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Abstract. We prove a microlocal lower bound on the mass of high energy eigen-
functions of the Laplacian on compact surfaces of negative curvature, and more gen-
erally on surfaces with Anosov geodesic flows. This implies controllability for the
Schrödinger equation by any nonempty open set, and shows that every semiclassical
measure has full support. We also prove exponential energy decay for solutions to
the damped wave equation on such surfaces, for any nontrivial damping coefficient.
These results extend previous works [DJ18, Ji20], which considered the setting of
surfaces of constant negative curvature.

The proofs use the strategy of [DJ18, Ji20] and rely on the fractal uncertainty prin-
ciple of [BD18]. However, in the variable curvature case the stable/unstable foliations
are not smooth, so we can no longer associate to these foliations a pseudodifferential
calculus of the type used in [DZ16]. Instead, our argument uses Egorov’s Theorem
up to local Ehrenfest time and the hyperbolic parametrix of [NZ09], together with
the C1+ regularity of the stable/unstable foliations.

Let (M, g) be a compact smooth Riemannian manifold. The Laplace–Beltrami op-
erator ∆ admits a complete set of eigenfunctions

uj ∈ C∞(M), (−∆− λ2
j)uj = 0, ‖uj‖L2(M) = 1.

These can be interpreted as stationary states of a quantum particle evolving freely
on M , with λ2

j being the energy of the particle, and |uj(x)|2 the probability density of
finding the particle at the point x. One fundamental question in the field of spectral
geometry is to understand the structure of the eigenfunctions uj in the high-energy
régime λj → ∞, using some information on the geodesic flow on M (this flow corre-
sponds to the dynamics of a classical particle evolving freely on M). In particular,
the field of Quantum Chaos focuses on situations where the geodesic flow on M has
chaotic behavior.

In this paper we assume that (M, g) is a compact connected Riemannian surface
without boundary, whose geodesic flow has the Anosov property (see §2.1 for definitions
and properties); we will refer to such (M, g) as an Anosov surface. Anosov flows form a
standard mathematical model of systems with strongly chaotic behavior, in some sense
they are the “purest” form of chaotic systems. A large family of examples is provided
by the surfaces of negative Gauss curvature. Our first result gives a lower bound on the
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mass distribution of uj, showing that the probability of finding the quantum particle
in any fixed open set is bounded away from zero uniformly in the high-energy limit:

Theorem 1. Assume that (M, g) is an Anosov surface. Choose Ω ⊂ M open and
nonempty. Then there exists a constant cΩ > 0 such that any eigenfunction uj of the
Laplace–Beltrami operator on (M, g) satisfies

‖uj‖L2(Ω) ≥ cΩ . (1.1)

On any Riemannian manifold, the unique continuation principle shows that a pos-
itive lower bound (1.1) holds if one allows cΩ to depend on λj; see e.g. Lebeau–
Robbiano [LR95, Corollaire 2]; an introduction to quantitative unique continuation
for eigenfunctions of the Schrödinger operators on Rd can be found in [Zw12, Theo-
rem 7.7]. In general, the lower bound decays exponentially fast as λj → ∞, as can
be seen in the case of the round sphere, where one can construct Gaussian beam
eigenstates concentrating on a closed geodesic and exponentially small away from this
geodesic. Note that related propagation of smallness results for solutions of elliptic
equations were also obtained for any set Ω of positive Lebesgue measure vol(Ω) by
Logunov–Malinnikova [LM19, §1.7], who showed that

sup
Ω
|uj| ≥

(
vol(Ω)

C

)Cλj
sup
M
|uj|

for some constant C depending on (M, g), but not on Ω or j. In our situation, the
energy-independent lower bound (1.1) strongly relies on the chaotic behavior of the
geodesic flow.

The proof of Theorem 1 gives a stronger result featuring the localization of uj in
both position and Fourier spaces. Let Oph be a semiclassical quantization procedure
on M , and S0(T ∗M) be the standard symbol class, see §2.2. Denote by S∗M ⊂ T ∗M

the cosphere bundle.

Theorem 2. Assume that a ∈ S0(T ∗M) and a|S∗M 6≡ 0. Then there exist constants
C > 0 and h0 > 0 depending only on a, such that for all h ∈ (0, h0) and all u ∈ H2(M)

we have the estimate

‖u‖L2(M) ≤ C‖Oph(a)u‖L2(M) +
C log(1/h)

h

∥∥(−h2∆− I)u
∥∥
L2(M)

. (1.2)

If a = a(x) is a function on M , then Oph(a) is the multiplication operator by a.
Hence Theorem 2 implies Theorem 1 by taking a(x) supported inside Ω and putting
h := λ−1

j , u := uj. More generally, the lower bound (1.1) holds for quasimodes uh of
the Laplacian of the following type:

‖(−h2∆− I)uh‖L2(M) = o
(
h/ log(1/h)

)
, h→ 0; ‖uh‖L2(M) = 1. (1.3)
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On the opposite, the lower bound (1.1) may fail for quasimodes of errorO(h/ log(1/h)):
for (M, g) a surface of constant negative curvature (also known as a hyperbolic sur-
face), Brooks [Br15] constructed quasimodes of such strength localized along a closed
geodesic; the construction was extended to more general two-dimensional quantum sys-
tems by Eswarathasan–Nonnenmacher [EN17], and in higher dimension to quasimodes
localized on an invariant submanifold of M by Eswarathasan–Silberman [ES17].

1.1. Application to semiclassical measures. We now discuss two applications of
Theorem 2. The first one concerns semiclassical measures, which describe asymptotic
macroscopic distribution of subsequences of eigenfunctions. More precisely, if (ujk)k∈N
is a sequence of eigenfunctions with λjk →∞ and hjk := λ−1

jk
, then we say that (ujk)k

converges to a measure µ on T ∗M if

〈Ophjk
(a)ujk , ujk〉L2(M)

k→∞−−−→
∫
T ∗M

a dµ for all a ∈ S0(T ∗M). (1.4)

The measure µ is called a semiclassical measure of the manifold (M, g), it describes
the asymptotic microlocal properties of the eigenstates along the sequence (ujk) of
eigenfunctions. A compactness argument shows that, from any sequence of eigenstates
(ujk), it is always possible to extract a subsequence which converges to a semiclassical
measure. Any semiclassical measure is a probability measure supported inside S∗M ,
which is invariant under the geodesic flow, see [Zw12, Chapter 5].

From (1.4) and the semiclassical calculus we see that ‖Ophjk
(a)ujk‖2

L2(M) converges
to
∫
|a|2 dµ. Thus Theorem 2 implies the following

Theorem 3. Let µ be a semiclassical measure associated to a sequence of Laplacian
eigenfunctions on M . Then suppµ = S∗M , that is µ(U) > 0 for any open nonempty
U ⊂ S∗M .

While we do not provide an explicit formula for the lower bound on µ(U) in terms
of U , we show that this lower bound only depends on a certain dynamical quantity
associated to U :

Theorem 4. There exists ε0 > 0 depending only on (M, g) such that the following
holds. Assume that U ⊂ S∗M is an open set which is (L0, L1)-dense in both unsta-
ble and stable directions in the sense of Definition 2.16 below, and has diameter less
than ε0. Then for each semiclassical measure µ we have µ(U) ≥ c, where the constant
c > 0 depends only on (M, g) and on the lengths (L0, L1).

Theorem 4 follows by analyzing the dependence of various parameters in the proof
of Theorem 2. We indicate the required changes in various remarks throughout the
paper, with the proof of Theorem 4 explained at the end of §3.3.4. Let us remark that
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Theorems 3 and 4 also apply to semiclassical measures associated with quasimodes of
the form (1.3).

We believe that our results are not specific to the Laplacian, but can be extended
to operators of the form P = −∆ + P1 + P0 on (M, g), where Pi are symmetric
differential operators of order i with smooth coefficients. ‘ One could also consider
semiclassical Schrödinger operators Ph = −h2∆ + V with V ∈ C∞(M ;R), and study
families of eigenstates Phuh = E(h)uh, with eigenvalues E(h) → 1 when h → 0. If
the potential V is sufficiently small, the Hamiltonian flow generated by the symbol
p(x, ξ) = |ξ|2g + V (x), restricted to the energy hypersurface p−1(1), will still enjoy the
Anosov property, due to the structural stability of that property. We then believe that
the eigenstates (uh)h→0, as well as the associated semiclassical measures, will satisfy
similar delocalization properties as in Theorems 1–4.

To put Theorems 2–4 into context, let us give a brief historical review, referring
to the expository articles of Marklof [Ma06], Zelditch [Ze09], and Sarnak [Sa11] for
more information. The Quantum Ergodicity theorem of Shnirelman [Sh74a, Sh74b],
Zelditch [Ze87], and Colin de Verdière [CdV85] states that when the geodesic flow
on S∗M is ergodic (with respect to the Liouville measure µL), there exists a density
one sequence (ujk) which asymptotically equidistributes, namely which converges to the
Liouville measure µL in the sense of (1.4). The Quantum Unique Ergodicity (QUE)
conjecture formulated by Rudnick–Sarnak [RS94] states that on any Anosov manifold,
the full sequence of eigenfunctions equidistributes, that is µL is the unique semiclassical
measure. So far this conjecture has only been established for hyperbolic surfaces
possessing arithmetic symmetries [Li06]. On the other hand, there exist toy models of
quantized Anosov maps on the two-dimensional torus, where the corresponding QUE
conjecture fails, see Faure–Nonnenmacher–de Bièvre [FNdB03] and Anantharaman–
Nonnenmacher [AN07b]. On a similar Anosov toy model on a higher dimensional torus,
Kelmer [Ke10] exhibited counterexamples to QUE, but also to our full delocalization
result, featuring semiclassical measure supported on proper submanifolds.

With QUE seeming out of reach, it is natural to wonder which flow invariant proba-
bility measures on S∗M can arise as semiclassical measures; in other words, does quan-
tum mechanics select certain invariant measures, or allow all of them? The first restric-
tions on semiclassical measures were proved by Anantharaman [An08], Anantharaman–
Nonnenmacher [AN07a], Rivière [Ri10], and Anantharaman–Silberman [AS13], in the
form of positive lower bounds on the Kolmogorov–Sinai entropy of µ. The entropy
is a nonnegative number associated with each invariant measure, representing the in-
formation theoretic complexity of the measure. Low-entropy measures therefore have
low complexity. These lower bounds on the entropy exclude, for instance, the extreme
case when µ is a δ measure on a closed geodesic. Our Theorem 3 gives a different
type of restriction on µ. As explained in [DJ18], there exist invariant measures which
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are excluded by Theorem 3 but not by entropy bounds, and vice versa. For instance,
on any Anosov surface one can construct flow invariant fractal subsets F ( S∗M of
Hausdorff dimension close to 3, which support invariant measures of large entropy.
Conversely, an invariant measure of the form εµL+(1−ε)δγ, with δγ the delta measure
on a closed geodesic and 0 < ε� 1, will have full support but small entropy.

In the special case of hyperbolic surfaces, Theorems 1–3 were proved by Dyatlov–
Jin [DJ18]; see also the reviews [Dy17, Dy19]. The proofs in the present paper partially
use the strategy of [DJ18], in particular they rely on the fractal uncertainty principle
(FUP) established by Bourgain–Dyatlov [BD18]. However, many new difficulties arise
in the variable curvature case, in particular from the fact that the stable and unstable
foliations on S∗M are not smooth, see §§1.4,4.1 below.

1.2. Application to control theory. The second application of Theorem 2 is to ob-
servability and exact null-controllability for the (nonsemiclassical) Schrödinger equa-
tion:

Theorem 5. Assume that Ω ⊂M is open and nonempty, and fix T > 0. Then:

• (Observability) There exists a constant K > 0 depending only on M , Ω, and T ,
such that for any u0 ∈ L2(M), we have

‖u0‖2
L2(M) ≤ K

∫ T

0

‖eit∆u0‖2
L2(Ω)dt; (1.5)

• (Control) For any u0 ∈ L2(M), there exists f ∈ L2((0, T ) × Ω) such that the
solution to the equation

(i∂t + ∆)u(t, x) = f1(0,T )×Ω(t, x), u(0, x) = u0(x)

satisfies
u(T, x) ≡ 0.

The proof that the above statements follow from Theorem 2 is identical to the one
in Jin [Ji18], so we will not reproduce it here.

For a general manifold, such observability/control is known to hold if the open set
Ω satisfies the geometric control condition of Bardos–Lebeau–Rauch [BLR92, Le92],
namely if every geodesic ray intersects Ω. Yet, it may hold as well if this geometric
condition is violated, for instance on compact manifolds of negative sectional curvature,
provided the set of geodesics never meeting Ω is “sufficiently thin”, see Anantharaman–
Rivière [AR12]. The novelty in the above two-dimensional result, is that this control
holds for any open set Ω, now matter how thick the set of uncontrolled geodesics.
So far the only other family of manifolds for which observability/control was known
to hold for any Ω were the flat tori, see Haraux [Ha89] and Jaffard [Ja90]. Further
references on this question may be found in Burq–Zworski [BZ04] and Jin [Ji18].
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1.3. Damped wave equation. Our final result concerns the long time behavior of
solutions to the damped wave equation on M , with damping function b ∈ C∞(M),
b ≥ 0, b 6≡ 0:

(∂2
t −∆ + 2b(x)∂t)v(t, x) = 0, v|t=0 = v0(x), ∂tv|t=0 = v1(x). (1.6)

Semigroup theory shows that for initial data (v0, v1) ∈ H0 := H1(M) × L2(M), the
above equation has a unique solution in C(R+;H1(M))∩C1(R+;L2(M)). The energy
of this solution at time t ≥ 0 is defined by

E(v(t)) :=
1

2

∫
M

|∂tv(t, x)|2 + |∇xv(t, x)|2 dx. (1.7)

It is well-known that on every compact Riemannian manifold, this energy decays to
zero when t→∞. However, the rate of decay depends on a subtle interplay between
the geodesic flow and the support of the damping function, see Lebeau [Le96]. In
particular, exponential decay (the fastest possible decay) always holds if the damping
function satisfies the geometric control condition, that is any geodesic intersects the
set {b > 0}. In the case of an Anosov surface with any damping function b, we obtain
exponential decay without requiring this geometric condition:

Theorem 6. Assume that b ≥ 0 but b 6≡ 0. Then for every s > 0, there exist constants
C and γ = γ(s) > 0 such that for any (v0, v1) ∈ Hs := Hs+1(M)×Hs(M), the energy
of the solution decays exponentially:

E(v(t)) ≤ C e−γt ‖(v0, v1)‖2
Hs . (1.8)

We remark that on any compact manifold, the decay (1.8) holds for s = 0 if
and only if the set {b > 0} satisfies the geometric control condition, see Rauch–
Taylor [RaTa75]. On manifolds of negative curvature, an exponential decay controlled
by a higher Sobolev norm s > 0 has been proved in situations where the set of un-
damped trajectories is sufficiently “thin”, see Schenck [Sc10].

To our knowledge, Theorem 6 gives the first class of manifolds (of dimension ≥ 2)
for which the energy decays exponentially (under a control by a higher Sobolev norm),
no matter how small the support of the damping is. As a comparison, in the case of
flat tori, in absence of geometric control of the region {b > 0}, the decay is instead
algebraic in time, see Anantharaman–Léautaud [AnLe14]. For an account on previous
results on the rate of energy decay for damped waves, the reader may consult the
introduction to [Ji20] and the references therein.

The proof of Theorem 6 uses many of the ingredients of the proof of Theorem 2,
including the key estimate, Proposition 3.2. In the special case of hyperbolic surfaces,
Theorem 6 was proved by Jin [Ji20] using the methods of [DJ18].
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1.4. Structure of the article.

• In §2 we review various ingredients used in the proof. Those include: hy-
perbolic (Anosov) dynamics and stable/unstable manifolds (§2.1); pseudodif-
ferential operators with mildly exotic symbols and Egorov’s theorem (§2.2);
Lagrangian distributions/Fourier integral operators (§2.3); fractal uncertainty
principle (§2.4); proof of porosity of dynamically defined sets (§2.5).
• In §3 we give the proofs of Theorems 2, 4 (§3.3), and 6 (§3.4). The strategy of
proof is similar to the one used in [DJ18, Ji20] in the constant curvature case.
It starts from a microlocal partition of the identity, quantizing the partition
of S∗M into the controlled vs. uncontrolled regions. Using the wave group,
we may refine this microlocal partition up to a time N , each element of the
refined partition being an operator Aw = AwN (N) · · ·Aw1(1)Aw0 indexed by a
word w = w0 . . . wN , each symbol wj indicating whether the system sits in the
controlled or uncontrolled region at the time j. We need to push this refinement
up to a time N ∼ C log(1/h) exceeding the Ehrenfest time, which implies that
the operators Aw are no longer pseudodifferential operators. The core of the
proof then consists in a key estimate on these “long” operators Aw, given in
Proposition 3.2.
• §4 is devoted to the proof of this key Proposition. It proceeds by transforming
this estimate into a collection of fractal uncertainty principles. This part of the
proof is very different from the constant curvature case, due to the fact that
the Ehrenfest time is not uniform, but depends on the trajectory; the difficulty
also comes from the low regularity of the stable/unstable foliations, which are
not C∞, but only C2−ε. An outline of the proof is provided in §4.1.
• In §5 we complete the analysis of the operators Aw, by splitting them into more
elementary pieces, which we may precisely analyze through a version of Egorov’s
Theorem up to the local Ehrenfest time. Similar elementary pieces were already
introduced in the proofs of entropic lower bounds [An08, NZ09, Ri10]; we will
need a somewhat more precise description of these operators for our aims.
• Appendix A contains quantitative estimates for the semiclassical pseudodiffer-
ential calculus on a compact surface, used in §2.2 and §5.

2. Ingredients

In this section we review some of the ingredients used in the proof: hyperbolic
dynamics (§2.1), semiclassical analysis (§§2.2–2.3), fractal uncertainty principle (§2.4),
and porosity properties in the stable/unstable directions (§2.5).
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2.1. Hyperbolic dynamics. Let (M, g) be a compact connected Riemannian surface.
Denote

T ∗M \ 0 := {(x, ξ) ∈ T ∗M : ξ 6= 0},
S∗M := {(x, ξ) ∈ T ∗M : |ξ|g = 1}.

Define the smooth function

p : T ∗M \ 0→ R, p(x, ξ) := |ξ|g. (2.1)

The Hamiltonian flow of p,

ϕt := exp(tHp) : T ∗M \ 0→ T ∗M \ 0 (2.2)

is the homogeneous geodesic flow, note that it preserves S∗M .

We assume that the restriction of ϕt to S∗M is an Anosov flow, namely for each
ρ ∈ S∗M there is a splitting of the tangent space Tρ(S∗M) into one-dimensional spaces

Tρ(S
∗M) = E0(ρ)⊕ Es(ρ)⊕ Eu(ρ)

such that:

• E0(ρ) = RHp(ρ) is the flow direction;
• Es, Eu are invariant under dϕt;
• Es is stable and Eu is unstable in the following sense: for any choice of contin-
uous metric | • | on the fibers of T (S∗M), there exist C, θ > 0 such that

|dϕt(ρ)v| ≤ Ce−θ|t||v|,

{
v ∈ Es(ρ), t ≥ 0;

v ∈ Eu(ρ), t ≤ 0.
(2.3)

The Anosov assumption holds in particular if (M, g) has everywhere negative Gauss
curvature, see [KH97, Theorem 17.6.2], [Kl95, Theorem 3.9.1], or [Dy18, Theorem 6
in §5.1]. In the present setting the dependence of the spaces Es, Eu (and the sta-
ble/unstable manifolds defined in §2.1.1 below) on the base point ρ is C2− but (unless
M has constant curvature) not C2, see Remark 1 following Lemma 2.3.

Since ϕt is a homogeneous Hamiltonian flow, it preserves the canonical 1-form ξ dx

(which is the symplectic dual of the dilation field ξ · ∂ξ). By (2.3) we see that ξ dx
annihilates Es ⊕ Eu, that is

Es ⊕ Eu = ker(dp) ∩ ker(ξ dx). (2.4)

We fix adapted metrics | • |s, | • |u, which are smooth Riemannian metrics on S∗M , so
that the following stronger version of (2.3) holds for some Λ0 > 0:

|dϕt(ρ)v|s ≤ e−Λ0|t||v|s, v ∈ Es(ρ), t ≥ 0;

|dϕt(ρ)v|u ≤ e−Λ0|t||v|u, v ∈ Eu(ρ), t ≤ 0.
(2.5)
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See for instance [Dy18, Lemma 4.7] for the construction of such metrics. By homo-
geneity we extend the spaces E0, Es, Eu to T ∗M \ 0. We also extend | • |s, | • |u to
homogeneous metrics of degree 0 on T ∗M \ 0.

For each ρ ∈ T ∗M \ 0 and t ∈ R we define the stable/unstable expansion rates (since
Es, Eu are one-dimensional these coincide with the stable/unstable Jacobians):

|dϕt(ρ)v|s = Jst (ρ)|v|s, v ∈ Es(ρ);

|dϕt(ρ)v|u = Jut (ρ)|v|u, v ∈ Eu(ρ).
(2.6)

From the stable/unstable decomposition and the homogeneity of the flow we see that
for all ρ ∈ {1

4
≤ |ξ|g ≤ 4} and all t

‖dϕt(ρ)‖ ≤ CJut (ρ), t ≥ 0;

‖dϕt(ρ)‖ ≤ CJst (ρ), t ≤ 0.
(2.7)

Since E0 is spanned by Hp and Es, Eu are tangent to the level sets of p, we see that
the weak stable/unstable spaces Es ⊕ E0, Eu ⊕ E0 are Lagrangian with respect to
the standard symplectic form ω on T ∗M \ 0 and Es ⊕ Eu is symplectic. Since ϕt are
symplectomorphisms, there exists a constant C such that for all ρ ∈ T ∗M \0 and t ∈ R

C−1 ≤ Jst (ρ)Jut (ρ) ≤ C. (2.8)

Moreover, Jst and Jut are invariant under a short time evolution by the flow ϕt up to a
multiplicative constant: for all ρ ∈ T ∗M \ 0, t′ ∈ [−1, 1], and t ∈ R

C−1Jst (ρ) ≤ Jst (ϕt′(ρ)) ≤ CJst (ρ), C−1Jut (ρ) ≤ Jut (ϕt′(ρ)) ≤ CJut (ρ). (2.9)

By (2.5), Jst is exponentially decaying in time, and Jut cannot grow faster than expo-
nentially due to the compactness ofM . As a result, there exist constants1 0 < Λ0 ≤ Λ1

such that for all ρ ∈ T ∗M \ 0

eΛ0|t| ≤ Jut (ρ) ≤ eΛ1|t|, e−Λ1|t| ≤ Jst (ρ) ≤ e−Λ0|t| for all t ≥ 0;

e−Λ1|t| ≤ Jut (ρ) ≤ e−Λ0|t|, eΛ0|t| ≤ Jst (ρ) ≤ eΛ1|t| for all t ≤ 0.
(2.10)

For technical reasons (in the proof of Lemma 3.1) we choose to take Λ1 ≥ 1.

Define also

Λ :=

⌈
Λ1

Λ0

⌉
∈ N. (2.11)

1We can think of Λ0 as the minimal expansion rate and Λ1 as the maximal expansion rate but
strictly speaking this is not the case: instead one should take as Λ0 any number smaller than the
minimal expansion rate, and as Λ1 any number larger than the maximal expansion rate.



10 SEMYON DYATLOV, LONG JIN, AND STÉPHANE NONNENMACHER

2.1.1. Stable/unstable manifolds. For ρ ∈ S∗M , denote by

Ws(ρ),Wu(ρ) ⊂ S∗M

the local stable/unstable leaves passing through ρ. These are C∞-embedded one di-
mensional disks (i.e. intervals) tangent to Es, Eu. Their definition depends on ar-
bitrary choices (because of the freedom of choosing where to end the interval) how-
ever their behavior near each point depends only on (M, g). For the construction of
Ws(ρ),Wu(ρ) and their properties we refer to [KH97, Theorem 17.4.3], [Kl95, Theo-
rem 3.9.2], or [Dy18, Theorem 5 in §4.6]. We can ajust the definition of these local
laves such that they satisfy the following invariance properties under the flow ϕt:

∀ρ ∈ S∗M, ϕ1(Ws(ρ)) ⊂ Ws(ϕ1(ρ)), ϕ−1(Wu(ρ)) ⊂ Wu(ϕ−1(ρ)). (2.12)

We also use the local weak stable/unstable leaves

W0s(ρ) :=
⋃
|t|≤ε̃

ϕt(Ws(ρ)), W0u(ρ) :=
⋃
|t|≤ε̃

ϕt(Wu(ρ)), (2.13)

which are C∞-embedded two dimensional rectangles inside S∗M tangent to the weak
stable/unstable spaces E0⊕Es, E0⊕Eu. Here ε̃ > 0 is fixed small, depending only on
(M, g). We extendWs,Wu,W0s,W0u to T ∗M \0 by homogeneity, however for simplicity
the lemmas below are stated on S∗M .

The stable/unstable manifolds are related to the dynamics of ϕt by the following
lemma. To state it we introduce the following piece of notation: for A,B > 0

A ∼ B iff C−1A ≤ B ≤ CA for some C > 0 depending only on (M, g). (2.14)

Lemma 2.1. Fix a Riemannian metric on S∗M which induces a distance function
d(•, •). Then there exist C, ε0 > 0 such that for all ρ, ρ̃ ∈ S∗M we have:

(1) if ρ̃ ∈ Ws(ρ), then

d(ϕt(ρ), ϕt(ρ̃)) ≤ CJst (ρ)d(ρ, ρ̃) for all t ≥ 0; (2.15)

(2) if ρ̃ ∈ Wu(ρ), then

d(ϕt(ρ), ϕt(ρ̃)) ≤ CJut (ρ)d(ρ, ρ̃) for all t ≤ 0; (2.16)

(3) if ρ̃ ∈ W0s(ρ), then Jst (ρ) ∼ Jst (ρ̃) and Jut (ρ) ∼ Jut (ρ̃) for all t ≥ 0;
(4) if ρ̃ ∈ W0u(ρ), then Jst (ρ) ∼ Jst (ρ̃) and Jut (ρ) ∼ Jut (ρ̃) for all t ≤ 0;
(5) if T ∈ N0 and d(ϕt(ρ), ϕt(ρ̃)) ≤ ε0 for all integers t ∈ [0, T ], then

d(ρ̃,W0s(ρ)) ≤ C/JuT (ρ) (2.17)

and Jst (ρ) ∼ Jst (ρ̃), Jut (ρ) ∼ Jut (ρ̃) for all t ∈ [0, T ];
(6) if T ∈ N0 and d(ϕt(ρ), ϕt(ρ̃)) ≤ ε0 for all integers t ∈ [−T, 0], then

d(ρ̃,W0u(ρ)) ≤ C/Js−T (ρ) (2.18)

and Jst (ρ) ∼ Jst (ρ̃), Jut (ρ) ∼ Jut (ρ̃) for all t ∈ [−T, 0].
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Remarks. 1. The difference between Lemma 2.1 and standard facts from hyperbolic
dynamics (see for instance [KH97, Theorem 17.4.3]) is that our estimates involve the
local expansion rates for the point ρ rather than the minimal expansion rate. This will
be important later in our analysis.

2. By (2.8) we have Jst (ρ) ∼ 1/Jut (ρ). However the present lemma does not rely
on ϕt being symplectomorphisms which is why we choose to keep both the stable and
unstable Jacobians in the estimates.

Proof. We only prove parts (1), (3), (5), with parts (2), (4), (6) proved similarly.

(1) Without loss of generality we may assume that the distance function d(•, •) is
induced by the metric | • |s used in (2.6) to define Jst (ρ). Since the tangent space
to Ws(ρ) at ρ is Es(ρ), there exists a constant C such that for every ρ ∈ S∗M and
ρ̃ ∈ Ws(ρ) ∣∣d(ϕ1(ρ), ϕ1(ρ̃))− Js1(ρ)d(ρ, ρ̃)

∣∣ ≤ Cd(ρ, ρ̃)2. (2.19)

That is, when ρ̃ is close to ρ the dilation factor of the distance d(ρ, ρ̃) by the map ϕ1

is well-approximated by the norm of the differential dϕ1(ρ) on Es(ρ).

Since ρ̃ ∈ Ws(ρ), there exist constants C, θ > 0 such that (see for instance [KH97,
Theorem 17.4.3(3)] or [Dy18, (4.67)])

d(ϕt(ρ), ϕt(ρ̃)) ≤ Ce−θtd(ρ, ρ̃) for all t ≥ 0. (2.20)

For each integer t ≥ 0, we have ϕt(ρ̃) ∈ Ws(ϕt(ρ)) by (2.12). Applying (2.19) with ρ, ρ̃
replaced by ϕt(ρ), ϕt(ρ̃) we have

d(ϕt+1(ρ), ϕt+1(ρ̃)) ≤ Js1(ϕt(ρ))d(ϕt(ρ), ϕt(ρ̃)) + Cd(ϕt(ρ), ϕt(ρ̃))2

≤ (1 + Ce−θt)Js1(ϕt(ρ))d(ϕt(ρ), ϕt(ρ̃)).
(2.21)

By the chain rule we have for all integers t ≥ 0

Jst (ρ) = Js1(ρ)Js1(ϕ1(ρ)) · · · Js1(ϕt−1(ρ)). (2.22)

Iterating (2.21) and using that the product
∏∞

j=0(1 + Ce−θj) converges, we get (2.15)
for all integer t ≥ 0, which immediately implies it for all t ≥ 0.

(3) We show that Jst (ρ) ∼ Jst (ρ̃), with the statement Jut (ρ) ∼ Jut (ρ̃) proved similarly.
Assume first that ρ̃ ∈ Ws(ρ). The map ρ 7→ Es(ρ) is in the Hölder class Cγ for
some γ > 0 (see for instance [Dy18, Lemma 4.3]; in §2.1.2 below we see that in our
setting it is in fact C2−). Recalling (2.6) we have for all ρ, ρ̃ ∈ S∗M

|Js1(ρ)− Js1(ρ̃)| ≤ Cd(ρ, ρ̃)γ.

Applying this with ρ, ρ̃ replaced by ϕt(ρ), ϕt(ρ̃) and using (2.20) we get for all t ≥ 0

(1 + Ce−γθt)−1Js1(ϕt(ρ)) ≤ Js1(ϕt(ρ̃)) ≤ (1 + Ce−γθt)Js1(ϕt(ρ)). (2.23)
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ρ′
W0s(ρ)

Wu(ρ̃)

ρ

ρ̃

ϕT (ρ′)

W0s(ϕT (ρ))

Wu(ϕT (ρ̃))

ϕT (ρ)

ϕT (ρ̃)

Figure 1. Left: the points ρ, ρ̃, ρ′ in the proof of part (5) of Lemma 2.1,
with the flow direction removed. Right: the image of the left half by ϕT .

Using the chain rule (2.22) and iterating (2.23), we get Jst (ρ) ∼ Jst (ρ̃) for all t ≥ 0. The
general weak stable case ρ̃ ∈ W0s(ρ) follows since Jst (ϕt′(ρ)) ∼ Jst (ρ) for all ρ ∈ S∗M
and t′ ∈ [−1, 1] by (2.9).

(5) Since E0 ⊕Es is transversal to Eu, for ε0 small enough and all ρ, ρ̃ ∈ S∗M such
that d(ρ, ρ̃) ≤ ε0, there exists a point (see Figure 1)

ρ′ ∈ W0s(ρ) ∩Wu(ρ̃), d(ρ, ρ′) ≤ Cε0. (2.24)

See for instance [KH97, Proposition 6.4.13] (in the related case of maps) or [Dy18,
(4.66)]. Since ρ′ ∈ W0s(ρ), by (2.20) there exists a constant C0 ≥ 1 such that

d(ϕt(ρ
′), ϕt(ρ)) ≤ C0ε0 for all t ≥ 0. (2.25)

By (2.12), for ε0 small enough we have (denoting by Bd balls with respect to the
distance function d(•, •))

ϕ1(Wu(ρ̂)) ∩Bd(ϕ1(ρ̂), 2C0ε0) ⊂ Wu(ϕ1(ρ̂)) for all ρ̂ ∈ S∗M. (2.26)

Now, assume that ρ, ρ̃ ∈ S∗M and d(ϕt(ρ), ϕt(ρ̃)) ≤ ε0 for all integers t ∈ [0, T ].
Choose ρ′ satisfying (2.24). If ε0 is small enough, then by the local uniqueness of
unstable leaves we have ρ̃ ∈ Wu(ρ

′). By (2.25) we have for all integers t ∈ [0, T ]

d(ϕt(ρ
′), ϕt(ρ̃)) ≤ d(ϕt(ρ

′), ϕt(ρ)) + d(ϕt(ρ), ϕt(ρ̃)) ≤ 2C0ε0.

Applying (2.26) with ρ̂ := ϕt(ρ
′), we see by induction on t that

ϕt(ρ̃) ∈ Wu(ϕt(ρ
′)) for all integer t ∈ [0, T ].

In particular, ϕT (ρ̃) ∈ Wu(ϕT (ρ′)). Applying (2.16) with t := −T and ρ, ρ̃ replaced by
ϕT (ρ′), ϕT (ρ̃),

d(ρ′, ρ̃) = d
(
ϕ−T (ϕT (ρ′)), ϕ−T (ϕT (ρ̃))

)
≤ CJu−T (ϕT (ρ′)) =

C

JuT (ρ′)
≤ C

JuT (ρ)
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t = 0 t = 1 t = 2 t = 3

Figure 2. An illustration of Corollary 2.2 for T = 3 with the flow
direction removed. The green points are ϕt(ρ0), the curves are the local
stable (red) and unstable (blue) manifolds of these points, and the black
rectangles are the sets ϕt(V).

where the last inequality follows from part (3) of the present lemma. Since ρ′ ∈ W0s(ρ)

this proves (2.17).

It remains to show that Jst (ρ) ∼ Jst (ρ̃), Jut (ρ) ∼ Jut (ρ̃) for all t ∈ [0, T ]. As before,
we prove the first statement with the second one proved similarly. We can moreover
restrict ourselves to integer values of t. By part (4) of the present lemma applied to
the points ϕt(ρ′), ϕt(ρ̃) ∈ Wu(ϕt(ρ

′)) and propagation time −t, we have Js−t(ϕt(ρ′)) ∼
Js−t(ϕt(ρ̃)). Since Jst (ρ′) = 1/Js−t(ϕt(ρ

′)) this implies that Jst (ρ′) ∼ Jst (ρ̃). On the other
hand by part (3) of the present lemma we have Jst (ρ) ∼ Jst (ρ′). Combining the last
two statements we get Jst (ρ) ∼ Jst (ρ̃) as needed. �

Parts (5) and (6) of Lemma 2.1 applied to ρ̃ := ϕt(ρ) together with (2.10) give

Corollary 2.2. Let d(•, •) and ε0 > 0 be fixed in Lemma 2.1. Fix ρ0 ∈ S∗M , T ∈ N0,
and consider the set

V :=
{
ρ ∈ S∗M | d(ϕt(ρ), ϕt(ρ0)) ≤ ε0 for all integer t ∈ [0, T ]

}
.

Then we have for all ρ ∈ V and t ∈ [0, T ]

d
(
ϕt(ρ),W0s(ϕt(ρ0))

)
≤ C/JuT−t(ρ0) ≤ Ce−Λ0(T−t),

d
(
ϕt(ρ),W0u(ϕt(ρ0))

)
≤ CJst (ϕt(ρ0)) ≤ Ce−Λ0t.

(2.27)

Roughly speaking (2.27) implies that ϕt(V) lies inside an ε0 × e−Λ0t × e−Λ0(T−t)

sized rectangle (with dimensions along E0, Es, Eu respectively) centered at ϕt(ρ0) – see
Figure 2.

2.1.2. Straightening out the weak unstable foliation. In §4.3.3 and §4.6.1 below (most
crucially in the proof of Lemma 4.15) we rely on the following construction of normal
coordinates which straighten out a given weak unstable leaf. Similarly to Lemma 2.1
we fix a distance function d(•, •) on S∗M .
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ρ0 0κW0u(ρ0)
{η1 = 0}

W0u(ρ̃) {η1 = F (y1, ζ̃)}

Uρ0 Vρ0

Figure 3. An illustration of Lemma 2.3, restricted to S∗M and with the
flow direction removed. The curves on the left are the (weak) unstable
manifolds and the curves on the right are their images under κ.

Lemma 2.3. For ε0 > 0 small enough and for any ρ0 ∈ S∗M there exists a C∞

symplectomorphism

κ = κρ0 : Uρ0 → Vρ0 , Uρ0 ⊂ T ∗M \ 0, Vρ0 ⊂ T ∗R2 \ 0,

such that, denoting points in T ∗M by (x, ξ) and points in T ∗R2 by (y, η), we have:

(1) Uρ0 , Vρ0 are conic sets and the ball Bd(ρ0, ε0) is contained in Uρ0 ∩ S∗M ;
(2) κ is homogeneous, namely it maps the vector field ξ · ∂ξ to η · ∂η;
(3) κ(ρ0) = (0, 0, 0, 1), dκ(ρ0)Eu(ρ0) = R∂y1, and dκ(ρ0)Es(ρ0) = R∂η1;
(4) putting p(x, ξ) := |ξ|g, we have p = η2 ◦ κ on Uρ0;
(5) for each ρ̃ ∈ Uρ0, the weak unstable leaf W0u(ρ̃) satisfies for some ζ̃ = Z(ρ̃) ∈ R

κ(W0u(ρ̃) ∩ Uρ0) =
{

(y1, y2, p(ρ̃)F (y1, ζ̃), p(ρ̃)) | (y1, ζ̃) ∈ Ω, y2 ∈ R
}
∩ Vρ0 (2.28)

where F = Fρ0 is a function from an open set Ω = Ωρ0 ⊂ R2 to R lying
in the Hölder class C3/2(Ω), the map y1 7→ F (y1, ζ) is C∞ for every ζ, and
Z : Uρ0 → R is homogeneous of degree 0, in the class C3/2 on Uρ0 ∩ S∗M , and
constant on each local weak unstable leaf;

(6) Z(ρ0) = 0, F (y1, 0) = 0, and F (0, ζ) = ζ;
(7) ∂ζF (y1, 0) = 1.
(8) there exists Cρ0 > 0 such that |F (y1, ζ)− ζ| ≤ Cρ0 |ζ|3/2.

The derivatives of all orders of κρ0 and the constant Cρ0 are bounded independently
of ρ0.

Remarks. 1. The statements (1)–(7) of Lemma 2.3 rely on the C3/2 regularity of the
unstable distribution (Eu(ρ))ρ∈S∗M , proved by Hurder–Katok [HK90, Theorem 3.1].
They actually proved that for a generic surface of negative curvature, the distribution
has regularity C2−, but not better: by [HK90, Theorem 3.2 and Corollary 3.7], if the
regularity is C2, then (M, g) must have constant curvature. For our application the
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regularity C1+ε0 for some ε0 > 0 would suffice, but we will use the C3/2 regularity to
simplify the expressions.

2. The point (6) in the Lemma shows that the weak unstable manifold W0u(ρ0) is
represented, in the coordinates given by κ, by the horizontal plane {η1 = 0, η2 = 1},
see (2.29). The nearby unstable leaves W0u(ρ̃) will then be approximately horizontal,
that is close to planes {η1 = ζ = const, η2 = const}. The statements (7)–(8) express
this almost horizontality more precisely. In §4 this almost horizontality will allow us
to apply the (“straight”) fractal uncertainty principle to families of almost-horizontal
unstable manifolds. The statement (8), which relies on the C3/2 regularity, will be
directly used in Lemma 4.15.

To prove Lemma 2.3 we start by constructing a local coordinate frame under slightly
weaker conditions:

Lemma 2.4. Under the assumptions of Lemma 2.3 there exists a symplectomorphism
κ0 having properties (1)–(6) of that lemma.

Proof. To construct κ0 we need to define a system of symplectic coordinates (y1, y2, η1, η2)

on a conic neighborhood of ρ0 which are homogeneous (more precisely y1, y2 are ho-
mogeneous of degree 0 and η1, η2 are homogeneous of degree 1). Put η2 := p and
let η1|S∗M be a defining function of the leaf W0u(ρ0) (namely η1 vanishes on W0u(ρ0)

and its differential is nondegenerate on that submanifold) satisfying Hpη1 = 0; this is
possible since Hp is tangent to W0u(ρ0). Extending η1 to be homogeneous of degree 1,
we see that the Poisson bracket {η1, η2} vanishes in a conic neighborhood of ρ0. The
existence of the system of coordinates (y1, y2, η1, η2) now follows from the Darboux
Theorem [HöIII, Theorem 21.1.9], where we can arrange that y1(ρ0) = y2(ρ0) = 0.

Since κ0 is homogeneous, it sends the canonical 1-form ξ dx on T ∗M to the canonical
1-form η dy on T ∗R2. By (2.4) we then have

dκ0(ρ0)(Es(ρ0)⊕ Eu(ρ0)) = ker(dη2) ∩ ker(dy2).

Since Eu(ρ0) is tangent to W0u(ρ0), we see that dκ0(Eu(ρ0)) = R∂y1 . To ensure that
dκ0(Es(ρ0)) = R∂η1 we compose κ0 with the nonlinear shear

(y, η) 7→ (y + dF(η), η), F(η1, η2) := θ
η2

1

η2

for an appropriate choice of θ ∈ R.
Properties (1)–(4) of Lemma 2.3 follow immediately from the discussion above. For

property (5), we first note that by construction

κ0(W0u(ρ0)) = {η1 = 0, η2 = 1}. (2.29)

Since the tangent spaces E0u(ρ) to the leaves W0u(ρ) depend continuously on ρ, we
see that for ρ̃ ∈ S∗M near ρ the images κ0(W0u(ρ̃)) project diffeomorphically onto the
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(y1, y2) variables. Therefore we can locally write

κ0(W0u(ρ̃)) = {η1 = F0(y1, y2, ζ̃), η2 = 1}

for some function F0(y1, y2, ζ) and some ζ̃ = Z0(ρ̃) depending on ρ̃, and we can assume
that F0(0, 0, ζ) = ζ which uniquely determines the functions F0, Z0. Since W0u(ρ̃) is a
C∞ submanifold, the function y 7→ F0(y, ζ) is C∞ for each ζ. Since Hp is tangent to
each W0u(ρ̃) and is mapped by κ0 to ∂y2 , we see that ∂y2F0 = 0, thus F0 is a function
of (y1, ζ) only. This shows that (2.28) holds for all ρ̃ ∈ Uρ0 ∩ S∗M , and it is easy to
see that it holds for all ρ̃ ∈ Uρ0 by homogeneity, with Z0 homogeneous of degree 0.
Property (6) follows from (2.29).

It remains to prove that the functions F0, Z0 have regularity C3/2. According to
[HK90, Definition 4.1 and Theorem 4.2], the function F0 is C∞ in the variable y1 (this
shows that each unstable leaf is smooth submanifold), and is C1 w.r.t. ζ. Besides,
[HK90, Theorem 3.1] shows that the distribution Eu(ρ) depends C3/2 on ρ. In our
coordinates κ0, this regularity means that the “slope function” eu(y1, η1) of the unstable
distribution has regularity C3/2 w.r.t. its variables. Now, the function F0 is a solution
of the differential equation

d

dy1

F0(y1, ζ) = eu
(
y1, F0(y1, ζ)

)
, with initial condition F0(0, ζ) = ζ.

Standard results on ODEs [Ha02, Chapter V] show that the unique solution to such
an ODE with Ck function eu will depend in a Ck way of the initial condition ζ. The
proof of [Ha02, Theorem 3.1] can be easily adapted to show that a C3/2 function eu
induces a solution F0 with regularity C3/2. �

We now modify the map κ0 from Lemma 2.4 to obtain a map κ satisfying also
the condition (7) of Lemma 2.3. Let F0 be the function constructed in the proof of
Lemma 2.4. We have for every ζ

y1 7→ ∂ζF0(y1, ζ) lies in C∞. (2.30)

This follows from the existence of C∞-adapted transverse coordinates, see [HK90,
Point 2 in Definition 4.1 and Proposition 4.2].

From the normalization F0(0, ζ) = ζ we see that ∂ζF0(y1, ζ) > 0 for y1 close to 0.
Take the diffeomorphism ψ of neighborhoods of 0 in R defined by

ψ(y1) =

∫ y1

0

∂ζF0(s, 0) ds.

We define κ as the composition κ := Ψ ◦ κ0 where Ψ is the symplectic lift of ψ:

Ψ(y1, y2, η1, η2) = (ψ(y1), y2, η1/ψ
′(y1), η2).



CONTROL OF EIGENFUNCTIONS IN VARIABLE CURVATURE 17

Then κ satisfies all the properties in Lemma 2.3, with the function

F (y1, ζ) =
F0(ψ−1(y1), ζ)

∂ζF0(ψ−1(y1), 0)
, Z = Z0 .

Like F0, the function F is C3/2 w.r.t. the variable ζ. We now use this regularity to
prove part (8) of Lemma 2.3. This C3/2 regularity, together with the property (7),
implies the Taylor expansion of F at the point (y1, 0):

F (y1, ζ) = F (y1, 0) + ζ∂ζF (y1, 0) +O(ζ3/2)

= ζ +O(ζ3/2),

with the implied constant being uniform w.r.t. y1. The second line is the point (8) of
the Lemma: the leaf W0u(ρ) at “height” ζ from the reference horizontal leaf W0u(ρ0) is
contained in horizontal rectangle of thickness O(ζ3/2).

Finally, the fact that the derivatives of all orders of κρ0 are bounded uniformly in ρ0

follows directly from the arguments above and the fact that the leaf W0u(ρ0) depends
continuously on ρ0 as an embedded C∞ submanifold of S∗M . It also shows that the
constant Cρ0 in item (8) is uniformly bounded w.r.t ρ0. �

2.2. Pseudodifferential operators. Let M be a manifold. We use the standard
semiclassical symbol class Skh(T ∗M) whose elements a(x, ξ;h) satisfy uniform derivative
bounds on every compact subset K ⊂M :

|∂αx∂
β
ξ a(x, ξ;h)| ≤ CαβK〈ξ〉k−|β|, x ∈ K, ξ ∈ T ∗xM,

and admit an expansion in powers of h and |ξ|. See for instance [DZ19, Definition E.3]
or [DZ16, §2.1]. Denote by Sk(T ∗M) the class of h-independent symbols in Skh(T ∗M).
We fix a (noncanonical) quantization procedure Oph onM , see (A.5) below and [DZ19,
Proposition E.15]. Denote the class of semiclassical pseudodifferential operators with
symbols in Skh(T ∗M) by Ψk

h(M) and the (canonical) principal symbol map by σh :

Ψk
h(M)→ Sk(T ∗M). See for instance [DZ19, §E.1.7] or [Zw12, §14.2].

If M is noncompact, then we do not impose any restrictions on the growth of
a(x, ξ;h) ∈ Skh(T ∗M) as |x| → ∞ and likewise do not say anything about the as-
ymptotic behavior of operators in Ψk

h(M) as we approach the infinity of M . Therefore
in general operators in Ψk

h(M) are bounded (uniformly in h) acting Hs
h,comp(M) →

Hs−k
h,loc(M) where Hs

h,loc(M) denotes the space of distributions locally in the semiclas-
sical Sobolev space Hs

h and Hs
h,comp(M) consists of the compactly supported elements

of Hs
h,loc(M). See [DZ19, §E.1.8] or [Zw12, §8.3.1]. We will typically use operators

in Ψk
h(M) which are properly supported, mapping Hs

h,comp(M) → Hs−k
h,comp(M) and

Hs
h,loc(M) → Hs−k

h,loc(M). The quantization procedure Oph is chosen so that Oph(a)

is properly supported for every a and Oph(a) is compactly supported (i.e. it has a
compactly supported Schwartz kernel) for symbols a which are compactly supported
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in the x variable. Of course if M is a compact manifold (which will mostly be the
case in this paper), then Hs

h,loc(M) and Hs
h,comp(M) are the same space, denoted by

Hs
h(M). We will mostly use the space H0

h(M) = L2(M).

For A ∈ Ψk
h(M) we denote by WFh(A) its wavefront set and by ellh(A) its elliptic

set. Both are subsets of the fiber-radially compactified cotangent bundle T ∗M . See
for instance [DZ19, §E.2] or [DZ16, §2.1]. For A ∈ Ψk

h(M), B ∈ Ψ`
h(M) we say that

A = B +O(h∞) microlocally on some open set U ⊂ T
∗
M

if WFh(A−B) ∩ U = ∅.
We also use the notion of the wavefront set WFh(u) ⊂ T

∗
M of an h-dependent

tempered family of distributions u = u(h) ∈ D′(M) and the wavefront set WF′h(B) ⊂
T
∗
(M1×M2) of an h-dependent tempered family of operators B = B(h) : C∞c (M2)→

D′(M1), see [DZ19, §E.2.3].

2.2.1. Mildly exotic symbols. We also use the mildly exotic symbol class Scomp
δ (T ∗M),

δ ∈ [0, 1
2
), consisting of symbols a(x, ξ;h) such that:

• the (x, ξ)-support of a is contained in an h-independent compact subset of T ∗M ;
• the symbol a satisfies derivative bounds

|∂α(x,ξ)a(x, ξ;h)| ≤ Cαβh
−δ|α|.

The operator class corresponding to Scomp
δ (T ∗M) is denoted by Ψcomp

δ (M). We require
operators in Ψcomp

δ (M) to be compactly supported. We use the same quantization
procedure Oph for this class and note that compactly supported elements of Skh(T ∗M)

lie in Scomp
0 (T ∗M). See [Zw12, §4.4] or [DG14, §3.1].

Operators in the class Ψcomp
δ (M) satisfy the following version of the sharp Gårding

inequality for all u ∈ L2(M):

a ∈ Scomp
δ (T ∗M), Re a ≥ 0 =⇒ Re〈Oph(a)u, u〉L2 ≥ −Ch1−2δ‖u‖2

L2 (2.31)

where the constant C depends only on a certain Scomp
δ (T ∗M) seminorm of a. The

inequality (2.31) can be reduced to the case of the standard quantization on Rn;
the latter case is proved by applying the standard sharp Gårding inequality [Zw12,
Theorem 4.32] to the rescaled symbol ã(x, ξ) := a(hδx, hδξ) and using the identity
Oph(a) = T−1 Oph1−2δ(ã)T where Tu(x) = u(hδx).

We also have the following norm bound when M is compact:

a ∈ Scomp
δ (T ∗M) =⇒ ‖Oph(a)‖L2→L2 ≤ sup

T ∗M
|a|+ Ch

1
2
−δ (2.32)

where the constant C depends only on some Scomp
δ (T ∗M) seminorm of a. To show (2.32)

it suffices to apply (2.31) to the operator c2 − Oph(a)∗Oph(a) = Oph(c
2 − |a|2) +

O(h1−2δ)L2→L2 where c = c(h) := supT ∗M |a|.
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Notation: We remark that there is a slight conflict of notation between the classes Skh
(h-dependent symbols of order k in ξ which are polyhomogeneous in both ξ and h)
and Scomp

δ (h-dependent compactly supported symbols losing h−δ with each differenti-
ation). A more proper notation would be

Skh,phg(T
∗M) := Skh(T ∗M), Scomp

h,δ (T ∗M) := Scomp
δ (T ∗M).

We however keep the shorter notation to reduce the number of indices used. For
δ ∈ [0, 1

2
) we define the symbol class

Scomp
δ+ (T ∗M) =

⋂
ε>0

Scomp
δ+ε (T ∗M).

We also use the following notation:

f(h) = O(hα−) if f(h) = Oε(hα−ε) for all ε > 0.

When writing a ∈ C∞c (T ∗M) for a symbol a, we assume that a is h-independent unless
stated otherwise.

2.2.2. Egorov’s Theorem. We now specialize to the case when (M, g) is a compact
Anosov surface as in §2.1. Since σh(−h2∆) = p2 where p(x, ξ) = |ξ|g, by the functional
calculus of pseudodifferential operators (see [Zw12, Theorem 14.9] or [DS99, §8]) we
have

ψ ∈ C∞c (R) =⇒ ψ(−h2∆) ∈ Ψ−∞h (M),

WFh(ψ(−h2∆)) ⊂ suppψ(p2), σh(ψ(−h2∆)) = ψ(p2).
(2.33)

We now discuss conjugation of pseudodifferential operators by the wave group. Simi-
larly to [DJ18, §2.2], to avoid technical issues coming from the zero section, instead of
the true half-wave propagator e−it

√
−∆ we use the unitary operator

U(t) := exp(−itP/h), P := ψP (−h2∆) ∈ Ψ−∞h (M), P ∗ = P, (2.34)

where we fixed some function

ψP ∈ C∞c ((0,∞);R), suppψP ⊂ { 1
25
< λ < 25}, ψP (λ) =

√
λ for 1

16
≤ λ ≤ 16.

For a bounded operator A on L2(M), we define the Heisenberg-evolved operators

A(t) := U(−t)AU(t), t ∈ R . (2.35)

Assume that a ∈ C∞c (T ∗M) and supp a ⊂ {1
4
< |ξ|g < 4}. Then Egorov’s Theo-

rem [Zw12, Theorem 11.1] implies that for t bounded independently of h we have

A = Oph(a) =⇒ A(t) = Oph(a ◦ ϕt) +O(h)L2→L2 (2.36)

where ϕt = exp(tHp) is the homogeneous geodesic flow. In fact, the proof in [Zw12]
gives the following stronger statement (see e.g. [DG14, §C.2] or Lemma A.7 below for
details): for each time t there exists at(x, ξ;h) ∈ Scomp

0 (T ∗M) such that

A(t) = Oph(at) +O(h∞)Ψ−∞ , at = a ◦ ϕt +O(h), supp at ⊂ ϕ−t(supp a). (2.37)
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We next extend (2.36) to the case of t bounded by a small constant times log(1/h),
using the mildly exotic symbol classes described in §2.2.1. Let Λ1 > 0 be the ‘maximal
expansion rate’ from (2.10). It follows from (2.7) and (2.10) that

sup
ρ∈{ 1

4
≤|ξ|g≤4}

‖dϕt(ρ)‖ ≤ CeΛ1|t| for all t ∈ R. (2.38)

Lemma 2.5. Assume that a ∈ C∞c (T ∗M) and supp a ⊂ {1
4
≤ |ξ|g ≤ 4}; put A :=

Oph(a). Fix δ ∈ (0, 1
2
). Then we have uniformly in t satisfying |t| ≤ δΛ−1

1 log(1/h):

(1) a ◦ ϕt ∈ Scomp
δ+ (T ∗M);

(2) A(t) = Oph(a ◦ ϕt) +O(h1−2δ−)L2→L2.

Remarks. 1. A stronger statement similar to (2.37), which shows that the remainder
O(h1−2δ−) is actually pseudodifferential, is proved for instance in [DG14, Proposi-
tion 3.9].

2. Lemma 2.5 shows that Egorov’s theorem holds for all times t which are smaller (by
at least ε log(1/h) for some ε > 0) than the minimal Ehrenfest time log(1/h)

2Λ1
. Later we

will show a finer version of Egorov’s theorem, up to the (potentially much longer) local
Ehrenfest time – see Proposition 4.2.

Proof. (1) The estimate (2.38) implies the following bounds on higher derivatives: for
all t ∈ R, all multiindices α, and all ε > 0

sup
T ∗M
|∂α(a ◦ ϕt)| ≤ Cα,εe

(Λ1+ε)|α|·|t|. (2.39)

See for instance [DG14, Lemma C.1], whose proof applies directly to the present
situation; alternatively one could use the proof of Lemma 5.2 below in the special
case k = 0. Under the condition |t| ≤ δΛ−1

1 log(1/h) the bound (2.39) implies that
a ◦ ϕt ∈ Scomp

δ+ (T ∗M) uniformly in t.

(2) We use the following commutator formula valid for all ã ∈ Scomp
δ+ (T ∗M) with

supp ã ⊂ {1
4
≤ |ξ|g ≤ 4}:

[P,Oph(ã)] = −ihOph(Hpã) +O(h2−2δ−)L2→L2 . (2.40)

Here it is important that p ∈ Scomp
0 (T ∗M) and we use the same quantization procedure

Oph on both sides of the equation; the Scomp
δ calculus would only give an O(h2−4δ−)

remainder. See Remark 2 following Lemma A.6 for the proof.

Using (2.40) and part (1) we compute for |t| ≤ δΛ−1
1 log(1/h)

∂t
(
U(t) Oph(a ◦ ϕt)U(−t)

)
= U(t)

(
− ih−1[P,Oph(a ◦ ϕt)] + Oph(∂t(a ◦ ϕt))

)
U(−t)

= O(h1−2δ−)L2→L2 .

Integrating this from 0 to t, we get U(t) Oph(a◦ϕt)U(−t) = Oph(a) +O(h1−2δ−)L2→L2

which finishes the proof since U(t) is unitary. �
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We will also need to control products of many pseudodifferential operators. The
following Lemma considers products of logarithmically many pseudodifferential oper-
ators; it is proved in the same way as [DJ18, Lemmas A.1 and A.6] using the norm
bound (2.32):

Lemma 2.6. Let C be an arbitrary fixed constant, δ ∈ [0, 1
2
), and assume that the

symbols
a1, . . . , aN ∈ Scomp

δ (T ∗M), N ≤ C log(1/h), sup |aj| ≤ 1

have each Scomp
δ seminorm bounded uniformly in j. Assume also that we are given

operators Aj = Oph(aj) +O(h1−2δ)L2→L2 with the remainders bounded uniformly in j.
Then:

(1) a1 · · · aN ∈ Scomp
δ+ (T ∗M);

(2) A1 · · ·AN = Oph(a1 · · · aN) +O(h1−2δ−)L2→L2.

That is, the product of these symbols (resp. operators) is essentially in the same symbol
class (resp. operator class) as the individual factors.

2.3. Lagrangian distributions and Fourier integral operators. In this section
we review the theory of semiclassical Lagrangian distributions and Fourier integral
operators. These are used in §4.3.3 to describe propagation of Lagrangian states beyond
the Ehrenfest time. In particular we use that the wave propagator U(t) defined in (2.34)
is, after appropriate cutoffs, a Fourier integral operator associated to the geodesic
flow ϕt, see (4.47). Fourier integral operators are also used in §4.6.4 to quantize a
symplectomorphism which locally straightens out unstable leaves.

We keep the presentation brief, referring the reader to [Al08], [GS77, Chapter 5], and
[GS13, Chapter 8] for details. For other reviews (bearing some similarities to the one
here) see [DD13, §3.2], [DG14, §3.2], [Dy15, §3.2], [DZ16, §2.2], and [NZ09, §4.1]. For
the related nonsemiclassical case, see [HöIV, Chapter 25] and [GS94, Chapters 10–11].

2.3.1. Lagrangian manifolds and phase functions. Let M be a smooth n-dimensional
manifold (in this subsection we do not assume M to be compact). Denote by ξ dx the
canonical 1-form on T ∗M , then the symplectic form is given by

ω := d(ξ dx).

An embedded n-dimensional submanifold L ⊂ T ∗M is called a Lagrangian subman-
ifold if the pullback of ω to L is zero; that is, the pullback of ξ dx to L is a closed
1-form. A Lagrangian submanifold is called exact if the pullback of ξ dx to L is equal
to dF for some function F ∈ C∞(L ;R), called an antiderivative on L . We henceforth
define an exact Lagrangian submanifold as the pair (L , F ) but still often denote it
by L for simplicity.
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We note that L is exact in particular if it is conic, namely the generator of dilations
ξ · ∂ξ is tangent to L . In this case the pullback of ξ dx to L is equal to 0 (since
ω(ξ ·∂ξ, v) = 〈ξ dx, v〉 = 0 for any tangent vector v ∈ TL ), thus it is natural to fix the
antiderivative equal to 0 as well.

One way to obtain an exact Lagrangian submanifold is by using a phase function.
More precisely, if U ⊂ Mx × Rm

θ is an open set (for some m ∈ N0) then we call a
function Φ(x, θ) ∈ C∞(U ;R) a nondegenerate phase function if:

(1) the differentials d(∂θjΦ)1≤j≤m are linearly independent on the critical set

CΦ := {(x, θ) ∈ U | ∂θΦ(x, θ) = 0}

which is then an n-dimensional embedded submanifold of U ; and
(2) the following map is a smooth embedding:

jΦ : CΦ → T ∗M, jΦ(x, θ) = (x, ∂xΦ(x, θ)).

We call θ the oscillatory variables.

Under the conditions (1)–(2) above the manifold

LΦ := jΦ(CΦ) ⊂ T ∗M (2.41)

is exact Lagrangian, with the antiderivative FΦ ∈ C∞(LΦ;R) given by the restriction
of the phase function on the critical set:

FΦ(jΦ(x, θ)) = Φ(x, θ), (x, θ) ∈ CΦ.

For an exact Lagrangian submanifold (L , F ) we say that a nondegenerate phase func-
tion Φ generates L , if L = LΦ and F = FΦ.

Every exact Lagrangian submanifold (L , F ) is locally generated by phase functions:
that is, each point ρ ∈ L has a neighborhood generated by some phase function;
see [GS77, Proposition 5.1]. The simplest case is when the projection π : L → M is
a diffeomorphism onto its image, in which case L is given by

L = LΦ = {(x, ∂xΦ(x)) | x ∈ U}, U := π(L ) ⊂M, (2.42)

where the function Φ ∈ C∞(U ;R) is defined by F (x, ξ) = Φ(x) for all (x, ξ) ∈ L .

Another important case is when L ⊂ T ∗M \ 0 is conic. In this case each point
ρ ∈ L has a conic neighborhood which is generated by some phase function Φ(x, θ),
(x, θ) ∈ U , where U ⊂M×Rm is conic and Φ is homogeneous of degree 1 in the θ vari-
ables. For the proof see [GS77, Proposition 5.2], [HöIII, Theorem 21.2.16], or [GS94,
Proposition 11.4].



CONTROL OF EIGENFUNCTIONS IN VARIABLE CURVATURE 23

2.3.2. Lagrangian distributions. Let (L , F ) be an exact Lagrangian submanifold of T ∗M .
We use the class Icomp

h (L ) of (compactly microlocalized semiclassical) Lagrangian dis-
tributions associated to L . Elements of Icomp

h (L ) are h-dependent families of func-
tions in C∞c (M), with support contained in some h-independent compact set. We give
a definition and some properties of the class Icomp

h (L ) below.

If L = LΦ is generated by some phase function Φ(x, θ), (x, θ) ∈ U ⊂ M × Rm, in
the sense of (2.41), then Icomp

h (L ) consists of distributions of the form

u(x;h) = (2πh)−m/2
∫
Rm

eiΦ(x,θ)/ha(x, θ;h) dθ +O(h∞)C∞c (M). (2.43)

Here the amplitude a(x, θ;h) ∈ C∞c (U) is a classical symbol ; that is, supp a is con-
tained in an h-independent compact subset of U and we have the asymptotic expansion
in C∞c (U)

a(x, θ;h) ∼
∞∑
j=0

hjaj(x, θ) as h→ 0

for some a0, a1, . . . ∈ C∞c (U).

In the special case when Φ has no oscillatory variables (i.e. L is given by (2.42))
the expression (2.43) simplifies to

u(x;h) = eiΦ(x)/ha(x;h) +O(h∞)C∞c (M). (2.44)

The class of functions defined by (2.43) does not depend on the choice of the phase
function generating L . That is, if Φ,Φ′ are two phase functions with L = LΦ = LΦ′

and u is given by (2.43) for the phase function Φ and some amplitude a, then u is also
given by (2.43) for the phase function Φ′ and some other amplitude a′. The simplest
case of this statement is when Φ′ has no oscillatory variables (that is, L is constructed
from Φ′ using (2.42)) as we can then write (ignoring the O(h∞) remainder in (2.43))

a′(x;h) = e−iΦ
′(x)/hu(x;h) = (2πh)−m/2

∫
Rm

e
i
h

(Φ(x,θ)−Φ′(x))a(x, θ;h) dθ (2.45)

and show that a′ is a classical symbol using the method of stationary phase. The proof
in the general case also uses stationary phase but is more involved, see [GS13, §8.1.2];
for the nonsemiclassical case see [GS77, §6.4], [HöIV, Proposition 25.1.5], or [GS94,
Theorem 11.5].

For general Lagrangians L (not parametrized by a single phase function) we define
Icomp
h (L ) as consisting of sums u1 + · · ·+ uk where uj ∈ Icomp

h (Lj) and each Lj ⊂ L
is generated by some phase function. Here are two important properties of Lagrangian
distributions:

(1) If u ∈ Icomp
h (L ) and A ∈ Ψk

h(M) is compactly supported (which means that
its Schwartz kernel is compactly supported) then Au ∈ Icomp

h (L );
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(2) If u ∈ Icomp
h (L ) then WFh(u) ⊂ L ; that is, for any compactly supported

A ∈ Ψk
h(M) with WFh(A) ∩L = ∅ we have Au = O(h∞)C∞c (M).

To show these, we first use a partition of unity to reduce to the case when M = Rn

and L is generated by some phase function Φ. We next write for b ∈ C∞c (T ∗Rn) and
u given by (2.43)

Oph(b)u(x) = (2πh)−
m
2
−n
∫
R2n+m

e
i
h

(〈x−y,ξ〉+Φ(y,θ))b(x, ξ)a(y, θ;h) dydξdθ.

We now apply stationary phase in the (y, ξ) variables to get an expression of the
form (2.43) with the phase function Φ(x, θ) and some amplitude which is a classical
symbol. On the other hand, if b is a symbol in Skh(T ∗Rn) and supp b ∩L = ∅ then
the method of nonstationary phase in the (y, ξ, θ) variables shows that Oph(b)u(x) =

O(h∞)C∞ .

2.3.3. Fourier integral operators. We next discuss Fourier integral operators associated
to symplectomorphisms. Let M1,M2 be two manifolds of the same dimension n, Uj ⊂
T ∗Mj be two open sets, and κ : U2 → U1 be a symplectomorphism. The flipped graph

Lκ := {(x1, ξ1, x2,−ξ2) | (x2, ξ2) ∈ U2, κ(x2, ξ2) = (x1, ξ1)} ⊂ T ∗(M1 ×M2) (2.46)

is a Lagrangian submanifold. We further assume that κ is exact, namely Lκ is an
exact Lagrangian submanifold. As before, we fix an antiderivative for Lκ but suppress
it in the notation. The exactness condition holds in particular if κ is homogeneous,
that is it sends ξ2 · ∂ξ2 to ξ1 · ∂ξ1 ; indeed, Lκ is conic and we fix the antiderivative to
be 0.

We say that an h-dependent family of operators B = B(h) : D′(M2)→ C∞c (M1) is a
(compactly microlocalized semiclassical) Fourier integral operator associated to κ, and
write B ∈ Icomp

h (κ), if the corresponding integral kernel KB(x1, x2;h) ∈ C∞c (M1×M2)

satisfies KB ∈ h−n/2Icomp
h (Lκ). Here Icomp

h (Lκ) is the class of Lagrangian distributions
defined in §2.3.2 above. In particular, the wavefront set WF′h(B) is contained in the
graph of κ.

An important special case is when M2 = Rn and the projection π : Lκ →M1 × Rn

onto the (x1, ξ2) variables is a diffeomorphism onto its image. If F is the antiderivative
on Lκ, then we can write

Lκ = {(x1, ∂x1S(x1, ξ2), ∂ξ2S(x1, ξ2),−ξ2) | (x1, ξ2) ∈ U} (2.47)

where U := {(x1, ξ2) | (x1, ξ1, x2,−ξ2) ∈ Lκ} and S ∈ C∞(U ;R) is given by

F (x1, ξ1, x2,−ξ2) = S(x1, ξ2)− 〈x2, ξ2〉, (x1, ξ1, x2,−ξ2) ∈ Lκ.

That is, Lκ is generated by the phase function Φ(x1, x2, θ) = S(x1, θ)− 〈x2, θ〉 in the
sense of (2.41). Then every operator B ∈ Icomp

h (κ) has the following form modulo an
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O(h∞)D′(Rn)→C∞c (M1) remainder:

Bf(x1) = (2πh)−n
∫
R2n

e
i
h

(S(x1,θ)−〈x2,θ〉)b(x1, x2, θ;h)f(x2) dx2dθ (2.48)

for some classical symbol b ∈ C∞c (U(x1,θ) × Rn
x2

).

We list several fundamental properties of the class Icomp
h (κ):

(1) If B ∈ Icomp
h (κ), then B : L2(M2) → L2(M1) is bounded in norm uniformly

in h;
(2) If κ is the identity map on T ∗M , then B ∈ Icomp

h (κ) if and only if B is a
compactly supported pseudodifferential operator in Ψk

h(M) and WFh(B) ⊂
T ∗M is compact;

(3) If B ∈ Icomp
h (κ) and u ∈ Icomp

h (L ) is a Lagrangian distribution, then Bu is a
Lagrangian distribution in Icomp

h (κ(L ));
(4) If B1 ∈ Icomp

h (κ1), B2 ∈ Icomp
h (κ2), then the composition B1B2 is a Fourier

integral operator in Icomp
h (κ1 ◦ κ2);

(5) If B ∈ Icomp
h (κ), then the adjoint B∗ lies in Icomp

h (κ−1).

Here in property (2) we let the antiderivative equal to 0 (as the identity map is ho-
mogeneous). In property (3) we define the antiderivative Fκ(L ) on κ(L ) using the
antiderivatives FL , Fκ on L ,Lκ by

Fκ(L )(x1, ξ1) = Fκ(x1, ξ1, x2,−ξ2)+FL (x2, ξ2) where (x1, ξ1, x2,−ξ2) ∈ Lκ (2.49)

and in property (4) the antiderivative on Lκ1◦κ2 is defined similarly. In property (5)
the antiderivative on Lκ−1 is minus the antiderivative on Lκ.

We briefly explain how the above properties are proven:

• For property (2), we can use a partition of unity to reduce to the caseM = Rn.
The flipped graph of the identity map is given by (2.47) with S(x1, ξ2) =

〈x1, ξ2〉. The corresponding expression (2.48) gives the class of pseudodifferen-
tial operators with compactly supported symbols (see [Zw12, Theorem 4.20]).
• For property (3), we reduce to the case when L = LΦ and Lκ = LΨ are
generated by some phase functions Φ(x2, θ2) and Ψ(x1, x2, θ1), where θj ∈ Rmj .
Using the corresponding representations (2.43) for u and B (with some ampli-
tudes a and b) we get

Au(x1) = (2πh)−
n+m1+m2

2

∫
Rn+m1+m2

e
i
h

(Ψ(x1,x2,θ1)+Φ(x2,θ2))×

a(x2, θ2;h)b(x1, x2, θ1;h) dθ1dθ2dx2.

(2.50)

This is an expression of the form (2.43) for the phase function Ψ(x1, x2, θ1) +

Φ(x2, θ2), with (θ1, θ2, x2) treated as oscillatory variables, and this phase func-
tion generates the Lagrangian κ(L ). See also [NZ09, Lemma 4.1].
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• Property (4) is proved similarly to property (3), see [GS13, §8.13]. Property (5)
is immediate by writing an expression of the form (2.43) for the integral kernel
of the adjoint of B.
• Finally, to show property (1) we note that B∗B is a semiclassical pseudodiffer-
ential operator (and thus bounded on L2) by properties (2), (4), and (5).

We now discuss the conjugation by Fourier integral operators. Assume that κ : U2 →
U1, Uj ⊂ T ∗Mj, is an exact symplectomorphism and

B ∈ Icomp
h (κ), B′ ∈ Icomp

h (κ−1). (2.51)

By properties (2) and (4) above we see that BB′ ∈ Ψ0
h(M1), B′B ∈ Ψ0

h(M2) are pseu-
dodifferential operators with wavefront sets compactly contained in T ∗Mj. Moreover,
if a ∈ Scomp

δ (T ∗M2), δ ∈ [0, 1
2
) (see §2.2.1), then

BOph(a)B′ = Oph(ã) +O(h∞)Ψ−∞ for some ã ∈ Scomp
δ (T ∗M1),

ã = (a ◦ κ−1)σh(BB
′) +O(h1−2δ)Scomp

δ
, supp ã ⊂ κ(supp a).

(2.52)

Indeed, we may reduce to the case M1 = M2 = Rn. By oscillatory testing [Zw12,
Theorem 4.19] the symbol of BOph(a)B′ as a pseudodifferential operator is given by

ã(x1, ξ1;h) = e−i〈x1,ξ1〉/hBOph(a)B′(ei〈•,ξ1〉/h).

Taking generating functions Φ(x1, x2, θ) of Lκ and −Φ(x1, x2, θ) of Lκ−1 we write

ã(x1, ξ1;h) = (2πh)−2n−m
∫
R4n+2m

e
i
h

(〈x′1−x1,ξ1〉+〈x2−x′2,ξ2〉+Φ(x1,x2,θ)−Φ(x′1,x
′
2,θ
′))

b(x1, x2, θ;h)a(x2, ξ2;h)b′(x′1, x
′
2, θ
′;h) dθdθ′dx′1dx2dx

′
2dξ2

(2.53)

for some classical symbols b(x1, x2, θ;h), b′(x′1, x′2, θ′;h). Using the method of stationary
phase we get that ã is a symbol in Scomp

δ (T ∗Rn). The principal term in the stationary
phase expansion is equal to (a ◦ κ−1)σh(BB

′), as can be seen by formally putting
a ≡ 1. The support property (moduloO(h∞)) follows immediately from the expansion,
finishing the proof of (2.52). See also [GS13, §8.9.3].

If Vj ⊂ Uj, j = 1, 2, are compact sets with κ(V2) = V1 and B,B′ are Fourier integral
operators as in (2.51), we say that B,B′ quantize κ near V1 × V2 if

BB′ = I +O(h∞) microlocally near V1,

B′B = I +O(h∞) microlocally near V2.
(2.54)

If Lκ is generated by a single phase function Φ (in the sense of (2.41)) then there exist
B,B′ quantizing κ near V1 × V2. To show this, we choose B in the form (2.43):

Bf(x1) = (2πh)−
n+m

2

∫
Rn+m

eiΦ(x1,x2,θ)/hb(x1, x2, θ)f(x2) dθdx2

where b ∈ C∞c (U) is chosen so that b(x1, x2, θ) 6= 0 for any (x1, x2, θ) ∈ CΦ such that
(x1, ∂x1Φ(x1, x2, θ)) ∈ V1 (or equivalently (x2,−∂x2Φ(x1, x2, θ)) ∈ V2) and U is the
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domain of Φ. We have σh(BB∗) 6= 0 on V1 and σh(B∗B) 6= 0 on V2, as can be proved
using stationary phase similarly to (2.53). Multiplying B∗ on the right by an elliptic
parametrix of BB∗ and multiplying it on the left by an elliptic parametrix of B∗B (see
for instance [DZ19, Proposition E.32]), we obtain two operators B′, B′′ ∈ Icomp

h (κ)

such that
BB′ = I +O(h∞) microlocally near V1,

B′′B = I +O(h∞) microlocally near V2.

We write
I −B′B = (I −B′′B)(I −B′B) +B′′(I −BB′)B.

The wavefront set of the right-hand side does not intersect V2. For the first term this
is immediate since WFh(I − B′′B) ∩ V2 = ∅. For the second term this follows from
the fact that WFh(I − BB′) ∩ V1 = ∅, computing the full symbol of B′′(I − BB′)B
similarly to (2.53). It follows that B′B = I + O(h∞) microlocally near V2, therefore
B,B′ satisfy (2.54).

2.3.4. Fourier localization. We finally prove a fine Fourier localization statement for a
class of Lagrangian distributions, used in the proof of Lemma 4.25 below. Its proof is
contained in Appendix B.

Proposition 2.7. Assume that h, h′ ∈ (0, 1] satisfy h′ ≥ hτ for some τ < 1, U ⊂ Rn

is an open set, K ⊂ U is compact, and we have for some constant C0 > 0

vol(K) ≤ C0, d(K,Rn \ U) ≥ C−1
0 . (2.55)

Let Φ ∈ C∞(U ;R), a ∈ C∞c (U ;C), supp a ⊂ K, and assume that

diam ΩΦ ≤ C0h
′ where ΩΦ := {dΦ(x) | x ∈ U} ⊂ Rn. (2.56)

Assume also that Φ and a satisfy, for all N ≥ 1 and some constants CN :

max
0<|α|≤N

sup
U
|∂αΦ| ≤ CN , max

0≤|α|≤N
sup
U
|∂αa| ≤ CN . (2.57)

Define the Lagrangian state

u(x) := a(x) eiΦ(x)/h ∈ C∞c (U) ⊂ C∞c (Rn). (2.58)

Denote ΩΦ(C−1
0 h′) := ΩΦ +B(0, C−1

0 h′). Then we have for all N ≥ 1

‖ 1lRn\ΩΦ(C−1
0 h′)(hDx)u‖L2(Rn) ≤ C ′Nh

N (2.59)

where the constant C ′N depends only on τ, n,N,C0, CN ′ for N ′ := d2N+n
1−τ e+ 1.

Remarks. 1. If Φ, a are fixed and h goes to zero, then the set ΩΦ is the projection of
the Lagrangian LΦ defined in (2.42) onto the ξ variables and the function u defined
in (2.58) is a Lagrangian distribution in Icomp

h (LΦ). However, the condition (2.56) with
h′ ∼ hτ , τ > 0, implies that, if the phase Φ(x) is not constant (which would correspond
to a “horizontal” Lagrangian), then it necessarily depends on h. We may still view u(h)
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as a family of Lagrangian states, but associated to h-dependent Lagrangians LΦ(h)

which become more and more horizontal as h→ 0. The proposition shows that these
Lagrangian states are microlocalized in boxes which are microscopic in the momentum
variables.

2. For τ < 1
2
one can prove Proposition 2.7 without the assumption (2.57) using [HöI,

Theorem 7.7.1]. On the other hand, if τ = 1− ε, the boxes of momentum diameter hτ

are almost Planckian (they almost saturate the uncertainty principle).

2.4. Fractal uncertainty principle. The fractal uncertainty principle of Bourgain–
Dyatlov [BD18, Theorem 4] is the central tool of our proof. (See [Dy17, §4] for an
expository account.) In this section we prove a slightly more general version, Proposi-
tion 2.10, which will be used in §4.6.3 below.

We recall the definition of a porous set [DJ18, Definition 5.1]:

Definition 2.8. Let ν ∈ (0, 1) and 0 < α0 ≤ α1. We say that a subset Ω ⊂ R is
ν-porous on scales α0 to α1 if for every interval I ⊂ R of size |I| ∈ [α0, α1] there
exists a subinterval J ⊂ I of size |J | = ν|I| such that J ∩ Ω = ∅.

Define the unitary semiclassical Fourier transform Fh : L2(R)→ L2(R) by

Fhf(ξ) = (2πh)−1/2

∫
R
e−ixξ/hf(x) dx. (2.60)

For a set Ω ⊂ R, let 1lΩ : L2(R) → L2(R) be the multiplication operator by the
indicator function of Ω.

We first prove the following fractal uncertainty principle, which is a version of [BD18,
Theorem 4] adapted to unbounded ν-porous sets using almost orthogonality and tools
from [DJ18]:

Proposition 2.9. For each ν ∈ (0, 1) there exist β = β(ν) > 0 and C = C(ν) > 0

such that the following estimate holds

‖ 1lΩ− Fh 1lΩ+ ‖L2(R)→L2(R) ≤ Chβ (2.61)

for all 0 < h ≤ 1 and all sets Ω± ⊂ R which are ν-porous on scales h to 1.

Remark. An explicit expression for the exponent β (for the smaller class of δ-regular
sets; see Step 4 of the proof below for an explanation of why this gives a result for all
ν-porous sets) was obtained by Jin–Zhang [JZ20]. Using [JZ20, Theorem 1.2], one can
get (2.61) with

β(ν) = exp(− exp(exp(K/ν3))) (2.62)

where K is a global constant.
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Proof. 1. We first replace the indicator functions in (2.61) by their smoothed out
versions χ± ∈ C∞(R; [0, 1]). The functions χ± satisfy for all N ,

suppχ± ⊂ Ω±(h), supp(1− χ±) ∩ Ω± = ∅, (2.63)

sup |∂Nx χ±| ≤ CNh
−N . (2.64)

Here Ω±(h) = Ω± + [−h, h] denotes the h-neighborhood of Ω± and the constant CN
depends only on N . The functions χ± are constructed by convolving the indicator func-
tion of Ω±(h/2) with a smooth cutoff which is rescaled to be supported in (−h/2, h/2).
See the proof of [DZ16, Lemma 3.3] for details.

The left-hand side of (2.61) is equal to

‖ 1lΩ− χ−Fhχ+ 1lΩ+ ‖L2(R)→L2(R) ≤ ‖χ−Fhχ+‖L2(R)→L2(R).

2. We next write the cutoffs χ± as sums of functions χ±j , each supported in an interval
of size 2. More precisely, fix χ ∈ C∞c (R; [0, 1]) such that suppχ ⊂ (−1, 1) and

1 =
∑
j∈Z

χj where χj(x) := χ(x− j).

Put
χ±j := χjχ±, suppχ±j ⊂ Ω±(h) ∩ (j − 1, j + 1). (2.65)

Note that χ±j satisfy the derivative bounds (2.64) for some constants CN depending
only on N . We have (with convergence in strong operator topology)

χ−Fhχ+ =
∑
j,k∈Z

Ajk where Ajk := χ−j Fhχ+
k .

Therefore it suffices to show the estimate∥∥∥∑
j,k

Ajk

∥∥∥
L2(R)→L2(R)

≤ Chβ. (2.66)

3. To show (2.66) we use almost orthogonality. More precisely it suffices to prove the
following bounds for all j, k, j′, k′, N :

‖Ajk‖L2(R)→L2(R) ≤ Ch2β, (2.67)

‖AjkA∗j′k′‖L2(R)→L2(R) ≤ CNh
−1(1 + |j − j′|+ |k − k′|)−N , (2.68)

‖A∗j′k′Ajk‖L2(R)→L2(R) ≤ CNh
−1(1 + |j − j′|+ |k − k′|)−N . (2.69)

for some β > 0, C > 0 depending only on ν and some CN depending only on N .
Indeed, these estimates imply

sup
j,k

∑
j′,k′

‖AjkA∗j′k′‖
1/2

L2(R)→L2(R) ≤ Chβ, (2.70)

sup
j,k

∑
j′,k′

‖A∗j′k′Ajk‖
1/2

L2(R)→L2(R) ≤ Chβ. (2.71)
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Here we use (2.67) for |j− j′|+ |k−k′| ≤ h−β/2 and (2.68), (2.69) with N := d8 + 2/βe
for |j − j′|+ |k− k′| > h−β/2. Now (2.70) and (2.71) imply (2.66) by the Cotlar–Stein
Theorem [Zw12, Theorem C.5].

4. We first prove (2.67) which will follow from the fractal uncertainty principle [BD18,
Theorem 4]. However [BD18] used a more restrictive class of δ-regular sets rather than
ν-porous sets. We recall from [BD18, Definition 1.1] that a nonempty closed set Ω ⊂ R
is called δ-regular with constant CR on scales 0 to 1 if there exists a Borel measure µ
supported on Ω such that for each interval I of size |I| ∈ (0, 1] we have the upper
bound µ(I) ≤ CR|I|δ, and if additionally I is centered at a point in Ω, then we have
the lower bound µ(I) ≥ C−1

R |I|δ.
To address the difference between porous and regular sets we argue similarly to the

proof of [DJ18, Proposition 5.5]. Since Ω± are ν-porous on scales h to 1, by [DJ18,
Lemma 5.4] there exist sets Ω̃± ⊂ R such that:

(1) Ω± ⊂ Ω̃±(h);
(2) Ω̃± ⊂ R are δ-regular with constant CR on scales 0 to 1, for some δ ∈ (0, 1)

and CR ≥ 1 which depend only on ν.

Denote Ωj
± := Ω̃± − j; note that these sets are still δ-regular with constant CR on

scales 0 to 1. By (2.65) and since the norm ‖ 1lX F∗h 1lY ‖L2(R)→L2(R) does not change
when shifting X and/or Y , we have

‖Ajk‖L2→L2 ≤ ‖ 1lΩ+(h)∩[k−1,k+1]F∗h 1lΩ−(h)∩[j−1,j+1] ‖L2(R)→L2(R)

≤ ‖ 1lΩk+(2h)∩[−1,1]F∗h 1lΩj−(2h)∩[−1,1] ‖L2(R)→L2(R).
(2.72)

By [BD18, Proposition 4.1] (which is a corollary of [BD18, Theorem 4]) the right-hand
side of (2.72) is bounded by Ch2β for some C, β > 0 depending only on δ, CR (which
in turn only depend on ν), giving (2.67). Note that [BD18] used a slightly different
normalization of Fh, rescaled by a factor of 2π, which however makes no difference in
the proof. (Alternatively one can use the more general [BD18, Proposition 4.3] with
Φ(x, y) := xy.) Similarly the fact that (2.72) features Ωj

±(2h) instead of Ωj
±(h) does

not make a difference: for instance we can write Ωj
±(2h) = (Ωj

±(h) + h) ∪ (Ωj
±(h)− h)

and use the triangle inequality.

5. It remains to show (2.68) and (2.69). We only show the former one, the latter
proved similarly. We have

AjkA
∗
j′k′ = χ−j Fhχ+

k χ
+
k′F

∗
hχ
−
j′ .

If |k − k′| > 1 then suppχ+
k ∩ suppχ+

k′ = ∅ and thus AjkA∗j′k′ = 0. We henceforth
assume that |k − k′| ≤ 1. The integral kernel of AjkA∗j′k′ , which we denote K, can be
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computed in terms of the Fourier transform of χ+
k χ

+
k′ :

K(x, y) = (2πh)−1χ−j (x)χ−j′(y)

∫
R
ei(y−x)ξ/hχ+

k (ξ)χ+
k′(ξ) dξ.

We may assume that |j − j′| > 2, then |x − y| ≥ 1
10
|j − j′| on suppK. The function

χ+
k χ

+
k′ is supported inside an interval of size 2 and satisfies the derivative bounds (2.64).

Integrating by parts N times in ξ, we get

sup
x,y
|K(x, y)| ≤ CNh

−1|j − j′|−N .

Since K(x, y) is supported in a square of size 2, this implies (2.68). �

We now give a version of Proposition 2.9 with relaxed assumptions regarding the
scales on which Ω± are porous:

Proposition 2.10. Fix numbers γ±j , j = 0, 1, such that

0 ≤ γ±1 < γ±0 ≤ 1, γ+
1 + γ−1 < 1 < γ+

0 + γ−0

and define

γ := min(γ+
0 , 1− γ−1 )−max(γ+

1 , 1− γ−0 ) =
∣∣[γ+

1 , γ
+
0 ] ∩ [1− γ−0 , 1− γ−1 ]

∣∣ > 0. (2.73)

Then for each ν > 0 there exists β = β(ν) > 0 and C = C(ν) > 0 such that the
estimate

‖ 1lΩ− Fh 1lΩ+ ‖L2(R)→L2(R) ≤ Chγβ (2.74)

holds for all 0 < h < 1 and all Ω± ⊂ R which are ν-porous on scales hγ
±
0 to hγ

±
1 .

Remark. The formula (2.73) is related to the fact that the proof of the fractal un-
certainty principle [BD18, Theorem 4] proceeds by induction on scale and uses the
structure of Ω− on scale hµ together with the structure of Ω+ on the dual scale h1−µ.
In fact, it is likely that the proof in [BD18] can be adapted to yield Proposition 2.10
directly.

Proof. Define
γ0 := min(γ+

0 , 1− γ−1 ), γ1 := max(γ+
1 , 1− γ−0 ),

note that γ0− γ1 = γ > 0. The set Ω+ is ν-porous on scales hγ0 to hγ1 , and the set Ω−
is ν-porous on scales h1−γ1 to h1−γ0 .

Put
Ω̂+ := h−γ1Ω+, Ω̂− := hγ0−1Ω−, h̃ := hγ.

Then the sets Ω̂± are ν-porous on scales h̃ to 1. Consider the unitary rescaling operators

T± : L2(R)→ L2(R), T+f(x) = hγ1/2f(hγ1x), T−f(x) = h(1−γ0)/2f(h1−γ0x).

We have
T± 1lΩ± = 1lΩ̂± T±, T−FhT−1

+ = Fh̃.
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Therefore the left-hand side of (2.74) is equal to

‖T− 1lΩ− Fh 1lΩ+ T
−1
+ ‖L2(R)→L2(R) = ‖ 1lΩ̂− Fh̃ 1lΩ̂+

‖L2(R)→L2(R). (2.75)

The right-hand side of (2.75) is bounded by Ch̃β = Chγβ by Proposition 2.9. �

We conclude this section with two simple lemmas used in §§4.6.2–4.6.3 below:

Lemma 2.11. Let ν ∈ (0, 1), 0 < α0 ≤ α1, and 0 < α2 ≤ ν
3
α1. Assume that Ω ⊂ R is

ν-porous on scales α0 to α1. Then the neighborhood Ω(α2) = Ω + [−α2, α2] is ν
3
-porous

on scales max(α0,
3
ν
α2) to α1.

Proof. Take an interval I ⊂ R such that max(α0,
3
ν
α2) ≤ |I| ≤ α1. Since Ω is ν-

porous on scales α0 to α1, there exists a subinterval J ⊂ I with |J | = ν|I| ≥ 3α2 and
J ∩Ω = ∅. Let J ′ ⊂ J be the subinterval with the same center and |J ′| = 1

3
|J | = ν

3
|I|,

then J ′(α2) ⊂ J and thus J ′ ∩ Ω(α2) = ∅. �

Lemma 2.12. Let ψ : R→ R be a C2 diffeomorphism such that for some C1 ≥ 1

max(sup |ψ′|, sup |ψ′|−1, sup |ψ′′|) ≤ C1. (2.76)

Let also ν ∈ (0, 1), 0 < α0 ≤ α1, and α0 ≤ min(C−2
1 α1,

1
2
C−4

1 ). Assume that Ω ⊂ R
is ν-porous on scales α0 to α1. Then the image ψ(Ω) is ν

2
-porous on scales C1α0

to min(C−1
1 α1,

1
2
C−3

1 ).

Proof. We have

sup
∣∣∂x log |ψ′(x)|

∣∣ = sup
∣∣∣ψ′′
ψ′

∣∣∣ ≤ C2
1 .

Therefore for each interval I ′ ⊂ R we have

sup
I′
|ψ′| ≤ eC

2
1 |I′| inf

I′
|ψ′|. (2.77)

Let I ⊂ R be an interval such that |I| ≤ 1
2
C−3

1 . Put I ′ := ψ−1(I), then |I ′| ≤ 1
2
C−2

1 ,
thus by (2.77)

|ψ(J ′)|
|J ′|

≥ |I|
2|I ′|

for all intervals J ′ ⊂ I ′. (2.78)

Now assume additionally that C1α0 ≤ |I| ≤ C−1
1 α1. Then α0 ≤ |I ′| ≤ α1, thus by

porosity of Ω there exists an interval

J ′ ⊂ I ′, |J ′| = ν|I ′|, J ′ ∩ Ω = ∅.

Put J := ψ(J ′) ⊂ I, then J ∩ ψ(Ω) = ∅ and we estimate by (2.78)

|J | ≥ |I| · |J
′|

2|I ′|
=
ν

2
|I|. �
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2.5. Dynamics and porosity. In this section we use the results of §2.1 to establish
porosity of certain sets in the stable/unstable direction (Lemma 2.15). This property
is used in §4.6 below in combination with the fractal uncertainty principle.

Recall from §2.1.1 that for each ρ ∈ S∗M the local stable/unstable manifolds
Ws(ρ),Wu(ρ) are C∞ submanifolds of S∗M tangent to Es, Eu (despite the fact that
Es(ρ), Eu(ρ) do not in general depend smoothly on ρ, see §2.1.2). We define the global
stable/unstable manifolds

Ŵs(ρ) :=
⋃
j≥0

ϕ−j
(
Ws(ϕj(ρ))

)
, Ŵu(ρ) :=

⋃
j≥0

ϕj
(
Wu(ϕ−j(ρ))

)
which are immersed one-dimensional C∞ submanifolds of S∗M tangent to Es(ρ), Eu(ρ),
see for instance [KH97, (17.4.1)] and [Dy18, §4.7.3].

We fix a Riemannian metric on S∗M . A proper parametrization of pieces of global
stable/unstable manifolds yields stable/unstable intervals as defined below:

Definition 2.13. Let L > 0. An unstable interval of length L is a C∞ map γ : I →
S∗M , where I ⊂ R is an interval of size L, such that for each s ∈ I the tangent vector
γ̇(s) ∈ Tγ(s)S

∗M is a unit length vector in Eu(γ(s)). A stable interval of length L is
defined similarly except we require γ̇(s) ∈ Es(γ(s)). In both cases we denote |γ| := L.

We sometimes identify a stable/unstable interval γ with its range γ(I) ⊂ S∗M . For
a set W ⊂ S∗M denote

γ−1(W) := {s ∈ I | γ(s) ∈ W}. (2.79)

If γ : I → S∗M is an unstable interval and t ∈ R, then the map ϕt ◦ γ : I → S∗M can
be reparametrized to yield another unstable interval, which we denote by ϕt(γ). Same
is true for stable intervals.

Recalling the definitions (2.6) of stable/unstable Jacobians Jst , Jut , we see that there
exists a constant C depending only on (M, g) and the choice of the metric on S∗M

such that for each unstable interval γ and all t ∈ R

C−1
(

inf
γ
Jut
)
|γ| ≤ |ϕt(γ)| ≤ C

(
sup
γ
Jut
)
|γ|. (2.80)

Similarly if γ is a stable interval then

C−1
(

inf
γ
Jst
)
|γ| ≤ |ϕt(γ)| ≤ C

(
sup
γ
Jst
)
|γ|. (2.81)

In particular by (2.10) we have

|ϕt(γ)| ≤ Ce−Λ0|t||γ| (2.82)

for all t ≥ 0 and stable intervals γ, and for all t ≤ 0 and unstable intervals γ. Therefore
each stable/unstable interval is contained in some global stable/unstable manifold.
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Since M is connected and ϕt is not a constant time suspension of an Anosov diffeo-
morphism (being a contact flow), each global stable/unstable manifold Ŵs(ρ), Ŵu(ρ) is
dense in S∗M , see [An67, p.29, Theorem 15]. A quantitative version of this statement
is given by

Lemma 2.14. Let U ⊂ S∗M be a nonempty open set. Then there exists LU > 0 such
that every unstable interval of length LU intersects U . Same is true for stable intervals.

Proof. We argue by contradiction, considering the case of unstable intervals; the case
of stable intervals is handled similarly. If the statement of the lemma fails, then there
exists a sequence of unstable intervals

γj : [−`j, `j]→ S∗M, `j →∞, γj([−`j, `j]) ∩ U = ∅.

Passing to a subsequence, we may assume that (γj(0), γ̇j(0)) converges to some point
(ρ, ξ) ∈ T (S∗M). Take the unstable interval γ : R → S∗M such that (γ(0), γ̇(0)) =

(ρ, ξ). Then γ(R) is the global unstable manifold Ŵu(ρ). We have γj(s)→ γ(s) locally
uniformly in s ∈ R. Therefore Ŵu(ρ) ∩ U = ∅, giving a contradiction with the fact
that Ŵu(ρ) is dense in S∗M . �

To state the main result of this section, Lemma 2.15, we introduce some notation
formally similar to the symbolic formalism in dynamical systems and motivated by §3.1
below (see also Remark 2 following Proposition 3.2). We fix finitely many open conic
sets

V1, . . . ,Vm ⊂ T ∗M \ 0 (2.83)
and assume that S∗M \ Vk has nonempty interior for each k. In our application in
Lemma 4.18 we will take m = 2 and use a slight fattening of the sets V1,V? constructed
in §3.3.1 below. The set V1 will be assumed to be “small”, as a consequence V? will
necessarily be “large”.

For words v = v0 . . . vn−1, w = w1 . . . wn where vj, wj ∈ {1, . . . ,m}, define the open
conic sets (similarly to (3.2) below)

V−v :=
n−1⋂
j=0

ϕ−j(Vvj), V+
w :=

n⋂
j=1

ϕj(Vwj). (2.84)

The following lemma shows the porosity of V−v in the unstable direction and of V+
w in

the stable direction, in the sense of Definition 2.8. See Figure 4.

Lemma 2.15. There exist ν > 0, C0 > 0 depending only on V1, . . . ,Vm such that

• for all words v = v0 . . . vn−1, sets W− ⊂ V−v ∩ S∗M , and unstable intervals
γ : I0 → S∗M , the set γ−1(W−) is ν-porous on scales C0(infW− J

u
n )−1 to 1;

• for all words w = w1 . . . wn, sets W+ ⊂ V+
w ∩ S∗M , and stable intervals γ :

I0 → S∗M , the set γ−1(W+) is ν-porous on scales C0(infW+ Js−n)−1 to 1.
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V−v V+
w

Figure 4. The sets V−v and V+
w with the flow direction removed. In this

figure and in Figures 6 and 8 we use numerical simulations for a per-
turbed two-dimensional cat map (which has similar properties to three-
dimensional Anosov flows studied here).

Here the sets γ−1(W±) ⊂ I0 ⊂ R are defined by (2.79).

Remarks. 1. In the situation where all the Vj are “small conic balls”, the sets V−v ∩
S∗M have the shapes of “deformed ellipses” aligned along a small piece of weak stable
manifold. Their width transversely to this manifold is bounded by C0J

u
n (ρ)−1, for

ρ any point in V−v ∩ S∗M , so γ−1(V−v ) will be contained in an interval of length ≤
C0J

u
n (ρ)−1. The Lemma shows that, in the general case where some Vj may be “not

small”, V−v ∩ S∗M may be a union of many such “deformed ellipses”, arranged in a
fractal (that is, porous) way along the unstable direction.

2. By (2.10) we see in particular that if γ is an unstable interval, then γ−1(V−v ) is
ν-porous on scales C0e

−Λ0n to 1. If γ is instead a stable interval, then γ−1(V+
w) is

ν-porous on scales C0e
−Λ0n to 1.

Proof. 1. We consider the case of unstable intervals, with stable intervals handled
similarly. Our proof is similar to [DJ18, Lemma 5.10]. Throughout the proof C denotes
constants depending only on V1, . . . ,Vm whose precise value might change from place
to place.

Fix nonempty open sets U1, . . . ,Um ⊂ S∗M such that Uk ∩ Vk = ∅; this is possible
since S∗M \ Vk have nonempty interior. Fix ε > 0 smaller than the distance between
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γI

γJ ϕ`

Vv`

Uv`

ϕ`(γI)

ϕ`(γJ)

>ε

Figure 5. An illustration of the proof of Lemma 2.15. The large lighter
shaded region is Vv` and the small darker shaded region is Uv` . The
marked point inside Uv` ∩ ϕ`(γJ) is ϕ`(γ(s)).

Uk and Vk for all k. Using Lemma 2.14, we fix L0 > 0 depending only on V1, . . . ,Vm
such that every unstable interval of length L0 intersects each of the sets U1, . . . ,Um.
2. We fix C0 > 0 large enough to be chosen later in Step 4 of the proof. Take
an arbitrary unstable interval γ : I0 → S∗M and extend it to an unstable interval
γ : R → S∗M . Let I ⊂ R be an interval such that C0(infW− J

u
n )−1 ≤ |I| ≤ 1 and

γI := γ|I be the corresponding unstable interval, note that |γI | = |I|. We may assume
that γI ∩ W− 6= ∅ as otherwise γ−1(W−) ∩ I = ∅ and we could take any J ⊂ I in
Definition 2.8.

Let ϕj(γI), j ≥ 0, be the images of γI under ϕj. By (2.82) we have |ϕj(γI)| ≥
C−1eΛ0j|I|. Therefore there exists an integer ` ≥ 0 such that |ϕ`(γI)| ≥ L0. Take the
minimal integer ` ≥ 0 with this property, then there exists C > L0 such that

L0 ≤ |ϕ`(γI)| ≤ C. (2.85)

3. The map ϕ` has a uniform expansion rate on γI , namely

sup
γI

Ju` ≤ C inf
γI
Ju` . (2.86)

Indeed, by (2.82) and (2.85) there exists t0 > 0 depending only on the constants
in (2.85) (which in turn depend only on V1, . . . ,Vm) such that ϕ`−t0(γI) = ϕ−t0(ϕ`(γI))

is contained in a local unstable manifold, more precisely

ϕ`−t0(ρ̃) ∈ Wu(ϕ`−t0(ρ)) for all ρ, ρ̃ ∈ γI . (2.87)

If ` ≤ t0 then (2.86) is immediate since C−1 ≤ Ju` ≤ C. Assume now that ` > t0. Then
we write for all ρ ∈ γI

Ju` (ρ) =
Jut0(ϕ`−t0(ρ))

Jut0−`(ϕ`−t0(ρ))
.

By part (4) of Lemma 2.1 and (2.87) we have Jut0−`(ϕ`−t0(ρ)) ≤ CJut0−`(ϕ`−t0(ρ̃)) for
all ρ, ρ̃ ∈ γI . Together with the bound C−1 ≤ Jut0 ≤ C this proves (2.86).
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4. By (2.80), (2.85), and (2.86) we relate the expansion rate of ϕ` on γI to the length |I|:

C−1
1 ≤ |I| · inf

γI
Ju` ≤ |I| · sup

γI

Ju` ≤ C1 (2.88)

where C1 is some constant depending only on V1, . . . ,Vm. Fix C0 := C1 + 1, then the
integer ` satisfies

0 ≤ ` ≤ n− 1,

where we recall that n = |v|. Indeed, assume that ` ≥ n instead. Then Ju` (ρ) ≥ Jun (ρ)

for all ρ by (2.10). Since γI ∩W− 6= ∅ and from our initial assumption on |I|, we have

C0 ≤ |I| · inf
W−

Jun ≤ |I| · inf
W−

Ju` ≤ |I| · sup
γI

Ju` ≤ C1 (2.89)

giving a contradiction with our choice of C0.

5. We finally construct an interval J ⊂ I such that J ∩ γ−1(W−) = ∅. By (2.85) and
the choice of L0, the unstable interval ϕ`(γI) intersects Uv` . That is, there exists s ∈ I
such that ϕ`(γ(s)) ∈ Uv` . Choose an interval J ⊂ I such that s ∈ J and |ϕ`(γJ)| = ε

where γJ := γ|J is the corresponding unstable interval. Since the distance between
Uv` and Vv` is larger than ε, the unstable interval ϕ`(γJ) does not intersect Vv` . (See
Figure 5.) By (2.84), the unstable interval γJ does not intersect V−v ⊃ W−, so that
J ∩ γ−1(W−) = ∅ as needed.

By (2.80) and (2.88) we obtain a lower bound on the size of J :

|J | ≥ |ϕ`(γJ)|
C supγI J

u
`

≥ ε

C2
|I|.

Thus γ−1(W−) is ν-porous on scales C0(infW− J
u
n )−1 to 1 with ν := ε/C2 > 0. �

We finally discuss the dependence of the constant ν on the sets V1, . . . ,Vm in
Lemma 2.15, used in Theorem 4. We use the following

Definition 2.16. Let U ⊂ S∗M be a set and 0 < L1 ≤ 1 ≤ L0. We say that U is
(L0, L1)-dense in the unstable direction if for each unstable interval γ : I → S∗M

of length L0 there exists a subinterval J ⊂ I of length L1 such that γ(J) ⊂ U◦, where
U◦ denotes the interior of U . We similarly define the notion of being dense in the
stable direction.

Lemma 2.14 implies (similarly to step 5 in the proof of Lemma 2.15) that if U has
nonempty interior then it is (L0, L1)-dense in both stable and unstable directions for
some L0, L1. Following the proof of Lemma 2.15 (using density in the stable/unstable
directions in step 5), we obtain

Lemma 2.17. In the notation of Lemma 2.15, assume that each of the complements
S∗M \V1, . . . , S

∗M \Vm is (L0, L1)-dense in the unstable direction. Then for all words
v = v0 . . . vn−1, sets W− ⊂ V−v ∩ S∗M , and unstable intervals γ : I0 → S∗M , the set
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γ−1(W−) is ν-porous on scales C0(infW− J
u
n )−1 to 1, where ν, C0 > 0 depend only on

(M, g), L0, L1. A similar statement holds for stable intervals under the assumption of
(L0, L1)-density in the stable direction.

We also record here a useful property of (L0, L1)-dense sets:

Lemma 2.18. Assume that U ⊂ S∗M is (L0, L1)-dense in the unstable direction. Then
there exists U ] ⊂ S∗M which is (L0, L1)-dense in the unstable direction and such that
the closure of U ] is contained in the interior of U . The same is true for (L0, L1)-dense
sets in the stable direction.

Proof. Without loss of generality we assume that U is open. We exhaust U by open
subsets

U =
⋃
j≥0

Uj, Uj ⊂ Uj+1, Uj ⊂ U .

For instance, we may take Uj to be the set of all points ρ ∈ S∗M such that the closed
ball B(ρ, 1

j
) is contained in U .

We argue by contradiction, assuming that neither of the sets Uj is (L0, L1)-dense in
the unstable direction. Then there exists a sequence of unstable intervals γj : [0, L0]→
S∗M such that for each j and each subinterval J ⊂ [0, L0] of length L1, we have
γj(J) 6⊂ Uj. Passing to a subsequence, we may assume that γj converges uniformly to
some unstable interval γ : [0, L0] → S∗M . Since U is (L0, L1)-dense in the unstable
direction, there exists a subinterval J ⊂ I of length L1 such that γ(J) ⊂ U . Then for
j large enough, γj(J) ⊂ Uj, giving a contradiction. �

3. Proofs of the theorems

In this section we prove Theorems 2 and 6. We follow the strategy used in [DJ18,
Ji20] in the case of constant curvature (which in turn was partially inspired by [An08]).
The main difference is the proof of the key fractal uncertainty estimate (Proposi-
tion 3.2).

In §§3.1–3.2 we provide notation and statements used in the proofs of both theorems.
The proof of Theorem 2 is presented in §3.3. In §3.4 we prove Theorem 6, using some
parts of §3.3 as well.

3.1. Notation. We first introduce some notation used throughout the rest of the
paper. Let M be a compact connected Anosov surface, see §2.1. Fix a Riemannian
metric on S∗M inducing a distance function d(•, •). We assume that:

(1) we are given h-independent functions a1, a? ∈ C∞c (T ∗M \ 0) with2

supp a1, supp a? ⊂ {1
4
< |ξ|g < 4}, a1, a? ≥ 0, a1 + a? ≤ 1;

2The choice of 1, ? for indices will become clear later in §4.2 where we write a? = a2 + a3 + . . .
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(2) supp a1 ⊂ V1, supp a? ⊂ V? where V1,V? ⊂ T ∗M \ 0 are some conic open sets;
(3) the complements T ∗M \ V1, T

∗M \ V? have nonempty interiors;
(4) the diameter of V1∩S∗M with respect to d(•, •) is smaller than some constant

ε0 > 0 to be fixed later; as a consequence, V? ∩ S∗M will cover a large part of
S∗M

(5) we are given A1, A? ∈ Ψ−∞h (M) with σh(Aw) = aw, WFh(Aw) ⊂ Vw ∩ {1
4
<

|ξ|g < 4}, w ∈ {1, ?}.

The specific functions a1, a? used in the proof of Theorem 2 are fixed in §3.3.1 below.
Roughly speaking, a1, a? will form a partition of unity on S∗M , a1 will be supported
on the region {a 6= 0}, where a is the symbol featured in Theorem 2, and a? will be
supported near the complement of this region. The proof of Theorem 6 uses a damped
version of these functions, see §3.4.2. The fact that the complements T ∗M\V1, T

∗M\V?
have nonempty interiors is used in §4.6.2.

We next introduce dynamically refined symbols corresponding to words, using the
geodesic flow ϕt defined in (2.2). Define

A? := {1, ?}, A •
? := {w = w0 . . . wn−1 | n ≥ 0, w0, . . . , wn−1 ∈ A?}.

We call elements of A •
? words. Denote by A n

? ⊂ A •
? the set of words of length n. We

write |v| := n for v ∈ A n
? .

For each word v = v0 . . . vn−1, resp. w = w1 . . . wn, define the functions

a−v :=
n−1∏
j=0

(avj ◦ ϕj), a+
w :=

n∏
j=1

(awj ◦ ϕ−j). (3.1)

Note the different indexing for v and w which makes sure that the product a−v a+
w has

only one factor of the form aw ◦ ϕ0, w ∈ {1, ?}. The supports of a−v , a+
w are contained

in the open conic sets

V−v :=
n−1⋂
j=0

ϕ−j(Vvj), V+
w :=

n⋂
j=1

ϕj(Vwj). (3.2)

The operators corresponding to a−v , a+
w are defined using the notationA(t) := U(−t)AU(t)

from (2.35):

A−v := Avn−1(n− 1)Avn−2(n− 2) · · ·Av1(1)Av0(0),

A+
w := Aw1(−1)Aw2(−2) · · ·Awn−1(−(n− 1))Awn(−n).

(3.3)

If n is bounded independently of h then Egorov’s Theorem (2.36) implies

A−v = Oph(a
−
v ) +O(h)L2→L2 , A+

w = Oph(a
+
w) +O(h)L2→L2 . (3.4)

This is a form of classical/quantum correspondence.
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For future use we record the following concatenation formulas : if v = v1 . . . vk,
w = w1 . . . w`, then

A+
vw = U(k)A−vA

+
wU(−k), A−vw = U(−k)A−wA

+
vU(k) (3.5)

where the reverse word v is defined by v := vk . . . v1. Similarly we have

V+
vw = ϕk(V−v ∩ V+

w), V−vw = ϕ−k(V−w ∩ V+
v ), (3.6)

a+
vw = (a−v a

+
w) ◦ ϕ−k, a−vw = (a−wa

+
v ) ◦ ϕk. (3.7)

In the particular case w = ∅ we get the reversal formulas

A+
v = U(k)A−vU(−k), V+

v = ϕk(V−v ), a+
v = a−v ◦ ϕ−k. (3.8)

If E ⊂ A •
? is a finite set, then we define

a±E :=
∑
w∈E

a±w, A±E :=
∑
w∈E

A±w, (3.9)

and if F : A •
? → C is zero except at finitely many words, then we put

a±F :=
∑

w∈A •?

F (w)a±w, A±F :=
∑

w∈A •?

F (w)A±w. (3.10)

Note that if E ⊂ A n
? for some n, then 0 ≤ a±E ≤ 1.

In the remainder of §3 we will only use the operators A−w. (This is an arbitrary
choice – one could instead only use the operators A+

w.) To simplify notation, we
denote

aw := a−w, Aw := A−w,

and same for aE , AE , aF , AF .

3.2. Long propagation times and the key estimate. Similarly to [DJ18, Ji20]
our argument uses words of length that grows like log(1/h). More precisely, we define
the following integer propagation times:

N0 :=
⌈ log(1/h)

6Λ1

⌉
, N := (6Λ + 1)N0 >

log(1/h)

Λ0

(3.11)

where the ‘minimal/maximal expansion rates’ 0 < Λ0 ≤ Λ1 were defined in (2.10)
and Λ := dΛ1/Λ0e. We call N0 a short logarithmic time and N a long logarithmic
time. Note that if (M, g) had constant curvature −1 as in [DJ18] then we could take
Λ0 = Λ1 = 1 and N ≈ 7

6
log(1/h).
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3.2.1. Short logarithmic words. We first study words of length N0, for which a version
of the classical/quantum correspondence (3.4) still applies. We use the mildly exotic
symbol classes introduced in §2.2.1.

Lemma 3.1. For each w ∈ A N0
? , we have

aw ∈ Scomp
1/6+ (T ∗M), Aw = Oph(aw) +O(h2/3−)L2→L2 . (3.12)

Moreover, for each F : A N0
? → C with sup |F | ≤ 1, we have (using the notation (3.10))

aF ∈ Scomp
1/6+ (T ∗M), AF = Oph(aF ) +O(h1/2−)L2→L2 (3.13)

with the constant in the remainder independent of the function F .

Remarks. 1. The choice of index δ := 1
6
(which corresponds to the factor 1

6
in

the definition of N0) was guided by the proof of Proposition 3.2, yet it is somewhat
arbitrary — in practice one could probably replace 1

6
by any δ ∈ (0, 1

2
).

2. Later we will prove much finer statements regarding the propagation up to the local
Ehrenfest time — see §4.3.1-4.3.2. It is possible to avoid the precise derivative bounds
for aF by increasing the value of δ, as in [DJ18, Lemma 4.4], however the proof of these
bounds below can seen as a basic case of the more complicated bounds of §5.3.

Proof. We write w = w0 . . . wN0−1. By Lemma 2.5 with δ := 1
6
we have uniformly in

j = 0, . . . , N0 − 1

awj ◦ ϕj ∈ S
comp
1/6+ (T ∗M), Awj(j) = Oph(awj ◦ ϕj) +O(h2/3−)L2→L2 . (3.14)

Now (3.12) follows from Lemma 2.6 with δ := 1
6

+ ε and ε > 0 arbitrarily small.

To establish bounds on aF , we first note that sup |aF | ≤ 1 since sup |F | ≤ 1 and
|a1| + |a?| = a1 + a? ≤ 1. To prove bounds on derivatives, take arbitrary vector fields
X1, . . . , Xk on T ∗M . For a set I ⊂ {1, . . . , k} define the differential operator

XI := Xi1 · · ·Xir where I = {i1, . . . , ir}, i1 < · · · < ir.

By the product rule we have for all w ∈ A N0
?

X1 . . . Xkaw =
∑
L∈L

N0−1∏
j=0

XI(L,j)(awj ◦ ϕj).

where the sum is over the set of sequences (with each `i encoding which of the factors
of the product defining aw the vector field Xi was applied to)

L :=
{
L = (`1, . . . , `k) | `1, . . . , `k ∈ {0, . . . , N0 − 1}

}
and for L ∈ L and j ∈ {0, . . . , N0 − 1} we put

I(L, j) :=
{
i ∈ {1, . . . , k} | `i = j

}
.
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It follows that (with w summed over A N0
? )

|X1 . . . XkaF | ≤
∑
L∈L

∑
w

N0−1∏
j=0

|XI(L,j)(awj ◦ ϕj)| =
∑
L∈L

N0−1∏
j=0

N (L, j)

where N (L, j) :=
∑

w∈{1,?}

|XI(L,j)(aw ◦ ϕj)|.

Fix arbitrary ε > 0. By (3.14) and since |a1| + |a?| ≤ 1 we have for some constant C
depending only on X1, . . . , Xk, ε

N (L, j) ≤ 1, if I(L, j) = ∅;

N (L, j) ≤ Ch−(1/6+ε)#(I(L,j)), if I(L, j) 6= ∅.

For each L ∈ L , we have
∑N0−1

j=0 #(I(L, j)) = k. Moreover, the set L has Nk
0 =

O(h0−) elements. It follows that

sup |X1 . . . XkaF | ≤ Ch−(1/6+2ε)k

which implies that aF ∈ Scomp
1/6+ (T ∗M \ 0).

Finally, to show that AF = Oph(aF ) +O(h1/2−)L2→L2 it suffices to sum the second
parts of (3.12) over w with coefficients F (w) and use the counting bound #(A N0

? ) =

2N0 = O(h−1/6) which holds since Λ1 ≥ 1. �

Lemma 3.1 together with (2.32) give the norm bound

‖AF‖L2→L2 ≤ 1 +O(h1/3−) for all F : A N0
? → C, sup |F | ≤ 1 (3.15)

where the constant in the remainder is independent of F . This bound in particular
applies to operators of the form Aw, w ∈ A N0

? , and more generally of the form AE
where E ⊂ A N0

? .

3.2.2. Long logarithmic words. We now study operators associated to words of lengthN .
The following key estimate is proved in §4 below using the fractal uncertainty principle
and the fact that the complements T ∗M \ V1, T

∗M \ V? have nonempty interior. It
implies that each operator Aw, where w ∈ A N

? , has norm decaying with h.

Proposition 3.2. Let the assumptions (1)–(5) of §3.1 hold and ε0 be small enough
depending only on M . Then there exists β > 0 depending only on V1,V? and there
exists C > 0 depending only on A1, A? such that for all w ∈ A N

?

‖Aw‖L2→L2 ≤ Chβ. (3.16)

Remarks. 1. We note that N is considerably larger than twice the maximal Ehrenfest
time log(1/h)

Λ0
, that is for all ρ ∈ S∗M the norm dϕN(ρ) is much larger than h−1.

Therefore the classical/quantum correspondence (3.4) no longer applies to the operator
Aw, w ∈ A N

? . In fact the norm bound (3.16) contradicts this correspondence: if Aw
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were a quantization of aw, then we would expect the norm ‖Aw‖ to be close to sup |aw|,
however in general we could have sup |aw| = 1 while (3.16) implies that ‖Aw‖ is small.

2. In the constant curvature case a version of Proposition 3.2 is proved in [DJ18,
Proposition 3.5]. We remark that [DJ18] considered words of length ≈ 2 log(1/h),
while here we study words of shorter length N ≈ 7

6
log(1/h). The factor 7

6
was chosen

for convenience in the proof of Proposition 3.2; see §4.1 below and in particular (4.6),
(4.11). We could probably have replaced this factor by any number in the interval
(1, 3

2
); yet we did not try to optimize the estimate in the proposition by varying this

factor.

3. Proposition 3.2 is formally similar to [AN07a, Theorem 2.7] and [An08, Theo-
rem 1.3.3], as all these statements imply norm decay for operators corresponding to
words of long logarithmic length. However [AN07a, An08] used a fine partition of
S∗M , for which each symbol aw in a thin neighbourhood of a single stable leaf (see §4.2
below). On the contrary, the partition (3.19) we use here is not fine, in fact supp a?
contains all of S∗M except a small ball, and the supports of operators aw typically have
a complicated fractal structure. As a result, the method of proof of Proposition 3.2 is
very different from those in [AN07a, An08], it relies on the fractal uncertainty principle,
which takes advantage of the “fractality” of supp aw. A common point with the proofs
in [AN07a], is that we will only use words of “moderately long” logarithmic length (e.g.
in constant curvature words of length ∼ 7

6
log(1/h)), instead of “very long” logarithmic

length as in [An08].

4. Following the proof of Proposition 3.2 in §4 and using the remarks after Lem-
mas 4.16–4.17, we obtain the following statement: if the complements S∗M \V1, S

∗M \
V? are (L0, L1)-dense in both unstable and stable directions (in the sense of Defini-
tion 2.16) then Proposition 3.2 holds for some β depending only on (M, g), L0, L1.

3.3. Proof of Theorem 2. We now prove Theorem 2, following the strategy of [DJ18,
§§3,4].

3.3.1. Construction of the partition. We first construct the functions a1, a? and the
operators A1, A? satisfying the assumptions of §3.1 and used in the proof of Theorem 2.

In addition to A1, A? we use an operator A0 which cuts away from the cosphere
bundle S∗M . More precisely we put

A0 := ψ0(−h2∆) where ψ0 ∈ C∞(R; [0, 1]) satisfies

suppψ0 ∩ [1
4
, 4] = ∅, supp(1− ψ0) ⊂ ( 1

16
, 16).

(3.17)

By the functional calculus (2.33) applied to 1− ψ0 we see that

A0 ∈ Ψ0
h(M), σh(A0) = a0 := ψ0(|ξ|2g), WFh(I − A0) ⊂ {1

4
< |ξ|g < 4}. (3.18)
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The functions a1, a? and the operators A1, A? are constructed in the following lemma.
Here we let a be the function in the statement of Theorem 2 and ε0 > 0 be small
enough so that Proposition 3.2 applies.

Lemma 3.3. Let a ∈ C∞(T ∗M) satisfy a|S∗M 6≡ 0, and fix ε0 > 0. Then there exist
a1, a?, A1, A? such that conditions (1)–(5) of §3.1 hold and moreover

(6) A0, A1, A? form a pseudodifferential partition of unity, namely I = A0+A1+A?.
This in particular implies that 1 = a0 + a1 + a?;

(7) if V1 ⊂ T ∗M \ 0 is the open conic set containing supp a1 introduced in §3.1,
then V1 ∩ S∗M ⊂ {a 6= 0}.

Proof. We first choose a nonempty open conic set V1 ⊂ T ∗M \0 such that V1∩S∗M ⊂
{a 6= 0}, the diameter of V1 ∩ S∗M is less than ε0, and the complement T ∗M \ V1 has
nonempty interior. For instance, we can let V1 ∩ S∗M be a small ball centered around
a point in {a 6= 0} ∩ S∗M . We next choose another open conic set V? ⊂ T ∗M \ 0 such
that T ∗M \ V? has nonempty interior and

T ∗M \ 0 = V1 ∪ V?. (3.19)

By (3.18) we may write

I − A0 = Oph(b) +R, R = O(h∞)Ψ−∞

where the h-dependent symbol b ∈ S−∞h (T ∗M) satisfies for some compact h-independent
set K

supp b ⊂ K ⊂ {1
4
< |ξ|g < 4}, b = 1− a0 +O(h).

By (3.19) we see that K ⊂ Ṽ1 ∪ Ṽ? where Ṽw := Vw ∩ {1
4
< |ξ|g < 4}. Take an

h-independent partition of unity

χ1 ∈ C∞c (Ṽ1; [0, 1]), χ? ∈ C∞c (Ṽ?; [0, 1]), χ1 + χ? ≡ 1 on K

and define
A1 := Oph(χ1b) +R, A? := Oph(χ?b).

Then the conditions (1)–(7) hold, where the principal symbols a1, a? are given by
a1 = χ1(1− a0), a? = χ?(1− a0). �

We now establish two corollaries of properties (6)–(7) in Lemma 3.3. First of all,
since A1 + A? = I − A0 commutes with U(t), we see that (using the notation (3.9))

AA n
?

= (A1 + A?)
n = (I − A0)n for all n ∈ N. (3.20)

The proof of [DJ18, Lemma 3.1] then implies that for all n ∈ N and u ∈ H2(M)

‖u− AA n
?
u‖L2 ≤ C‖(−h2∆− I)u‖L2 (3.21)

where C is a constant independent of n, h. In particular, if (−h2∆ − I)u = 0 then
u = AA n

?
u.
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Secondly, since supp a1 ∩ S∗M ⊂ {a 6= 0}, the elliptic estimate [DJ18, Lemma 4.1]
implies that for all u ∈ H2(M)

‖A1u‖L2 ≤ C‖Oph(a)u‖L2 + C‖(−h2∆− I)u‖L2 + Ch‖u‖L2 . (3.22)

In particular, A1u is controlled, by which we mean that it is bounded in terms of the
right-hand side of (1.2) and a remainder which goes to 0 as h→ 0. Later in Lemma 3.6
we extend (3.22) to the propagated operators A1(t).

We remark that if we additionally know that supp a1∩S∗M ⊂ {|a| ≥ 1} then we may
take the first constant C on the right-hand side of (3.22) to be equal to 2 (or in fact,
any fixed number larger than 1). This follows from the proof of [DJ18, Lemma 4.1]
together with the norm bound (2.32).

The rest of the proof consists of writing u = AXu + AYu (microlocally near S∗M ,
see (3.34)), with the operators AX , AY defined in §3.3.3 below, such that:

• AYu is controlled (the proof of this uses classical/quantum correspondence,
Lemma 3.1), and
• AXu is small (the proof of this uses the smallness of the norm ‖AX‖L2→L2 which
follows from the key estimate, Lemma 3.2).

3.3.2. Controlled short logarithmic words. We now define the set of controlled words
of length N0 (see (3.11)). Following [DJ18, §3.2] we define the density function

F : A N0
? → [0, 1], F (w0 . . . wN0−1) =

#{j ∈ {0, . . . , N0 − 1} | wj = 1}
N0

. (3.23)

Fix small α ∈ (0, 1
2
) to be chosen in (3.37) below, and define the controlled, resp.

uncontrolled words in A N0
? :

Z := {w ∈ A N0
? | F (w) ≥ α}, Z{ = {w ∈ A N0

? | F (w) < α}. (3.24)

Define the operator AZ by (3.9). Then AZu is estimated by the following

Lemma 3.4. There exists a constant C > 0 independent of α or h, such that for all
α ∈ (0, 1

2
), h ∈ (0, 1], and u ∈ H2(M) we have

‖AZu‖L2 ≤ C

α
‖Oph(a)u‖L2 +

C log(1/h)

αh
‖(−h2∆− I)u‖L2 +O(h1/4−)‖u‖L2 (3.25)

where the constant in O(•) depends on α but not on h, u.

To prove Lemma 3.4 we use the following almost monotonicity property:

Lemma 3.5. Assume that the functions F1, F2 : A N0
? → C satisfy

|F1(w)| ≤ F2(w) ≤ 1 for all w ∈ A N0
? .

Then for all u ∈ L2(M) we have (using the notation (3.10))

‖AF1u‖L2 ≤ ‖AF2u‖L2 + Ch1/4−‖u‖L2 (3.26)
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where the constant C is independent of F1, F2, h, u.

Proof. We have

‖AF2u‖2 − ‖AF1u‖2 = 〈Bu, u〉 where B := A∗F2
AF2 − A∗F1

AF1 .

By Lemma 3.1 the operator B is pseudodifferential:

B = Oph(b) +O(h1/2−)L2→L2 where b := |aF2 |2 − |aF1 |2 ∈ S
comp
1/6+ (T ∗M).

From the positivity of the symbols aw, we deduce that∣∣∣∑
w

F1(w)aw

∣∣∣ ≤∑
w

|F1(w)|aw ≤
∑
w

F2(w)aw,

or in short |aF1| ≤ aF2 , which implies that b ≥ 0. By the Gårding inequality (2.31) we
have for all ε > 0

〈Bu, u〉 ≥ −Cεh1/2−ε‖u‖2
L2

which gives ‖AF1u‖2
L2 ≤ ‖AF2u‖2

L2 + Cεh
1/2−ε‖u‖2

L2 , implying (3.26). �

We also use the following control bound on A1(t)u which is obtained from (3.22)
using that ‖U(t)u − e−it/hu‖L2 ≤ C |t|

h
‖(−h2∆ − I)u‖L2 (see [DJ18, Lemma 4.3] for

details):

Lemma 3.6. For all t ∈ R and u ∈ H2(M), we have

‖A1(t)u‖L2 ≤ C‖Oph(a)u‖L2 +
C〈t〉
h
‖(−h2∆− I)u‖L2 + Ch‖u‖L2 (3.27)

where 〈t〉 :=
√

1 + t2 and the constant C is independent of t and h.

Remark. Using the remark after (3.22) and the proof of [DJ18, Lemma 4.3], we see
that under the condition supp a1 ∩ S∗M ⊂ {|a| ≥ 1} we may take the first constant
on the right-hand side of (3.27) to be equal to 2 (or in fact, any fixed number larger
than 1).

We are now ready to finish

Proof of Lemma 3.4. By the definition (3.24) of the set Z, the indicator function 1Z
satisfies 0 ≤ α1Z(w) ≤ F (w) ≤ 1 for all w ∈ A N0

? . Thus by Lemma 3.5

α‖AZu‖L2 ≤ ‖AFu‖L2 +O(h1/4−)‖u‖L2 . (3.28)

On the other hand, (3.23) together with (3.20) gives the following formula for AF :

AF =
1

N0

N0−1∑
j=0

∑
w∈A

N0
? ,wj=1

Aw =
1

N0

N0−1∑
j=0

(A1 + A?)
N0−1−jA1(j)(A1 + A?)

j.



CONTROL OF EIGENFUNCTIONS IN VARIABLE CURVATURE 47

Recall that ‖A1 + A?‖L2→L2 ≤ 1 by Lemma 3.3. It follows that

‖AFu‖L2 ≤ max
0≤j<N0

‖A1(j)(A1 + A?)
ju‖L2 .

Since ‖A1(j)‖L2→L2 = ‖A1‖L2→L2 ≤ C and (A1 +A?)
ju−u can be estimated by (3.21),

we get
‖AFu‖L2 ≤ max

0≤j≤N0

‖A1(j)u‖L2 + C‖(−h2∆− I)u‖L2 .

Estimating A1(j)u by Lemma 3.6 and using that N0 = O(log(1/h)), we get

‖AFu‖L2 ≤ C‖Oph(a)u‖L2 +
C log(1/h)

h
‖(−h2∆− I)u‖L2 + Ch‖u‖L2 . (3.29)

Combining (3.28) and (3.29), we obtain (3.25). �

3.3.3. Controlled long logarithmic words. The proof of Lemma 3.4 used the monotonic-
ity property, Lemma 3.5, which in turn relied on classical/quantum correspondence.
Thus it only applied to words of short logarithmic length N0. On the other hand,
Lemma 3.2 only applies to words of long logarithmic length N = (6Λ + 1)N0. To
bridge the gap between the two, we define the sets of uncontrolled, resp. controlled
words of length N as follows:

A N
? = X t Y ,

X := {w(1) . . .w(6Λ+1) | w(`) ∈ Z{ for all `},

Y := {w(1) . . .w(6Λ+1) | there exists ` such that w(`) ∈ Z}

(3.30)

where Z ⊂ A N0
? is defined in (3.24) and we view words in A N

? as concatenations
w(1) . . .w(6Λ+1) with w(1), . . . ,w(6Λ+1) ∈ A N0

? .

Using previously established bound on controlled short logarithmic words, Lemma 3.4,
we now estimate the contribution of controlled long logarithmic words:

Proposition 3.7. For all u ∈ H2(M)

‖AYu‖L2 ≤ C

α
‖Oph(a)u‖L2 +

C log(1/h)

αh
‖(−h2∆− I)u‖L2 +O(h1/4−)‖u‖L2 (3.31)

where the constant C does not depend on α, h, u and the constant in O(•) depends on α
but not on h, u.

Proof. The set Y can naturally be split as follows:

Y =
6Λ+1⊔
`=1

Y`, Y` := {w(1) . . .w(6Λ+1) | w(`) ∈ Z, w(`+1), . . . ,w(6Λ+1) ∈ Z{}.

Accordingly, we may write (using (3.20))

AY =
6Λ+1∑
`=1

AY` , AY` = AZ{(6ΛN0) · · ·AZ{(`N0)AZ((`− 1)N0)(A1 + A?)
(`−1)N0 .
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We have ‖A1 + A?‖L2→L2 ≤ 1 by Lemma 3.3 and ‖AZ‖, ‖AZ{‖L2→L2 ≤ C by (3.15).
Moreover, u− (A1 + A?)

(`−1)N0u can be estimated by (3.21). It follows that for all `

‖AY`u‖L2 ≤ C‖AZ((`− 1)N0)u‖L2 + C‖(−h2∆− I)u‖L2 . (3.32)

We now estimate

‖AZ((`− 1)N0)u‖L2 ≤ ‖AZu‖L2 +
C log(1/h)

h
‖(−h2∆− I)u‖L2

≤ C

α
‖Oph(a)u‖L2 +

C log(1/h)

αh
‖(−h2∆− I)u‖L2 +O(h1/4−)‖u‖L2

(3.33)

where the first inequality follows similarly to (3.27) from [DJ18, Lemma 4.2] and
the bound N0 = O(log(1/h)), and the second inequality follows from Lemma 3.4.
Combining (3.32) and (3.33) we get the bound (3.31). �

Remarks. 1. In passing from ‖AY`u‖L2 to ‖AYu‖L2 we used the triangle inequality.
Consequently the constant C in (3.31) has a factor of 6Λ + 1 = N/N0. Thus it is
important in our argument that the ratio N/N0, where N0 is the time for which clas-
sical/quantum correspondence applies and N is the time for which fractal uncertainty
principle gives decay of ‖Aw‖, is bounded by an h-independent constant.

2. Following the proofs of Lemma 3.4 and Proposition 3.7 and using the remark after
Lemma 3.6, we see that under the condition supp a1 ∩ S∗M ⊂ {|a| ≥ 1} we may take
the first constant C on the right-hand side of (3.31) to be equal to 4(6Λ + 1). Here
the extra factor of 2 comes from taking C := 2 in (3.32); in fact, we could take that
factor to be any fixed number larger than 1.

3.3.4. Uncontrolled long words and end of the proof. We can now finish the proof of
Theorem 2. Take arbitrary u ∈ H2(M). We decompose

u = (u− AA N
?
u) + AYu+ AXu (3.34)

where AX , AY are defined using the notation (3.9) and the decomposition (3.30).

The first term can be estimated by (3.21) and the second term can be estimated by
Proposition 3.7, giving

‖u‖L2 ≤ C

α
‖Oph(a)u‖L2 +

C log(1/h)

αh
‖(−h2∆− I)u‖L2

+ ‖AXu‖L2 +O(h1/4−)‖u‖L2 .

(3.35)

To deal with the term AXu we apply the key estimate, Proposition 3.2, to each indi-
vidual Aw with w ∈ X and use the triangle inequality. For that need the following
counting lemma on the number of elements in X :

Lemma 3.8. There exists a constant C > 0 depending on α,Λ0,Λ1 but not on h, such
that

#(X ) ≤ Ch−(Λ−1
0 +2)α(1−logα). (3.36)
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Proof. By definition, elements of X are concatenations of 6Λ + 1 words in Z{, thus
#(X ) = #(Z{)6Λ+1. Since Z{ consists of words w ∈ A N0

? such that less than αN0

letters of w are equal to 1, we have

#(Z{) ≤
bαN0c∑
k=0

(
N0

k

)
.

Since α < 1/2, we have for k = 0, 1, . . . , bαN0c − 1(
N0

k

)
=

k + 1

N0 − k

(
N0

k + 1

)
≤ αN0

N0 − αN0

(
N0

k + 1

)
=

α

1− α

(
N0

k + 1

)
and thus (

N0

k

)
≤
(

α

1− α

)bαN0c−k ( N0

bαN0c

)
.

In particular,

#(Z{) ≤ 1− α
1− 2α

(
N0

bαN0c

)
.

Using Stirling’s formula, we have(
N0

bαN0c

)
=

N0!

bαN0c!(N0 − bαN0c)!
≤ C exp(−(α logα + (1− α) log(1− α))N0).

Using the elementary inequality

−(α logα + (1− α) log(1− α)) ≤ α(1− logα)

we see that
#(X ) = #(Z{)6Λ+1 ≤ Ch−(Λ−1

0 +2)α(1−logα). �

We are now ready to finish the proof of Theorem 2. Let β > 0 be the constant from
Proposition 3.2. Fix α > 0 small enough so that

(Λ−1
0 + 2)α(1− logα) ≤ β

2
. (3.37)

Combining Proposition 3.2 and Lemma 3.8 we get

‖AX‖L2→L2 ≤ #(X ) · Chβ ≤ Chβ/2

which (assuming without loss of generality that β < 1
2
) together with (3.35) implies

for some constant C depending only on a

‖u‖L2 ≤ C‖Oph(a)u‖L2 +
C log(1/h)

h
‖(−h2∆− I)u‖L2 + Chβ/2‖u‖L2 .

Taking h small enough, we can remove the last term on the right-hand side, giving
Theorem 2.

Remark. Using the remarks after Propositions 3.2 and 3.7 we obtain the following
statement: if supp a1∩S∗M ⊂ {|a| ≥ 1} and the complements S∗M \V1, S

∗M \V? are
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(L0, L1)-dense in both unstable and stable directions (in the sense of Definition 2.16)
then the first constant on the right-hand side of (1.2) depends only on (M, g), L0, L1.
In fact, we can take this constant to be

C :=
4(6Λ + 1)

α
(3.38)

where α satisfies (3.37) and thus depends on the fractal uncertainty exponent β. (The
factors 4 and 6 above can be improved but this does not improve the result signif-
icantly since the known bounds on β are very small.) In particular, as β → 0 the
constant C from (3.38) behaves like β−1 log(1/β) times a constant depending only on
the minimal/maximal expansion rates Λ0,Λ1.

This gives Theorem 4 as follows. Take an open set U ⊂ S∗M which is (L0, L1)-dense
in both unstable and stable directions and has diameter smaller than the constant ε0

from Proposition 3.2. Using Lemma 2.18, fix U ] compactly contained in U which is
also (L0, L1)-dense in both unstable and stable directions. Choose

a ∈ C∞c (T ∗M ; [0, 1]), supp a ∩ S∗M ⊂ U, supp(1− a) ∩ U ] = ∅.

We choose the sets V1,V? in the proof of Lemma 3.3 such that

U ] ⊂ V1 ∩ S∗M ⊂ {a = 1}, V? ∩ S∗M = S∗M \ U ].

Then supp a1 ∩ S∗M ⊂ {|a| ≥ 1} and the complement S∗M \ V? is (L0, L1)-dense in
both unstable and stable directions. Next, S∗M \ V1 contains the complement of a set
in S∗M diameter ε0, and thus is (1, 1

2
)-dense in both unstable and stable directions for

small enough ε0. Now if ujk is a sequence of Laplacian eigenfunctions converging to a
measure µ in the sense of (1.4) then by (1.2) we have the estimate

1 = ‖ujk‖L2 ≤ C‖Ophjk
(a)ujk‖L2

k→∞−−−→ C

∫
S∗M

|a|2 dµ ≤ Cµ(U)

where C is the constant from (3.38), which depends only on (M, g), L0, L1.

3.4. Proof of Theorem 6. We finally give the proof of Theorem 6, following the
strategy of [Ji20] and using some parts of the proof of Theorem 2.

3.4.1. Reduction to decay for a microlocal damped propagator. We first reduce The-
orem 6 to a decay statement for a damped propagator following [Ji20, §4]. Let
b ∈ C∞(M) be the damping function, with b ≥ 0 and b 6≡ 0. We replace h∂t by
−iz in the semiclassically rescaled damped wave operator h2(∂2

t − ∆ + 2b(x)∂t), to
obtain the following differential operator on M :

P(z) := −h2∆− 2izhb(x)− z2, z ∈ C. (3.39)

By a standard argument (see [Sc10, §3] or [Zw12, Theorem 5.10]) Theorem 6 follows
from the following high energy spectral gap:
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Proposition 3.9. There exist C0 > 0, γ0 > 0, and h0 > 0 such that

‖P(z)−1‖L2→L2 ≤ Ch−1+C0 min(0,Im z/h) log(1/h), 0 < h ≤ h0, |z − 1| ≤ γ0h. (3.40)

Recall the operator P = ψP (−h2∆) defined in (2.34). Fix a cutoff function

ψ1 ∈ C∞c ((0,∞); [0, 1]), suppψ1 ⊂ {ψP 6= 0}, ψ1 = 1 on [ 1
16
, 16].

Then

P(z) = P 2 − 2izhb(x)ψ1(−h2∆)− z2 +O(h∞) microlocally near S∗M.

We now write

P 2 − 2izhb(x)ψ1(−h2∆) = (P − ihA(z))2 +O(h∞) (3.41)

where A(z) ∈ Ψ−∞h (T ∗M) is some family of pseudodifferential operators entire in z

and satisfying σh(A(z)) = za with

a(x, ξ) :=
b(x)ψ1(|ξ|2g)
p(x, ξ)

. (3.42)

See [Ji20, §4.1] for the construction of A(z) (denoted by Q(z) there).

Define the microlocal damped propagator

Ũ(t) = Ũ(t; z) := exp
(
− it(P − ihA(z))

h

)
, t ≥ 0. (3.43)

We also take the following frequency cutoff operator:

Π := χ(−h2∆) where χ ∈ C∞c (R; [0, 1]), suppχ ⊂ [1
4
, 4], 1 /∈ supp(1− χ).

Following [Ji20, §4.2] we see that Proposition 3.9 (and thus Theorem 6) follows from
a decay statement on the propagator Ũ(t):

Proposition 3.10. There exists β1 > 0 depending only on M and b such that for all
h ∈ (0, 1], z ∈ C such that |z − 1| ≤ h, and N defined in (3.11) we have

‖Ũ(N ; z)Π‖L2(M)→L2(M) ≤ Chβ1 . (3.44)

In the rest of §3.4 we prove Proposition 3.10.

3.4.2. Damped partition of unity. Let A0 be given by (3.17) and a1, a?, A1, A? be con-
structed in Lemma 3.3, with the function a given by (3.42) and ε0 > 0 taken small
enough so that Proposition 3.2 applies. Define the damped operators

Ãw := U(−1)Ũ(1)Aw, w ∈ {1, ?}. (3.45)
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Here U(t) = exp(−itP/h) is the unitary propagator defined in (2.34) and Ũ(t) is
the damped propagator defined in (3.43). By [Ji20, (2.24)] we have Ãw ∈ Ψ−∞h (M),
WFh(Ãw) ⊂WFh(Aw), and

σh(Ãw) = ãw := aw exp

(
−
∫ 1

0

a ◦ ϕs ds
)
, w ∈ {1, ?}. (3.46)

Lemma 3.11. The operators Ã1, Ã? and the symbols ã1, ã? satisfy conditions (1)–(5)
in §3.1. Moreover, there exists a constant η > 0 such that

0 ≤ ã1 ≤ e−ηa1, 0 ≤ ã? ≤ a?. (3.47)

Proof. Since a ≥ 0, we have 0 ≤ ãw ≤ aw, and conditions (1)–(5) in §3.1 follow
immediately. It remains to show that ã1 ≤ e−ηa1. As a consequence of the homogeneity
of a in {1

4
≤ |ξ|g ≤ 4}, we see that condition (7) in Lemma 3.3 implies that

V1 ∩ {1
4
≤ |ξ|g ≤ 4} ⊂ {a > 0}.

Since supp a1 ⊂ V1 ∩ {1
4
< |ξ|g < 4}, there exists η > 0 such that∫ 1

0

a ◦ ϕs(x, ξ) ds ≥ η for all (x, ξ) ∈ supp a1.

This immediately implies that ã1 ≤ e−ηa1. �

Using Ã1, Ã?, a1, a?, we define Ãw, ÃE , ÃF , ãw, ãE , ãF by (3.3), (3.9), (3.10). (As
before, we use the notation Ãw := Ã−w etc.) We also consider the cutoff damped
propagators

Ũw := U(n)Ãw = Ũ(1)Awn−1Ũ(1)Awn−2 · · · Ũ(1)Aw0 , w = w0 . . . wn−1. (3.48)

We define the operators ŨE , ŨF using Ũw similarly to (3.9), (3.10).

Let the partition X t Y ⊂ A N
? be defined in (3.30), where we fix α > 0 in §3.4.4

below. We prove Proposition 3.10 by establishing decay of ŨX and ŨY .

3.4.3. Controlled words. To bound the norm of ŨY , we first use the inequalities (3.47)
to estimate ŨZ , where Z ⊂ A N0

? is defined in (3.24):

Lemma 3.12. We have

‖ŨZ‖L2→L2 ≤ hα1 +O(h1/3−) where α1 := αη
6Λ1

> 0. (3.49)

Proof. Since U(N0) is unitary, we have ‖ŨZ‖L2→L2 = ‖ÃZ‖L2→L2 . The symbol ãZ is
given by

ãZ =
∑
w∈Z

ãw =
∑
w∈Z

N0−1∏
j=0

(ãwj ◦ ϕj).
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By the definition (3.24), each w ∈ Z has at least αN0 letters equal to 1. Therefore
by (3.47), recalling the definition (3.11) of N0,

|ãZ | ≤ e−ηαN0

∑
w∈Z

N0−1∏
j=0

(awj ◦ ϕj) ≤ e−ηαN0

∑
w∈A

N0
?

N0−1∏
j=0

(awj ◦ ϕj)

= e−ηαN0

N0−1∏
j=0

(a1 + a?) ◦ ϕj ≤ hα1 .

By Lemma 3.1 (which still applies by Lemma 3.11) we have ãZ ∈ Scomp
1/6+ (T ∗M) and

ÃZ = Oph(ãZ) + O(h1/2−)L2→L2 . Then by (2.32) we have ‖ÃZ‖ ≤ hα1 + O(h1/3−),
finishing the proof. �

Armed with Lemma 3.12 we now estimate the norm of ŨY :

Proposition 3.13. With α1 > 0 defined in (3.49), we have

‖ŨY‖L2→L2 ≤ O(hα1) +O(h1/3−). (3.50)

Proof. From the definition (3.30) of Y we have

ŨY =
6Λ+1∑
`=1

Ũ6Λ+1−`
Z{ ŨZŨ

`−1

A
N0
?

.

By (3.15) we have
‖ŨZ{‖L2→L2 = ‖ÃZ{‖ ≤ 1 +O(h1/3−)

and same is true for Ũ
A
N0
?

. Using Lemma 3.12 and the triangle inequality we then
have

‖ŨY‖L2→L2 ≤ (6Λ + 1)hα1 +O(h1/3−),

finishing the proof. �

3.4.4. Uncontrolled words and end of the proof. We now finish the proof of Propo-
sition 3.10 and thus of Theorem 6. Similarly to [Ji20, §3.5], using the identities
ŨA N

?
= (Ũ(1)(I − A0))N and A0Π = 0 we have

Ũ(N)Π = ŨA N
?

Π +O(h1−)L2→L2 , ŨA N
?

= ŨX + ŨY . (3.51)

Let β > 0 be the constant in Proposition 3.2 for the operators Ãw, w ∈ A N
? . Choose

α > 0 satisfying (3.37). Using the triangle inequality, Proposition 3.2, and Lemma 3.8,
we have

‖ŨX‖L2→L2 = ‖ÃX‖L2→L2 = O(hβ/2). (3.52)

Combining (3.51), (3.52), and Proposition 3.13, we get Proposition 3.10 with

β1 := min(β
2
, α1,

1
4
) > 0.
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4. Decay for long words

In this section we prove the Proposition 3.2, relying on propagation results up to the
local Ehrenfest time (Propositions 4.2, 4.4) established in §5 below and on the fractal
uncertainty principle (Proposition 2.10).

Recall from (3.11) the short and long logarithmic propagation times N0 and N . Put

N1 := N −N0 = 6ΛN0 ≥
log(1/h)

Λ0

. (4.1)

We will prove the following equivalent version of Proposition 3.2 in terms of products of
two operators corresponding to propagation forward and backwards in time (see (3.3)
for the definitions of A−v , A+

w):

Proposition 4.1. Let the assumptions (1)–(5) of §3.1 hold and ε0 > 0 be small enough
depending only on (M, g). Then there exists β > 0 depending only on V1,V? and there
exists C > 0 depending only on A1, A? such that for all v ∈ A N0

? , w ∈ A N1
?

‖A−vA+
w‖L2(M)→L2(M) ≤ Chβ. (4.2)

Remark. The smallness of ε0 is used in several places in the proof, in particular at
the beginning of §4.2, in §4.3.3, in Lemma 4.13, in the beginning of §4.6.1, and in
Lemma 4.25. Roughly speaking, we need ε0 to be much smaller than the sizes of local
stable/unstable leaves from §2.1.1 and the domains of the local coordinates constructed
in Lemma 2.3.

To show that Proposition 4.1 implies Proposition 3.2 we note that each word in A N
?

can be written as a concatenationwv where v ∈ A N0
? , w ∈ A N1

? andw = wN1 . . . w2w1

is the reverse of w = w1w2 . . . wN1 . We have by (3.5)

Awv = A−wv = U(−N1)A−vA
+
wU(N1).

Since U(N1) is unitary, the bound (4.2) implies that ‖Awv‖L2(M)→L2(M) ≤ Chβ which
gives Proposition 3.2.

4.1. Outline of the proof. We provide here an informal explanation of the proof of
Proposition 4.1. For this we use a naive version of the classical/quantum correspon-
dence, thinking of A−v , A+

w as quantizations of the symbols a−v , a+
w defined in (3.1) and

restricting the analysis to the cosphere bundle S∗M . We also make the simplifying
assumption

v = ? . . . ?︸ ︷︷ ︸
N0 times

, w = ? . . . ?︸ ︷︷ ︸
N1 times

. (4.3)
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Figure 6. The sets
⋂n
j=1 ϕj(V?) for n = 1, 2, 3, 4, pictured with the flow

direction removed. See also Figures 4 (page 35) and 8 (page 73).

Recall from (3.2) that a−v , a+
w are supported in the sets V−v ,V+

w which under the as-
sumption (4.3) have the form

V−v =

N0−1⋂
j=0

ϕ−j(V?), V+
w =

N1⋂
j=1

ϕj(V?).

We call the complement of V? (which has nonempty interior by assumption (3) in §3.1)
the hole. Then ρ ∈ V−v if the geodesic starting at ρ does not enter the hole at least
until the time N0 in the future, more precisely ϕj(ρ) ∈ V? for all integer j ∈ [0, N0−1].
Similarly ρ ∈ V+

w if that geodesic does not enter the hole up to the time N1 in the past,
more precisely ϕj(ρ) ∈ V? for all integer j ∈ [−N1,−1]. See Figure 6. Viewing A−v , A+

w

as operators which microlocalize to V−v ,V+
w , our goal is to use the fractal uncertainty

principle to show that microlocalizations to these two sets are incompatible with each
other, this incompatibility taking the form of the norm bound (4.2).

Recall from §2.1.1 that S∗M is foliated by (local) weak unstable leaves. We use this
foliation to partition V+

w into clusters

V+
w =

⊔
r

V+
w,r

where each V+
w,r liesO(h2/3) close to a certain local weak unstable leaf (the construction

of the partition uses the Lipschitz regularity of the unstable foliation). On the operator
side this gives the decomposition (see Lemma 4.13 and (4.75))

A−vA
+
w =

∑
r

A−vA
+
w,r. (4.4)

If two clusters V+
w,r,V+

w,r′ are “sufficiently disjoint”, then the corresponding operators
in (4.4) satisfy the almost orthogonality bounds

(A−vA
+
w,r)

∗A−vA
+
w,r′ , A

−
vA

+
w,r′(A

−
vA

+
w,r)

∗ = O(h∞)L2→L2 . (4.5)

This follows from the classical/quantum correspondence and the fact that

h2/3 · h1/6 � h (4.6)
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where h2/3 is the minimal distance between disjoint clusters (in the stable direction),
while h1/6 is the minimal scale of oscillation of the symbol a+

v , along the unstable
direction. The almost orthogonality bounds are proved in Lemma 4.12, and the in-
equality (4.6) appears in (4.72) in the proof. The remark following that Lemma gives
an informal argument on how the inequality (4.6) leads to almost orthogonality. (Note
that in §4.6 the “cluster objects” V+

w,r, A
+
w,r are replaced by the more flexible objects

V+
Q , A

+
Q.)

Using (4.4), the Cotlar–Stein Theorem, and the fact that each cluster is disjoint
from all but boundedly many other clusters, we reduce the estimate (4.2) to a bound
for every single cluster (see Proposition 4.14)

‖A−vA+
w,r‖L2(M)→L2(M) ≤ Chβ. (4.7)

We henceforth fix some cluster V+
w,r, contained in an O(h2/3) sized neighborhood of

the weak unstable leafW0u(ρ0) for some ρ0 ∈ S∗M . We use the symplectic coordinates
κ : (x, ξ) 7→ (y, η) centered at ρ0 which were constructed in Lemma 2.3, see (4.80).
We conjugate A−v , A+

w,r by Fourier integral operators quantizing κ (see §4.6.4). This
produces (still under our naive view of the classical/quantum correspondence) pseu-
dodifferential operators which microlocalize to the sets κ(V−v ),κ(V+

w,r). The lat-
ter are subsets of T ∗R2 but we reduce them to subsets of T ∗R by restricting to
κ(S∗M) = {η2 = 1} and projecting along the flow direction ∂y2 . Denote the result-
ing sets by Θ−,Θ+ ⊂ T ∗R. The informal argument above (see Lemma 4.24 for more
details on reducing from T ∗R2 to T ∗R and Lemmas 4.25–4.26 for microlocalization of
the conjugated operators) reduces (4.7) to the estimate

‖A−A+‖L2(R)→L2(R) ≤ Chβ (4.8)

where A± are operators on L2(R) which microlocalize to the sets Θ± described above.

We next understand the structure of the sets Θ±. The set V+
w,r is ‘smooth’ along the

flow and unstable directions: if ρ, ρ′ lie on the same local weak unstable leaf then the
trajectories ϕj(ρ), ϕj(ρ

′), j ≤ 0, stay close to each other, thus ρ ∈ V+
w,r if and only if

ρ′ ∈ V+
w,r unless the boundary of the hole was involved. This is easy to see on Figure 6

with the ‘strokes’ along the unstable direction (corresponding to unstable rectangles
introduced below); see Lemma 4.19 for a rigorous statement. We then embed V+

w,r into
a union of many ‘unstable rectangles’, each of which is the hτ -neighborhood of a local
weak unstable leaf, with τ < 1, defined in (4.61) below, chosen very close to 1. This
uses the inequality (4.1) which ensures that the thickness of each ‘stroke’ is smaller
than h. On the operator side unstable rectangles correspond to individual summands
A+

q in the operator A+
Q′n(w,e) introduced in §4.4. See also Figure 8 (page 73).

The specific unstable rectangles which are part of V+
w,r are distributed in a porous

way, which is where we use that the hole has nonempty interior (see Lemma 4.18 which
is an application of Lemma 2.15). The set Θ+ is a union of components arising from



CONTROL OF EIGENFUNCTIONS IN VARIABLE CURVATURE 57

the images of these rectangles under κ. Using the fact that V+
w,r is within O(h2/3) of

the leaf W0u(ρ0) and the properties of κ in Lemma 2.3 (whose proof used the C3/2

regularity of the unstable foliation), we show that each component of Θ+ is contained
in a ‘horizontal rectangle’ of dimensions 1× hτ , stretched along the y1 direction – see
Lemma 4.15 and Figure 9. This gives

Θ+ ⊂ {(y1, η1) | η1 ∈ Ω+} (4.9)

where Ω+ ⊂ R is porous on scales hτ to 1 – see Lemma 4.16.

As for the set V−v , it can be embedded into a union of stable rectangles of thickness
h1/(6Λ) each (here we use the definition of N0). The corresponding components of Θ−

look like rectangles of thickness h1/(6Λ) with the long axis aligned along the stable
direction, thus transverse to the ∂y1 direction. Because the stable direction is usually
not vertical, the projection of each of these rectangles onto the y1 axis might be large
(e.g. it could be an interval of a size 1). However, we only need to understand the
intersection of Θ− with a neighborhood of Θ+. Since V+

w,r lies O(h2/3) close to the leaf
W0u(ρ0), Θ+ lies O(h2/3) close to {η1 = 0}, in particular Θ+ ⊂ {|η1| ≤ h1/6}. The
intersection of each component of Θ− with {|η1| ≤ h1/6} is a rectangle of thickness
h1/(6Λ) and height h1/6 � h1/(6Λ), thus its projection onto the y1 variable is now
contained in an h1/(6Λ) sized interval, see Figure 9. This implies that

Θ− ⊂ {(y1, η1) | y1 ∈ Ω−} (4.10)

where Ω− ⊂ R is porous on scales h1/(6Λ) to 1 – see Lemma 4.17.

Together (4.9) and (4.10) show that in (4.8), we may replace A+ by the Fourier
multiplier 1lΩ+(hDy1) and A− by the multiplication operator 1lΩ−(y1). The resulting
estimate follows by the fractal uncertainty principle, in the version given by Proposi-
tion 2.10, see also Lemma 4.24. Here we use that there is a nontrivial overlap in the
porosity scales of Ω+ and Ω−, namely

hτ · h1/(6Λ) � h, (4.11)

see (4.115). This is where we use that τ is chosen very close to 1.

To make the above explanations into a rigorous proof, we in particular need to make
precise the classical/quantum correspondence naively used above. This is complicated
since to study A+

w we need to go beyond the Ehrenfest time, that is the expansion
rate of the geodesic flow for time N1 is much larger than h−1/2, therefore A+

w will not
lie in the mildly exotic pseudodifferential calculus Ψcomp

δ of §2.2.1. To overcome this
problem we use several ideas:

• We write a? = a2 + · · · + aQ, A? = A2 + · · · + AQ where the supports of the
symbols a2, . . . , aQ are small enough to form a dynamically fine partition (§4.2).
We next write A+

w as the sum of polynomially many in h terms of the form A+
q
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where q are words in the alphabet {2, . . . , Q}. One advantage of this splitting
is that each q has a well-defined local expansion rate of the flow, see (4.19).
• If q has expansion rate no more than h−2τ (i.e. the length of q is below the
local double Ehrenfest time) then we can conjugate A+

q by U(t) for an ap-
propriate choice of t to get a pseudodifferential operator in the mildly exotic
calculus Ψcomp

δ+ , δ := τ/2. Here we use Egorov’s Theorem up to local Ehren-
fest time and the fact that τ < 1, see §4.3.2. This technique is used in the
proof of the almost orthogonality statements (4.5) and also to show that the
operators A+

w,r corresponding to individual clusters are bounded on L2 almost
uniformly in h (see (4.122)). We also use mildly exotic symbol calculus to show
microlocalization of A−v in Lemma 4.26.
• For microlocalization of A+

w,r (Lemma 4.25) we again write it as the sum of
individual terms A+

q . We then study each of these using the long logarithmic
time hyperbolic parametrix of [An08, AN07a, NZ09] – see §4.3.3.

4.2. A refined partition. For each w ∈ A •
? the supports of a±w can be rather large,

including many trajectories of the flow; this is due to the fact that supp a? typically
contains the entire S∗M minus a fixed small set. It will be convenient to break the
symbols a±w and the operators A±w into smaller pieces, each of which is ‘dynamically
simple’. To do this, we let ε0 > 0 be small enough so that Lemma 2.1 holds and write

a? = a2 + · · ·+ aQ, A? = A2 + · · ·+ AQ (4.12)

where Q is some h-independent number and:

(1) a2, . . . , aQ ∈ C∞c (T ∗M \ 0; [0, 1]) are h-independent;
(2) supp aq ⊂ Vq ∩ {1

4
< |ξ|g < 4} for all q = 2, . . . , Q where Vq ⊂ V? are some

conic open sets;
(3) the diameter of each Vq ∩ S∗M with respect to d(•, •) is smaller than ε0;
(4) A2, . . . , AQ ∈ Ψ−∞h (M) satisfy for q = 2, . . . , Q

σh(Aq) = aq, WFh(Aq) ⊂ Vq ∩ {1
4
< |ξ|g < 4}. (4.13)

Following the proof of Lemma 3.3 it is straightforward to see how to construct decom-
positions (4.12) with the above properties, given a?, A?, ε0.

Denote
A := {1, . . . , Q},

then the properties (1)–(4) above hold for all q ∈ A (indeed, for q = 1 they follow
from the assumptions of §3.1), except we do not have V1 ⊂ V?. We also note that

a1 + a2 + · · ·+ aQ = a1 + a? ≤ 1.

Similarly to §3.1 we define the set of words A • over the alphabet A . For q ∈ A • we
define the symbols a±q , the conic sets V±q , and the operators A±q following (3.1), (3.2),
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and (3.3). We will also use the notation A±E , A
±
F from (3.9), (3.10), this time for E

which is a subset of A • (resp. F which is a function on A •).

Since sup |aq| ≤ 1, we see from (2.32) (with δ = 0) that ‖Aq‖L2→L2 ≤ 1 + Ch1/2.
Therefore we have for any fixed constant C0 and small enough h depending on C0

‖A±q ‖L2→L2 ≤ 2 for all q ∈ A n, n ≤ C0 log(1/h). (4.14)

4.2.1. Jacobians for the refined partition. To each refined word q ∈ A n we associate
the minimal Jacobians

J −q := inf
ρ∈V−q

Jun (ρ), J +
q := inf

ρ∈V+
q

Js−n(ρ) (4.15)

where Jun (ρ), Js−n(ρ) are defined in (2.6). Since the Jacobians Ju, Js are homogeneous
of degree 0 on T ∗M \ 0, one can replace V±q by V±q ∩ S∗M in (4.15). Note that the
sets V±q might be empty in which case we have J ±q =∞.

It follows from (2.10) that the Jacobians J ±q , q ∈ A n, grow exponentially in n:

V−q 6= ∅ =⇒ eΛ0n ≤ J −q ≤ eΛ1n,

V+
q 6= ∅ =⇒ eΛ0n ≤ J +

q ≤ eΛ1n.
(4.16)

Denote
q′ := q1 . . . qn−1 where q = q1 . . . qn ∈ A n, n > 0. (4.17)

Then we have for each q ∈ A n, n > 0

J ±q ≥ eΛ0J ±q′ . (4.18)

Indeed, for each ρ ∈ V−q we have ρ ∈ V−q′ and thus

Jun (ρ) = Ju1 (ϕn−1(ρ))Jun−1(ρ) ≥ eΛ0J −q′
where the last inequality used (2.10). This proves (4.18) for J −, with the case of J +

handled similarly.

Next, parts (5)–(6) of Lemma 2.1 imply that the quantities J ±q give the order of the
expansion rate of the flow ϕ∓n at every point in V±q :

Jun (ρ) ∼ J −q for all ρ ∈ V−q ,
Js−n(ρ) ∼ J +

q for all ρ ∈ V+
q

(4.19)

where A ∼ B means that C−1A ≤ B ≤ CA for some constant C depending only
on (M, g) (in particular, independent of n and q). More precisely, Lemma 2.1 shows
that Jun−1(ρ) ∼ Jun−1(ρ̃) for all ρ, ρ̃ ∈ V−q ; using that Jun (ρ) ∼ Jun−1(ρ) we obtain
the first statement in (4.19). The second statement is obtained similarly using that
Js−n(ρ) ∼ Js1−n(ϕ−1(ρ)). Note that (4.19) uses that the diameter of each Vq ∩ S∗M is
smaller than ε0, in particular it is typically false for the sets V±v corresponding to the
unrefined partition defined in (3.2).
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From (4.19) and (2.7) we derive the following bounds:

sup
ρ∈V−q ∩{ 1

4
≤|ξ|g≤4}

‖dϕn(ρ)‖ ≤ CJ −q , (4.20)

sup
ρ∈V+

q ∩{ 1
4
≤|ξ|g≤4}

‖dϕ−n(ρ)‖ ≤ CJ +
q . (4.21)

It also follows from parts (5) and (6) of Lemma 2.1 that there exists C depending only
on (M, g) such that

d(ρ̃,W0s(ρ)) ≤ C

J −q
for all ρ, ρ̃ ∈ V−q ∩ S∗M, (4.22)

d(ρ̃,W0u(ρ)) ≤ C

J +
q

for all ρ, ρ̃ ∈ V+
q ∩ S∗M. (4.23)

(Strictly speaking, for the proof of (4.23) we should strengthen the assumption on
the sets V1, . . . ,VQ, requiring additionally that the diameter of each ϕ1(Vq) ∩ S∗M is
smaller than ε0.) In other words, V−q lies in a small neighborhood of a weak stable
leaf and V+

q lies in a small neighborhood of a weak unstable leaf, with the sizes of
the neighborhoods given by the reciprocals of J −q , J +

q . See also Corollary 2.2 and
Figure 2.

From (4.19) we immediately derive the following statement for every pair of words
q, q̃ of the same length:

V+
q ∩ V+

q̃ 6= ∅ =⇒ J +
q ∼ J +

q̃ ,

V−q ∩ V−q̃ 6= ∅ =⇒ J −q ∼ J −q̃ .
(4.24)

If we write a word q ∈ A n as a concatenation q = q1q2 where qj ∈ A nj , n1+n2 = n,
then

V−q 6= ∅ =⇒ J −q ∼ J −q1 J −q2 ,

V+
q 6= ∅ =⇒ J +

q ∼ J +
q1 J +

q2 .
(4.25)

Indeed, for each ρ ∈ V−q we have ρ ∈ V−q1 , ϕn1(ρ) ∈ V−q2 , and Jun (ρ) = Jun1
(ρ)Jun2

(ϕn1(ρ));
using (4.19) this gives the first statement in (4.25). The second statement is proved
similarly.

Finally, if q = q1 . . . qn and q = qn . . . q1 is the reverse word, then

J −q ∼ J +
q . (4.26)

Indeed, V+
q = ϕn(V−q ) by (3.8). It now suffices to use that for each ρ ∈ T ∗M we have

Jun (ρ) = Ju−n(ϕn(ρ))−1 ∼ Js−n(ϕn(ρ)) by (2.8).
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4.3. Propagation results for refined words. In this section we state several prop-
agation results concerning the operators A±q , which will be used in the proof of Propo-
sition 4.1. Some of these results will use the Jacobians J ±q defined in (4.15) above.
We recall that a±q ,V±q , A±q are defined using (3.1), (3.2), (3.3).

4.3.1. Local Ehrenfest times. We have already encountered two global Ehrenfest times,
a minimal one Tmin =

⌊ log(1/h)
2Λ1

⌋
, usually called the Ehrenfest time, and a maximal one

Tmax =
⌈ log(1/h)

2Λ0

⌉
. We will now attach (future or past) local Ehrenfest times to each

word q ∈ A •, describing the time it takes for the (future, resp. past) flow to expand
by a factor h−1/2, starting from points ρ ∈ V∓q . We will not use these directly, but
discuss them briefly here to motivate the constructions below.

Let us first define the future local Ehrenfest time T−q , related to the values of J −q .
If V−q = ∅, we set T−q = ∞. Otherwise, let us assume that h−1/2 ≤ J −q < ∞ (this is
for instance the case if V−q 6= ∅ and |q| ≥ Tmax). Then there exists a unique integer
m ≤ |q| such that, splitting q into q = q1qmq

2, where q1 = q1 . . . qm−1, we have

J −q1 < h−1/2 ≤ J −q1qm
. (4.27)

We then call

T−q := m the local future Ehrenfest time of the word q.

In the case J −q < h−1/2, we consider the extensions qp of q with all possible words p
of length Tmax. For any such extension J −qp ≥ h−1/2, so the corresponding times T−qp
can be defined as above. We then take

T−q := min
|p|=Tmax

T−qp, a value which is necessarily finite.

For all q such that V−q 6= ∅, the local Ehrenfest time satisfies Tmin ≤ T−q ≤ Tmax.

We similarly define the local past Ehrenfest time T+
q associated to the words q such

that V+
q 6= ∅, depending on the values of the Jacobians J +

q .

We also define, similarly to the above, a local double Ehrenfest time T̃±q , by replacing
h−1/2 by h−1 in the threshold property (4.27). Notice that if V±q 6= ∅, the double
Ehrenfest times satisfy 2Tmin ≤ T̃±q ≤ 2Tmax, but in general T̃±q 6= 2T±q .

In the proofs below the thresholds h−1/2 and h−1 will be reduced to h−δ and h−2δ

for some fixed δ ∈ (0, 1
2
).

4.3.2. Propagation up to local Ehrenfest time. We first consider words q which are
shorter than their local Ehfenfest times T±(q). For these words the operators A±q lie
in the mildly exotic calculus introduced in §2.2.1:

Proposition 4.2. Fix δ ∈ [0, 1
2
), C0 > 0, and let q ∈ A •.
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1. Assume that J −q ≤ C0h
−δ. Then we have

A−q = Oph(a
[−
q ) +O(h∞)L2→L2 (4.28)

for some symbol a[−q ∈ S
comp
δ+ (T ∗M) such that

a[−q = a−q +O(h1−2δ−)Scomp
δ

, supp a[−q ⊂ V−q ∩ {1
4
≤ |ξ|g ≤ 4}. (4.29)

The constants in O(•) are independent of h and q.

2. The same is true for the operator A+
q and some symbol a[+q = a+

q +O(h1−2δ−)Scomp
δ

,
supp a[+q ⊂ V+

q ∩ {1
4
≤ |ξ|g ≤ 4}, under the assumption J +

q ≤ C0h
−δ.

Remarks. 1. The assumption of part 1 of Proposition 4.2 does not hold when V−q = ∅,
as in that case J −q = ∞. Yet, the statement (4.28), which in this case is A−q =

O(h∞)L2→L2 , still holds (at least when |q| = O(log(1/h))) but to prove it in the case
of long logarithmic words q one would need to employ the techniques of §4.3.3 below.
In the present section we will only use a special case of this rapid decay statement, see
Lemma 4.3 below. The same remark applies to part 2.

2. In the special case q ∈ A N0 the assumptions of Proposition 4.2 are satisfied for
δ = 1

6
(assuming V±q 6= ∅) as follows from (4.16) and the definition (3.11) of N0. In

this case a weaker version of (4.28) (with O(h1−2δ−)L2→L2 remainder) follows from
Lemma 3.1 (more precisely, its version for the refined partition of §4.2). The latter
relies on Egorov’s Theorem up to the (minimal) Ehrenfest time, Lemma 2.5.

Proposition 4.2 is proved in §5.1. The argument is morally similar to the proof of
the first part of Lemma 3.1, but much more complicated because of two reasons:

• We establish the classical/quantum correspondence up to the local Ehrenfest
times associated with the particular words. While the global expansion rates
of ϕ±n, where n is the length of q, might be very large, the expansion rates of
ϕ±n restricted to supp a±q are still smaller than h−δ � h−1/2.
• We obtain asymptotic expansions of the full symbols of A±q , which give the
O(h∞) remainder in (4.28), similarly to (2.37).

As a corollary of Proposition 4.2 we obtain the following rapid decay results for oper-
ators A±q and their products under assumptions of empty or nonintersecting supports:

Lemma 4.3. Fix δ ∈ [0, 1
2
) and C0 > 0.

1. Assume that p,q ∈ A •. Then

max(J −p ,J +
q ) ≤ C0h

−δ, V−p ∩ V+
q = ∅ =⇒ ‖A−pA+

q ‖L2→L2 = O(h∞). (4.30)

2. Assume that q = q1 . . . qn ∈ A •, n ≤ C0 log(1/h), satisfies V+
q = ∅. Take the

largest m such that V+
q1...qm

6= ∅ and assume that J +
q1...qm

≤ C0h
−2δ. Then

‖A+
q ‖L2→L2 = O(h∞).
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The same holds for A−q (under an assumption on J −q1...qm), and also if we consider
subwords of the form qn−m+1 . . . qn instead.

3. Assume that q, q̃ ∈ A • have the same length and max(J +
q ,J +

q̃ ) ≤ C0h
−2δ,

V+
q ∩ V+

q̃ = ∅. Then

‖(A+
q )∗A+

q̃ ‖L2→L2 = O(h∞), ‖A+
q̃ (A+

q )∗‖L2→L2 = O(h∞).

The same is true for the operators A− if we make assumptions on J −,V− instead.

In all these statements the constants in O(•) do not depend on h and on the choice
of the words.

Remark. Note that the Jacobians in parts 2 and 3 above are required to be bounded
by C0h

−2δ – that is Lemma 4.3 essentially applies up to the local double Ehrenfest time.
We are able to do this by writing a word with Jacobian O(h−2δ) as a concatenation of
two words with Jacobians O(h−δ) and using (3.5). If M had constant curvature, we
could instead use pseudodifferential calculi adapted to the stable/unstable foliations
as in [DJ18].

Proof. 1. Using Proposition 4.2 we write

A−p = Oph(a
[−
p ) +O(h∞)L2→L2 , A+

q = Oph(a
[+
q ) +O(h∞)L2→L2 .

Here supp a[−p ⊂ V−p and supp a[+q ⊂ V+
q , therefore supp a[−p ∩ supp a[+q = ∅. It then

follows from the product formula in the Scomp
δ+ calculus (see for instance [Zw12, Theo-

rem 4.18]) that Oph(a
[−
p ) Oph(a

[+
q ) = O(h∞)L2→L2 .

2. We assume that V+
q = ∅, with the case of V−q , A−q following from here using (3.8)

and (4.26). We also assume that there exists m < n such that V+
q1...qm+1

= ∅ and
J +
q1...qm

≤ C0h
−2δ; the other case (when there exists m < n such that V+

qn−m...qn = ∅ and
J +
qn−m+1...qn

≤ C0h
−2δ) is handled similarly.

We first show that q can be written as a concatenation (where C1 denotes a constant
depending on C0 whose exact value might differ from place to place)

q = q1prq2 where max(J +
p ,J +

r ) ≤ C1h
−δ, V+

pr = ∅. (4.31)

To do this we first put q2 := qm+2 . . . qn. Next, choose maximal ` ≤ m such that
J +
q1...q`

≤ h−δ. We claim that
J +
q`+1...qm

≤ C1h
−δ. (4.32)

Indeed, we may assume that ` < m since otherwise (4.32) holds automatically. Since
` was chosen maximal, we have J +

q1...q`+1
> h−δ, which by (4.25) implies that J +

q1...q`
≥

C−1
1 h−δ. Now (4.32) follows from (4.25) and the bound J +

q1...qm
≤ C0h

−2δ.

Now the decomposition (4.31) is obtained by considering two cases:

(1) V+
q`+1...qm+1

= ∅: put q1 := q1 . . . q`, p := q`+1 . . . qm, r := qm+1.
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(2) V+
q`+1...qm+1

6= ∅: put q1 := ∅, p := q1 . . . q`, r := q`+1 . . . qm+1. We have
J +

r ≤ C1h
−δ by (4.25) and (4.32).

Having established (4.31) we write by (3.5) and (3.8) (where p is the reverse of p)

A+
q = U(|q1p|)A−

pq1A
+
rq2
U(−|q1p|)

= U(|q1|)A−
q1U(|p|)A−pA+

r U(|r|)A+
q2U(−|q1pr|).

(4.33)

Recall that J +
r ≤ C1h

−δ. We moreover have J −p ∼ J +
p ≤ C1h

−δ by (4.26). Also
V−p ∩V+

r = ∅ by (3.6) since V+
pr = ∅. Finally ‖A−

q1‖L2→L2 and ‖A+
q2‖L2→L2 are bounded

by (4.14). Therefore by (4.30) we have

‖A+
q ‖L2→L2 ≤ C‖A−pA+

r ‖L2→L2 = O(h∞). (4.34)

3. We consider the operators A+, with the case of A− following from here using (3.8)
and (4.26). We first show that ‖(A+

q )∗A+
q̃ ‖L2→L2 = O(h∞). We write q = q1 . . . qn and

q̃ = q̃1 . . . q̃n and take maximal ` ≤ n such that

max(J +
q1...q`

,J +
q̃1...q̃`

) ≤ h−δ. (4.35)

We have the following two cases:

(1) V+
q1...q`

∩V+
q̃1...q̃`

= ∅. Arguing similarly to part 1 of this lemma and using (4.35),
we see that

‖(A+
q1...q`

)∗A+
q̃1...q̃`
‖L2→L2 = O(h∞). (4.36)

By (3.5) and (3.8) we have

(A+
q )∗A+

q̃ = U(`)(A+
q`+1...qn

)∗U(−`)(A+
q1...q`

)∗A+
q̃1...q̃`

U(`)A+
q̃`+1...q̃n

U(−`).

Using (4.36) and the norm bound (4.14) we get ‖(A+
q )∗A+

q̃ ‖L2→L2 = O(h∞).
(2) V+

q1...q`
∩ V+

q̃1...q̃`
6= ∅. We claim that

max(J +
q`+1...qn

,J +
q̃`+1...q̃n

) ≤ C1h
−δ. (4.37)

Indeed, we may assume that ` < n since otherwise (4.37) is immediate. Since
` was chosen maximal we have

max(J +
q1...q`+1

,J +
q̃1...q̃`+1

) > h−δ.

Without loss of generality we may assume that J +
q1...q`+1

> h−δ. Then by (4.25)
we have J +

q1...q`
≥ C−1

1 h−δ. Since J +
q1...q`

∼ J +
q̃1...q̃`

by (4.24), we have J +
q̃1...q̃`

≥
C−1

1 h−δ as well. Now (4.37) follows from (4.25) and the bound max(J +
q ,J +

q̃ ) ≤
C0h

−2δ.
Since V+

q ∩ V+
q̃ = ∅, by (3.6) we have

V−q`...q1 ∩ V
+
q`+1...qn

∩ V−q̃`...q̃1 ∩ V
+
q̃`+1...q̃n

= ∅.
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Arguing similarly to part 1 of this lemma and using (4.35), (4.37), and (4.26)
we get

‖(A−q`...q1A
+
q`+1...qn

)∗A−q̃`...q̃1A
+
q̃`+1...q̃n

‖L2→L2 = O(h∞).

Now by (3.5) we have

(A+
q )∗A+

q̃ = U(`)(A−q`...q1A
+
q`+1...qn

)∗A−q̃`...q̃1A
+
q̃`+1...q̃n

U(−`) (4.38)

which gives ‖(A+
q )∗A+

q̃ ‖L2→L2 = O(h∞).

To prove that ‖A+
q̃ (A+

q )∗‖L2→L2 = O(h∞) we argue similarly. More precisely, take
minimal ` ≥ 1 such that

max(J +
q`...qn

,J +
q̃`...q̃n

) ≤ h−δ.

Assume first that V+
q`...qn

∩ V+
q̃`...q̃n

= ∅. Arguing similarly to part 1 of this lemma we
get

‖A+
q̃`...q̃n

(A+
q`...qn

)∗‖L2→L2 = O(h∞). (4.39)

By (3.5) we have

A+
q̃ (A+

q )∗ = U(`− 1)A−q̃`−1...q̃1
A+
q̃`...q̃n

(A+
q`...qn

)∗(A−q`−1...q1
)∗U(1− `)

and the right-hand side is O(h∞)L2→L2 by (4.39) and (4.14).

Assume now that V+
q`...qn

∩ V+
q̃`...q̃n

6= ∅. Then similarly to (4.37) we get

max(J +
q1...q`−1

,J +
q̃1...q̃`−1

) ≤ C1h
−δ.

The bound ‖A+
q̃ (A+

q )∗‖L2→L2 = O(h∞) is now proved similarly to the case (2) above,
with (4.38) replaced by the following corollary of (3.5):

A+
q̃ (A+

q )∗ = U(`− 1)A−q̃`−1...q̃1
A+
q̃`...q̃n

(A−q`−1...q1
A+
q`...qn

)∗U(1− `).

�

In addition to Proposition 4.2 we will also need the following statement regarding
sums of operators of the form A−pA

+
r :

Proposition 4.4. Fix δ ∈ [0, 1
2
), C0 > 0. Assume that F : A •×A • → C is a function

such that:

(1) for each (p, r) with F (p, r) 6= 0, we have max(J −p ,J +
r ) ≤ C0h

−δ;
(2) sup |F | ≤ 1.

Then we have for some constant C independent of h and F

‖AF‖L2→L2 ≤ C log2(1/h) where AF :=
∑
p,r

F (p, r)A−pA
+
r . (4.40)
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Remarks. 1. It is easy to see that sup |aF | ≤ C log2(1/h) where aF =
∑

(p,r) F (p, r)a−pa
+
r

is the symbol corresponding to AF , grouping terms in the sum by the lengths |p|, |r|.
However the statement (4.40) does not follow by summing Proposition 4.2 over (p, r),
since the number of terms in this sum grows polynomially with h. (We got around this
problem in Lemma 3.1 by taking δ := 1

6
small enough so that the individual remainder

still dominates the growth of the number of terms, however in this section we will need
to take δ very close to 1

2
.) Instead the proof of Proposition 4.4, given in §5.3 below,

uses fine estimates on the full symbols of A−p , A+
r .

2. The proof of Proposition 4.4 shows that AF is a pseudodifferential operator, similarly
to Proposition 4.2. However, we will only need a norm bound on AF .

Similarly to Lemma 4.3 we deduce from Proposition 4.4 a statement up to the local
double Ehrenfest time which is used to establish the norm bound (4.122) below:

Lemma 4.5. Fix δ ∈ [0, 1
2
), C0 > 0. Assume that F : A • → C and

(1) for each q with F (q) 6= 0, we have J +
q ≤ C0h

−2δ;
(2) sup |F | ≤ 1.

Then we have for some constant C independent of h and F

‖A+
F‖L2→L2 ≤ C log3(1/h) where A+

F :=
∑
q

F (q)A+
q . (4.41)

Same is true for A−F if we make an assumption on J −q instead.

Remark. We make no attempt to optimize the power of log(1/h) in (4.41) – for our
purposes all that matters is that ‖A+

F‖L2→L2 = O(h0−).

Proof. We prove a bound on A+
F , with the case of A−F handled similarly.

For each q with J +
q ≤ C0h

−2δ there exists an integer ` = `(q) ∈ [0, n] such that

max(J +
q1...q`

,J +
q`+1...qn

) ≤ C1h
−δ (4.42)

where C1 is a large constant depending on C0. Indeed, we choose maximal ` ≤ n such
that J +

q1...q`
≤ h−δ. If ` = n then J +

q`+1...qn
= 1. If ` < n then J +

q1...q`+1
> h−δ, which

by (4.25) implies that J +
q1...q`

≥ C−1h−δ and thus by another application of (4.25),
J +
q`+1...qn

≤ C1h
−δ.

We may take C1 large enough so that J +
q ≤ C0h

−2δ implies that |q| ≤ C1 log(1/h).
Then we decompose

A+
F =

∑
0≤`≤C1 log(1/h)

A+
F`
, F`(q) :=

{
F (q), if `(q) = `,

0, otherwise.
(4.43)
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We have by (3.5)

A+
F`

= U(`)AG`U(−`) where AG` :=
∑
(p,r)

G`(p, r)A
−
pA

+
r

and the function G` : A • ×A • → C is defined as follows:

G`(p, r) :=

{
F`(pr), if |p| = `,

0, otherwise.

For each (p, r) with G`(p, r) 6= 0 we have max(J −p ,J +
r ) ≤ Ch−δ by (4.42) and (4.26).

Therefore by Proposition 4.4

‖A+
F`
‖L2→L2 = ‖AG`‖L2→L2 ≤ C log2(1/h). (4.44)

Using the triangle inequality in (4.43) and the norm bound (4.44) we get (4.41). �

4.3.3. Propagation beyond Ehrenfest time. We now study microlocalization of the oper-
ators A+

q for words q of length no more than C log(1/h), where C is any fixed constant.
The resulting Proposition 4.8 is applied in the proof of Lemma 4.25 in §4.6.4 below to
words q with J +

q ∼ h−τ , where τ ∈ (1
2
, 1) is defined in (4.61). Analogous statements

hold for the operators A−q , but we will not make or use them here.

When J +
q � h−1/2 (as in the proof of Lemma 4.25) the symbol a+

q oscillates too
strongly to belong to the symbol class Scomp

δ for any δ < 1
2
. In the case when M has

constant curvature, it was shown in [DZ16, DJ18] that for J +
q � h−1 the operator A+

q

belongs to a certain anisotropic class of pseudodifferential operators “aligned” with the
unstable foliation, see [DJ18, Lemma 3.2]. The construction of this anisotropic class
strongly relied on the smoothness of the unstable foliation, see [DZ16, §3.3]. However in
the case of variable curvature considered here, the unstable foliation is no longer smooth
and it is not clear how to define the corresponding anisotropic pseudodifferential class.

We will therefore take a different strategy to study the microlocalization of A+
q ,

which uses methods developed in [An08, AN07a, NZ09]. Given an arbitrary function
f ∈ L2(M) (possibly depending on h), we will study the microlocalization of the
function A+

q f . This gives less information than A+
q being pseudodifferential but it

suffices for the application in §4.6.4.

Since f is chosen arbitrary and the microlocal wave propagator U(t) defined in (2.34)
is unitary, it suffices to study microlocalization of U+

q f where the operator U+
q :

L2(M)→ L2(M) is defined similarly to (3.48) (recalling the definition (3.3) of A+
q ):

U+
q := A+

qU(n) = U(1)Aq1U(1)Aq2 · · ·U(1)Aqn , q = q1 . . . qn ∈ A •. (4.45)

Using the Fourier inversion formula we will decompose f into a superposition of La-
grangian distributions (see §2.3.2) associated to a family of Lagrangian submanifolds
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Lqn,θ ⊂ T ∗M , θ ∈ R2. Roughly speaking, the main result of the present subsection,
Proposition 4.8, shows that

f ∈ Icomp
h (Lqn,θ) =⇒ U(−1)U+

q f ∈ I
comp
h (Lq,θ) (4.46)

where Lq,θ is the propagated Lagrangian manifold (see Definition 4.6 below). The
key point, exploited in the proof of Lemma 4.25, is that for long q the manifold Lq,θ

depends little on θ, so that the full state A+
q f (written as an integral of propagated

Lagrangian distributions over θ) is microlocalized in a very small neighborhood of a
single unstable leaf.

The propagator U(1) is a Fourier integral operator (see §2.3.3) associated to the
time-one map of the geodesic flow ϕ1, microlocally in {1

4
< |ξ|g < 4}:

U(1)A,AU(1) ∈ Icomp
h (ϕ1) for all A ∈ Ψ0

h(M), WFh(A) ⊂ {1
4
< |ξ|g < 4}. (4.47)

This follows from the definition (2.34) and the standard hyperbolic parametrix con-
struction, see e.g. [Zw12, Theorem 10.4] or [NZ09, Lemma 4.2].

Using (4.47) we can prove (4.46) for q of bounded length using standard properties of
Lagrangian distributions (more specifically, property (3) in §2.3.3). However, since the
length of q grows with h, the argument becomes more complicated. In fact, we cannot
even use the general definition of the class Icomp

h (L ) in §2.3.2 since it applies to an
h-dependent family of distributions with h-independent L . We will rely on the results
of [NZ09], featuring a detailed analysis of the behavior of the propagated Lagrangian
manifolds and the oscillatory integral representations (2.43) for U(−1)U+

q f as the
length of q grows. For this analysis it will be important that the initial Lagrangians
Lq,θ are chosen close to weak unstable leaves, and thus transverse to stable leaves.

To fix the parametrization of propagated Lagrangian manifolds and distributions, it
is convenient to introduce adapted symplectic coordinates. For each ρ0 ∈ S∗M let

κρ0 : Uρ0 → Vρ0 , Uρ0 ⊂ T ∗M \ 0, Vρ0 ⊂ T ∗R2 \ 0 (4.48)

be the symplectomorphism constructed in Lemma 2.3 (in fact we will only use proper-
ties (1)–(4) of Lemma 2.3 here). Since κρ0 is homogeneous we may shrink Uρ0 so that
the flipped graph Lκρ0 is generated by a single phase function, see §2.3.1.

Let ε0 > 0 be the constant from §4.2; recall that the diameter of each Vq ∩ S∗M is
smaller than ε0. We will assume in several places in this subsection that ε0 is small
depending only on (M, g). For each q ∈ A fix an arbitrary point ρq ∈ Vq ∩ S∗M and
put

κq := κρq : V]q →Wq, V]q := Uρq , Wq := Vρq . (4.49)

We denote elements of T ∗M by ρ = (x, ξ) and elements of T ∗R2 by (y, η). We assume
that ε0 is small enough so that Vq ⊂ V]q where the closure is taken in T ∗M \ 0.

We are now ready to define the Lagrangian submanifolds Lq,θ:
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L̂(0,1)

L̂θ

κqn(Vqn)

κqn

Vqn

W0u(ρqn)

Lqn,θ

W0u(ρ′) ρ′

ϕn−1

W0u(ρq1)

Lq,θ

ρ̃

W0u(ρ̃)

Vq1

κq1(Vq1)

L̂(0,1)

L̂q,θ

κq1

Figure 7. An illustration of Definition 4.6 and Lemma 4.7, fixing ρ̃ =

ϕn−1(ρ′) ∈ Lq,θ ∩S∗M . We restrict to S∗M = {η2 = 1} and remove the
flow direction ∂y2 . In the bottom figures the horizontal direction is y1 and
the vertical one is η1. The original Lagrangian Lqn,θ is O(ε0) close to the
weak unstable leaf W0u(ρ

′) as a C∞ submanifold, thus the propagated
Lagrangian Lq,θ is O(ε0) close to the weak unstable leafW0u(ρ̃) (in fact,
it is O(e−γnε0) close for some γ > 0). A word of caution: in general
Vqn ,W0u(ρqn) are not mapped by ϕn−1 to Vq1 ,W0u(ρq1).

Definition 4.6. Consider the family of ‘horizontal’ Lagrangian submanifolds

L̂θ := {(y, θ) | y ∈ R2} ⊂ T ∗R2, θ ∈ R2.

For q = q1 . . . qn ∈ A • and θ ∈ R2, define

Lq,θ := ϕn−1(κ−1
qn (L̂θ)) ∩ ϕ−1(V+

q ) ⊂ Vq1 ⊂ T ∗M \ 0,

L̂q,θ := κq1(Lq,θ) ⊂ Wq1 ⊂ T ∗R2 \ 0.
(4.50)

We call Lq,θ := κ−1
q (L̂θ)∩Vq, q ∈ A , the original Lagrangian corresponding to q, θ,

and Lq,θ, q ∈ A •, the propagated Lagrangian corresponding to q, θ. See Figure 7.

Remarks. 1. The set Lq,θ may be empty. This happens in particular if V+
q = ∅, if

θ2 ≤ 0, or if |θ1/θ2| ≥ Cε0 for some large fixed C.

2. We see from the definition (4.50) and the properties of κq in Lemma 2.3 that Lq,θ

is a Lagrangian submanifold of p−1(θ2) ⊂ T ∗M \ 0 and the flow lines of ϕt are tangent
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to Lq,θ. Therefore L̂q,θ is a Lagrangian submanifold of {(y, η) | η2 = θ2} ⊂ T ∗R2 \ 0

and ∂y2 is tangent to this manifold.

3. Recalling the definition (3.2) of V+
q , we see that Lq,θ is obtained starting from the

original Lagrangian Lqn,θ = κ−1
qn (L̂θ) ∩ Vqn by iteratively applying the map ϕ1 and

intersecting with Vqn−1 , . . . ,Vq1 :

Lqj ...qn,θ = ϕ1(Lqj+1...qn,θ) ∩ Vqj , 1 ≤ j < n. (4.51)

By (4.23) the submanifold Lq,θ is contained in a C/J +
q neighborhood of the weak

unstable leaf W0u(ρ̃), for any ρ̃ ∈ Lq,θ. The next statement, which is a weak version of
the Inclination Lemma, shows in particular that Lq,θ is controlled as a C∞ submanifold
uniformly in q, θ, regardless of the length of q. (A stronger version is that Lq,θ is
exponentially close in C∞ to W0u(ρ̃) when |q| is large.) To make the statement precise
it is convenient to write the image L̂q,θ of Lq,θ under κq1 as a graph in the y variables.

Lemma 4.7. If ε0 > 0 is small enough depending only on (M, g) then the following
holds. Let q ∈ A •, θ ∈ R2, and assume that Lq,θ 6= ∅. Then

L̂q,θ = {(y, η) | y ∈ Uq,θ, η1 = θ2Gq,θ(y1), η2 = θ2} (4.52)

where Uq,θ ⊂ R2 is an open set and Gq,θ is a function on an open subset of R which
satisfies the following derivative bounds:

(1) ‖Gq,θ‖C1 ≤ Cε0 for some constant C depending only on (M, g);
(2) ‖Gq,θ‖CN ≤ CN for all N,3 where the constant CN depends only on (M, g)

and N.

Moreover, if Fq,θ : Uq,θ → R2 is defined by

ϕn−1(κ−1
qn (Fq,θ(y), θ)) = κ−1

q1
(y, θ2Gq,θ(y1), θ2), y ∈ Uq,θ (4.53)

then we have the weakly contracting property for some C depending only on (M, g)

‖dFq,θ(y)‖ ≤ C for all y ∈ Uq,θ. (4.54)

Remark. The set Uq,θ (the domain of the function Gq,θ) depends on q but it has
macroscopic size (of the same scale as the sets Vq) even for long words q.

We omit the proof of Lemma 4.7 here, referring the reader to [NZ09, Proposition 5.1],
[KH97, Proposition 6.2.23], and the first version of this article [DJN19, Lemma 4.7].

We now quantize the symplectomorphisms κq. As explained following (4.48) the
flipped graph of each κq is generated by a single phase function. Then (see §2.3.3)

3Here and in Proposition 4.8 below we use boldface N to distinguish it from the propagation time
defined in (3.11).
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there exist Fourier integral operators

Bq : L2(M)→ L2(R2), Bq ∈ Icomp
h (κq),

B′q : L2(R2)→ L2(M), B′q ∈ I
comp
h (κ−1

q )
(4.55)

quantizing κq near κq(Vq ∩ {1
4
≤ |ξ|g ≤ 4}) × (Vq ∩ {1

4
≤ |ξ|g ≤ 4}) in the sense

of (2.54).

Using the operators Bq we give a precise definition of the classes Icomp
h (Lqn,θ) and

Icomp
h (Lq,θ) featured in (4.46). We have Lqn,θ = κ−1

qn (L̂θ)∩Vqn where L̂θ is generated
in the sense of (2.42) by the function

Φθ ∈ C∞(R2;R), Φθ(y) = 〈y, θ〉. (4.56)

Thus by (2.44) the elements of Icomp
h (Lqn,θ) which are microlocalized in {1

4
< |ξ|g < 4}

have the form B′qn(eiΦθ/ha) for some a ∈ C∞(R2). We will in fact take a ≡ 1.

Next, by Lemma 4.7 the Lagrangian manifold L̂q,θ = κq1(Lq,θ) is generated in the
sense of (2.42) by a function

Φq,θ ∈ C∞(Uq,θ;R), ∂y1Φq,θ = θ2Gq,θ(y1), ∂y2Φq,θ = θ2.

Here Φq,θ is defined uniquely up to a locally constant function. We fix this freedom by
recalling that the functions induced on L̂θ, L̂q,θ by Φθ,Φq,θ are antiderivatives on these
Lagrangian submanifolds (see (2.42)). The antiderivative on L̂q,θ can be computed by
applying (2.49) to the definition (4.50), where the symplectomorphisms κq1 , ϕn−1,κ−1

qn

are homogeneous and thus have zero antiderivative (see §2.3.3). Thus we may put

Φq,θ(y) := Φθ(Fq,θ(y)), y ∈ Uq,θ, (4.57)

where Fq,θ is defined in (4.53). Then by (2.44) the elements of Icomp
h (Lq,θ) which are

microlocalized in {1
4
< |ξ|g < 4} have the form B′q1(eiΦq,θ/ha) for some a ∈ C∞c (Uq,θ).

Building on the above discussion we now give the main statement of this subsection,
which is a precise version of (4.46). We again omit the proof, referring to [NZ09,
Proposition 4.1 and §7.2] and to the first version of this article [DJN19, Proposition 4.8].
See also [An11, §3] for a simplified proof in a model case.

Proposition 4.8. Assume that ε0 is small enough depending only on (M, g). Let
q = q1 . . . qn ∈ A •, θ ∈ R2, and assume that n ≤ C0 log(1/h), |θ1| ≤ C0, 1

4
≤ θ2 ≤ 4

for some constant C0. Define Φθ,Φq,θ using (4.56), (4.57). Let U+
q be defined in (4.45)

and fix N > 0. Then we have uniformly in q, θ

U+
q B

′
qn(eiΦθ/h) = U(1)B′q1(eiΦq,θ/haq,θ,N) +O(hN)L2(M) (4.58)

for some aq,θ,N(y;h) ∈ C∞c (Uq,θ) such that:

(1) the distance between supp aq,θ,N and the complement of Uq,θ is larger than C−1

for some constant C > 0 depending only on the choice of Aq,Vq,κq, q ∈ A ;
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(2) for any multiindex α there exists CN,α > 0 such that

sup
y
|∂αy aq,θ,N(y)| ≤ CN,α. (4.59)

Here CN,α depends only on the choices of Aq, Bq, B
′
q, and C0.

Remarks. 1. If Lq,θ = ∅ then we have aq,θ,N = 0 and Proposition 4.8 states that the
left-hand side of (4.58) is O(h∞)L2(M).

2. [AN07a, NZ09] show that the symbols aq,θ,N satisfy stronger bounds, in fact they
decay exponentially with |q|, see [AN07a, Lemma 3.5] and [NZ09, (7.11)]. We state
the weaker bound (4.59) since it suffices for our application in §4.6.4.

4.4. Reduction to words of moderate length. We now return to the proof of
Proposition 4.1. Henceforth we fix two words

v ∈ A N0
? , w ∈ A N1

? .

We first write a decomposition (4.60) of A+
w into a sum of terms of the form A+

q where
q are words over the refined alphabet A = {1, . . . , Q} (see §4.2). For that we use the
following

Definition 4.9. For q ∈ A and w ∈ A?, we write q . w if one of the following holds:

• w = 1 and q = 1, or
• w = ? and q ∈ {2, . . . , Q}.

If q = q1 . . . qn ∈ A • and w = w1 . . . wm ∈ A •
? , then we say that q . w if n ≤ m and

qj . wj for all j = 1, . . . , n.

Since A? = A2 + · · ·+ AQ, we have

A+
w =

∑
q∈A N1 , q.w

A+
q . (4.60)

Since N1 is larger than the maximal Ehrenfest time Tmax (see (4.1)), for all words
q ∈ A N1 we have J +

q > h−1, so the symbol a+
q is very irregular. To fix this problem, we

will rewrite (4.60) in terms of an expression with involves words with length bounded
by the local double Ehrenfest time – see (4.64) and Figure 8.

Recall the ‘minimal/maximal expansion rates’ 0 < Λ0 ≤ Λ1 defined in (2.10); as
before we put Λ := dΛ1/Λ0e. We fix constants

τ := 1− 1

10Λ
, δ :=

τ

2
<

1

2
. (4.61)

Note that τ is very close to 1; this will be used in (4.115) below. (In [DJ18] the
parameter τ was denoted by ρ.)
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supp a−v supp a+
w supp

∑
n,e a

+
Qn(w,e)

Figure 8. Supports of the symbols a−v , a+
w, and

∑
n,e a

+
Qn(w,e), corre-

sponding to the operators A−v , A+
w, and

∑
n,eA

+
Qn(w,e). We restrict to

some hypersurface in S∗M transversal to the flow direction. By (3.11)
and (4.1) the thickness of the strokes in supp a−v (corresponding to the
Jacobian (JuN0

)−1) is at least h1/6, while in supp a+
w it is at most h.

Both of these have strokes of very different thicknesses because the Ja-
cobians vary from point to point. The set supp

∑
n,e a

+
Qn(w,e) contains

supp a+
w and has strokes of uniform thickness approximately h−τ = h−2δ

(roughly speaking, each stroke corresponds to one term a+
q ), so that

classical/quantum correspondence still applies.

For n = 1, . . . , N1 and e ∈ A let us define sets of refined words starting with the
letter e and controlled by their local Jacobians:

Qn(w, e) := {q = q1 . . . qn ∈ A n | q1 = e, q . w, J +
q ≥ h−τ > J +

q′ },
Q′n(w, e) := {q ∈ Qn(w, e) | V+

q 6= ∅},
Q′′n(w, e) := {q ∈ Qn(w, e) | V+

q = ∅}
(4.62)

where we recall that for any q = q1 · · · qn, we denote q′ := q1 · · · qn−1. By (4.25) we
have for some constant C depending only on (M, g)

h−τ ≤ J +
q ≤ Ch−τ = Ch−2δ for all q ∈ Q′n(w, e). (4.63)

That is, words q ∈ Q′n(w, e) correspond to sets V+
q on which the backwards stable

Jacobian Js−n(ρ) is approximately equal to h−τ . These words are such that their local
double Ehrenfest time T̃+

q is approximately equal to their length n (they would be
equal if we had taken τ = 1).

For each q = q1 . . . qN1 ∈ A N1 with q . w we have J +
q ≥ eΛ0N1 ≥ h−1 ≥ h−τ

by (4.1) and (4.16). Using (4.18) we see that for each such q there exists unique
n ∈ {1, . . . , N1} such that the prefix q1 . . . qn lies inQn(w, q1). We also haveQn(w, e) =
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Q′n(w, e) tQ′′n(w, e). Therefore the decomposition (4.60) can be written as

A+
w =

N1∑
n=1

∑
e∈A

A+
Qn(w,e)Zn,w =

N1∑
n=1

∑
e∈A

(A+
Q′n(w,e) + A+

Q′′n(w,e))Zn,w (4.64)

where A+
Qn(w,e) is defined by (3.9) and

Zn,w := Awn+1(−n− 1) · · ·AwN1
(−N1) = U(n+ 1)A+

wn+1···wN1
U(−n− 1).

We have ‖Zn,w‖L2→L2 ≤ 2 similarly to (4.14). Moreover, since the number of elements
of Q′′n(w, e) is bounded by some negative power of h, by part 2 of Lemma 4.3 we get

‖A+
Q′′n(w,e)‖L2→L2 = O(h∞).

We then estimate

‖A−vA+
w‖L2→L2 ≤ 2

N1∑
n=1

∑
e∈A

‖A−vA+
Q′n(w,e)‖L2→L2 +O(h∞).

Since N1 = O(log(1/h)), Proposition 4.1 is proved once we establish its analogue with
A+

w replaced by A+
Q′n(w,e), that is the sum of A+

q over the refined words q with length n,
initial letter e, and local Jacobians J +

q ∼ h−τ (that is, their local double Ehrenfest
time is approximately equal to n):

Proposition 4.10. Assume that v ∈ A N0
? , w ∈ A N1

? , 1 ≤ n ≤ N1, and e ∈ A . Then
there exists β > 0 depending only on V1,V? and there exists C > 0 depending only
on A1, A? such that

‖A−vA+
Q′n(w,e)‖L2→L2 ≤ Chβ.

Remark. The value of β in Proposition 4.1 can be taken to be any number smaller
than the value of β in Proposition 4.10. Since we do not give a precise formula for β
we call both by the same letter to simplify notation.

4.5. Partition into clusters. We fix v ∈ A N0
? , w ∈ A N1

? , n ∈ {1, . . . , N1}, e ∈ A ,
and define Q′n(w, e) ⊂ A n by (4.62). We make the following

Definition 4.11. Let q, q̃ ∈ Q′n(w, e). We say q, q̃ are close to each other if V+
q ∪V+

q̃

lies in the h2/3-sized conic neighborhood of some weak unstable leaf, more precisely
there exists ρ ∈ V+

e ∩ S∗M such that

d(ρ̃,W0u(ρ)) ≤ h2/3 for all ρ̃ ∈ (V+
q ∪ V+

q̃ ) ∩ S∗M.

If q, q̃ are not close to each other, we say they are far from each other.

Remark. If q, q̃ are far from each other, then V+
q ∩V+

q̃ = ∅. The proof of Lemma 4.12
below in fact gives a stronger statement, see (4.69).

For words which are far from each other, we have the following almost orthogonality
statement:



CONTROL OF EIGENFUNCTIONS IN VARIABLE CURVATURE 75

Lemma 4.12. Assume that q, q̃ ∈ Q′n(w, e) are far from each other. Then

‖(A−vA+
q )∗A−vA

+
q̃ ‖L2→L2 = O(h∞), (4.65)

‖A−vA+
q̃ (A−vA

+
q )∗‖L2→L2 = O(h∞) (4.66)

with the constants in O(h∞) independent of h, n,v,w,q, q̃.

Remark. Lemma 4.12 has the following informal interpretation (which is different
from the formal proof below). Imagine that we remove the flow and dilation direc-
tions from T ∗M and conjugate by a Fourier integral operator whose canonical trans-
formation maps stable leaves into horizontal lines {η = const} and unstable leaves
into vertical lines {y = const} on T ∗Ry ' R2

y,η. (This is not possible to do globally
but the argument in §4.6 below uses a localized version of such conjugation with the
roles of y, η switched.) Then A−v is replaced by a Fourier multiplier χ−(hDy) where
supη |∂kηχ−(η;h)| = O(h−k/6−) (corresponding to the fact that a−v ∈ S

comp
1/6+ which fol-

lows from Lemma 3.1). Next, A+
q , A

+
q̃ are replaced by multiplication operators χ+(y),

χ̃+(y) where χ+, χ̃+ have supports of size ∼ hτ . The condition that q, q̃ are far from
each other implies that the supports of χ+, χ̃+ are at least h2/3 apart. Then (4.65)
turns into the estimate (assuming χ−, χ+, χ̃+ are real valued)

‖χ+(y)χ2
−(hDy)χ̃+(y)‖L2(R)→L2(R) = O(h∞)

which can be proved using repeated integration by parts to establish rapid decay of the
integral kernel: at each integration we gain a factor h ·h−2/3 ·h−1/6 = h1/6. Notice that
the size of the supports of χ+ and χ̃+ does not matter, it is the distance between the
two supports which is responsible for the factor h−2/3. In turn, the analogue of (4.66)
trivially follows from the fact that suppχ+∩supp χ̃+ = ∅. In this interpretation (4.65),
(4.66) are analogous to the bounds [BD18, (4.26),(4.25)] and the decomposition into
clusters below to the one used in the proof of [BD18, Proposition 4.3].

Proof. 1. Denote q = q1 . . . qn, q̃ = q̃1 . . . q̃n. Take maximal m ≤ n such that

V+
q1...qm

∩ V+
q̃1...q̃m

6= ∅.

If V+
q1
∩ V+

q̃1
= ∅ then we put m := 0.

By (4.24) we have J +
q1...qm

∼ J +
q̃1...q̃m

. We claim that

max(J +
q1...qm

,J +
q̃1...q̃m

) ≤ Ch−2/3. (4.67)

The case m = 0 is trivial, so we assume that m > 0. Take ρ ∈ V+
q1...qm

∩V+
q̃1...q̃m

∩S∗M .
Note that since q1 = q̃1 = e we have ρ ∈ V+

e . By (4.23) we have for every ρ̃ ∈
(V+

q ∪ V+
q̃ ) ∩ S∗M ⊂ (V+

q1...qm
∪ V+

q̃1...q̃m
) ∩ S∗M

d(ρ̃,W0u(ρ)) ≤ C ′

min(J +
q1...qm

,J +
q̃1...q̃m

)
≤ C

max(J +
q1...qm

,J +
q̃1...q̃m

)
. (4.68)
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Since q, q̃ are far from each other, the right-hand side of (4.68) has to be greater
than h2/3, which gives (4.67).

By (4.63) we have J +
q ≥ h−τ � h−2/3, so from (4.67) we obtain m < n. Denote

p := q1 . . . qm+1, p̃ := q̃1 . . . q̃m+1.

Since m was chosen maximal we have

V+
p ∩ V+

p̃ = ∅. (4.69)

Moreover by (4.67) and (4.25) and since V+
q ,V+

q̃ 6= ∅ and thus V+
p ,V+

p̃ 6= ∅ we get

max(J +
p ,J +

p̃ ) ≤ Ch−2/3. (4.70)

2. We now prove (4.65). We have by (3.5) and (3.8)

(A−vA
+
q )∗A−vA

+
q̃ =U(m+ 1)(A+

qm+2...qn
)∗U(−m− 1)

· (A−vA+
p )∗A−vA

+
p̃U(m+ 1)A+

q̃m+2...q̃n
U(−m− 1).

Thus by (4.14) it suffices to prove that ‖(A−vA+
p )∗A−vA

+
p̃‖L2→L2 = O(h∞). Similarly

to (4.60) we write
A−v =

∑
s∈A N0 , s.v

A−s .

Then by (3.5)

(A−vA
+
p )∗A−vA

+
p̃ =

∑
s,s̃∈A N0 , s,s̃.v

U(−N0)(A+
sp)∗A+

s̃p̃U(N0).

Since the number of terms in the sum above is bounded polynomially in h, it suffices
to show that

‖(A+
sp)∗A+

s̃p̃‖L2→L2 = O(h∞) for all s, s̃ ∈ A N0 . (4.71)

By (3.11), (4.16), (4.25), and (4.70) for each word t of length no more than N0 we have

V+
tp 6= ∅ =⇒ J +

tp ≤ CJ +
t J +

p ≤ CeΛ1N0 · h−2/3 ≤ Ch−5/6 ≤ Ch−2δ. (4.72)

Then by part 2 of Lemma 4.3, if V+
sp = ∅ then ‖A+

sp‖L2→L2 = O(h∞) which immediately
implies (4.71). A similar argument applies to A+

s̃p̃.

We may now assume that V+
sp 6= ∅, V+

s̃p̃ 6= ∅. Then by (4.72) we have max(J +
sp,J +

s̃p̃) ≤
Ch−2δ. Moreover V+

sp ∩ V+
s̃p̃ ⊂ ϕN0(V+

p ∩ V+
p̃ ) = ∅ by (3.6) and (4.69). Then (4.71)

follows from part 3 of Lemma 4.3.

3. To show (4.66), we first write

A−vA
+
q̃ (A−vA

+
q )∗ = A−vA

+
q̃ (A+

q )∗(A−v )∗.

Thus it suffices to prove that

‖A+
q̃ (A+

q )∗‖L2→L2 = O(h∞).
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This follows from part 3 of Lemma 4.3. Indeed, we have max(J +
q ,J +

q̃ ) ≤ Ch−2δ

by (4.63) and V+
q ∩ V+

q̃ ⊂ V+
p ∩ V+

p̃ = ∅ by (4.69). �

We will decompose A−vA
+
Q′n(w,e) into a sum of operators, each of which corresponds

to a cluster of words q ∈ Q′n(w, e) – see (4.75) below. Each cluster has the property
that the sets V+

q lie in an O(h2/3) sized conic neighborhood of some weak unstable leaf.
Moreover, most clusters lie far from each other in the sense of Definition 4.11, which
will let us decouple different clusters using the Cotlar–Stein Theorem and Lemma 4.12.
The clusters are constructed in the following

Lemma 4.13. If the constant ε0 in §4.2 is chosen small enough depending on (M, g)

then there exists a partition into clusters

Q′n(w, e) =

Rn(w,e)⊔
r=1

Qn(w, e, r)

such that for some constant C depending only on (M, g) we have:

(1) for each r there exists ρ(r) ∈ V+
e ∩ S∗M such that the r-th cluster is contained

in a Ch2/3 sized conic neighborhood of the weak unstable leaf W0u(ρ(r)), that is

d
(
ρ̃,W0u(ρ(r))

)
≤ Ch2/3 for all ρ̃ ∈

⋃
q∈Qn(w,e,r)

(V+
q ∩ S∗M); (4.73)

(2) let us call the clusters r, r̃ disjoint when each pair of words q ∈ Qn(w, e, r), q̃ ∈
Qn(w, e, r̃) is far from each other in the sense of Definition 4.11. Then for
each r, the number of clusters r̃ which are not disjoint from r is bounded by C.

Proof. In this proof C denotes constants depending only on (M, g) whose precise value
might change from place to place.

Since the weak unstable leavesW0u(ρ), ρ ∈ V+
e ∩S∗M , foliate V+

e ∩S∗M , and depend
Lipschitz continuously on ρ, if the diameter of V+

e ∩S∗M is less than ε0 and ε0 is small
enough, there exists a Lipschitz continuous function (with Lipschitz constant C)

Z : V+
e ∩ S∗M → R

which is constant on each weak unstable leaf W0u(ρ) ∩ V+
e , ρ ∈ V+

e ∩ S∗M and

d(ρ̃,W0u(ρ)) ≤ C|Z(ρ)− Z(ρ̃)| for all ρ, ρ̃ ∈ V+
e ∩ S∗M. (4.74)

For instance, one could take as Z(ρ) the function constructed in Lemma 2.3.

For each q ∈ Q′n(w, e), define the set

Iq := Z(V+
q ∩ S∗M) ⊂ R.

Fix an arbitrary point zq ∈ Iq. We choose a maximal subset

{z1, . . . , zR} ⊂ {zq | q ∈ Q′n(w, e)}
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which is h2/3 separated, that is |zr − zr̃| ≥ h2/3 for each r 6= r̃. Put Rn(w, e) := R.

Since the set {z1, . . . , zR} was chosen maximal, for each q ∈ Q′n(w, e) there exists r
such that |zq − zr| ≤ h2/3. We can thus define a partition into clusters

Q′n(w, e) =
R⊔
r=1

Qn(w, e, r) where |zq − zr| ≤ h2/3 for all q ∈ Qn(w, e, r).

By (4.23) and (4.63), each V+
q ∩ S∗M is contained in a Chτ sized neighborhood of

some weak unstable leaf, therefore (since the map Z is Lipschitz continuous) Iq ⊂
[zq − Chτ , zq + Chτ ]. Since hτ � h2/3 we see that for each q ∈ Qn(w, e, r) we have
Iq ⊂ [zr − Ch2/3, zr + Ch2/3]. Take ρ(r) ∈ V+

e ∩ S∗M such that Z(ρ(r)) = zr, then
by (4.74) for each q ∈ Qn(w, e, r) and ρ̃ ∈ V+

q ∩S∗M we have d(ρ̃,W0u(ρ(r))) ≤ Ch2/3.
This gives property (1).

Finally, if q, q̃ ∈ Q′n(w, e) are close in the sense of Definition 4.11, then |zq − zq̃| ≤
Ch2/3. Therefore, if the clusters r, r̃ are not disjoint then |zr − zr̃| ≤ Ch2/3. Since
{z1, . . . , zR} is h2/3 separated, we see that for each r the number of clusters r̃ not
disjoint from r is bounded by some constant C. This gives the property (2). �

Armed with Lemma 4.13 we now decompose

A−vA
+
Q′n(w,e) =

Rn(w,e)∑
r=1

Br, Br := A−vA
+
Qn(w,e,r) =

∑
q∈Qn(w,e,r)

A−vA
+
q . (4.75)

We claim that, with the constant C appearing in Lemma 4.13,

max
r

∑
r̃

‖B∗rBr̃‖1/2

L2→L2 ,max
r

∑
r̃

‖Br̃B
∗
r‖

1/2

L2→L2 ≤ C max
r
‖Br‖L2→L2 +O(h∞). (4.76)

Indeed, the sum over clusters r̃ not disjoint from r is estimated by C maxr ‖Br‖L2→L2 .
The sum over clusters disjoint from r is O(h∞) by Lemma 4.12, using that the number
of elements in Q′n(w, e) and thus the number Rn(w, e) of clusters are O(h−C) for some
constant C.

Applying the Cotlar–Stein Theorem [Zw12, Theorem C.5], we see that

‖A−vA+
Q′n(w,e)‖L2→L2 ≤ C max

r
‖Br‖L2→L2 +O(h∞).

Therefore Proposition 4.10 follows from the bound

max
r
‖A−vA+

Qn(w,e,r)‖L2→L2 ≤ Chβ

which in turn is implied by the following

Proposition 4.14. Assume that v ∈ A N0
? , w ∈ A N1

? , 1 ≤ n ≤ N1, e ∈ A , ρ0 ∈
V+
e ∩ S∗M , and Q ⊂ Q′n(w, e) lies in an O(h2/3) sized conic neighborhood of the weak
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unstable leaf W0u(ρ0), namely for some constant C0

d(ρ̃,W0u(ρ0)) ≤ C0h
2/3 for all ρ̃ ∈

⋃
q∈Q

(V+
q ∩ S∗M). (4.77)

Then there exists β > 0 depending only on V1,V? and there exists C > 0 depending
only on A1, A?, C0 such that

‖A−vA+
Q‖L2→L2 ≤ Chβ. (4.78)

In the above expression, A+
Q is a sum of many refined words operators A+

q with q

having Jacobians J +
q ∼ h−τ ; in turn, A−v can also be split into the sum of many word

operators A−q̃ with words |q̃| = N0. The hyperbolic dispersion estimates of [AN07a]
show that all the individual terms A−q̃A

+
q are small (their norms are bounded by some

hα), yet to cope with the sum of many such terms, we will have to use another ingre-
dient, namely a fractal uncertainty principle.

4.6. Fractal uncertainty principle and decay for a single cluster. In this section
we prove Proposition 4.14; as shown earlier in §4 this implies Proposition 3.2. We fix

v ∈ A N0
? , w ∈ A N1

? , n ∈ {1, . . . , N1}, e ∈ A , ρ0 ∈ V+
e ∩ S∗M, (4.79)

and Q ⊂ Q′n(w, e) which lies in an O(h2/3) sized conic neighborhood of W0u(ρ0) in the
sense of (4.77).

Throughout this section C denotes constants depending only on A1, . . . , AQ, and C0,
whose meaning might change from place to place, unless noted otherwise.

The strategy of the proof is to conjugate the operators A−v , A
+
Q by Fourier integral

operators to obtain a situation to which the fractal uncertainty principle of Proposi-
tion 2.10 can be applied. The proof of Proposition 4.14 is given in §4.6.4 below, using
components described in the rest of this section.

4.6.1. Normal form. We first study the symbols a−v , a
+
Q. We use the symplectomor-

phism constructed in Lemma 2.3, which approximately straightens out the weak un-
stable leaves close to W0u(ρ0).

By the assumptions on V1, . . . ,VQ in §4.2, the diameter of V+
e ∩S∗M = ϕ1(Ve∩S∗M)

is bounded above by Cε0 for some C depending only on (M, g). Therefore, if we fix
ε0 > 0 small enough then by Lemma 2.3 there exists a symplectomorphism

κ = κρ0 : Uρ0 → Vρ0 , Uρ0 ⊂ T ∗M \ 0, Vρ0 ⊂ T ∗R2 \ 0 (4.80)

which satisfies conditions (1)–(7) of Lemma 2.3 and V+
e ⊂ Uρ0 . (Here the closure

of V+
e is taken in T ∗M \ 0.) We denote elements of T ∗M and T ∗R2 by (x, ξ) and

(y, η) = (y1, y2, η1, η2) respectively.
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Since κ is homogeneous, the flipped graph Lκ defined in (2.46) is conic. Therefore,
shrinking Uρ0 (and reducing ε0) we may assume that Lκ is generated by a single phase
function, see §2.3.1.

We will analyze the images of the supports supp a−v , supp a+
Q under the map κ.

The goal is to relate these to localization to porous sets in y1 and η1/η2 respectively,
see (4.89),(4.90) below.

We start with supp a+
Q which is contained in the open conic set

V+
Q :=

⋃
q∈Q

V+
q ⊂ V+

e b Uρ0 . (4.81)

The following lemma is a key point in the argument where C3/2 regularity of the unsta-
ble foliation (used in Lemma 2.3) is combined with the fact that Q lies O(h2/3) close
to the weak unstable leaf W0u(ρ0) (the latter was made possible by the cluster decom-
position of §4.5). It states that the projection of each weak unstable leaf κ(W0u(ρ̃)),
ρ̃ ∈ V+

Q ∩ S∗M , onto the η1 coordinate lies in an interval of size O(h). Since by (4.23)
and (4.63) each V+

q ∩ S∗M , q ∈ Q, lies in an O(hτ ) neighborhood of some weak un-
stable leaf, we see that the projection of κ(V+

q ∩ S∗M) onto the η1 coordinate lies in
an interval of size O(hτ ).

Lemma 4.15. Let ρ̃ ∈ V+
Q ∩ S∗M . Then

|η1(κ(ρ))− η1(κ(ρ̃))| ≤ Ch for all ρ ∈ W0u(ρ̃) ∩ Uρ0 . (4.82)

Proof. We recall the straightening of the unstable foliation described in Lemma 2.3.
By (2.28) we have

κ(W0u(ρ̃) ∩ Uρ0) =
{(
y1, y2, F (y1, ζ̃), 1

)
| (y1, ζ̃) ∈ Ω, y2 ∈ R

}
∩ Vρ0 (4.83)

where ζ̃ := Z(ρ̃) and the functions F ∈ C3/2(Ω;R), Z ∈ C3/2(Uρ0 ∩ S∗M ;R) are
defined in Lemma 2.3. Moreover, by (4.77) we have d(ρ̃,W0u(ρ0)) ≤ C0h

2/3, which by
parts (5)–(6) of Lemma 2.3 implies

|ζ̃| ≤ Ch2/3. (4.84)

Combining this estimate with the point (8) of Lemma 2.3, we obtain

sup
y1

|F (y1, ζ̃)− ζ̃| ≤ Ch (4.85)

which together with (4.83) gives (4.82). �

In §4.6.2 below we use Lemma 4.15 and the results of §2.5 to show the following
porosity statement (see Definition 2.8):

Lemma 4.16. Define the set

Ω+ := η1(κ(V+
Q ∩ S

∗M)) ⊂ R. (4.86)
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η1=0

η1=h
1/6

η1=−h1/6

κ
(V
− v

)

Ω−
η1=−Ch2/3

η1=Ch
2/3

η1=0 Ω+κ(V+
Q)

Figure 9. The sets κ(V−v ∩V+
e ∩S∗M)∩{|η1| ≤ h1/6} and κ(V+

Q∩S∗M)

(lighter shaded). Here y1 is the horizontal coordinate (with the width of
the figure having h-independent scale) and η1 is the vertical coordinate.
The darker shaded sets are Ω− and Ω+, defined in (4.88) and (4.86).

Then there exist R and ν > 0 depending only on V1,V? such that Ω+ ⊂ Ω+
1 ∪ · · · ∪ Ω+

R

where each Ω+
k is ν-porous on scales Chτ to C−1.

Remarks. 1. Since κ(V+
Q ∩ S∗M) is contained in an O(h2/3) sized neighborhood of

{η1 = 0} by (4.77) and parts (5)–(6) of Lemma 2.3, we have

Ω+ ⊂ [−Ch2/3, Ch2/3]. (4.87)

In particular, it is easy to see that Ω+ is 1
3
-porous on scales above Ch2/3 for C large

enough. Lemma 4.16 shows that each Ω+
k is in fact ν-porous on scales above Chτ

(where τ is very close to 1) for some ν > 0.

2. Using Lemmas 2.17–2.18 and following the proof of Lemma 4.16, we get the following
statement: if the complements S∗M \ V1, S

∗M \ V? are (L0, L1)-dense in the stable
direction (in the sense of Definition 2.16) then Lemma 4.16 holds for some ν depending
only on (M, g), L0, L1.

We next study supp a−v , which is contained in V−v . By (4.87) and since supp a+
Q ⊂ V+

e

it would be enough to study the intersection of κ(V−v ∩ V+
e ∩ S∗M) with the set

{|η1| ≤ Ch2/3}. However, for the purpose of microlocalization of the operator A−v it is
convenient to choose a larger, h1/6-sized, neighborhood of {η1 = 0}. We thus define

Ω− := y1

(
κ(V−v ∩ V+

e ∩ S∗M) ∩ {|η1| ≤ h1/6}
)
⊂ R. (4.88)

The next lemma, proved in §4.6.2 below, establishes porosity of Ω−:

Lemma 4.17. Let Λ := dΛ1/Λ0e be defined in (2.11). Then there exist R and ν > 0

depending only on V1,V? such that Ω− ⊂ Ω−1 ∪ · · · ∪Ω−R where each Ω−k is ν-porous on
scales Ch1/(6Λ) to C−1.
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Remark. Using Lemmas 2.17–2.18 and following the proof of Lemma 4.17, we get the
following statement: if the complements S∗M \ V1, S

∗M \ V? are (L0, L1)-dense in the
unstable direction (in the sense of Definition 2.16) then Lemma 4.17 holds for some ν
depending only on (M, g), L0, L1.

For future use we record the following corollaries of the definitions (4.86), (4.88)
of Ω± and the homogeneity of κ:

κ
(
V+
Q ∩

{1

4
≤ |ξ|g ≤ 4

})
⊂
{η1

η2

∈ Ω+
}
∩
{1

4
≤ η2 ≤ 4

}
, (4.89)

κ(V−v ∩ V+
e ) ∩

{∣∣∣η1

η2

∣∣∣ ≤ h1/6
}
⊂ {y1 ∈ Ω−}. (4.90)

See Figure 9. For (4.89) we additionally used part (4) of Lemma 2.3.

4.6.2. Proof of porosity. We now prove Lemmas 4.16 and 4.17. We start by defining
fattened versions of the sets V+

Q , V−v . Fix two conic open sets

V]1,V]? ⊂ T ∗M \ 0

such that:

• Vw ⊂ V]w for w ∈ A? = {1, ?} where the closure is taken in T ∗M \ 0;
• the complements T ∗M \ V]w have nonempty interior.

This is possible since T ∗M \ V1, T
∗M \ V? have nonempty interior, see §3.1.

Since Vq ⊂ V? for q = 2, . . . , Q (see §4.2), we can also fix conic open sets

V]q ⊂ V]?, Vq ⊂ V]q , q = 2, . . . , Q.

Moreover, since the diameters of Vq ∩ S∗M , q ∈ A := {1, . . . , Q}, are less than ε0, we
can make the diameters of V]q ∩ S∗M less than ε0 as well. We may also assume that

V]+e ⊂ Uρ0 where Uρ0 is the domain of the map κ, see (4.80).

Let v = v0 . . . vN0−1 ∈ A N0
? be the word in the statement of Proposition 4.14 and

q = q1 . . . qn ∈ A n be arbitrary. Similarly to (3.2) define the open conic sets

V]−v :=

N0−1⋂
j=0

ϕ−j(V]vj), V]+q :=
n⋂
j=1

ϕj(V]qj). (4.91)

Clearly V−v ⊂ V]−v , V+
q ⊂ V]+q . Following (4.81) define also

V]+Q :=
⋃
q∈Q

V]+q ⊃ V+
Q . (4.92)

We use the results of §2.5 and the fact that T ∗M \ V ]1, T ∗M \ V ]? have nonempty
interiors to establish the porosity of the intersections of V]−v , V]+Q with unstable/stable
intervals:
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Lemma 4.18. There exists ν > 0 depending only on V1,V? such that:

(1) for every unstable interval γ : I0 → S∗M (see Definition 2.13), the preimage
γ−1(V]−v ) ⊂ R is ν-porous on scales Ch1/(6Λ) to 1;

(2) for every stable interval γ : I0 → S∗M , the set γ−1(V]+Q ) is ν-porous on scales
Chτ to 1.

Proof. Recall that Q is contained in the set Q′n(w, e) defined by (4.62). Therefore,
each q = q1 . . . qn ∈ Q satisfies q . w (where w ∈ A N1

? is fixed in the statement
of Proposition 4.14), which (recalling Definition 4.9) implies that V]qj ⊂ V

]
wj

for all
j = 1, . . . , n. It follows that

V]+Q ⊂ V
]+
w1...wn

:=
n⋂
j=1

ϕj(V]wj).

Thus the required porosity statements follow from Lemma 2.15 (taking the sets V]1, V]?
in (2.83)) once we establish the Jacobian bounds

inf
V]−v ∩S∗M

JuN0
≥ h−1/(6Λ), (4.93)

inf
V]+Q ∩S∗M

Js−n ≥ C−1h−τ . (4.94)

The estimate (4.93) follows immediately from (2.10) and the definitions (3.11) of N0

and (2.11) of Λ.

To show (4.94), take arbitrary ρ ∈ V]+Q ∩ S∗M , then ρ ∈ V]+q ∩ S∗M for some
q ∈ Q ⊂ Q′n(w, e). Take some ρ̃ ∈ V+

q ∩ S∗M ⊂ V]+q ∩ S∗M . We have

Js−n(ρ) ≥ C−1Js−n(ρ̃) ≥ C−1J +
q ≥ C−1h−τ

where the first inequality is proved similarly to (4.19) (using that the diameter of each
V]q ∩ S∗M , q ∈ A , is less than ε0), the second one follows from the definition (4.15)
of J +

q , and the third one follows from (4.63). �

The next lemma shows that each sufficiently short weak stable leaf centered at a
point in V−v is contained in the slightly larger set V]−v , and same is true for weak
unstable leaves and the sets V+

Q ,V
]+
Q . It will be useful in approximating Ω± by the sets

studied in Lemma 4.18, see (4.105), (4.107) below. As in Lemma 2.1 we fix a distance
function d(•, •) on S∗M .

Lemma 4.19. There exists ε1 > 0 depending only on V1,V? such that for all ρ, ρ̃ ∈
S∗M we have

d(ρ, ρ̃) ≤ ε1, ρ̃ ∈ W0s(ρ), ρ ∈ V−v =⇒ ρ̃ ∈ V]−v , (4.95)

d(ρ, ρ̃) ≤ ε1, ρ̃ ∈ W0u(ρ), ρ ∈ V+
Q =⇒ ρ̃ ∈ V]+Q . (4.96)
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Proof. It suffices to show that there exists a constant C depending only on (M, g) such
that for all ε1 > 0 and ρ, ρ̃ ∈ S∗M

d(ρ, ρ̃) ≤ ε1, ρ̃ ∈ W0s(ρ) =⇒ d(ϕt(ρ), ϕt(ρ̃)) ≤ Cε1 for all t ≥ 0; (4.97)

d(ρ, ρ̃) ≤ ε1, ρ̃ ∈ W0u(ρ) =⇒ d(ϕt(ρ), ϕt(ρ̃)) ≤ Cε1 for all t ≤ 0. (4.98)

Indeed, to show (4.95) and (4.96) it suffices to take ε1 small enough so that the distance
between Vq ∩ S∗M and S∗M \ V]q is larger than Cε1 for all q ∈ {1, 2, . . . , Q, ?} (which
is possible since Vq ⊂ V]q). Then ϕt(ρ) ∈ Vq ∩S∗M and d(ϕt(ρ), ϕt(ρ̃)) ≤ Cε1 together
imply that ϕt(ρ̃) ∈ V]q and it remains to use the definitions (3.2), (4.81), (4.91), (4.92).

We show (4.97), with (4.98) proved similarly. By the definition (2.13) of W0s(ρ) we
have ρ̃ = ϕr(ρ

′) for some ρ′ ∈ Ws(ρ) and r ∈ [−ε̃, ε̃]. Since stable leaves are transversal
to the flow lines of ϕt, we have

d(ρ′, ρ) + |r| ≤ Cε1.

By (2.20) there exists θ > 0 such that for all t ≥ 0

d(ϕt(ρ), ϕt(ρ
′)) ≤ Ce−θtd(ρ, ρ′) ≤ Cε1. (4.99)

On the other hand since ϕt(ρ̃) = ϕr(ϕt(ρ
′)) we have

d(ϕt(ρ
′), ϕt(ρ̃)) ≤ C|r| ≤ Cε1. (4.100)

Combining (4.99)–(4.100) we get (4.97). �

Since the stable leaves, the unstable leaves, and the flow trajectories are transversal
to each other, if ρ, ρ̃ ∈ S∗M are sufficiently close to each other then the weak stable
leaf W0s(ρ) intersects the unstable leaf Wu(ρ̃), and same is true for the stable leaf
Ws(ρ) and the weak unstable leaf W0u(ρ̃) – see (2.24). This immediately gives

Lemma 4.20. There exist C2 ≥ 1, ε2 > 0 depending only on (M, g) such that for each
ρ, ρ̃ ∈ S∗M with d(ρ, ρ̃) ≤ ε2 there exist

ρ′ ∈ Ws(ρ), ρ′′ ∈ Wu(ρ̃), r ∈ R such that ρ′ = ϕr(ρ
′′); (4.101)

max
{
d(ρ1, ρ2) | ρ1, ρ2 ∈ {ρ, ρ̃, ρ′, ρ′′}

}
+ |r| ≤ C2d(ρ, ρ̃). (4.102)

We now define the sets Ω±k from Lemmas 4.16–4.17. Let ε1, ε2, C2 be the constants
from Lemmas 4.19 and 4.20. Without loss of generality we may assume that ε1 ≤ ε2.
We will also assume that ε2 is small enough depending only on (M, g) in the beginning
of the proofs of Lemmas 4.22 and 4.23 below. Fix finitely many points

ρ1, . . . , ρR ∈ W0u(ρ0),

with R depending only on (M, g) and ε1, such that each point in W0u(ρ0) is ε1
2C2

close
to at least one of the points ρ1, . . . , ρR.
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Lemma 4.21. We have Ω± ⊂ Ω±1 ∪ · · · ∪ Ω±R where for k = 1, . . . , R

Ω+
k := η1(κ(Σ+

k )), Ω−k := y1(κ(Σ−k ))

and the sets Σ±k ⊂ V+
e ∩ S∗M are defined by

Σ+
k := {ρ ∈ V+

Q ∩ S
∗M | d(ρ, ρk) ≤ ε1

C2
},

Σ−k :=
{
ρ ∈ V−v ∩ V+

e ∩ S∗M | d(ρ,W0u(ρ0)) ≤ C3h
1/6, d(ρ, ρk) ≤ ε1

C2

}
where C3 is a sufficiently large constant depending only on V1,V?, C0.

Proof. Recalling the definitions (4.86),(4.88) of Ω± we see that it suffices to show the
inclusions

V+
Q ∩ S

∗M ⊂ Σ+
1 ∪ · · · ∪ Σ+

R, (4.103)

V−v ∩ V+
e ∩ S∗M ∩ κ−1({|η1| ≤ h1/6}) ⊂ Σ−1 ∪ · · · ∪ Σ−R. (4.104)

We first take arbitrary ρ ∈ V+
Q∩S∗M . By (4.77) we have d(ρ,W0u(ρ0)) ≤ C0h

2/3 ≤ ε1
2C2

.
Therefore there exists k ∈ {1, . . . , R} such that d(ρ, ρk) ≤ ε1

C2
. It follows that ρ ∈ Σ+

k

which gives (4.103).

We next take arbitrary ρ ∈ V−v ∩ V+
e ∩ S∗M such that |η1(κ(ρ))| ≤ h1/6. Since

κ(W0u(ρ0) ∩ Uρ0) = {η1 = 0, η2 = 1} ∩ Vρ0 , we have d(ρ,W0u(ρ0)) ≤ C3h
1/6 for some

constant C3. In particular d(ρ,W0u(ρ0)) ≤ ε1
2C2

, so there exists k ∈ {1, . . . , R} such
that d(ρ, ρk) ≤ ε1

C2
. It follows that ρ ∈ Σ−k which gives (4.104). �

We are now ready to finish the proofs of Lemmas 4.16–4.17. Using Lemma 4.21 we
see that Lemma 4.16 follows from

Lemma 4.22. Let ν > 0 be fixed in Lemma 4.18. Then for each k ∈ {1, . . . , R} the
set Ω+

k is ν
6
-porous on scales Chτ to C−1.

Proof. Without loss of generality we may assume that Σ+
k 6= ∅. Then ρk lies in the

ε1
C2
≤ ε2 sized neighborhood of V+

e ∩ S∗M b Uρ0 . Let γsk : [−Cε2, Cε2] → S∗M be
a stable interval (see Definition 2.13) such that γsk(0) = ρk. Here C is chosen large
enough (depending only on (M, g)) so that every point ρ′ ∈ Ws(ρk) with d(ρk, ρ

′) ≤ ε2

lies in γsk. We may choose ε2 small enough so that γsk ⊂ Uρ0 .

Since Es(ρk) ⊂ Tρk(S
∗M) is transversal to TρkW0u(ρ0) and (recalling that κ maps

S∗M to {η2 = 1} and W0u(ρ0) to {η1 = 0, η2 = 1})

dκ(ρk)(Tρk(S
∗M)) = {dη2 = 0}, dκ(ρk)(TρkW0u(ρ0)) = {dη1 = dη2 = 0}

we have d(η1 ◦ κ)(ρk)γ̇
s
k(0) 6= 0. Therefore if ε2 is small enough depending only on

(M, g) then the map

ψsk := η1 ◦ κ ◦ γsk : [−Cε2, Cε2]→ R
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ρk

ρ′
ρ

Σ+
k

V]+Q

γsk

W0u(ρ)

W0u(ρ0)

ε1/C2

Figure 10. An illustration of the proof of Lemma 4.22. We use the
coordinates provided by the diffeomorphism κ, with y1 the horizontal
coordinate and η1 the vertical one; we restrict to S∗M = {η2 = 1}
and suppress the flow direction ∂y2 (thus ρ′, ρ′′ are mapped to the same
point). The darker shaded set is Σ+

k and the lighter shaded set is V]+Q .

is a diffeomorphism onto its image. We extend ψsk to a global diffeomorphism R→ R
so that it satisfies the derivative bounds (2.76) with some constant C1 depending only
on (M, g). Define

Ω̃+
k := ψsk

(
(γsk)

−1(V]+Q )
)

= η1(κ(γsk ∩ V
]+
Q )) ⊂ R.

Then by Lemmas 4.18 and 2.12 the set Ω̃+
k is ν

2
-porous on scales Chτ to C−1.

We now claim that
Ω+
k ⊂ Ω̃+

k + [−Ch,Ch]. (4.105)
Indeed, take arbitrary ρ ∈ Σ+

k . Then d(ρ, ρk) ≤ ε1
C2
≤ ε2, so by Lemma 4.20 there exist

ρ′ ∈ Ws(ρk), ρ
′′ ∈ Wu(ρ), r ∈ [−ε1, ε1] such that ρ′ = ϕr(ρ

′′).

(See Figure 10.) By (4.102) we have d(ρk, ρ
′) ≤ ε1 ≤ ε2, thus ρ′ ∈ γsk. We also have

d(ρ, ρ′) ≤ ε1, ρ′ ∈ W0u(ρ), and ρ ∈ V+
Q ∩ S∗M , which by Lemma 4.19 imply that

ρ′ ∈ V]+Q . Therefore
η1(κ(ρ′)) ∈ Ω̃+

k . (4.106)
On the other hand by Lemma 4.15 we have

|η1(κ(ρ))− η1(κ(ρ′))| ≤ Ch.

Since Ω+
k = η1(κ(Σ+

k )), together with (4.106) this gives (4.105).

To show that Ω+
k is ν

6
-porous on scales Chτ to C−1 it now remains to use (4.105),

Lemma 2.11, and the previously established porosity of Ω̃+
k . �

Finally, using Lemma 4.21 we see that Lemma 4.17 follows from

Lemma 4.23. Let ν > 0 be fixed in Lemma 4.18. Then for each k ∈ {1, . . . , R} the
set Ω−k is ν

6
-porous on scales Ch1/(6Λ) to C−1.



CONTROL OF EIGENFUNCTIONS IN VARIABLE CURVATURE 87

ρk
γuk

W0s(ρ)

ρ′′

ρ

Σ−k

V]−v

ε
1/C

2 Ch1/6

Figure 11. An illustration of the proof of Lemma 4.23, following the
same convention as Figure 10. The darker shaded set is Σ−k and the
lighter shaded set is V]−v .

Proof. Without loss of generality we may assume that Σ−k 6= ∅. Then ρk lies in the
ε1
C2
≤ ε2 sized neighborhood of V+

e ∩ S∗M b Uρ0 . Let γuk : [−Cε2, Cε2] → S∗M be an
unstable interval (see Definition 2.13) such that γuk (0) = ρk. Here C is chosen large
enough (depending only on (M, g)) so that every point ρ′′ ∈ Wu(ρk) with d(ρk, ρ

′′) ≤ ε2

lies in γuk . We may choose ε2 small enough so that γuk ⊂ Uρ0 .

Since κ is a symplectomorphism and p = η2 ◦ κ by part (4) of Lemma 2.3, κ maps
the Hamiltonian field Hp into ∂y2 . Since Eu(ρk) is transversal to Hp and tangent to
W0u(ρ0), which is mapped by κ to {η1 = 0, η2 = 1}, we have d(y1 ◦ κ)(ρk)γ̇

u
k (0) 6= 0.

Therefore if ε2 is small enough depending only on (M, g) then the map

ψuk := y1 ◦ κ ◦ γuk : [−Cε2, Cε2]→ R

is a diffeomorphism onto its image. We extend ψuk to a global diffeomorphism similarly
to the proof of Lemma 4.22 and define

Ω̃−k := ψuk
(
(γuk )−1(V]−v )

)
= y1(κ(γuk ∩ V]−v )) ⊂ R.

Then by Lemmas 4.18 and 2.12 the set Ω̃−k is ν
2
-porous on scales Ch1/(6Λ) to C−1.

We now claim that
Ω−k ⊂ Ω̃−k + [−Ch1/6, Ch1/6]. (4.107)

Indeed, take arbitrary ρ ∈ Σ−k . Then d(ρ, ρk) ≤ ε1
C2
≤ ε2, so by Lemma 4.20 there exist

ρ′ ∈ Ws(ρ), ρ′′ ∈ Wu(ρk), r ∈ [−ε1, ε1] such that ρ′ = ϕr(ρ
′′).

(See Figure 11.) By (4.102) we have d(ρk, ρ
′′) ≤ ε1 ≤ ε2, thus ρ′′ ∈ γuk . We also have

d(ρ, ρ′′) ≤ ε1, ρ′′ ∈ W0s(ρ), and ρ ∈ V−v ∩ S∗M , which by Lemma 4.19 imply that
ρ′′ ∈ V]−v . Therefore

y1(κ(ρ′′)) ∈ Ω̃−k . (4.108)
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Since d(ρ,W0u(ρ0)) ≤ C3h
1/6 and ρ′ ∈ W0u(ρ0) ∩Ws(ρ), we have d(ρ, ρ′) ≤ Ch1/6. We

also have y1(κ(ρ′)) = y1(κ(ρ′′)). It follows that

|y1(κ(ρ))− y1(κ(ρ′′))| ≤ Ch1/6.

Since Ω−k = y1(κ(Σ−k )), together with (4.108) this gives (4.107).

To show that Ω−k is ν
6
-porous on scales Ch1/(6Λ) to C−1 it remains to use (4.107),

Lemma 2.11, and the previously established porosity of Ω̃−k . �

4.6.3. Application of the fractal uncertainty principle. We now use the fractal uncer-
tainty principle (in the form given by Proposition 2.10) and the porosity statements
proved in Lemmas 4.16–4.17 to establish an uncertainty principle for neighborhoods
of the right-hand sides of (4.89)–(4.90). Recall the sets Ω± ⊂ R from (4.86),(4.88). As
before, denote by Ω±(α) := Ω± + [−α, α] the α-neighborhood of Ω±.

Lemma 4.24. Define the following subsets of R2:

Υ+ :=
{

(η1, η2)
∣∣∣ 1

4
≤ η2 ≤ 4,

η1

η2

∈ Ω+(hτ )
}
, (4.109)

Υ− :=
{

(y1, y2) | y1 ∈ Ω−(h1/6)
}
. (4.110)

Then there exists β > 0 depending only on V1,V? such that∥∥ 1lΥ−(y) 1lΥ+(hDy)
∥∥
L2(R2)→L2(R2)

≤ Chβ. (4.111)

Proof. 1. Put Ω̂− := Ω−(h1/6), Ω̂+ := Ω+(hτ ). We first show that∥∥ 1lΥ−(y) 1lΥ+(hDy)
∥∥
L2(R2)→L2(R2)

≤ sup
η2∈[ 1

4
,4]

‖ 1lΩ̂−(hDη1) 1l−η2Ω̂+(η1)‖L2(R)→L2(R).

(4.112)
Indeed, conjugating by the semiclassical Fourier transform we see that∥∥ 1lΥ−(y) 1lΥ+(hDy)

∥∥
L2(R2)→L2(R2)

=
∥∥ 1lΥ−(hDη) 1lΥ+(−η)

∥∥
L2(R2)→L2(R2)

.

Now take
f ∈ C∞c (R2), g := 1lΥ−(hDη) 1lΥ+(−η)f.

For each η2 ∈ R define the functions fη2 , gη2 ∈ L2(R) by fη2(η1) := f(η1,−η2),
gη2(η1) := g(η1,−η2). Then

gη2 =

{
1lΩ̂−(hDη1) 1l−η2Ω̂+(η1)fη2 , η2 ∈ [1

4
, 4];

0, otherwise.

Writing ‖f‖2
L2(R2) as the integral of ‖fη2‖2

L2(R) over η2, and same for the norm of g, we
obtain (4.112).
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2. Fix η2 ∈ [1
4
, 4]. Denoting by Fh the one-dimensional unitary semiclassical Fourier

transform (see (2.60)), we have

‖ 1lΩ̂−(hDη1) 1l−η2Ω̂+(η1)‖L2(R)→L2(R) = ‖ 1lΩ̂− Fh 1l−η2Ω̂+ ‖L2(R)→L2(R). (4.113)

Let Ω−k , Ω+
` be the sets defined in Lemmas 4.16–4.17; here |k|, |`| ≤ C. We put

Ω̂−k := Ω−k (h1/6), Ω̂+
` := Ω+

` (hτ ).

By Lemma 4.17 we have Ω̂− ⊂
⋃
k Ω̂−k , which means that 1lΩ̂− =

∑
k b− 1lΩ̂−k

for
some b− ∈ L∞(R), 0 ≤ b− ≤ 1. Similarly by Lemma 4.16 we may write 1l−η2Ω̂+ =∑

` 1l−η2Ω̂+
`
b+ where 0 ≤ b+ ≤ 1. This gives

‖ 1lΩ̂− Fh 1l−η2Ω̂+ ‖L2(R)→L2(R) ≤
∑
k,`

‖ 1lΩ̂−k
Fh 1l−η2Ω̂+

`
‖L2(R)→L2(R). (4.114)

By Lemma 4.16 each set Ω+
` is ν-porous on scales Chτ to C−1, where ν > 0 depends

only on V1,V?. By Lemma 2.11 the set Ω̂+
` is then ν

3
-porous on scales Chτ to C−1. It

follows from Definition 2.8 that −η2Ω̂+
` is ν

3
-porous on scales 4Chτ to (4C)−1. Similarly,

by Lemmas 4.17 and 2.11, each set Ω̂−k is ν
3
-porous on scales Ch1/(6Λ) to C−1.

We now apply Proposition 2.10 to the sets Ω̂−k , −η2Ω̂+
` . By the discussion in the

previous paragraph, for h small enough these sets are ν
3
-porous on scales hγ

−
0 to hγ

−
1

and hγ
+
0 to hγ

+
1 respectively, where

γ−0 =
1

6Λ
− ε, γ+

0 = τ − ε, γ−1 = γ+
1 = ε :=

1

60Λ
.

Recalling from (4.61) that τ = 1− 1
10Λ

, we compute

γ := min(γ+
0 , 1− γ−1 )−max(γ+

1 , 1− γ−0 ) =
1

30Λ
> 0. (4.115)

If β0 > 0 is the constant from Proposition 2.10 with ν replaced by ν
3
, then (2.74) gives

‖ 1lΩ̂−k
Fh 1l−η2Ω̂+

`
‖L2(R)→L2(R) ≤ Chβ, β := γβ0 > 0. (4.116)

Together (4.112)–(4.114) and (4.116) imply (4.111). �

4.6.4. Microlocal conjugation and the proof of Proposition 4.14. We now conjugate the
operators A−v , A

+
Q by Fourier integral operators and give the proof of Proposition 4.14

using Lemma 4.24.

Let κ be the symplectomorphism defined in (4.80). As explained in §4.6.1 we may
assume that Lκ is generated by a single phase function. Then (see §2.3.3) there exist
Fourier integral operators

B = B(h) : L2(M)→ L2(R2), B ∈ Icomp
h (κ),

B′ = B′(h) : L2(R2)→ L2(M), B′ ∈ Icomp
h (κ−1)
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which quantize κ near κ(V+
e ∩ {1

4
≤ |ξ|g ≤ 4}) × (V+

e ∩ {1
4
≤ |ξ|g ≤ 4}) in the sense

of (2.54). In particular

B′B = I +O(h∞) microlocally near V+
e ∩ {1

4
≤ |ξ|g ≤ 4}. (4.117)

By Lemma 2.3 all derivatives of κ are bounded independently of the choice of the
base point ρ0 fixed in (4.79). Thus we may choose B,B′ which are bounded uniformly
in h, ρ0; that is, all derivatives of the corresponding phase functions and amplitudes in
the oscillatory integral representations (2.43) are bounded.

By Egorov’s Theorem (2.37) and since WFh(Ae) ⊂ Ve ∩ {1
4
< |ξ|g < 4} by (4.13)

and V+
e = ϕ1(Ve) by (3.2), we have

WFh(Ae(−1)) ⊂ V+
e ∩ {1

4
< |ξ|g < 4}.

Fix a pseudodifferential cutoff Ze ∈ Ψ0
h(M) such that

WFh(Ze) ⊂ V+
e ∩ {1

4
< |ξ|g < 4}, WFh(I − Ze) ∩WFh(Ae(−1)) = ∅. (4.118)

Since A+
Q is the sum of polynomially many in h terms of the form A+

q (see (3.9))
with the words q ∈ Q′n(w, e) starting with the letter e (see (4.62)), we see from the
definition (3.3) of A+

q that

A+
Q = ZeA

+
Q +O(h∞)L2(M)→L2(M). (4.119)

Since WFh(Ze) ∩WFh(I − B′B) = ∅ by (4.117)–(4.118), we then have

A−vA
+
Q = A−vZeB′BA+

Q +O(h∞)L2(M)→L2(M). (4.120)

We also have norm bounds

‖A−v ‖L2(M)→L2(M) ≤ 2, (4.121)

‖A+
Q‖L2(M)→L2(M) ≤ C log3(1/h). (4.122)

Here (4.121) follows from (3.15) and (4.122) follows from Lemma 4.5 and (4.63).

By the equivariance of pseudodifferential operators under conjugation by Fourier
integral operators (see (2.52)) the conjugated operators BA−vZeB′ and BA+

QB′ formally
correspond to the symbols

(a−vσh(Ze)) ◦ κ−1, a+
Q ◦ κ

−1.

By (4.89)–(4.90) the supports of the above symbols satisfy

κ(supp a+
Q) ⊂

{η1

η2

∈ Ω+
}
∩
{1

4
≤ η2 ≤ 4

}
, (4.123)

κ
(

supp(a−vσh(Ze))
)
∩
{∣∣∣η1

η2

∣∣∣ ≤ h1/6
}
⊂ {y1 ∈ Ω−} (4.124)

where the sets Ω± ⊂ R are defined in (4.86),(4.88). Here we denote points in T ∗R2

by (y, η) where y, η ∈ R2.
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We now make two microlocalization statements which quantize the above contain-
ments. The first statement, proved using the results of §4.3.3 and §2.3.4, quan-
tizes (4.123):

Lemma 4.25. Assume that the constant ε0 in §4.2 is chosen small enough depending
only on (M, g). Let Υ+ ⊂ R2 be defined in (4.109). Then

BA+
Q = 1lΥ+(hDy)BA+

Q +O(h∞)L2(M)→L2(R2). (4.125)

Proof. 1. By (4.119) it suffices to prove that 1lR2\Υ+(hDy)BZeA+
Q = O(h∞)L2(M)→L2(R2).

Since Q has polynomially many in h elements, recalling the definition (3.9) of A+
Q it

suffices to show that uniformly in q ∈ Q

1lR2\Υ+(hDy)BZeA+
q = O(h∞)L2(M)→L2(R2). (4.126)

We henceforth fix q ∈ Q. Recalling the definitions (4.86) and (4.81) of Ω+ and V+
Q we

see that Ω+
q ⊂ Ω+ where

Ω+
q := η1(κ(V+

q ∩ S∗M)) ⊂ R. (4.127)

Recalling the definition (4.109) of Υ+ we then have Υ+
q ⊂ Υ+ where

Υ+
q :=

{
(η1, η2)

∣∣∣ 1

4
≤ η2 ≤ 4,

η1

η2

∈ Ω+
q (hτ )

}
. (4.128)

Moreover, we have A+
q = U+

q U(−n) where the cutoff propagator U+
q is defined in (4.45).

Since U(−n) is unitary, (4.126) follows from the bound

1lR2\Υ+
q

(hDy)BZeU+
q = O(h∞)L2(M)→L2(R2). (4.129)

2. Let Bq, B
′
q, q ∈ A , be the Fourier integral operators defined in (4.55). They quantize

the symplectomorphisms κq defined in (4.49). Since WFh(Aq) ⊂ Vq ∩ {1
4
< |ξ|g < 4}

we have

Aq = B′qBqAq +O(h∞)L2(M)→L2(M) = B′qBqAqB
′
qBq +O(h∞)L2(M)→L2(M). (4.130)

Put Âq := BqAqB
′
q. By (2.52) and part (4) of Lemma 2.3 we have

Âq ∈ Ψ0
h(R2), WFh(Âq) ⊂ κq(WFh(Aq)) b {1

4
< η2 < 4}.

Thus there exists an h-independent function χ ∈ C∞c (R2) such that for all q ∈ A

suppχ ⊂ {1
4
< η2 < 4}, Âq = Âqχ(hDy) +O(h∞)L2(R2)→L2(R2).

Together with (4.130) this implies

Aq = AqB
′
qχ(hDy)Bq +O(h∞)L2(M)→L2(M).

We write q = q1 . . . qn, where q1 = e (see (4.62)). Recalling (4.45), we have

U+
q = U+

q B
′
qnχ(hDy)Bqn +O(h∞)L2(M)→L2(M).
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Thus (4.129) follows from the estimate

1lR2\Υ+
q

(hDy)BZeU+
q B

′
qnχ(hDy) = O(h∞)L2(R2)→L2(R2) (4.131)

and the L2-boundedness of Fourier integral operators.

Now, take arbitrary f ∈ L2(R2) such that ‖f‖L2 = 1. Following (4.56) define
Φθ(y) = 〈y, θ〉, y, θ ∈ R2. Using the Fourier inversion formula we write

χ(hDy)f(y) = (2πh)−1

∫
R2

χ(θ)Fhf(θ)eiΦθ(y)/h dθ (4.132)

where Fhf(θ) = (2πh)−1f̂(θ/h) is the semiclassical Fourier transform of f , satisfying
‖Fhf‖L2(R2) = 1. Using Hölder’s inequality we bound

‖ 1lR2\Υ+
q

(hDy)BZeU+
q B

′
qnχ(hDy)f‖L2(R2)

≤ Ch−1 sup
θ∈suppχ

‖ 1lR2\Υ+
q

(hDy)BZeU+
q B

′
qn(eiΦθ/h)‖L2(R2).

Thus to prove (4.131) it is enough to show the following estimate on the propagated
Lagrangian distributions U+

q B
′
qn(eiΦθ/h):

sup
θ∈suppχ

‖ 1lR2\Υ+
q

(hDy)BZeU+
q B

′
qn(eiΦθ/h)‖L2(R2) = O(h∞). (4.133)

3. Henceforth we fix θ ∈ suppχ. In particular, 1
4

+ ε ≤ θ2 ≤ 4− ε for some fixed ε > 0.
Let N > 0. Using Proposition 4.8 we write (recalling that q1 = e)

U+
q B

′
qn(eiΦθ/h) = U(1)B′e(e

iΦq,θ/haq,θ,N) +O(hN)L2(M). (4.134)

Here Φq,θ is a generating function (in the sense of (2.42)) of the propagated Lagrangian
L̂q,θ = κe(Lq,θ) defined in (4.50).

We now analyze the function BZeU(1)B′e(e
iΦq,θ/haq,θ,N). By (4.47), the composition

property (4) in (2.3.3), and the condition (4.118) on WFh(Ze) we have

BZeU(1)B′e ∈ I
comp
h (κ̃), κ̃ := κ ◦ ϕ1 ◦ κ−1

e |κe(Ve).

Recall from (4.49) and (4.80) that κe = κρe , κ = κρ0 are homogeneous symplectomor-
phisms constructed using Lemma 2.3 and ρ0 ∈ ϕ1(Ve ∩ S∗M) (as assumed in Propo-
sition 4.14), ρe ∈ Ve ∩ S∗M , with the diameter of Ve ∩ S∗M bounded above by ε0.
In particular, dκe(ρe) maps the flow/stable/unstable spaces E0(ρe), Es(ρe), Eu(ρe) to
R∂y2 ,R∂η1 ,R∂y1 and a similar statement is true for dκ(ρ0). Thus for ε0 small enough,
the differential dκ̃(0, 0, 0, 1) maps the vertical subspace ker dy to an almost vertical
subspace. It follows that κ̃ has a generating function in the sense of (2.47), and
thus BZeU(1)B′e can be written in the oscillatory integral form (2.48). (See the proof
of [NZ09, Lemma 4.4] for details.) Moreover, by Lemma 4.7 the Lagrangian L̂q,θ is a
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graph in the y variables and its tangent planes are O(ε0) close to horizontal. Thus for
ε0 small enough the Lagrangian submanifold

L̃ := κ̃(L̂q,θ) = κ
(
ϕn(κ−1

qn (L̂θ)) ∩ V+
q

)
⊂ T ∗R2

is also a graph in the y variables, and thus can be written in the form (2.42):

L̃ = {(y, dΦ̃(y)) | y ∈ Ũ }.

From the properties of L̂q,θ in Lemma 4.7 we see that for every α

sup
Ũ

|∂αΦ̃| ≤ Cα (4.135)

where the constant Cα depends only on (M, g) and α.

We now apply the method of stationary phase using (2.50), (2.45) and get

BZeU(1)B′e(e
iΦq,θ/haq,θ,N) = eiΦ̃/hã+O(hN)L2(R2). (4.136)

Here ã is given by the stationary phase expansion and depends on the symbol aq,θ,N;
see [NZ09, Lemma 4.1] for details. From the properties of the symbol aq,θ,N in Propo-
sition 4.8 we see that ã ∈ C∞c (Ũ ) and for all α

d(supp ã,R2 \ Ũ ) ≥ C−1, sup |∂αã| ≤ CN,α. (4.137)

4. Together (4.134) and (4.136) give

BZeU+
q B

′
qn(eiΦθ/h) = eiΦ̃/hã+O(hN)L2(R2).

Since N is chosen arbitrary, to prove (4.133) it suffices to show that

‖ 1lR2\Υ+
q

(hDy)(e
iΦ̃/hã)‖L2(R2) = O(hN). (4.138)

To do that we use Proposition 2.7 (which is a Fourier localization statement for La-
grangian distributions) with h′ := hτ , U := Ũ , Φ := Φ̃, K := supp ã, and a := ã.
The assumptions (2.55) and (2.57) of that proposition are satisfied due to (4.135)
and (4.137). Next, define

Ω̃ := {dΦ̃(y) | y ∈ Ũ } ⊂ R2.

Then Ω̃ is the projection of L̃ onto the η variables. Since L̃ ⊂ κ(V+
q ∩ p−1(θ2)),

recalling the definition (4.127) of Ω+
q we have

Ω̃ ⊂ (θ2Ω+
q )× {θ2}.

As explained in the paragraph preceding Lemma 4.15, the diameter of Ω+
q is bounded

above by Chτ . Then diam Ω̃ ≤ Chτ as well, giving the assumption (2.56). Thus
Proposition 2.7 applies, giving

‖ 1lR2\Ω̃( 1
8
hτ )(hDy)(e

iΦ̃/hã)‖L2(R2) ≤ CNh
N.
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Since the neighborhood Ω̃(1
8
hτ ) lies inside Υ+

q by (4.128) and (4.87), this gives (4.138),
finishing the proof. �

Our second microlocalization statement quantizes (4.124):

Lemma 4.26. Let Υ− ⊂ R2 be defined in (4.110). Then there exists χ− ∈ C∞c (R2; [0, 1])

such that suppχ− ⊂ Υ− and

A−vZeB′ 1lΥ+(hDy) = A−vZeB′χ−(y) 1lΥ+(hDy) +O(h2/3−)L2(R2)→L2(M). (4.139)

Proof. By Lemma 3.1 (recalling that we suppressed the ‘−’ sign in the notation there)
and the product formula in the Ψcomp

1/6+ calculus we have

a−v ∈ S
comp
1/6+ (T ∗M), A−vZe = Oph

(
a−vσh(Ze)

)
+O(h2/3−)L2(M)→L2(M).

Then by (4.117)–(4.118) we get

A−vZe = B′BOph
(
a−vσh(Ze)

)
+O(h2/3−)L2(M)→L2(M).

Thus it suffices to show that there exists χ+ ∈ C∞c (R2; [0, 1]) such that χ+ = 1 on Υ+

and ∥∥BOph
(
a−vσh(Ze)

)
B′(1− χ−(y))χ+(hDy)

∥∥
L2(R2)→L2(R2)

= O(h2/3−).

By (2.52) and since σh(BB′) = 1 on κ(WFh(Ze)) we have

BOph
(
a−vσh(Ze)

)
B′ = Oph

(
(a−vσh(Ze)) ◦ κ−1

)
+O(h2/3−)L2(R2)→L2(R2).

Thus is is enough to show the bound∥∥Oph
(
(a−vσh(Ze)) ◦ κ−1

)
(1− χ−(y))χ+(hDy)

∥∥
L2(R2)→L2(R2)

= O(h2/3−). (4.140)

We now define the cutoff functions χ±, in a way that they lie in the symbol class
Scomp

1/6 (R2). By (4.87) and (4.109) we have

Υ+
( 1

10
h1/6

)
⊂
{∣∣∣η1

η2

∣∣∣ ≤ h1/6
}

where Υ+(α) := Υ++B(0, α) denotes the α-neighborhood of Υ+. By [DZ16, Lemma 3.3]
there exists χ+ ∈ Scomp

1/6 (R2; [0, 1]) such that

suppχ+ ⊂
{∣∣∣η1

η2

∣∣∣ ≤ h1/6
}
, supp(1− χ+) ∩Υ+ = ∅.

Next, by (4.124) and (4.110) we have

Υ̃−(h1/6) ⊂ Υ− where Υ̃− := y
(
κ(supp(a−vσh(Ze))) ∩ {η ∈ suppχ+}

)
.

Thus by another application of [DZ16, Lemma 3.3] there exists χ− ∈ Scomp
1/6 (R2; [0, 1])

such that
suppχ− ⊂ Υ−, supp(1− χ−) ∩ Υ̃− = ∅.
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To prove (4.140) it remains to use the product formula in the Ψ1/6+(R2) calculus (see
e.g. [Zw12, Theorems 4.18 and 4.23]) and the identity(

(a−vσh(Ze)) ◦ κ−1
)
(1− χ−(y))χ+(η) ≡ 0

which follows from the fact that supp(1− χ−) ∩ Υ̃− = ∅. �

Armed with Lemmas 4.25–4.26 we are finally ready to give

Proof of Proposition 4.14. We have

A−vA
+
Q = A−vZeB′ 1lΥ+(hDy)BA+

Q +O(h∞)L2(M)→L2(M)

= A−vZeB′χ−(y) 1lΥ+(hDy)BA+
Q +O(h2/3−)L2(M)→L2(M)

where the first line follows from (4.120), Lemma 4.25, and (4.121); the second line
follows from Lemma 4.26 and (4.122).

Using the norm bounds (4.121)–(4.122) and the fact that Ze,B′,B are bounded in
L2 → L2 norm uniformly in h, we get

‖A−vA+
Q‖L2(M)→L2(M) ≤ C log3(1/h)‖ 1lΥ−(y) 1lΥ+(hDy)‖L2(R2)→L2(R2) +O(h2/3−).

Using the uncertainty principle given by Lemma 4.24 we then have

‖A−vA+
Q‖L2(M)→L2(M) ≤ Chβ log3(1/h) +O(h2/3−).

This gives (4.78) (with a smaller value of β), finishing the proof. �

5. Propagation of observables up to local Ehrenfest time

In this section we prove Propositions 4.2 and 4.4 on the structure of the operators
A±q when J ±q ≤ Ch−δ. We will focus on the operators A−q , with A+

q handled the same
way (reversing the direction of propagation). Recall from (3.3) that

A−q = Aqn−1(n− 1) · · ·Aq0(0), q = q0 . . . qn−1

where the operators Aq ∈ Ψ−∞h (M), q ∈ A = {1, . . . , Q}, are defined in §4.2. Here we
use the notation (2.35):

A(t) = U(−t)AU(t), U(t) = e−itP/h

where P ∈ Ψ−∞h (M) is defined in (2.34).

To analyze A−q we write it as a result of an iterative process, where at each step
we conjugate by U(1) and multiply by an operator Aq, see §5.1 below. We care-
fully estimate the resulting symbols and the remainders at each step of the iteration,
using quantitative semiclassical expansions established in Appendix A. This largely
follows [Ri10, Section 7]; the estimates on the symbol of A−q there are similar in spirit
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to those in [AN07a, Section 3.4]. Compared to [Ri10] we will obtain more precise infor-
mation on the propagated symbols in order to control the sums over many operators
A−q which is needed in the proof of Proposition 4.4.

5.1. Iterative construction of the operators. Let q = q0 . . . qn−1 ∈ A • and as-
sume that n ≤ C0 log(1/h) for some constant C0. Define

Âq,r := A−qn−r...qn−1
, r = 1, . . . , n. (5.1)

Then Âq,1 = Aqn−1 , A−q = Âq,n, and we have the iterative formula

Âq,r = U(−1)Âq,r−1U(1)Aqn−r , r = 2, . . . , n. (5.2)

The next statement gives the dependence of the full symbol of the operator Âq,r on that
of the operator Âq,r−1, with explicit remainders. We use the quantization procedure
Oph on M defined in (A.5).

Lemma 5.1. Assume that a ∈ C∞c (T ∗M), supp a ⊂ {1
4
≤ |ξ|g ≤ 4}, and q ∈ A .

Then for each4 N ∈ N we have

U(−1) Oph(a)U(1)Aq = Oph

(N−1∑
j=0

hjLj,q(a ◦ ϕ1)

)
+O(‖a‖C2N+17hN)L2→L2 . (5.3)

Here each Lj,q is a differential operator of order 2j on T ∗M . We have L0,q = aq.
Moreover, each Lj,q is supported in Vq ∩ {1

4
< |ξ|g < 4}.

In addition to N, the constant in O(•) depends only on (M, g), the choice of the
coordinate charts and cutoffs in (A.5), and the choice of the operators A1, . . . , AQ. The
operators Lj,q depend only on the above data as well as on j, q.

Proof. From the construction of Aq in §4.2 we have for all N

Aq = Oph

(N−1∑
j=0

hjaq,j

)
+O(hN)L2→L2 (5.4)

for some h-independent aq,j ∈ C∞c (T ∗M) such that supp aq,j ⊂ Vq∩{1
4
< |ξ|g < 4} and

aq,0 = aq. Now (5.3) follows by combining the precise versions of Egorov’s Theorem,
Lemma A.7, and of the product formula, (A.16). �

Now, arguing by induction on r with (5.4) as the base and (5.2), (5.3) as the inductive
step, we write for each N ∈ N

Âq,r = Oph

(N−1∑
k=0

hka(k)
q,r

)
+R(N)

q,r , r = 1, . . . , n (5.5)

where:
4We use boldface N here to avoid confusion with the propagation time defined in (3.11).
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• a(k)
q,1 = aqn−1,k where the latter function is defined in (5.4);

• for r ≥ 2, we have

a(k)
q,r =

k∑
j=0

Lj,qn−r(a
(k−j)
q,r−1 ◦ ϕ1) (5.6)

where Lj,q are the operators from (5.3);
• the remainder R(N)

q,r satisfies the norm bound

‖R(N)
q,r ‖L2→L2 ≤ CNh

N

(
1 +

r−1∑
`=1

N−1∑
k=0

‖a(k)
q,`‖C2(N−k)+17

)
(5.7)

for some constant CN independent of q, r.

Here the bound (5.7) is obtained from the iterative remainder bound

‖R(N)
q,r ‖L2→L2 ≤ ‖R(N)

q,r−1‖L2→L2 · ‖Aqn−r‖L2→L2 + C ′Nh
N

N−1∑
k=0

‖a(k)
q,r−1‖C2(N−k)+17

using that ‖Aq‖L2→L2 ≤ 1 + Ch1/2 similarly to (4.14).

Here are some basic properties of the symbols a(k)
q,r which follow immediately from

their construction, using the notation (3.1), (3.2):

• a(k)
q,r ∈ C∞c (T ∗M) and

supp a(k)
q,r ⊂ V−qn−r...qn−1

∩ {1
4
< |ξ|g < 4}; (5.8)

• a(0)
q,r = a−qn−r...qn−1

, in particular a(0)
q,n = a−q .

The following is a key estimate on the symbols a(k)
q,r and their derivatives, proved in §5.2

below. Recall that for a word q ∈ A • its Jacobian J −q was defined in (4.15).

Lemma 5.2. Assume that V−q 6= ∅. Then we have the following bounds for all r, k,m:

‖a(k)
q,r‖Cm ≤ Ckmr

4k+2m(J −qn−r...qn−1
)2k+m (5.9)

where the constant Ckm depends on k,m but not on r,q.

Remark. We allow the factor r4k+2m in (5.9) to simplify the proof; it does not matter
for Proposition 4.2 since r = O(log(1/h)). It is quite possible that more careful analysis
can remove this factor.

Using Lemma 5.2 we now give

Proof of Proposition 4.2. We consider the case of A−q , with A+
q handled similarly.

By (5.9), recalling that J −q ≤ C0h
−δ and n ≤ C0 log(1/h), we have for all k,m

max
1≤r≤n

‖a(k)
q,r‖Cm ≤ C ′kmh

−(2k+m)δ(log(1/h))4k+2m. (5.10)
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This implies that hka(k)
q,n = O(h(1−2δ)k−)Scomp

δ
. Using additionally that sup |a(0)

q,n| ≤ 1 we
see that a(0)

q,n = a−q = O(1)Scomp
δ+

.

By Borel’s Theorem [Zw12, Theorem 4.15] there exists a symbol a[−q ∈ S
comp
δ+ (T ∗M)

such that a[−q ∼
∑

k≥0 h
ka

(k)
q,n in the following sense:

a[−q =
N−1∑
k=0

hka(k)
q,n +ON(h(1−2δ)N−)Scomp

δ
for all N ∈ N.

From the basic properties of the symbols a(k)
q,n listed above we see that

a[−q = a−q +O(h1−2δ−)Scomp
δ

, supp a[−q ⊂ V−q ∩ {1
4
≤ |ξ|g ≤ 4}.

By (5.5) and the L2 boundedness of operators with symbols in Scomp
δ we have for all N

A−q = Âq,n = Oph(a
[−
q ) +R(N)

q,n +O(h(1−2δ)N−)L2→L2 . (5.11)

The remainder R(N)
q,n is estimated using (5.7) and (5.10):

‖R(N)
q,n ‖L2→L2 ≤ CNh

N−(2N+17)δ(log(1/h))4N+35. (5.12)

Since N can be chosen arbitrarily large and δ < 1
2
, together (5.11) and (5.12) imply

that A−q = Oph(a
[−
q ) +O(h∞)L2→L2 , finishing the proof. �

5.2. Estimating the iterated symbols. In this section we prove Lemma 5.2. To
do this we differentiate the inductive formulas (5.6) and represent the terms in the
resulting expressions by the edges of a directed graph G . We then iterate (5.6) to
write each derivative of a(k)

q,r as the sum of many terms, each corresponding to a path
of length r − 1 in G – see (5.23). The reduced graph G̃ , obtained by removing the
loops from G , is acyclic, which implies that the number of paths of length r−1 in G is
bounded polynomially in r. We finally analyze the term corresponding to each path,
bounding it in terms of the Jacobian J −qn−r...qn−1

.

5.2.1. Graph formalism. We first introduce some notation to keep track of the deriva-
tives of the symbols. We fix some affine connection ∇ on T ∗M . For each function
a ∈ C∞(T ∗M) and m ∈ N0, let ∇ma be the m-th covariant derivative of a, which is a
section of ⊗mT ∗(T ∗M), the m-th tensor power of the cotangent bundle of T ∗M . We
fix an inner product on the fibers of T ∗(T ∗M) which naturally induces a norm on each
⊗mT ∗(T ∗M). When supp a ⊂ {1

4
≤ |ξ|g ≤ 4} we have for some constant C

C−1‖a‖Cm ≤ max
j≤m

sup
ρ∈T ∗M

‖∇ja(ρ)‖ ≤ C‖a‖Cm . (5.13)

Fix N0 ∈ N0. The objects below will depend on N0 but for the sake of brevity we will
suppress it in the notation. Denote

V := {(k,m) | k,m ∈ N0, 2k +m ≤ N0}. (5.14)
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Figure 12. A subgraph Ĝ of the reduced graph G̃ for N0 = 6, with
edges (k,m) → (k,m− 1) and (k,m) → (k − 1,m + 2). The full graph
G̃ is obtained as follows: there is an edge from α to α′ in G̃ if and only
if there is a nontrivial path from α to α′ in Ĝ .

Henceforth we write α = (k,m). Define the vector bundle over T ∗M

E :=
⊕
α∈V

Eα, E(k,m) := ⊗mT ∗(T ∗M)

and its sections composed of the derivatives of the symbols a(k)
q,r:

Aq,r ∈ C∞(T ∗M ; E ), Aq,r := (∇ma(k)
q,r)(k,m)∈V , r = 1, . . . , n. (5.15)

That is, in the biindex (k,m), k is the power of h and m is the number of derivatives
taken. We denote by

ια : Eα → E , πα : E → Eα

the natural embedding and projection maps.

The iterative rules (5.6) together with the chain rule imply the relations

Aq,r(ρ) = Mqn−r(ρ)Aq,r−1(ϕ1(ρ)), r = 2, . . . , n, ρ ∈ T ∗M \ 0 (5.16)

where the coefficients of the operators Lj,q determine the homomorphisms

Mq ∈ C∞(T ∗M \ 0; Hom(ϕ∗1E ; E )), q ∈ A .

That is, Mq(ρ) is a linear map E (ϕ1(ρ))→ E (ρ) depending smoothly on ρ ∈ T ∗M \ 0.
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Define the directed graph5 G with the set of vertices V , which has an edge from
α = (k,m) to α′ = (k′,m′) if and only if

2k′ +m′ ≤ 2k +m, k′ ≤ k. (5.17)

If (5.17) holds then we write
α→ α′.

The homomorphisms Mq are subordinate to the graph G in the following sense: we
may write them in the ‘block matrix’ form

Mq =
∑
α→α′

ιαMq,α,α′πα′ (5.18)

where
Mq,α,α′ := παMqια′ ∈ C∞(T ∗M \ 0; Hom(ϕ∗1Eα′ ; Eα)). (5.19)

That is, if ∇ma
(k)
q,r(ρ) depends on ∇m′a

(k′)
q,r−1(ϕ1(ρ)) in (5.6), then (5.17) holds. This is

straightforward to see using (5.6) and the chain rule.

It will be important for our analysis to separate out the ‘diagonal’ part of Mq,
consisting of the homomorphisms ιαMq,α,απα corresponding to the loops α→ α in the
graph G . Using (5.6) (recalling that L0,q = aq) and the chain rule we compute

Mq,α,α(ρ) = aq(ρ) · (dϕ1(ρ)T )⊗m, α = (k,m). (5.20)

The remaining components of Mq correspond to the reduced graph G̃ , obtained by
removing all the loops α→ α from G , see Figure 12.

5.2.2. Long paths and end of the proof. We now restrict to the case r = n in Lemma 5.2,
proving the bounds

‖a(k̃)
q,n‖Cm̃ ≤ Ck̃m̃n

4k̃+2m̃(J −q )2k̃+m̃, k̃, m̃ ∈ N0. (5.21)

The general case follows from here by replacing q with qn−r . . . qn−1.

By (5.13) and the support property (5.8) see that (5.21) follows from

sup
ρ∈V−q ∩{ 1

4
≤|ξ|g≤4}

‖Aq,n(ρ)‖ ≤ CN0n
2N0(J −q )N0 . (5.22)

Here N0 was the natural number used in (5.14) and thus in the definition (5.15) of
Aq,n. To obtain (5.21) we put N0 := 2k̃ + m̃.

In the rest of this section we prove (5.22). Iterating (5.16) we get the following
formula for Aq,n:

Aq,n(ρ) = Mq0(ρ)Mq1(ϕ1(ρ)) · · ·Mqn−2(ϕn−2(ρ))Aq,1(ϕn−1(ρ)). (5.23)

5A directed graph is a pair (V,E) where V is a finite set of vertices and E ⊂ V × V is the set of
edges. There is an edge going from the vertex v1 to the vertex v2 if and only if (v1, v2) ∈ E.
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Using the decomposition (5.18) we write

Aq,n(ρ) =
∑
~α∈P

ια1Mq,~α(ρ)παnAq,1(ϕn−1(ρ)) (5.24)

where

P := {~α = α1 . . . αn ∈ V n | αj → αj+1 for all j = 1, . . . , n− 1} (5.25)

is the set of paths of length n− 1 in the graph G and

Mq,~α(ρ) := Mq0,α1,α2(ρ)Mq1,α2,α3(ϕ1(ρ)) · · ·Mqn−2,αn−1,αn(ϕn−2(ρ)). (5.26)

Since supT ∗M ‖Aq,1‖ ≤ C, using the triangle inequality in (5.24) we get for all ρ ∈ T ∗M

‖Aq,n(ρ)‖ ≤ C
∑
~α∈P

‖Mq,~α(ρ)‖ ≤ C#(P) ·max
~α∈P
‖Mq,~α(ρ)‖. (5.27)

Thus to show (5.22) (and thus finish the proof of Lemma 5.2) it remains to prove the
following

Lemma 5.3. There exists a constant C depending on N0 but not on n,q such that

#(P) ≤ Cn2N0 , (5.28)

max
~α∈P

sup
ρ∈V−q ∩{ 1

4
≤|ξ|g≤4}

‖Mq,~α(ρ)‖ ≤ C(J −q )N0 . (5.29)

Proof. 1. For each path ~α ∈P we define the corresponding reduced path

R(~α) = β1 . . . β`+1 ∈ V `+1, βj 6= βj+1 for all j

obtained by removing all the loops in ~α: that is, ~α has the form

~α = β
s(1)−s(0)

1 β
s(2)−s(1)

2 . . . β
s(`+1)−s(`)
`+1 (5.30)

where βs = ββ . . . β is the path obtained by repeating β ∈ V for s times and (s(j)) is
a sequence such that

0 = s(0) < s(1) < s(2) < . . . < s(`) < s(`+1) = n.

See Figure 13.

For every ~α ∈ P, R(~α) is a path in the reduced graph G̃ . The latter graph is
acyclic, indeed if (5.17) holds and (k,m) 6= (k′,m′), then 3k′ + m′ < 3k + m. Since
0 ≤ 3k + m ≤ 3N0

2
≤ 2N0 for all (k,m) ∈ V , we see that the length ` of any path in

G̃ is bounded above by 2N0.

Now, the size of the range of R is bounded above by the number of paths in G̃ ,
which is finite (since G̃ is acyclic) and depends only on N0. On the other hand, if ~β is
a fixed path in G̃ then elements of R−1(~β) are determined by s(1), . . . , s(`), thus they
are in one to one correspondence with size ` subsets of {1, . . . , n − 1}. Thus R−1(~β)

has
(
n−1
`

)
≤ n2N0 elements. Together these two statements give (5.28).
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β1 . . . β1 β2 . . . β2 β` . . . β` β`+1 . . . β`+1. . .

s(0) s(1) s(2) s(`) s(`+1). . .

β1 β2 β` β`+1

. . .

Yq,1 Yq,2 Yq,` Yq,`+1

Zq,1 Zq,2 Zq,`−1 Zq,`

Figure 13. Top: the decomposition (5.30) of a path in G , with the
indices s(j) marked. Bottom: a representation of this decomposition as
a combination of loops and a path in the reduced graph G̃ , with the
homomorphisms in the right-hand side of (5.31).

2. Take ρ ∈ V−q ∩ {1
4
≤ |ξ|g ≤ 4} and ~α ∈P. Writing ~α in the form (5.30), we have

Mq,~α(ρ) = Yq,1(ρ)Zq,1(ρ) · · ·Yq,`(ρ)Zq,`(ρ)Yq,`+1(ρ) (5.31)

where
Yq,j(ρ) := Mqs(j−1)

,βj ,βj(ϕs(j−1)
(ρ)) · · ·Mqs(j)−2,βj ,βj(ϕs(j)−2(ρ)),

Zq,j(ρ) := Mqs(j)−1,βj ,βj+1
(ϕs(j)−1(ρ)).

That is, the factors Yq,j correspond to loops in the path ~α and the factors Zq,j, to
‘true jumps’ between the loops. See Figure 13.

Using the formula (5.20) for the ‘diagonal terms’ Mq,α,α we compute

Yq,j(ρ) =

( s(j)−2∏
r=s(j−1)

aqr(ϕr(ρ))

)
· (dϕs(j)−1−s(j−1)

(ϕs(j−1)
(ρ))T )⊗mj (5.32)

where βj = (kj,mj). Define the words

qj := qs(j−1)
. . . qs(j)−1, j = 1, . . . , `+ 1,

and note that q can be written as the concatenation

q = q1q2 . . .q`+1. (5.33)

Since sup |aq| ≤ 1 and ϕs(j−1)
(ρ) ∈ V−qj ∩ {

1
4
≤ |ξ|g ≤ 4}, we obtain from (4.20)

‖Yq,j(ρ)‖ ≤ C‖dϕs(j)−s(j−1)
(ϕs(j−1)

(ρ))‖mj ≤ C(J −qj)
mj ≤ C(J −qj)

N0 .

We have ‖Zq,j(ρ)‖ ≤ C and the product (5.31) has 2`+1 ≤ 4N0+1 elements. Therefore
by (4.25) and (5.33)

‖Mq,~α(ρ)‖ ≤ C(J −q1
· · · J −q`+1

)N0 ≤ C(J −q )N0 (5.34)

giving (5.29). �
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5.3. Summing over many words. We finally give the proof of Proposition 4.4.
By (4.16) for h small enough we have the following bound on the length of words with
Jacobians less than C0h

−δ ≤ h−1/2:

J −p ≤ C0h
−δ, J +

r ≤ C0h
−δ =⇒ |p|, |r| ≤ C1 log(1/h), C1 :=

1

2Λ0

.

We now split the operator AF from (4.40) into pieces by the length of the words
involved:

AF =
∑

n−,n+≤C1 log(1/h)

AFn−,n+
, Fn−,n+(p, r) :=

{
F (p, r) if p ∈ A n− , r ∈ A n+ ;

0, otherwise.

Using the triangle inequality we see that Proposition 4.4 follows from

Proposition 5.4. Let n± ≤ C1 log(1/h), fix δ ∈ [0, 1
2
) and C0 > 0, and define

A ±
δ := {q ∈ A n± | J ±q ≤ C0h

−δ}.

Assume that
F : A −

δ ×A +
δ → C, sup |F | ≤ 1.

Then there exists a constant C depending only on δ, C0, A1, . . . , AQ such that

‖AF‖L2→L2 ≤ C where AF :=
∑

(p,r)∈A −δ ×A +
δ

F (p, r)A−pA
+
r .

Proof. The proof proceeds by writing AF as a pseudodifferential operator and estimat-
ing its full symbol. The complications arising from the fact that AF is the sum over
polynomially many in h terms are handled similarly to the proof of Lemma 3.1.

1. Let p ∈ A −
δ , r ∈ A +

δ and fix N ∈ N to be chosen at the end of the proof in (5.47).
Following the analysis in §§5.1–5.2 (and its immediate analog for the operators A+)
we write similarly to (5.5) and (5.12)

A−p = Oph

(N−1∑
k=0

hka
(k)
p,−

)
+O(hN−(2N+17)δ−)L2→L2 ,

A+
r = Oph

(N−1∑
k=0

hka
(k)
r,+

)
+O(hN−(2N+17)δ−)L2→L2

(5.35)

where (note we put a(k)
p,− := a

(k)
p,n− in the notation of §5.1):

• a(k)
p,−, a

(k)
r,+ ∈ C∞c (T ∗M) satisfy the support conditions

supp a
(k)
p,− ⊂ V−p ∩ {1

4
< |ξ|g < 4}, supp a

(k)
r,+ ⊂ V+

r ∩ {1
4
< |ξ|g < 4} (5.36)

and the derivative bounds similar to (5.10)

‖a(k)
p,−‖Cm , ‖a

(k)
r,+‖Cm = O(h−(2k+m)δ−); (5.37)



104 SEMYON DYATLOV, LONG JIN, AND STÉPHANE NONNENMACHER

• if we fix N± ≤ 2N and denote similarly to (5.15)

A−p := (∇ma
(k)
p,−)(k,m)∈V− , A+

r := (∇ma
(k)
r,+)(k,m)∈V+ , (5.38)

where V± := {(k,m) | k,m ∈ N0, 2k + m ≤ N±}, then for each ρ ∈ T ∗M \ 0

we have similarly to (5.27)

‖A−p (ρ)‖ ≤ C
∑
~α∈P−

‖M−
p,~α(ρ)‖, ‖A+

r (ρ)‖ ≤ C
∑
~α∈P+

‖M+
r,~α(ρ)‖ (5.39)

where P± are the sets of paths of length n± − 1 in the corresponding graphs
(see (5.25));
• the homomorphisms M−

p,~α(ρ), M+
r,~α(ρ) are defined similarly to (5.26): if ~α± =

α±1 . . . α
±
n± ∈P± then

M−
p,~α−(ρ) = M−

p0,α
−
1 ,α
−
2

(ρ)M−
p1,α

−
2 ,α
−
3

(ϕ1(ρ)) · · ·M−
pn−−2,α

−
n−−1,α

−
n−

(ϕn−−2(ρ)),

M+
r,~α+(ρ) = M+

r1,α
+
1 ,α

+
2

(ρ)M+

r2,α
+
2 ,α

+
3

(ϕ−1(ρ)) · · ·M+

rn+−1,α
+
n+−1,α

+
n+

(ϕ−(n+−2)(ρ));

• finally, the homomorphisms

M±
q,α,α′ ∈ C

∞(T ∗M \ 0; Hom(ϕ∗∓1Eα′ ; Eα)), q ∈ A , α, α′ ∈ V±, α→ α′

are defined similarly to (5.19), in particular we have similarly to (5.20)

M−
q,α,α(ρ) = aq(ρ) · (dϕ1(ρ)T )⊗m,

M+
q,α,α(ρ) = aq(ϕ−1(ρ)) · (dϕ−1(ρ)T )⊗m

where α = (k,m).

2. Using (5.35)–(5.37) together with the precise version of the product formula,
Lemma A.6, we obtain

A−pA
+
r = Oph

( ∑
k±,i≥0

k−+k++i<N

hk−+k++iLi(a
(k−)
p,− ⊗ a

(k+)
r,+ )|Diag

)
+O(hN−(2N+17)δ−)L2→L2

where each Li is a differential operator of order 2i on T ∗M × T ∗M . Recalling that
A = {1, . . . , Q}, we have

#(A ±
δ ) ≤ h−C2 where C2 := C1 logQ.

Summing over (p, r), we get

AF = Oph

( ∑
k±,i≥0

k−+k++i<N

hk−+k++iak−,k+,i

)
+O(hN−(2N+17)δ−2C2−)L2→L2 (5.40)

where
ak−,k+,i :=

∑
(p,r)∈A −δ ×A +

δ

F (p, r)Li(a
(k−)
p,− ⊗ a

(k+)
r,+ )|Diag.
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3. We now estimate the derivatives of the symbols ak−,k+,i. We first compute the prin-
cipal term a0,0,0, using that a(0)

p,− = a−p , a
(0)
r,+ = a+

r similarly to the line following (5.8):

a0,0,0 =
∑
p,r

F (p, r)a−pa
+
r

which, recalling that sup |F | ≤ 1, a1, . . . , aQ ≥ 0, and a1 + · · ·+ aQ ≤ 1, implies

sup |a0,0,0| ≤ 1. (5.41)

To estimate the higher derivatives of a0,0,0, as well as the other symbols ak−,k+,i, we
argue similarly to Lemma 5.3, handling the sum over words similarly to the proof of
Lemma 3.1. By the triangle inequality and since sup |F | ≤ 1 we have for any m

‖ak−,k+,i‖Cm ≤ C sup
ρ∈{ 1

4
≤|ξ|g≤4}

max
m±≥0

m−+m+≤m+2i

∑
p,r

(
‖∇m−a

(k−)
p,− (ρ)‖ · ‖∇m+a

(k+)
r,+ (ρ)‖

)
. (5.42)

Fix m± ≥ 0 such that m− +m+ ≤ m+ 2i and put

N± := 2k± +m±, N− + N+ ≤ 2(k− + k+ + i) +m.

By (5.39) we then have for each ρ ∈ {1
4
≤ |ξ|g ≤ 4}

‖∇m−a
(k−)
p,− (ρ)‖ · ‖∇m+a

(k+)
r,+ (ρ)‖ ≤ C‖A−p (ρ)‖ · ‖A+

r (ρ)‖

≤ C
∑

~α±∈P±

(
‖M−

p,~α−(ρ)‖ · ‖M+
r,~α+(ρ)‖

)
. (5.43)

Fix two paths ~α± ∈P± and write them in the form (5.30):

~α± = β
s±
(1)
−s±

(0)

1,± β
s±
(2)
−s±

(1)

2,± . . . β
s±
(`±+1)

−s±
(`±)

`±+1,±

for some sequences 0 = s±(0) < s±(1) < · · · < s±(`±) < s±(`±+1) = n±. Define

S−~α− := {s−(1) − 1, . . . , s−(`−+1) − 1}, S+
~α+ := {s+

(1), . . . , s
+
(`++1)}.

Arguing similarly to (5.34), but keeping track of the symbols aqr in (5.32) (rather than
simply using the inequalities |aq| ≤ 1) and recalling the support properties (5.36) we
get for all ρ ∈ supp a

(k−)
p,− ∩ supp a

(k+)
r,+ ⊂ V−p ∩ V+

r ∩ {1
4
< |ξ|g < 4}

‖M−
p,~α−(ρ)‖ ≤ C(J −p )N− ã−p,~α−(ρ), ‖M+

r,~α+(ρ)‖ ≤ C(J +
r )N+ ã+

r,~α+(ρ)

where we define the nonnegative functions ã−p,~α− , ã
+
r,~α+ by removing certain factors in

the definitions (3.1) of a−p , a+
r (denoting p = p0 . . . pn−−1, r = r1 . . . rn+):

ã−p,~α− :=
∏

0≤j<n−, j /∈S−
~α−

(apj ◦ ϕj), ã+
r,~α+ :=

∏
1≤j≤n+, j /∈S+

~α+

(arj ◦ ϕ−j).

Since J −p ,J +
r ≤ C0h

−δ, we have for all ρ ∈ supp a
(k−)
p,− ∩ supp a

(k+)
r,+

‖M−
p,~α−(ρ)‖ · ‖M+

r,~α+(ρ)‖ ≤ Ch−(2(k−+k++i)+m)δã−p,~α−(ρ)ã+
r,~α+(ρ).
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Combining this with (5.42)–(5.43) we obtain

‖ak−,k+,i‖Cm ≤ Ch−(2(k−+k++i)+m)δ sup
ρ∈{ 1

4
≤|ξ|g≤4}

∑
~α±∈P±

∑
p,r

(
ã−p,~α−(ρ)ã+

r,~α+(ρ)
)
. (5.44)

Now, we have for all ~α± and ρ∑
(p,r)∈A n−×A n+

(
ã−p,~α−(ρ)ã+

r,~α+(ρ)
)
≤ Q4(k−+k++i)+2m+2 ≤ C. (5.45)

Indeed, we write the left-hand side as the product of sums over the individual digits
pj− , rj+ . Since a1 + · · · + aQ ≤ 1, each such sum is bounded by Q when j± ∈ S±~α±
and by 1 otherwise. It remains to recall from Step 1 of the proof of Lemma 5.3 that
`± ≤ 2N± and thus #(S−~α−) + #(S+

~α+) ≤ 2N− + 2N+ + 2 ≤ 4(k− + k+ + i) + 2m+ 2.

Substituting (5.45) into (5.44) and using the bound (5.28) on #(P±), we finally get
the bound

‖ak−,k+,i‖Cm = O(h−(2(k−+k++i)+m)δ−). (5.46)

4. The bounds (5.41) and (5.46) give

a0,0,0 = O(1)Scomp
δ+

, ak−,k+,i = O(h−2(k−+k++i)δ−)Scomp
δ

.

From the L2 boundedness of pseudodifferential operators with symbols in Scomp
δ we

see that the first term on the right-hand side of (5.40) is bounded by a constant in
L2 → L2 norm. The remainder in (5.40) is also bounded by a constant if we choose N
large enough so that

N(1− 2δ) > 17δ + 2C2. (5.47)
Thus ‖AF‖L2→L2 ≤ C, finishing the proof. �

Appendix A. Semiclassical calculus on a surface

In this appendix we provide versions of several standard statements from semiclassi-
cal analysis (product and commutator rules, Egorov’s Theorem) with explicit expres-
sions for the resulting symbols and for the L2 → L2 norms of the remainders. These are
used in the proofs of Egorov’s Theorems up to minimal Ehrenfest time (Lemma 2.5)
and local Ehrenfest time (§5).

We restrict to the case of dimension n = 2. The statements below apply in the
general case but the number of derivatives needed to get an O(hN) remainder6 will
take the form 2N +Cn where Cn is a constant depending only on the dimension. The
precise values of the constants Cn (which we compute for n = 2) are not important.
We do not attempt to prove optimal bounds. This is already evident in the case of
Lemma A.1 below which does not recover boundedness of pseudodifferential operators
in Ψcomp

δ (R2).

6As in §5, we use boldface N here to avoid confusion with (3.11).
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To shorten the formulas below, we introduce the following notation:

Dk
•a

denotes the result of applying some differential operator of order k to a. The specific
operator varies from place to place, with coefficients depending on the objects listed
in ‘•’ but not on h or a. Next, for an operator A on L2 we write

A = O•(hN)

to mean ‖A‖L2→L2 ≤ ChN where the constant C depends on the objects listed in ‘•’.

A.1. Operators on R2. We first discuss pseudodifferential calculus on R2. We use
the standard quantization given by

Op0
h(a)f(x) = (2πh)−2

∫
R4

e
i
h
〈x−y,ξ〉a(x, ξ)f(y) dydξ, a ∈ S (T ∗R2). (A.1)

We start with a quantitative version of the basic L2 boundedness statement which
follows from the proof of [Zw12, Theorem 4.21]:

Lemma A.1. We have for some global constant C and all a ∈ S (T ∗R2)

‖Op0
h(a)‖L2(R2)→L2(R2) ≤ C max

|α|,|β|≤3
sup |ξα∂βξ a|.

The next statement is a quantitative version of the product formula. To prove it
we write Op0

h(a) Op0
h(b) = Op0

h(a#b), where a#b is determined by oscillatory test-
ing [Zw12, Theorem 4.19] and estimated via quadratic stationary phase [Zw12, Theo-
rem 3.13], and apply Lemma A.1.

Lemma A.2. Let N ∈ N0, R > 0. Then for all a, b ∈ C∞c (T ∗R2), supp a ∪ supp b ⊂
B(0, R), we have

Op0
h(a) Op0

h(b) = Op0
h

( ∑
|α|<N

(−ih)|α|

α!
∂αξ a ∂

α
x b

)
+ON,R(‖a‖CN+6‖b‖CN+6hN). (A.2)

Remark. It is also useful to discuss composition of pseudodifferential operators with
multiplication operators. Assume that a ∈ C∞c (T ∗R2), b ∈ C∞c (R2), and supp a ⊂
BT ∗R2(0, R), supp b ⊂ BR2(0, R). Denote by Op0

h(b) the multiplication operator by b.
From (A.1) we see that Op0

h(b) Op0
h(a) = Op0

h(ab). Moreover, Lemma A.2 still applies
with the same proof.

We finally give a quantitative version of the change of variables formula. We fol-
low [DZ19, §E.1.6]. The statement below is proved by following the proof of [DZ19,
Proposition E.10] using the method of stationary phase with explicit remainder [Zw12,
Theorem 3.16] and applying Lemma A.1. We use the notation

ϕ−∗ := (ϕ−1)∗, ϕ−∗f = f ◦ ϕ−1. (A.3)
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Lemma A.3. Assume that ϕ : U → V is a diffeomorphism where U, V ⊂ R2 are open
sets and χ1, χ2 ∈ C∞c (U). Put

ϕ̃ : T ∗U → T ∗V, ϕ̃(x, ξ) = (ϕ(x), (dϕ(x))−T ξ). (A.4)

Let N ∈ N, R > 0. Then for all a ∈ C∞c (T ∗R2), supp a ⊂ B(0, R), we have

χ1ϕ
∗Op0

h(a)ϕ−∗χ2 = Op0
h

(
χ1

(
χ2 +

N−1∑
j=1

hjD2j
ϕ,χ2

)
(a ◦ ϕ̃)

)
+ON,R,ϕ,χ1,χ2(‖a‖C2N+12hN).

Here the operators D2j
ϕ,χ2

are supported in suppχ2.

A.2. Operators on a compact surface. We now study operators on a compact Rie-
mannian surface (M, g). We define a (non-canonical) quantization procedure similarly
to [DZ19, Proposition E.15]:

Oph(a) =
∑
`

χ′`ϕ
∗
` Op0

h

(
(χ′`a) ◦ ϕ̃−1

`

)
ϕ−∗` χ` (A.5)

where we use the notation (A.3), Op0
h(•) on the right-hand side is defined by (A.1),

ϕ` : U` → V`, U` ⊂ M , V` ⊂ R2, is a finite collection of coordinate charts with
M =

⋃
` U`, the cutoff functions χ`, χ′` ∈ C∞c (U`) satisfy

1 =
∑
`

χ`, suppχ` ∩ supp(1− χ′`) = ∅, (A.6)

and ϕ̃` : T ∗U` → T ∗V` is defined by (A.4). To simplify the formulas below we denote

Ξ := {(M, g)} ∪ {(ϕ`, χ`, χ′`)}`.

For each j ∈ N0 we fix some norm ‖•‖Cj on functions on T ∗M supported in {|ξ|g ≤ 10}.
We first give an L2 boundedness and pseudolocality statement:

Lemma A.4. Assume that a ∈ C∞c (T ∗M) and supp a ⊂ {|ξ|g ≤ 10}. Then

Oph(a) = OΞ(‖a‖C3). (A.7)

Moreover, if χ1, χ2 ∈ C∞(M) and suppχ1 ∩ suppχ2 = ∅, then for every N ∈ N0

χ1 Oph(a)χ2 = ON,Ξ,χ1,χ2(‖a‖CN+6hN). (A.8)

Proof. The bound (A.7) follows immediately from (A.5) and Lemma A.1. The bound (A.8)
for the quantization Op0

h on R2 and χ1, χ2 ∈ C∞c (R2) follows from the remark following
Lemma A.2; for the quantization Oph it then follows from (A.5). �

We next give an auxiliary statement used in the proof of Lemma A.6 below. We
introduce the following notation: for a ∈ C∞c (T ∗M)

Op`h(a) := Op0
h

(
(χ′`a) ◦ ϕ̃−1

`

)
: L2(R2)→ L2(R2). (A.9)
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Lemma A.5. Assume that

A =
∑
r

χ′rϕ
∗
r Oprh(ar)ϕ

−∗
r χr : L2(M)→ L2(M) (A.10)

for some ar ∈ C∞c (T ∗M) such that supp ar ⊂ {|ξ|g ≤ 10}. Put

A` := ϕ−∗` χ′`Aχ
′
`ϕ
∗
` : L2(R2)→ L2(R2). (A.11)

Then for every N ∈ N we have

A` = Op`h

(∑
r

(
χ′`χr +

N−1∑
j=1

hjD2j
`,r,Ξ

)
χ′rar

)
+ON,Ξ

(
max
r
‖ar‖C2N+12hN

)
, (A.12)

A =
∑
`

χ′`ϕ
∗
`A`ϕ

−∗
` χ` +ON,Ξ

(
max
r
‖ar‖CN+6hN

)
, (A.13)

A = Oph

(∑
r

(
χr +

N−1∑
j=1

hjD2j
r,Ξ

)
ar

)
+ON,Ξ

(
max
r
‖ar‖C2N+12hN

)
. (A.14)

Here the operators D2j
`,r,Ξ from (A.12) and D2j

r,Ξ from (A.14) are supported in suppχr.

Remark. The expression (A.10) is the general form of a pseudodifferential operator
on M , with Oph(a) obtained by putting ar := a for all r. The operator A` is the
localization of A to the `-th coordinate chart. The statement (A.12) shows that each
localization is a pseudodifferential operator on R2; (A.13) reconstructs A from its lo-
calizations; and (A.14) writes a general pseudodifferential operator in the form Oph(a)

for some a.

Proof. The expansion (A.12) follows immediately from Lemma A.3, with ϕ := ϕr◦ϕ−1
` ,

χ1 := (χ′`χ
′
r) ◦ ϕ−1

` , χ2 := (χ′`χr) ◦ ϕ−1
` , and a := (χ′rar) ◦ ϕ̃−1

r .

To show (A.13) we write by (A.6)

A−
∑
`

χ′`ϕ
∗
`A`ϕ

−∗
` χ` =

∑
`

(1− (χ′`)
2)Aχ`

and estimate the right-hand side similarly to (A.8).

To show (A.14), we introduce a bit more notation. For a vector of symbols a = {ar}r
indexed by the coordinate charts used in (A.5), let Op′h(a) be the operator defined
in (A.10). Next, put

ι(a) = {a}r, π(a) =
∑
r

χrar.

Recalling (A.5), we have for any a ∈ C∞c (T ∗M)

Oph(a) = Op′h(ι(a)).

Therefore, for each vector a = {ar}r with ar ∈ C∞c (T ∗M), supp ar ⊂ {|ξ|g ≤ 10},
we have Op′h(a) − Oph(π(a)) = Op′h(b) where b := a − ι(π(a)). We apply (A.12)
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and (A.13) to this operator to write it in the form Op′h(c) for some vector of symbols c
(modulo a remainder); note that by (A.12) the leading term of c is zero since π(b) = 0.
This implies

Op′h(a) = Oph(π(a)) + Op′h

(N−1∑
j=1

hjD2j
Ξ a

)
+ON,Ξ(‖a‖C2N+12hN) (A.15)

where the differential operators D2j
Ξ act on vectors of symbols. We iteratively ap-

ply (A.15) to the second term on the right-hand side and obtain (A.14). �

We can now give the product and commutator formulas for the quantization on M :

Lemma A.6. Assume that a, b ∈ C∞c (T ∗M) and supp a∪ supp b ⊂ {|ξ|g ≤ 10}. Then
for every N ∈ N we have

Oph(a) Oph(b) = Oph

(
ab+

N−1∑
j=1

hjD2j−2
Ξ (d1a⊗ d1b)|Diag

)
+ON,Ξ(‖a⊗ b‖C2N+15hN),

(A.16)

[Oph(a),Oph(b)] = Oph

(
− ih{a, b}+

N−1∑
j=2

hjD2j−4
Ξ (d2a⊗ d2b)|Diag

)
+ON,Ξ(‖a⊗ b‖C2N+15hN),

(A.17)

where a ⊗ b ∈ C∞c (T ∗M × T ∗M) is defined by (a ⊗ b)(ρ, ρ′) = a(ρ)b(ρ′), Diag ⊂
T ∗M × T ∗M denotes the diagonal, and dkb denotes the vector (∂αb)|α|≤k.

Remarks. 1. The expression D2j−2(d1a ⊗ d1b)|Diag in (A.16) is a linear combination
of products ∂αa ∂βb where |α|+ |β| ≤ 2j and |α|, |β| ≤ 2j − 1. That is, the symbol in
product formula does not feature terms of the form hj(D2ja)b or hja(D2jb). This is
not obvious, in fact the proof needs us to use the same quantization procedures Oph
on both sides of (A.16).

Here is an informal explanation: in a fixed coordinate chart we have Oph(a) =

Op0
h(ã), Oph(b) = Op0

h(b̃), Oph(ab) = Op0
h(c̃), where ã = a +

∑
j≥1 h

jLja, b̃ =

b +
∑

j≥1 h
jLjb, and c̃ = ab +

∑
j≥1 h

jLj(ab); here each Lj is a differential opera-
tor of order 2j (depending on the chart chosen). Denote by ã#b̃ the Moyal product
from (A.2). If we denote by ‘. . . ’ terms of the form hjD2j−2(d1a ⊗ d1b)|Diag, then
ã#b̃ = ãb̃ + · · · = ab +

∑
j≥1 h

j((Lja)b + a(Ljb)) + . . . and Leibniz’s Rule shows that
c̃ = ab+

∑
j≥1 h

j((Lja)b+ a(Ljb)) + . . . as well.

Similarly in the commutator formula (A.17) the expression D2j−4(d2a ⊗ d2b)|Diag

consists of products ∂αa ∂αb where |α|+ |β| ≤ 2j and |α|, |β| ≤ 2j − 2.

2. We immediately deduce from (A.17) the formula (2.40) used in the proof of Egorov’s
Theorem up to global Ehrenfest time: it suffices to take b ∈ Scomp

0 (T ∗M) such that
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P = Oph(b) +O(h∞) and choose N large enough so that (1− 2δ)N > 2 + 13δ. Note
that hjD2j−4(d2a ⊗ d2b)|Diag ∈ h1+(j−1)(1−2δ)Scomp

δ (T ∗M) when a ∈ Scomp
δ (T ∗M). The

expansion (A.17) is crucial in the proof of the precise version of Egorov’s Theorem in
Lemma A.7 below.

Proof. 1. Fix cutoff functions

χ′′` ∈ C∞c (U`), suppχ` ∩ supp(1− χ′′` ) = suppχ′′` ∩ supp(1− χ′`) = ∅.

We write

Oph(a) Oph(b) =
∑
`

(χ′`)
2 Oph(a)χ′′` Oph(b)χ`

+
∑
`

(1− (χ′`)
2) Oph(a)χ′′` Oph(b)χ`

+
∑
`

Oph(a)(1− χ′′` ) Oph(b)χ`,

(A.18)

Oph(ab) =
∑
`

(χ′`)
2 Oph(ab)χ` +

∑
`

(1− (χ′`)
2) Oph(ab)χ`. (A.19)

The last two terms on the right-hand side of (A.18) and the last term on the right-hand
side of (A.19) are estimated using (A.7) and (A.8). Rewriting the first terms on the
right-hand sides of (A.18)–(A.19), we get

Oph(a) Oph(b)−Oph(ab) =
∑
`

χ′`ϕ
∗
`(A`B` − C`)ϕ−∗` χ`

+ON,Ξ(‖a⊗ b‖CN+9hN),

(A.20)

where (note we use the notation A` in a slightly different way than Lemma A.5)

A` := ϕ−∗` χ′` Oph(a)χ′′`ϕ
∗
` , B` := ϕ−∗` χ′` Oph(b)χ

′′
`ϕ
∗
` , C` := ϕ−∗` χ′` Oph(ab)χ

′′
`ϕ
∗
` .

2. Similarly to (A.12) we write for every N using the notation (A.9)

A` = Op`h

(N−1∑
j=0

hjLj,`a

)
+ON,Ξ(‖a‖C2N+12hN) (A.21)

where each Lj,` is a differential operator of order 2j supported in suppχ′′` and L0,` = χ′′` .
Same is true for B`, C`, with the same operators Lj,`.

Using (A.21) and the bound (A.7) we get

A`B` =
∑
j,k≥0
j+k<N

hj+k Op`h(Lj,`a) Op`h(Lk,`b) +ON,Ξ(‖a⊗ b‖C2N+15hN). (A.22)

We next use the product formula for the standard quantization (Lemma A.2) and the
fact that Lj,`a, Lk,`b are supported in suppχ′′` which does not intersect supp(1 − χ′`),
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to write

Op`h(Lj,`a) Op`h(Lk,`b) = Op`h

(
(Lj,`a)(Lk,`b) +

N−j−k−1∑
s=1

hsDs,s
`,Ξ(Lj,`a⊗ Lk,`b)|Diag

)
+ON,Ξ(‖a⊗ b‖C2N+12hN−j−k).

(A.23)
Here Ds,s denotes a differential operator of order 2s on T ∗M × T ∗M which has no
more than s differentiations in either component of the product. This implies

A`B` − C` = Op`h

(
χ′′` (χ

′′
` − 1)ab+

N−1∑
j=1

hj
(
(χ′′`a)(Lj,`b) + (Lj,`a)(χ′′` b)− Lj,`(ab)

)
+

N−1∑
j=1

hjD2j−2
`,Ξ (d1a⊗ d1b)|Diag

)
+ON,Ξ(‖a⊗ b‖C2N+15hN)

(A.24)
where the second line includes all the terms in (A.23) such that s ≥ 1 or j · k > 0.
Using Leibniz’s Rule for the operators Lj,`, j ≥ 1,

Lj,`(ab) = a(Lj,`b) + (Lj,`a)b+ D2j−2
j,`,Ξ (d1a⊗ d1b)|Diag

we see that the restriction of the first line on the right-hand side of (A.24) to T ∗M \
supp(1 − χ′′` ) ⊃ suppχ` has the form

∑N−1
j=1 hjD2j−2

`,Ξ (d1a ⊗ d1b)|Diag. From here
and (A.14) (using that the operators D2j

Ξ,r there are supported in suppχr) we get
the product formula (A.16).

3. To obtain the commutator formula (A.17) we write similarly to (A.20)

[Oph(a),Oph(b)] + ihOph({a, b}) =
∑
`

χ′`ϕ
∗
`([A`, B`]− E`)ϕ−∗` χ`

+ON,Ξ(‖a⊗ b‖CN+9hN),

E` := ϕ−∗` χ′` Oph(−ih{a, b})χ′′`ϕ∗` .

Similarly to (A.22) we get

[A`, B`] =
∑
j,k≥0
j+k<N

hj+k[Op`h(Lj,`a),Op`h(Lk,`b)] +ON,Ξ(‖a⊗ b‖C2N+15hN).

By Lemma A.2 we have the following analog of (A.23):

[Op`h(Lj,`a),Op`h(Lk,`b)] = Op`h

(
− ih{Lj,`a, Lk,`b}+

N−j−k−1∑
s=2

hsDs,s
`,Ξ(Lj,`a⊗ Lk,`b)|Diag

)
+ON,Ξ(‖a⊗ b‖C2N+12hN−j−k).
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This gives the following analog of (A.24):

[A`, B`]− E` = Op`h

(
ih
(
χ′′`{a, b} − {χ′′`a, χ′′` b}

)
+

N−2∑
j=1

ihj+1
(
Lj,`{a, b} − {χ′′`a, Lj,`b} − {Lj,`a, χ′′` b}

)
+

N−1∑
j=2

hjD2j−4
`,Ξ (d2a⊗ d2b)|Diag

)
+ON,Ξ(‖a⊗ b‖C2N+15hN)

where the third line includes all terms such that s ≥ 2 or j · k > 0. To get (A.17)
it remains to argue as at the end of Step 2 using the following Leibniz’s rule for the
Poisson bracket:

Lj,`{a, b} = {a, Lj,`b}+ {Lj,`a, b}+ D2j−2
`,Ξ (d2a⊗ d2b)|Diag. �

A.3. Egorov’s Theorem. We finally give a quantitative version of Egorov’s Theo-
rem (2.36). The proof below applies to more general situations but we restrict ourselves
to the case of the propagator U(t) = exp(−itP/h), where P is defined in (2.34), and
the flow ϕt defined in (2.2).

Lemma A.7. Assume that a ∈ C∞c (T ∗M) and supp a ⊂ {1
4
≤ |ξ|g ≤ 4}. Then we

have for all N ∈ N and 0 ≤ t ≤ 1

U(−t) Oph(a)U(t) = Oph

((
a+

N−1∑
j=1

hjD2j
t,Ξa
)
◦ ϕt

)
+ON,Ξ

(
‖a‖C2N+17hN

)
. (A.25)

Proof. 1. We first recall from (2.33) and (2.34) that

P = Oph(p0 + hp′) +O(h∞)L2→L2 , p0 = p on {1
4
≤ |ξ|g ≤ 4}

where p0, p
′ are classical symbols on T ∗M supported inside {1

5
< |ξ|g < 5}. Here

p(x, ξ) = |ξ|g and ϕt = exp(tHp).

By the commutator formula (A.17), for any ã ∈ C∞c (T ∗M), supp ã ⊂ {1
4
≤ |ξ|g ≤ 4},

i

h
[P,Oph(ã)] = Oph

(
Hpã+

N−1∑
j=1

hjD2j
Ξ ã

)
+ON,Ξ(‖ã‖C2N+17hN).

Here we use that p′ is classical, i.e. has an expansion in powers of h, and incorporate
the terms in that expansion into the operators D2j

Ξ .
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Therefore, for any family of symbols at ∈ C∞c (T ∗M) depending smoothly on t ∈ [0, 1]

and such that supp at ⊂ {1
4
≤ |ξ|g ≤ 4}, and for any N ∈ N

∂t Oph(at ◦ ϕt)−
i

h
[P,Oph(at ◦ ϕt)] = Oph

((
∂tat −

N−1∑
j=1

hjLj,tat

)
◦ ϕt

)
+ON,Ξ(‖at‖C2N+17hN)

(A.26)

where each Lj,t is a differential operator of order 2j on T ∗M with coefficients depending
on t,Ξ.

2. We now construct t-dependent families of symbols a(j)
t ∈ C∞c (T ∗M), t ∈ [0, 1],

j = 0, . . . ,N− 1, using the following iterative procedure:

a
(0)
t := a; a

(j)
t :=

j−1∑
k=0

∫ t

0

Lj−k,sa
(k)
s ds, j = 1, . . . ,N− 1.

Note that a(j)
t has the form D2j

t,Ξa. Put

ã
(N)
t :=

N−1∑
j=0

hja
(j)
t ,

then (A.26) implies

∂t Oph(ã
(N)
t ◦ ϕt)−

i

h
[P,Oph(ã

(N)
t ◦ ϕt)] = ON,Ξ(‖a‖C2N+17hN). (A.27)

3. From (A.27) and the unitarity of U(t) we obtain for t ∈ [0, 1]

∂t
(
U(t) Oph(ã

(N)
t ◦ ϕt)U(−t)

)
= ON,Ξ(‖a‖C2N+17hN).

Integrating this and using that ã(N)
0 = a we have

U(t) Oph(ã
(N)
t ◦ ϕt)U(−t) = Oph(a) +ON,Ξ(‖a‖C2N+17hN).

Conjugating this by U(t) we get (A.25). �

Appendix B. Fourier localization of Lagrangian states

In this appendix we prove Proposition 2.7. We use the following interpolation in-
equality in the classes Ck. It is standard (see for instance [HöI, Lemma 7.7.2] for a
special case) but we provide a proof for the reader’s convenience.

Lemma B.1. Assume that U ⊂ Rn is an open set, K ⊂ U , d(K,Rn \ U) > r0 > 0,
and f ∈ C∞(U). Denote

‖f‖m := max
|α|≤m

sup
U
|∂αf |, m ∈ N0.
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Let 0 < ` < m. Then there exists a constant C depending only on m, r0 such that

max
|α|≤`

sup
K
|∂αf | ≤ C‖f‖1−`/m

0 ‖f‖`/mm . (B.1)

Proof. Since ‖f‖0 ≤ ‖f‖m it suffices to show (B.1) for |α| = `. Then (B.1) holds once
we prove the following inequality for all x0 ∈ K:

max
|α|=`
|∂αf(x0)| ≤ CR

1−`/m
0 R`/m

m , Rk := max
|α|≤k

sup
B(x0,r0)

|∂αf |. (B.2)

By Taylor’s inequality we have for all y ∈ B(0, r0) and some constant Cm depending
only on m∣∣∣∣f(x0 + y)−

m−1∑
`=0

P`(y)

∣∣∣∣ ≤ CmRm |y|m, P`(y) :=
∑
|α|=`

∂αf(x0)

α!
yα.

Substituting

y :=
( R0

Rm

)1/m

rθ, θ ∈ Sn−1, 0 ≤ r ≤ r0

and using that |f(x0 + y)| ≤ R0 we get

sup
r∈[0,r0]

∣∣∣∣m−1∑
`=0

( R0

Rm

)`/m
P`(θ)r

`

∣∣∣∣ ≤ (1 + Cmr
m
0 )R0.

The expression on the left-hand side is the sup-norm on the interval [0, r0] of a poly-
nomial of degree m − 1 in r. Using this sup-norm to estimate the coefficients of this
polynomial, we obtain

sup
θ∈Sn−1

|P`(θ)| ≤ Cm,r0R
1−`/m
0 R`/m

m for all ` = 0, . . . ,m− 1

where the constant Cm,r0 depends only on m, r0. This implies (B.2). �

We are now ready to give

Proof of Proposition 2.7. We show the following stronger estimate:

|û(ξ/h)| ≤ C ′Nh
N+n/2 〈ξ〉−n, ξ ∈ Rn \ ΩΦ(C−1

0 h′). (B.3)

Take arbitrary ξ ∈ Rn \ ΩΦ(C−1
0 h′) and put

s := d(ξ,ΩΦ) ≥ C−1
0 h′.

We have
û(ξ/h) =

∫
U

eiΦξ(x)/ha(x) dx, Φξ(x) := Φ(x)− 〈x, ξ〉. (B.4)

In the rest of the proof we put

N0 :=

⌈
2N + n

1− τ

⌉
, N ′ := N0 + 1
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and denote by C constants which depend only on τ, n,N,C0, CN ′ , whose precise value
might change from place to place.

We integrate by parts in (B.4) using the differential operator L defined by

Lf(x) =
n∑
j=1

bj(x)∂jf(x), bj(x) := −i ∂jΦξ(x)

|dΦξ(x)|2
.

Integrating by parts N0 times and using that hLeiΦξ(x)/h = eiΦξ(x)/h we get∣∣û(ξ/h)
∣∣ =

∣∣∣∣ ∫
U

eiΦξ(x)/h(hLt)N0a(x) dx

∣∣∣∣ ≤ C0h
N0 sup

K

∣∣(Lt)N0a
∣∣ (B.5)

where Lt is the transpose operator:

Ltf(x) = −
n∑
j=1

∂j
(
bj(x)f(x)

)
.

To estimate the function (Lt)N0a we bound the derivatives of Φξ. Since diam ΩΦ ≤
C0h

′ ≤ C2
0s we have

s ≤ |dΦξ(x)| ≤ Cs for all x ∈ U.
By Lemma B.1 applied to the first derivatives of Φξ we obtain the derivative bounds
for 0 ≤ ` ≤ N0

max
|α|=`+1

sup
K
|∂αΦξ| ≤ Cs1−`/N0 ≤ Csh−(1−τ)`/2 (B.6)

where in the last inequality we used the definition of N0 and the fact that s ≥ C−1
0 hτ ≥

C−1
0 h. This implies the derivative bounds for 0 ≤ ` ≤ N0

max
|α|=`

sup
K
|∂αbj| ≤ Cs−1h−(1−τ)`/2. (B.7)

This gives an estimate on the right-hand side of (B.5), implying

|û(ξ/h)| ≤ Ch(1+τ)N0/2s−N0 . (B.8)

We have s ≥ C−1hτ , thus (using again the definition of N0)

|û(ξ/h)| ≤ Ch(1−τ)N0/2 ≤ ChN+n/2.

This gives (B.3) for |ξ| ≤ C. On the other hand, if ξ is large enough then s ≥ 〈ξ〉/2 in
which case (B.3) follows from (B.8) as well since N0 ≥ n. �
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