v3).

5. Using the exact sequence (2.27) and the fact that πΣ∗(α ∧ ψ) = 0, we see that

[α ∧ ψ]H3 = c[π∗Σ(d volg)]H3

for some constant c. To determine c, note that α ∧ ψ ∧ ψ has the same integral over SΣ as

cψ ∧ π∗Σ(d volg). Since α ∧ ψ ∧ ψ = α ∧ dα ∧ dα = 2ψ ∧ π∗Σ(d volg), we get c = 2. �

We also have the following identity relating the operators dα∧ and ψ∧ on 1-forms in Ω1
0:

Lemma 3.6. For any 1-form β on SΣ such that ιXβ = 0, we have

dα ∧ β = ψ ∧ (β ◦ I) (3.46)

where the 1-form β ◦ I is defined by (3.36).

Proof. It is easy to see that ιX of both sides of (3.46) is equal to 0. It is thus enough to

check that

dα ∧ β(x, v)(ξ1, ξ2, ξ3) = ψ ∧ (β ◦ I)(x, v)(ξ1, ξ2, ξ3) (3.47)

for any three vectors ξ1, ξ2, ξ3, each of which is either horizontal or vertical under the decom-

position (2.15). Moreover, we may assume that the horizontal components of these vectors

lie in the orthogonal complement {v}⊥ to v in TxΣ. It suffices to consider the following two

cases:

Case 1: β(x, v)(ξ) = 〈ξH , w4〉g for some w4 ∈ {v}⊥. By (3.30) and (3.41), both sides

of (3.47) are equal to 0 unless two of ξ1, ξ2, ξ3 are horizontal and one is vertical; we write

ξ1 = (w1, 0), ξ2 = (w2, 0), ξ3 = (0, w3)

where wj ∈ {v}⊥. We compute using (2.16), (3.30), and (3.38)

dα ∧ β(x, v)(ξ1, ξ2, ξ3) = 〈w1, w3〉g〈w2, w4〉g − 〈w2, w3〉g〈w1, w4〉g,
ψ ∧ (β ◦ I)(x, v)(ξ1, ξ2, ξ3) = 〈v × w1, w2〉g〈v × w3, w4〉g

and (3.47) follows from (3.29).



THE RUELLE ZETA FUNCTION AT ZERO FOR NEARLY HYPERBOLIC 3-MANIFOLDS 33

Case 2: β(x, v)(ξ) = 〈ξV , w4〉g for some w4 ∈ {v}⊥. By (3.30) and (3.41), both sides

of (3.47) are equal to 0 unless two of ξ1, ξ2, ξ3 are vertical and one is horizontal; we write

ξ1 = (0, w1), ξ2 = (0, w2), ξ3 = (w3, 0)

where wj ∈ {v}⊥. We compute using (2.16), (3.30), and (3.38)

dα ∧ β(x, v)(ξ1, ξ2, ξ3) = 〈w2, w3〉g〈w1, w4〉g − 〈w1, w3〉g〈w2, w4〉g,
ψ ∧ (β ◦ I)(x, v)(ξ1, ξ2, ξ3) = −〈v × w1, w2〉g〈v × w3, w4〉g

and (3.47) again follows from (3.29).

Alternatively, we may lift both sides of (3.46) to the frame bundle FΣ: it suffices to

consider the cases when β is replaced by one of the forms U±∗i , in which case (3.46) is

checked by a direct calculation using (3.12), (3.33), and (3.39). �

3.2.4. Characterization of all smooth flow-invariant 2-forms. We finally give

Lemma 3.7. Assume that u ∈ C∞(SΣ; Ω2) satisfies LXu = 0. Then u is a linear combina-

tion of dα and ψ.

Proof. Without loss of generality we assume that u is real valued. Since dα ∧ ψ = 0 and

ψ ∧ψ = dα∧ dα by (3.43)–(3.44), we may subtract from u a linear combination of dα and ψ

to make ∫
M
α ∧ dα ∧ u =

∫
M
α ∧ ψ ∧ u = 0. (3.48)

We will show that under the condition (3.48) we have u = 0.

Since α∧dα∧u, α∧ψ∧u, α∧u∧u are smooth 5-forms on SΣ invariant under the geodesic

flow, by Lemma 2.4 (we identify Ω0 and Ω5 via the volume form d volα) we have

α ∧ dα ∧ u = α ∧ ψ ∧ u = 0, α ∧ u ∧ u = c d volα (3.49)

for some constant c ∈ R.

Next, ιXu ∈ C∞(SΣ; Ω1
0) and LXιXu = 0, so by (2.3) (similarly to the last step of the

proof of Lemma 2.10) we get ιXu = 0. Also by (2.3) we obtain u|Eu×Eu = 0 and u|Es×Es = 0.

Therefore, it is enough to show that u|Es×Eu = 0.

Since dα is nondegenerate on Es×Eu (as follows for instance from (2.16) and (3.6)), there

exists unique smooth bundle homomorphism A : Es → Es such that

u(x, v)(ξ, η) = dα(A(x, v)ξ, η) for all (x, v) ∈ SΣ, ξ ∈ Es(x, v), η ∈ Eu(x, v).

It remains to show that A = 0.

Take any (x, v) ∈ SΣ, assume that v, w1, w2 is a positively oriented orthonormal basis

of TxΣ, and define using the horizontal/vertical decomposition and (3.6)

ξj = (wj ,−wj) ∈ Es(x, v), ηj = (wj , wj) ∈ Eu(x, v), j = 1, 2.

Applying (3.49) to the vectors X(x, v), ξ1, ξ2, η1, η2 and using (2.16), (3.32), and (3.37), we

get

trA(x, v) = 0, A(x, v)T = A(x, v), detA(x, v) = c (3.50)
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where the transpose is with respect to the restriction of the Sasaki metric to Es(x, v).

If c = 0, then (3.50) implies that A = 0. Assume that c 6= 0, then by (3.50) we have c < 0

and A has eigenvalues ±
√
−c. The eigenspace of A(x, v) corresponding to the eigenvalue√

−c is a one-dimensional subspace of Es(x, v) depending continuously on (x, v). This is

impossible since by restricting to a single fiber SxΣ ⊂ SΣ and projecting Es onto the vertical

space V we would obtain a continuous one-dimensional subbundle of the tangent space to

the 2-sphere. �

3.3. Resonant 1-forms and 3-forms. In this section we apply the properties of the 2-form

ψ defined in (3.37) to determine the precise structure of resonant 1-forms on M = SΣ. Let

us introduce some notation for (co-)resonant 1-forms (see (3.36) for the definition of u ◦ I)

C(∗) := Res1
0(∗) ∩ ker d, Cψ(∗) := {u ◦ I | u ∈ C(∗)}

where the subscript (∗) means we either suppress the star or we include it, respectively

corresponding to resonances or co-resonances; we apply this convention to other notions

appearing in this section. We remark that the use of subscript ψ in Cψ is motivated by the

property dα∧Cψ = ψ∧C demonstrated in (3.58) below; in fact we initially used this relation

as the definition of Cψ, before coming to the interpretation via the map I.

Since I is invariant under the geodesic flow by (3.31) and annihilates X, we have

Cψ(∗) ⊂ Res1
0(∗) .

By Lemma 2.8 and (2.28) we have

dim C(∗) = dim Cψ(∗) = b1(Σ). (3.51)

We next show that all resonant 1-forms lie in the direct sum C⊕Cψ. This is done in Lemma 3.9

below but first we need

Lemma 3.8. Assume that u ∈ Res1
0. Then u is totally unstable in the sense of Definition 3.2.

Similarly, if u ∈ Res1
0∗, then u is totally stable.

Remark. Lemma 3.8 was previously proved by Küster–Weich [KW20, §2.6].

Proof. We consider the case u ∈ Res1
0, with the case u ∈ Res1

0∗ handled in the same way.

We first show that u is unstable in the sense of Definition 3.2. For that it is enough to

prove that u(Y ) = 0 for any Y ∈ C∞(M ;E0 ⊕ Eu). Since ιXu = 0, we may assume that

Y ∈ C∞(M ;Eu). By the integral formula (2.29) for the Pollicott–Ruelle resolvent Rk,0(λ),

we have for Imλ� 1 and any w ∈ C∞(M ; Ω1
0), ρ ∈M

〈R1,0(λ)w, Y 〉(ρ) = i

∫ ∞
0

eiλt〈w(ϕ−t(ρ)), dϕ−t(ρ)Y (ρ)〉 dt.

Since Y is a section of the unstable bundle, by (3.7) we have |〈w(ϕ−t(ρ)), dϕ−t(ρ)Y (ρ)〉| ≤
Ce−t for some constant C and all t ≥ 0, ρ ∈ M . Therefore, the integral above converges

uniformly in ρ for Imλ > −1, which implies that λ 7→ 〈R1,0(λ)w, Y 〉 is holomorphic in

Imλ > −1. If Π1,0 is the projector appearing in the Laurent expansion of R1,0(λ) at λ = 0,
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defined in (2.36), then ιY Π1,0 = 0. Since Res1
0 is contained in the range of Π1,0, we get

u(Y ) = 0 as needed.

We now analyze du. First of all, ιXdu = 0 since u ∈ Res1
0. Next, we have du|Eu×Eu = 0.

This can be seen by following the argument above, or using that u(Y ) = 0 for any Y ∈
C∞(M ;E0 ⊕ Eu), the identity (3.11), and the fact that the class C∞(M ;E0 ⊕ Eu) is closed

under Lie brackets (as follows from (3.23)).

It remains to show that du|Eu×Es = 0. Let ζ be the restriction of du to Eu×Es, considered

as a section in D′E∗u(M ;E∗s ⊗ E∗u). (Here E∗s , E
∗
u are dual to Eu, Es as in (2.4).) We endow

E∗s ⊗ E∗u with the inner product which is the tensor product of the dual Sasaski metrics on

E∗s and E∗u. The operator

P := −iLX : C∞(M ;E∗s ⊗ E∗u)→ C∞(M ;E∗s ⊗ E∗u)

is formally self-adjoint as follows from (3.7), and Pζ = 0. Then by [DZ17, Lemma 2.3] the

section ζ is in C∞.

Let us now consider ζ = du|Eu×Es as a smooth 2-form on M (i.e. ιXζ = 0, ζ|Eu×Eu =

ζ|Es×Es = 0, and ζ|Eu×Es = du|Eu×Es), then LXζ = 0 and by Lemma 3.7 we see that

ζ = a dα + b ψ for some constants a, b. We claim that a = b = 0. This follows from (3.43)–

(3.44) and the identities ∫
M
α ∧ dα ∧ ζ =

∫
M
α ∧ dα ∧ du = 0, (3.52)∫

M
α ∧ ψ ∧ ζ =

∫
M
α ∧ ψ ∧ du = 0. (3.53)

Here the first identity in each line follows from the fact that dα|Eu×Eu = ψ|Eu×Eu = 0

(which can be verified using (2.16), (3.6), and (3.37)). More precisely, it suffices to observe

that α ∧ dα ∧ (du − ζ) and α ∧ dψ ∧ (du − ζ) are pointwise zero, as du − ζ is supported on

Es × Es by definition. The second identity in each line follows by integration by parts and

the fact that dα ∧ dα ∧ u = dα ∧ ψ ∧ u = 0 (as ιX of both of these 5-forms is equal to 0).

Now, a = b = 0 implies that ζ = 0, that is du|Eu×Es = 0 as needed. �

We are now ready to prove

Lemma 3.9. We have C(∗) ∩ Cψ(∗) = {0} and Res1
0(∗) = C(∗) ⊕ Cψ(∗).

Proof. We consider the case of Res1
0, with Res1

0∗ handled similarly. We need to prove that

each u ∈ Res1
0 can be expressed uniquely as a sum of elements in C and Cψ. By Lemma 3.8,

u is totally unstable. By Lemma 3.3, the lift of u to SH3 has the form

π∗Γu = B∗−w for some Γ-invariant w ∈ D′(S2; Ω1),

where Γ ⊂ SO+(1, 3) is the discrete subgroup such that Σ = Γ\H3. Take the Hodge decom-

position of w:

w = w1 + ?w2 where w1, w2 ∈ D′(S2; Ω1), dw1 = dw2 = 0. (3.54)

Since Γ acts on S2 by orientation preserving conformal transformations Lγ (see (3.25)),

its action commutes with the Hodge star ?. Since H1(S2) = 0, the Hodge decomposition
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above is unique, which implies that w1, w2 are Γ-invariant. Applying Lemma 3.3 again and

using (3.28), we see that

B∗−wj = π∗Γuj for some u1, u2 ∈ D′E∗u(M ; Ω1
0).

Since dwj = 0, we have duj = 0, which together with the fact that ιXuj = 0 shows that

u1, u2 ∈ C. Finally, by (3.35) and (3.54) we may express u uniquely as

u = u1 − u2 ◦ I, u1 ∈ C, u2 ◦ I ∈ Cψ,

finishing the proof. �

The next lemma establishes semisimplicity on resonant 1-forms:

Lemma 3.10. The semisimplicity condition (2.41) holds at λ0 = 0 for the operators P1,0

and P3,0.

Proof. By (2.45) it suffices to establish semisimplicity for P1,0. By Lemma 2.2 it suffices

to show that the pairing 〈〈•, •〉〉 on Res1
0×Res3

0∗ is nondegenerate. Recall from (2.49) that

Res3
0∗ = dα ∧ Res1

0∗. By Lemma 2.10 the pairing 〈〈•, •〉〉 is nondegenerate on C × (dα ∧ C∗).
Therefore, it suffices to show the following diagonal structure of the pairing with respect to

the decompositions Res1
0(∗) = C(∗) ⊕ Cψ(∗) established in Lemma 3.9:

〈〈u, dα ∧ u∗〉〉 = 0 for all u ∈ C, u∗ ∈ Cψ∗ (3.55)

〈〈u, dα ∧ u∗〉〉 = 0 for all u ∈ Cψ, u∗ ∈ C∗ (3.56)

〈〈u, dα ∧ u∗〉〉 = −〈〈u ◦ I, dα ∧ (u∗ ◦ I)〉〉 for all u ∈ C, u∗ ∈ C∗. (3.57)

We first show (3.55). By Lemma 2.5 and (2.25) we may write

u = π∗Σw + df for some w ∈ C∞(Σ; Ω1), dw = 0, f ∈ D′E∗u(M ;C),

u∗ ◦ I = π∗Σw∗ + df∗ for some w∗ ∈ C∞(Σ; Ω1), dw∗ = 0, f∗ ∈ D′E∗s (M ;C).

We now compute

〈〈u, dα ∧ u∗〉〉 = 〈〈u, ψ ∧ (u∗ ◦ I)〉〉 =

∫
M
α ∧ ψ ∧ (π∗Σw + df) ∧ (π∗Σw∗ + df∗)

=

∫
M
α ∧ ψ ∧ π∗Σ(w ∧ w∗) = −

∫
Σ
πΣ∗(α ∧ ψ) ∧ w ∧ w∗ = 0.

Here the first equality used Lemma 3.6. The third equality used integration by parts

and (3.44). The fourth equality used (2.20) and (2.23), with the negative sign explained

in the paragraph following (2.20). The fifth equality used part 2 of Lemma 3.5. A similar

argument proves (3.56).

Finally, to show (3.57) we compute

〈〈u, dα ∧ u∗〉〉 = 〈〈u, ψ ∧ (u∗ ◦ I)〉〉 = 〈〈ψ ∧ u, u∗ ◦ I〉〉 = −〈〈dα ∧ (u ◦ I), u∗ ◦ I〉〉

using Lemma 3.6 and the fact that u ◦ I ◦ I = −u. �
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We finally discuss the properties of the maps π3(∗) : Res3
0(∗) → H3(M ;C); as explained

at the top of §3.3, recall that the subscript (∗) denotes the corresponding resonance or co-

resonance space, so we can include both in the discussion. Recall that all forms in Res3
0(∗) are

closed by Lemma 2.9 and Res3
0(∗) = dα ∧Res1

0(∗) by (2.45), (2.49). Moreover, by Lemma 3.6

and the definition of Cψ(∗)
dα ∧ Cψ(∗) = ψ ∧ C(∗). (3.58)

We have π3(∗)(dα ∧ C(∗)) = 0. Assume now that u ∈ Cψ, then u ◦ I ∈ C, and by Lemma 2.5

and (2.25) we may write

u ◦ I = π∗Σw + df for some w ∈ C∞(Σ; Ω1), dw = 0, f ∈ D′E∗u(M ;C).

Wedging with ψ, taking πΣ∗, and using (2.22)–(2.23), part 1 of Lemma 3.5, and Lemma 3.6

we get

πΣ∗π3(dα ∧ u) = πΣ∗(ψ ∧ π∗Σw) = −4πw,

which (together with a similar argument for coresonant states) immediately shows that

πΣ∗π3(∗) : dα ∧ Cψ(∗) → H1(Σ;C) is an isomorphism. (3.59)

This implies that

kerπ3(∗) = dα ∧ C(∗) (3.60)

and so by (2.27) the range of π3(∗) is a codimension 1 subspace of H3(M ;C) which does not

contain [π∗Σd volg]H3 .

Summarizing the contents of §3.3, we note that the second item of Theorem 2 follows from

(3.58), Lemma 3.9, Lemma 2.8, and (2.28), the third item by Lemma 3.10, and the sixth

item by the discussion in the preceding paragraph.

3.4. Resonant 2-forms. We next study resonant 2-forms. We start with

Lemma 3.11. We have d(Res2
0(∗)) = 0 and kerπ2(∗) = Cdα⊕dCψ(∗) has dimension b1(Σ)+1.

Proof. We consider the case of resonant 2-forms, with the case of coresonant 2-forms handled

similarly. We first show that d(Res2
0) = 0, arguing similarly to the proof of Lemma 2.11.

Take ζ ∈ Res2
0, then by the definition (2.61) of π3 we have dζ ∈ kerπ3. Thus by (3.60),

dζ = dα ∧ u for some u ∈ C. Take arbitrary u∗ ∈ C∗, then precisely as in (2.65)

〈〈u, dα ∧ u∗〉〉 =

∫
M
α ∧ dζ ∧ u∗ =

∫
M
dα ∧ ζ ∧ u∗ = 0.

Now Lemma 2.10 implies that u = 0 and thus dζ = 0 as needed.

Next, if u ∈ Cψ, then using the same argument of integration by parts as in (3.52) yields∫
M
α ∧ dα ∧ du = 0.

Therefore, du cannot be a nonzero multiple of dα, which means that Cdα ∩ dCψ = {0}. We

have dα ∈ kerπ2 and by Lemma 2.6 we have dCψ ⊂ kerπ2 as well.

It remains to show that kerπ2 ⊂ Cdα ⊕ dCψ. By Lemma 2.6, kerπ2 is contained in

d(Res1,∞). By (2.43) and Lemmas 2.4, 3.9, and 3.10, we have Res1,∞ = Cα⊕ C ⊕ Cψ. Then

d(Res1,∞) = Cdα⊕ dCψ, which finishes the proof. �
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We next establish the following auxiliary result:

Lemma 3.12. Assume that η ∈ C∞(Σ; Ω2), dη = 0, and w ∈ D′E∗u(M ; Ω1) satisfy

ιX(π∗Ση + dw) = 0. (3.61)

Then η is exact.

Remark. The proof of Lemma 3.12 uses the 2-form ψ which is only available in the case

of constant curvature. By contrast, Lemma 3.12 is false if Res1
0∗ consists of closed forms

and b1(Σ) > 0; in fact the equation (3.61) then has a solution w ∈ D′E∗u(M ; Ω1
0) for any

closed η. Indeed, in this case 〈〈ιXπ∗Ση, dα ∧ u∗〉〉 =
∫
M π∗Ση ∧ dα ∧ u∗ = 0 for any u∗ ∈ Res1

0∗
by integration by parts, and the existence of w now follows from Lemma 2.1.

Proof. Put ζ := π∗Ση + dw, then ιXζ = 0. Take arbitrary closed η∗ ∈ C∞(Σ; Ω1) and put

u∗ := π−1
1∗ ([π∗Ση∗]H1) ∈ C∗. Then u∗ = π∗Ση∗ + dw∗ for some w∗ ∈ D′E∗s (M ;C). We compute

0 =

∫
M
ψ ∧ ζ ∧ u∗ =

∫
M
ψ ∧ π∗Ση ∧ π∗Ση∗

= −
∫

Σ
(πΣ∗ψ)η ∧ η∗ = 4π

∫
Σ
η ∧ η∗.

Here the first equality follows since the 5-form under the integral lies in the kernel of ιX .

The second equality follows by integration by parts, using that ψ, η, η∗ are closed. The third

equality follows from (2.20) and (2.23). The fourth equality follows from part 1 of Lemma 3.5.

We see that η ∧ η∗ integrates to 0 on Σ for any closed smooth 1-form η∗. This implies

that η is exact; indeed, we can reduce to the case when η is harmonic and take η∗ to be the

Hodge star of η (we note that this final argument is just a form of Poincaré duality). �

We now describe the space of resonant 2-forms (recalling the convention (∗) at the top

of §3.3):

Lemma 3.13. The range of π2(∗) is equal to C[ψ]H2, and Res2
0(∗) = Cdα⊕ Cψ ⊕ dCψ(∗). In

particular, dim Res2
0(∗) = b1(Σ) + 2.

Proof. We consider the case of resonant 2-forms, with the case of coresonant 2-forms handled

similarly. First of all, ψ ∈ Res2
0, thus [ψ]H2 = π2(ψ) is in the range of π2. Next, by (2.26)

and part 1 of Lemma 3.5 we have

H2(M ;C) = π∗ΣH
2(Σ;C)⊕ C[ψ]H2 .

To show that the range of π2 is equal to C[ψ]H2 , it remains to prove that the intersection of

this range with π∗ΣH
2(Σ;C) is trivial. Take u ∈ Res2

0 and assume that π2(u) = [π∗Ση]H2 for

some η ∈ C∞(Σ; Ω2), dη = 0. Then u = π∗Ση+dw for some w ∈ D′E∗u(M ; Ω1). Since ιXu = 0,

Lemma 3.12 implies that η is exact, that is π2(u) = 0 as needed.

Finally, the statement that Res2
0 = Cdα ⊕ Cψ ⊕ dCψ follows from the first statement of

this lemma together with Lemma 3.11. �
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The next lemma describes the space of generalized resonant states Res2,2
0 (see (2.39)

and §2.3.3). It implies in particular that the operator P2,0 does not satisfy the semisim-

plicity condition (2.41), assuming that b1(Σ) > 0:

Lemma 3.14. 1. The pairing 〈〈•, •〉〉 on Res2
0×Res2

0∗ has the following form in the decom-

position of Lemma 3.13:

〈〈dα, dα〉〉 = 〈〈ψ,ψ〉〉 = volα(M) > 0, 〈〈dα, ψ〉〉 = 〈〈ψ, dα〉〉 = 0, (3.62)

〈〈ζ, ζ∗〉〉 = 0 for all ζ ∈ dCψ, ζ∗ ∈ Res2
0∗, (3.63)

〈〈ζ, ζ∗〉〉 = 0 for all ζ ∈ Res2
0, ζ∗ ∈ dCψ∗. (3.64)

2. The range of the map

LX : Res2,2
0(∗) → Res2

0(∗) (3.65)

is equal to dCψ(∗). We have dim Res2,2
0(∗) = 2b1(Σ) + 2.

Proof. 1. The identities (3.62) follow immediately from (3.43) and (3.44). We next show (3.63),

with (3.64) proved similarly. Let ζ = du where u ∈ Cψ. We compute

〈〈ζ, ζ∗〉〉 =

∫
M
dα ∧ u ∧ ζ∗ = 0

Here in the first equality we integrate by parts and use that dζ∗ = 0 by Lemma 3.11. The

second equality follows from the fact that ιX(dα ∧ u ∧ ζ∗) = 0.

2. We consider generalized resonant states, with generalized coresonant states handled sim-

ilarly. First, assume that ζ ∈ Res2,2
0 , then LXζ ∈ Res2

0. Moreover, since the transpose of LX
is equal to −LX (see §2.3.4) we compute

〈〈LXζ, ζ∗〉〉 = −〈〈ζ,LXζ∗〉〉 = 0 for all ζ∗ ∈ Res2
0∗ . (3.66)

Using this for ζ∗ = dα and ζ∗ = ψ together with (3.62)–(3.63), we see that LXζ ∈ dCψ. That

is, the range of the map (3.65) is contained in dCψ.

Now, take arbitrary η ∈ dCψ. By (3.63), we have 〈〈η, ζ∗〉〉 = 0 for all ζ∗ ∈ Res2
0∗. Then by

Lemma 2.1 there exists ζ ∈ D′E∗u(M ; Ω2
0) such that LXζ = η. Since η ∈ Res2

0, we see that

ζ ∈ Res2,2
0 . This shows that the range of the map (3.65) contains dCψ.

Finally, the equality dim Res2,2
0 = 2b1(Σ) + 2 follows from Lemma 3.13 and the fact that

the kernel of the map (3.65) is given by Res2
0. �

We finally show that there are no higher degree Jordan blocks, completing the analysis of

the generalized resonant states of P2,0 at 0:

Lemma 3.15. We have Res2,∞
0(∗) = Res2,2

0(∗).

Proof. We consider the case of generalized resonant states, with generalized coresonant states

handled similarly. It suffices to prove that Res2,3
0 ⊂ Res2,2

0 . Take η ∈ Res2,3
0 and put

ζ := LXη ∈ Res2,2
0 . Exactly as in (3.66), the pairing of ζ with any element of Res2

0∗ is equal

to 0. In particular

〈〈ζ, du∗〉〉 = 0 for all u∗ ∈ Res1
0∗ .
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By part 2 of Lemma 3.14, we have LXζ = du for some u ∈ Cψ. Put

ω := d(ζ + α ∧ u) ∈ D′E∗u(M ; Ω3).

Then ιXω = ιXdζ − du = 0. Since ω is exact we have LXω = 0 and moreover that

ω ∈ kerπ3 ⊂ Res3
0. By (3.60), we then have ω ∈ dα ∧ C.

We now compute

0 = 〈〈ζ, du∗〉〉 = −
∫
M
α ∧ dζ ∧ u∗ = 〈〈u, dα ∧ u∗〉〉 − 〈〈ω, u∗〉〉.

Here in the second equality we integrated by parts and used that the 5-form dα ∧ ζ ∧ u∗ lies

in the kernel of ιX and thus equals 0. Using the identities (3.55)–(3.57) and Lemma 2.10,

recalling that u ∈ Cψ, ω ∈ dα ∧ C, and using that u∗ can be chosen as an arbitrary element

of C∗ or Cψ∗, we see that u = 0 and ω = 0. Just using that u = 0 implies L2
Xη = LXζ = 0,

that is η ∈ Res2,2
0 as needed. �

3.5. Relation to harmonic forms. In this section we show that pushforwards of elements

of Res3
0 = dα∧ (C ⊕Cψ) to the base Σ are harmonic 1-forms. Recall that a 1-form h is called

harmonic if dh = 0 and d ? h = 0, where ? is the Hodge star on (Σ, g). We will denote the

set of such forms as H1(Σ). We start with the following identity:

Lemma 3.16. Assume that u ∈ D′E∗u(M ; Ω1
0) is unstable in the sense of Definition 3.2 and

β ∈ C∞(Σ; Ω1). Then

ψ ∧ u ∧ π∗Σ(?β) = −α ∧ dα ∧ u ∧ π∗Σβ, (3.67)

dα ∧ u ∧ π∗Σ(?β) = α ∧ ψ ∧ u ∧ π∗Σβ. (3.68)

Proof. We first show (3.67). Take arbitrary (x, v) ∈M = SΣ and assume that v, w1, w2 is a

positively oriented g-orthonormal basis of TxΣ. It suffices to prove that

(ψ ∧ u ∧ π∗Σ(?β))(x, v)(X, ξ1, ξ2, ξ3, ξ4) = −(α ∧ dα ∧ u ∧ π∗Σβ)(x, v)(X, ξ1, ξ2, ξ3, ξ4) (3.69)

where we write in terms of the horizontal/vertical decomposition (2.15)

X = (v, 0), ξ1 = (w1, 0), ξ2 = (w2, 0), ξ3 = (0, w1), ξ4 = (0, w2).

Using (3.38), (3.41), the fact that dπΣ(x, v)(ξH , ξV ) = ξH , the condition ιXu = 0, and the

identities

(?β)(x)(v, w1) = β(x)(w2), (?β)(x)(v, w2) = −β(x)(w1)

we see that the left-hand side of (3.69) is equal to

−u(x, v)(ξ1)β(x)(w1)− u(x, v)(ξ2)β(x)(w2).

Using (2.16), we next see that the right-hand side of (3.69) is equal to

u(x, v)(ξ3)β(x)(w1) + u(x, v)(ξ4)β(x)(w2).

It remains to note that by (3.6) the vectors ξ1 + ξ3 and ξ2 + ξ4 lie in Eu(x, v) and thus

u(x, v)(ξ1 + ξ3) = u(x, v)(ξ2 + ξ4) = 0 since u is unstable.

The identity (3.68) is verified by a similar calculation, or simply by applying (3.67) to u◦I
and using Lemma 3.6 and the fact that u ◦ I ◦ I = −u. �
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We can now prove item 7 of Theorem 2:

Lemma 3.17. The map πΣ∗ annihilates dα∧ C(∗) and it is an isomorphism from dα∧ Cψ(∗)
onto the space H1(Σ). In particular, by Lemma 3.9 we have πΣ∗ : dα ∧ Res1

0(∗) → H1(Σ).

Proof. We consider the case of resonant 3-forms, with coresonant 3-forms handled similarly

(using a version of Lemma 3.16 for stable 1-forms). We first show that for any u ∈ C, the

push-forwards to Σ of dα ∧ u and ψ ∧ u are coclosed, that is

d ? πΣ∗(dα ∧ u) = 0, d ? πΣ∗(ψ ∧ u) = 0. (3.70)

To show the first equality in (3.70), it suffices to prove that∫
Σ
πΣ∗(dα ∧ u) ∧ ?df = 0 for all f ∈ C∞(Σ;C).

Using (2.20) and (2.23), we compute this integral as

−
∫
M
dα ∧ u ∧ π∗Σ(?df) = −

∫
M
α ∧ ψ ∧ u ∧ d(π∗Σf) =

∫
M
π∗Σfdα ∧ ψ ∧ u = 0

Here in the first equality we used (3.68), where u is unstable by Lemma 3.8. In the second

equality we integrated by parts and used that dψ = 0 and du = 0. In the third equality we

used that ιX of the 5-form under the integral is equal to 0. The second equality in (3.70) is

proved similarly, using (3.67) instead of (3.68).

Next, by (2.22), since all forms in dα ∧ C are exact, their pushforwards to Σ are exact

as well. Since these pushforwards are also coclosed, we get πΣ∗(dα ∧ C) = 0. Similarly, all

forms in dα ∧ Cψ = ψ ∧ C are closed, so their pushforwards are closed as well; since these

pushforwards are also coclosed, we get πΣ∗(dα ∧ Cψ) ⊂ H1(Σ).

Finally, by (3.59) we see that πΣ∗ is an isomorphism from dα ∧ Cψ onto H1(Σ). �

We finally remark that for any 1-form u ∈ D′(M ; Ω1) we have

πΣ∗(α ∧ u) = 0. (3.71)

Indeed, by (2.16) we see that α, and thus α∧u, vanish when restricted to the tangent spaces

of the fibers SxΣ. From (3.71) and (2.22) we get for any u ∈ D′(M ; Ω1)

πΣ∗(dα ∧ u) = πΣ∗(α ∧ du). (3.72)

4. Contact perturbations of geodesic flows on hyperbolic 3-manifolds

Let M = SΣ where (Σ, g) is a hyperbolic 3-manifold and α0 be the contact form on M

corresponding to the geodesic flow on Σ, see §§2.2,3.1. In this section we study Pollicott–

Ruelle resonances at λ = 0 for perturbations of α0. Ultimately, we will study perturbations

of the metric, but via perturbations of the contact form. In particular, we give the proof of

Theorem 1 in §4.4 below, relying on Theorem 5 (in §5) and Proposition A.1 proved later.

Let

ατ ∈ C∞(M ;T ∗M), τ ∈ (−ε, ε)
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be a family of 1-forms depending smoothly on τ . We may shrink ε > 0 so that each ατ is a

contact form on M and the corresponding Reeb vector field

Xτ ∈ C∞(M ;TM)

is Anosov; the latter follows from stability of the Anosov condition under perturbations (see

for instance [FH19, Corollary 5.1.12] or [KH95, Corollary 6.4.7] for the related case of Anosov

diffeomorphisms).

We will use first variation methods, introducing the 1-form

β := ∂τατ |τ=0 ∈ C∞(M ; Ω1).

We use the subscript or superscript (τ) to refer to the objects corresponding to the contact

manifold (M,ατ ) and the flow ϕ
(τ)
t := etXτ . For example, we use the operators (see §2.3)

P
(τ)
k = −iLXτ , P

(τ)
k,0 , R

(τ)
k (λ), Π

(τ)
k := Π

(τ)
k (0),

the spaces of (generalized) resonant states at λ = 0

Resk,`(τ), Resk,`0(τ), Resk(τ), Resk0(τ),

and the algebraic multiplicities of 0 as a resonance of the operators P
(τ)
k , P

(τ)
k,0

m
(τ)
k (0), m

(τ)
k,0(0).

When we omit τ this means that we are considering the unperturbed hyperbolic case τ = 0,

that is

α := α0, Pk := P
(0)
k , Rk := R

(0)
k , Resk,` := Resk,`(0), Πk := Π

(0)
k , . . . (4.1)

The first result of this section, proved in §4.1 below, is the following theorem. (Here the

maps π
(τ)
k : Resk0(τ) ∩ ker d→ Hk(M ;C) are defined in (2.61).)

Theorem 3. Let the assumptions above in this section hold. Assume moreover the following

nondegeneracy condition:

〈〈ιXβ •, •〉〉 defines a nondegenerate pairing on d(Res1
0)× d(Res1

0∗). (4.2)

Then there exists ε0 > 0 such that for all τ with 0 < |τ | < ε0 we have:

1. d(Res1
0(τ)) = 0 and thus by Lemma 2.8 and (2.28) we have dim Res1

0(τ) = b1(Σ).

2. d(Res2
0(τ)) = 0, dim Res2

0(τ) = b1(Σ)+2, and the map π
(τ)
2 is onto and has kernel Cdατ .

3. d(Res3
0(τ)) = 0 and the map π

(τ)
3 is equal to 0.

4. The semisimplicity condition (2.41) holds at λ0 = 0 for the operators P
(τ)
k,0 for all

k = 0, 1, 2, 3, 4.

Theorem 3 together with Lemma 2.4 and (2.59) give the following
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Corollary 4.1. Under the assumptions of Theorem 3 we have for 0 < |τ | < ε0

m
(τ)
0,0(0) = m

(τ)
4,0(0) = 1, m

(τ)
1,0(0) = m

(τ)
3,0(0) = b1(Σ), m

(τ)
2,0(0) = b1(Σ) + 2

and the order of vanishing of the Ruelle zeta function ζR at 0 is

mR(0) = 2m
(τ)
0,0(0)− 2m

(τ)
1,0(0) +m

(τ)
2,0(0) = 4− b1(Σ).

Corollary 4.1 is in contrast with the hyperbolic case τ = 0, where Corollary 3.1 gives the

order of vanishing 4− 2b1(Σ).

To give an application of Theorem 3 which is simpler to prove than Theorem 1, we show

in §§4.2–4.3 below that the nondegeneracy condition (4.2) holds for a large set of conformal

perturbations of the contact form α:1

Theorem 4. Let M = SΣ where (Σ, g) is a hyperbolic 3-manifold. Fix a nonempty open set

U ⊂ M , and denote by C∞c (U ;R) the space of all smooth real-valued functions on M with

support inside U , with the topology inherited from C∞(M ;R).

Then there exists an open dense subset of C∞c (U ;R) such that for any a in this set,

the 1-form β := aα satisfies the condition (4.2). It follows that for τ 6= 0 small enough

depending on a the contact flow on M corresponding to the contact form ατ := eτaα satisfies

the conclusions of Theorem 3, in particular the Ruelle zeta function has order of vanishing

4− b1(Σ) at 0.

4.1. Proof of Theorem 3. We first prove an identity relating the action of the vector field

Y := ∂τXτ |τ=0 ∈ C∞(M ;TM) (4.3)

on resonant and coresonant 1-forms to the bilinear form featured in (4.2). It reformulates

the pairing (4.2) and will subsequently (see Lemma 4.4) be used to show that the non-closed

1-forms may be perturbed away.

Lemma 4.2. For all u ∈ Res1
0 and u∗ ∈ Res1

0∗, we have

〈〈Π1LY Π1u, dα ∧ u∗〉〉 = 〈〈LY u, dα ∧ u∗〉〉 = 〈〈(ιXβ)du, du∗〉〉. (4.4)

Proof. 1. To show the first equality in (4.4), we note that by the decomposition (2.44) and

Lemma 2.4 we have for all w ∈ D′E∗u(M ; Ω1)

Π1w = Π1,0(w − (ιXw)α) +
1

volα(M)

(∫
M
ιXw d volα

)
α.

We now compute∫
M
α ∧ dα ∧ (Π1LY Π1u) ∧ u∗ = 〈〈Π1,0(LY u− (ιXLY u)α), dα ∧ u∗〉〉

= 〈〈LY u− (ιXLY u)α, dα ∧ u∗〉〉

=

∫
M
α ∧ dα ∧ LY u ∧ u∗.

1By the Gray Stability Theorem (see [Gei08, Theorem 2.2.2]), any perturbation of a contact form is a

conformal perturbation up to pullback by a diffeomorphism.
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Here in the first equality we used that u ∈ Res1
0 and thus Π1u = u. In the second equality

we used that dα ∧ u∗ ∈ Res3
0∗ and thus (Π1,0)T (dα ∧ u∗) = dα ∧ u∗ (see §2.3.4). This proves

the first equality in (4.4).

2. We now show the second equality in (4.4). Differentiating the relations ιXτατ = 1 and

ιXτdατ = 0 (see (2.1)) at τ = 0, we get

ιY α = −ιXβ, ιY dα = −ιXdβ. (4.5)

Note also that

α ∧ dα ∧ du = α ∧ dα ∧ du∗ = 0 (4.6)

as follows from Lemma 2.4 as the 5-forms above are in Res0
0 d volα, respectively Res0

0∗ d volα,

and integrate to 0 on M using integration by parts (since the 5-forms dα∧dα∧u, dα∧dα∧u∗
lie in the kernel of ιX and thus are equal to 0).

We have∫
M
α ∧ dα ∧ LY u ∧ u∗ =

∫
M
α ∧ dα ∧ ιY du ∧ u∗ +

∫
M
α ∧ dα ∧ dιY u ∧ u∗. (4.7)

We first compute∫
M
α ∧ dα ∧ ιY du ∧ u∗ = −

∫
M
α ∧ ιY dα ∧ du ∧ u∗ −

∫
M

(ιY u∗)α ∧ dα ∧ du

=

∫
M
α ∧ ιXdβ ∧ du ∧ u∗ =

∫
M
dβ ∧ du ∧ u∗

=

∫
M
β ∧ du ∧ du∗ =

∫
M

(ιXβ)α ∧ du ∧ du∗.

(4.8)

Here in the first equality we used that the 5-form dα ∧ du ∧ u∗ lies in the kernel of ιX and

is thus equal to 0, implying ιY (dα ∧ du ∧ u∗) = 0. In the second equality we used the

identities (4.5) and (4.6). In the third equality we used that α∧ ιXdβ∧du∧u∗ = dβ∧du∧u∗
as the difference of the two forms belongs to ker ιX , by ιXdu = 0 and ιXu∗ = 0. In the fourth

equality we integrated by parts, and in the fifth equality we used that ιX of the integrated

5-forms are equal.

We next compute∫
M
α ∧ dα ∧ dιY u ∧ u∗ =

∫
M
ιY u(dα ∧ dα ∧ u∗ − α ∧ dα ∧ du∗) = 0. (4.9)

Here in the first equality we integrated by parts and in the second one we used (4.6) and the

fact that dα ∧ dα ∧ u∗ = 0 (as ιX of this 5-form is equal to 0).

Plugging (4.8)–(4.9) into (4.7), we get the second equality in (4.4). �

The pairing in (4.4) controls how the resonance at 0 for the operator P
(τ)
1,0 moves as we

perturb τ from 0, and the nondegeneracy condition (4.2) roughly speaking means that the

multiplicity of 0 as a resonance of P
(τ)
1,0 drops by dim d(Res1

0) = b1(Σ). This observation

is made precise in Lemma 4.4 below, but first we need to review perturbation theory of

Pollicott–Ruelle resonances. It will be more convenient for us to use the operators P
(τ)
k

rather than P
(τ)
k,0 since the latter act on the τ -dependent space of k-forms annihilated by ιXτ .



THE RUELLE ZETA FUNCTION AT ZERO FOR NEARLY HYPERBOLIC 3-MANIFOLDS 45

In the rest of this section we assume that ε0 > 0 is chosen small, with the precise value

varying from line to line.

We will use the perturbation theory developed in [Bon20]. For an alternative approach,

see [DGRS20, §6]. Since we are interested in the resonance at 0, we may restrict ourselves to

the strip {Imλ > −1}. Following the notation of [CP20, §6.1], we consider the τ -independent

anisotropic Sobolev spaces

HrG,s(M ; Ωk) := e−rOp(G)Hs(M ; Ωk), r ≥ 0, s ∈ R. (4.10)

Here Op is a quantization procedure on M , G(ρ, ξ) = m(ρ, ξ) log(1 + |ξ|) is a logarithmically

growing symbol on the cotangent bundle T ∗M , |ξ| denotes an appropriately chosen norm on

the fibers of T ∗M , and the function m(ρ, ξ), homogeneous of order 0 in ξ, satisfies certain

conditions [Bon20, (4)] with respect to the vector field Xτ for all τ ∈ (−ε0, ε0). The space

Hs is the usual Sobolev space of order s. Denote the domain of P
(τ)
k on HrG,s by

D(τ)
rG,s(M ; Ωk) := {u ∈ HrG,s(M ; Ωk) | P (τ)

k u ∈ HrG,s(M ; Ωk)}.

The following lemma summarizes the perturbation theory used here. For details see for

example [Bon20, Theorem 1 and Corollary 2] or [CP20, Lemma 6.1 and §6.2].

Lemma 4.3. There exists a constant C0 such that for r > C0 + |s| and τ ∈ (−ε0, ε0), the

operator

P
(τ)
k − λ : D(τ)

rG,s(M ; Ωk)→ HrG,s(M ; Ωk), Imλ > −1 (4.11)

is Fredholm and its inverse (assuming λ is not a resonance) is given by R
(τ)
k (λ). Moreover,

the set of pairs (τ, λ) such that λ is a resonance of P
(τ)
k is closed and the resolvent R

(τ)
k (λ) :

HrG,s → HrG,s is bounded locally uniformly in τ, λ outside of this set.

Since R
(τ)
k (λ) is the inverse of P

(τ)
k −λ on anisotropic Sobolev spaces, we have the resolvent

identity for all τ, τ ′ ∈ (−ε0, ε0)

R
(τ)
k (λ)−R(τ ′)

k (λ) = R
(τ)
k (λ)(P

(τ ′)
k − P (τ)

k )R
(τ ′)
k (λ), Imλ > −1. (4.12)

Here the right-hand side is well-defined since for r > C0 + |s|+ 1 the operator R
(τ ′)
k (λ) maps

HrG,s to itself, P
(τ)
k and P

(τ ′)
k map HrG,s to HrG,s−1, and R

(τ)
k (λ) maps HrG,s−1 to itself.

Using (4.12) we see that for r > C0 + |s|+ 1 the family R
(τ)
k (λ) : HrG,s → HrG,s−1 is locally

Lipschitz continuous in τ . Next, recalling (4.3) and that P
(τ)
k = −iLXτ , we have by (4.12)

∂τR
(τ)
k (λ)|τ=0 = iRk(λ)LYRk(λ) (4.13)

as operators HrG,s → HrG,s−2 when r > C0 + |s|+ 2.

Fix a contour γ in the complex plane which encloses 0 but no other resonances of the

unperturbed operators Pk = P
(0)
k . For |τ | < ε0, no resonances of P

(τ)
k lie on the contour γ,

so we may define the operators

Π̃
(τ)
k := − 1

2πi

∮
γ
R

(τ)
k (λ) dλ.
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Unlike the spectral projectors Π
(τ)
k corresponding to the resonance at 0, the operators Π̃

(τ)
k

depend continuously on τ , since R
(τ)
k (λ) is continuous in τ . Moreover, the rank of Π̃

(τ)
k is

constant in τ ∈ (−ε0, ε0), see [CP20, Lemma 6.2]. By (2.36) we have

Π̃
(0)
k = Πk := Πk(0)

so the rank of Π̃
(τ)
k can be computed using the algebraic multiplicities of 0 as a resonance in

the unperturbed case τ = 0 (using (2.43)):

rank Π̃
(τ)
k = mk(0) = mk,0(0) +mk−1,0(0). (4.14)

By (2.36), we also have

Π̃
(τ)
k =

∑
λ∈Υkτ

Π
(τ)
k (λ) (4.15)

where Υk
τ is the set of resonances of the operator P

(τ)
k which are enclosed by the contour γ.

Note that by (4.15) and (2.42)

Π̃
(τ)
k Π

(τ)
k (λ) = Π

(τ)
k (λ) for all λ ∈ Υk

τ (4.16)

and the range of Π̃
(τ)
k is the direct sum of the ranges Resk,∞(τ) (λ) of Π

(τ)
k (λ) over λ ∈ Υk

τ . In

particular, using (2.43) we get

rank Π̃
(τ)
k =

∑
λ∈Υkτ

(
m

(τ)
k,0(λ) +m

(τ)
k−1,0(λ)

)
. (4.17)

Together with (4.14) and induction on k this implies for |τ | < ε0∑
λ∈Υkτ

m
(τ)
k,0(λ) = mk,0(0). (4.18)

We are now ready to show that under the condition (4.2) the space Res1
0(τ) of resonant

1-forms at 0 for the perturbed operator P
(τ)
1,0 , τ 6= 0, consists of closed forms:

Lemma 4.4. Under the assumptions of Theorem 3, there exists ε0 > 0 such that for 0 <

|τ | < ε0 we have d(Res1
0(τ)) = 0.

Proof. 1. Define the operator

Z(τ) := P
(τ)
1 Π̃

(τ)
1 .

Roughly speaking this operator contains information about the nonzero resonances of P
(τ)
1

enclosed by γ; in particular, each of the corresponding spaces of generalized resonant states

is in the range of Z(τ) as can be seen from (4.16).

In the hyperbolic case τ = 0, the semisimplicity condition (2.41) holds for the operator P1

at λ = 0, as follows from Lemmas 2.4 and 3.10 together with (2.43). Therefore, the range of

Π̃
(0)
1 = Π1 is contained in Res1, implying that

Z(0) = 0. (4.19)
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By (4.14), the rank of Π̃
(τ)
1 can be computed using the algebraic multiplicities of 0 as a

resonance in the hyperbolic case τ = 0, which are known by (3.1):

rank Π̃
(τ)
1 = 2b1(Σ) + 1. (4.20)

The intersection of the range of Π̃
(τ)
1 with the kernel of P

(τ)
1 is equal to Res1

(τ). By (2.43)

and Lemma 2.4 we have Res1
(τ) = Res1

0(τ)⊕Cατ . Next, by Lemma 2.8 and (2.28) we have

dim Res1
0(τ) = b1(Σ) + dim d(Res1

0(τ)). Therefore

dim Res1
(τ) = b1(Σ) + 1 + dim d(Res1

0(τ)).

By the Rank-Nullity Theorem and (4.20) we then have

rankZ(τ) = b1(Σ)− dim d(Res1
0(τ)). (4.21)

2. Since (P
(τ)
1 − λ)R

(τ)
1 (λ) is the identity operator, we have for all τ

Z(τ) = − 1

2πi

∮
γ
λR

(τ)
1 (λ) dλ.

Using (4.13) we now compute the derivative

∂τZ(0) = − 1

2π

∮
γ
λR1(λ)LYR1(λ) dλ = −iΠ1LY Π1.

Here in the second equality we used the Laurent expansion (2.36) for R1(λ) at λ0 = 0

(recalling that J1(0) = 1 by semisimplicity).

By Lemma 4.2, for any u ∈ Res1
0, u∗ ∈ Res1

0∗ we have∫
M
α ∧ dα ∧

(
∂τZ(0)u

)
∧ u∗ = −i〈〈(ιXβ)du, du∗〉〉. (4.22)

By the nondegeneracy assumption (4.2) the bilinear form (4.22) is nondegenerate on u ∈ Cψ,

u∗ ∈ Cψ∗. This implies that

rank ∂τZ(0) ≥ dim Cψ = b1(Σ). (4.23)

Together (4.19) and (4.23) show that for 0 < |τ | < ε0

rankZ(τ) ≥ b1(Σ).

Then by (4.21) we have dim d(Res1
0(τ)) = 0 for 0 < |τ | < ε0 which finishes the proof. �

Remark. Lemma 4.4 holds more generally whenever P1,0 is semisimple. If for all contact

perturbations (ατ )τ we would have that (4.2) is trivial, this would imply that du ∧ du∗ = 0

for all u ∈ Res1
0 and u∗ ∈ Res1

0∗. When (Σ, g) is hyperbolic, we will show in §4.2 that this is

impossible, while for general (Σ, g) proving such a statement seems out of reach for now.

Together with Lemma 2.4, Lemma 2.9, Lemma 2.11, and (2.28) Lemma 4.4 gives all

the conclusions of Theorem 3 except semisimplicity on 2-forms. In particular we have for
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0 < |τ | < ε0 (using (2.43))

dim Res2
0(τ) = b1(Σ) + 2, (4.24)

d(Res1,∞
(τ) ) = Cdατ . (4.25)

To finish the proof of Theorem 3 it remains to establish semisimplicity on 2-forms:

Lemma 4.5. Under the assumptions of Theorem 3, there exists ε0 > 0 such that for 0 <

|τ | < ε0 the semisimplicity condition (2.41) holds at λ0 = 0 for the operator P
(τ)
2,0 .

Proof. We first claim that for 0 < |τ | < ε0

rank
(
ατ ∧ (Π̃

(τ)
2 −Π

(τ)
2 )
)
≥ rank

(
ατ ∧ d(Π̃

(τ)
1 −Π

(τ)
1 )
)
≥ b1(Σ). (4.26)

Indeed, by (2.37) and (4.15) we have d(Π̃
(τ)
1 −Π

(τ)
1 ) = (Π̃

(τ)
2 −Π

(τ)
2 )d which implies the first

inequality in (4.26). Next, we have rank(α∧dΠ̃
(0)
1 ) = b1(Σ)+1 as the range of dΠ̃

(0)
1 is equal to

dRes1 = Cdα⊕ dCψ. Since Π̃
(τ)
1 depends continuously on τ , we see that rank(ατ ∧ dΠ̃

(τ)
1 ) ≥

b1(Σ) + 1 for all small enough τ . On the other hand, for τ small but nonzero we have

rank dΠ
(τ)
1 = 1 by (4.25). Together these imply the second inequality in (4.26).

Now, by (4.15) and (2.43) the range of ατ ∧ (Π̃
(τ)
2 − Π

(τ)
2 ) is contained in the sum of the

spaces ατ ∧ Res2,∞
0(τ)(λ) over λ ∈ Υ2

τ \ {0}. Therefore (4.26) implies that for 0 < |τ | < ε0∑
λ∈Υ2

τ\{0}

m
(τ)
2,0(λ) ≥ b1(Σ). (4.27)

From (4.18) and (3.1) we see that∑
λ∈Υ2

τ

m
(τ)
2,0(λ) = m2,0(0) = 2b1(Σ) + 2

therefore by (4.27) we have m
(τ)
2,0(0) ≤ b1(Σ) + 2. Since dim Res2

0(τ) = b1(Σ) + 2 by (4.24), we

showed that the algebraic and geometric multiplicities for 0 as a resonance of P
(τ)
2,0 coincide,

finishing the proof. �

4.2. The full support property. In this section, we prove a full support statement which

will be used in the proof of Theorem 4. In fact, we recall that we need to prove the nonde-

generacy assumption (4.2), that is, that 〈〈ιXβ•, •〉〉 is nondegenerate on dRes1
0×dRes1

0∗, and

the support properties of elements of dRes1
0(∗) will be useful. In §§4.2–4.4 we assume that

M = SΣ where (Σ, g) is a hyperbolic 3-manifold and the contact form α and the spaces of

(co-)resonant states at zero Res1
0, Res1

0∗ are defined using the geodesic flow on (Σ, g).

Proposition 4.6. For all u ∈ Res1
0, u∗ ∈ Res1

0∗ with du 6= 0, du∗ 6= 0, the distributional

5-form α ∧ du ∧ du∗ fulfills supp(α ∧ du ∧ du∗) = M .

To show Proposition 4.6, we first study properties of the 2-forms du and du∗. Define the

smooth 2-forms

ω± ∈ C∞(M ; Ω2
0)
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by requiring that E0⊕Eu be in the kernel of ω−, E0⊕Es be in the kernel of ω+, and, using

the horizontal/vertical decomposition (2.15)

ω±(x, v)
(
(w1,±w1), (w2,±w2)

)
= 〈v × w1, w2〉g for all w1, w2 ∈ {v}⊥ ⊂ TxΣ (4.28)

where ‘×’ denotes the cross product on TxΣ defined in §3.2.1. In terms of the canonical

1-forms on the frame bundle FΣ defined in §3.1.3 the lifts of ω± to FΣ are given by

ω± = U±∗1 ∧ U±∗2 . (4.29)

One can think of ω± as canonical volume forms on the stable/unstable spaces.

By (4.29) and (3.12) we compute

dω± = ±2α ∧ ω±. (4.30)

Lemma 4.7. Assume that u ∈ Res1
0, u∗ ∈ Res1

0∗. Then

du = f−ω−, du∗ = f+ω+; (4.31)

α ∧ du ∧ du∗ = −1
8f−f+d volα (4.32)

where the distributions f− ∈ D′E∗u(M ;C), f+ ∈ D′E∗s (M ;C) satisfy for any vector fields U− ∈
C∞(M ;Eu), U+ ∈ C∞(M ;Es)

(X ± 2)f± = 0, U±f± = 0. (4.33)

Proof. We consider the case of du, with du∗ studied similarly. From Lemma 3.8 we know

that u is a totally unstable 1-form, which implies that du is a section of E∗u ∧E∗u. The latter

is a one-dimensional vector bundle over M and ω− is a nonvanishing smooth section of it, so

du = f−ω− for some f− ∈ D′E∗u(M ;C). Using (4.30) we compute

0 = d(f−ω−) = (df− − 2f−α) ∧ ω−.

Taking ιX and ιU− of this identity and using that ιXω− = ιU−ω− = ιU−α = 0 (recalling the

definitions of U±∗1 , U±∗2 in (3.10) and below), we get (4.33).

Finally, (4.32) follows from (4.31) and the following identity which can be verified using

either (4.28) and (2.16) or (4.29) and (3.12):

α ∧ ω− ∧ ω+ = −1
8d volα .

�

We can now finish the proof of Proposition 4.6. Given (4.32) it suffices to prove that,

assuming that f− 6= 0 and f+ 6= 0,

supp(f−f+) = M. (4.34)

Let πΓ : SH3 → SΣ = M be the covering map corresponding to (3.2) and Φ±, B± be defined

in (3.14). Then by (3.22) and (4.33) we have for any U− ∈ C∞(SH3;Eu), U+ ∈ C∞(SH3;Es)

X(Φ2
±(f± ◦ πΓ)) = U±(Φ2

±(f± ◦ πΓ)) = 0,
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that is Φ2
+(f+ ◦ πΓ) is totally stable and Φ2

−(f− ◦ πΓ) is totally unstable in the sense of

Definition 3.2. Similarly to Lemma 3.3 we can then describe the lifts of f± to SH3 in terms

of some distributions g± on the conformal infinity S2:

f± ◦ πΓ = Φ−2
± (g± ◦B±) for some g± ∈ D′(S2;C). (4.35)

Since f± are resonant states of X, a result of Weich [Wei17, Theorem 1] shows that supp f+ =

supp f− = M , which from (4.35) and the facts that Φ± > 0, and that B± are submersions

which map SH3 onto S2, implies that

supp g+ = supp g− = S2. (4.36)

We will now use the coordinates (ν−, ν+, t) ∈ (S2 × S2)− × R on SH3 introduced in (3.16).

Then by (4.35) and (3.17) we can write in these coordinates

(f−f+) ◦ πΓ = 1
16 |ν− − ν+|4g−(ν−)g+(ν+).

By (4.36), we see that the support of the tensor product g−⊗ g+(ν−, ν+) = g−(ν−)g+(ν+) is

equal to the entire S2×S2, which implies that supp(f−f+)◦πΓ = SH3 and thus supp(f−f+) =

M . This shows (4.34) and finishes the proof.

4.3. Proof of Theorem 4. We first remark that in the special case dim d(Res1
0) = b1(Σ) =

1, it is straightforward to see that Proposition 4.6 implies the following simplified version of

Theorem 4: for each nonempty open set U ⊂M there exists a ∈ C∞(M ;R) with supp a ⊂ U

and such that β := aα satisfies (4.2). Indeed, it suffices to fix any nonzero du ∈ d(Res1
0),

du∗ ∈ d(Res1
0∗), and choose a such that

∫
M aα ∧ du ∧ du∗ 6= 0. We note that there are

examples of hyperbolic 3-manifolds with b1(Σ) = 1, see for instance [FM12, Theorem 13.4].

For the general case, we will use the following basic fact from linear algebra:

Lemma 4.8. Denote by ⊗2Cn the space of complex n×n matrices. Assume that V ⊂ ⊗2Cn
is a subspace such that for each v1, v2 ∈ Cn \ {0} there exists B ∈ V such that 〈Bv1, v2〉 6= 0.

(Here 〈•, •〉 denotes the canonical bilinear inner product on Cn.) Then the set of invertible

matrices in V is dense.

Proof. Let O be a nonempty open subset of V . We need to show that O contains an invertible

matrix. Assume that there are no invertible matrices in O. Let A be a matrix of maximal

rank in O, then k := rankA < n since A cannot be invertible. There exist bases e1, . . . , en
and e∗1, . . . , e

∗
n of Cn such that

〈Aej , e∗` 〉 =

{
1 if j = ` ≤ k;

0 otherwise.

By the assumption of the lemma, there exists B ∈ V such that 〈Bek+1, e
∗
k+1〉 6= 0. Consider

the matrix At = A+tB which lies in O for sufficiently small t, and let b(t) be the determinant

of the matrix (〈Atej , e∗` 〉)
k+1
j,`=1. Then b(0) = 0 and b′(0) = 〈Bek+1, e

∗
k+1〉 6= 0. Therefore, for

small enough t 6= 0 we have b(t) 6= 0, which means that rankAt ≥ k + 1. This contradicts

the fact that k was the maximal rank of any matrix in O. �
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We are now ready to give the proof of Theorem 4. For a ∈ C∞(M ;R), define the bilinear

form

Sa : d(Res1
0)× d(Res1

0∗)→ C, Sa(du, du∗) =

∫
M

aα ∧ du ∧ du∗.

To prove Theorem 4, it then suffices to show that the set of a ∈ C∞c (U ;R) such that Sa
is nondegenerate is open and dense. Since nondegeneracy is an open condition, this set is

automatically open. To show that it is dense, consider the finite dimensional vector space

V := {Sa | a ∈ C∞c (U ;R)}.

Choosing bases of the b1(Σ)-dimensional spaces d(Res1
0) and d(Res1

0∗), we can identify V with

a subspace of ⊗2Cb1(Σ). Let du ∈ d(Res1
0), du∗ ∈ d(Res1

0∗) be nonzero, then by Proposition 4.6

we have supp(α ∧ du ∧ du∗) = M , so there exists a ∈ C∞c (U ;R) such that Sa(du, du∗) 6= 0.

Then by Lemma 4.8 the set of nondegenerate bilinear forms in V is dense.

Let U be a nonempty open subset of C∞c (U ;R). Then {Sa | a ∈ U} is a nonempty open

subset of V . Thus there exists a ∈ U such that Sa is nondegenerate, which finishes the proof.

4.4. Proof of Theorem 1. We now give the proof of part 2 of Theorem 1, relying on

Theorem 5 (in §5) and Proposition A.1 below, combined together in Corollary 5.1. (Part 1

of Theorem 1 was proved in Corollary 3.1 above.)

We start by computing how a general metric perturbation affects the contact form for

the geodesic flow. Let (Σ, g) be any compact 3-dimensional Riemannian manifold and the

contact form α and the generator X of the geodesic flow on SΣ be defined as in §2.2. Let

gτ , τ ∈ (−ε, ε)

be a family of Riemannian metrics on Σ depending smoothly on τ , such that g0 = g. The

associated geodesic flows act on the τ -dependent sphere bundles

S(τ)Σ = {(x, v) ∈ TΣ: |v|gτ = 1}.

To bring these geodesic flows to SΣ, we use the diffeomorphisms

Φτ : SΣ→ S(τ)Σ, Φτ (x, v) =

(
x,

v

|v|gτ

)
.

Denote by ατ the contact form on S(τ)Σ corresponding to gτ . Then

α̃τ := Φ∗τατ

is a contact 1-form on SΣ and the corresponding contact flow is the geodesic flow of (Σ, gτ )

pulled back by Φτ .

Let π
(τ)
Σ : S(τ)Σ → Σ be the projection map. Using (2.11) and the fact that π

(τ)
Σ ◦ Φτ is

equal to πΣ := π
(0)
Σ , we compute for all (x, v) ∈ SΣ and ξ ∈ T(x,v)(SΣ)

〈α̃τ (x, v), ξ〉 =
〈v, dπΣ(x, v)ξ〉gτ

|v|gτ
.

Recalling dπΣ(x, v)X(x, v) = v (see (2.18)) and using g0(v, v) = 1, it follows that

ιX∂τ α̃τ |τ=0(x, v) = ∂τgτ (v, v)|τ=0 −
1

2
g0(v, v) · ∂τgτ (v, v)|τ=0 = ∂τ |v|gτ |τ=0. (4.37)
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In particular, if the metric gτ is given by a conformal perturbation gτ = e−2τbg, where

b ∈ C∞(Σ;R), then

ιX∂τ α̃τ |τ=0(x, v) = −b ◦ πΣ. (4.38)

We are now ready to prove Theorem 1. Assume that (Σ, g) is a hyperbolic 3-manifold as

defined in §3.1 and put gτ := e−2τbg. By Theorem 3 applied to the family of contact forms

α̃τ , with β = ∂τ α̃τ |τ=0 satisfying (4.38), it suffices to show that for b in an open and dense

subset of C∞(Σ;R) the bilinear form

(du, du∗) 7→
∫
M

(b ◦ πΣ)α ∧ du ∧ du∗

is nondegenerate on d(Res1
0)× d(Res1

0∗).

The space Res1
0 is preserved by complex conjugation as follows from its definition (2.60);

here we use that for any u we have WF(ū) = {(ρ,−ξ) | (ρ, ξ) ∈WF(u)}. Denote by Res1
0R the

space of real-valued 1-forms in Res1
0 and let J (x, v) = (x,−v) be the map defined in (2.12).

By (2.50), the pullback J ∗ is an isomorphism from Res1
0 onto Res1

0∗. Thus it suffices to show

that for b in an open and dense subset of C∞(Σ;R) the real bilinear form

S̃b(du, du′) :=

∫
M

(b ◦ πΣ)α ∧ du ∧ J ∗(du′)

is nondegenerate on d(Res1
0R)× d(Res1

0R).

Since b ◦ πΣ is J -invariant, J ∗α = −α, and J is an orientation reversing diffeomorphism

on M , we see that S̃b is a symmetric bilinear form. Unlike in the contact perturbation case

in §4.3, we will not be able to produce for every pair (du, du′) ∈ d(Res1
0R) × d(Res1

0R) an

element b ∈ C∞(Σ;R) such that S̃b(du, du′) 6= 0. Instead, we will only produce b such

that S̃b(du, du) 6= 0. Hence, we will need the following variant of Lemma 4.8 for symmetric

matrices:

Lemma 4.9. Denote by ⊗2
SRn the space of real symmetric n × n matrices. Assume that

V ⊂ ⊗2
SRn is a subspace such that for each w ∈ Rn \ {0} there exists B ∈ V such that

〈Bw,w〉 6= 0. Then the set of invertible matrices in V is dense.

Proof. Similarly to the proof of Lemma 4.8, assume that O is a nonempty open subset of V

which does not contain any invertible matrices and A is a matrix in O of maximal rank k < n.

Since A is symmetric, it can be diagonalized, i.e. there exists an orthonormal basis e1, . . . , en
of Rn such that Aej = λjej where λj are real and, since rankA = k, we may assume that

λ1, . . . , λk 6= 0 and λk+1 = · · · = λn = 0.

By the assumption of the lemma, there exists B ∈ V such that 〈Bek+1, ek+1〉 6= 0. Consider

the matrix At = A+ tB which lies in O for sufficiently small t, and let b(t) be the determi-

nant of the matrix (〈Atei, ej〉)k+1
i,j=1. Then b(0) = 0 and b′(0) = λ1 · · ·λk〈Bek+1, ek+1〉 6= 0.

Therefore, for small enough t 6= 0 we have b(t) 6= 0, which means that rankAt ≥ k+ 1. This

contradicts the fact that k was the maximal rank of any matrix in O. �

Now to show Theorem 1 it remains to follow the argument at the end of §4.3, with

Lemma 4.8 replaced by Lemma 4.9 and using the following
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Proposition 4.10. Assume that u ∈ Res1
0R and du 6= 0. Then there exists b ∈ C∞(Σ;R)

such that S̃b(du, du) 6= 0.

Proof. Using the pushforward map πΣ∗ defined in (2.19) we compute by (2.20) and (2.23)

S̃b(du, du) = −
∫

Σ
bπΣ∗(α ∧ du ∧ J ∗(du)). (4.39)

By Corollary 5.1 below we have πΣ∗(α ∧ du ∧ J ∗(du)) 6= 0 which finishes the proof. �

5. The pushforward identity

In this section we prove an identity, Theorem 5, used in Proposition 4.10 above which is

a key component in the proof of our main Theorem 1.

We assume throughout this section that (Σ, g) is a compact hyperbolic 3-manifold as

defined in §3.1 and write Σ = Γ\H3 where Γ ⊂ SO+(1, 3). For s > 2, define the operator

Qs : C∞c (H3)→ C∞(H3), Qsf(x) :=

∫
H3

(
cosh dH3(x, y)

)−s
f(y) d volg(y). (5.1)

As shown in §5.1.2 below, the operator Qs can be extended to Γ-invariant distributions on H3

and it is smoothing, so it descends to an operator

Qs : D′(Σ;C)→ C∞(Σ;C). (5.2)

Let ∆g be the (nonpositive) Laplace–Beltrami operator on (Σ, g). Recall the pushforward

map on forms πΣ∗ defined in (2.19) and the spaces of (co-)resonant k-forms Resk0,Resk0∗ on

M = SΣ associated to the geodesic flow on (Σ, g), see §§2.2–2.3.

The main result of this section is the following

Theorem 5. Assume that u ∈ Res1
0, u∗ ∈ Res1

0∗. Define the pushforwards

σ− := πΣ∗(dα ∧ u), σ+ := πΣ∗(dα ∧ u∗) (5.3)

which are harmonic 1-forms on Σ by Lemma 3.17. Define F ∈ D′(Σ;C) by

πΣ∗(α ∧ du ∧ du∗) = F d volg . (5.4)

Then we have

Q4F = −1
6∆g(σ− · σ+) (5.5)

where the inner product σ− ·σ+ is the function on Σ defined by σ− ·σ+(x) = 〈σ−(x), σ+(x)〉g.

Remark. By (4.39) and since Q4 is self-adjoint we can rewrite (5.5) as follows: for each b ∈
D′(Σ),

1

6

∫
Σ

b ∆g(σ− · σ+) d volg =

∫
SΣ

(π∗ΣQ4b)α ∧ du ∧ du∗. (5.6)

One can think of the right-hand side of (5.6) as the integral of π∗ΣQ4b against a Patterson–

Sullivan distribution α∧ du∧ du∗ (note that this distribution is invariant under the geodesic

flow) and the left-hand side of (5.6) as a topological quantity because it features harmonic

1-forms. Then (5.6) bears some similarity to the result of Anantharaman–Zelditch [AZ07,

Theorem 1.1] for the symbol a := π∗Σb; the latter is in the setting when Σ is a surface and the
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left-hand side there has a spectral interpretation because it features an eigenfunction of the

Laplacian. However, the operator Lr used in [AZ07] is different in nature from the operator

Q4 featured in (5.6): for our application is crucial that the right-hand side of (5.6) depends

only on the pushforward of α ∧ du ∧ du∗ to Σ and that does not seem to typically be the

case for the right-hand side of [AZ07, Theorem 1.1]. See also the work of Hansen–Hilgert–

Schröder [HHS12] giving an asymptotic statement for higher dimensional situations.

The formula (5.6) in the special case b ≡ 1 (which is trivial in our situation because

both sides are equal to 0) also has some similarity to the pairing formulas of Dyatlov–Faure–

Guillarmou [DFG15, Lemma 5.10] and Guillarmou–Hilgert–Weich [GHW21, Theorem 5].

In this vague analogy between Theorem 5 and the results of [AZ07, DFG15, GHW21] our

setting would correspond to an exceptional value of the spectral parameter: comparing (5.32)

with [AZ07, (1.3)] gives the value s = −2 (in the notation of [AZ07]).

Together with Proposition A.1, Theorem 5 gives the following statement which is used in

the proof of Proposition 4.10. Recall the map J (x, v) = (x,−v) defined in (2.12).

Corollary 5.1. Assume that u ∈ Res1
0 is real-valued and du 6= 0. Then πΣ∗(α ∧ du ∧

J ∗(du)) 6= 0.

Proof. Put u∗ = J ∗u ∈ Res1
0∗. By (2.13) and (2.24) we have σ+ = σ− where the 1-forms σ±

are defined in (5.3). By Lemma 3.17, σ = σ+ = σ− is a real-valued harmonic 1-form on Σ,

and du 6= 0 implies that σ 6= 0.

Let F be defined in (5.4), then by Theorem 5 we have

Q4F = −1
6∆g|σ|2g. (5.7)

Now, by Proposition A.1 we see that |σ|2g is not constant, that is ∆g|σ|2g 6= 0. Therefore,

Q4F 6= 0 which implies that F 6= 0. �

5.1. Preliminary steps. We first prove several preliminary statements. We will use the

hyperboloid model of §3.1.

5.1.1. Hyperbolic Laplacian. We first write the Laplacian ∆g of the hyperbolic metric on H3

using the hyperboloid model. Consider the open cone

C+ := {(x̃0, x̃
′) ∈ R1,3 : x̃0 > |x̃′|}.

Each point x̃ ∈ C+ can be written in polar coordinates as

x̃ = rx, r > 0, x ∈ H3.

Define the d’Alembert operator on C+ as � = ∂2
x̃0
− ∂2

x̃1
− ∂2

x̃2
− ∂2

x̃3
. In polar coordinates it

can be written as

� = r−2
(
(r∂r)

2 + 2r∂r −∆g

)
(5.8)

where the hyperbolic Laplacian ∆g acts in the x variable.

Using (5.8), we derive the following useful identity: for any ψ ∈ C∞((0,∞)) and y ∈ H3

−∆gψ(〈x, y〉1,3) = ψ̃(〈x, y〉1,3) where ψ̃(ρ) := (1− ρ2)ψ′′(ρ)− 3ρψ′(ρ) (5.9)
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and the operator ∆g acts in the x variable (note that ψ̃(ρ) is given by the radial part of −∆g

applied to ψ(ρ) by (3.4)). Indeed, it suffices to apply (5.8) to the function f(x̃) := ψ(〈x̃, y〉1,3),

x̃ ∈ C+, and use that �f(x̃) = ψ′′(〈x̃, y〉1,3). Taking in particular ψ(ρ) = ρ−s where s ∈ C,

we get (
−∆g − s(2− s)

)
〈x, y〉−s1,3 = s(s+ 1)〈x, y〉−s−2

1,3 . (5.10)

Similarly, if ν−, ν+ ∈ S2 ⊂ R3, then by applying (5.8) to the function

fν−,ν+(x̃) =
(
〈x̃, (1, ν−)〉1,3 〈x̃, (1, ν+)〉1,3

)−1
, x̃ ∈ C+

and using that �fν−,ν+ = 2(1−ν− ·ν+)f2
ν−,ν+

, where we recall ‘·’ denotes the Euclidean inner

product, we get

−∆g

(
P (x, ν−)P (x, ν+)

)
= 2(1− ν− · ν+)

(
P (x, ν−)P (x, ν+)

)2
(5.11)

where the Poisson kernel P (x, ν) is defined in (3.18) and the Laplacian ∆g acts in the x

variable.

5.1.2. Properties of the operators Qs. Let Qs : C∞c (H3) → C∞(H3) be the operator defined

in (5.1). Using (3.4) we can rewrite it as

Qsf(x) =

∫
H3

〈x, y〉−s1,3f(y) d volg(y). (5.12)

Note that the operator Qs is equivariant under the action of the group SO+(1, 3):

Qs(γ
∗f) = γ∗(Qsf) for all γ ∈ SO+(1, 3). (5.13)

For s > 2, the function y 7→ 〈x, y〉−s1,3 lies in L1(H3; d volg) and its L1 norm is independent

of x; indeed, using the SO+(1, 3)-invariance we may reduce to the case x = (1, 0, 0, 0), which

can be handled by an explicit computation. Therefore, Qs : L∞(H3)→ L∞(H3).

The space L∞(Σ) is isomorphic to the space of Γ-invariant functions in L∞(H3). Us-

ing (5.13), we see that Qs descends to the quotient Σ = Γ\H3 as an operator

Qs : L∞(Σ)→ L∞(Σ), s > 2. (5.14)

Next, using (5.10), we get the following identity relating the operators Qs with the hyperbolic

Laplacian ∆g on Σ:

(−∆g − s(2− s))Qs = Qs(−∆g − s(2− s)) = s(s+ 1)Qs+2. (5.15)

Putting together (5.14) and (5.15) and using elliptic regularity, we see that for any s > 2,

Qs in fact extends to a smoothing operator D′(Σ)→ C∞(Σ), proving (5.2).

We now show that for f ∈ D′(Σ) one can obtain Qsf as a limit of cutoff integrals:

Lemma 5.2. Fix a cutoff function χ(ρ) ∈ C∞c (R) such that χ = 1 near 0. For ε > 0 and

s > 2, define the operator

Qs,χ,ε : D′(H3)→ C∞(H3), Qs,χ,εf(x) =

∫
H3

χ(ε〈x, y〉1,3)〈x, y〉−s1,3f(y) d volg(y).
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Note that Qs,χ,ε satisfies the equivariance relation (5.13) and thus descends to an operator

D′(Σ)→ C∞(Σ). Then we have for all f ∈ D′(Σ)

Qs,χ,εf → Qsf in C∞(Σ) as ε→ +0. (5.16)

Proof. It suffices to show that for all n ≥ 0,

‖∆n
g (Qs −Qs,χ,ε)∆n

g‖L∞(Σ)→L∞(Σ) → 0 as ε→ +0.

By (5.9) with ψ(ρ) := ρ−s(1−χ(ερ)) we have (with each instance of ∆g in ∆2n
g below acting

in either x or y)

∆2n
g

(
〈x, y〉−s1,3(1− χ(ε〈x, y〉1,3))

)
= 〈x, y〉−s1,3ψ

(n)
s,χ,ε(〈x, y〉1,3)

where, putting Ts := ρs
(
(1− ρ2)∂2

ρ − 3ρ∂ρ)ρ
−s,

ψ(n)
s,χ,ε(ρ) := T 2n

s (1− χ(ε•))(ρ). (5.17)

For any f ∈ L∞(H3) we have (integrating by parts in y and using the fact that ∆g is formally

self-adjoint)

∆n
g (Qs −Qs,χ,ε)∆n

g f(x) =

∫
H3

〈x, y〉−s1,3ψ
(n)
s,χ,ε(〈x, y〉1,3)f(y) d volg(y).

Estimating the L∞x L
1
y norm of the integral kernel of the latter operator we get for any

δ ∈ (0, s − 2) (we will use that δ > 0 at the end of the proof) and for some Cs,δ > 0

depending only on s, δ

‖∆n
g (Qs −Qs,χ,ε)∆n

g‖L∞(Σ)→L∞(Σ) ≤ Cs,δ sup
ρ≥1
|ρ−δψ(n)

s,χ,ε(ρ)|. (5.18)

For k ∈ N0 and ψ ∈ C∞((0,∞)), define the seminorm

‖ψ‖δ,k := max
0≤j≤k

sup
ρ≥1
|ρ−δ(ρ∂ρ)jψ(ρ)|.

We have ‖Tsψ‖δ,k ≤ Cs,δ,k‖ψ‖δ,k+2. Therefore

sup
ρ≥1
|ρ−δψ(n)

s,χ,ε(ρ)| ≤ Cs,δ,n‖1− χ(ερ)‖δ,4n = O(εδ), (5.19)

which finishes the proof. �

5.1.3. Spherical convolution operators. Let κ ∈ C∞([0, 4]). Define the smoothing operator

Aκ : D′(S2)→ C∞(S2), Aκf(ν) =

∫
S2

κ(|ν − ν ′|2)f(ν ′) dS(ν ′). (5.20)

Here |ν − ν ′| denotes the Euclidean distance between the points ν, ν ′ ∈ S2 ⊂ R3.

In this section we prove an estimate on the norm of Aκ between Sobolev spaces, Lemma 5.5,

which is used in the regularization argument in §5.2.3 below. Before we state this estimate,

we establish a few basic properties of Aκ:

Lemma 5.3. We have

‖Aκ‖L2(S2)→L2(S2) ≤ π‖κ‖L1([0,4]).
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Proof. By Schur’s lemma we have

‖Aκ‖L2(S2)→L2(S2) ≤ sup
ν′∈S2

∫
S2

∣∣κ(|ν − ν ′|2)
∣∣ dS(ν).

By SO(3)-invariance we see that the integral above is independent of ν ′. Choose ν ′ =

(0, 0,−1) and use spherical coordinates ν = (sin θ cosϕ, sin θ sinϕ, cos θ) to compute∫
S2

∣∣κ(|ν − ν ′|2)
∣∣ dS(ν) = 2π

∫ π

0

∣∣κ(2 + 2 cos θ)
∣∣ sin θ dθ = π

∫ 4

0
|κ(r)| dr

which finishes the proof. �

Lemma 5.4. Denote by ∆S2 the (nonpositive) Laplace–Beltrami operator on S2. Then

Aκ∆S2 = ∆S2Aκ = Aκ̃, κ̃(r) := (4− r)rκ′′(r) + (4− 2r)κ′(r). (5.21)

Proof. It is enough to show that, with ∆S2 acting in the ν variable,

∆S2(κ(|ν − ν ′|2)) = κ̃(|ν − ν ′|2).

Similarly to the proof of Lemma 5.3, by SO(3)-invariance we may reduce to the case ν ′ =

(0, 0,−1) and take spherical coordinates (θ, ϕ) for ν, in which the Laplace operator is ∆S2 =

(sin θ)−1∂θ sin θ∂θ + (sin θ)−2∂2
ϕ and |ν − ν ′|2 = 2 + 2 cos θ. Then we compute

∆S2(κ(|ν − ν ′|2)) =
1

sin θ
∂θ sin θ∂θκ(2 + 2 cos θ)

= 4 sin2 θκ′′(2 + 2 cos θ)− 4 cos θκ′(2 + 2 cos θ)

= κ̃(2 + 2 cos θ)

which finishes the proof. �

We can now give

Lemma 5.5. Assume that s1, s2 ∈ R and s2 − s1 = 2` for some ` ∈ N0. Then there exists a

constant C depending only on s1, s2 such that for all κ ∈ C∞([0, 4])

‖Aκ‖Hs1 (S2)→Hs2 (S2) ≤ C
2∑̀
j=0

‖rmax(j−`,0)∂jrκ(r)‖L1([0,4]). (5.22)

Proof. Define the differential operator arising from (5.21) (corresponding to 1−∆S2)

W := (r − 4)r∂2
r + (2r − 4)∂r + 1.

Denote by C a constant depending only on s1, s2, whose precise value may change from line

to line. We have

‖Aκ‖Hs1 (S2)→Hs2 (S2) ≤ C‖(1−∆S2)s2/2Aκ(1−∆S2)−s1/2‖L2(S2)→L2(S2)

= C‖(1−∆S2)`Aκ‖L2(S2)→L2(S2)

= C‖AW `κ‖L2(S2)→L2(S2)

≤ C‖W `κ‖L1([0,4]).
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Here in the second equality we used that Aκ commutes with ∆S2 by Lemma 5.4. In the third

inequality we used Lemma 5.4 again. In the last inequality we used Lemma 5.3.

By induction in ` we see that W ` is a linear combination with constant coefficients of the

operators rk∂jr where 0 ≤ j ≤ 2` and k ≥ max(j− `, 0). Therefore, ‖W `κ‖L1([0,4]) is bounded

by the right-hand side of (5.22), which finishes the proof. �

5.2. Proof of Theorem 5. Here we give the proof of Theorem 5, proceeding in several

steps. In §5.2.1 we write both sides of (5.5) as integrals featuring some distributions g±
on S2. In §5.2.2 we introduce a change of variables which shows that the two integrals are

formally equal. In §5.2.3 we prove that regularized versions of the two integrals are equal

and show convergence of the regularization to finish the proof.

Denote by πΓ the covering maps H3 → Σ and SH3 → M = SΣ (which one is meant will

be clear from the context). Since we can choose the representation of Σ as the quotient Γ\H3

arbitrarily, for any given x ∈ Σ we may arrange that πΓ(e0) = x where

e0 := (1, 0, 0, 0) ∈ H3. (5.23)

Therefore, in order to prove Theorem 5 it suffices to consider the case x = πΓ(e0), i.e. to

show that

π∗ΓQ4F (e0) = −1
6π
∗
Γ∆g(σ− · σ+)(e0). (5.24)

5.2.1. Reduction to the conformal boundary. We first express both sides of (5.24) in terms

of some distributions g± on the conformal boundary S2.

Let u ∈ Res1
0, u∗ ∈ Res1

0∗. By Lemma 4.7 we have

du = f−ω−, du∗ = f+ω+, α ∧ du ∧ du∗ = −1
8f−f+d volα,

where by (4.35), the lifts of f− ∈ D′E∗u(M ;C), f+ ∈ D′E∗s (M ;C) to the covering space SH3

have the form (recalling the definitions (3.14) of Φ±, B±)

π∗Γf± = Φ−2
± (g± ◦B±) for some g± ∈ D′(S2;C). (5.25)

Arguing similarly to (2.21), we see that the distribution F ∈ D′(Σ;C) defined in (5.4) can

be written as the pushforward

F (x) =
1

4

∫
SxΣ

f−(x, v)f+(x, v) dS(v), x ∈ Σ

where dS is the canonical volume form on the spherical fiber SxΣ. Therefore, the lift of F

to H3 has the form

π∗ΓF (x) =
1

4

∫
SxH3

(
Φ−(x, v)Φ+(x, v)

)−2
g−(B−(x, v))g+(B+(x, v)) dS(v). (5.26)

We next express the harmonic 1-forms σ± defined in (5.3) in terms of the distributions g±:

Lemma 5.6. Using the hyperbolic metric, identify the pullbacks π∗Γσ± with vector fields

on H3. Then for any x ∈ H3

π∗Γσ±(x) =
1

4

∫
S2

g±(ν)v±(x, ν) dS(ν)
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where v±(x, ν) ∈ SxH3 ⊂ TxH3 is defined in (3.20).

Proof. By (3.72) and since du = f−ω−, du∗ = f+ω+ we have

σ± = πΣ∗(f±α ∧ ω±).

Recall the horizontal/vertical decomposition (2.15). For any (x, v) ∈M = SΣ, ξ = (ξH , ξV ) ∈
T(x,v)M , and a positively oriented g-orthonormal basis v, v1, v2 ∈ TxΣ we compute by (2.16)

and (4.28)

(α ∧ ω±)(x, v)(ξ, (0, v1), (0, v2)) = 1
4〈ξH , v〉g.

Using the metric g, we identify σ± with a vector field on Σ. Then

σ±(x) =
1

4

∫
SxΣ

f±(x, v)v dS(v), x ∈ Σ.

It follows that for each x ∈ H3

π∗Γσ±(x) =
1

4

∫
SxH3

Φ±(x, v)−2g±(B±(x, v))v dS(v)

=
1

4

∫
S2

g±(ν)v±(x, ν) dS(ν).

Here in the first equality we used (5.25). In the second equality we made the change of

variables ν = B±(x, v) and used (3.21). �

We note that by the preceding lemma v±(x, ν) define vector-valued Poisson kernels in the

sense of [Olb95, KW19]. From Lemma 5.6 we get the following formula for the right-hand

side of (5.24) in terms of the distributions g±:

Lemma 5.7. We have (here e0 is defined in (5.23))

− π∗Γ∆g(σ− · σ+)(e0) =
1

8

∫
S2×S2

(1− ν− · ν+)2g−(ν−)g+(ν+) dS(ν−)dS(ν+). (5.27)

Proof. By (3.20) we have for each ν−, ν+ ∈ S2 and x ∈ H3

〈v−(x, ν−), v+(x, ν+)〉g = −〈v−(x, ν−), v+(x, ν+)〉1,3 = P (x, ν−)P (x, ν+)(1− ν− · ν+)− 1.

With the hyperbolic Laplacian ∆g acting in the x variable, we then compute by (5.11)

−∆g〈v−(x, ν−), v+(x, ν+)〉g = 2(1− ν− · ν+)2
(
P (x, ν−)P (x, ν+)

)2
.

Now (5.27) follows from Lemma 5.6 by integration and using that P (e0, ν±) = 1 by (3.18). �

5.2.2. Change of variables. By (5.26) and (5.12) we can formally write the left-hand side

of (5.24) as follows:

π∗ΓQ4F (e0)

=
1

4

∫
SH3

y−4
0

(
Φ−(y, v)Φ+(y, v)

)−2
g−(B−(y, v))g+(B+(y, v))dS(v)d volg(y),

(5.28)

where we recall y = (y0, y1, y2, y3) ∈ H3. Note that one has to take care when defining the

integral above, as g± are distributions and SH3 is noncompact, see §5.2.3 below.
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On the other hand, the right-hand side of (5.24) can be expressed using (5.27) as an

integral over (ν−, ν+) ∈ S2 × S2. To prove (5.24) and relate the two integrals we will use

the change of variables Ξ : (y, v) 7→ (ν−, ν+, t), where t ∈ R, introduced in (3.16). The basic

properties of Ξ are collected below in

Lemma 5.8. 1. Let (ν−, ν+, t) = Ξ(y, v). Then

Φ−(y, v)Φ+(y, v) =
4

|ν− − ν+|2
=

2

1− ν− · ν+
, (5.29)

y0 =
2 cosh t

|ν− − ν+|
. (5.30)

(As before, we write elements of H3 as y = (y0, y1, y2, y3) ∈ R1,3.)

2. The Jacobian of Ξ at (y, v) with respect to the densities d volg(y)dS(v) and dS(ν−)dS(ν+)dt

is equal to 4
(
Φ−(y, v)Φ+(y, v)

)−2
.

Remark. The identity in part 2 of the above is well-known, see [Nic89, Theorem 8.1.1 on

p. 131].

Proof. 1. The identity (5.29) follows immediately from (3.17), noting that |ν− − ν+|2 =

2(1− ν− · ν+). To see (5.30), we compute by (5.29) and (3.16)

Φ±(y, v) =
2e±t

|ν− − ν+|
which by (3.15) gives

y0 =
Φ−(y, v) + Φ+(y, v)

2
=

2 cosh t

|ν− − ν+|
.

2. Take (y, v) ∈ SH3. Let w ∈ TyH3 satisfy 〈v, w〉1,3 = 0. Then

|dB±(y, v)(w,±w)|S2 = 2|dB±(y, v)(0, w)|S2 =
2|w|g

Φ±(y, v)
. (5.31)

Here in the first equality we write (w,±w) = (w,∓w) ± 2(0, w) and use that by (3.23),

dB±(y, v)(w,∓w) = 0. In the second equality we use (3.21). Denoting by X the generator

of the geodesic flow and defining t by (3.16), we also have by (3.22) and (3.23)

dB±(y, v)(X(y, v)) = 0, dt(X(y, v)) = 1.

Fix a g-orthonormal basis v, v1, v2 of TyH3 and consider the following basis of T(y,v)SH3:

ξ0 = X(y, v), ξ±1 = (v1,±v1), ξ±2 = (v2,±v2).

Since ξ−j ∧ ξ
+
j = 2(vj , 0)∧ (0, vj), the value of the density d volg(y)dS(v) on ξ0, ξ

−
1 , ξ

−
2 , ξ

+
1 , ξ

+
2

is equal to 4. On the other hand, writing (η−(ξ), η+(ξ), τ(ξ)) = dΞ(y, v)(ξ), we have

η±(ξ∓j ) = η±(ξ0) = 0, τ(ξ0) = 1

and the vectors η±(ξ±1 ), η±(ξ±2 ) are orthogonal to each other and have length 2Φ±(y, v)−1

each by (5.31). It follows that the value of the density dS(ν−)dS(ν+)dt on the images of

ξ0, ξ
−
1 , ξ

−
2 , ξ

+
1 , ξ

+
2 under dΞ(y, v) is equal to 16

(
Φ−(y, v)Φ+(y, v)

)−2
. Thus the Jacobian of Ξ

at (y, v) is equal to 4
(
Φ−(y, v)Φ+(y, v)

)−2
. �
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Using Lemma 5.8 and (5.28), we can formally write the left-hand side of (5.24) as

π∗ΓQ4F (e0) =
1

64

∫
(S2×S2)−×R

(1− ν− · ν+)2

cosh4 t
g−(ν−)g+(ν+) dS(ν−)dS(ν+)dt. (5.32)

Using the change of variables s = tanh t, we compute∫
R

dt

cosh4 t
=

∫ 1

−1
(1− s2) ds =

4

3
. (5.33)

Comparing (5.32) with (5.27), we formally obtain the identity (5.24). However, our argument

is incomplete since the integrals in (5.28) and (5.32) are over the noncompact manifolds SH3,

(S2 × S2)− × R and g± are distributions. Thus one cannot immediately apply the change of

variables formula to get (5.32) from (5.28), or Fubini’s Theorem to get (5.24) from (5.32).

To deal with these issues, we will employ a regularization procedure.

5.2.3. Regularization and end of the proof. Fix a cutoff function

χ ∈ C∞c (R; [0, 1]), suppχ ⊂ [−2, 2], χ|[−1,1] = 1.

For ε > 0, define the integral

Iε :=

∫
H3

χ(εy0)y−4
0 π∗ΓF (y) d volg(y).

(As before, we embed H3 into R1,3 and we have y0 = 〈e0, y〉1,3 where e0 = (1, 0, 0, 0).) By

Lemma 5.2 with x = e0, Iε converges to the left-hand side of (5.24):

Iε → π∗ΓQ4F (e0) as ε→ +0. (5.34)

By (5.34) and (5.27), the proof of (5.24) (and thus of Theorem 5) is finished once we show

that

Iε →
1

48

∫
S2×S2

(1− ν− · ν+)2g−(ν−)g+(ν+) dS(ν−)dS(ν+) as ε→ +0. (5.35)

By (5.26) we have the following regularized version of (5.28):

Iε =
1

4

∫
SH3

χ(εy0)y−4
0

(
Φ−(y, v)Φ+(y, v)

)−2
g−(B−(y, v))g+(B+(y, v)) dS(v)d volg(y).

Making the change of variables (ν−, ν+, t) = Ξ(y, v) and using Lemma 5.8, we then get the

following regularized version of (5.32) (we keep in mind that g± are merely distributions so

that all of the integrals around these lines are understood in the distributional sense):

Iε =
1

64

∫
S2×S2×R

χ
( 2ε cosh t

|ν− − ν+|

)(1− ν− · ν+)2

cosh4 t
g−(ν−)g+(ν+) dS(ν−)dS(ν+)dt.

For r ≥ 0, define the function

ψε(r) :=
3

4

∫
R
χ
(2ε cosh t√

r

)
cosh−4 t dt. (5.36)
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Note that ψε ∈ C∞([0,∞)) and ψε(r) = 0 for r � ε2. We now have

Iε =
1

48

∫
S2×S2

ψε(|ν− − ν+|2)(1− ν− · ν+)2g−(ν−)g+(ν+) dS(ν−)dS(ν+). (5.37)

Recalling that |ν− − ν+|2 = 2(1 − ν− · ν+), we see from (5.37) that it suffices to prove the

following version of (5.35):∫
S2×S2

(
1−ψε(|ν−− ν+|2)

)
|ν−− ν+|4g−(ν−)g+(ν+) dS(ν−)dS(ν+)→ 0 as ε→ +0. (5.38)

If g± were smooth functions on S2, then (5.38) would follow from the Dominated Convergence

Theorem since by (5.33) we have ψε(r)→ 1 as ε→ +0 for all r > 0. However, g± are merely

distributions, so one has to be more careful. We start by establishing the Sobolev regularity

of g± by following the standard proof of the Fredholm property in anisotropic Sobolev spaces.

(We use the proof in [DZ16]; one could alternatively carefully examine the proof in [FS11].)

See the papers of Adam–Baladi [AB18, §3.3], Guillarmou–Poyferré–Bonthonneau [GdP21,

Appendix A], and Dyatlov [Dya21] for a general discussion of Sobolev regularity thresholds

for the Pollicott–Ruelle resolvent.

Lemma 5.9. We have g± ∈ H−2−δ(S2) for all δ > 0.

Proof. We show the regularity of g−, with g+ handled similarly. Recall that g− is related to

the distribution f− ∈ D′E∗u(M ;C) by (5.25). Since Φ− is smooth and B− is a submersion, it

suffices to show that f− ∈ H−2−δ(M).

By Lemma 4.7, we have (X − 2)f− = 0, that is f− is a Pollicott–Ruelle resonant state

for the operator P = −iX corresponding to the resonance λ0 = −2i, see §2.3.2. Given

that Pollicott–Ruelle resonant states are eigenfunctions of P on anisotropic Sobolev spaces

(see (4.10)), it suffices to show that one can choose the order function m in the definition of

the weight G(ρ, ξ) = m(ρ, ξ) log(1 + |ξ|) such that the Fredholm property (4.11) holds on the

anisotropic Sobolev space HG,0 for Imλ ≥ −2 and HG,0 ⊂ H−2−δ; the latter is equivalent to

requiring that m ≥ −2− δ everywhere.

In [DZ16, §§3.3–3.4] the Fredholm property (4.11) is shown using propagation of singular-

ities and microlocal radial estimates. Following the proof of [DZ16, Proposition 3.4], we see

that one only needs to check that the low regularity radial estimate [DZ16, Proposition 2.7]

applies to the operator P −λ (where Imλ ≥ −2) at the radial sink E∗u (see (2.4)) in the space

H−2−δ. (The high regularity radial estimate [DZ16, Proposition 2.6] would apply once m is

sufficiently large on E∗s , which can be arranged.) The threshold regularity for this estimate

is computed in [DZ19, Theorem E.54]. In our setting, since the operator P is symmetric on

L2(M ; d volα) and it has order k = 1, it is enough that

2 + (−2− δ)Hp|ξ|
|ξ|

< 0 on E∗u

where p(ρ, ξ) = 〈X(ρ), ξ〉 is the principal symbol of P and its Hamiltonian flow is given

by etHp(ρ, ξ) = (ϕt(ρ), dϕ−Tt (ρ)ξ), see [DZ16, §3.1]. Choosing the norm |ξ| induced by the
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Sasaki metric and using (3.7), we see that

Hp|ξ|
|ξ|

= 1 on E∗u

which means that the threshold regularity condition for the radial estimate is satisfied and

the proof is finished. �

Coming back to the proof of (5.38), we rewrite it as

〈Aκεg−, g+〉L2(S2) → 0 as ε→ +0 (5.39)

where the operator Aκε is given by (5.20):

Aκεf(ν+) =

∫
S2

κε(|ν− − ν+|2)f(ν−) dS(ν−)

and the function κε ∈ C([0, 4]) is given by (using (5.33) and (5.36) in the second equality

below)

κε(r) :=
4

3
r2(1− ψε(r)) = r2

∫
R

(
1− χ

(2ε cosh t√
r

))
cosh−4 t dt.

Using Lemma 5.9, we have in particular g± ∈ H−5/2(S2). Thus to finish the proof of (5.39),

and thus of Theorem 5, it remains to prove the norm bound

‖Aκε‖H−5/2(S2)→H5/2(S2) → 0 as ε→ +0. (5.40)

To show (5.40), we will bound the norms of Aκε between Sobolev spaces using Lemma 5.5.

To do this we estimate the derivatives of κε:

Lemma 5.10. Let j, k ∈ N0. Then there exists C depending only on j, k such that for all

ε ∈ (0, 1]

‖rk∂jrκε(r)‖L1([0,4]) ≤


Cε4, k ≥ j;
Cε4 log(1/ε), k = j − 1;

Cε2(3+k−j), k ≤ j − 2.

(5.41)

Proof. Throughout the proof we denote by C a constant depending only on j, k whose precise

value might change from line to line.

1. For any G(s) ∈ C∞([0,∞)) which is constant near s =∞ define

ΦG(τ) :=

∫
R
G
(2 cosh t√

τ

)
cosh−4 t dt, τ > 0.

We have the identity

τ∂τΦG = −1
2Φs∂sG. (5.42)

Moreover, we have the estimate

G|[−1,1] = 0 =⇒ |ΦG(τ)| ≤ C‖G‖L∞
1 + τ2

(5.43)

which can be proved by bounding |ΦG(τ)| by ‖G‖L∞ times the integral of cosh−4 t dt over

the set of t such that cosh t ≥
√
τ/2 and using that

∫
cosh−4 t dt = tanh t− 1

3 tanh3 t+C and√
1− λ− 1

3(1− λ)3/2 = 2
3 +O(λ2) as λ = 4

τ → 0.
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2. We have

κε(r) = r2Φ1−χ(ε−2r).

By (5.42) for each j ≥ 0

(r∂r)
jκε(r) = r2(r∂r + 2)j

(
Φ1−χ(ε−2r)

)
= r2ΦGj (ε

−2r)

where Gj(s) := (2− 1
2s∂s)

j(1− χ)(s).

Since χ|[−1,1] = 1, we have Gj |[−1,1] = 0. Thus by (5.43)

|(r∂r)jκε(r)| ≤
Cr2

1 + ε−4r2
.

Writing rj∂jr as a linear combination of (r∂r)
q with 0 ≤ q ≤ j, we get

|∂jrκε(r)| ≤
Cr2−j

1 + ε−4r2
≤ Cε4r−j .

Since suppχ ⊂ [−2, 2], we have by (5.33)

κε(r) = 4
3r

2 for 0 ≤ r ≤ ε2.

Therefore

‖rk∂jrκε(r)‖L1([0,4]) ≤ C
∫ ε2

0
rk∂jr(r

2) dr + Cε4

∫ 4

ε2
rk−j dr

which gives (5.41). �

Combining Lemma 5.5 and Lemma 5.10, we get

‖Aκε‖H−5/2→H3/2 ≤ Cε2, ‖Aκε‖H−5/2→H7/2 ≤ C.

By interpolation in Sobolev spaces (taking f ∈ H−5/2(S2) and using that ‖v‖2H1(S2) is bounded

by 〈(1−∆S2)v, v〉L2(S2) ≤ C‖v‖L2(S2)‖v‖H2(S2) for v := (1−∆S2)3/4Aκεf) we then have

‖Aκε‖H−5/2→H5/2 ≤ Cε.

This gives (5.40) and finishes the proof of Theorem 5.

Appendix A. Harmonic 1-forms of constant length

The purpose of this appendix is to give an elementary proof of the fact that there are no

harmonic 1-forms of constant non-zero length on closed hyperbolic 3-manifolds:

Proposition A.1. Let (Σ, g) be a compact hyperbolic 3-manifold (see §3.1). Assume that

ω ∈ C∞(Σ;T ∗Σ) is a harmonic 1-form such that its length |ω|g is constant. Then ω = 0.

Remark. Proposition A.1 follows directly from the more general work of [Zeg93]. The

presentation in the appendix borrows from ideas in [HP16].

To prove Proposition A.1 we argue by contradiction. Assume that ω 6= 0; dividing ω by

its length we arrange that, where δ = − ? d? is the formal adjoint of d (here ? is the Hodge

star)

dω = 0, δω = 0, |ω|g = 1.
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Using the metric g, define the dual vector field to ω,

W ∈ C∞(Σ;TΣ), |W |g = ω(W ) = 1.

Lemma A.2. There exist one-dimensional smooth subbundles E± ⊂ TΣ such that TΣ =

RW ⊕ E+ ⊕ E−.

Proof. 1. The Levi-Civita covariant derivative ∇W is an endomorphism on the fibers of TΣ.

This endomorphism is symmetric with respect to the metric g; indeed we compute for any

two vector fields Y,Z ∈ C∞(Σ;TΣ)

0 = dω(Y, Z) = Y g(W,Z)− Zg(W,Y )− g(W, [Y, Z])

= g(∇YW,Z)− g(∇ZW,Y ).
(A.1)

Taking Z := W and using that g(∇YW,W ) = 1
2Y g(W,W ) = 0 we see that the vector field W

is geodesible, that is

∇WW = 0. (A.2)

Since δω = 0, the vector field W is also divergence free; that is,

tr(∇W ) = 0. (A.3)

2. We next claim that

tr((∇W )2) = 2. (A.4)

To see this, take locally defined vector fields Y1, Y2 such that W,Y1, Y2 is a g-orthonormal

frame and ∇WYj = 0. These can be obtained using parallel transport along the flow lines

of W (which are geodesics since ∇WW = 0). We compute

1 = g(∇W∇YjW −∇Yj∇WW +∇∇YjWW −∇∇WYjW,Yj)

= Wg(∇YjW,Yj)− g(∇YjW,∇WYj) + g(∇∇YjWW,Yj)− g(∇∇WYjW,Yj)

= Wg(∇YjW,Yj) + g((∇W )2Yj , Yj).

Here in the first line we used that Σ has sectional curvature −1, in the second line we

used (A.2), and in the last line we used that ∇WYj = 0. Summing over j = 1, 2 and using

again (A.2) we get

2 = W tr(∇W ) + tr((∇W )2)

and (A.4) now follows from (A.3).

3. From (A.2), (A.3), and (A.4) we see that ∇W has eigenvalues 0, 1,−1. It remains to

let E± be the eigenspaces of ∇W with eigenvalues ±1. �

We are now ready to finish the proof of Proposition A.1. We can approximate the 1-form ω

by a closed 1-form with rational periods (integrals over closed curves on Σ); indeed, for an

appropriate choice of linear isomorphism H1(Σ;C) ' Cb1(Σ) the forms with rational periods

correspond to points in Qb1(Σ). In particular, we can find a number q ∈ N and a closed

1-form ω̃ with integer periods such that

sup
Σ
|ω − q−1ω̃|g ≤ 1

2 . (A.5)
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Since ω̃ has integer periods, we can write ω̃ = df for some smooth map f from Σ to the circle

S1 = R/Z. Since ω(W ) = 1, (A.5) implies that Wf = ω̃(W ) > 0 which in turn gives df 6= 0

everywhere, that is f is a fibration. Next, for each x ∈ Σ define the one-dimensional spaces

Ẽ±(x) := (RW (x)⊕ E±(x)) ∩ ker df(x),

then the tangent bundle of each fiber f−1(c) decomposes into a direct sum Ẽ+⊕ Ẽ−. Since Σ

is orientable, so is f−1(c), which implies that f−1(c) is topologically a torus. Then Σ is a torus

bundle over a circle, which gives a contradiction because such bundles do not admit hyperbolic

metrics: by the homotopy long exact sequence of a fibration the fundamental group of Σ

contains a subgroup isomorphic to Z⊕Z, which is impossible for compact negatively curved

manifolds by Preissman’s Theorem [Lee18, Theorem 12.19].
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space. Rev. Un. Mat. Argentina, 61(1):63–72, 2020.

[BT82] Raoul Bott and Loring W. Tu. Differential forms in algebraic topology, volume 82 of Graduate Texts

in Mathematics. Springer-Verlag, New York-Berlin, 1982.

http://arxiv.org/abs/1809.04062


THE RUELLE ZETA FUNCTION AT ZERO FOR NEARLY HYPERBOLIC 3-MANIFOLDS 67

[BT07] Viviane Baladi and Masato Tsujii. Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomor-
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[GL06] Sébastien Gouëzel and Carlangelo Liverani. Banach spaces adapted to Anosov systems. Ergodic

Theory Dynam. Systems, 26(1):189–217, 2006.

[GLP13] Paolo Giulietti, Carlangelo Liverani, and Mark Pollicott. Anosov flows and dynamical zeta functions.

Ann. of Math. (2), 178(2):687–773, 2013.

[Had18] Charles Hadfield. Zeta function at zero for surfaces with boundary, 2018. To appear in J. Eur. Math.

Soc.; arXiv:1803.10982.
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[KW20] Benjamin Küster and Tobias Weich. Pollicott-Ruelle Resonant States and Betti Numbers. Commu-

nications in Mathematical Physics, 378(2):917–941, 2020.

[Lee18] John M. Lee. Introduction to Riemannian manifolds, volume 176 of Graduate Texts in Mathematics.

Springer, Cham, 2018.

[Liv04] Carlangelo Liverani. On contact Anosov flows. Ann. of Math. (2), 159(3):1275–1312, 2004.

[Liv05] Carlangelo Liverani. Fredholm determinants, Anosov maps and Ruelle resonances. Discrete Contin.

Dyn. Syst., 13(5):1203–1215, 2005.

[Med21] Antoine Meddane. A Morse complex for Axiom A flows, July 2021. preprint; arXiv:2107.08875.

[MS91] Henri Moscovici and Robert J. Stanton. R-torsion and zeta functions for locally symmetric manifolds.

Invent. Math., 105(1):185–216, 1991.

[Nic89] Peter J. Nicholls. The ergodic theory of discrete groups, volume 143 of London Mathematical Society

Lecture Note Series. Cambridge University Press, Cambridge, 1989.

[Olb95] M. Olbrich. Die Poisson-Transformation für homogene Vektorbündel. Dissertation, Humboldt-

Universität zu Berlin, 1995.

[Pat99] Gabriel P. Paternain. Geodesic flows, volume 180 of Progress in Mathematics. Birkhäuser Boston,
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Email address: bdelarue@math.upb.de

Institut für Mathematik, Universität Paderborn, Paderborn, Germany; formerly known as

Benjamin Küster
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