CONTROL OF EIGENFUNCTIONS
ON SURFACES OF VARIABLE CURVATURE

SEMYON DYATLOV, LONG JIN, AND STEPHANE NONNENMACHER

ABSTRACT. We prove a microlocal lower bound on the mass of high energy eigen-
functions of the Laplacian on compact surfaces of negative curvature, and more gen-
erally on surfaces with Anosov geodesic flows. This implies controllability for the
Schrédinger equation by any nonempty open set, and shows that every semiclassical
measure has full support. We also prove exponential energy decay for solutions to
the damped wave equation on such surfaces, for any nontrivial damping coefficient.
These results extend previous works [DJ18, Ji20], which considered the setting of
surfaces of constant negative curvature.

The proofs use the strategy of [DJ18, Ji20] and rely on the fractal uncertainty prin-
ciple of [BD18]. However, in the variable curvature case the stable/unstable foliations
are not smooth, so we can no longer associate to these foliations a pseudodifferential
calculus of the type used in [DZ16]. Instead, our argument uses Egorov’s Theorem
up to local Ehrenfest time and the hyperbolic parametrix of [NZ09], together with
the C'* regularity of the stable/unstable foliations.

Let (M, g) be a compact smooth Riemannian manifold. The Laplace—Beltrami op-
erator A admits a complete set of eigenfunctions

uj € C*(M), (=A—=X)u; =0, |lull2ny = 1.

These can be interpreted as stationary states of a quantum particle evolving freely
on M, with )\? being the energy of the particle, and |u;(x)|? the probability density of
finding the particle at the point x. One fundamental question in the field of spectral
geometry is to understand the structure of the eigenfunctions u; in the high-energy
régime \; — oo, using some information on the geodesic flow on M (this flow corre-
sponds to the dynamics of a classical particle evolving freely on M). In particular,
the field of Quantum Chaos focuses on situations where the geodesic flow on M has
chaotic behavior.

In this paper we assume that (M, g) is a compact connected Riemannian surface
without boundary, whose geodesic flow has the Anosov property (see §2.1 for definitions
and properties); we will refer to such (M, g) as an Anosov surface. Anosov flows form a
standard mathematical model of systems with strongly chaotic behavior, in some sense
they are the “purest” form of chaotic systems. A large family of examples is provided

by the surfaces of negative Gauss curvature. Our first result gives a lower bound on the
1
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mass distribution of w;, showing that the probability of finding the quantum particle
in any fixed open set is bounded away from zero uniformly in the high-energy limit:

Theorem 1. Assume that (M, g) is an Anosov surface. Choose Q@ C M open and
nonempty. Then there exists a constant cq > 0 such that any eigenfunction u; of the
Laplace—Beltrami operator on (M, g) satisfies

|ujll 22y = ca - (1.1)

On any Riemannian manifold, the unique continuation principle shows that a pos-
itive lower bound (1.1) holds if one allows cqo to depend on Aj; see e.g. Lebeau-
Robbiano [LR95, Corollaire 2|; an introduction to quantitative unique continuation
for eigenfunctions of the Schrédinger operators on R? can be found in [Zw12, Theo-
rem 7.7]. In general, the lower bound decays exponentially fast as A\, — oo, as can
be seen in the case of the round sphere, where one can construct Gaussian beam
eigenstates concentrating on a closed geodesic and exponentially small away from this
geodesic. Note that related propagation of smallness results for solutions of elliptic
equations were also obtained for any set €2 of positive Lebesgue measure vol(€2) by
Logunov—Malinnikova [LLM19, §1.7], who showed that

vol(2) | Y
sup |u;| > 8 sup |u;]|
Q M

for some constant C' depending on (M, g), but not on Q or j. In our situation, the
energy-independent lower bound (1.1) strongly relies on the chaotic behavior of the
geodesic flow.

The proof of Theorem 1 gives a stronger result featuring the localization of wu; in
both position and Fourier spaces. Let Op,;, be a semiclassical quantization procedure

on M, and S°(T*M) be the standard symbol class, see §2.2. Denote by S*M C T*M
the cosphere bundle.

Theorem 2. Assume that a € S°(T*M) and a|s«pr Z 0. Then there exist constants
C > 0 and hy > 0 depending only on a, such that for all h € (0, ho) and all u € H*(M)
we have the estimate

Clog (1/h)
lullzzan < €1 Opa(@)ullpzqany + 2280/

2
———[[(=*A = Dl o - (1.2)

If a = a(z) is a function on M, then Op,(a) is the multiplication operator by a.
Hence Theorem 2 implies Theorem 1 by taking a(z) supported inside €2 and putting
h = )\]-_1, u = u;. More generally, the lower bound (1.1) holds for quasimodes uy, of
the Laplacian of the following type:
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On the opposite, the lower bound (1.1) may fail for quasimodes of error O(h/log(1/h)):
for (M, g) a surface of constant negative curvature (also known as a hyperbolic sur-
face), Brooks [Brl15]| constructed quasimodes of such strength localized along a closed
geodesic; the construction was extended to more general two-dimensional quantum sys-
tems by Eswarathasan—Nonnenmacher [EN17], and in higher dimension to quasimodes
localized on an invariant submanifold of M by Eswarathasan-Silberman [ES17].

1.1. Application to semiclassical measures. We now discuss two applications of
Theorem 2. The first one concerns semiclassical measures, which describe asymptotic
macroscopic distribution of subsequences of eigenfunctions. More precisely, if (u;, )xen
is a sequence of eigenfunctions with \;, — oo and h;, := )\j_kl, then we say that (u;, )k
converges to a measure p on 1T*M if

(Ophjk (a)uj,, ws,) r2(n) LN . Mad,u for all a € S*(T*M). (1.4)
The measure p is called a semiclassical measure of the manifold (M, g), it describes
the asymptotic microlocal properties of the eigenstates along the sequence (u;,) of
eigenfunctions. A compactness argument shows that, from any sequence of eigenstates
(u, ), it is always possible to extract a subsequence which converges to a semiclassical
measure. Any semiclassical measure is a probability measure supported inside S*M,
which is invariant under the geodesic flow, see [Zw12, Chapter 5].

From (1.4) and the semiclassical calculus we see that || Opy,, (a)u;, H%Q( Ay CONVerges
to [ |a|*dp. Thus Theorem 2 implies the following

Theorem 3. Let u be a semiclassical measure associated to a sequence of Laplacian
eigenfunctions on M. Then supp pu = S*M, that is u(U) > 0 for any open nonempty
UcCS*M.

While we do not provide an explicit formula for the lower bound on p(U) in terms
of U, we show that this lower bound only depends on a certain dynamical quantity
associated to U:

Theorem 4. There exists ¢ > 0 depending only on (M, g) such that the following
holds. Assume that U C S*M is an open set which is (Lo, L1)-dense in both unsta-
ble and stable directions in the sense of Definition 2.16 below, and has diameter less
than y. Then for each semiclassical measure p we have p(U) > ¢, where the constant
¢ > 0 depends only on (M, g) and on the lengths (Lo, L).

Theorem 4 follows by analyzing the dependence of various parameters in the proof
of Theorem 2. We indicate the required changes in various remarks throughout the
paper, with the proof of Theorem 4 explained at the end of §3.3.4. Let us remark that
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Theorems 3 and 4 also apply to semiclassical measures associated with quasimodes of
the form (1.3).

We believe that our results are not specific to the Laplacian, but can be extended
to operators of the foorm P = —A + P, + Py on (M, g), where P; are symmetric
differential operators of order ¢ with smooth coefficients. ¢ One could also consider
semiclassical Schrédinger operators P, = —h?A + V with V € C*°(M;R), and study
families of eigenstates Pyu, = E(h)uy, with eigenvalues E(h) — 1 when h — 0. If
the potential V' is sufficiently small, the Hamiltonian flow generated by the symbol
p(x,&) = ]2 + V(x), restricted to the energy hypersurface p~'(1), will still enjoy the
Anosov property, due to the structural stability of that property. We then believe that
the eigenstates (up)n—o0, as well as the associated semiclassical measures, will satisfy
similar delocalization properties as in Theorems 1—4.

To put Theorems 2—4 into context, let us give a brief historical review, referring
to the expository articles of Marklof [Ma06|, Zelditch [Ze09|, and Sarnak [Sall| for
more information. The Quantum Ergodicity theorem of Shnirelman [Sh74a, Sh74b],
Zelditch [Ze87], and Colin de Verdiére [CdV85] states that when the geodesic flow
on S*M is ergodic (with respect to the Liouville measure py,), there exists a density
one sequence (u;, ) which asymptotically equidistributes, namely which converges to the
Liouville measure py, in the sense of (1.4). The Quantum Unique Ergodicity (QUE)
conjecture formulated by Rudnick—Sarnak [RS94] states that on any Anosov manifold,
the full sequence of eigenfunctions equidistributes, that is y, is the unique semiclassical
measure. So far this conjecture has only been established for hyperbolic surfaces
possessing arithmetic symmetries [Li06]. On the other hand, there exist toy models of
quantized Anosov maps on the two-dimensional torus, where the corresponding QUE
conjecture fails, see Faure-Nonnenmacher—de Biévre [FNdB03] and Anantharaman—
Nonnenmacher [AN07b]. On a similar Anosov toy model on a higher dimensional torus,
Kelmer [Kel0] exhibited counterexamples to QUE, but also to our full delocalization
result, featuring semiclassical measure supported on proper submanifolds.

With QUE seeming out of reach, it is natural to wonder which flow invariant proba-
bility measures on S*M can arise as semiclassical measures; in other words, does quan-
tum mechanics select certain invariant measures, or allow all of them? The first restric-
tions on semiclassical measures were proved by Anantharaman [An08], Anantharaman—
Nonnenmacher [AN07a|, Riviére [Ril0], and Anantharaman-Silberman [AS13], in the
form of positive lower bounds on the Kolmogorov—Sinai entropy of . The entropy
is a nonnegative number associated with each invariant measure, representing the in-
formation theoretic complexity of the measure. Low-entropy measures therefore have
low complexity. These lower bounds on the entropy exclude, for instance, the extreme
case when p is a 0 measure on a closed geodesic. Our Theorem 3 gives a different
type of restriction on p. As explained in [DJ18], there exist invariant measures which
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are excluded by Theorem 3 but not by entropy bounds, and vice versa. For instance,
on any Anosov surface one can construct flow invariant fractal subsets F' C S*M of
Hausdorff dimension close to 3, which support invariant measures of large entropy.
Conversely, an invariant measure of the form ey, + (1 —€)d,, with 0, the delta measure
on a closed geodesic and 0 < ¢ < 1, will have full support but small entropy.

In the special case of hyperbolic surfaces, Theorems 1-3 were proved by Dyatlov—
Jin [DJ18]; see also the reviews [Dy17, Dy19]. The proofs in the present paper partially
use the strategy of [DJ18], in particular they rely on the fractal uncertainty principle
(FUP) established by Bourgain-Dyatlov [BD18|. However, many new difficulties arise
in the variable curvature case, in particular from the fact that the stable and unstable
foliations on S*M are not smooth, see §§1.4,4.1 below.

1.2. Application to control theory. The second application of Theorem 2 is to ob-
servability and exact null-controllability for the (nonsemiclassical) Schrédinger equa-
tion:

Theorem 5. Assume that 0 C M is open and nonempty, and fix T' > 0. Then:

o (Observability) There exists a constant K > 0 depending only on M, 2, and T,
such that for any ug € L*(M), we have

T
lol2an) < K / e 23 gt (1.5)
0

e (Control) For any uy € L*(M), there exists f € L*((0,T) x Q) such that the
solution to the equation

(10, + A)u(t,z) = floryxal(t,®), u(0,2) = u(z)

satisfies
uw(T,z) =0.

The proof that the above statements follow from Theorem 2 is identical to the one
in Jin [Ji18], so we will not reproduce it here.

For a general manifold, such observability /control is known to hold if the open set
() satisfies the geometric control condition of Bardos-Lebeau-Rauch [BLR92, Le92],
namely if every geodesic ray intersects ). Yet, it may hold as well if this geometric
condition is violated, for instance on compact manifolds of negative sectional curvature,
provided the set of geodesics never meeting (2 is “sufficiently thin”, see Anantharaman—
Riviere [AR12]. The novelty in the above two-dimensional result, is that this control
holds for any open set €2, now matter how thick the set of uncontrolled geodesics.
So far the only other family of manifolds for which observability/control was known
to hold for any Q were the flat tori, see Haraux [Ha89] and Jaffard [Ja90|. Further
references on this question may be found in Burq-Zworski [BZ04] and Jin [Jil8].
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1.3. Damped wave equation. Our final result concerns the long time behavior of
solutions to the damped wave equation on M, with damping function b € C*(M),
b>0,b0%#0:

(02 — A +2b(2)0)v(t,x) =0, v|img = vo(x), Opv|i—o = vi(2). (1.6)

Semigroup theory shows that for initial data (v, v1) € H° := H'(M) x L*(M), the
above equation has a unique solution in C(R*; H'(M)) N C*(R*; L?(M)). The energy
of this solution at time ¢t > 0 is defined by

E(u(t)) = %/M|8tv(t,x)|2+|va(t,x)|2dx. (1.7)

It is well-known that on every compact Riemannian manifold, this energy decays to
zero when t — oo. However, the rate of decay depends on a subtle interplay between
the geodesic flow and the support of the damping function, see Lebeau [Le96]. In
particular, exponential decay (the fastest possible decay) always holds if the damping
function satisfies the geometric control condition, that is any geodesic intersects the
set {b > 0}. In the case of an Anosov surface with any damping function b, we obtain
exponential decay without requiring this geometric condition:

Theorem 6. Assume that b > 0 but b % 0. Then for every s > 0, there exist constants
C and v = ~(s) > 0 such that for any (vo,v1) € H* := H*TH (M) x H*(M), the energy
of the solution decays exponentially:

E(v(t)) < Ce|(vo, v1)|3 - (1.8)

We remark that on any compact manifold, the decay (1.8) holds for s = 0 if
and only if the set {b > 0} satisfies the geometric control condition, see Rauch-
Taylor [RaTa75]. On manifolds of negative curvature, an exponential decay controlled
by a higher Sobolev norm s > 0 has been proved in situations where the set of un-
damped trajectories is sufficiently “thin”, see Schenck [Sc10].

To our knowledge, Theorem 6 gives the first class of manifolds (of dimension > 2)
for which the energy decays exponentially (under a control by a higher Sobolev norm),
no matter how small the support of the damping is. As a comparison, in the case of
flat tori, in absence of geometric control of the region {b > 0}, the decay is instead
algebraic in time, see Anantharaman-Léautaud [Anlel4|. For an account on previous
results on the rate of energy decay for damped waves, the reader may consult the
introduction to [Ji20] and the references therein.

The proof of Theorem 6 uses many of the ingredients of the proof of Theorem 2,
including the key estimate, Proposition 3.2. In the special case of hyperbolic surfaces,
Theorem 6 was proved by Jin [Ji20] using the methods of [DJ18§].
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1.4. Structure of the article.

e In §2 we review various ingredients used in the proof. Those include: hy-
perbolic (Anosov) dynamics and stable/unstable manifolds (§2.1); pseudodif-
ferential operators with mildly exotic symbols and Egorov’s theorem (§2.2);
Lagrangian distributions/Fourier integral operators (§2.3); fractal uncertainty
principle (§2.4); proof of porosity of dynamically defined sets (§2.5).

e In §3 we give the proofs of Theorems 2, 4 (§3.3), and 6 (§3.4). The strategy of
proof is similar to the one used in [DJ18, Ji20] in the constant curvature case.
It starts from a microlocal partition of the identity, quantizing the partition
of S*M into the controlled vs. uncontrolled regions. Using the wave group,
we may refine this microlocal partition up to a time N, each element of the
refined partition being an operator Ay = Ay, (N) -+ Ay, (1) Ay, indexed by a
word w = wy . .. wn, each symbol w; indicating whether the system sits in the
controlled or uncontrolled region at the time j. We need to push this refinement
up to a time N ~ C'log(1/h) exceeding the Ehrenfest time, which implies that
the operators Ay, are no longer pseudodifferential operators. The core of the
proof then consists in a key estimate on these “long” operators Ay, given in
Proposition 3.2.

e §4 is devoted to the proof of this key Proposition. It proceeds by transforming
this estimate into a collection of fractal uncertainty principles. This part of the
proof is very different from the constant curvature case, due to the fact that
the Ehrenfest time is not uniform, but depends on the trajectory; the difficulty
also comes from the low regularity of the stable/unstable foliations, which are
not C*, but only C?7¢. An outline of the proof is provided in §4.1.

e In §5 we complete the analysis of the operators A, by splitting them into more
elementary pieces, which we may precisely analyze through a version of Egorov’s
Theorem up to the local Ehrenfest time. Similar elementary pieces were already
introduced in the proofs of entropic lower bounds [An08, NZ09, Ril0]; we will
need a somewhat more precise description of these operators for our aims.

e Appendix A contains quantitative estimates for the semiclassical pseudodiffer-
ential calculus on a compact surface, used in §2.2 and §5.

2. INGREDIENTS

In this section we review some of the ingredients used in the proof: hyperbolic
dynamics (§2.1), semiclassical analysis (§§2.2-2.3), fractal uncertainty principle (§2.4),
and porosity properties in the stable/unstable directions (§2.5).
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2.1. Hyperbolic dynamics. Let (M, g) be a compact connected Riemannian surface.

Denote
T*M\O0:={(z,) € T"M: £ # 0},

S*M :={(x,&) e T"M: |§|, = 1}.

Define the smooth function
p:T"MN\O =R, p(z,§) = ¢, (2.1)

The Hamiltonian flow of p,
o =exp(tH,) : T"M\0—T*M\ 0 (2.2)

is the homogeneous geodesic flow, note that it preserves S*M.

We assume that the restriction of ¢, to S*M is an Anosov flow, namely for each
p € S*M there is a splitting of the tangent space T,,(S*M) into one-dimensional spaces

T,(S*M) = Eo(p) ® Es(p) @ Eu(p)
such that:

e Ey(p) =RH,(p) is the flow direction;

e F, FE, are invariant under dip;;

e [, is stable and FE, is unstable in the following sense: for any choice of contin-
uous metric | e | on the fibers of T'(S*M), there exist C,0 > 0 such that

vE Ey(p), t=>0;

ve E,(p), t<0. (23)

|dipr(p)v] < Ce M), {

The Anosov assumption holds in particular if (M, g) has everywhere negative Gauss
curvature, see [KH97, Theorem 17.6.2], [K195, Theorem 3.9.1], or [Dy18, Theorem 6
in §5.1]. In the present setting the dependence of the spaces Ej, F, (and the sta-
ble/unstable manifolds defined in §2.1.1 below) on the base point p is C*~ but (unless
M has constant curvature) not C?, see Remark 1 following Lemma, 2.3.

Since ¢, is a homogeneous Hamiltonian flow, it preserves the canonical 1-form & dx
(which is the symplectic dual of the dilation field £ - 0¢). By (2.3) we see that £ dz
annihilates F, & F,, that is

Es @ E, = ker(dp) Nker(¢ dz). (2.4)

We fix adapted metrics | o |, | ®|,, which are smooth Riemannian metrics on S*M, so
that the following stronger version of (2.3) holds for some Ay > 0:

|dei(p)v]s < e ™Mol v e Eyp), t>0;

2.5
ldei(p)vlu < e Mol v € Eu(p), t<0. 29
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See for instance |[Dy18, Lemma 4.7] for the construction of such metrics. By homo-
geneity we extend the spaces Fy, Fy, E, to T*M \ 0. We also extend | e |, | ®], to
homogeneous metrics of degree 0 on T*M \ 0.

For each p € T*M \ 0 and t € R we define the stable/unstable expansion rates (since
Es, E, are one-dimensional these coincide with the stable/unstable Jacobians):

\dpi(p)vls = JE(p)|v]s, v € Ey(p);
[dpi(p)vlw = JE(p)|v]u, v € Eu(p).

From the stable/unstable decomposition and the homogeneity of the flow we see that
for all p € {1 <|¢], <4} and all ¢

(2.6)

ldei(p)|| < CTH(p), t > 0;

ldeu(p)|| < CT:(p), t<0. (2.7)

Since FEj is spanned by H, and Ej, F, are tangent to the level sets of p, we see that
the weak stable/unstable spaces Fy @ Ey, E, ® Fy are Lagrangian with respect to
the standard symplectic form w on T*M \ 0 and Es @ F, is symplectic. Since ¢, are
symplectomorphisms, there exists a constant C' such that for all p € T*M\O and t € R

C™h < i (p) i (p) < C. (2.8)

Moreover, J; and J;* are invariant under a short time evolution by the flow ¢, up to a
multiplicative constant: for all p € T*M \ 0, t' € [-1,1], and t € R

C U (p) < JP(ew(p) < CI(p),  CHI(p) < Ji (v (p) < C T p). (2.9)

By (2.5), J; is exponentially decaying in time, and J;* cannot grow faster than expo-
nentially due to the compactness of M. As a result, there exist constants' 0 < Ay < A;
such that for all p € T*M \ 0

eMoltl < Ji(p) < eA1|t|, e~ Mt < Ji(p) < e~ Molt] for all t > 0;

2.10
e M < Ju(p) < e Mol holth < g5 () < Ml for all ¢ <O0. (2.10)
For technical reasons (in the proof of Lemma 3.1) we choose to take A; > 1.
Define also
Ae Ml en (2.11)
=15 : :

IWe can think of Ao as the minimal expansion rate and Ay as the mazimal expansion rate but
strictly speaking this is not the case: instead one should take as Ay any number smaller than the
minimal expansion rate, and as A; any number larger than the maximal expansion rate.
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2.1.1. Stable/unstable manifolds. For p € S*M, denote by
Ws(p), Wu(p) C S*M

the local stable/unstable leaves passing through p. These are C*°-embedded one di-
mensional disks (i.e. intervals) tangent to E,, E,. Their definition depends on ar-
bitrary choices (because of the freedom of choosing where to end the interval) how-
ever their behavior near each point depends only on (M, g). For the construction of
W(p), Wy (p) and their properties we refer to [KH97, Theorem 17.4.3], [K195, Theo-
rem 3.9.2], or [Dyl8, Theorem 5 in §4.6]. We can ajust the definition of these local
laves such that they satisfy the following invariance properties under the flow ¢y:

vp S S*Ma 901(W8<:0)) C Ws(@l(p»? 9071<Wu(p)) C Wu(9071<p)) (212>

We also use the local weak stable/unstable leaves
Wos(p U e:(Ws(p)),  Woulp U (W, (2.13)
t|<e |t|<&
which are C"*°-embedded two dimensional rectangles inside S*M tangent to the weak
stable/unstable spaces Ey @ Fs, Ey® E,. Here £ > 0 is fixed small, depending only on

(M, g). We extend Wy, W,,, Wy, Wo,, to T* M\ 0 by homogeneity, however for simplicity
the lemmas below are stated on S*M

The stable/unstable manifolds are related to the dynamics of ¢, by the following
lemma. To state it we introduce the following piece of notation: for A, B > 0

A~B if CT'A<B<CA forsome C >0 depending only on (M,g). (2.14)

Lemma 2.1. Fiz a Riemannian metric on S*M which induces a distance function
d(e,e). Then there exist C,eq > 0 such that for all p,p € S*M we have:

(1) if 5 € Wi(p), then

d(pi(p), pe(p)) < C I (p)d(p, p)  for all t=>0; (2.15)
(2) if p € Waul(p), then
d(e(p), pi(p)) < C i (p)d(p, p)  for all T <0; (2.16)

(3) if p € Wos(p), then Js(p)NJ( p) and Ji(p )NJ“( p) for allt > 0;
(4) if p € Woulp), then J:(p) ~ J:(p) and Ji(p) ~ J(p) for all t < 0;
(5) if T € Ny and d(p+(p), pe(p)) < g0 for all mtegers t € 10,7, then

d(p, Wos(p)) < C/Jp(p) (2.17)

and J3(p) ~ J7(p), Ji(p) ~ Ji'(p) for all t € [0,T];
(6) if T € Ny and d(p(p), pe(p)) < €0 for all integers t € [=T,0], then

d(5, Wou(p)) < C/ T () (2.18)
and J3(p) ~ J; (). Ji(p) ~ J(p) for allt € [~T,0).
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Remarks. 1. The difference between Lemma 2.1 and standard facts from hyperbolic
dynamics (see for instance [KH97, Theorem 17.4.3]) is that our estimates involve the
local expansion rates for the point p rather than the minimal expansion rate. This will
be important later in our analysis.

2. By (2.8) we have J7(p) ~ 1/J/(p). However the present lemma does not rely
on ¢; being symplectomorphisms which is why we choose to keep both the stable and
unstable Jacobians in the estimates.

Proof. We only prove parts (1), (3), (5), with parts (2), (4), (6) proved similarly.

(1) Without loss of generality we may assume that the distance function d(e, e) is
induced by the metric | @ | used in (2.6) to define J7(p). Since the tangent space
to Ws(p) at p is E4(p), there exists a constant C' such that for every p € S*M and

p € Wi(p)

|d(e1(p), 1(p)) — J5 (p)d(p, p)| < Cd(p, p)*. (2.19)

That is, when p is close to p the dilation factor of the distance d(p, p) by the map ¢,
is well-approximated by the norm of the differential dy;(p) on Es(p).

Since p € Wy(p), there exist constants C,6 > 0 such that (see for instance [[KXH97,
Theorem 17.4.3(3)] or [Dy18, (4.67)])

d(oi(p), pi(p)) < Ce™®d(p,p) forall t>0. (2.20)

For each integer t > 0, we have p.(p) € Wi(¢i(p)) by (2.12). Applying (2.19) with p, p
replaced by ¢:(p), ¢i(p) we have

d(pe1(p), ee+1(p)) < T3 (2e(p))d(pr(p), @¢(p)) + Cd(e(p), :(p))*
< (1+ Ce ™) T5 (u(p)d(e(p), ()

By the chain rule we have for all integers t > 0
T (p) = T (0) 5 (p1(p) -+ T (wi1(p)). (2.22)

Iterating (2.21) and using that the product []72,(1 + Ce=9) converges, we get (2.15)
for all integer ¢ > 0, which immediately implies it for all ¢ > 0.

(2.21)

(3) We show that Jf(p) ~ Ji(p), with the statement J*(p) ~ Ji(p) proved similarly.
Assume first that p € Wi(p). The map p — FE(p) is in the Holder class C7 for
some v > 0 (see for instance [Dy18, Lemma 4.3|; in §2.1.2 below we see that in our
setting it is in fact C*7). Recalling (2.6) we have for all p, p € S*M

[J3(p) = J2(p)| < Cd(p, p)".
Applying this with p, p replaced by ¢:(p), ¢i(p) and using (2.20) we get for all ¢ > 0
(1+Ce ™) 1T () < T3 (we(p)) < (14 Ce ™) T3 (wi(p)- (2.23)
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FIGURE 1. Left: the points p, p, p" in the proof of part (5) of Lemma 2.1,
with the flow direction removed. Right: the image of the left half by .

Using the chain rule (2.22) and iterating (2.23), we get J7(p) ~ Ji(p) for all ¢ > 0. The
general weak stable case p € Wy,(p) follows since J(¢y(p)) ~ J7(p) for all p € S*M
and t' € [—1,1] by (2.9).

(5) Since Fy @ E; is transversal to F,, for £y small enough and all p, p € S*M such
that d(p, p) < o, there exists a point (see Figure 1)

P € Wos(p) " Wau(p),  dlp,p') < Ceo. (2.24)

See for instance [KH97, Proposition 6.4.13] (in the related case of maps) or [Dy18,
(4.66)]. Since p' € Wos(p), by (2.20) there exists a constant Cy > 1 such that

d(ei(p)), pe(p)) < Cogo  for all t > 0. (2.25)

By (2.12), for gy small enough we have (denoting by By balls with respect to the
distance function d(e,e))

QOl(Wu(ﬁ)) N Bd(@l(ﬁ), 20060) C Wu<301(,5>> for all ﬁ € S*M. (226)

Now, assume that p,p € S*M and d(pi(p), pi(p)) < go for all integers t € [0,T].
Choose p' satisfying (2.24). If g is small enough, then by the local uniqueness of
unstable leaves we have p € W, (p'). By (2.25) we have for all integers ¢t € [0, T]]

d(pi(p'), 01(p) < dlen(p), pi(p)) + dpi(p), 21(p)) < 2Coeo-
Applying (2.26) with p := ¢(p'), we see by induction on ¢ that
0i(p) € Wy(pi(p')) for all integer ¢ € [0,T].

In particular, p7(p) € W, (pr(p')). Applying (2.16) with ¢ := —T and p, p replaced by
er(p), 1 (p),

d(p',p) = d(o_r(er(p)), p—1(0r(p)) < CT 1(pr(p)) =

Jr(o") — Ji(p)
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N

FIGURE 2. An illustration of Corollary 2.2 for T' = 3 with the flow
direction removed. The green points are ¢;(po), the curves are the local
stable (red) and unstable (blue) manifolds of these points, and the black
rectangles are the sets (V).

t=20

where the last inequality follows from part (3) of the present lemma. Since p’ € Wys(p)
this proves (2.17).

It remains to show that J7(p) ~ JZ(p), Ji*(p) ~ Ji(p) for all t € [0,T]. As before,
we prove the first statement with the second one proved similarly. We can moreover
restrict ourselves to integer values of ¢t. By part (4) of the present lemma applied to
the points ¢:(p'), i(p) € Wu(wi(p')) and propagation time —t, we have J*,(¢(p")) ~
J%,(¢i(p)). Since JS( "y =1/J%,(pi(p")) this implies that J(p') ~ J7(p). On the other
hand by part (3) of the present lemma we have J7(p) ~ J7(p'). Combining the last
two statements we get J7(p) ~ J7(p) as needed. O

Parts (5) and (6) of Lemma 2.1 applied to p := ¢(p) together with (2.10) give

Corollary 2.2. Let d(e, ) and ey > 0 be fized in Lemma 2.1. Fiz py € S*M, T € Ny,
and consider the set

= {p € &M | d(g:(p), i(po)) <o for all integer t € [0,T]}.
Then we have for all p €V and t € [0,T]

d(gpt(p)’ WOs(SDt(Po))) < C/J7_(po) < Ce—Ao(T—t)’

L (2.27)
d(pi(p), Wou(i(po))) < C T (pi(po)) < Ce™™,

Aot Ao(T—t)

Roughly speaking (2.27) implies that (V) lies inside an gy x e 20" x e~
sized rectangle (with dimensions along Ey, Es, E, respectively) centered at ¢;(pg) — see
Figure 2.

2.1.2. Straightening out the weak unstable foliation. In §4.3.3 and §4.6.1 below (most
crucially in the proof of Lemma 4.15) we rely on the following construction of normal
coordinates which straighten out a given weak unstable leaf. Similarly to Lemma 2.1
we fix a distance function d(e,e) on S*M
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S
{771 =0}
Wou(po) )

UPO Vpo

FIGURE 3. An illustration of Lemma 2.3, restricted to S*M and with the
flow direction removed. The curves on the left are the (weak) unstable
manifolds and the curves on the right are their images under s.

Lemma 2.3. For ¢y > 0 small enough and for any py € S*M there exists a C™
symplectomorphism

s =505 Uy = Vo, Uy CT*MN\O, V,, CTR*\O0,
such that, denoting points in T*M by (z,&) and points in T*R? by (y,n), we have:

(1) Uy, V,, are conic sets and the ball By(po, o) is contained in U,y N S*M

(2) s is homogeneous namely it maps the vector field & - O to 1 - Oy;

(3) 2¢(po) = (0,0,0,1), dse(po)Eu(po) = RO,,, and dx(po)Es(po) = R0y, ;

(4) putting p(z,§) = |£|y, we have p =m0 3¢ on U,y ;

(5) for each p € U,,, the weak unstable leaf Wo,(p) satisfies for some { = Z(p) € R

#(Wou(p) NUp) = { (y1, 42, 2(B)F (1, ). (D)) | (11,{) €Q, yp €R} NV, (2.28)

where F = F,, is a function from an open set @ = Q, C R? to R lying
in the Holder class C3/%(Q), the map y, — F(y,¢) is C® for every ¢, and
Z :U,, — R is homogeneous of degree 0, in the class C3% on Upy NS™M, and
constant on each local weak unstable leaf;

(6) Z(po) =0, F(y1,0) =0, and F(0,¢) = ¢;

(7) OcF(y1,0) = 1.
(8) there exists C,y > 0 such that |F(y1,¢) — | < Oy, [C]32.

The derivatives of all orders of ,, and the constant C,, are bounded independently

of po-

— — — —

Remarks. 1. The statements (1)-(7) of Lemma 2.3 rely on the C%/2 regularity of the
unstable distribution (E,(p)),es+m, proved by Hurder-Katok [HIK90, Theorem 3.1|.
They actually proved that for a generic surface of negative curvature, the distribution
has regularity C?~, but not better: by [HK90, Theorem 3.2 and Corollary 3.7], if the
regularity is C?, then (M, g) must have constant curvature. For our application the
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regularity C'* for some ¢, > 0 would suffice, but we will use the C%/? regularity to
simplify the expressions.

2. The point (6) in the Lemma shows that the weak unstable manifold Wy, (po) is
represented, in the coordinates given by s, by the horizontal plane {r; = 0,y = 1},
see (2.29). The nearby unstable leaves W, (p) will then be approximately horizontal,
that is close to planes {n; = ( = const, 7o = const}. The statements (7)—(8) express
this almost horizontality more precisely. In §4 this almost horizontality will allow us
to apply the (“straight”) fractal uncertainty principle to families of almost-horizontal
unstable manifolds. The statement (8), which relies on the C3/2 regularity, will be
directly used in Lemma 4.15.

To prove Lemma 2.3 we start by constructing a local coordinate frame under slightly
weaker conditions:

Lemma 2.4. Under the assumptions of Lemma 2.5 there exists a symplectomorphism
2 having properties (1)-(6) of that lemma.

Proof. To construct s we need to define a system of symplectic coordinates (y1, y2, 71, 72)
on a conic neighborhood of pg which are homogeneous (more precisely y;,y> are ho-
mogeneous of degree 0 and 71,7, are homogeneous of degree 1). Put 7y := p and
let m1|s+p be a defining function of the leaf Wy, (po) (namely 7, vanishes on Wy, (po)
and its differential is nondegenerate on that submanifold) satisfying H,n = 0; this is
possible since H,, is tangent to Wy, (po). Extending 7, to be homogeneous of degree 1,

we see that the Poisson bracket {n;, 72} vanishes in a conic neighborhood of py. The
existence of the system of coordinates (yi,y2,m1,72) now follows from the Darboux
Theorem [HOIII, Theorem 21.1.9|, where we can arrange that y;(po) = y2(po) = 0.

Since 57y is homogeneous, it sends the canonical 1-form & dx on T* M to the canonical
1-form ndy on T*R?. By (2.4) we then have

d0(po) (Es(po) © Eulpo)) = ker(dnz) Nker(dy,).

Since E,(po) is tangent to Wy, (po), we see that dse(E,(po)) = RI,,. To ensure that
dry(Es(po)) = RO, we compose s with the nonlinear shear

(y’n> = (y+d]:(77)777)7 ]:(7)1,772) = 977—1

for an appropriate choice of # € R.

Properties (1)—(4) of Lemma 2.3 follow immediately from the discussion above. For
property (5), we first note that by construction

#0(Wou(po)) = {m =0, n2 = 1}. (2.29)

Since the tangent spaces Eg,(p) to the leaves Wy, (p) depend continuously on p, we
see that for p € S*M near p the images s¢(Wo,(p)) project diffeomorphically onto the
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(y1,yo) variables. Therefore we can locally write

s0(Wou(p)) = {m = Fo(y1,92,C), n2 =1}

for some function Fy(y1, ye, () and some =2, (p) depending on p, and we can assume
that Fy(0,0,¢) = ¢ which uniquely determines the functions Fy, Zy. Since Wy, (p) is a
C° submanifold, the function y — Fy(y, () is C* for each (. Since H, is tangent to
each Wy, (p) and is mapped by s to 9,,, we see that 0y, Fy = 0, thus Fj is a function
of (y1,¢) only. This shows that (2.28) holds for all p € U,, N S*M, and it is easy to
see that it holds for all p € U,, by homogeneity, with Z, homogeneous of degree 0.
Property (6) follows from (2.29).

It remains to prove that the functions Fy, Z, have regularity C®2. According to
[HIK90, Definition 4.1 and Theorem 4.2, the function Fj is C'* in the variable y; (this
shows that each unstable leaf is smooth submanifold), and is C* w.r.t. (. Besides,
[HHK90, Theorem 3.1] shows that the distribution FE,(p) depends C*?2 on p. In our
coordinates sz, this regularity means that the “slope function” e, (y1, 1) of the unstable
distribution has regularity C®/? w.r.t. its variables. Now, the function Fj is a solution
of the differential equation

d
d—ylFO(yl, ¢) = eu(y1, Fo(y1,¢)), with initial condition Fy(0,¢) = ¢.

Standard results on ODEs [Ha02, Chapter V| show that the unique solution to such
an ODE with C* function e, will depend in a C* way of the initial condition . The
proof of [Ha02, Theorem 3.1] can be easily adapted to show that a C®/2 function e,
induces a solution Fy, with regularity C®/2. O

We now modify the map s from Lemma 2.4 to obtain a map s satisfying also
the condition (7) of Lemma 2.3. Let Fy be the function constructed in the proof of
Lemma 2.4. We have for every (

1 = OcFo(yr,¢)  lies in C*°. (2.30)

This follows from the existence of C'*-adapted transverse coordinates, see |[HIK90,
Point 2 in Definition 4.1 and Proposition 4.2].

From the normalization Fy(0,¢) = ¢ we see that 0. Fy(y1,¢) > 0 for y; close to 0.
Take the diffeomorphism v of neighborhoods of 0 in R defined by

¢(y1):/0 1c?CFO(s,O)ds.

We define s as the composition s := ¥ o 3¢y where W is the symplectic lift of :

U (y1, Y2, M, m2) = (Y1), yo, m /¥ (1), 12)-
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Then »¢ satisfies all the properties in Lemma 2.3, with the function

_ F0(¢_1(y1)af)
Flon 0 = 5’cFo(w*1(y1),0)’

Like F,, the function F is C%/? w.r.t. the variable (. We now use this regularity to
prove part (8) of Lemma 2.3. This C%/? regularity, together with the property (7),
implies the Taylor expansion of F' at the point (y;,0):

F(y1,¢) = F(y1,0) + COcF (y1,0) + O(*?)
= (+ 0",

with the implied constant being uniform w.r.t. y;. The second line is the point (8) of
the Lemma: the leaf Wy, (p) at “height” ¢ from the reference horizontal leaf W, (po) is
contained in horizontal rectangle of thickness O(¢%/2).

Z = 2y.

Finally, the fact that the derivatives of all orders of s,, are bounded uniformly in p
follows directly from the arguments above and the fact that the leaf Wy, (po) depends
continuously on py as an embedded C* submanifold of S*M. It also shows that the
constant C), in item (8) is uniformly bounded w.r.t po. O

2.2. Pseudodifferential operators. Let M be a manifold. We use the standard
semiclassical symbol class S¥(T* M) whose elements a(z, &; h) satisfy uniform derivative
bounds on every compact subset K C M:

0507 (e, & h)| < Capr(§)F7, 2 e K, € TiM,

and admit an expansion in powers of h and |¢]. See for instance [DZ19, Definition E.3|
or [DZ16, §2.1]. Denote by S¥(T*M) the class of h-independent symbols in SF(T*M).
We fix a (noncanonical) quantization procedure Op,, on M, see (A.5) below and [DZ19,
Proposition E.15]. Denote the class of semiclassical pseudodifferential operators with
symbols in SF(T*M) by W5(M) and the (canonical) principal symbol map by oy :
UF(M) — S¥(T*M). See for instance [DZ19, §E.1.7] or [Zw12, §14.2].

If M is noncompact, then we do not impose any restrictions on the growth of
a(z,&h) € SHT*M) as |z| — oo and likewise do not say anything about the as-
ymptotic behavior of operators in U¥ (M) as we approach the infinity of M. Therefore
M) —
H ,iIOkC(M ) where Hj; (M) denotes the space of distributions locally in the semiclas-

in general operators in Wy (M) are bounded (uniformly in %) acting Hj ... (

sical Sobolev space Hy and Hj, ..., (M) consists of the compactly supported elements
of H},.(M). See [DZ19, §E.1.8] or [Zw12, §8.3.1]. We will typically use operators

in Wy(M) which are properly supported, mapping Hj M) — HZ;me(M) and

H; oo(M) — Hy X (M). The quantization procedure Op,, is chosen so that Op,(a)
is properly supported for every a and Op,(a) is compactly supported (i.e. it has a

comp (

compactly supported Schwartz kernel) for symbols a which are compactly supported
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in the x variable. Of course if M is a compact manifold (which will mostly be the
case in this paper), then Hj (M) and Hj ,,(M) are the same space, denoted by
H;(M). We will mostly use the space Hy(M) = L*(M).

For A € W¥(M) we denote by WF,(A) its wavefront set and by ell,(A) its elliptic
set. Both are subsets of the fiber-radially compactified cotangent bundle T'M. See
for instance [DZ19, §E.2| or [DZ16, §2.1]. For A € Wi(M), B € Wi (M) we say that

A= B+ O(h™) microlocally on some open set U C T M

if WE,(A—B)NnU = 0.

We also use the notion of the wavefront set WF,(u) € T M of an h-dependent
tempered family of distributions u = u(h) € D'(M) and the wavefront set WF}, (B) C
T"(My x M) of an h-dependent tempered family of operators B = B(h) : C2°(Ms) —
D'(M,), see |DZ19, §E.2.3|.

2.2.1. Mildly exotic symbols. We also use the mildly exotic symbol class S5™™"(T*M),
6 € [0, 3), consisting of symbols a(z,&; h) such that:

o the (z,¢)-support of a is contained in an h-independent compact subset of 7% M;
e the symbol a satisfies derivative bounds

06 ¢yalw, & )] < Cagh™el.

The operator class corresponding to Si°*(T*M) is denoted by W™ (M ). We require
operators in Us"™P(M) to be compactly supported. We use the same quantization
procedure Op,, for this class and note that compactly supported elements of S¥(T*M)
lie in Sg™"P(T*M). See [Zw12, §4.4] or [DG14, §3.1].

Operators in the class U5""P (M) satisfy the following version of the sharp Garding
inequality for all u € L*(M):

a€ SP(T*M), Rea>0 = Re(Opy(a)u,u)rz > —C’hl_z‘;HuHig (2.31)

where the constant C' depends only on a certain S§”"P(7T*M) seminorm of a. The
inequality (2.31) can be reduced to the case of the standard quantization on R";
the latter case is proved by applying the standard sharp Garding inequality [Zw12,
Theorem 4.32] to the rescaled symbol a(x, &) = a(h’z, h°¢) and using the identity
Opy,(a) = T~ Oppi-2s(a)T where Tu(z) = u(h’x).

We also have the following norm bound when M is compact:

a€S(T*M) = ||Opy(a)|lr2sz2 < sup |a| + Ch2 ™ (2.32)
"M
where the constant C' depends only on some S5°"(T* M) seminorm of a. To show (2.32)

it suffices to apply (2.31) to the operator ¢ — Op,(a)* Op,(a) = Op,(c* — |a|?) +
O(h'=2) 12,12 where ¢ = c(h) = supp«y, |al.
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Notation: We remark that there is a slight conflict of notation between the classes S¥
(h-dependent symbols of order k in £ which are polyhomogeneous in both £ and h)
and S;°™ (h-dependent compactly supported symbols losing A~ with each differenti-
ation). A more proper notation would be

Shong(T*M) := SE(T*M),  S;5™(T*M) := S5 (T*M).
We however keep the shorter notation to reduce the number of indices used. For
6 € [0,3) we define the symbol class
ST (T M) = () Ss2rP (T M),
e>0

We also use the following notation:
f(h)=0(h*") if f(h)=0(h*) foralle>0.

When writing a € C°(T* M) for a symbol a, we assume that a is h-independent unless
stated otherwise.

2.2.2. Egorov’s Theorem. We now specialize to the case when (M, g) is a compact
Anosov surface as in §2.1. Since o, (—h?A) = p* where p(z, &) = |¢],, by the functional
calculus of pseudodifferential operators (see [Zw12, Theorem 14.9] or [DS99, §8]) we
have
v eCER) = Y(=h*A) € U,;>(M),

WE,(¥(=h*A)) Csuppy(p?),  on(V(=h*A)) = »(p°).
We now discuss conjugation of pseudodifferential operators by the wave group. Simi-
larly to [D.J18, §2.2|, to avoid technical issues coming from the zero section, instead of
the true half-wave propagator e V=2 we use the unitary operator

U(t) := exp(—itP/h), P :=p(—h*A) € ¥, (M), P*=P, (2.34)

(2.33)

where we fixed some function
Yp € CF((0,00);R), suppyp C {5z <A <25}, ¢p(N) = VA for + <A< 16.
For a bounded operator A on L?*(M), we define the Heisenberg-evolved operators
A(t) :=U(-t)AU(1), teR. (2.35)

Assume that a € C(T*M) and suppa C {3 < ||, < 4}. Then Egorov’s Theo-
rem [Zw12, Theorem 11.1] implies that for ¢ bounded independently of i we have

A=O0py(a) = A(t) =Op,lace)+O(h)ra (2.36)

where ¢y = exp(tH,) is the homogeneous geodesic flow. In fact, the proof in [Zw12]
gives the following stronger statement (see e.g. [DG14, §C.2] or Lemma A.7 below for
details): for each time ¢ there exists a;(z,&; h) € Sg°"P(T*M) such that

A(t) = Opp(ar) + O(h™)g-=, a;=aop,+O(h), suppa; C p_(suppa). (2.37)
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We next extend (2.36) to the case of ¢ bounded by a small constant times log(1/h),
using the mildly exotic symbol classes described in §2.2.1. Let A; > 0 be the ‘maximal
expansion rate’ from (2.10). It follows from (2.7) and (2.10) that

sup  ||dp(p)| < CeMll for all ¢t € R. (2.38)

pe{1<(€lg<4}

Lemma 2.5. Assume that a € C*(T*M) and suppa C {3 < €|, < 4}; put A =
Opp(a). Fiz § € (0,%). Then we have uniformly in t satisfying |t| < SAT" log(1/h):
(1) aopy € S50 (T M);
(2) A(t) = Opy(aopy) + O(h =27 ) 2o,

Remarks. 1. A stronger statement similar to (2.37), which shows that the remainder
O(h'=%7) is actually pseudodifferential, is proved for instance in [DG14, Proposi-
tion 3.9].

2. Lemma 2.5 shows that Egorov’s theorem holds for all times ¢ which are smaller (by
at least elog(1/h) for some € > 0) than the minimal Ehrenfest time %
will show a finer version of Egorov’s theorem, up to the (potentially much longer) local
Ehrenfest time — see Proposition 4.2.

. Later we

Proof. (1) The estimate (2.38) implies the following bounds on higher derivatives: for
all t € R, all multiindices «, and all ¢ > 0

sup |0%(a 0 ;)| < Cy,cet™ N, (2.39)
T M

See for instance |[DG14, Lemma C.1|, whose proof applies directly to the present
situation; alternatively one could use the proof of Lemma 5.2 below in the special
case k = 0. Under the condition |t| < 6A;"log(1/h) the bound (2.39) implies that
a oy, € S5 ™P(T*M) uniformly in ¢.
(2) We use the following commutator formula valid for all a € S§¢™°(T*M) with
suppa C {3 <&, < 4}:
[P, Opy,(@)] = —ih Opy,(Hya) + O(h* 27 ) 2, 1o (2.40)
Here it is important that p € Sg”""(T* M) and we use the same quantization procedure

Op,, on both sides of the equation; the S;*™" calculus would only give an O(h?~%7)
remainder. See Remark 2 following Lemma A.6 for the proof.

Using (2.40) and part (1) we compute for [t| < §A; " log(1/h)
0,(U(t) Opy(a o o)U(=t)) = U(t)( —ih '[P, Op,(a o @,)] + Opy(di(a o ¢r))) U(—t)
= O(hl_%_)mﬁp.

Integrating this from 0 to ¢, we get U(t) Op,(aow)U(—t) = Opy,(a) + O(h' =207 ) 212
which finishes the proof since U(t) is unitary. O
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We will also need to control products of many pseudodifferential operators. The
following Lemma considers products of logarithmically many pseudodifferential oper-
ators; it is proved in the same way as [DJ18, Lemmas A.1 and A.6| using the norm
bound (2.32):

Lemma 2.6. Let C' be an arbitrary fized constant, § € |0, %), and assume that the
symbols

ar,...,ay € Sg"P(T*M), N < Clog(1/h), supla;| <1

have each S§°™ seminorm bounded uniformly in j. Assume also that we are given
operators A; = Opy(aj) + O(hY=2%) 12,12 with the remainders bounded uniformly in j.
Then:

(1) ap---an € Sgimp(T*M);
(2) Ay Ay =Opylar---ay) + OR=27) a0

That is, the product of these symbols (resp. operators) is essentially in the same symbol
class (resp. operator class) as the individual factors.

2.3. Lagrangian distributions and Fourier integral operators. In this section
we review the theory of semiclassical Lagrangian distributions and Fourier integral
operators. These are used in §4.3.3 to describe propagation of Lagrangian states beyond
the Ehrenfest time. In particular we use that the wave propagator U (t) defined in (2.34)
is, after appropriate cutoffs, a Fourier integral operator associated to the geodesic
flow ¢4, see (4.47). Fourier integral operators are also used in §4.6.4 to quantize a
symplectomorphism which locally straightens out unstable leaves.

We keep the presentation brief, referring the reader to [A108], [GS77, Chapter 5], and
[GS13, Chapter 8| for details. For other reviews (bearing some similarities to the one
here) see [DD13, §3.2], [DG14, §3.2|, [Dy15, §3.2|, [DZ16, §2.2|, and [NZ09, §4.1|. For
the related nonsemiclassical case, see [H6IV, Chapter 25| and [GS94, Chapters 10-11].

2.3.1. Lagrangian manifolds and phase functions. Let M be a smooth n-dimensional
manifold (in this subsection we do not assume M to be compact). Denote by & dz the
canonical 1-form on 7% M, then the symplectic form is given by

w:=d({dx).

An embedded n-dimensional submanifold . C T*M is called a Lagrangian subman-
ifold if the pullback of w to .Z is zero; that is, the pullback of £ dx to £ is a closed
1-form. A Lagrangian submanifold is called ezact if the pullback of £ dz to £ is equal
to dF for some function F' € C*(Z;R), called an antiderivative on .£. We henceforth
define an exact Lagrangian submanifold as the pair (.Z, F') but still often denote it
by £ for simplicity.
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We note that £ is exact in particular if it is conic, namely the generator of dilations
€ - O¢ is tangent to .. In this case the pullback of {dx to .Z is equal to 0 (since
w(& - 0¢,v) = (€dx,v) = 0 for any tangent vector v € T.Z), thus it is natural to fix the
antiderivative equal to 0 as well.

One way to obtain an exact Lagrangian submanifold is by using a phase function.
More precisely, if U C M, x R} is an open set (for some m € Nj) then we call a
function ®(z,0) € C°(U;R) a nondegenerate phase function if:

(1) the differentials d(9p,®)1<j<m are linearly independent on the critical set
Co = {(x,0) € U | 0p®(x,0) = 0}

which is then an n-dimensional embedded submanifold of U; and
(2) the following map is a smooth embedding:

Jjo:Co = T*M, jo(x,0) = (x,0,P(x,0)).

We call 0 the oscillatory variables.
Under the conditions (1)—(2) above the manifold

g@ = ]@(C@) c T"M (241)

is exact Lagrangian, with the antiderivative Fp € C°(%p; R) given by the restriction
of the phase function on the critical set:

F@(]@(%,Q)) = <I>(a:,9), (9(:,9) S C@.

For an exact Lagrangian submanifold (., F') we say that a nondegenerate phase func-
tion ® generates £, if ¥ = % and F = Fp.

Every exact Lagrangian submanifold (.Z, F) is locally generated by phase functions:
that is, each point p € Z has a neighborhood generated by some phase function;
see |GST77, Proposition 5.1]. The simplest case is when the projection 7 : £ — M is
a diffeomorphism onto its image, in which case .Z is given by

L =% ={(2,0,0(x)) |z €U}, U:=n(¥)CM, (2.42)

where the function ® € C*(U;R) is defined by F(z,§) = ®(x) for all (z,¢) € Z.

Another important case is when . C T*M \ 0 is conic. In this case each point
p € Z has a conic neighborhood which is generated by some phase function ®(z,6),
(x,0) € U, where U C M xR™ is conic and & is homogeneous of degree 1 in the 6 vari-
ables. For the proof see [GS77, Proposition 5.2, [H6I1I, Theorem 21.2.16], or [GS94,
Proposition 11.4].
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2.3.2. Lagrangian distributions. Let (£, F') be an exact Lagrangian submanifold of T* M
We use the class I;""?(.Z) of (compactly microlocalized semiclassical) Lagrangian dis-
tributions associated to .Z. Elements of I;"""(.Z) are h-dependent families of func-
tions in C'°(M), with support contained in some h-independent compact set. We give
a definition and some properties of the class I;°"?(.Z) below.

If & = % is generated by some phase function ®(z,8), (z,0) € U C M x R™, in
the sense of (2.41), then I;*"?(.%) consists of distributions of the form

u(w; h) = (zwh)—mﬂ/ @/ (z,0; h) db + O(h™) e (.- (2.43)

Here the amplitude a(z,8;h) € CX(U) is a classical symbol; that is, suppa is con-
tained in an A-independent compact subset of U and we have the asymptotic expansion
in C(U)

a(x,0;h) Zha]xe as h—0

for some ag, ay,... € C=(U).

In the special case when ® has no oscillatory variables (i.e. .Z is given by (2.42))
the expression (2.43) simplifies to

u(z; h) = e ®OMa (s h) + O(h™) oo (ar).- (2.44)

The class of functions defined by (2.43) does not depend on the choice of the phase
function generating .. That is, if ®, ®’ are two phase functions with ¥ = % = L
and u is given by (2.43) for the phase function ® and some amplitude a, then u is also
given by (2.43) for the phase function ®' and some other amplitude a/. The simplest
case of this statement is when @’ has no oscillatory variables (that is, . is constructed
from @’ using (2.42)) as we can then write (ignoring the O(h*°) remainder in (2.43))

d(z;h) = e @y (g h) = (27rh)_m/2/ e%(q)(x’e)_‘b/(m))a(m, ;h) do (2.45)

and show that o’ is a classical symbol using the method of stationary phase. The proof
in the general case also uses stationary phase but is more involved, see [GS13, §8.1.2];
for the nonsemiclassical case see |GS77, §6.4|, [HOIV, Proposition 25.1.5], or [GS94,
Theorem 11.5].

For general Lagrangians .Z (not parametrized by a single phase function) we define
L (Z) as consisting of sums ug + - - - + uy, where u; € I;°""(%;) and each & C &
is generated by some phase function. Here are two important properties of Lagrangian
distributions:

(1) If u € [[°™ (&) and A € W¥(M) is compactly supported (which means that
its Schwartz kernel is compactly supported) then Au € I,°"*(.Z);
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(2) If u € L°™(Z) then WFj,(u) C .Z; that is, for any compactly supported
A € Uf (M) with WF,(A) N.Z = 0 we have Au = O(h*®) oo (1)

To show these, we first use a partition of unity to reduce to the case when M = R”
and .Z is generated by some phase function ®. We next write for b € C°(T*R"™) and
u given by (2.43)

Opy, (b)u(z) = (2mh) =2 " / el @V 2w y(1 )a(y, 0; h) dydédd.
R2n+m

We now apply stationary phase in the (y,{) variables to get an expression of the

form (2.43) with the phase function ®(x, ) and some amplitude which is a classical

symbol. On the other hand, if b is a symbol in SF(T*R") and suppb N .Z = 0 then

the method of nonstationary phase in the (y, &, ) variables shows that Op,,(b)u(z) =

O(h*)ges.

2.3.3. Fourier integral operators. We next discuss Fourier integral operators associated
to symplectomorphisms. Let M;, My be two manifolds of the same dimension n, U; C
T*M; be two open sets, and s : Uy — U; be a symplectomorphism. The flipped graph

L= {(11,81, 72, &) | (12,8) € Uz, 2(12,&) = (21,61)} C T (M x My) (2.46)

is a Lagrangian submanifold. We further assume that s is exact, namely £, is an
exact Lagrangian submanifold. As before, we fix an antiderivative for .Z,, but suppress
it in the notation. The exactness condition holds in particular if s is homogeneous,
that is it sends &, - O, to & - Og,; indeed, .Z, is conic and we fix the antiderivative to
be 0.

We say that an h-dependent family of operators B = B(h) : D'(My) — C(M;) is a
(compactly microlocalized semiclassical) Fourier integral operator associated to s, and
write B € I,°"P (), if the corresponding integral kernel Kp(z1, x9;h) € C°(M; x M)
satisfies Kp € h™"/2[;°™"(%,). Here I;"™"(.%,) is the class of Lagrangian distributions
defined in §2.3.2 above. In particular, the wavefront set WF} (B) is contained in the
graph of s.

An important special case is when My = R"™ and the projection 7 : £, — M; x R"
onto the (z1, &) variables is a diffeomorphism onto its image. If F' is the antiderivative
on .Z,, then we can write

Lo ={(21,00,8(21,&2), 06,5 (21, §2), —=&2) | (21,&2) € U} (2.47)
where U := {(z1,&) | (x1,&1, 22, —&) € £, } and S € C*(U;R) is given by
F(x1,81, 9, —&) = S(71,82) — (12,&2), (21,81, 72, &) € 2.

That is, .Z, is generated by the phase function ®(zy,x9,0) = S(z1,60) — (z2,0) in the
sense of (2.41). Then every operator B € I;°""(¢) has the following form modulo an
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O(h™)pr(rn)—coo(ary) Temainder:

Bf(x) = (27Th)"/ e S@LO=@20 b0 2o 0: ) f(2) dodh (2.48)

R2n
for some classical symbol b € C®(U(,, 9y x R7,).

We list several fundamental properties of the class I, (s):

(1) If B € I,”™(5), then B : L*(My) — L*(M;) is bounded in norm uniformly
in h;

(2) If 5 is the identity map on T*M, then B € I;”""(x) if and only if B is a
compactly supported pseudodifferential operator in W¥(M) and WF,(B) C
T*M is compact;

(3) If B € I,°™(5) and u € I;""(.Z) is a Lagrangian distribution, then Bu is a
Lagrangian distribution in ;""" (2(.2));

(4) If By € I,°™(511), By € I,°™(52), then the composition By Bs is a Fourier
integral operator in I, (3 0 35);

(5) If B € I,"™(5), then the adjoint B* lies in I;""P(»>1).

Here in property (2) we let the antiderivative equal to 0 (as the identity map is ho-
mogeneous). In property (3) we define the antiderivative F, ¢y on (%) using the
antiderivatives F'g, F,, on £, %, by

F%(f/)(wlagl) = F%($1;£17$27 —52)+F$($2752) where (-’171751a9027 —52) €Z, (2-49)

and in property (4) the antiderivative on %, .., is defined similarly. In property (5)
the antiderivative on .Z,-1 is minus the antiderivative on .Z,.

We briefly explain how the above properties are proven:

e For property (2), we can use a partition of unity to reduce to the case M = R".
The flipped graph of the identity map is given by (2.47) with S(z1,&) =
(x1,&). The corresponding expression (2.48) gives the class of pseudodifferen-
tial operators with compactly supported symbols (see [Zw12, Theorem 4.20]).

e For property (3), we reduce to the case when ¥ = % and £, = %y are
generated by some phase functions ®(x9,02) and ¥(xy, 22, 6;), where §; € R™.
Using the corresponding representations (2.43) for v and B (with some ampli-
tudes a and b) we get

Au(a) = (2mh) / (V1200 +0a.02)
Rn+m1+m2 (250)

CL(I'Q, 02, h)b(l‘l, T, 91, h) d@ldegdxg.

This is an expression of the form (2.43) for the phase function W(xy, z9,6;) +
O (xq,0s), with (01,02, 25) treated as oscillatory variables, and this phase func-
tion generates the Lagrangian »(.Z). See also [NZ09, Lemma 4.1].
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e Property (4) is proved similarly to property (3), see [GS13, §8.13]. Property (5)
is immediate by writing an expression of the form (2.43) for the integral kernel
of the adjoint of B.

e Finally, to show property (1) we note that B*B is a semiclassical pseudodiffer-
ential operator (and thus bounded on L?) by properties (2), (4), and (5).

We now discuss the conjugation by Fourier integral operators. Assume that s : Uy —
Uy, U; C T*M;, is an exact symplectomorphism and

B € I[°™(x), B € L™ (). (2.51)

By properties (2) and (4) above we see that BB' € W9 (M), B'B € ¥9(M,) are pseu-
dodifferential operators with wavefront sets compactly contained in 7™ M;. Moreover,

if a € S57"(T*Ms), 6 € [0,3) (see §2.2.1), then

BOp,(a)B" = Op,(a) + O(h™)y-~ for some a € S5 (T*M,),

2.52
a=(aosx ')o,(BB') + O(h1’25)sgomp, supp a C »(suppa). (2:52)

Indeed, we may reduce to the case M; = M, = R". By oscillatory testing |[Zw12,
Theorem 4.19] the symbol of B Op,(a)B’ as a pseudodifferential operator is given by

(w1, &5 h) = e @/ B Op, (a) B/ (e"*0/M),
Taking generating functions ®(z1, x9,0) of £, and —®(z1, x9,0) of Z,-1 we write

alz 7 ,h — (27h —2n—m/ e%(<I/1—1'17£1>+<CL‘2—Q?/27§2>+¢’(I17I279)—¢)(1‘/1,x/2,9,))
( ! 61 ) ( ) R4n+2m (253)

b(x1, 22, 0; h)a(xa, &3 RV (2], x5, 0’5 h) dOd' dz' dxodrydEy

for some classical symbols b(z1, 2, 0; h), b' (2, x4, 0'; h). Using the method of stationary
phase we get that a is a symbol in S5”"P(T*R™). The principal term in the stationary
phase expansion is equal to (a o 7)o, (BB’), as can be seen by formally putting
a = 1. The support property (modulo O(h*)) follows immediately from the expansion,
finishing the proof of (2.52). See also [GS13, §8.9.3].

If V; C Uj, j = 1,2, are compact sets with »(V2) =V} and B, B’ are Fourier integral

operators as in (2.51), we say that B, B’ quantize s near Vi x Vj if
BB' =1+ O(h*) microlocally near Vi, 054
B'B =1+ O(h*™) microlocally near V5. (2.54)

If .Z,, is generated by a single phase function ® (in the sense of (2.41)) then there exist
B, B' quantizing s near V; x V5. To show this, we choose B in the form (2.43):

_nt+m

Bf(z1) = (2mh)” = / e P2 /hy () w 0) f(22) dOda,
Rntm

where b € C°(U) is chosen so that b(xy,z2,0) # 0 for any (z1,x9,0) € Ce such that
(1,02, P(x1,29,0)) € Vi (or equivalently (zg, —0.,P(z1,22,0)) € V) and U is the
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domain of ®. We have o,(BB*) # 0 on Vi and 0,(B*B) # 0 on V5, as can be proved
using stationary phase similarly to (2.53). Multiplying B* on the right by an elliptic
parametrix of BB* and multiplying it on the left by an elliptic parametrix of B*B (see
for instance [DZ19, Proposition E.32]), we obtain two operators B', B” € I;"""(x)
such that

BB =1+ O(h*) microlocally near Vi,

B"B =1+ O(h™) microlocally near V5.
We write

I-B'B=(I-B"B)(I-B'B)+B"(I- BB)B.

The wavefront set of the right-hand side does not intersect V5. For the first term this
is immediate since WF,,(I — B"B) NV, = (). For the second term this follows from
the fact that WF,(I — BB') NV} = ), computing the full symbol of B”(I — BB')B
similarly to (2.53). It follows that B'B = I + O(h*) microlocally near V5, therefore
B, B’ satisty (2.54).

2.3.4. Fourier localization. We finally prove a fine Fourier localization statement for a
class of Lagrangian distributions, used in the proof of Lemma 4.25 below. Its proof is
contained in Appendix B.

Proposition 2.7. Assume that h,h' € (0,1] satisfy b’ > h™ for some 7 < 1, U C R"
1s an open set, K C U 1s compact, and we have for some constant Cy > 0

vol(K) < Cpy, d(K,R"\U)>C;*. (2.55)
Let & € C*°(U;R), a € C*(U;C), suppa C K, and assume that
diam Q¢ < Coh'  where Qg := {d®(z) |z € U} C R". (2.56)
Assume also that ® and a satisfy, for all N > 1 and some constants C:
Oiﬂlz‘aq%chgp |0%®| < Cly, Ogrﬂyz‘a?ngp |0%)| < Chy. (2.57)

Define the Lagrangian state

u(z) = a(x) *@/M € C2(U) C C(RM). (2.58)
Denote Qg (Cy'h) := Qg + B(0,Cy'H). Then we have for all N > 1
H nR"\Qq)(Co_lh’)(th)uHLQ(R") < C]/VhN (259)

where the constant C'y depends only on 7,n, N,Cy, Cns for N' := [2ME2] 41,

1—-7

Remarks. 1. If ®, a are fixed and h goes to zero, then the set {2¢ is the projection of
the Lagrangian %% defined in (2.42) onto the & variables and the function u defined
in (2.58) is a Lagrangian distribution in I;*""(%). However, the condition (2.56) with
h' ~ h™, T > 0, implies that, if the phase ®(x) is not constant (which would correspond
to a “horizontal” Lagrangian), then it necessarily depends on h. We may still view u(h)
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as a family of Lagrangian states, but associated to h-dependent Lagrangians %4 (h)
which become more and more horizontal as h — 0. The proposition shows that these
Lagrangian states are microlocalized in boxes which are microscopic in the momentum
variables.

2. For 7 < % one can prove Proposition 2.7 without the assumption (2.57) using [H0I,
Theorem 7.7.1]. On the other hand, if 7 = 1 — ¢, the boxes of momentum diameter A"
are almost Planckian (they almost saturate the uncertainty principle).

2.4. Fractal uncertainty principle. The fractal uncertainty principle of Bourgain—
Dyatlov [BD18, Theorem 4] is the central tool of our proof. (See [Dy17, §4| for an
expository account.) In this section we prove a slightly more general version, Proposi-
tion 2.10, which will be used in §4.6.3 below.

We recall the definition of a porous set [D.J18, Definition 5.1]:

Definition 2.8. Let v € (0,1) and 0 < oy < 3. We say that a subset Q@ C R is
v-porous on scales oy to oy if for every interval I C R of size |I| € [, ] there
exists a subinterval J C I of size |J| = v|I| such that J N Q = 0.

Define the unitary semiclassical Fourier transform Fj, : L?*(R) — L*(R) by
Fuf(€) = (2mh) =12 / e~/ f (1) du. (2.60)
R

For a set  C R, let 1g : L*(R) — L?*(R) be the multiplication operator by the
indicator function of €.

We first prove the following fractal uncertainty principle, which is a version of [BD18,
Theorem 4| adapted to unbounded v-porous sets using almost orthogonality and tools
from [DJ18]:

Proposition 2.9. For each v € (0,1) there exist § = f(v) > 0 and C = C(v) > 0
such that the following estimate holds

[ 1o Fi o, lz2@)—r20) < CH (2.61)

for all 0 < h <1 and all sets Q. C R which are v-porous on scales h to 1.

Remark. An explicit expression for the exponent /3 (for the smaller class of d-regular
sets; see Step 4 of the proof below for an explanation of why this gives a result for all
v-porous sets) was obtained by Jin—Zhang [JZ20]. Using [JZ20, Theorem 1.2|, one can
get (2.61) with

B(v) = exp(— exp(exp(K /1)) (2.62)

where K is a global constant.
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Proof. 1. We first replace the indicator functions in (2.61) by their smoothed out
versions y+ € C*(R; [0, 1]). The functions y. satisfy for all N,

supp X+ C Q+(h), supp(l — x+) N Qs =10, (2.63)

sup |0N x+| < Cyh™V. (2.64)

Here Q4 (h) = Q4 + [—h, h] denotes the h-neighborhood of Q4 and the constant Cy
depends only on N. The functions x4 are constructed by convolving the indicator func-

tion of Q4 (h/2) with a smooth cutoff which is rescaled to be supported in (—h/2,h/2).
See the proof of [DZ16, Lemma 3.3| for details.

The left-hand side of (2.61) is equal to
| o_ x—Fux+ lo, [[2@)—r2m) < IX=FrX+ll2@)—r2®)-

2. We next write the cutoffs x+ as sums of functions X;-t, each supported in an interval
of size 2. More precisely, fix y € C(R;[0,1]) such that supp x C (—1,1) and

1= ij where x;(x) := x(z — 7).
JET
Put
X; = XjX+, suppx; CQe(R)N(j—1,5+1). (2.65)
Note that X;-t satisfy the derivative bounds (2.64) for some constants Cy depending
only on N. We have (with convergence in strong operator topology)

X—FnX+ = Z Aji where Ay = x5 Frxi-

J,kEZL

Therefore it suffices to show the estimate
HE:&k
j7k

3. To show (2.66) we use almost orthogonality. More precisely it suffices to prove the

< Ch°. (2.66)
L2(R)—L2(R)

following bounds for all j, k, 7', k', N:

1Akl L2®)—2(R) < Ch*, (2.67)
A Abp 2@y 2@y < Cnh™ (1 + 15— §'| + 1k — k)7, (2.68)
||A;/k/AijL2(R)—>L2(R) < ORI+ =+ k=K. (2.69)

for some 5 > 0,C' > 0 depending only on v and some Cy depending only on N.
Indeed, these estimates imply

«q1/2
SU,?Z ||AjkAj’k’||L/2(R)—>L2(R) < Ch”, (2.70)
B §' k'
% 1/2
SU,}’Z ||Aj’k’Ajk||L/2(R)—>L2(R) < Ch’. (2.71)
J7

jl7k/
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Here we use (2.67) for |j — j'| + |k —k'| < h~A/? and (2.68), (2.69) with N := [8+2/3]
for [j — j'| 4+ [k — k| > h™8/2. Now (2.70) and (2.71) imply (2.66) by the Cotlar-Stein
Theorem [Zw12, Theorem C.5].

4. We first prove (2.67) which will follow from the fractal uncertainty principle [BD18,
Theorem 4|. However [BD18] used a more restrictive class of d-reqular sets rather than
v-porous sets. We recall from [BD18, Definition 1.1| that a nonempty closed set @ C R
is called d-reqular with constant Cr on scales 0 to 1 if there exists a Borel measure p
supported on Q such that for each interval I of size |I| € (0,1] we have the upper
bound p(I) < Cg|I]°, and if additionally I is centered at a point in €2, then we have
the lower bound pu(1) > CH'|1|°.

To address the difference between porous and regular sets we argue similarly to the
proof of [D.J18, Proposition 5.5]. Since {24 are v-porous on scales h to 1, by [DJ18,
Lemma 5.4] there exist sets . C R such that:

(1) Qx C Qu(h);
(2) Q4 C R are é-regular with constant Cg on scales 0 to 1, for some § € (0,1)
and Cr > 1 which depend only on v.

Denote Q]i = Q4 — 7; note that these sets are still d-regular with constant Cz on
scales 0 to 1. By (2.65) and since the norm || 1x 7 1y || z2(r)-z2(r) does not change
when shifting X and/or Y, we have

Akl 22 < || Doy wynpe—1,641] Fr Do myng-1,+1 | L2@) - 2@ (2.72)
< ﬂQi(Zh)ﬂ[fl,l] Fh ]lnf_(zh)mHJ] ”LQ(R)—>L2(R)' '

By [BD18, Proposition 4.1] (which is a corollary of [BD18, Theorem 4|) the right-hand
side of (2.72) is bounded by Ch?* for some C, 3 > 0 depending only on &, Cr (which
in turn only depend on v), giving (2.67). Note that [BD18| used a slightly different
normalization of F},, rescaled by a factor of 27, which however makes no difference in
the proof. (Alternatively one can use the more general [BD18, Proposition 4.3| with
®(x,y) := zy.) Similarly the fact that (2.72) features Q) (2h) instead of @ (k) does
not make a difference: for instance we can write Q) (2h) = (% (k) + h) U (¥(h) — h)
and use the triangle inequality.

5. It remains to show (2.68) and (2.69). We only show the former one, the latter
proved similarly. We have

A = X5 Fxi X Fn X

If [k — K| > 1 then supp x; Nsuppx;, = 0 and thus A;, A%, = 0. We henceforth
assume that [k — &'[ < 1. The integral kernel of Aj,Aj,,, which we denote K, can be
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computed in terms of the Fourier transform of x; x}:

K(z,y) = 2rh) "' x; (2)x; (y) /R WP (E) i (€) dE.

We may assume that [j — j'| > 2, then |z — y| > 1—10]j — 7’| on supp K. The function
X7 X; is supported inside an interval of size 2 and satisfies the derivative bounds (2.64).
Integrating by parts N times in &, we get

sup [K(z,y)| < Cnh i — 57N,

x?y

Since K(z,y) is supported in a square of size 2, this implies (2.68). OJ

We now give a version of Proposition 2.9 with relaxed assumptions regarding the
scales on which €2, are porous:

Proposition 2.10. Fix numbers vj-:, 7 =0,1, such that
0<7 <% <1, %+ <l<yl+%
and define
v=min(yg, 1 —97) —max(hf, 1= 19) = |l N [L =, 1 =] > 0. (2.73)
Then for each v > 0 there exists § = B(v) > 0 and C = C(v) > 0 such that the

estimate
| 1o Fn Lo, [|lr2@)—r2@ < CRY? (2.74)

holds for all 0 < h <1 and all Q2+ C R which are v-porous on scales K to Y

Remark. The formula (2.73) is related to the fact that the proof of the fractal un-
certainty principle [BD18, Theorem 4| proceeds by induction on scale and uses the
structure of Q_ on scale h* together with the structure of €, on the dual scale h'~#.
In fact, it is likely that the proof in [BD18] can be adapted to yield Proposition 2.10
directly.

Proof. Define

Yo = min(fyg_’ 1- 71_)7 7= maX(’YTa 1 - 70_)7
note that 79—~ = > 0. The set 2 is v-porous on scales A7 to h7', and the set Q_
is v-porous on scales h!=7 to A0,

Put
Q. :=h Q. Q_:=h"""'Q_, h:=h"
Then the sets Qi are v-porous on scales i to 1. Consider the unitary rescaling operators
Ty : LA(R) — LA(R), T,f(x)=h"2f(RMz), T_f(x) =02 f(pI0g),

We have
Tillg, =1g, Te, T-FRT;'=F,
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Therefore the left-hand side of (2.74) is equal to

IT- 1o Fulao, T | 2@y-r2m = | 1. Fi g, 2@ -2 (2.75)
The right-hand side of (2.75) is bounded by C'h? = Ch*# by Proposition 2.9. O

We conclude this section with two simple lemmas used in §§4.6.2-4.6.3 below:

Lemma 2.11. Let v € (0,1), 0 < ap < a1, and 0 < ap < L. Assume that 2 C R is
v-porous on scales a to o Then the neighborhood Q(aw) = Q4+ [—ay, as] is §-porous
on scales max(ap, %0@) to ;.

Proof. Take an interval I C R such that max(ag, 2ap) < |I] < oy. Since Q is v-
porous on scales ag to aq, there exists a subinterval J C I with |J| = v|I| > 3, and
JNQ =0. Let J' C J be the subinterval with the same center and |J'| = 3|J| = ¥|1|,
then J'(ap) C J and thus J' N Q(az) = 0. O

Lemma 2.12. Let ¢ : R — R be a C? diffeomorphism such that for some Cy > 1
max(sup [¢'], sup || 1, sup [¢"]) < Cy. (2.76)

Let also v € (0,1), 0 < ag < ay, and ap < min(C} %ay, 3C7 ). Assume that Q@ C R
is v-porous on scales ag to ai. Then the image () is §-porous on scales Crag
to min(Cy 'aq, 3C77).

Proof. We have
¢//

sup |9, log |4/ (z)|| = sup ) v < Ct.
Therefore for each interval I’ C R we have
sup [¢/] < e inf [y (2.77)
]/

Let I C R be an interval such that |[I| < 1C7?. Put I’ := ¢~ !(I), then |I'| < 1C7,
thus by (2.77)
/
Wl I
PA
Now assume additionally that Cio < |I| < C;la;. Then oy < |I'| < ay, thus by
porosity of €2 there exists an interval

for all intervals J C I'. (2.78)

Jcr, | J=ul|, JNQ=0.
Put J :=¢(J') C I, then JN () = 0 and we estimate by (2.78)

gz 2L

. O
o~ 2!
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2.5. Dynamics and porosity. In this section we use the results of §2.1 to establish
porosity of certain sets in the stable/unstable direction (Lemma 2.15). This property
is used in §4.6 below in combination with the fractal uncertainty principle.

Recall from §2.1.1 that for each p € S*M the local stable/unstable manifolds
Wi(p), Wy (p) are C* submanifolds of S*M tangent to Ey, E, (despite the fact that
Es(p), Eu(p) do not in general depend smoothly on p, see §2.1.2). We define the global
stable /unstable manifolds

Walp) = U o-s(Wales (), Walp) := U s (Waleo-5(0))

which are immersed one-dimensional C*° submanifolds of S* M tangent to Es(p), Eu(p),
see for instance [KH97, (17.4.1)] and [Dy18, §4.7.3].

We fix a Riemannian metric on S*M. A proper parametrization of pieces of global

stable /unstable manifolds yields stable/unstable intervals as defined below:

Definition 2.13. Let L > 0. An unstable interval of length L is a C*™ map v : [ —
S*M , where I C R is an interval of size L, such that for each s € I the tangent vector
Y(s) € Ty(5)S* M is a unit length vector in E,(y(s)). A stable interval of length L is
defined similarly except we require §(s) € Es(y(s)). In both cases we denote |y| := L.

We sometimes identify a stable/unstable interval v with its range (1) C S*M. For
a set W C S*M denote

YIOW) = {s e I]|v(s) € W} (2.79)

If v: 1 — S*M is an unstable interval and ¢t € R, then the map ¢, 0y : [ — S*M can
be reparametrized to yield another unstable interval, which we denote by ¢;(7v). Same
is true for stable intervals.

Recalling the definitions (2.6) of stable/unstable Jacobians J7, J}*, we see that there
exists a constant C' depending only on (M, g) and the choice of the metric on S*M
such that for each unstable interval v and all t € R

¢ (inf J) | < o)l < C(sup ). (2.80)
ol
Similarly if 7 is a stable interval then

C (inf )l < leu()] < C(sup ) - (2.81)
v

In particular by (2.10) we have
[pe(7)] < Cem oM}y (2.82)

for all ¢ > 0 and stable intervals ~, and for all £ < 0 and unstable intervals . Therefore
each stable/unstable interval is contained in some global stable/unstable manifold.
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Since M is connected and ¢, is not a constant time suspension of an Anosov diffeo-
morphism (being a contact flow), each global stable/unstable manifold W, (p), I/J/\u(p) is
dense in S*M, see [An67, p.29, Theorem 15]. A quantitative version of this statement
is given by

Lemma 2.14. Let U C S*M be a nonempty open set. Then there exists Ly > 0 such
that every unstable interval of length Ly intersectsU. Same is true for stable intervals.

Proof. We argue by contradiction, considering the case of unstable intervals; the case
of stable intervals is handled similarly. If the statement of the lemma fails, then there
exists a sequence of unstable intervals

v [ 6] = S*M, 4y — 00, y5([=6, ) NU = .
Passing to a subsequence, we may assume that (7;(0),;(0)) converges to some point
(p,€) € T(S*M). Take the unstable interval v : R — S*M such that (v(0),7(0)) =
(p,€). Then y(R) is the global unstable manifold W, (p). We have ~,(s) — ~(s) locally

uniformly in s € R. Therefore /Wu(p) NU = (), giving a contradiction with the fact
that W, (p) is dense in S*M. O

To state the main result of this section, Lemma 2.15, we introduce some notation
formally similar to the symbolic formalism in dynamical systems and motivated by §3.1
below (see also Remark 2 following Proposition 3.2). We fix finitely many open conic
sets

Viyoo oy Vi CT*M\ 0 (2.83)

and assume that S*M \ V, has nonempty interior for each k. In our application in
Lemma 4.18 we will take m = 2 and use a slight fattening of the sets Vi, V, constructed
in §3.3.1 below. The set V; will be assumed to be “small”, as a consequence V, will
necessarily be “large”.

For words v =1y ...v,_1, W = w; ... w, where vj,w; € {1,...,m}, define the open
conic sets (similarly to (3.2) below)

n—1 n
Vo= (o) V=9 V) (2.84)
=0 j=1
The following lemma shows the porosity of V, in the unstable direction and of V in

the stable direction, in the sense of Definition 2.8. See Figure 4.

Lemma 2.15. There exist v > 0, Cy > 0 depending only on Vi, ..., V,, such that

o for all words v = vy...v,-1, sets W~ C V,; N S*M, and unstable intervals
v Iy — S*M, the set v~ Y(W™) is v-porous on scales Cy(infyy- J*)™1 to 1;

e for all words w = wy ... wy, sets Wt C VI N S*M, and stable intervals = :
Iy — S*M, the set v~1(W™) is v-porous on scales Co(infyy+ J*, )7 to 1.
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FIGURE 4. The sets V, and V! with the flow direction removed. In this
figure and in Figures 6 and 8 we use numerical simulations for a per-

turbed two-dimensional cat map (which has similar properties to three-
dimensional Anosov flows studied here).

Here the sets v"1(W*) C Iy C R are defined by (2.79).

Remarks. 1. In the situation where all the V; are “small conic balls”, the sets Vg, N
S*M have the shapes of “deformed ellipses” aligned along a small piece of weak stable
manifold. Their width transversely to this manifold is bounded by CoJ%(p)~!, for
p any point in V; N S*M, so v~ 1(V;) will be contained in an interval of length <
CoJ¥(p)~'. The Lemma shows that, in the general case where some V; may be “not
small”, V; N S*M may be a union of many such “deformed ellipses”, arranged in a

fractal (that is, porous) way along the unstable direction.

2. By (2.10) we see in particular that if v is an unstable interval, then v~1(V;) is
v-porous on scales Cope ™0™ to 1. If v is instead a stable interval, then v~ 1(V{) is

v-porous on scales Che 20" to 1.

Proof. 1. We consider the case of unstable intervals, with stable intervals handled
similarly. Our proof is similar to [D.J18, Lemma 5.10|. Throughout the proof C' denotes
constants depending only on Vi, ..., V,, whose precise value might change from place
to place.

Fix nonempty open sets U, ...,U, C S*M such that U, NV}, = 0; this is possible
since S*M \ Vi have nonempty interior. Fix ¢ > 0 smaller than the distance between
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FIGURE 5. An illustration of the proof of Lemma 2.15. The large lighter
shaded region is V,, and the small darker shaded region is ¢,,. The
marked point inside U, N we(7s) is we(Y(s)).

U, and Vy, for all k. Using Lemma 2.14, we fix Ly > 0 depending only on Vy,...,V,,
such that every unstable interval of length L, intersects each of the sets Uy, ..., U,.

2. We fix Cy > 0 large enough to be chosen later in Step 4 of the proof. Take
an arbitrary unstable interval v : Iy — S*M and extend it to an unstable interval
v:R — S*M. Let I C R be an interval such that Cy(infy,- J*)=! < |I| < 1 and
71 := 7|1 be the corresponding unstable interval, note that |y;| = |I|. We may assume
that vy N W™ # 0 as otherwise v '(W~) NI = @) and we could take any J C I in
Definition 2.8.

Let ¢;j(7r), 7 > 0, be the images of v; under ;. By (2.82) we have |p;(7r)| >

C~1eMod|[|. Therefore there exists an integer £ > 0 such that |¢,(v7)| > Lo. Take the
minimal integer ¢ > 0 with this property, then there exists C' > Ly such that

Lo < fee() < C. (2.85)

3. The map ¢, has a uniform expansion rate on v;, namely
sup J;' < C'inf J;'. (2.86)
VI 1
Indeed, by (2.82) and (2.85) there exists ¢y > 0 depending only on the constants
in (2.85) (which in turn depend only on Vi, ..., V,,) such that s+, (1) = @—t, (we(71))
is contained in a local unstable manifold, more precisely

Geto(B) € Wuleosy(p) forall p,p €y, (2.87)

If ¢ <ty then (2.86) is immediate since C~ < Ji* < C'. Assume now that ¢ > t;. Then
we write for all p € v

I (@o—
J;(p) — uto(gog tO(p)) )
Jio—o(Pe—15(p))
By part (4) of Lemma 2.1 and (2.87) we have J _,(0e—t,(p)) < CJE_4(¢e—t,(p)) for
all p, p € v;. Together with the bound C~' < Ji* < C' this proves (2.86).
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4. By (2.80), (2.85), and (2.86) we relate the expansion rate of ¢, on ; to the length |7|:
Cyl < |I)-inf JP < |I|-sup J} < Cy (2.88)
VI yr
where (' is some constant depending only on Vi, ..., V,,. Fix Cy := C; 4+ 1, then the
integer ¢ satisfies
0<i<n-—1,
where we recall that n = |v|. Indeed, assume that £ > n instead. Then J}'(p) > J%(p)
for all p by (2.10). Since vy N W™ # () and from our initial assumption on |/|, we have
Co < |I|-inf J* < |I]-inf Jp < |I]-sup J} < Cy (2.89)
w= [ VI

giving a contradiction with our choice of Cj.

5. We finally construct an interval J C I such that JN~y~'(WW~) = . By (2.85) and
the choice of Ly, the unstable interval ¢y(;) intersects U,,. That is, there exists s € I
such that ¢,(y(s)) € U,,. Choose an interval J C I such that s € J and |@e(vs)| = ¢
where v, := v|; is the corresponding unstable interval. Since the distance between
U,, and V,, is larger than e, the unstable interval ¢,(7y,) does not intersect V,,. (See
Figure 5.) By (2.84), the unstable interval ~; does not intersect V; D W™, so that
J Ny tW~) = 0 as needed.

By (2.80) and (2.88) we obtain a lower bound on the size of J:

1J] >M>i|[|
~ Csup,, Jp — C*

Thus v~ (W™) is v-porous on scales Cy(infyy- J*)™! to 1 with v :=¢/C? > 0. O

We finally discuss the dependence of the constant v on the sets Vi,...,V,, in
Lemma 2.15, used in Theorem 4. We use the following

Definition 2.16. Let U C S*M be a set and 0 < L; < 1 < Ly. We say that U is
(Lo, L1)-dense in the unstable direction if for each unstable interval v : I — S*M
of length Lg there exists a subinterval J C I of length Ly such that ~v(J) C U°, where
U° denotes the interior of U. We similarly define the notion of being dense in the
stable direction.

Lemma 2.14 implies (similarly to step 5 in the proof of Lemma 2.15) that if ¢/ has
nonempty interior then it is (L, L1)-dense in both stable and unstable directions for
some Lo, L1. Following the proof of Lemma 2.15 (using density in the stable/unstable
directions in step 5), we obtain

Lemma 2.17. In the notation of Lemma 2.15, assume that each of the complements

S*M\Vy,...,S*M\V,, is (Lo, L1)-dense in the unstable direction. Then for all words
V =1)...Uy-1, Sets W™ C V,; NS*M, and unstable intervals v : Iy — S*M, the set
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v Y (W™) is v-porous on scales Cy(infyy- J*)™ to 1, where v,Cy > 0 depend only on
(M, g), Lo, Li. A similar statement holds for stable intervals under the assumption of
(Lo, L1)-density in the stable direction.

We also record here a useful property of (Lg, L;)-dense sets:

Lemma 2.18. Assume thatU C S*M is (Lo, L1)-dense in the unstable direction. Then
there exists U* C S*M which is (Lo, L1)-dense in the unstable direction and such that
the closure of U* is contained in the interior of U. The same is true for (Lo, Ly)-dense
sets in the stable direction.

Proof. Without loss of generality we assume that U is open. We exhaust U by open
subsets
U:UZ/{j, Z/{j Cuj+1, ZTJCZ/{
>0
For instance, we may take U; to be the set of all points p € S*M such that the closed
ball B(p, ;) is contained in U.

We argue by contradiction, assuming that neither of the sets U; is (Lo, L1)-dense in
the unstable direction. Then there exists a sequence of unstable intervals 7, : [0, Lo] —
S*M such that for each j and each subinterval J C [0, Ly] of length L;, we have
v;(J) ¢ U;. Passing to a subsequence, we may assume that v; converges uniformly to
some unstable interval v : [0, Lg] — S*M. Since U is (Lg, L1)-dense in the unstable
direction, there exists a subinterval J C I of length L such that v(J) C U. Then for
j large enough, v;(J) C U;, giving a contradiction. O

3. PROOFS OF THE THEOREMS

In this section we prove Theorems 2 and 6. We follow the strategy used in [D.J18,
Ji20] in the case of constant curvature (which in turn was partially inspired by [An0g]).
The main difference is the proof of the key fractal uncertainty estimate (Proposi-
tion 3.2).

In §83.1-3.2 we provide notation and statements used in the proofs of both theorems.
The proof of Theorem 2 is presented in §3.3. In §3.4 we prove Theorem 6, using some
parts of §3.3 as well.

3.1. Notation. We first introduce some notation used throughout the rest of the
paper. Let M be a compact connected Anosov surface, see §2.1. Fix a Riemannian
metric on S*M inducing a distance function d(e,e). We assume that:
(1) we are given h-independent functions ay, a, € C®(T*M \ 0) with?
supp ai, supp a, C {}1 < ‘5’9 < 4}7 A1, Gy > Oa a1 + Gy S 17

2The choice of 1, x for indices will become clear later in §4.2 where we write a, = a2 + a3z + ...
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(2) suppay; C Vi, supp a, C V, where V;,V, C T*M \ 0 are some conic open sets;
(3) the complements 7*M \ V;, T*M \ V, have nonempty interiors;
(4) the diameter of V; N S*M with respect to d(e, e) is smaller than some constant
go > 0 to be fixed later; as a consequence, V, N S*M will cover a large part of
S*M
(5) we are given A, A, € ¥, (M) with 05,(A4,) = aw, WF,(4,) C VN {3 <
€], < 4}, w e {1, %}
The specific functions aq, a, used in the proof of Theorem 2 are fixed in §3.3.1 below.
Roughly speaking, ai, a, will form a partition of unity on S*M, a; will be supported
on the region {a # 0}, where a is the symbol featured in Theorem 2, and a, will be
supported near the complement of this region. The proof of Theorem 6 uses a damped
version of these functions, see §3.4.2. The fact that the complements T* M\ Vy, T* M\ V,
have nonempty interiors is used in §4.6.2.

We next introduce dynamically refined symbols corresponding to words, using the
geodesic flow ¢; defined in (2.2). Define
o ={1,%}, > ={w=wy...w—1|n>0, wo,...,wy—1 € A}
We call elements of .o7* words. Denote by 7" C @Z° the set of words of length n. We
write |v| :=n for v € .
For each word v =1q...v,_1, resp. w = wy ... w,, define the functions

H oy, © ;) H (aw, o (3.1)

j=0 7=1

Note the different indexing for v and w which makes sure that the product aya, has
only one factor of the form a,, o g, w € {1,%}. The supports of ay,af, are contained
in the open conic sets

= W) Vi=e) (32)

The operators corresponding to a, , af, are defined using the notation A(t) := U(—t) AU (t)
from (2.35):

A; = A”nfl(n - 1>Avn72 (TL - 2) T Av1<1)Av0 (0)7

3.3
A = A (A (<2) - Ay, 4 (~n = 1) Ay, (=n). &

If n is bounded independently of h then Egorov’s Theorem (2.36) implies
A; = Oph(a;) + O(h)L2ﬁL2, Ajv = Oph(ajv) + O(h)LZ%LL (34)

This is a form of classical/quantum correspondence.
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For future use we record the following concatenation formulas: if v .= vy... v,
W = w;...wy, then

AL, =U(k)AZALU(=k), A, =U(—k)A, ALZU(k) (3.5)

where the reverse word Vv is defined by Vv := v ... v;. Similarly we have

Vi =0e(Ve V), Voo = 0 (Ve N V), (3.6)
ajl_w = (a;ajv) O Yk, a\_'w = (a‘;a;) O Y. (37)

In the particular case w = () we get the reversal formulas

AL =UKR)ASU(=K), VIi=p(Vs), al =a5o0p . (3.8)

v v v

If £ C &2 is a finite set, then we define

af =Y ai, Af:= ZA?;, (3.9)

we€ weé

and if F': o/ — C is zero except at finitely many words, then we put

af =Y F(wlal, Af:= Y F(w)A}. (3.10)

wed® wed®

Note that if £ C &7 for some n, then 0 < aéﬁ <1.

In the remainder of §3 we will only use the operators A,. (This is an arbitrary
choice — one could instead only use the operators AY.) To simplify notation, we
denote

Ow ‘= Q

Aw = Ay,

W

and same for ag, Ae,ar, Ap.

3.2. Long propagation times and the key estimate. Similarly to [DJ18, Ji20]

our argument uses words of length that grows like log(1/h). More precisely, we define

the following integer propagation times:
log(1/h)

Ny = {6—A1] N = (6A + 1)Ny >

log(1/h)

A (3.11)

where the ‘minimal/maximal expansion rates’ 0 < Ay < A; were defined in (2.10)
and A := [A;/Ag]. We call Ny a short logarithmic time and N a long logarithmic
time. Note that if (M, g) had constant curvature —1 as in [DJ18]| then we could take
Ao =A; =1and N ~ Zlog(1/h).
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3.2.1. Short logarithmic words. We first study words of length Ny, for which a version
of the classical/quantum correspondence (3.4) still applies. We use the mildly exotic
symbol classes introduced in §2.2.1.

Lemma 3.1. For each w € &/°, we have

aw € Sy (T°M),  Aw = Opy(aw) + Oh*3 ) 2o (3.12)
Moreover, for each F : @/No — C with sup |F| < 1, we have (using the notation (3.10))
ap € SYEY(T*M),  Ap = Opy(ar) + O(A*7) 22 (3.13)

with the constant in the remainder independent of the function F'.

Remarks. 1. The choice of index § := % (which corresponds to the factor % in

6 6
the definition of Ny) was guided by the proof of Proposition 3.2, yet it is somewhat
arbitrary — in practice one could probably replace é by any § € (0, %)

2. Later we will prove much finer statements regarding the propagation up to the local
FEhrenfest time — see §4.3.1-4.3.2. It is possible to avoid the precise derivative bounds
for ar by increasing the value of §, as in [D.J18, Lemma 4.4], however the proof of these

bounds below can seen as a basic case of the more complicated bounds of §5.3.

Proof. We write w = wy ... wy,—1. By Lemma 2.5 with § := % we have uniformly in
7=0,...,Nyg—1
tu,; © 95 € Syial (T M), Aw,(j) = Opy(au, © @;) + O(h**7) 12,12, (3.14)

Now (3.12) follows from Lemma 2.6 with § := ¢ 4 € and € > 0 arbitrarily small.

To establish bounds on ap, we first note that sup |ap| < 1 since sup |F| < 1 and
la1| + |as| = a1 + a, < 1. To prove bounds on derivatives, take arbitrary vector fields
Xi,...,Xon T*M. For aset I C {1,...,k} define the differential operator

X[ ::Xil"'Xir where I:{il,...,ir}, /Ll<<2r

By the product rule we have for all w € 7o

No—1

Xi... Xpaw = Z H XI(L,j)(awj © ‘Pj)~

Ley j=0

where the sum is over the set of sequences (with each ¢; encoding which of the factors
of the product defining ay, the vector field X; was applied to)

jSZ{L:(El,...,Ek)|€1,...,€k€{0,...,N0—1}}
and for L € & and j € {0,..., No — 1} we put
I(L,j)={ie{l,... .k} | t; = j}.
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It follows that (with w summed over .&Z*0)

No—l J\TO_1
|X1...XkCLF‘ S ZZ H |XI(L,j)(aij§0j>|: Z H N(L,j)
Ley w  j=0 Le# j=0
where N(L,j) := Z | Xz(15)(@w © ;)]
we{l,x}

Fix arbitrary € > 0. By (3.14) and since |a;| + |a.| < 1 we have for some constant C'
depending only on Xi,..., Xj, €

N(L,j) <1, it Z(L,j)=0;
N(L,j) < Chp~WETO#ELD) - if  T(L, 5) # 0.

For each L € £, we have Z;V:O(;l #(Z(L,j)) = k. Moreover, the set .Z has N} =
O(h°7) elements. It follows that

sup | Xy ... Xpap| < Ch~(/6+29k

which implies that ar € S;;’gf(T*M \ 0).

Finally, to show that Ap = Op,(ar) + O(hY/?7) 2,2 it suffices to sum the second
parts of (3.12) over w with coefficients F(w) and use the counting bound #(&*0) =
2No = O(h~1/%) which holds since A; > 1. O

Lemma 3.1 together with (2.32) give the norm bound
|Ap|l2sre <1+ O(Y37) forall F:o/™ — C, sup|F| <1 (3.15)

where the constant in the remainder is independent of F. This bound in particular
applies to operators of the form A,, w € &0, and more generally of the form Ag
where & C N0,

3.2.2. Long logarithmic words. We now study operators associated to words of length V.
The following key estimate is proved in §4 below using the fractal uncertainty principle
and the fact that the complements T*M \ Vi, T*M \ V, have nonempty interior. It
implies that each operator Ay, where w € &7, has norm decaying with h.

Proposition 3.2. Let the assumptions (1)-(5) of §3.1 hold and &y be small enough
depending only on M. Then there exists § > 0 depending only on Vy,V, and there
exists C > 0 depending only on Ay, A, such that for all w € /N

| Awl| 222 < CHP. (3.16)

Remarks. 1. We note that N is considerably larger than twice the maximal Ehrenfest
log(1/h)
Ao
Therefore the classical /quantum correspondence (3.4) no longer applies to the operator

time , that is for all p € S*M the norm dyy(p) is much larger than h™!.

Ay, w € &N, In fact the norm bound (3.16) contradicts this correspondence: if A
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were a quantization of ay, then we would expect the norm || Ay || to be close to sup |aw|,
however in general we could have sup |ay| = 1 while (3.16) implies that ||Ay || is small.

2. In the constant curvature case a version of Proposition 3.2 is proved in [DJ18,
Proposition 3.5|. We remark that [DJ18] considered words of length ~ 2log(1/h),
while here we study words of shorter length N ~ Zlog(1/h). The factor  was chosen
for convenience in the proof of Proposition 3.2; see §4.1 below and in particular (4.6),
(4.11). We could probably have replaced this factor by any number in the interval
(1, %), yet we did not try to optimize the estimate in the proposition by varying this
factor.

3. Proposition 3.2 is formally similar to [AN07a, Theorem 2.7] and [An08, Theo-
rem 1.3.3], as all these statements imply norm decay for operators corresponding to
words of long logarithmic length. However [AN07a, An08| used a fine partition of
S* M, for which each symbol a, in a thin neighbourhood of a single stable leaf (see §4.2
below). On the contrary, the partition (3.19) we use here is not fine, in fact supp a,
contains all of S* M except a small ball, and the supports of operators a., typically have
a complicated fractal structure. As a result, the method of proof of Proposition 3.2 is
very different from those in [AN07a, An08], it relies on the fractal uncertainty principle,
which takes advantage of the “fractality” of supp aw. A common point with the proofs
in [ANOT7a], is that we will only use words of “moderately long” logarithmic length (e.g.
in constant curvature words of length ~ % log(1/h)), instead of “very long” logarithmic
length as in [An0g].

4. Following the proof of Proposition 3.2 in §4 and using the remarks after Lem-
mas 4.16-4.17, we obtain the following statement: if the complements S* M\ Vy, S*M \
V, are (Lg, L1)-dense in both unstable and stable directions (in the sense of Defini-
tion 2.16) then Proposition 3.2 holds for some § depending only on (M, g), Lo, L;.

3.3. Proof of Theorem 2. We now prove Theorem 2, following the strategy of [DJ18,
§§3,4].

3.3.1. Construction of the partition. We first construct the functions aq, a, and the
operators Ay, A, satisfying the assumptions of §3.1 and used in the proof of Theorem 2.

In addition to A;, A, we use an operator Ay which cuts away from the cosphere
bundle S*M. More precisely we put

Ag = o(—h*A)  where 1y € C°(R; [0, 1]) satisfies
supp o N [1,4] =0, supp(l — ) C (55, 16).

By the functional calculus (2.33) applied to 1 — vy we see that

(3.17)

Ao € TR(M),  on(Ag) = ag = Po([€]7), WFa(I — Ag) C {7 < [¢]y <4} (3.18)
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The functions aq, a, and the operators A;, A, are constructed in the following lemma.
Here we let @ be the function in the statement of Theorem 2 and g5 > 0 be small
enough so that Proposition 3.2 applies.

Lemma 3.3. Let a € C°(T*M) satisfy a|s«ys Z 0, and fiz e > 0. Then there exist
ai, ax, A1, Ay such that conditions (1)-(5) of §3.1 hold and moreover

(6) Ap, A1, A, form a pseudodifferential partition of unity, namely [ = Ag+A;+A,.
This in particular implies that 1 = ag + a1 + ay;

(7) if Vi C T*M \ 0 is the open conic set containing supp a; introduced in §53.1,
then Vi N S*M C {a # 0}.

Proof. We first choose a nonempty open conic set V; C T*M \ 0 such that V; NS*M C
{a # 0}, the diameter of V; N S*M is less than gy, and the complement 7*M \ V; has
nonempty interior. For instance, we can let V; N S*M be a small ball centered around
a point in {a # 0} N .S*M. We next choose another open conic set V, C T*M \ 0 such
that T*M \ V, has nonempty interior and

T*M\0=V,UV,. (3.19)

By (3.18) we may write
I—Ay=0p,(b)+R, R=0(Mh")g-
where the h-dependent symbol b € S, °° (1™ M) satisfies for some compact h-independent
set K
suppb C K C {3 <|[{], <4}, b=1—ag+ O(h).

By (3.19) we see that K C V; UV, where V, = V, N {3 < ¢y < 4}. Take an
h-independent partition of unity

X1 € CPWVi:[0,1]), X € C(V;[0,1]), xi+xx=1on K
and define
Ay = Op,(xab) + R, A, := Op,,(x«b).
Then the conditions (1)—(7) hold, where the principal symbols a,a, are given by
a1 = x1(1 = ag), ax = x«(1 — ao). N

We now establish two corollaries of properties (6)—(7) in Lemma 3.3. First of all,
since Ay + A, = I — Ay commutes with U(t), we see that (using the notation (3.9))

Agn = (A1 +A)" = (I — Ap)" forallneN. (3.20)
The proof of [DJ18, Lemma 3.1| then implies that for all n € N and u € H?*(M)
|u— Agnullz < C||(—h*A — Iul| 2 (3.21)

where C' is a constant independent of n, h. In particular, if (—=h?A — I)u = 0 then
u = Ad*nu.
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Secondly, since suppa; N S*M C {a # 0}, the elliptic estimate [DJ18, Lemma 4.1|
implies that for all u € H?*(M)

| Al < €| Opy(a)ull s + Cll(=*A = Dull 2 + Chllull,2. (3.22)

In particular, Ayu is controlled, by which we mean that it is bounded in terms of the
right-hand side of (1.2) and a remainder which goes to 0 as h — 0. Later in Lemma 3.6
we extend (3.22) to the propagated operators A;(t).

We remark that if we additionally know that supp a;NS*M C {|a| > 1} then we may
take the first constant C' on the right-hand side of (3.22) to be equal to 2 (or in fact,
any fixed number larger than 1). This follows from the proof of [D.J18, Lemma 4.1]
together with the norm bound (2.32).

The rest of the proof consists of writing u = Ayu + Ayu (microlocally near S*M,
see (3.34)), with the operators Ay, Ay defined in §3.3.3 below, such that:

e Ayu is controlled (the proof of this uses classical/quantum correspondence,
Lemma 3.1), and

e Axuissmall (the proof of this uses the smallness of the norm || Ax||z2_ 2 which
follows from the key estimate, Lemma 3.2).

3.3.2. Controlled short logarithmic words. We now define the set of controlled words
of length Ny (see (3.11)). Following [DJ18, §3.2] we define the density function

Foo™ 5001, Flu.. wy) = 10E {0"“’]]&)_1} (Wi =1 303
0
1

Fix small o € (0,3) to be chosen in (3.37) below, and define the controlled, resp.
uncontrolled words in @7*o:

Z={wedN|Fw)>a}, Z'={wezN|F(w)<al. (3.24)
Define the operator Az by (3.9). Then Azu is estimated by the following

Lemma 3.4. There exists a constant C > 0 independent of o or h, such that for all

a€(0,1), he(0,1], and u € H*(M) we have

C'log(1/h)
ah

where the constant in O(e) depends on o but not on h,u.

C .
lAzullz2 < —|[ Opp(a)ullz= + I(=h*A = Dullz2 + O(RY*)|full 2 (3.25)

To prove Lemma 3.4 we use the following almost monotonicity property:
Lemma 3.5. Assume that the functions Fy, Fy : /™0 — C satisfy
FL(w)| < Fy(w) <1 forall we @
Then for all u € L*(M) we have (using the notation (3.10))
lArullze < [Arullzz + CHYA ul (3.26)
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where the constant C' is independent of Fy, Fy, h, u.

Proof. We have
|Apul® = |Arul? = (Bu,u) where B:= A}, Ap, — A}, Ap,.
By Lemma 3.1 the operator B is pseudodifferential:

B = Op,(b) + O(hY* ) 2,12 where b:=|ap|* —|ap|* € Syt (TM).

From the positivity of the symbols ay,, we deduce that
‘ ZFl(w)aw‘ <Y IR W)law < Y Fa(wW)aw,

or in short |ap | < ag,, which implies that b > 0. By the Garding inequality (2.31) we
have for all € > 0
(Bu,u) > —C.hM* ¢ |ul|2.
which gives ||Apul|2, < ||Arul|2s + CchY?=¢||ul|2,, implying (3.26). O
We also use the following control bound on A;(¢)u which is obtained from (3.22)
using that |U(t)u — e/ ul| 2 < CW||(=h?A — Iul|z2 (see [DJ18, Lemma 4.3] for
details):
Lemma 3.6. For allt € R and u € H*(M), we have
Ct)
h
where (t) := /1 +t? and the constant C is independent of t and h.

[A()ullze < Cll Opp(a)ullze + = (=h*A = Dul| 2 + Chljul 2 (3.27)

Remark. Using the remark after (3.22) and the proof of [DJ18, Lemma 4.3], we see
that under the condition suppa; N .S*M C {|a] > 1} we may take the first constant

on the right-hand side of (3.27) to be equal to 2 (or in fact, any fixed number larger
than 1).

We are now ready to finish

Proof of Lemma 3.J. By the definition (3.24) of the set Z, the indicator function 1z
satisfies 0 < alz(w) < F(w) < 1 for all w € &0, Thus by Lemma 3.5

al|Azullz2 < [[Arullzz + O(R*) |lull 2. (3.28)
On the other hand, (3.23) together with (3.20) gives the following formula for Ag:

No—1

1 1 L ,
Ar=m30 20 Aw= 2o (A A)YOTTIAG) (A + A
0 7=0 WG%*NO wi;=1 0 7=0
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Recall that ||A; + A,l|z2r2 < 1 by Lemma 3.3. Tt follows that
lApullze < max [[Ai(7)(Ar + A ulle.

Since || A1(j)lr2—r2 = |A1llz2—z2 < C and (A; + A,)?u—u can be estimated by (3.21),
we get
1Arulle < max [|Ai()ullzz + Cll(=h*A = Dull 2.

Estimating A;(j)u by Lemma 3.6 and using that Ny = O(log(1/h)), we get

C'log(1/h
|Arul|l2 < C| Opy(a)ul|2 + %”H(—WA — Dul|z2 + Chl|u|| 2. (3.29)
Combining (3.28) and (3.29), we obtain (3.25). O

3.3.3. Controlled long logarithmic words. The proof of Lemma 3.4 used the monotonic-
ity property, Lemma 3.5, which in turn relied on classical /quantum correspondence.
Thus it only applied to words of short logarithmic length Ny. On the other hand,
Lemma 3.2 only applies to words of long logarithmic length N = (6A 4+ 1)N,. To
bridge the gap between the two, we define the sets of uncontrolled, resp. controlled
words of length N as follows:

%N =AU ya
X = {wh  wOD | w® e 2L for all ¢}, (3.30)
V= {wl . w*D | there exists ¢ such that w'¥ € Z}
where Z C &/ is defined in (3.24) and we view words in & as concatenations
wl) | wOAD with w) | wOAD) ¢ g7 No,
Using previously established bound on controlled short logarithmic words, Lemma 3.4,
we now estimate the contribution of controlled long logarithmic words:

Proposition 3.7. For all u € H*(M)
C'log(1/h)
ah
where the constant C' does not depend on o, h,u and the constant in O(e) depends on «

but not on h,u.

C _
lAyullz2 < — [l Opp(a)ullz: + I(=R*A = Dul| 2 + O(hY*7)||ull 2 (3.31)

Proof. The set ) can naturally be split as follows:
6A+1
Y=Y Y={w W wh ez wth o wOD e zh,
=1
Accordingly, we may write (using (3.20))
6A+1

Ay =) Ay, Ay, = Az(6ANy) -+ Aze(CNy) Az ((£ — 1)No)(A; + A,
/=1
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We have ||A; + A2z < 1 by Lemma 3.3 and ||Az||, [|Azellz2z2 < C by (3.15).
Moreover, u — (A; + A,)=DNoy can be estimated by (3.21). It follows that for all ¢

[ Ay,ull2 < Cl|Az((€ — 1)No)ull 2 + Cl[(=h*A — ul| 2. (3.32)

We now estimate
[Az((¢ — 1) No)ullrz < ||Azul| 2 +
C’log(l/h)

Clog(l/h)n( R2A — Tul| 2

(3.33)

C _
< —[lOpy(@)ullz + == (=h*A = Dull2 + OB ) ful 2

where the first inequality follows similarly to (3.27) from [DJ18, Lemma 4.2] and
the bound Ny = O(log(1/h)), and the second inequality follows from Lemma 3.4.
Combining (3.32) and (3.33) we get the bound (3.31). O

Remarks. 1. In passing from ||Ay,ul|z2 to ||Ayul|,2 we used the triangle inequality.
Consequently the constant C' in (3.31) has a factor of 6A + 1 = N/Ny. Thus it is
important in our argument that the ratio N/Ny, where Ny is the time for which clas-
sical /quantum correspondence applies and N is the time for which fractal uncertainty
principle gives decay of || Aw||, is bounded by an h-independent constant.

2. Following the proofs of Lemma 3.4 and Proposition 3.7 and using the remark after
Lemma 3.6, we see that under the condition suppa; N S*M C {|a| > 1} we may take
the first constant C' on the right-hand side of (3.31) to be equal to 4(6A + 1). Here
the extra factor of 2 comes from taking C' := 2 in (3.32); in fact, we could take that
factor to be any fixed number larger than 1.

3.3.4. Uncontrolled long words and end of the proof. We can now finish the proof of
Theorem 2. Take arbitrary u € H*(M). We decompose

u=(u—Agyvu)+ Ayu+ Axu (3.34)
where Ay, Ay are defined using the notation (3.9) and the decomposition (3.30).

The first term can be estimated by (3.21) and the second term can be estimated by
Proposition 3.7, giving

C’log(l /h)

C
lullzz < —[1 Opy(@)ull 2 + —————lI(=h"A = Dul|

+ || Axul| 2 + O(RYA )HuHLz
To deal with the term Axyu we apply the key estimate, Proposition 3.2, to each indi-

(3.35)

vidual Ay, with w € X and use the triangle inequality. For that need the following
counting lemma on the number of elements in X:

Lemma 3.8. There exists a constant C > 0 depending on o, Ay, A1 but not on h, such
that
#(X) < C«h—(Aal-&-Q)a(l—loga)‘ (336)
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Proof. By definition, elements of X are concatenations of 6A + 1 words in ZC, thus
H#(X) = #2511 Since 2P consists of words w € @/ such that less than aNy
letters of w are equal to 1, we have

#(2°) < ii:jN:J (V)

Since aw < 1/2, we have for k =0,1,...,|aNy| — 1
(NO)_k+1(N0)< aNy (N0>_L(No)
k No—k\k+1) = Ny—aNyg\k+1 l—a\k+1
and thus
()2 (%)
k)~ \1—« laNg |/

#(2%) < 11—_20; (La]j\(;oJ)

In particular,

Using Stirling’s formula, we have

(La]j\(;d) " [alNo] !<va0Voi oo = ¢ ep(=(alogat (1 —a)log(l = a))No).

Using the elementary inequality

—(aloga+ (1 —a)log(l —a)) < a(l —loga)
we see that

H(X) = (250 < O (5 +Dal-lege)

We are now ready to finish the proof of Theorem 2. Let 5 > 0 be the constant from
Proposition 3.2. Fix a > 0 small enough so that

Ayt +2)a(l —loga) < = (3.37)

™

Combining Proposition 3.2 and Lemma 3.8 we get
|Ax|lLomre < #(X) - CB° < CROP

which (assuming without loss of generality that § < 3) together with (3.35) implies
for some constant C' depending only on a
C'log(1/h)
h
Taking h small enough, we can remove the last term on the right-hand side, giving

ul[ze < C|| Opp(a)ul| 2 + I(—=h*A = Dul[r2 + CEP|Jul| .
Theorem 2.

Remark. Using the remarks after Propositions 3.2 and 3.7 we obtain the following
statement: if suppa; NS*M C {|a] > 1} and the complements S*M \ Vy, S*M \ V, are
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(Lo, L1)-dense in both unstable and stable directions (in the sense of Definition 2.16)
then the first constant on the right-hand side of (1.2) depends only on (M, g), Lo, L.
In fact, we can take this constant to be

c.= AT (3.38)
a

where « satisfies (3.37) and thus depends on the fractal uncertainty exponent 5. (The
factors 4 and 6 above can be improved but this does not improve the result signif-
icantly since the known bounds on § are very small.) In particular, as 8 — 0 the
constant C' from (3.38) behaves like 37! log(1/3) times a constant depending only on

the minimal /maximal expansion rates Ag, A;.

This gives Theorem 4 as follows. Take an open set U C S*M which is (L, L1 )-dense
in both unstable and stable directions and has diameter smaller than the constant ¢,
from Proposition 3.2. Using Lemma 2.18, fix U* compactly contained in U which is
also (Lg, L1)-dense in both unstable and stable directions. Choose

a€ C®(T*M;[0,1]), suppanS*M c U, supp(l—a)NnU*=10.
We choose the sets Vi, V, in the proof of Lemma 3.3 such that
UbcvinS*Mc{a=1}, V.NS*M=S5"M\U:

Then suppa; N S*M C {|a] > 1} and the complement S*M \ V, is (Lo, L1)-dense in
both unstable and stable directions. Next, S*M \ V; contains the complement of a set
in S*M diameter €y, and thus is (1, %)—dense in both unstable and stable directions for
small enough y. Now if u;, is a sequence of Laplacian eigenfunctions converging to a
measure 4 in the sense of (1.4) then by (1.2) we have the estimate

k—o0
1= il < € Opy, (@ s 25 C [ ol de < Cu)
M
where C' is the constant from (3.38), which depends only on (M, g), Lo, L.

3.4. Proof of Theorem 6. We finally give the proof of Theorem 6, following the
strategy of [Ji20] and using some parts of the proof of Theorem 2.

3.4.1. Reduction to decay for a microlocal damped propagator. We first reduce The-
orem 6 to a decay statement for a damped propagator following [Ji20, §4|. Let
b € C*(M) be the damping function, with b > 0 and b # 0. We replace hd; by
—iz in the semiclassically rescaled damped wave operator h%(0? — A + 2b(x)0;), to
obtain the following differential operator on M:

P(2) := —h*A — 2izhb(z) — 2°, z € C. (3.39)

By a standard argument (see [Sc10, §3| or [Zw12, Theorem 5.10]) Theorem 6 follows
from the following high energy spectral gap:
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Proposition 3.9. There exist Cy > 0, 9 > 0, and hg > 0 such that
IP(2) |12y e < CR7IFComm@IM=/ 160(1 /), 0 < h < hg, |2 — 1] < Yoh. (3.40)
Recall the operator P = 1p(—h2A) defined in (2.34). Fix a cutoff function
Yy € C((0,00);[0,1]), suppeyy C {thp #0}, 11 =1 on [, 16].
Then
P(2) = P? — 2izhb(z)i1 (—h*A) — 22 + O(h™) microlocally near S*M.
We now write
P? — 2izhb(x)y (—h?A) = (P —ihA(2))* + O(h™) (3.41)

where A(z) € W, *(T*M) is some family of pseudodifferential operators entire in z
and satisfying oy, (A(2)) = za with

b(z) 1 (€]3)
a(x,§) = —————. 3.42
(z,8) (5.6 (3.42)
See [Ji20, §4.1] for the construction of A(z) (denoted by Q(z) there).
Define the microlocal damped propagator
~ ~ it(P — ithA
Ut)=Ul(t; z) :== exp(—Z ( ;L (Z))>, t > 0. (3.43)

We also take the following frequency cutoff operator:
II:= x(—h*A) where Y € C®(R;[0,1]), suppx C [i,él], 1 ¢ supp(1 — x).

Following [Ji20, §4.2] we see that Proposition 3.9 (and thus Theorem 6) follows from
a decay statement on the propagator U(t):

Proposition 3.10. There exists 1 > 0 depending only on M and b such that for all
h € (0,1], z € C such that |z — 1| < h, and N defined in (3.11) we have

T (N ) 2 ary 220y < ChP (3.44)

In the rest of §3.4 we prove Proposition 3.10.

3.4.2. Damped partition of unity. Let Ag be given by (3.17) and ay, a, A;, Ax be con-
structed in Lemma 3.3, with the function a given by (3.42) and gy > 0 taken small
enough so that Proposition 3.2 applies. Define the damped operators

Ay = U(-1)T(1)Ay, w e {1,%}. (3.45)
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Here U(t) = exp(—itP/h) is the unitary propagator defined in (2.34) and U(t) is
the damped propagator defined in (3.43). By [Ji20, (2.24)] we have A, € ¥, (M),

WEF,(A,) C WF,(Ay), and
1
on(Aw) = ay = ayexp (—/ ao ps ds) . w e {1, x}. (3.46)
0

Lemma 3.11. The operators Ay, A, and the symbols @y, a, satisfy conditions (1)(5)
in §3.1. Moreover, there exists a constant n > 0 such that

0<a <eay, 0<a, <a,. (3.47)
Proof. Since a > 0, we have 0 < @, < a,, and conditions (1)-(5) in §3.1 follow

immediately. It remains to show that a; < e "a;. As a consequence of the homogeneity
of a in {} < [¢], <4}, we see that condition (7) in Lemma 3.3 implies that

VN <l <4}  {a >0},
Since suppa; C Vi N {} <[], < 4}, there exists n > 0 such that

1
/ aops(r,§)ds >n forall (z,£) € suppa.
0

This immediately implies that a; < e "a;. U

Using Ay, A, ay,a,, we define Ay, Ag, Ap, Gy, g, ap by (3.3), (3.9), (3.10). (As
before, we use the notation Ay, := A, etc.) We also consider the cutoff damped
propagators

Uw = Un)Ay = U1 Ay, U Ay, , - U1) Ay, W=wp...wo 1.  (3.48)

We define the operators Ug, Up using Uy, similarly to (3.9), (3.10).

Let the partition X UY C & be defined in (3.30), where we fix & > 0 in §3.4.4
below. We prove Proposition 3.10 by establishing decay of Uy and Uy.

3.4.3. Controlled words. To bound the norm of ﬁy, we first use the inequalities (3.47)
to estimate Uz, where Z C &0 is defined in (3.24):

Lemma 3.12. We have

||(73HL2_,L2 < h* 4+ O(h37)  where ;= s > 0. (3.49)
Proof. Since U(N,) is unitary, we have ||Uz||z2z2 = ||Az||z2z2. The symbol az is
given by
No—1

aZ: Zaw: Z H(aﬂ)jogpj)'

wezZ weZ j=0
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By the definition (3.24), each w € Z has at least aNy letters equal to 1. Therefore
by (3.47), recalling the definition (3.11) of Ny,

No—1 No—1
jaz| <e ™[] (aw, 0 05) <e ™™ > ] (aw, 0 95)
wezZ j=0 WE%*NU j=0
No—1
= g 1Mo H (a1 +a) o p; < ™.
j=0
By Lemma 3.1 (which still applies by Lemma 3.11) we have az € Sy76'"(T"M) and
Az = Op,(az) + O(h** ) 212. Then by (2.32) we have ||[Az] < h*' + O(hY/3),
finishing the proof. O
Armed with Lemma 3.12 we now estimate the norm of ﬁy:
Proposition 3.13. With ay > 0 defined in (3.49), we have
Uyl 2z < O(h) + O(RY3). (3.50)

Proof. From the definition (3.30) of ) we have

6A+1
T rr6A+1—077 770—1
Uy = E U TUU
=1

By (3.15) we have
1Tz lli2oss2 = Azl < 14+ OR)
and same is true for U N0 Using Lemma 3.12 and the triangle inequality we then
have
10y ll2-s2 < (6A + D™ + O(RY),
finishing the proof. 0

3.4.4. Uncontrolled words and end of the proof. We now finish the proof of Propo-
sition 3.10 and thus of Theorem 6. Similarly to [Ji20, §3.5], using the identities
Uyn = (U(1)(I — Ap))" and Apll = 0 we have

ﬁ(N)H = ﬁd*NH + O(hl_)L2ﬁL2, ﬁ%*N = ﬁx + [7);. (351)
Let 8 > 0 be the constant in Proposition 3.2 for the operators XW, w € /N, Choose
a > 0 satisfying (3.37). Using the triangle inequality, Proposition 3.2, and Lemma 3.8,
we have

|Ux|lr2osre = [[Axl 22 = O(RP/?). (3.52)

Combining (3.51), (3.52), and Proposition 3.13, we get Proposition 3.10 with

By = min(g,al, 411> > 0.
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4. DECAY FOR LONG WORDS

In this section we prove the Proposition 3.2, relying on propagation results up to the
local Ehrenfest time (Propositions 4.2, 4.4) established in §5 below and on the fractal
uncertainty principle (Proposition 2.10).

Recall from (3.11) the short and long logarithmic propagation times Ny and N. Put

log(1/h) _

N1 :N—N0:6ANOZ
Ao

(4.1)
We will prove the following equivalent version of Proposition 3.2 in terms of products of

two operators corresponding to propagation forward and backwards in time (see (3.3)
for the definitions of A, A ):

Proposition 4.1. Let the assumptions (1)-(5) of §5.1 hold and £y > 0 be small enough
depending only on (M, g). Then there exists f > 0 depending only on Vy,V, and there
exists C > 0 depending only on Ay, A, such that for all v € @™, w € /M

Ay AN z2ary— 22000y < CHP. (4.2)

Remark. The smallness of ¢; is used in several places in the proof, in particular at
the beginning of §4.2, in §4.3.3, in Lemma 4.13, in the beginning of §4.6.1, and in
Lemma 4.25. Roughly speaking, we need £y to be much smaller than the sizes of local
stable /unstable leaves from §2.1.1 and the domains of the local coordinates constructed
in Lemma 2.3.

To show that Proposition 4.1 implies Proposition 3.2 we note that each word in &7~
can be written as a concatenation Wv where v € /N, w € &M and W = wy;, ... wyw,
is the reverse of w = wjws ... wy,. We have by (3.5)

Since U(N;) is unitary, the bound (4.2) implies that || Awv||z2(an—r2r) < Ch? which
gives Proposition 3.2.

4.1. Outline of the proof. We provide here an informal explanation of the proof of
Proposition 4.1. For this we use a naive version of the classical /quantum correspon-
dence, thinking of A, A} as quantizations of the symbols a;, af, defined in (3.1) and
restricting the analysis to the cosphere bundle S*M. We also make the simplifying
assumption

V=3%...%, W=%...%. (4.3)
— —

Np times N7 times
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i

FIGURE 6. The sets ) _1 ©;(V,) for n =1,2,3, 4, pictured with the flow
direction removed. See also Flgures 4 (page 35) and 8 (page 73).

Recall from (3.2) that ay,al, are supported in the sets V_ ,V} which under the as-

v Tw

sumption (4.3) have the form

No—1

= (1=, Yo=1e0.)

We call the complement of V, (which has nonempty interior by assumption (3) in §3.1)
the hole. Then p € V; if the geodesic starting at p does not enter the hole at least
until the time Ny in the future, more precisely ¢;(p) € V, for all integer j € [0, No —1].
Similarly p € V7 if that geodesic does not enter the hole up to the time Nj in the past,
more precisely ¢;(p) € V, for all integer j € [-Ny, —1]. See Figure 6. Viewing A, A,
as operators which microlocalize to V; , V{, our goal is to use the fractal uncertainty
principle to show that microlocalizations to these two sets are incompatible with each
other, this incompatibility taking the form of the norm bound (4.2).

Recall from §2.1.1 that S*M is foliated by (local) weak unstable leaves. We use this
foliation to partition V. into clusters
- |_| \Vas

where each V], | lies O(h?/?) close to a certain local weak unstable leaf (the construction
of the partition uses the Lipschitz regularity of the unstable foliation). On the operator
side this gives the decomposition (see Lemma 4.13 and (4.75))

A AL = Z A AL (4.4)

If two clusters VI VI are “sufficiently disjoint”, then the corresponding operators

w,Tr? w,T

in (4.4) satisfy the almost orthogonality bounds
(A;Ajvm)*A;Ajv,r’? A;Aj_v,r’ (A;A\JIFV,T)* = O(hOO)LQ—JP . (45)
This follows from the classical/quantum correspondence and the fact that

h2/3 . pto > (4.6)
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where h?/? is the minimal distance between disjoint clusters (in the stable direction),
+

v

while A'/® is the minimal scale of oscillation of the symbol af, along the unstable
direction. The almost orthogonality bounds are proved in Lemma 4.12, and the in-
equality (4.6) appears in (4.72) in the proof. The remark following that Lemma gives
an informal argument on how the inequality (4.6) leads to almost orthogonality. (Note
that in §4.6 the “cluster objects” V{ ., A7 . are replaced by the more flexible objects
V5. AL

Using (4.4), the Cotlar—Stein Theorem, and the fact that each cluster is disjoint
from all but boundedly many other clusters, we reduce the estimate (4.2) to a bound
for every single cluster (see Proposition 4.14)

AT AT, 2y - r2n) < ChP. (4.7)

We henceforth fix some cluster V7 ., contained in an O(h?3) sized neighborhood of

the weak unstable leaf W, (po) for some po € S*M. We use the symplectic coordinates
x: (x,€) — (y,m) centered at py which were constructed in Lemma 2.3, see (4.80).
We conjugate A7, A . by Fourier integral operators quantizing s (see §4.6.4). This
produces (still under our naive view of the classical/quantum correspondence) pseu-
dodifferential operators which microlocalize to the sets s(Vy ), (V). The lat-
ter are subsets of T*R? but we reduce them to subsets of T*R by restricting to
2(S*M) = {n, = 1} and projecting along the flow direction 9,,. Denote the result-
ing sets by ©7,0" C T*R. The informal argument above (see Lemma 4.24 for more
details on reducing from T*R? to T*R and Lemmas 4.25-4.26 for microlocalization of

the conjugated operators) reduces (4.7) to the estimate
A~ AT || 2y 12wy < OR° (4.8)
where A* are operators on L?(R) which microlocalize to the sets ©F described above.

We next understand the structure of the sets ©*. The set Vg is ‘smooth’ along the
flow and unstable directions: if p, p’ lie on the same local weak unstable leaf then the
trajectories ;(p), ¢;(p), 7 < 0, stay close to each other, thus p € VJ  if and only if
P €V, unless the boundary of the hole was involved. This is easy to see on Figure 6
with the ‘strokes’ along the unstable direction (corresponding to unstable rectangles
introduced below); see Lemma 4.19 for a rigorous statement. We then embed V  into
a union of many ‘unstable rectangles’, each of which is the hA7-neighborhood of a local
weak unstable leaf, with 7 < 1, defined in (4.61) below, chosen very close to 1. This
uses the inequality (4.1) which ensures that the thickness of each ‘stroke’ is smaller
than A. On the operator side unstable rectangles correspond to individual summands

A:lr in the operator A, (w,e) introduced in §4.4. See also Figure 8 (page 73).

)

The specific unstable rectangles which are part of V! = are distributed in a porous

w,r

way, which is where we use that the hole has nonempty interior (see Lemma 4.18 which
is an application of Lemma 2.15). The set ©T is a union of components arising from
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the images of these rectangles under s¢. Using the fact that Vv‘t,r is within O(h?/3) of
the leaf Wy,(po) and the properties of s in Lemma 2.3 (whose proof used the C%/2
regularity of the unstable foliation), we show that each component of OV is contained
in a ‘horizontal rectangle’ of dimensions 1 x h”, stretched along the y; direction — see
Lemma 4.15 and Figure 9. This gives

OF C {(y1,m) | m € "} (4.9)

where QT C R is porous on scales h7 to 1 — see Lemma 4.16.

As for the set V, it can be embedded into a union of stable rectangles of thickness
h'/6A) each (here we use the definition of Ny). The corresponding components of ©~
look like rectangles of thickness h'/(®M) with the long axis aligned along the stable
direction, thus transverse to the 9,, direction. Because the stable direction is usually
not vertical, the projection of each of these rectangles onto the y; axis might be large
(e.g. it could be an interval of a size 1). However, we only need to understand the
intersection of ©~ with a neighborhood of ©F. Since V | lies O(h*3) close to the leaf
Wou(po), ©F lies O(h?3) close to {n = 0}, in particular ©F C {|n;| < h'/%}. The
intersection of each component of ©~ with {|n;| < h'/®} is a rectangle of thickness
RY% and height h'/® < R thus its projection onto the y; variable is now
contained in an hYY sized interval, see Figure 9. This implies that

O~ C{(yi,m) [y €7} (4.10)
where Q= C R is porous on scales h'/(°M) to 1 — see Lemma 4.17.

Together (4.9) and (4.10) show that in (4.8), we may replace A" by the Fourier
multiplier 1o+ (hD,,) and A~ by the multiplication operator 1o-(y;). The resulting
estimate follows by the fractal uncertainty principle, in the version given by Proposi-
tion 2.10, see also Lemma 4.24. Here we use that there is a nontrivial overlap in the
porosity scales of Q* and Q~, namely

ARV ON <« (4.11)

see (4.115). This is where we use that 7 is chosen very close to 1.

To make the above explanations into a rigorous proof, we in particular need to make
precise the classical/quantum correspondence naively used above. This is complicated
since to study AJ, we need to go beyond the Ehrenfest time, that is the expansion
rate of the geodesic flow for time N; is much larger than h~'/2, therefore A7 will not
lie in the mildly exotic pseudodifferential calculus W™ of §2.2.1. To overcome this
problem we use several ideas:

o We write a, = as + - + ag, A. = Az + --- + Ag where the supports of the
symbols as, . . ., ag are small enough to form a dynamically fine partition (§4.2).
We next write A} as the sum of polynomially many in A terms of the form Af{
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where q are words in the alphabet {2,...,Q}. One advantage of this splitting
is that each q has a well-defined local expansion rate of the flow, see (4.19).

e If q has expansion rate no more than h=2" (i.e. the length of q is below the
local double Ehrenfest time) then we can conjugate Al by U(t) for an ap-
propriate choice of t to get a pseudodifferential operator in the mildly exotic
calculus W™, 0 := 7/2. Here we use Egorov’s Theorem up to local Ehren-
fest time and the fact that 7 < 1, see §4.3.2. This technique is used in the
proof of the almost orthogonality statements (4.5) and also to show that the
operators Ajv,r corresponding to individual clusters are bounded on L? almost
uniformly in A (see (4.122)). We also use mildly exotic symbol calculus to show
microlocalization of Ay in Lemma 4.26.

e For microlocalization of A . (Lemma 4.25) we again write it as the sum of
individual terms Ag. We then study each of these using the long logarithmic
time hyperbolic parametrix of [An08, AN07a, NZ09| — see §4.3.3.

4.2. A refined partition. For each w € &/ the supports of aZ can be rather large,
including many trajectories of the flow; this is due to the fact that supp a, typically
contains the entire S*M minus a fixed small set. It will be convenient to break the
symbols a and the operators AL into smaller pieces, each of which is ‘dynamically
simple’. To do this, we let ¢y > 0 be small enough so that Lemma 2.1 holds and write

ay =as+---+ag, A=A+ ---+Ag (4.12)
where () is some h-independent number and:
(1) as,...,ag € CX(T*M \ 0; 0, 1]) are h-independent;
(2) suppay C VN {3 < €], < 4} for all ¢ = 2,...,Q where V, C V, are some
conic open sets;
(3) the diameter of each V, N S*M with respect to d(e,e) is smaller than ;
(4) Ay, ..., Ag € ¥, (M) satisty for ¢ =2,...,Q
on(Ay) = aq, WFL(Ay) CV,N {5 <]y < 4} (4.13)
Following the proof of Lemma 3.3 it is straightforward to see how to construct decom-
positions (4.12) with the above properties, given ay, Ay, €o.
Denote
o ={1,...,Q},
then the properties (1)—(4) above hold for all ¢ € &/ (indeed, for ¢ = 1 they follow
from the assumptions of §3.1), except we do not have V; C V,. We also note that
ay+ax+---+ag=a +a, <1

Similarly to §3.1 we define the set of words &7 over the alphabet o/. For q € &/* we
define the symbols a7, the conic sets V, and the operators A7 following (3.1), (3.2),
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and (3.3). We will also use the notation AZ, A% from (3.9), (3.10), this time for £
which is a subset of &7 (resp. F' which is a function on 47°).

Since sup |a,| < 1, we see from (2.32) (with § = 0) that ||A,||z2z2 < 1+ ChY/2

Therefore we have for any fixed constant Cj and small enough h depending on Cj

|4 lz2z2 <2 forall g€ &, n< Colog(1/h). (4.14)

4.2.1. Jacobians for the refined partition. To each refined word q € &/™ we associate
the minimal Jacobians

Jq = inf Ji(p), Jg = inf J° (p) (4.15)

pEVY pEVS

where J¥(p), J2, (p) are defined in (2.6). Since the Jacobians J*, J* are homogeneous
of degree 0 on T*M \ 0, one can replace V; by Vg N S*M in (4.15). Note that the
sets V; might be empty in which case we have jcf = 00.

It follows from (2.10) that the Jacobians j(f, q € ", grow exponentially in n:
— Agn — Ain

Vy#0 = eA <Jq < eA , (4.16)

Vi#0 = et < gl <ehm

Denote
"‘=qi...qu_1 where q=¢q...qo € ", n>0. (4.17)
Then we have for each q € ™, n > 0

+ < Ao 7t
Jqg 2 €Ty (4.18)
Indeed, for each p € Vg we have p € V_, and thus

Ta(p) = T (enar(p) T (p) = €™ T
where the last inequality used (2.10). This proves (4.18) for 7, with the case of J7
handled similarly.

Next, parts (5)—(6) of Lemma 2.1 imply that the quantities j(f give the order of the
expansion rate of the flow ¢, at every point in ti:

Ju(p) ~Tg forall peV,,
I (p) ~ TS forall peVi

where A ~ B means that C7'A < B < CA for some constant C' depending only
on (M, g) (in particular, independent of n and q). More precisely, Lemma 2.1 shows
that J' (p) ~ Jp 1(p) for all p,p € Vg; using that J(p) ~ Jy ;(p) we obtain
the first statement in (4.19). The second statement is obtained similarly using that
J2,(p) ~ J;_, (v-1(p)). Note that (4.19) uses that the diameter of each V, N S*M is
smaller than &g, in particular it is typically false for the sets VI corresponding to the

unrefined partition defined in (3.2).

(4.19)
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From (4.19) and (2.7) we derive the following bounds:

sup lden(p)|l < CTy (4.20)
pEVq N{§<I€lg<4}
sup e (p)ll < CT (4.21)

pEVE N{<lgl <4}

It also follows from parts (5) and (6) of Lemma 2.1 that there exists C' depending only
on (M, g) such that

s

d(p, Wos(p)) < 7 for all p,p€VyNS*M, (4.22)
q
N c S eVt Ao
d(p, Wou(p)) < 77 for all p,p€ Vs NS*M. (4.23)
q

(Strictly speaking, for the proof of (4.23) we should strengthen the assumption on
the sets Vi, ..., Vo, requiring additionally that the diameter of each ¢,(V,) N S*M is
smaller than gy.) In other words, V lies in a small neighborhood of a weak stable
leaf and V7 lies in a small neighborhood of a weak unstable leaf, with the sizes of
the neighborhoods given by the reciprocals of J;, J. See also Corollary 2.2 and
Figure 2.

From (4.19) we immediately derive the following statement for every pair of words
q, q of the same length:

Vinvi#0 = Ji~J,

- - ~ - (4.24)

If we write a word q € /™ as a concatenation q = q'q® where ¢/ € @™, ny+ny = n,
then

Vi A0 = Ty~ T T

4.25
Vo #0 = TS ~T5Th (4.25)

Indeed, for each p € Vg we have p € V., @5, (p) € Voo and J3(p) = Jy (p) I3, (¢n, (p));

2

using (4.19) this gives the first statement in (4.25). The second statement is proved
similarly.

Finally,ifq=¢...¢q, and q = ¢, ... q is the reverse word, then
Tq ~JIg (4.26)

Indeed, V3 = ¢, (Vy) by (3.8). It now suffices to use that for each p € T*M we have
Ja(p) = 2, (en(p) ™" ~ T2 (n(p)) by (2.8).
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4.3. Propagation results for refined words. In this section we state several prop-
agation results concerning the operators Aqi, which will be used in the proof of Propo-
sition 4.1. Some of these results will use the Jacobians j(f defined in (4.15) above.
We recall that ag, Vi, A3 are defined using (3.1), (3.2), (3.3).

4.3.1. Local Ehrenfest times. We have already encountered two global Ehrenfest times,

a minimal one T, = L%J, usually called the Ehrenfest time, and a maximal one
Tax = (%] We will now attach (future or past) local Ehrenfest times to each
0

word q € &7°, describing the time it takes for the (future, resp. past) flow to expand
by a factor h~'/2, starting from points p € VI. We will not use these directly, but

discuss them briefly here to motivate the constructions below.

Let us first define the future local Ehrenfest time T, related to the values of J .
If Vy =0, we set T; = co. Otherwise, let us assume that h='/? < J~ < oo (this is
for instance the case if V # () and |q| > Tmax)- Then there exists a unique integer

m < |q| such that, splitting q into q = q'¢,,q?, where q' = ¢; ... ¢,_1, we have

T <h™? <7 (4.27)

qm’

We then call

T, =m the local future Ehrenfest time of the word q.

In the case J; < h~'/2 we consider the extensions qp of q with all possible words p
of length T, For any such extension J, > h=1/2, so the corresponding times T
can be defined as above. We then take

Ty == min T_,, a value which is necessarily finite.
[P|=Tmax

For all q such that V; # (), the local Ehrenfest time satisfies Ty, < T(; < Thax-
We similarly define the local past Ehrenfest time Tq+ associated to the words q such

that Vi # 0, depending on the values of the Jacobians J".

We also define, similarly to the above, a local double Ehrenfest time T, qi, by replacing
h='/% by h~' in the threshold property (4.27). Notice that if VI # 0, the double
Ehrenfest times satisfy 27, < T;li < 2Thhax, but in general T;li # 2Ty,

In the proofs below the thresholds 2~'/2 and h~' will be reduced to h=° and h~%
for some fixed 4 € (0, 3).

4.3.2. Propagation up to local Ehrenfest time. We first consider words q which are
shorter than their local Ehfenfest times 7% (q). For these words the operators Ai lie
in the mildly exotic calculus introduced in §2.2.1:

Proposition 4.2. Fiz ¢ € [0,3), Co > 0, and let q € o/°.
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1. Assume that jq_ < Coh™°. Then we have
Aq = Opy(ag) + O(h™) 22 (4.28)
for some symbol al~ € S5 (T* M) such that

az_ —ag+ 0(h1—2§_)sgomp’ suppa CVq N {4 < |¢l, < 4} (4.29)

The constants in O(e) are independent of h and q.

2. The same is true for the operator A:{ and some symbol a?j = aar—l—(’)(hl_%_)sgomp,
supp a'z;r C Vi n{; < €y < 4}, under the assumption J < Coh™°

Remarks. 1. The assumption of part 1 of Proposition 4.2 does not hold when V= 0,
as in that case J; = oo. Yet, the statement (4.28), which in this case is A; =
O(h*) 212, still holds (at least when |q| = O(log(1/h))) but to prove it in the case
of long logarithmic words q one would need to employ the techniques of §4.3.3 below.
In the present section we will only use a special case of this rapid decay statement, see
Lemma 4.3 below. The same remark applies to part 2.

2. In the special case q € &0 the assumptions of Proposition 4.2 are satisfied for
6 = ¢ (assuming VI # 0) as follows from (4.16) and the definition (3.11) of Ny. In
this case a weaker version of (4.28) (with O(h'=2°7)p2_;2 remainder) follows from
Lemma 3.1 (more precisely, its version for the refined partition of §4.2). The latter
relies on Egorov’s Theorem up to the (minimal) Ehrenfest time, Lemma 2.5.

Proposition 4.2 is proved in §5.1. The argument is morally similar to the proof of

the first part of Lemma 3.1, but much more complicated because of two reasons:

e We establish the classical /quantum correspondence up to the local Ehrenfest
times associated with the particular words. While the global expansion rates
of ¢4,, where n is the length of q, might be very large, the expansion rates of
¢4 Testricted to supp aZ are still smaller than h™ < h™*/2,

e We obtain asymptotic expansions of the full symbols of A , which give the
O(h*) remainder in (4.28), similarly to (2.37).

As a corollary of Proposition 4.2 we obtain the following rapid decay results for oper-
ators ch;: and their products under assumptions of empty or nonintersecting supports:

Lemma 4.3. Fiz § € [0,1) and C; > 0.
1. Assume that p,q € @/*. Then
max(J, , Jf) < Coh™, VonVi=0 = [ A AlllL2s02 = O(h™).  (4.30)
2. Assume that q = q1...q, € &/°*, n < Colog(1/h), satisfies Vi = 0. Take the
largest m such that V 7& 0 and assume that J} . < Coh™2%. Then
45 s — O,

QIQ
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The same holds for Ay (under an assumption on J. . ), and also if we consider
subwords of the form q,_m+1 - .. qn instead.

3. Assume that q,q € «/* have the same length and max(J),J5) < Coh™,
Vinvy =0. Then

1AL AL o = OR™), [ AE(AL) 1212 = O(h).
The same is true for the operators A~ if we make assumptions on J~,V~ instead.

In all these statements the constants in O(e) do not depend on h and on the choice
of the words.

Remark. Note that the Jacobians in parts 2 and 3 above are required to be bounded
by Coh=2% — that is Lemma 4.3 essentially applies up to the local double Ehrenfest time.
We are able to do this by writing a word with Jacobian O(h~?%) as a concatenation of
two words with Jacobians O(h%) and using (3.5). If M had constant curvature, we
could instead use pseudodifferential calculi adapted to the stable/unstable foliations
as in [DJ18].

Proof. 1. Using Proposition 4.2 we write

A, = O0py(a)) + O(h®) 2sp2, AL = Opy(al) + O(h™) 122

q

Here supp a';,_ C V, and supp af;“ C Vg, therefore supp ai,‘ N supp af;“ = (. It then
follows from the product formula in the S;7™" calculus (see for instance [Zw12, Theo-
rem 4.18]) that Op,(a}) Opy(al") = O(h™) 2 2.

2. We assume that Vi = (), with the case of V, A following from here using (3.8)
and (4.26). We also assume that there exists m < n such that V' =~ = and
TF 0 < Coh™2; the other case (when there exists m < n such that V,” =0 and

VA < Coh™?) is handled similarly.

dn—m+41---gn
We first show that q can be written as a concatenation (where C; denotes a constant
depending on Cj whose exact value might differ from place to place)

q=q'prq® where max (7", ;") < Chh~°, Vi =0. (4.31)

To do this we first put q? := ¢nio...¢,. Next, choose maximal ¢/ < m such that
Tt 0 < h7°. We claim that

Tot s < C1h™°. (4.32)

Indeed, we may assume that ¢ < m since otherwise (4.32) holds automatically. Since
> h™?, which by (4.25) implies that J,\ >
< C()hf%.

Now the decomposition (4.31) is obtained by considering two cases:

¢ was chosen maximal, we have ‘Z]T.--qu.l

C;'h=°. Now (4.32) follows from (4.25) and the bound J*

q1---9m

(1) Vi =0:putq' = =q...q, P=qes1--Gm, T = @mt1.

qe+1---9m+1
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(2) V£ 0 putqt =0, p = q...q T = Gi1-.-Gue1. We have

qe+1---9m+1

JF < Cih70 by (4.25) and (4.32).
Having established (4.31) we write by (3.5) and (3.8) (where P is the reverse of p)
A7 =U(la'pDAS 1 Af,U(la'pl)

rqz

L B ) (4.33)
= U(la' ) A U(IpDAs AL U(Ir)AgU(—lq"pr|).

Recall that J+ < C1h~°. We moreover have J5 ~ \7; < O1h™° by (4.26). Also
Vp NV =0 by (3.6) since Vg, = 0. Finally ||AZ [|z2— 22 and ||A;“2HL2_>L2 are bounded
by (4.14). Therefore by (4.30) we have

A L2mre < CllAZ AT |22 = O(h™). (4.34)

3. We consider the operators A", with the case of A~ following from here using (3.8)
and (4.26). We first show that |[(Af)*AZ||lL2o 2 = O(h™). We write q = ¢; ... g, and
q=q ...J, and take maximal ¢ < n such that

max(7," T ) < h°. (4.35)

qi.--qe/ —

We have the following two cases:

(1) Vi ., NV . = 0. Arguing similarly to part 1 of this lemma and using (4.35),
we see that
1(Aq, )" AG, gl 2522 = O(R). (4.36)
By (3.5) and (3.8) we have
(A" Az =UWO)(A,, ) U(=O(A; ) AL aUDAL,, 5. U(=0).

Using (4.36) and the norm bound (4.14) we get [|(Af)* A% | L2mr2 = O(h™).
(2) Vi . NV - #0. We claim that

q1---qe q1---qe

+
max(jqulmf]n’

T )< Ol (4.37)

q~£+1~--fin
Indeed, we may assume that ¢ < n since otherwise (4.37) is immediate. Since
¢ was chosen maximal we have

Jr
maX(‘Zh---qu )

T )y>hTl

G1---Got1

Without loss of generality we may assume that jqj_qul > h7%. Then by (4.25)
we have J+ > C;'h=°. Since J© . ~ j;;m by (4.24), we have J.f . >

q1---qe q1---qe q1---9¢ —

Cy'h™0 as well. Now (4.37) follows from (4.25) and the bound max(7;", 75 ) <
Cgh_zé.
Since VI N V7 =0, by (3.6) we have
V¢JZ~~-Q1 N Vqt+1...qn N Vfi---‘il N V;;-H---lin = (Z)
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Arguing similarly to part 1 of this lemma and using (4.35), (4.37), and (4.26)
we get

*A? = A—i_ ~ HL2—>L2 - O(hoo)

”< qe---q1 q{z+1 qn) qe---91” "qe4+1---9n

Now by (3.5) we have
(A3) AL =UO)(A,,. . AL, VAZ AT U(—1) (4.38)

G101t ) e et dn
which gives [|(Af)*AZ ||lL2— 2 = O(h*).
To prove that [|AZ(AL)*||2mr2 = O(h™) we argue similarly. More precisely, take
minimal ¢ > 1 such that
max (7,5 T o)< h?.

qe---9n
Assume first that quz an N V;;_“dn = (). Arguing similarly to part 1 of this lemma we
get
||A (A;]: o) z2sr2 = O(R™). (4.39)

By (3.5) we have
AZ(AY) =U(-1)A, AL (AL L)AL U1 —20)

Ge—1--q17"qe---n qe—1---91
and the right-hand side is O(h™) 2,72 by (4.39) and (4.14).
Assume now that VI NV . £ (). Then similarly to (4.37) we get

qe---dn Ge---Gn
+ + -5
max(jth Q- 1"7@1-@271) < Clh :

The bound [|AZ(AZ)*||lz2— 2 = O(h™) is now proved similarly to the case (2) above,
with (4.38) replaced by the following corollary of (3.5):
AT(AD) =U( -1)A; Ar (A A YU —0).

Ge—1---q1° "qGe---Gn qe—1---91”7 "q¢---qn

O

In addition to Proposition 4.2 we will also need the following statement regarding
sums of operators of the form Aj A

Proposition 4.4. Fiz§ € [0,1), Cy > 0. Assume that F : «/* x o/* — C is a function
such that:

(1) for each (p,r) with F(p,r) # 0, we have max(J, , ;") < Coh™°;
(2) sup |F| < 1.

Then we have for some constant C independent of h and F

|AF|lz2z2 < Clog®(1/h)  where Ap =Y F(p,r)AjAf. (4.40)

p?r
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Remarks. 1. It is easy to see that sup |ar| < C'log®(1/h) where ap = > F(P,r)agal
is the symbol corresponding to Ap, grouping terms in the sum by the lengths |p|, |r|.
However the statement (4.40) does not follow by summing Proposition 4.2 over (p,r),
since the number of terms in this sum grows polynomially with h. (We got around this
problem in Lemma 3.1 by taking ¢ := % small enough so that the individual remainder
still dominates the growth of the number of terms, however in this section we will need
to take 0 very close to %) Instead the proof of Proposition 4.4, given in §5.3 below,
uses fine estimates on the full symbols of A7, A
2. The proof of Proposition 4.4 shows that A is a pseudodifferential operator, similarly
to Proposition 4.2. However, we will only need a norm bound on Ap.

Similarly to Lemma 4.3 we deduce from Proposition 4.4 a statement up to the local
double Ehrenfest time which is used to establish the norm bound (4.122) below:

Lemma 4.5. Fiz § € [0,1), Co > 0. Assume that F : &/* — C and

(1) for each q with F(q) # 0, we have J < Coh™;
(2) sup |F| < 1.

Then we have for some constant C' independent of h and F
IAfllz2sr2 < Clog(1/h)  where  Af:=>_ F(q)A]. (4.41)
q
Same s true for Ap if we make an assumption on J instead.

Remark. We make no attempt to optimize the power of log(1/h) in (4.41) — for our
purposes all that matters is that ||AL| 22 = O(h"7).

Proof. We prove a bound on A}, with the case of A, handled similarly.
For each q with J;- < Cyh™% there exists an integer ¢ = ((q) € [0, n] such that

max(JTy g Tob o gn) < C1A7° (4.42)

qe¢+1---4n

where (] is a large constant depending on Cj. Indeed, we choose maximal ¢ < n such

that 7,7, < h™°. If £ = n then Tatirogn =1 IE L <nthen Jr = > h=°, which
by (4.25) implies that J,© . > C~'h™ and thus by another application of (4.25),
T g < Ol

We may take Cy large enough so that Jg° < Coh™ implies that |q| < Cylog(1/h).
Then we decompose

A = > 4, Fl(q:= {F(OD’ it ) =4, (4.43)

0<t<Cr Tog(1/h) 0, otherwise.
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We have by (3.5)
AE =U(l)Ag,U(—{) where Ag, = Z Gg(p,r)A;,zl;F

(pr)

and the function G, : &@/* x &/* — C is defined as follows:

Fy(pr), if [p|=¢,
0, otherwise.

Gi(p,r) := {

For cach (p,r) with Gy(p,r) # 0 we have max(7, , J,5) < Ch™ by (4.42) and (4.26).
Therefore by Proposition 4.4

||AE||L2—>L2 = ||AG,_7||L2—>L2 < C’logQ(l/h). (4.44)

Using the triangle inequality in (4.43) and the norm bound (4.44) we get (4.41). O

4.3.3. Propagation beyond Ehrenfest time. We now study microlocalization of the oper-
ators Al for words q of length no more than C'log(1/h), where C'is any fixed constant.
The resulting Proposition 4.8 is applied in the proof of Lemma 4.25 in §4.6.4 below to
words q with J~ ~ h™7, where 7 € (3,1) is defined in (4.61). Analogous statements
hold for the operators A, but we will not make or use them here.

When J > h~'/? (as in the proof of Lemma 4.25) the symbol ag oscillates too
strongly to belong to the symbol class S;°"™" for any § < 1. In the case when M has
constant curvature, it was shown in [DZ16, DJ18] that for 7 < h~! the operator Ad
belongs to a certain anisotropic class of pseudodifferential operators “aligned” with the
unstable foliation, see [DJ18, Lemma 3.2]. The construction of this anisotropic class
strongly relied on the smoothness of the unstable foliation, see [DZ16, §3.3]. However in
the case of variable curvature considered here, the unstable foliation is no longer smooth
and it is not clear how to define the corresponding anisotropic pseudodifferential class.

We will therefore take a different strategy to study the microlocalization of Af,
which uses methods developed in [An08, AN07a, NZ09|. Given an arbitrary function
f € L*(M) (possibly depending on h), we will study the microlocalization of the
function A f. This gives less information than Al being pseudodifferential but it
suffices for the application in §4.6.4.

Since f is chosen arbitrary and the microlocal wave propagator U (t) defined in (2.34)

is unitary, it suffices to study microlocalization of U;“ f where the operator UJ :
L*(M) — L*(M) is defined similarly to (3.48) (recalling the definition (3.3) of A}):

Ut = AU(n) = UMW) AL UMW) Ay - UMD Ag, a=q...q. € " (4.45)

Using the Fourier inversion formula we will decompose f into a superposition of La-
grangian distributions (see §2.3.2) associated to a family of Lagrangian submanifolds
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Lo CT*M, 0 € R% Roughly speaking, the main result of the present subsection,
Proposition 4.8, shows that

fe ™ (L, = UEWUSfe L™ (Lyo) (4.46)

where %, ¢ is the propagated Lagrangian manifold (see Definition 4.6 below). The
key point, exploited in the proof of Lemma 4.25, is that for long q the manifold % ¢
depends little on 6, so that the full state Af f (written as an integral of propagated
Lagrangian distributions over 6) is microlocalized in a very small neighborhood of a
single unstable leaf.

The propagator U(1) is a Fourier integral operator (see §2.3.3) associated to the
time-one map of the geodesic flow ¢, microlocally in {1 < [£|, < 4}:

U(1)A, AU(1) € ™ (p1) forall A€ U)(M), WF4(A) C {3 < [¢], <4}. (4.47)

This follows from the definition (2.34) and the standard hyperbolic parametrix con-
struction, see e.g. [Zw12, Theorem 10.4| or [NZ09, Lemma 4.2].

Using (4.47) we can prove (4.46) for q of bounded length using standard properties of
Lagrangian distributions (more specifically, property (3) in §2.3.3). However, since the
length of q grows with A, the argument becomes more complicated. In fact, we cannot
even use the general definition of the class I,°""(.¢) in §2.3.2 since it applies to an
h-dependent family of distributions with hA-independent .. We will rely on the results
of [NZ09], featuring a detailed analysis of the behavior of the propagated Lagrangian
manifolds and the oscillatory integral representations (2.43) for U(—1)Uy f as the
length of q grows. For this analysis it will be important that the initial Lagrangians
Z,0 are chosen close to weak unstable leaves, and thus transverse to stable leaves.

To fix the parametrization of propagated Lagrangian manifolds and distributions, it
is convenient to introduce adapted symplectic coordinates. For each py € S*M let

550 Uy = Vo, Uy CT*MN\O, V,, CTR*\0 (4.48)

be the symplectomorphism constructed in Lemma 2.3 (in fact we will only use proper-
ties (1)—(4) of Lemma 2.3 here). Since s, is homogeneous we may shrink U,, so that
the flipped graph ., is generated by a single phase function, see §2.3.1.

Let €9 > 0 be the constant from §4.2; recall that the diameter of each V, N S*M is
smaller than 5. We will assume in several places in this subsection that ¢ is small
depending only on (M, g). For each ¢ € & fix an arbitrary point p, € V, N S*M and
put

My = Ay, Vg — Wi, Vg =U,,, W, =V,. (4.49)
We denote elements of T*M by p = (x,¢) and elements of T*R? by (y,7n). We assume
that & is small enough so that V, C Vi where the closure is taken in T*M \ 0.

We are now ready to define the Lagrangian submanifolds .Z :
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WOu(p/) 0 _
gqmg 7< gq,o 74? WOu(ﬁ)
so2EE T TS - < gpn_l =TT =
W()u(pq )/ Wou(pql)/, ~.
Vq V‘h
l%q" Xq, l
% g; 0 —_——
3(\0 1) _______________ 2071) ———————————————
4, Va,) g, (Var)

FIGURE 7. An illustration of Definition 4.6 and Lemma 4.7, fixing p =
On-1(p') € LqoNS*M. We restrict to S*M = {n, = 1} and remove the
flow direction J,,. In the bottom figures the horizontal direction is y; and
the vertical one is ;. The original Lagrangian .7, 4 is O(go) close to the
weak unstable leaf Wy, (p') as a C*° submanifold, thus the propagated
Lagrangian .7, ¢ is O(g) close to the weak unstable leaf Wy, (p) (in fact,
it is O(e "gy) close for some v > 0). A word of caution: in general
Vi Wou(pg, ) are not mapped by ¢,—1 to Vy,, Wou(pg )-

Definition 4.6. Consider the family of ‘horizontal’ Lagrangian submanifolds
%y =1{(y,0) |y e R*} C T"R?, 0 € R~

Forq=qi...q, € &* and 0 € R?, define

—~

Lao = our GG ND)) N pa(VE) €V, € TN,

o (4.50)
gqﬂ = %ql(gqyg) - qu C T*RZ\O

—

We call £, 9 := %;1(.,%) NVy, q € 4, the original Lagrangian corresponding to q,0,
and Ly, q € o/°, the propagated Lagrangian corresponding to q,0. See Figure 7.

Remarks. 1. The set £y may be empty. This happens in particular if VI = 0, if
0y <0, or if |01/05] > Ceq for some large fixed C.

2. We see from the definition (4.50) and the properties of », in Lemma 2.3 that %
is a Lagrangian submanifold of p=!(6y) C T*M \ 0 and the flow lines of ¢; are tangent
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to Z49. Therefore ‘,2/”;9 is a Lagrangian submanifold of {(y,n) | 72 = 6} C T*R?*\ 0
and 0,, is tangent to this manifold.

3. Recalling the definition (3.2) of V', we see that .Z ¢ is obtained starting from the

—

original Lagrangian .%, ¢ = »,'(%y) NV, by iteratively applying the map ¢; and
intersecting with V, ,,...,V,:

"Zlyuqnﬁ = 901<°g1j+1~-qn,9> N ng'v 1<j<n. (4'51>

By (4.23) the submanifold £ 4 is contained in a C'//J" neighborhood of the weak
unstable leaf Wy, (p), for any p € 2 9. The next statement, which is a weak version of
the Inclination Lemma, shows in particular that £ ¢ is controlled as a C"*° submanifold
uniformly in q, 6, regardless of the length of q. (A stronger version is that % is
exponentially close in C* to Wy, (p) when |q| is large.) To make the statement precise

—~

it is convenient to write the image % g of £ ¢ under s, as a graph in the y variables.

Lemma 4.7. If ¢y > 0 is small enough depending only on (M, g) then the following
holds. Let q € 7/, 6 € R?, and assume that Lyg # 0. Then

Zao =11 | y € Uao, m = 0:Gap(nn), 12 = 0} (4.52)

where gy C R? is an open set and Gqp is a function on an open subset of R which
satisfies the following derivative bounds:

(1) |Gqollcr < Ceq for some constant C' depending only on (M, g);
(2) |Gqollen < On for all N,* where the constant Cn depends only on (M, g)
and N.

Moreover, if Fyg : Uqo — R? is defined by

Son—l(%;ll (Fqﬂ(y)a 0)) = %q_ll(ya QQGq,G(yl)a 02)7 Yy e %qﬁ (453)

then we have the weakly contracting property for some C depending only on (M, g)
|dFas)| <C for all y € Uy (4.54)

Remark. The set %, (the domain of the function Gg4) depends on q but it has
macroscopic size (of the same scale as the sets V,) even for long words q.

We omit the proof of Lemma 4.7 here, referring the reader to [NZ09, Proposition 5.1,
[KH97, Proposition 6.2.23], and the first version of this article [DJN19, Lemma 4.7].

We now quantize the symplectomorphisms s,. As explained following (4.48) the
flipped graph of each s, is generated by a single phase function. Then (see §2.3.3)

3Here and in Proposition 4.8 below we use boldface N to distinguish it from the propagation time
defined in (3.11).
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there exist Fourier integral operators
By : L*(M) — L*(R?), By € I,""(5,),
(M

comp,_ — (4.55)
v LA(R?) — L*(M), Bl e L (")

quantizing s, near %q(Vq N{: < €y < 4}) x VN {L < ¢, < 4}) in the sense
of (2.54).

Using the operators B, we give a precise definition of the classes [ Comp(.;%n ) and
1" (L) featured in (4.46). We have %, o = s, (.,%) NV, where %, is generated
in the sense of (2.42) by the function

®5 € C(R%R),  Po(y) = (y,0). (4.56)

Thus by (2.44) the elements of I,""? (%, o) which are microlocalized in {3 <[], < 4}
have the form B, (e “@o/hg) for some a € C=(R?). We will in fact take a = 1.

Next, by Lemma 4.7 the Lagrangian manifold ﬁq o = 74, (ZLq0) is generated in the
sense of (2.42) by a function

Qg0 € Coo(%q,«% R), Oy, Pg0 = 02Gqp0 (1), Oy, P = 02

Here @ 4 is defined uniquely up to a locally constant function. We fix this freedom by
recalling that the functions induced on ,,2/”; , ,,2/”;9 by @y, ®q 6 are antiderivatives on these
Lagrangian submanifolds (see (2.42)). The antiderivative on f o can be computed by
applying (2.49) to the definition (4.50), where the symplectomorphisms s, , ©n_1, 3¢
are homogeneous and thus have zero antiderivative (see §2.3.3). Thus we may put

Do(y) == Po(Fao(y), v € e, (4.57)
where Fy g is defined in (4.53). Then by (2.44) the elements of I;°""(.%,¢) which are
microlocalized in {} < |¢], < 4} have the form B} (¢"®a¢/"q) for some a € C*(%y,0)-

Building on the above discussion we now give the main statement of this subsection,
which is a precise version of (4.46). We again omit the proof, referring to [NZ09,
Proposition 4.1 and §7.2] and to the first version of this article [DJN19, Proposition 4.8].
See also [Anll, §3] for a simplified proof in a model case.

Proposition 4.8. Assume that €y is small enough depending only on (M,g). Let
q=q...qn € F*, 0 € R?, and assume that n < Cylog(1/h), 01| < Co, i <0y <4
for some constant Cy. Define ®g, Pqg using (4.56), (4.57). Let UF be defined in (4.45)
and fir N > 0. Then we have uniformly in q, 6

UrB! (e"/") =U(1)B, (e aqsn) + O(hN) 12(ar) (4.58)
for some aqoN(y; h) € CX(Uqp) such that:

(1) the distance between supp aqen and the complement of Uy is larger than C~*
for some constant C' > 0 depending only on the choice of Ay, V,, 2, q € A ;
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(2) for any multiindex o there exists Cn o > 0 such that

sup \ajaq,g,N(y)] < CONoo- (4.59)
y
Here Cn o depends only on the choices of Ay, By, B;, and Cy.

Remarks. 1. If %,y = 0 then we have aqp~ = 0 and Proposition 4.8 states that the
left-hand side of (4.58) is O(h™)r2(ar)-

2. [ANO7a, NZ09] show that the symbols aq g~ satisfy stronger bounds, in fact they
decay exponentially with |q|, see [AN07a, Lemma 3.5 and [NZ09, (7.11)]. We state
the weaker bound (4.59) since it suffices for our application in §4.6.4.

4.4. Reduction to words of moderate length. We now return to the proof of
Proposition 4.1. Henceforth we fix two words

veaN, weaM.

We first write a decomposition (4.60) of Af into a sum of terms of the form Al where
q are words over the refined alphabet 7 = {1,...,Q} (see §4.2). For that we use the
following

Definition 4.9. For q € o/ and w € o, we write ¢ S w if one of the following holds:

e w=1andqg=1, or
ew=xandq€{2,...,Q}.

Ifa=q...qn € * and w =wy ... w, € F°*, then we say that ¢ Sw if n < m and
¢ Swj forallj=1,...,n.

Since A, = Ay + -+ -+ Ag, we have

Ay =) AL (4.60)

qea N1, qSw

Since N is larger than the maximal Ehrenfest time Ti,ax (see (4.1)), for all words
q € ™ we have j(;r > h™1, so the symbol ag is very irregular. To fix this problem, we
will rewrite (4.60) in terms of an expression with involves words with length bounded
by the local double Ehrenfest time — see (4.64) and Figure 8.

Recall the ‘minimal/maximal expansion rates’ 0 < Ay < A; defined in (2.10); as
before we put A := [A;/A¢]. We fix constants

1 T
=1——, 0:=—=
T 10A 5 <

Note that 7 is very close to 1; this will be used in (4
parameter 7 was denoted by p.)

. (4.61)

N

115) below. (In [DJ18] the
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— +
supp a,, supp Zn,e g, (we)

FIGURE 8. Supports of the symbols ay, af, and ) . aJan(w,e)v corre-
sponding to the operators Ay, A, and ) . A57l(w7e). We restrict to
some hypersurface in S*M transversal to the flow direction. By (3.11)
and (4.1) the thickness of the strokes in suppa, (corresponding to the
Jacobian (Jy )7') is at least h'/%, while in suppay, it is at most h.
Both of these have strokes of very different thicknesses because the Ja-

cobians vary from point to point. The set supp ), . aan( contains

w7e)
supp ag; and has strokes of uniform thickness approximately h~" = h~2
(roughly speaking, each stroke corresponds to one term af), so that

classical /quantum correspondence still applies.

Forn =1,...,N; and e € &/ let us define sets of refined words starting with the
letter e and controlled by their local Jacobians:

(w.e)={a=q..q€F" [q=¢, qSw, I 2h" > T},
Q,(w,e) :={q e Qu(w,e) | VI #0}, (4.62)
QZ(W,@) = {q € Qn(W,tB) ’ V(;r = @}

where we recall that for any q = ¢; -+ - ¢,, we denote ' := ¢; -+ ¢,—1. By (4.25) we
have for some constant C' depending only on (M, g)

W™ <JS<Ch ™ =Ch™® forall qe Q,(w,e). (4.63)

That is, words q € Q; (w,e) correspond to sets VI on which the backwards stable
Jacobian J°, (p) is approximately equal to h~". These words are such that their local
double Ehrenfest time f(j is approximately equal to their length n (they would be
equal if we had taken 7 = 1).

For each q = ¢q1...qn, € @™ with q S w we have J > e > p~! > p7
by (4.1) and (4.16). Using (4.18) we see that for each such q there exists unique
n € {1,..., Ny} such that the prefix ¢; ... g, liesin Q,(w, ¢;). We also have Q,,(w,e) =
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Q' (w,e) U Q" (w,e). Therefore the decomposition (4.60) can be written as

Ny N1
+ _ + _ - +
AL =20 A e Znw = 21 D (A ey + Ay nw (464)
n=1ecs/ n=1 ccf
where AEH(W o) 1s defined by (3.9) and
Zn,w = Awn+1<_n — 1) e Ale (_Nl) = U(n + 1)Ajﬂ_n+1"'wN1 U(-?’L — 1)

We have || Z,, w1212 < 2 similarly to (4.14). Moreover, since the number of elements
of @”(w,e) is bounded by some negative power of h, by part 2 of Lemma 4.3 we get

“AJQF;;(w,e)”L?ﬁL2 = O(h™).

We then estimate

Ny
HAx_rAjv”HﬁLQ <2 Z Z HA\_/AE%(W,Q)HL2‘>L2 + O(h™).
n=1 eca
Since N; = O(log(1/h)), Proposition 4.1 is proved once we establish its analogue with
A{, replaced by A&l (W) that is the sum of A} over the refined words q with length n,
initial letter e, and local Jacobians jcj ~ h~7 (that is, their local double Ehrenfest

time is approximately equal to n):

Proposition 4.10. Assume thatv € N, w e ™M 1 <n <Ny, ande € . Then
there exists B > 0 depending only on V1,V, and there exists C > 0 depending only
on Ay, A, such that

||A;A5%(w’e)|‘L2~>L2 < ChP.

Remark. The value of § in Proposition 4.1 can be taken to be any number smaller
than the value of § in Proposition 4.10. Since we do not give a precise formula for
we call both by the same letter to simplify notation.

4.5. Partition into clusters. We fix v e &M we &M ne{l,... N}, e e &,
and define @/ (w,e) C /™ by (4.62). We make the following

Definition 4.11. Let q,q € Q) (w,e). We say q,q are close to each other if Vi UV;Ir
lies in the h*/®-sized conic neighborhood of some weak unstable leaf, more precisely
there exists p € V.) N S*M such that

d(p, Wou(p)) < h* forall e (VIUVi)NS M.
If q,q are not close to each other, we say they are far from each other.
Remark. If q, q are far from each other, then VI NV = §. The proof of Lemma 4.12
below in fact gives a stronger statement, see (4.69).

For words which are far from each other, we have the following almost orthogonality
statement:
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Lemma 4.12. Assume that q,q € Q,,(w,e) are far from each other. Then
|](A;A;“)*A;Ag||L2_>L2 = O(h*), (4.65)
Ay AL (AGAY) 222 = O(R™) (4.66)
with the constants in O(h™) independent of h,n,v,w,q, q.

Remark. Lemma 4.12 has the following informal interpretation (which is different
from the formal proof below). Imagine that we remove the flow and dilation direc-
tions from 7*M and conjugate by a Fourier integral operator whose canonical trans-
formation maps stable leaves into horizontal lines { = const} and unstable leaves
into vertical lines {y = const} on T*R, ~ R? . (This is not possible to do globally
but the argument in §4.6 below uses a localized version of such conjugation with the
roles of y,n switched.) Then Ay is replaced by a Fourier multiplier x_(hD,) where
sup, [05x_(n; )| = O(h™"/%7) (corresponding to the fact that ay € Syjer which fol-
lows from Lemma 3.1). Next, Af, AL are replaced by multiplication operators x (y),
X+ (y) where x4, X+ have supports of size ~ h”. The condition that q, q are far from
each other implies that the supports of x, Y. are at least h?/® apart. Then (4.65)
turns into the estimate (assuming x_, x, X+ are real valued)

X+ (W)X (hDy) X+ ()| r2r)—12(R) = O(R™)

which can be proved using repeated integration by parts to establish rapid decay of the
integral kernel: at each integration we gain a factor h-h=2/3.h=1/6 = p/6_ Notice that
the size of the supports of x, and yx, does not matter, it is the distance between the
two supports which is responsible for the factor A~%/3. In turn, the analogue of (4.66)
trivially follows from the fact that supp x4+ Nsupp X+ = 0. In this interpretation (4.65),
(4.66) are analogous to the bounds [BD18, (4.26),(4.25)] and the decomposition into
clusters below to the one used in the proof of [BD18, Proposition 4.3].

Proof. 1. Denoteq=¢1...¢,, Q= q1 ..., Take maximal m < n such that
Ve nvi . #£0.

qi---9m qi---Gm
If VNV =0 then we put m := 0.
By (4.24) we have J,7 ~ J7 . . We claim that

q1---9m
maX(‘Z]—:--Qm’ ‘7(;1_11m) S Ch_2/3' (467)
The case m = 0 is trivial, so we assume that m > 0. Take p € V) . NVI . NS*M.

Note that since ¢ = ¢ = e we have p € V. By (4.23) we have for every p €
Viuv)ns*Mc (V) . UVl . )ns*M

q1..-9m q1---9m
C’ C
. + S + .
mln(j‘]?nqm ’ J; ) max(qulr...qm ’ J; )

q1---Gm Gi---Gm

d(p, Wou(p)) < (4.68)
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Since q,q are far from each other, the right-hand side of (4.68) has to be greater
than h%®, which gives (4.67).

By (4.63) we have J > h™" > h™%/3, so0 from (4.67) we obtain m < n. Denote

P=q . - Guti, P:=Gq1 - Gmi1-

Since m was chosen maximal we have

Vo nvy =0. (4.69)
Moreover by (4.67) and (4.25) and since V', Vg # 0 and thus VI, Vg # 0 we get
max(J,, J5") < Ch™?/3, (4.70)

2. We now prove (4.65). We have by (3.5) and (3.8)
(AJAD)ATAZ =U(m+ 1)(A; , ) U(=m—1)

(A ADALAZU (m 4+ 1) AL

qm+2---Gn

U(—=m —1).
Thus by (4.14) it suffices to prove that [|(A; Af)* AT ALll22 = O(h™). Similarly

to (4.60) we write
Ay = > AD
scaNo, s<v
Then by (3.5)
(AVADACAL = Y U(=No)(AL) ALU(No).
s,5caNo, 5,35V
Since the number of terms in the sum above is bounded polynomially in A, it suffices
to show that
||(A:p)*A;f’||L2_)L2 = O(h™®) forall s,5¢c @™ (4.71)
By (3.11), (4.16), (4.25), and (4.70) for each word t of length no more than Ny we have
Vi, #0 = JL< 0TI < CeMNo pT B < OIS < OhT?. (4.72)
Then by part 2 of Lemma 4.3, if VI, = 0 then ||AZ || 2,2 = O(h*°) which immediately
implies (4.71). A similar argument applies to Ag;.

We may now assume that V3, # 0, V5 # 0. Then by (4.72) we have max(J.5, Jo5) <
Ch™. Moreover Vi, NV C on (Vi NVE) = 0 by (3.6) and (4.69). Then (4.71)
follows from part 3 of Lemma 4.3.

3. To show (4.66), we first write
ATAT(ATAQ)" = AT AZ(AQ)(A)"
Thus it suffices to prove that
|AG (AG) Nl rer2 = O(R™).
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This follows from part 3 of Lemma 4.3. Indeed, we have max(Jy, Jj; +) Ch—2
by (4.63) and VI N VI c VinVs =0 by (4.69). O

We will decompose A A&L (w,e) into a sum of operators, each of which corresponds
to a cluster of words q € Q/ (w,e) — see (4.75) below. Each cluster has the property
that the sets V lie in an O(h*3) sized conic neighborhood of some weak unstable leaf.
Moreover, most clusters lie far from each other in the sense of Definition 4.11, which
will let us decouple different clusters using the Cotlar—Stein Theorem and Lemma 4.12.
The clusters are constructed in the following

Lemma 4.13. If the constant e in §/.2 is chosen small enough depending on (M, g)
then there exists a partition into clusters

Rp(w,e)

Q (w,e) = |_|QnWer

such that for some constant C' depending only on (M, g) we have:

(1) for each r there exists p(r) € VI N.S*M such that the r-th cluster is contained
in a Ch?/? sized conic neighborhood of the weak unstable leaf Wo,(p(r)), that is

d(p, Woulp(r)) < CR* forall pe ) (VNS M) (4.73)
qEQn(w,e,r)

(2) let us call the clusters r, 7 disjoint when each pair of words q € Q,(w,e,r),q €
Qn(w,e,7) is far from each other in the sense of Definition J.11. Then for
each r, the number of clusters 1 which are not disjoint from r is bounded by C'.

Proof. In this proof C' denotes constants depending only on (M, g) whose precise value
might change from place to place.

Since the weak unstable leaves Wy, (p), p € V.:NS*M, foliate VI NS* M, and depend
Lipschitz continuously on p, if the diameter of V. N.S*M is less than e and &g is small
enough, there exists a Lipschitz continuous function (with Lipschitz constant C)

Z:VrnS'™M R
which is constant on each weak unstable leaf Wy, (p) NV, p € VI N S*M and
d(p, Wou(p)) < C|Z(p) — Z(p)| forall p,pe VNS M. (4.74)
For instance, one could take as Z(p) the function constructed in Lemma 2.3.
For each q € Q) (w, e), define the set
Iy:= Z(VF nS*M) CR.
Fix an arbitrary point z4 € Iq. We choose a maximal subset

{z1,...,2r} C{2q | q € O, (W,e)}
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which is h?/? separated, that is |z, — zz| > h?/3 for each r # 7. Put R,(w,e) := R.

Since the set {z1,...,2r} was chosen maximal, for each q € @/ (w, e) there exists r
such that |24 — 2.| < h?/3. We can thus define a partition into clusters

Q. (w,e) |_| Q.(w,e,r) where |zq— 2| <h*? forall qe€ Q,(w,e,r).

By (4.23) and (4.63), each V N S*M is contained in a Ch” sized neighborhood of
some weak unstable leaf, therefore (since the map Z is Lipschitz continuous) I C
[2q — Ch7, 2 + Ch7]. Since h7 < h*3 we see that for each q € Q,,(w,e,r) we have
Iy C [z, — O3 2, + Ch?/3]. Take p(r) € V¥ N S*M such that Z(p(r)) = z,, then
by (4.74) for each q € Qu(w,e,r) and p € VI NS*M we have d(p, Wou(p(r))) < Ch*3.
This gives property (1).

Finally, if q,q € Q/,(w, e) are close in the sense of Definition 4.11, then |z4 — 24| <
Ch?3. Therefore, if the clusters r,7 are not disjoint then |z, — zz| < Ch?/3. Since
{z1,...,2gr} is h?/3 separated, we see that for each r the number of clusters 7 not
disjoint from 7 is bounded by some constant C'. This gives the property (2). U

Armed with Lemma 4.13 we now decompose

Ry (w,e)

AV A Y ey = D, B Bri=AVAL o= >, AVAL (4.75)

qec On (erv"')

We claim that, with the constant C' appearing in Lemma 4.13,
maxz | B B ||} LQ,maXZ |B:BX||2 2 < Cmax||B, |22 + O(h™). (4.76)

L2—1?

Indeed, the sum over clusters 7 not disjoint from r is estimated by C' max, || B,||12_ 2.
The sum over clusters disjoint from r is O(h*°) by Lemma 4.12; using that the number
of elements in @' (w,e) and thus the number R, (w, e) of clusters are O(h~¢) for some
constant C.

Applying the Cotlar—Stein Theorem [Zw12, Theorem C.5|, we see that
||A;A54L(W,6)HL2—>L2 < C’m;ax 1Bl 2222 + O(h%).

Therefore Proposition 4.10 follows from the bound

max || Ay A (o llzre < OB°
T

wer

which in turn is implied by the following

Proposition 4.14. Assume that v € &N, w € ™M, 1 <n < Nj,ec€ d, py €
VINS*M, and Q C Q. (w,e) lies in an O(h*?) sized conic neighborhood of the weak
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unstable leaf Wo,(po), namely for some constant Cj

d(p, Wou(po)) < Coh®® for all pe | J (Ve NS M). (4.77)

qeQ

Then there exists B > 0 depending only on Vy,V, and there exists C' > 0 depending
only on Ay, Ay, Cy such that

|Ay Adll 22 < CRP. (4.78)

In the above expression, A5 is a sum of many refined words operators A} with q
having Jacobians .,7(;“ ~ h~7; in turn, A, can also be split into the sum of many word
operators Ay with words [q| = Ny. The hyperbolic dispersion estimates of [AN0T7a]
show that all the individual terms Aj AJ are small (their norms are bounded by some
h*), yet to cope with the sum of many such terms, we will have to use another ingre-
dient, namely a fractal uncertainty principle.

4.6. Fractal uncertainty principle and decay for a single cluster. In this section
we prove Proposition 4.14; as shown earlier in §4 this implies Proposition 3.2. We fix

vedM wea™M, ne{l,... N}, ecd, p€VInSM, (4.79)

and @ C Q' (w,e) which lies in an O(h?/?) sized conic neighborhood of W, (po) in the
sense of (4.77).

Throughout this section C' denotes constants depending only on Ay, ..., Ag, and Cy,
whose meaning might change from place to place, unless noted otherwise.

The strategy of the proof is to conjugate the operators A, AE by Fourier integral
operators to obtain a situation to which the fractal uncertainty principle of Proposi-
tion 2.10 can be applied. The proof of Proposition 4.14 is given in §4.6.4 below, using
components described in the rest of this section.

4.6.1. Normal form. We first study the symbols a, aJQ“. We use the symplectomor-
phism constructed in Lemma 2.3, which approximately straightens out the weak un-
stable leaves close to Wy, (po).

By the assumptions on Vy, ..., Vg in §4.2, the diameter of VX NS*M = 1 (V.NS*M)
is bounded above by Ceq for some C' depending only on (M, g). Therefore, if we fix
£o > 0 small enough then by Lemma 2.3 there exists a symplectomorphism

=10 Uy — Vo, Uy CT*MN\O, V,) CTR*\0 (4.80)

which satisfies conditions (1)-(7) of Lemma 2.3 and VI C U,,. (Here the closure
of VI is taken in T*M \ 0.) We denote elements of T*M and T*R? by (z,¢) and

(y, 77) = (yh Y2, 771,772) respectively.
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Since s is homogeneous, the flipped graph .%Z,, defined in (2.46) is conic. Therefore,
shrinking U, (and reducing ¢() we may assume that .Z, is generated by a single phase
function, see §2.3.1.

We will analyze the images of the supports suppay, supp aé under the map .
The goal is to relate these to localization to porous sets in y; and 7, /ns respectively,
see (4.89),(4.90) below.

We start with supp af, which is contained in the open conic set
V=V c VI e U, (4.81)
qeQ

The following lemma is a key point in the argument where C®/2 regularity of the unsta-
ble foliation (used in Lemma 2.3) is combined with the fact that Q lies O(h%?) close
to the weak unstable leaf Wy, (po) (the latter was made possible by the cluster decom-
position of §4.5). It states that the projection of each weak unstable leaf (W, (p)),
p € V5N S*M, onto the ny coordinate lies in an interval of size O(h). Since by (4.23)
and (4.63) each Vi N S*M, q € Q, lies in an O(h") neighborhood of some weak un-
stable leaf, we see that the projection of (V] N S*M) onto the 7, coordinate lies in
an interval of size O(h").

Lemma 4.15. Let p € V5N S*M. Then
() — (D) < Ch Jor all p € Wou(p) N Upe (482

Proof. We recall the straightening of the unstable foliation described in Lemma 2.3.
By (2.28) we have

%(W()u(ﬁ) N UPO) = {(yluy%F(ylug)a 1) ‘ (ylvg) S Qv Y2 S R} N ‘/ﬂo (483>

where ¢ := Z(p) and the functions F € C%?((;R), Z € C**(U,, N S*M;R) are
defined in Lemma 2.3. Moreover, by (4.77) we have d(p, Wo.(po)) < Coh?/3, which by
parts (5)—(6) of Lemma 2.3 implies

(] < Ch?3. (4.84)
Combining this estimate with the point (8) of Lemma 2.3, we obtain
sup |F(y1,¢) = [ < Ch (4.85)
Y1
which together with (4.83) gives (4.82). O

In §4.6.2 below we use Lemma 4.15 and the results of §2.5 to show the following
porosity statement (see Definition 2.8):

Lemma 4.16. Define the set
Q" = m(x(V{NS*M)) CR. (4.86)
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FIGURE 9. The sets s(V, "V NS*M)N{|m| < hY/%} and »(VINS* M)
(lighter shaded). Here y; is the horizontal coordinate (with the width of
the figure having h-independent scale) and 7, is the vertical coordinate.
The darker shaded sets are Q~ and QF, defined in (4.88) and (4.86).

Then there exist R and v > 0 depending only on V1, V, such that Q* C Qf U---UQF
where each Q5 is v-porous on scales Ch™ to C~ .

Remarks. 1. Since (Vg N S*M) is contained in an O(h*?) sized neighborhood of
{m = 0} by (4.77) and parts (5)—(6) of Lemma 2.3, we have

Qt C [-Ch¥3 Ch¥3). (4.87)

In particular, it is easy to see that Q7T is %—porous on scales above Ch?/3 for C' large
enough. Lemma 4.16 shows that each Q) is in fact v-porous on scales above Ch”
(where 7 is very close to 1) for some v > 0.

2. Using Lemmas 2.17-2.18 and following the proof of Lemma 4.16, we get the following
statement: if the complements S*M \ Vi, S*M \ V, are (L, L;)-dense in the stable
direction (in the sense of Definition 2.16) then Lemma 4.16 holds for some v depending
only on (M, g), Lo, L.

We next study supp a,,, which is contained in V. By (4.87) and since supp aJQr c VS
it would be enough to study the intersection of »(V, N V) N S*M) with the set
{|m| < Ch?/3}. However, for the purpose of microlocalization of the operator Ay it is
convenient to choose a larger, h'/%-sized, neighborhood of {n; = 0}. We thus define

Q" =y (s(Vy NV NS M) N {|m] < BV} C R (4.88)
The next lemma, proved in §4.6.2 below, establishes porosity of {27:

Lemma 4.17. Let A := [A1/Ag]| be defined in (2.11). Then there exist R and v > 0
depending only on Vi, V, such that Q= C Qy U---U QL where each )} is v-porous on
scales ChY N to O 1.
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Remark. Using Lemmas 2.17-2.18 and following the proof of Lemma 4.17, we get the
following statement: if the complements S*M \ Vi, S*M \ V, are (Lo, L,)-dense in the
unstable direction (in the sense of Definition 2.16) then Lemma 4.17 holds for some v
depending only on (M, g), Lo, L.

For future use we record the following corollaries of the definitions (4.86), (4.88)
of OF and the homogeneity of s:

1 T 1
+ Z < < - + < < )
%Obﬂ{4—ﬁb—4ﬂ c{%269}r%4_nm;ﬁ, (4.89)
#(V; NVHN { @’ < hl/ﬁ} c {y e} (4.90)
T2
See Figure 9. For (4.89) we additionally used part (4) of Lemma 2.3.

4.6.2. Proof of porosity. We now prove Lemmas 4.16 and 4.17. We start by defining
fattened versions of the sets Vg, V. Fix two conic open sets

VEVECT M\ 0
such that:
oV, C Vi for w € o, = {1,%} where the closure is taken in T*M \ 0;

e the complements 7% M \ V¥ have nonempty interior.
This is possible since T*M \ V;, T*M \ V, have nonempty interior, see §3.1.
Since V, C V, for ¢ =2,...,Q (see §4.2), we can also fix conic open sets
VECVE V,CVi g=2,...,Q.
Moreover, since the diameters of V, N S*M, q € & := {1,...,Q}, are less than ¢;, we
can make the diameters of Vg N S*M less than g9 as well. We may also assume that
o U,, where U, is the domain of the map s, see (4.80).

Let v =1g...vn,_1 € @ be the word in the statement of Proposition 4.14 and
qQ=qi...q, € " be arbitrary. Similarly to (3.2) define the open conic sets

No—1 n
Viti= () v V), VR =) e (VE). (4.91)
=0 j=1
Clearly Vy C V5™, V§ C VAT, Following (4.81) define also
vy = Vi o Ve (4.92)
qeQ

We use the results of §2.5 and the fact that 7*M \ Vlﬁ , T*M \ V! have nonempty
interiors to establish the porosity of the intersections of Vi~ VS” with unstable/stable
intervals:
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Lemma 4.18. There exists v > 0 depending only on V1, V, such that:

(1) for every unstable interval v : Iy — S*M (see Definition 2.13), the preimage
71 (VE) C R s v-porous on scales ChY/ (N to 1;

(2) for every stable interval v : Iy — S*M, the set ’y*l(Vﬂg) is v-porous on scales
Ch™ to 1.

Proof. Recall that Q is contained in the set Q/ (w,e) defined by (4.62). Therefore,
each q = ¢1...q, € Q satisfies q < w (where w € @™ is fixed in the statement
of Proposition 4.14), which (recalling Definition 4.9) implies that ng - Vf,)j for all
7 =1,...,n. It follows that

VE eV L= e (Vh).
j=1

Thus the required porosity statements follow from Lemma 2.15 (taking the sets Vf, Vi
in (2.83)) once we establish the Jacobian bounds

: U —1/(6A
Vu}rrg*M Ty > ™1/, (4.93)
inf J°, >C7'hTT. (4.94)
vErasem

The estimate (4.93) follows immediately from (2.10) and the definitions (3.11) of N
and (2.11) of A.

To show (4.94), take arbitrary p € Vﬁg N S*M, then p € Vg* N S*M for some
qe QC Q) (w,e). Take some p € VI NS*M C Vi" N S*M. We have

J2(p) > CTHI2(p) > CTH IS > C7hTT

where the first inequality is proved similarly to (4.19) (using that the diameter of each
VINS*M, q € o, is less than ¢), the second one follows from the definition (4.15)
of J5, and the third one follows from (4.63). O

The next lemma shows that each sufficiently short weak stable leaf centered at a
point in V; is contained in the slightly larger set V¥~, and same is true for weak
unstable leaves and the sets Vé“ , Vg'. It will be useful in approximating Q% by the sets
studied in Lemma 4.18, see (4.105), (4.107) below. As in Lemma 2.1 we fix a distance
function d(e, e) on S*M.

Lemma 4.19. There exists ¢ > 0 depending only on Vi, V, such that for all p,p €
S*M we have

d(p,p) <e1, peWulp), peV, = pecVi, (4.95)
d(p,p) <er, peWolp), peVi = pe Vtg. (4.96)



84 SEMYON DYATLOV, LONG JIN, AND STEPHANE NONNENMACHER

Proof. 1t suffices to show that there exists a constant C' depending only on (M, g) such
that for all &1 > 0 and p,p € S*M
d(p,p) <e1, peWoslp) = d(ei(p),pe(p)) < Cer forall t>0; (4.97)
dlp,p) <e1, peWulp) = dlei(p),pe(p)) <Cey forall ¢<0. (4.98)
Indeed, to show (4.95) and (4.96) it suffices to take £; small enough so that the distance
between V, N S*M and S*M \ V?# is larger than Cey for all ¢ € {1,2,...,Q,*} (which

is possible since ¥, C V?). Then ¢y(p) € V, N S*M and d(¢(p), p:(p)) < Cey together
imply that ¢,(p) € V? and it remains to use the definitions (3.2), (4.81), (4.91), (4.92).

We show (4.97), with (4.98) proved similarly. By the definition (2.13) of Wo,(p) we
have p = ¢, (p') for some p' € W(p) and r € [—£, £]. Since stable leaves are transversal
to the flow lines of ¢;, we have

d(p', p) +[r| < Cer.
By (2.20) there exists 6 > 0 such that for all ¢ > 0

d(¢:(p), e(p')) < Ce™d(p, p) < Cer. (4.99)

On the other hand since ¢.(p) = ¢, (v:(p’)) we have
d(pi(p), p1(p)) < Clr| < Cey. (4.100)
Combining (4.99)—(4.100) we get (4.97). O

Since the stable leaves, the unstable leaves, and the flow trajectories are transversal
to each other, if p,p € S*M are sufficiently close to each other then the weak stable
leaf Wos(p) intersects the unstable leaf W, (p), and same is true for the stable leaf
Ws(p) and the weak unstable leaf Wy, (p) — see (2.24). This immediately gives

Lemma 4.20. There exist Cy > 1, €9 > 0 depending only on (M, g) such that for each
p,p € S*M with d(p, p) < ey there exist

e Wilp), p" € Wu(p), m € R such that p = ¢.(p"); (4.101)

max {d(py, p2) | p1,p2 € {p, 5, ', "} } + |r| < Cad(p, p)- (4.102)

We now define the sets Qf from Lemmas 4.16—4.17. Let &1, 9, Cs be the constants
from Lemmas 4.19 and 4.20. Without loss of generality we may assume that ¢; < es.

We will also assume that e, is small enough depending only on (M, ¢) in the beginning
of the proofs of Lemmas 4.22 and 4.23 below. Fix finitely many points

p1s- -5 PR € Woulpo),

with R depending only on (M, g) and &, such that each point in Wy, (po) is 505 close
to at least one of the points py,..., pg.
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Lemma 4.21. We have Q* C QF U---UQF where fork=1,..., R
O =mGe(), Q= p(e(Xy))
and the sets Ef C VI NS*M are defined by
Sy ={peVEnS ™M [ dp,pr) < &

o 9

Sy = {peVy NV NS M | d(p, Woulpo)) < Csh™®, dlp, p) < &}

where C3 is a sufficiently large constant depending only on Vi, V,, Cy.

Proof. Recalling the definitions (4.86),(4.88) of QF we see that it suffices to show the
inclusions

VEiNS*™M c £fU---UXE, (4.103)
VonVINnS My ({m] <RV} € U US;. (4.104)

We first take arbitrary p € VNS*M. By (4.77) we have d(p, Wou(po)) < Coh®/® < -
Therefore there exists k € {1,..., R} such that d(p, p) < &. It follows that p € Iy
which gives (4.103).

We next take arbitrary p € V7 N VS N S*M such that |n;(s(p))| < h'/5. Since
x(Wou(po) NU,,) = {m =0, ny = 1} NV, we have d(p, Wou(po)) < Csh!/® for some
constant C5. In particular d(p, Wo,(po)) < =2, so there exists k € {1,..., R} such

205>
that d(p, pr) < & . It follows that p € ;" which gives (4.104). O

We are now ready to finish the proofs of Lemmas 4.16-4.17. Using Lemma 4.21 we
see that Lemma 4.16 follows from

Lemma 4.22. Let v > 0 be fized in Lemma 4.18. Then for each k € {1,..., R} the
set QU is ¥-porous on scales Ch™ to C~'.

Proof. Without loss of generality we may assume that X # (. Then pj lies in the
& < &g sized neighborhood of VI N S*M &€ Uy, Let 7; : [=Cey, Cey] — S*M be
a stable interval (see Definition 2.13) such that ~;(0) = px. Here C is chosen large
enough (depending only on (M, g)) so that every point p’ € Wy(pg) with d(px, p') < &9

lies in ;. We may choose €2 small enough so that ~;, C U,,.

Since Es(pr) C T, (S*M) is transversal to T, Wo,(po) and (recalling that » maps
S*M to {nz = 1} and Wou(po) to {m =0, 1o =1})

d>e(pi) (T, (S"M)) = {dnz = 0}, de(pi)(T,,Wou(po)) = {dny = dnz = 0}

we have d(n; o 2)(pr)72(0) # 0. Therefore if €5 is small enough depending only on
(M, g) then the map

Yy i =m ooy [—Cey,Cey] - R
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S

Tk

i+
VQ

Wou(p) 7 Ez p

Wou(po) —

FIGURE 10. An illustration of the proof of Lemma 4.22. We use the
coordinates provided by the diffeomorphism ¢, with y; the horizontal
coordinate and 7; the vertical one; we restrict to S*M = {n, = 1}
and suppress the flow direction 0, (thus p', p” are mapped to the same
point). The darker shaded set is 2 and the lighter shaded set is Vﬁg.

is a diffeomorphism onto its image. We extend )7 to a global diffeomorphism R — R
so that it satisfies the derivative bounds (2.76) with some constant C; depending only
on (M, g). Define
Qb =i (D' V8)) = m( N Vg)) CR.
Then by Lemmas 4.18 and 2.12 the set QZF is 5-porous on scales Ch” to Cc—L
We now claim that N

Qf CQf +[-Ch,Ch]. (4.105)

Indeed, take arbitrary p € 3. Then d(p, pi) < & < &2, so by Lemma 4.20 there exist
o€ Wypr), p" € Wulp), r € [—e1,e1] such that p' = ¢, (p").
(See Figure 10.) By (4.102) we have d(p, p') < €1 < €9, thus p’ € 7;. We also have
d(p,p') < e1, o/ € Woulp), and p € V§ N S*M, which by Lemma 4.19 imply that
p e Vg. Therefore
i) € . (1.106)
On the other hand by Lemma 4.15 we have
Im(<(p)) = m((p)] < Ch.

Since Qf = n1(5¢(X3})), together with (4.106) this gives (4.105).

To show that Q) is ¥-porous on scales Ch™ to C~" it now remains to use (4.105),

Lemma 2.11, and the previously established porosity of Q; 0

Finally, using Lemma 4.21 we see that Lemma 4.17 follows from

Lemma 4.23. Let v > 0 be fizred in Lemma 4.18. Then for each k € {1,..., R} the
set Q2 is g-porous on scales ChY6Y to C~1,
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Ch/s

- ———— - — -y

Vi rin P
FIGURE 11. An illustration of the proof of Lemma 4.23, following the
same convention as Figure 10. The darker shaded set is X, and the
lighter shaded set is Vi~.

Proof. Without loss of generality we may assume that 3, # (). Then p; lies in the
& < &g sized neighborhood of VI N S*M € U,,. Let vy : [-Cey,Ces] — S*M be an
unstable interval (see Definition 2.13) such that 7}*(0) = pg. Here C is chosen large
enough (depending only on (M, g)) so that every point p” € W, (px) with d(px, p”) < &9
lies in 7. We may choose €, small enough so that ;' C U,,.

Since s is a symplectomorphism and p = 1, o ¢ by part (4) of Lemma 2.3, 3¢ maps
the Hamiltonian field H, into 9,,. Since E,(py) is transversal to H, and tangent to
Wou(po), which is mapped by s to {m = 0, 72 = 1}, we have d(y; o »)(px)1(0) # 0.
Therefore if e, is small enough depending only on (M, g) then the map

Uy i=yroxoy : [—Cey, Cey] - R

is a diffeomorphism onto its image. We extend v}’ to a global diffeomorphism similarly
to the proof of Lemma 4.22 and define

Qp = ()7 V) = m (i N V) C R,
Then by Lemmas 4.18 and 2.12 the set fll; is 5-porous on scales Ch'/ (6N to C1,
We now claim that
QO € Q; + [~ChYS ChY/], (4.107)
Indeed, take arbitrary p € X;". Then d(p, pr) < & < €2, so by Lemma 4.20 there exist
p € Wi(p), p" € Walpr), r € [=e1,e1] such that o = p.(p").

(See Figure 11.) By (4.102) we have d(pg, p”) < €1 < €9, thus p” € 74. We also have
d(p,p") < e1, p' € Wos(p), and p € V, N S*M, which by Lemma 4.19 imply that
p" € Vi~. Therefore

(") € 5. (4.108)
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Since d(p, Wou(po)) < Csh'/S and p' € Wou(po) N Wi(p), we have d(p, p') < Ch'/S. We
also have y1(s(p')) = y1(5¢(p")). It follows that

ly1(3¢(p)) — y1 (3(p"))| < CRMC.
Since Q= y1(5(Xy)), together with (4.108) this gives (4.107).

To show that 2, is ¢-porous on scales ChY(%) to C~' it remains to use (4.107),

Lemma 2.11, and the previously established porosity of 52,; 0

4.6.3. Application of the fractal uncertainty principle. We now use the fractal uncer-
tainty principle (in the form given by Proposition 2.10) and the porosity statements
proved in Lemmas 4.16-4.17 to establish an uncertainty principle for neighborhoods
of the right-hand sides of (4.89)—(4.90). Recall the sets QF C R from (4.86),(4.88). As
before, denote by QF(a) := QF + [—a, a] the a-neighborhood of Q*.

Lemma 4.24. Define the following subsets of R?:

1 771
= < <4, = T(h" .
T = {mm) [ <m <4, et )} (4.109)
T = {(yl,yg) | y1 € Q_(hl/ﬁ)}. (4.110)
Then there exists > 0 depending only on V1, V, such that
| Te-(y) T (hDy)|| 1o oy p2(rey < CH°. (4.111)

Proof. 1. Put Q= := Q= (h!/%), OF := Q* (k7). We first show that

H HT :ﬂY+ (h-D HL2(R2)—>L2(R2) S Sup || Ilﬁ* (thl) IlfngﬁjL (771)|’L2(R)_>L2(R)‘

n2€[% 4]
(4.112)
Indeed, conjugating by the semiclassical Fourier transform we see that
” Iy (y) Ty+ (hDy) HL2(R2)—>L2(R2 H Ty (hDy) Ty+ (= ||L2 (R2)—L2(R2)"
Now take

f eGSR, gi=Tr-(hDy) Ix+(=n) .
For each 7, € R define the functions f,,,g,, € Lz(R) by fo.(m) = f(n, —n2),
9ns(m) == g(m1, —n2). Then

g (hDp ) 1 as () frny M2 € [5,4);
Gno = )
0, otherwise.

Writing || ]2 72(re) as the integral of | f, 1, () Over 72, and same for the norm of g, we
obtain (4.112).
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2. Fix ny € [1,4]. Denoting by F, the one-dimensional unitary semiclassical Fourier
transform (see (2.60)), we have

|| ﬂﬁ, (th) Il_mﬁJr (771)||L2(]R)—>L2(]R) = || ]lﬁ, fh ]1—772ﬁ+ ||L2(R)—>L2(R)- (4113)
Let Q, ©Q/ be the sets defined in Lemmas 4.16-4.17; here |k], |¢| < C. We put
Q= Q (RS, Qf =) (h7).

By Lemma 4.17 we have Q- C U, 5\2,;, which means that I5. = ), b_ I for
some b_ € L*(R), 0 < b < 1. Similarly by Lemma 4.16 we may write 1_, 5. =
o ]1_772(); b, where 0 < b, < 1. This gives

g Fal o0 le@orem < Y I1s: Fal, or l@or2m- (4.114)
K,
By Lemma 4.16 each set ) is v-porous on scales Ch™ to C~1, where v > 0 depends
only on Vi, V,. By Lemma 2.11 the set {0 is then g-porous on scales Ch” to Cl It
follows from Definition 2.8 that —np€)/ is ¥-porous on scales 4Ch” to (4C)~!. Similarly,
by Lemmas 4.17 and 2.11, each set (),  is £-porous on scales Ch'/ 6N to O 1,

We now apply Proposition 2.10 to the sets (AZ,:, —7725\22. By the discussion in the
previous paragraph, for h small enough these sets are Z-porous on scales hY to bt

and R0 to BV respectively, where

-1 _ 1
Yo =gr 6 N =To6 M= == oo

60A
Recalling from (4.61) that 7 = 1 — 135, we compute
(Tt — + — 1
v:i=min(y5,1 —77) —max(y,1-7) = 30A > 0. (4.115)
If By > 0 is the constant from Proposition 2.10 with v replaced by %, then (2.74) gives
|| ]IQI: fh ]171726; ||L2(R)—>L2(R) < Ch'g, 5 = ’yﬁo > 0. (4116)
Together (4.112)—(4.114) and (4.116) imply (4.111). O

4.6.4. Microlocal conjugation and the proof of Proposition 4.14. We now conjugate the
operators Ay, AE by Fourier integral operators and give the proof of Proposition 4.14
using Lemma 4.24.

Let s be the symplectomorphism defined in (4.80). As explained in §4.6.1 we may
assume that .2, is generated by a single phase function. Then (see §2.3.3) there exist
Fourier integral operators

B=B(h): LA(M) — L*(R?), Be "™ (),
B'=B(h): L(R*) = L*(M), B e L,""(x")
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which quantize s near (V7 N {3 < |¢], < 4}) x (VI N {3 < [¢], < 4}) in the sense
of (2.54). In particular

BB =1+ O(h*) microlocally near VI n{1 <|¢], <4} (4.117)

By Lemma 2.3 all derivatives of » are bounded independently of the choice of the
base point pg fixed in (4.79). Thus we may choose B, B’ which are bounded uniformly
in h, po; that is, all derivatives of the corresponding phase functions and amplitudes in
the oscillatory integral representations (2.43) are bounded.

By Egorov’s Theorem (2.37) and since WF,(A.) C V. N {3 <[], < 4} by (4.13)
and VI = ¢;(V.) by (3.2), we have

WE(A(-1) C V{5 < [ély <4}
Fix a pseudodifferential cutoff Z, € U9 (M) such that
WF,(Z.) CcVIn{3 <|&ly <4}, WF,(I —Z) NWF,(A(—-1)) =0.  (4.118)

Since A§ is the sum of polynomially many in A terms of the form Al (see (3.9))
with the words q € Q) (w,e) starting with the letter e (see (4.62)), we see from the
definition (3.3) of AZ that

AE - ZGAE + O(hoo)Lz(M)_)LQ(M) (4119)
Since WF,(Z.) NWF,(I — B'B) = () by (4.117)—(4.118), we then have
A;Aa = A;ZBB/BAE + O(hoo)p(M)_,Lz(M). (4.120)
We also have norm bounds
HA;HLQ(M)ﬁLQ(M) <2, (4121)
A r2any— 2 ary < Clog®(1/h). (4.122)

Here (4.121) follows from (3.15) and (4.122) follows from Lemma 4.5 and (4.63).

By the equivariance of pseudodifferential operators under conjugation by Fourier
integral operators (see (2.52)) the conjugated operators BA, Z.B' and BA{B' formally
correspond to the symbols

(agon(Ze)) o™, abox"

By (4.89)—(4.90) the supports of the above symbols satisfy
1
x(suppag) C {m € Q+} N {4_1 < < 4}, (4.123)
T2

ml< hl/ﬁ} C {y e} (4.124)

s(supp(ay(20)) 0 { [T

where the sets OF C R are defined in (4.86),(4.88). Here we denote points in T*R?
by (y,m) where y,n € R?.
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We now make two microlocalization statements which quantize the above contain-
ments. The first statement, proved using the results of §4.3.3 and §2.3.4, quan-
tizes (4.123):

Lemma 4.25. Assume that the constant g in §/.2 is chosen small enough depending
only on (M, g). Let T+ C R? be defined in (4.109). Then

BAJQF = ﬂT-&-(hDy)BAJQr + O(hOO)LZ(M)*)LQ(RQ). (4125)
Proof. 1. By (4.119) it suffices to prove that lgz\y+(hDy)BZ AL = O(h™) 12— 12(R2).-

Since Q has polynomially many in h elements, recalling the definition (3.9) of AE it
suffices to show that uniformly in q € Q

IlRQ\T*(hDy)BZeAélr = O(h™) L2 ()= 12(R2)- (4.126)

We henceforth fix q € Q. Recalling the definitions (4.86) and (4.81) of Q* and Vg we
see that Qf C QF where

Qf =m(x(VinsS*M)) c R (4.127)
Recalling the definition (4.109) of T* we then have T¢ C T where

15 = { )

Moreover, we have AY = UFU(—n) where the cutoff propagator Uy is defined in (4.45).
Since U(—n) is unitary, (4.126) follows from the bound

HRZ\T.?;(hDy)BzeU; = O(h™) L2 () L2(r2)- (4.129)

1
<n <4, — Q+ h™ 4.12
§SmSd o ern) (4.128)

2. Let By, By, q € &/, be the Fourier integral operators defined in (4.55). They quantize
the symplectomorphlsms s, defined in (4.49). Since WF,,(4,) C V, N {3 < [¢, < 4}
we have

Ay = ByBAy + O(h™) p2(any—12(my = ByBgAgBy By + O(h™) 2(any—r2(any- - (4.130)
Put A\q = B,A,B}. By (2.52) and part (4) of Lemma 2.3 we have
A, € UO(R?), WF,(A,) C 5,(WF,(A4,)) € {1 <y < 4},

Thus there exists an h-independent function x € C°(R?) such that for all ¢ € &

supp x C {}l <y < 4}, Eq = ﬁqx(hDy) + O(h®) 2(R2) - 12(R2)-
Together with (4.130) this implies

Ay = AyByx(hDy) By + O(h™) 2 (ary—12(a1)-
We write q = ¢ . . . ¢, where ¢; = e (see (4.62)). Recalling (4.45), we have
Us = US B, x(hDy)B,, + O(h™) r2(ar)—12(0)-
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Thus (4.129) follows from the estimate
go\ys (RDy)BZUg By x(hD,) = O(h™) 2(r2) - 12(m2) (4.131)

and the L2-boundedness of Fourier integral operators.

Now, take arbitrary f € L?*(R?) such that ||f|;2 = 1. Following (4.56) define
Dy(y) = (y,0), y,0 € R%. Using the Fourier inversion formula we write

W(hD) () = () [ XO)Fuf )0 s (4.132)
]RQ

where F, f(0) = (2rh)~1£(0/h) is the semiclassical Fourier transform of f, satisfying

| Frfll2@e2y = 1. Using Hélder’s inequality we bound

I ]IR2\T§(hDy)BZeU;B;nX(hDy)fHLQ(RQ)
< Ch™" sup || Dga\yz (hDy)BZUS By, (e7")|| 22y,

fesupp x
Thus to prove (4.131) it is enough to show the following estimate on the propagated
Lagrangian distributions UJ B!, (¢"®/"):

sup || Iga\ys (RDy)BZUS By (€M) 122y = O(h™). (4.133)

f€supp x

3. Henceforth we fix 6 € supp x. In particular, i +¢€ <0y <4 — ¢ for some fixed € > 0.
Let N > 0. Using Proposition 4.8 we write (recalling that ¢; = e)

USB. (/") = U(1)BL(e"** " agon) + O(hN) r2any. (4.134)

Here @44 is a generating function (in the sense of (2.42)) of the propagated Lagrangian
Lo = #.(ZLyp) defined in (4.50).

We now analyze the function BZ.U (1) B! (e/®a¢/"ay 4 ). By (4.47), the composition
property (4) in (2.3.3), and the condition (4.118) on WF}(Z,) we have

BZ.U(1)B. e Izomp(%), > :=x0p 0 %e_l|%e(ye).

Recall from (4.49) and (4.80) that s, = »,,_, ¢ = 3,, are homogeneous symplectomor-
phisms constructed using Lemma 2.3 and py € ¢1(V. N S*M) (as assumed in Propo-
sition 4.14), p. € V. N S*M, with the diameter of V., N S*M bounded above by &.
In particular, ds.(p.) maps the flow/stable/unstable spaces Fo(pe), Es(pe), Eu(pe) to
ROy,,R0,,,R0,, and a similar statement is true for ds(py). Thus for £y small enough,
the differential d3¢(0,0,0,1) maps the vertical subspace ker dy to an almost vertical
subspace. It follows that 3¢ has a generating function in the sense of (2.47), and
thus BZ.U(1)B. can be written in the oscillatory integral form (2.48). (See the proof

of [NZ09, Lemma 4.4] for details.) Moreover, by Lemma 4.7 the Lagrangian .Z 4 is a
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graph in the y variables and its tangent planes are O(gg) close to horizontal. Thus for
g0 small enough the Lagrangian submanifold

L= 51 Lag) = (a3 (L)) N V) € T*R?
is also a graph in the y variables, and thus can be written in the form (2.42):
L ={(y,d®(y)) |y € %}.
From the properties of (,2/’”;9 in Lemma 4.7 we see that for every o

sup |0°®| < C, (4.135)
z

where the constant C, depends only on (M, g) and «.
We now apply the method of stationary phase using (2.50), (2.45) and get

BZ.U(1)B.(e®9/ agpn) = €*"a + O(AN) 12y, (4.136)

Here a is given by the stationary phase expansion and depends on the symbol aq ¢ n;
see [NZ09, Lemma 4.1] for details. From the properties of the symbol a4 n in Propo-

sition 4.8 we see that a € 050(@7) and for all «

d(suppa, R*\ %) > C', sup|0“a| < Ona- (4.137)

4. Together (4.134) and (4.136) give
BZUg B, (/") = /Mg + O(WN) 12(ge).
Since N is chosen arbitrary, to prove (4.133) it suffices to show that
| ey s (BDy) (@) || 22y = O(BY). (4.138)
To do that we use Proposition 2.7 (which is a Fourier localization statement for La-
grangian distributions) with &' := b7, U := %, & := &, K := suppa, and a := a.
The assumptions (2.55) and (2.57) of that proposition are satisfied due to (4.135)
and (4.137). Next, define
Q= {db(y) |y € %} C R
Then  is the projection of £ onto the 7 variables. Since £ C #(VE np=(62)),
recalling the definition (4.127) of QF we have
QC (029;) X {92}

As explained in the paragraph preceding Lemma 4.15, the diameter of 2} is bounded

above by C'h”. Then diamQ < Ch™ as well, giving the assumption (2.56). Thus
Proposition 2.7 applies, giving

| HRQ\Q(%hT)<hDy)(€i¢/h(~l>HLQ(RQ) < CnhY.
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Since the neighborhood Q(%hf) lies inside T by (4.128) and (4.87), this gives (4.138),
finishing the proof. O

Our second microlocalization statement quantizes (4.124):

Lemma 4.26. Let T~ C R? be defined in (4.110). Then there exists x_ € C°(R?;10, 1])
such that supp x_ C T~ and

A; ZB Ty+ (WD) = A ZB'x_(y) T+ (hDy) + O(h** ) ooy sroany. (4.139)

Proof. By Lemma 3.1 (recalling that we suppressed the ‘—’ sign in the notation there)

\Dcomp

1/64 calculus we have

and the product formula in the

ay € Sf?gf(T*M), A, Ze = Opy, (a on(Z )) +O(h/ )L2(M)—>L2(M)-

Then by (4.117)—(4.118) we get
A Z B BOph (CL O'h< )) + O(h2/3 ) 2(M)—L2(M)-

Thus it suffices to show that there exists x, € C>°(R?%;[0,1]) such that y; =1 on T+
and

HBOph (CL‘_,O'h(Ze))B,(l - X—(y))x+(hDy)HL2(R2)_)L2(R2) - O(h2/3_)'
By (2.52) and since o, (BB’) = 1 on »#(WF(Z,)) we have
B Op;, (a O'h( ))B/ Op;, ((CL‘_,O'h(Ze)) ) + O(h 2/3 )L2 (R2)—L2(R2)-

Thus is is enough to show the bound

104 (a3 0(Z)) © 5 ) (1 = X ()X (MDY | oy s oy = OB). (4.140)

We now define the cutoff functions y., in a way that they lie in the symbol class
S0P (R?). By (4.87) and (4.109) we have

1/6
(5t <[]

where T (a) := YT+ B(0, o) denotes the a-neighborhood of Y*. By [DZ16, Lemma 3.3]
0,

there exists y, € Sf(/)glp(]RQ, 1]) such that

] <

Ui

supp X+ C { < h1/6}, supp(1 — x4) N T =10.
)

Next, by (4.124) and (4.110) we have
T-(h%) c T~ where YT~ := y(s«(supp(ay on(Z.))) N {n € supp x+}).

Thus by another application of [DZ16, Lemma 3.3| there exists x— € 77" (R? [0, 1])
such that

suppx— C T, supp(l—x-)N T =0.
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To prove (4.140) it remains to use the product formula in the Uy 6, (R?) calculus (see
e.g. [Zw12, Theorems 4.18 and 4.23|) and the identity

((agon(Ze)) o s ) (1 = x—(y))x+(n) =0

which follows from the fact that supp(1 — x_) N T- = 0. O
Armed with Lemmas 4.25-4.26 we are finally ready to give

Proof of Proposition /.1/. We have
A;AJQr = A, Z.B ]1T+(hDy)BA5 + O(h™) L2(M)— 22 (0)
= A;Zegle (y) ]1T+<hDy)BA5 + O<h2/37)L2(M)_>L2(M)

where the first line follows from (4.120), Lemma 4.25, and (4.121); the second line
follows from Lemma 4.26 and (4.122).

Using the norm bounds (4.121)—(4.122) and the fact that Z., B, B are bounded in
L? — L? norm uniformly in h, we get
IAT Al 2any—r2an) < Clog®(1/B) || T (y) T+ (ADy)|| 2@ 2@2) + O(R**7).
Using the uncertainty principle given by Lemma 4.24 we then have
143 Al 2 aryr2an) < ChPlog?(1/h) + O(R*7).
This gives (4.78) (with a smaller value of /3), finishing the proof. O

5. PROPAGATION OF OBSERVABLES UP TO LOCAL EHRENFEST TIME

In this section we prove Propositions 4.2 and 4.4 on the structure of the operators
A(f when j(;t < Ch™%. We will focus on the operators Ay, with Af{ handled the same
way (reversing the direction of propagation). Recall from (3.3) that

A =A¢_(n—1)---A,0), d=q .. Gu1
where the operators A, € ¥, (M), g € & ={1,...,Q}, are defined in §4.2. Here we
use the notation (2.35):
A(t) = U(—t)AU(t), U(t) = e /"

where P € W, (M) is defined in (2.34).

To analyze A, we write it as a result of an iterative process, where at each step
we conjugate by U(1) and multiply by an operator A,, see §5.1 below. We care-
fully estimate the resulting symbols and the remainders at each step of the iteration,

using quantitative semiclassical expansions established in Appendix A. This largely
follows [Ril0, Section 7]; the estimates on the symbol of A7 there are similar in spirit
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to those in [AN07a, Section 3.4]. Compared to [Ril0] we will obtain more precise infor-
mation on the propagated symbols in order to control the sums over many operators
Ag which is needed in the proof of Proposition 4.4.

5.1. Iterative construction of the operators. Let q = ¢p...¢,—1 € &/° and as-
sume that n < Cylog(1/h) for some constant Cy. Define

~

Agr =44 0 T=1...,n (5.1)
Then A\q,l =Ay,_,, Ag = ,qu, and we have the iterative formula

-~ ~

Ay = U(=1)Ag, U(1)A r=2...,mn (5.2)

dn—r’

The next statement gives the dependence of the full symbol of the operator A\q,r on that
of the operator Aq,_1, with explicit remainders. We use the quantization procedure

Op;, on M defined in (A.5).

Lemma 5.1. Assume that a € C®(T*M), suppa C {1 < |, < 4}, and ¢ € .
Then for each' N € N we have
N-1

U(—l) Oph(a)U(l)Aq = Oph < Z hij,q(a o 801)) + O(H(ZHCzNHﬂZN)LzHLz. (53)

Here each L, is a differential operator of order 2j on T*M. We have Ly, = aq.
Moreover, each Lj, is supported in V, N {1 < [¢|, < 4}.

In addition to N, the constant in O(e) depends only on (M, g), the choice of the
coordinate charts and cutoffs in (A.5), and the choice of the operators Ay, ..., Ag. The
operators L;, depend only on the above data as well as on j,q.

Proof. From the construction of A, in §4.2 we have for all N

N-1

A, = Op, (Z hjaq,j) + O 2o (5.4)
=0

for some h-independent a, ; € C2°(T*M) such that supp a,; C V,N{3 < [¢|, < 4} and
aq0 = a,. Now (5.3) follows by combining the precise versions of Egorov’s Theorem,
Lemma A.7, and of the product formula, (A.16). 0

Now, arguing by induction on r with (5.4) as the base and (5.2), (5.3) as the inductive
step, we write for each N € N
N-1
Agr = Opy, (Z h’“afj,l) +RY, r=1,....n (5.5)
k=0
where:

4We use boldface N here to avoid confusion with the propagation time defined in (3.11).
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. afﬁ = ag, , r where the latter function is defined in (5.4);

e for r > 2, we have

k
ZLJ qn— 'r q,'l’ 1 © @1) (56)

7=0
where L; , are the operators from (5.3);
e the remainder RQ}U satisfies the norm bound
r—1 N-1

||R£117\p||L2HL2 < ONhN (1 + | qﬁuc@(N k)+17> (5.7)

=1 k=0
for some constant C'y independent of q, r.

Here the bound (5.7) is obtained from the iterative remainder bound
N-1

IR 2mze < IRE A Nlomsze - 1 Ag, llzese + CRAN D [lal) | gzov-sy s
k=0

using that || Ay||z2 2 < 1+ ChY/? similarly to (4.14).

Here are some basic properties of the symbols aﬁfi which follow immediately from
their construction, using the notation (3.1), (3.2):

o) e C*(T*M) and

supp ag) C Vi ,q 0 {5 < [€ly <4} (5.8)
hd aff) Qg qn_y» I particular aflzl = ag.

The following is a key estimate on the symbols a((f?)n and their derivatives, proved in §5.2

below. Recall that for a word q € &/* its Jacobian J; was defined in (4.15).
Lemma 5.2. Assume that V; # 0. Then we have the following bounds for all v, k,m:
Ha HC’” < C mr4k+2m(jf )2k+m (59)

dn—r---n—1

where the constant C,, depends on k, m but not on r,q.

Remark. We allow the factor 7#*+2™ in (5.9) to simplify the proof; it does not matter

for Proposition 4.2 since = O(log(1/h)). It is quite possible that more careful analysis
can remove this factor.

Using Lemma 5.2 we now give

Proof of Proposition j.2. We consider the case of Aj, with A;r handled similarly.
By (5.9), recalling that J;~ < Coh™® and n < Cylog(1/h), we have for all k,m

max ||af)||cm < Cph™CF™ (log(1/h)) 2., (5.10)

1<r<n
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This implies that h*al) = O(R1-20k-) geomr. Using additionally that sup lad)] < 1 we

see that a((qzl =aq = O(l)scomp.

By Borel’s Theorem [Zw12, Theorem 4.15] there exists a symbol a~ € S5 (T*M)

such that aq ~ D k>0 hkaq,n in the following sense:
C = hFal) + On(h PN ) geomn for all N € N.

From the basic properties of the symbols aq listed above we see that

@ = ag + O )gom, suppaly C Vg N {1 < [él, < 4).

By (5.5) and the L? boundedness of operators with symbols in S we have for all N
A7 = Agn = Opy(a) + RN + O(RU—2N7) 1o, (5.11)

The remainder an is estimated using (5.7) and (5.10):
IRG Iz 2 < Onh™™ 2N+17)5(1Og(1/h))4N+35- (5.12)

Since N can be chosen arbitrarily large and 6 < 3, together (5.11) and (5.12) imply
that Ay = Opy(al”) + O(h™) 2,12, finishing the proof O

5.2. Estimating the iterated symbols. In this section we prove Lemma 5.2. To
do this we differentiate the inductive formulas (5.6) and represent the terms in the
resulting expressions by the edges of a directed graph ¢¥. We then iterate (5.6) to
write each derivative of agﬁ)« as the sum of many terms, each corresponding to a path
of length » — 1 in 4 — see (5.23). The reduced graph g: obtained by removing the
loops from ¥, is acyclic, which implies that the number of paths of length r — 1 in ¢ is
bounded polynomially in r. We finally analyze the term corresponding to each path,

bounding it in terms of the Jacobian J, . .

5.2.1. Graph formalism. We first introduce some notation to keep track of the deriva-
tives of the symbols. We fix some affine connection V on T*M. For each function
a € C®(T*M) and m € Ny, let V™a be the m-th covariant derivative of a, which is a
section of @™T™*(T*M), the m-th tensor power of the cotangent bundle of T*M. We
fix an inner product on the fibers of T*(7* M) which naturally induces a norm on each
®@"T*(T*M). When suppa C {3 < [¢|, < 4} we have for some constant C

C7Yallem < max sup [[VVa(p)|| < Cllallem. (5.13)
JSM peT* M
Fix Ny € Ny. The objects below will depend on Ny but for the sake of brevity we will
suppress it in the notation. Denote

Vo= {(k,m) | k,m € Ny, 2k+m < Ny}. (5.14)
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FIGURE 12. A subgraph 4 of the reduced graph 4 for Ny = 6, with
edges (k,m) — (k,m — 1) and (k,m) — (k — 1, m + 2). The full graph
4 is obtained as follows: there is an edge from « to o/ in 4 if and only
if there is a nontrivial path from « to o' in G,

Henceforth we write a = (k,m). Define the vector bundle over T™* M

&= b Epm =T (T"M)

ac?
and its sections composed of the derivatives of the symbols ag?«:

Ay, € C¥(T"M; &), Aq,:= (Vma(k))(k,m)ey/, r=1,...,n. (5.15)

q?T

That is, in the biindex (k,m), k is the power of h and m is the number of derivatives
taken. We denote by

lo i 6y — &, Ty E — b,

the natural embedding and projection maps.

The iterative rules (5.6) together with the chain rule imply the relations
Aqn"(p) = MQn—r(p)Aq,Tfl<()01(p>>7 r= 27 ceey Ty p € T*M \ 0 (516>
where the coefficients of the operators L;, determine the homomorphisms
M, € C*(T*M \ 0; Hom(¢i&; &), qe€ .

That is, M,(p) is a linear map &(p1(p)) — &(p) depending smoothly on p € T*M \ 0.
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Define the directed graph® ¢ with the set of vertices ¥, which has an edge from
a = (k,m) to o = (K',m') if and only if
2 +m/ <2k+m, K <k. (5.17)
If (5.17) holds then we write
a— o

The homomorphisms M, are subordinate to the graph ¢ in the following sense: we
may write them in the ‘block matrix’ form

M, = > 1aMyoame (5.18)
a—a!
where
Moo = TaMyly € C(T*M \ 0; Hom(piéw; &,)). (5.19)
That is, if V™al)(p) depends on Vm'agf;)_l(gol(p)) in (5.6), then (5.17) holds. This is

straightforward to see using (5.6) and the chain rule.

It will be important for our analysis to separate out the ‘diagonal’ part of Mg,
consisting of the homomorphisms ¢,M, 4 7Ts corresponding to the loops o — o in the
graph ¢. Using (5.6) (recalling that Ly, = a,) and the chain rule we compute

M a.a(p) = ag(p) - (der(p))*™,  a = (k,m). (5.20)

The remaining components of M, correspond to the reduced graph E?N, obtained by
removing all the loops a — « from ¥, see Figure 12.

5.2.2. Long paths and end of the proof. We now restrict to the case r = n in Lemma 5.2,
proving the bounds

a®) || om < Crpn™ 2™ (T ki € No. (5.21)
The general case follows from here by replacing q with ¢, ... ¢n_1.

By (5.13) and the support property (5.8) see that (5.21) follows from
sup 1Aqu(p)l| < Cregn®™ (TGN (5.22)

pEVq N{ 5 <[€lg<4}

Here Ny was the natural number used in (5.14) and thus in the definition (5.15) of
A, .. To obtain (5.21) we put Ny := 2k 4+ m.

In the rest of this section we prove (5.22). Iterating (5.16) we get the following
formula for Ag,:

Agn(p) = My, (p)My, (01(p)) -+~ My, _,(n—2(p)) Aq1(en-1(p))- (5.23)

A directed graph is a pair (V, E) where V is a finite set of vertices and E C V x V is the set of
edges. There is an edge going from the vertex vy to the vertex vy if and only if (vi,v2) € E.
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Using the decomposition (5.18) we write

Agn(p) = D ta;Mqa(p)Ta, Aq(9n-1(p)) (5.24)
ae
where

P ={d=o...ap, € V" |aj >y forall j=1,....n—1} (5.25)

is the set of paths of length n — 1 in the graph ¢ and
Mq,a(p) = My 01,00 (0) Moy 02,05 (01(0)) - My, 5 0 1,00 (Pr-2(p))- (5.26)
Since supg.y; ||Aq1]| < C, using the triangle inequality in (5.24) we get for all p € T*M
1Aqn(P)l < C D [Mgalp)|| < C#(P) - max [Maqa(p)|l (5.27)

de ’

Thus to show (5.22) (and thus finish the proof of Lemma 5.2) it remains to prove the
following

Lemma 5.3. There exists a constant C depending on Ny but not on n,q such that
#(P) < Cn*No, (5.28)
max  sup Maa(p)l < C(THN. (5.29)

NeP -
FEY pevg n{i<lel <4}

Proof. 1. For each path & € &2 we define the corresponding reduced path
(@) =P1... B € VI, Bj # Bj+1 forall j

obtained by removing all the loops in @: that is, @ has the form
d=pgorogen ;(ﬁrm—s(a (5.30)

where 5° = /... is the path obtained by repeating 5 € ¥ for s times and (s(;)) is
a sequence such that

0= S) <8a) < S@) < ..o < S < S+1) =N
See Figure 13.

For every a@ € &, Z(d) is a path in the reduced graph 4. The latter graph is
acyclic, indeed if (5.17) holds and (k,m) # (k',m'), then 3k" + m’ < 3k + m. Since
0<3k+m< % < 2Ny for all (k,m) € ¥, we see that the length ¢ of any path in
¢ is bounded above by 2Nj.

Now, the size of the range of % is bounded above by the number of paths in E?,
which is finite (since 9 is acyclic) and depends only on Ny. On the other hand, if B is
a fixed path in 4 then eclements of 9?_1(5) are determined by s, ..., s, thus they
are in one to one correspondence with size ¢ subsets of {1,...,n — 1}. Thus Z7(5)
has (”zl) < n™™o elements. Together these two statements give (5.28).
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5(0) S(1) 5(2) ce S(e0) S(e+1)
Bi| - Bi | Pa| - B2 Be | - Be |Besi| -+ |Best
Yqu Yq,2 Yqt1
O ngl O Z5172 O O
51 ﬁQ B@+l

FIGURE 13. Top: the decomposition (5.30) of a path in &, with the
indices s(;) marked. Bottom: a representation of this decomposition as
a combination of loops and a path in the reduced graph gi with the
homomorphisms in the right-hand side of (5.31).

2. Take p € Vg N{3 < [¢]; < 4} and & € &. Writing & in the form (5.30), we have
Maqa(p) = Yq1(p)Zqa1(p) -+ Yau(p)Zae(p)Yqes1(p) (5.31)

where
Yq,j(ﬂ) = MQs(j,l)ﬁjﬁj«OS(j_l) (p)) T qu<j)72ﬂjﬁj (Cps(j)—2<p))7

Zq7j<p) = MQS(j)flyﬂjyﬁj-!—l (@S(j)—l(p))'

That is, the factors Y, correspond to loops in the path @ and the factors Z, ;, to
‘true jumps’ between the loops. See Figure 13.

Using the formula (5.20) for the ‘diagonal terms’ M, , , we compute

8(j)—2

( H aqr 907“ ) ’ (dgps(j)—l—s(jfn(Sps(j71)(p))T)®mj (532)

r=s(;_1
where 3; = (k;, m;). Define the words
Qji=Gs_yy - Asy—12 J=1,....0+1,
and note that q can be written as the concatenation
q=d192---Qe+1- (5.33)
Since sup |aq| < 1 and @5, (p) € Vg, N {1 <[¢|, < 4}, we obtain from (4.20)
IYas )l < Clldgnsy sy (DI < O™ < CLT

We have ||Zq ;(p)|| < C and the product (5.31) has 2¢+1 < 4Nj+1 elements. Therefore
by (4.25) and (5.33)
Maa(p)ll € C(Tq -+ T, )™ < CIGHN (5.34)

giving (5.29). O
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5.3. Summing over many words. We finally give the proof of Proposition 4.4.
By (4.16) for h small enough we have the following bound on the length of words with
Jacobians less than Coh=% < h=1/2:

1
Ty <Coh™, JF < Coh™ = |pl.[r| < Cilog(1/h), Cy:= ST
0

We now split the operator Ap from (4.40) into pieces by the length of the words
involved:

AF - Z AFn_,n+7 Fn_,n+(p,r) =

n_,ny<Cqlog(1l/h)

F(p,r) ifpe o re o,
0, otherwise.

Using the triangle inequality we see that Proposition 4.4 follows from
Proposition 5.4. Let n. < Cylog(1/h), fix 6 € [0,3) and Cy > 0, and define

o ={qe ™ | JF < Coh ™’}
Assume that

F:dy xd —C, sup|F|<1.
Then there exists a constant C' depending only on 9, Cy, A1, ..., Ag such that

|Ar||2—r2 < C  where Ap := Z F(p,r)Aj AL
(p,r)E%{Xﬂf;

Proof. The proof proceeds by writing Ar as a pseudodifferential operator and estimat-

ing its full symbol. The complications arising from the fact that Ap is the sum over
polynomially many in h terms are handled similarly to the proof of Lemma 3.1.

1. Let p € & ,r € & and fix N € N to be chosen at the end of the proof in (5.47).
Following the analysis in §§5.1-5.2 (and its immediate analog for the operators A™)
we write similarly to (5.5) and (5.12)

A; = Oph (Z hkagf)_) + O(hN_@N—H?)&_)LzHLL
k=0
=0 (5.35)

Af = Op, ( > hkar’fi) + O(AN-CNHDI=Y
k=0

where (note we put agf)_ = agle_ in the notation of §5.1):
. agf),, a,(fl € CX(T*M) satisty the support conditions
k _ k
supp aéﬁ)_ cV, n{; < gy <4}, suppaf.m)L cVIn{: <&y <4} (5.36)

and the derivative bounds similar to (5.10)

lag lom, 1ol llem = O(h~EErmim); (5.37)
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e if we fix N1 < 2NN and denote similarly to (5.15)

A = (V" ) oy, AF = (V")) myer (5.38)

where ¥, := {(k,m) | k,m € Ny, 2k + m < N}, then for each p € T*M \ 0
we have similarly to (5.27)

A, <C > IMy 2l AT <C D IM L)l (5.39)
aey_ a6@+

where &, are the sets of paths of length ny — 1 in the corresponding graphs
(see (5.25));

e the homomorphisms M_ ;(p), M ;(p) are defined similarly to (5.26): if at =
af ..o, € P then

Mg () =M (M (ei(p)--- M, (on2(p));
M (p) = M o c (DM c(oma(p)) - M (02 (0)):
Iy —1%n

e finally, the homomorphisms

ME e C™(T*M \ 0; Hom(¢% 8u; 60)), q€ A, a,o' € Vi a—

q,0,0

are defined similarly to (5.19), in particular we have similarly to (5.20)
M, 0.a(p) = aq(p) - (dipr(p)")*™,
qaa(p) ( ( )) ’ (dgp—l(p)T)(gm

where oo = (k, m).

2. Using (5.35)—(5.37) together with the precise version of the product formula,
Lemma A.6, we obtain

A AL = Op, ( Z P Ly, (k J® a )|Dlag) +O(RN N 1
k4,i>0
k_+ky+i<N

where each L; is a differential operator of order 2: on T*M x T*M. Recalling that
o ={1,...,Q}, we have
#(ZF) <™ where Cy:= C)logQ.

Summing over (p,r), we get

Ap = Oph ( Z hk+k++iak7k+,i) + O(hN_(2N+17)6_2CQ_)L2HL2 (540)

k4,i>0
k_+ky+i<N

where

W pi= Y. Fr)Lilag @) biag.
(pr)edy X;zf;
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3. We now estimate the derivatives of the symbols a;_ 1, ;. We first compute the prin-

cipal term ag 0, using that a( ) = =ay, af.?}r = a; similarly to the line following (5.8):

a070,0 = Z F(p, I')CL;CL+
p,r

which, recalling that sup |[F| <1, a1,...,ag > 0, and a3 + - -- + ag < 1, implies
sup |a070’0| S 1. (541)

To estimate the higher derivatives of ag o, as well as the other symbols aj_ 4, ;, we
argue similarly to Lemma 5.3, handling the sum over words similarly to the proof of
Lemma 3.1. By the triangle inequality and since sup |F'| < 1 we have for any m

m— k_ m. k
lak_ gy illem < C sup max Y (V™ ap (o) IV ar (o)) (5.42)

1 m4 >0
pe{7<I€lg<4} m_+m  <m+2i P,r

Fix my > 0 such that m_ +m, < m + 2¢ and put
Ny :=2ky+mye, N_4+N, <2(k_+k +i)+m
By (5.39) we then have for each p € {3 < [¢], < 4}
V™= al = (p)]| - va+¢“”<>H<:0HAf<>H-wA+<>H
5.43
<Y (Mo ) IMEs (). 04

atepy

Fix two paths a* € &, and write them in the form (5.30):

+ 4+ of
S+ 2% s<o>53<2> 5(1 .8 <£i+1) S(es)
a =Py 4 2,4 01,4+
_ ot +
for some sequences 0 = Soy <5y <0 < s(@i) < S(Ziﬂ) n4. Define

o= {3(_1) —1,... » S 41y 1}, S;f+ = {s?‘l), .. "SE;++1)}'

Arguing similarly to (5.34), but keeping track of the symbols a,, in (5.32) (rather than
simply using the inequalities |a,| < 1) and recalling the support properties (5.36) we

get for all p € supp agf:) N supp a,(r]fi) cV,NVin {}l < |¢ly < 4}

M a- ()| < C(T )™ - (p), - IV 5 (0| < CUT), 5 (p)

where we define the nonnegative functions Ay G- al ., by removing certain factors in

r,at

the definitions (3.1) of a;, a; (denoting p=po...pn_—1, T =71...70,):
&;,52* = H (apj © (Pj)a d:éﬁ' = H (arj o @*j)'
0<j<n_, j¢S_ 1<j<ny, j¢S%,

Since J, , I+ < Coh™?, we have for all p € supp a( N supp a( +)

M, o ()| - M 4 (p)| < OGO HRerDEmig s (p)at . (p),

rd‘+ )
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Combining this with (5.42)—(5.43) we obtain
ke, illem < CRTEEFRADEMTqup NN (G o (p)a) 4 (p). (5.44)

pe{i<Iélg<4} ate?, pr

Now, we have for all @4 and p

S (g (Difa(p) < QU <00 (55)

(p,r)ed "~ X"+
Indeed, we write the left-hand side as the product of sums over the individual digits
pj_, Tj,. Since a; + --- +ag < 1, each such sum is bounded by @ when ji € S;i
and by 1 otherwise. It remains to recall from Step 1 of the proof of Lemma 5.3 that
(4 < 2Ny and thus #(S5-) + #(S4) < 2N_ + 2N, +2 < 4(k_ + kg +1) +2m + 2.

Substituting (5.45) into (5.44) and using the bound (5.28) on #(Z4), we finally get
the bound
lar_ k. illom = O(h™ B Thetirmo=y (5.46)

4. The bounds (5.41) and (5.46) give

ap,0,0 = 0(1)S§imp, A ki = (’)(h*Q(k—+k++i)6f)S§0mp_

From the L? boundedness of pseudodifferential operators with symbols in S;™™" we
see that the first term on the right-hand side of (5.40) is bounded by a constant in
L? — L? norm. The remainder in (5.40) is also bounded by a constant if we choose N
large enough so that

N(1 —20) > 175 + 2C5. (5.47)
Thus [|Ap||z2_ 2 < C, finishing the proof. O

APPENDIX A. SEMICLASSICAL CALCULUS ON A SURFACE

In this appendix we provide versions of several standard statements from semiclassi-
cal analysis (product and commutator rules, Egorov’s Theorem) with explicit expres-
sions for the resulting symbols and for the L? — L? norms of the remainders. These are
used in the proofs of Egorov’s Theorems up to minimal Ehrenfest time (Lemma 2.5)
and local Ehrenfest time (§5).

We restrict to the case of dimension n = 2. The statements below apply in the
general case but the number of derivatives needed to get an O(hY) remainder® will
take the form 2N 4 ), where C,, is a constant depending only on the dimension. The
precise values of the constants C,, (which we compute for n = 2) are not important.
We do not attempt to prove optimal bounds. This is already evident in the case of

Lemma A.1 below which does not recover boundedness of pseudodifferential operators
in WP (R?).

6As in §5, we use boldface N here to avoid confusion with (3.11).
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To shorten the formulas below, we introduce the following notation:
DFa
denotes the result of applying some differential operator of order k£ to a. The specific

operator varies from place to place, with coefficients depending on the objects listed
in ‘e’ but not on h or a. Next, for an operator A on L? we write

A= 0,(hY)

to mean || Al|z2_,2 < ChN where the constant C' depends on the objects listed in ‘e@’.

A.1. Operators on R?. We first discuss pseudodifferential calculus on R?. We use
the standard quantization given by

k3

O ()f(a) = (2r)* [ e 0a(e ) fly) dydé. a e ATR). (A1)

We start with a quantitative version of the basic L? boundedness statement which
follows from the proof of [Zw12, Theorem 4.21]:

Lemma A.1. We have for some global constant C' and all a € ./ (T*R?)

| OB (@) a2 < € max sup €°0al.

The next statement is a quantitative version of the product formula. To prove it
we write Op}(a) Opl(b) = Op}(a#b), where a#b is determined by oscillatory test-
ing [Zw12, Theorem 4.19] and estimated via quadratic stationary phase |[Zw12, Theo-
rem 3.13|, and apply Lemma A.1.

Lemma A.2. Let N € Ny, R > 0. Then for all a,b € C>(T*R?), suppa Usuppb C
B(0, R), we have

—ih)lel
Opj (a) Opl(b) = Opg( Z ( a> Jga Qﬁb) + On.r(l|allenve ||b]|enseh™). (A.2)

|o| <N

Remark. It is also useful to discuss composition of pseudodifferential operators with
multiplication operators. Assume that a € C*®(T*R?), b € C>*(R?), and suppa C
Brpr2(0, R), suppb C Bg2(0, R). Denote by Op)(b) the multiplication operator by b.
From (A.1) we see that Op}(b) Op}(a) = Opj(ab). Moreover, Lemma A.2 still applies
with the same proof.

We finally give a quantitative version of the change of variables formula. We fol-
low [DZ19, §E.1.6]. The statement below is proved by following the proof of [DZ19,
Proposition E.10| using the method of stationary phase with explicit remainder [Zw12,
Theorem 3.16| and applying Lemma A.1. We use the notation

= (o), @ f=fop . (A.3)
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Lemma A.3. Assume that ¢ : U — V is a diffeomorphism where U,V C R? are open
sets and x1,x2 € C(U). Put

P :TU =TV, §x,8) = (px), (do(x))"¢). (A.4)
Let N € N, R > 0. Then for all a € C=(T*R?), suppa C B(0, R), we have

N-1
x1¢" Opj(a)p™*x2 = Op, (X1 <X2 + th?ixz) (ae @)
j=1
+ ON7R7S07X17X2(||a||C2N+12hN)'

2j

2\, are supported in supp Xz.

Here the operators D

A.2. Operators on a compact surface. We now study operators on a compact Rie-
mannian surface (M, g). We define a (non-canonical) quantization procedure similarly
to [DZ19, Proposition E.15]:

Opy(a) = > xuei O ((xia) © 37 ') oy "xe (A5)
l

where we use the notation (A.3), Op}(e) on the right-hand side is defined by (A.1),
oo Uy — V,, U C M, V, C R? is a finite collection of coordinate charts with
M =, Uy, the cutoff functions x,, x; € C(U,) satisty

1= xe suppxeNsupp(l —x;) =0, (A.6)
4

and @, : T*U, — T*V} is defined by (A.4). To simplify the formulas below we denote
E:={(M,9)} U {(pe xe: x0) }e-

For each j € Ny we fix some norm ||e||¢; on functions on 7% M supported in {|{|, < 10}.

We first give an L? boundedness and pseudolocality statement:

Lemma A.4. Assume that a € CX(T*M) and suppa C {|¢|, < 10}. Then

Opy(a) = O=(l|allcs). (A7)
Moreover, if x1, X2 € C®°(M) and supp x1 Nsupp x2 = 0, then for every N € Ny
X1 Oph<a>X2 = ON,E,XLXQ(”CLHCN'*'G}LN)' (AS)

Proof. The bound (A.7) follows immediately from (A.5) and Lemma A.1. The bound (A.8)
for the quantization Op|, on R? and x1, xo € C>°(R?) follows from the remark following
Lemma A.2; for the quantization Op,, it then follows from (A.5). O

We next give an auxiliary statement used in the proof of Lemma A.6 below. We
introduce the following notation: for a € C°(T*M)

Opj,(a) = Opj, ((xja) 0 7y ") « L*(R?) — L*(R?). (A.9)
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Lemma A.5. Assume that
A= X Opp(an)e, Xy : LAH(M) — L*(M) (A.10)
for some a, € C*(T*M) such that supp a, C {|¢|, < 10}. Put
A= o AN LP(R?) — L*(R?). (A11)
Then for every N € N we have

T

N-1
A, = Op!, (Z (X;Xr +> thgf;E)X;ar) + Onz(max [la[lezninzhY), - (A12)
j=1

A= Xier Avoy xe + On .z (max larllonesh™), (A.13)
4
N-1 ‘
A= Oph (Z <X7~ + Z hJDiJE) ar) + ON,E ( meX ||CLT||02N+12]'LN). <A14)
T 7j=1

Here the operators D%E from (A.12) and DzJE from (A.14) are supported in supp X

Remark. The expression (A.10) is the general form of a pseudodifferential operator
on M, with Op,(a) obtained by putting a, := a for all r. The operator A, is the
localization of A to the ¢-th coordinate chart. The statement (A.12) shows that each
localization is a pseudodifferential operator on R?; (A.13) reconstructs A from its lo-
calizations; and (A.14) writes a general pseudodifferential operator in the form Op,,(a)
for some a.

Proof. The expansion (A.12) follows immediately from Lemma A.3, with ¢ := ¢, 0, !,
X1 = () ot xe = (Xixe) 0 9y s and a = (xpa,) 0 Bt
To show (A.13) we write by (A.6)
A= xieiAver e = Y (1= (x1)*) Axe
¢ ¢
and estimate the right-hand side similarly to (A.8).
To show (A.14), we introduce a bit more notation. For a vector of symbols a = {a, }.

indexed by the coordinate charts used in (A.5), let Opj,(a) be the operator defined
in (A.10). Next, put

t(a) ={a},, w(a)= Zxrar.
Recalling (A.5), we have for any a € CX(T*M)
Opy,(a) = Opj,(¢(a)).

Therefore, for each vector a = {a,}, with a, € CX*(T*M), suppa, C {|{|, < 10},
we have Opj(a) — Op,(w(a)) = Opj(b) where b := a — «(m(a)). We apply (A.12)
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and (A.13) to this operator to write it in the form Op),(c) for some vector of symbols ¢
(modulo a remainder); note that by (A.12) the leading term of c is zero since 7w(b) = 0.
This implies

N-1

Opj,(a) = Op,(w(a)) + Op)}, (Z thZEja) + Onz=(|a]|cans12AY) (A.15)
=1

where the differential operators DQEj act on vectors of symbols. We iteratively ap-
ply (A.15) to the second term on the right-hand side and obtain (A.14). O
We can now give the product and commutator formulas for the quantization on M:

Lemma A.6. Assume that a,b € CZ(T*M) and suppaUsuppb C {|¢], < 10}. Then
for every N € N we have

N-1
Op, (a) Op, (b) = Op, (ab+ > WD¥?(d'a @ d'b)|ps
pu(@) Opy () = Op, > WDE o) )
+ON7E(||a®b||C2N+15hN),
N-1
Op,,(a), Op, (b)] = O —ih{a, b} + Y WD¥ d%a ® d®b)|pia
[Opy,(a), Op,, ()] ph( {a, b} ; = JIo g) (A.17)

+ Onz(lla @ bllganiash™),

where a @ b € CX(T*M x T*M) is defined by (a @ b)(p,p’) = a(p)b(p’), Diag C
T*M x T*M denotes the diagonal, and d*b denotes the vector (9°b) <.

Remarks. 1. The expression D*7?(d'a ® d'b)|piag in (A.16) is a linear combination
of products 9%a 9°b where |a| + |3| < 25 and |al, |3] < 2j — 1. That is, the symbol in
product formula does not feature terms of the form h/(D%a)b or hia(D?%b). This is
not obvious, in fact the proof needs us to use the same quantization procedures Op,
on both sides of (A.16).

Here is an informal explanation: in a fixed coordinate chart we have Op,(a) =
Opj (@), Op,(b) = Opg(g), Opy,(ab) = Opy(¢), where a = a + Zj>1 hL;a, b =
b4 5y W Lb, and ¢ = ab + 3., W Lj(ab); here each L; is a differential opera-
tor of order 2j (depending on the chart chosen). Denote by a#tb the Moyal product
from (A.2). If we denote by ‘...’ terms of the form W/ D% ?(d'a @ d'b)|pjag, then
a#b=ab+--- = ab+ > i1 W ((Lja)b + a(L;b)) + ... and Leibniz’s Rule shows that
c=ab+> .o W((Lja)b+a(L;b)) + ... as well.

Similarly in the commutator formula (A.17) the expression D*~*(d%a ® d?b)|piag
consists of products 0%a 0*b where |a| + |5 < 2j and |af, |8] < 25 — 2.

2. We immediately deduce from (A.17) the formula (2.40) used in the proof of Egorov’s
Theorem up to global Ehrenfest time: it suffices to take b € Sg°"*(T*M) such that
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P = Op,,(b) + O(h*™) and choose N large enough so that (1 —2§)N > 2 4 136. Note
that W/ D% ~4(d?a @ d?b)|piag € TV GNP (T*N) when a € S5 (T*M). The
expansion (A.17) is crucial in the proof of the precise version of Egorov’s Theorem in
Lemma A.7 below.

Proof. 1. Fix cutoff functions

Xy € C&(Up), supp xe Nsupp(l — x7) = supp x; Nsupp(l — x;) = 0.
We write

Opy(a) Opy(b) = Y (xi)* Opy(a)xf Opy (b)xe
l
+> (1= (x)*) Opy(@)x7 Opy (b)xe (A.18)
l
+ > Opy(a)(1 = x7) Opy(b)xe,
l

Opy(ab) = > (x1)> Opy(ab)xe + Y (1 — (x)?) Opy(ab)xe. (A.19)
4 l

The last two terms on the right-hand side of (A.18) and the last term on the right-hand
side of (A.19) are estimated using (A.7) and (A.8). Rewriting the first terms on the
right-hand sides of (A.18)—(A.19), we get

Opy (@) Opy (b) — Opy(ab) = > Xipi (AcBe — Co)py “xu
7 (A.20)
+ ON,E(HCL (%9 b||CN+9hN),

where (note we use the notation Ay in a slightly different way than Lemma A.5)
Ag =, X Op(a)Xi ey, Bei= ¢, X Opp(0)xiwr,  Co = 0, "Xy Opp(ab)xi ;-

2. Similarly to (A.12) we write for every N using the notation (A.9)

N-1

Ag = Opfl (Z hjLﬂa) + ON7E(||6L||C2N+12hN) (A.21)

=0
where each L;, is a differential operator of order 2;j supported in supp xj and Lo, = 7.

Same is true for By, Cy, with the same operators L;,.

Using (A.21) and the bound (A.7) we get
ABy = Z Rt Opt, (L; ) Op} (L o) + On=(|la @ || coni1sh™). (A.22)

J,k>0
j+k<N

We next use the product formula for the standard quantization (Lemma A.2) and the
fact that L;a, Ly b are supported in supp x; which does not intersect supp(l — x7),
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to write

N—j—k—-1
Opy,(Ljea) Opy, (L eb) = Opy, ((Lj,za)(Lub) + Y WD}i(Lja® Lk,eb)biag)
s=1

+ ON,E(HQ ® b”cszﬂth_j_k).
(A.23)
Here D*® denotes a differential operator of order 2s on T*M x T*M which has no
more than s differentiations in either component of the product. This implies

AuBy— Cy = Op. (xe VY — Lab+ Z W (k@) (Lyab) + (L) (x(16) — Lyo(ab)

N-1
+> WD (da® dlb)biag) + Onz(lla ® bljcansishN)
j=1
(A.24)
where the second line includes all the terms in (A.23) such that s > 1 or j -k > 0.
Using Leibniz’s Rule for the operators L, ,, j > 1,

Lj,g(ab) = (I(ijb) + (Lj,ga)b + D?f[;(dla (9 dlb)|Diag

we see that the restriction of the first line on the right-hand side of (A.24) to T*M \
supp(l — x7) D supp x¢ has the form ZN 1h3D2J *(d'a ® d'b)|piag. From here
and (A.14) (using that the operators Dar there are supported in supp x,) we get
the product formula (A.16).

3. To obtain the commutator formula (A.17) we write similarly to (A.20)
(O (a), Op,(b)] +ih Opy({a, b}) = > Xiwi ([Ar, Be] = Ee)oy "xe
¢

-+ ON,:(HCL & bHCN-&-QhN),
Ey == ¢, "Xy Opp(—ih{a, b})xip;.
Similarly to (A.22) we get

[Ap Bl =Y W*[Op}(Lj.a), Op(Lib)] + Onz(lla @ bl coness ).

j,k>0
J+k<N

By Lemma A.2 we have the following analog of (A.23):

N—j—k—-1
[Op,(Ljea), Opj, (Lieb)] = Opy, (— ih{Ljpa, Lpb} + Y B*Dyi(Lja® Lk,zb)|Diag)

s=2

+ Onz(lla® b||CQN+12hN7j7k).
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This gives the following analog of (A.24):

[A¢, B — E, = Op}, < h(xi{a.b} — {xia, x;b})
+ Z h]H Jf{a b} — {xia, Ljeb} — {Ljea, x; b})

+ ZhJD d2a®d2 )|D1ag) —|—ON (l|a®bH02N+15hN>

where the third line includes all terms such that s > 2 or j -k > 0. To get (A.17)
it remains to argue as at the end of Step 2 using the following Leibniz’s rule for the
Poisson bracket:

L;{a,b} = {a, L} + {L;4a,b} + Difgz(dza ® d°)|piag. O

A.3. Egorov’s Theorem. We finally give a quantitative version of Egorov’s Theo-
rem (2.36). The proof below applies to more general situations but we restrict ourselves
to the case of the propagator U(t) = exp(—itP/h), where P is defined in (2.34), and
the flow ¢; defined in (2.2).

Lemma A.7. Assume that a € C(T*M) and suppa C {3 < [¢], < 4}. Then we
have for all N € N and 0 <t <1

U(—t) Op,(a)U(t) = Op, <<a + Nz__:l thian> o got) + Onz([|allcenizhN). (A.25)

Proof. 1. We first recall from (2.33) and (2.34) that

P = Opy(po+ hp') + O(h™®) 212, po=p on {7 <I[E|, <4}

where pg,p’ are classical symbols on T*M supported inside {% < |¢l, < 5}. Here
p(z,§) =[]y and ¢ = exp(tH,).
By the commutator formula (A.17), for any a € C2°(T*M), suppa C {3 < [¢, < 4},

. N-1
1 . . 9 .
E[P’ Op,(a@)] = Opy, (Hpa + Z h]Déja) + Onz(]|a| conirhY).
j=1
Here we use that p’ is classical, i.e. has an expansmn in powers of h, and incorporate
the terms in that expansion into the operators D~ .



114 SEMYON DYATLOV, LONG JIN, AND STEPHANE NONNENMACHER

Therefore, for any family of symbols a; € C°(T* M) depending smoothly on t € [0, 1]
and such that suppa, C {3 < |¢], < 4}, and for any N € N

) N-1

i )
0; Opy,(as o ;) — E[R Opp(ar o )] = Opy, ((&5% - ; h]Lj,tClt> o 90t> (A.26)
—+ ON’E(||at||C2N+17hN)

where each L;; is a differential operator of order 25 on 7% M with coefficients depending
ont,=.

2. We now construct t-dependent families of symbols a!?) € Ce(T*M), t € [0,1],
7=0,...,N — 1, using the following iterative procedure:

aio) = aq; aij) = Z/ Lj_k,sagk) ds, 7=1,...,N—1.
k=0 "0

Note that !’ has the form Dian. Put
N—1 ‘
ELEN) = Z hjal(tj),
=0

then (A.26) implies
_ 1
h
3. From (A.27) and the unitarity of U(t) we obtain for ¢ € [0, 1]
0, (U(t) Op, (™ 0 o) U(~t)) = Onz(l|af|cansiehN).
)

8, Op, (@™ 0 ¢,) — —[P,0p, (G 0 ;)] = On=(||al|conrirhN). (A.27)

Integrating this and using that d(()N = a we have

U(t) Opy(@;™ 0 @)U (~t) = Opy(a) + On=([lal|can17h™).
Conjugating this by U(t) we get (A.25). O

APPENDIX B. FOURIER LOCALIZATION OF LAGRANGIAN STATES

In this appendix we prove Proposition 2.7. We use the following interpolation in-
equality in the classes C*. It is standard (see for instance [Hol, Lemma 7.7.2] for a
special case) but we provide a proof for the reader’s convenience.

Lemma B.1. Assume that U C R™ is an open set, K C U, d(K,R"\ U) > ry > 0,
and f € C®(U). Denote

| /1l == max sup|&°f],  m € No.

al<m



CONTROL OF EIGENFUNCTIONS IN VARIABLE CURVATURE 115

Let 0 < ¢ < m. Then there exists a constant C' depending only on m,ry such that
Q 1—-4/m m
maxcsup 07 f| < CIL 1110 (B.1)

|al

Proof. Since || f|lo < ||f]|m it suffices to show (B.1) for |a| = ¢. Then (B.1) holds once
we prove the following inequality for all xy € K:

max |0% f(xo)| < CRéJ/mRL;/m Ry :=max sup [0°f]. (B.2)

m Y
lor|=¢ o<k B(zo,r0)

By Taylor’s inequality we have for all y € B(0,ry) and some constant C,,, depending

only on m
m—1
‘f(:vo . Pe(y)' <CuRaly. Pty = Y LIy
£=0 o] =¢ '
Substituting
1/m
Y = <%> rd, €S 0<r<r
and using that |f(zo +y)| < Ry we get
m—1 0/m
sup <&> P(0)rt] < (14 Cpri™) Ry
rel0,ro) —0 Rm

The expression on the left-hand side is the sup-norm on the interval [0, ry] of a poly-
nomial of degree m — 1 in r. Using this sup-norm to estimate the coefficients of this
polynomial, we obtain

sup |Pi(0)| < Cporg RY/™RY™ forall £=0,...,m—1

fesSn—1

where the constant C,, ,, depends only on m, . This implies (B.2). O
We are now ready to give

Proof of Proposition 2.7. We show the following stronger estimate:
a(&/h)| < CpNT2 ()7, € e R™\ Qa(Cy'R). (B.3)
Take arbitrary ¢ € R™\ Qg(Cy ') and put
s:=d(&0) > Cy'H.
We have

e/h) = [ S ala) di, () = B(a) ~ (2., (B.4)
U
In the rest of the proof we put

NO =

PN—Fn

1_7_—‘, N/2:N0+1
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and denote by C constants which depend only on 7,n, N, Cy, Cns, whose precise value
might change from place to place.
We integrate by parts in (B.4) using the differential operator L defined by
= 0; D¢ ()
Lf(x) = bi(2)d;f(x), bi(w) = —it—r
2. b0 / dg ()

i®e(z)/h _ ibe(z)/h

Integrating by parts Ny times and using that hLe

12(5/h)| = ‘/Ue"@ﬁ(x)/h(hllt)%a(x) dx

=e we get

< Coh™° sup |(Lt)N°a‘ (B.5)
K

where L' is the transpose operator:

n

L'f(z) = =) 0;(bi(a) f(2)).

j=1
To estimate the function (L')"a we bound the derivatives of ®,. Since diam Qg <
Coh' < CZs we have

s < |dPe(x)] < Cs forall x € U.
By Lemma B.1 applied to the first derivatives of ®; we obtain the derivative bounds
for 0 S 14 S N()

max_sup |9°®,| < Cs' N0 < Ogp= (17742 (B.6)
lal=t+1"

where in the last inequality we used the definition of Ny and the fact that s > C;th™ >
Cy'h. This implies the derivative bounds for 0 < ¢ < Nj

max sup |0°b;| < Cs™ A~ 1=2, (B.7)
=t K

laf=¢
This gives an estimate on the right-hand side of (B.5), implying
[a(€/h)| < CRIFINo/2g=No, (B.8)
We have s > C~'h", thus (using again the definition of Np)
[a(E/h)| < CRU=IN/2Z < OpN+1/2,

This gives (B.3) for [£| < C. On the other hand, if £ is large enough then s > (£)/2 in
which case (B.3) follows from (B.8) as well since Ny > n. O
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