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ABSTRACT: A mononuclear nonheme iron(III)-peroxo complex,
[Fe(111)(02)(13-TMC)]* (1), was synthesized and characterized
spectroscopically; the characterization with EPR, Mossbauer, XAS,
mass, and resonance Raman spectroscopies supported a high-spin §
=5/2 Fe(I1I) species binding an O»-unit. A notable observation was
an unusually high 0.0 at ~1000 cm™ for the peroxo ligand. In
reactivities, 1 showed an electrophilic reactivity in hydrogen atom
(H-atom) abstraction and oxygen atom transfer (OAT) reactions.
In the H-atom reaction, a kinetic isotope effect (KIE) value of 5.8
was obtained in the oxidation of 9,10-dihydroanthracene. In the
OAT reaction, a negative p value of —0.61 in Hammett plot was
determined in the oxidation of para-X-substituted thioanisoles.
Another interesting observation was the electrophilic reactivity of 1
in the oxidation of benzaldehyde derivatives, such as a negative p
value of -0.77 in Hammett plot and a KIE value of 2.2. To the best
of our knowledge, the present study reports the first example of a
mononuclear nonheme iron(I1I)-peroxo complex with an unusually
high vo.0 value and an unprecedented electrophilic reactivity in
oxidation reactions.

Metalloenzymes and synthetic metal catalysts utilize metal-
oxygen intermediates, such as metal-oxo, -hydroperoxo, -peroxo,
and -superoxo species, as active oxidants in biological and chemical
transformations of organic substrates.' While high-valent metal-oxo
intermediates have been well investigated in heme and nonheme
systems,” other metal-oxygen intermediates containing an O»-unit
are less clearly understood in chemical reactions.* In reactivities,
mononuclear metal-peroxo species are nucleophiles that conduct
nucleophilic oxidative reactions,” whereas metal-superoxo species
are electrophiles that can abstract an H-atom from substrate C-H
bonds.*’

In nonheme iron enzymes, such as Rieske cis-diol dioxygenases,
extradiol dioxygenases, 2-oxo acid dioxygenases, and isopenicillin
N-synthase, iron-O, intermediates have been invoked as active
oxidants in various biological reactions.® In many of those enzymatic
reactions, iron-superoxo species have been proposed as active
oxidants that effect the H-atom abstraction in the catalytic cycles;’
iron-peroxo species were excluded as a potent intermediate in those
biological reactions since iron-peroxo species are nucleophiles and
cannot conduct electrophilic reactions, such as an H-atom

Scheme 1. DFT-Optimized Structure, Spectroscopic Characterization,
and Reactivity of [Fe(III)(02)(13-TMC)]* (1)
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abstraction from substrate C-H bonds and an OAT to organic
substrates.’

Recently, Sastri, de Visser, and co-workers reported an elegant
result showing that nonheme manganese(1ll)-peroxo complexes,
characterized with UV-vis spectrophotometer and electrospray
ionization mass spectrometry, were capable of deformylating
aldehydes, such as 2-phenylpropionaldehyde (2-PPA) and o-[D:]-
2-phenylpropionaldehyde (@-[D:]-PPA), via an initial H-atom
abstraction, affording a large kinetic isotope effect (KIE) of 5.4."
This result indicates that the deformylation reaction occurs via an
electrophilic H-atom abstraction of aldehyde C(O)-H bond by the
Mn(III)-peroxo complexes. However, interestingly, these Mn(III)-
peroxo complexes cannot abstract an H-atom from hydrocarbons,
such as 1,4-cyclohexadiene.'® In addition, no OAT reactions were
demonstrated by these Mn(III)-peroxo complexes.

In biomimetic systems, a number of mononuclear nonheme
iron(1II)-peroxo
characterized spectroscopically and structurally;
example is an X-ray crystal structure of an iron(III)-peroxo complex
bearing 14-TMC" ligand, [Fe(III)(O:)(14-
TMC)]*." In many of the iron(III)-peroxo complexes, the V..o and

complexes have been synthesized and

143 notable

a macrocyclic

Voo stretches have been observed at ~490 and ~820 cm,

respectively, in resonance Raman (rRaman) experiments.'"'>!3¢!3!4



In reactivity studies, nonheme iron(IIl)-peroxo complexes have
shown nucleophilic reactivities, such as in aldehyde deformylation

"% as reported in heme models.® Herein, we report for the

reactions,
first time the synthesis, characterization, and reactivity studies of a
mononuclear nonheme iron(Ill)-peroxo complex bearing a
macrocyclic 13-TMC" ligand, [Fe(III)(0.)(13-TMC)]* (1), with
an unusual high O-O stretching mode and an unprecedented
electrophilic reactivity in oxidation reactions (see Scheme 1).

The iron(1Il)-peroxo complex, 1, was synthesized by reacting
Fe(1I) (13-TMC)(CFsS0s3)2 (1.0 mM) with 10 equiv of H2O in the
presence of 5.0 equiv of triethylamine in 2,2,2-trifluoroethanol (TFE)
at —10 °C. The intermediate 1, which was metastable (/2 ~ 30 min)
at —10 °C, was characterized with various spectroscopic techniques,
such as UV-vis spectrophotometry, cold-spray ionization mass
spectrometry (CSI-MS), electron paramagnetic resonance (EPR),
rRaman, Mdssbauer and X-ray absorption spectroscopy (XAS). The
UV-vis spectrum of 1 shows a broad absorption band at 705 nm
(Figure 1a; Figure S1), which is typically assigned to a ligand-to-
metal charge transfer (LMCT) transition from the O*" unit to Fe
in mononuclear nonheme iron(1I1)-peroxo complexes.'"* CSI-MS
data shows a mass peak at m/z 330.1 corresponding to
[Fe(**0.)(13-TMC)]*. This shifts to m/z334.1 (corresponding to
[Fe('*0.)(13-TMC)]*) when 1 was prepared with H.'*O. (Figure
1b), suggesting that 1 contains two oxygen atoms (i.e., an Oz unit).
X-band EPR spectrum of 1 exhibits an intense signal centered at g=
4.3, typical of a high-spin (§'=5/2) Fe(IlI) species (Figures S2 and
$3).1114

The rRaman spectrum of 1, excited at 785 nm in frozen TFE
solution, exhibits two isotope sensitive bands at 512 and 1024 cm™,
which shift to 489 and 975 cm™, respectively, with **O-labeled 1
(Figure 1c; Figure S4 for other solvents). The bands at 512 and 1024
cm™ are assigned as Fe-O and O-O stretching vibrations,
respectively. It is notable that the 'A — '®A value of 49 cm™ is smaller
than that predicted by Hooke’s law calculations for the O-O
vibration at 1024 cm™ (**A — ¥A (calculated) = 59 cm™)" and that
the O-O stretching vibration of 1 at ~1000 cm™ is much higher than
those of other mononuclear nonheme iron(IIl)-peroxo
complexes.'"'>13013913614 For example, [Fe(III)(0.)(14-TMC)]",
bearing a TMC ligand with a different macrocyclic ring size, exhibits
an O-O stretching vibration at 825 cm™. Thus, the difference in ring
size of the macrocyclic TMC ligand in [Fe(III)(O2)(2-TMC)]*
affords a dramatic change in the O-O stretching vibration (825 cm™
for [Fe(111)(02)(14-TMC)]* and 1024 cm™ for 1) and a change in
the Fe-O stretching vibration (487 cm™ for [Fe(II[)(O.)(14-
TMC)]* and 512 cm™ for 1). It is also noted that late transition
metal-peroxo complexes bearing -TMC ligands exhibit their O-O
stretching vibrations at ~1000 cm™, such as [Ni(IIl)(O,)(12-
TMC)]* and [Ni(II)(0,)(13-TMC)]* at 1002 and 1008 cm™,

respectively.'>"’

Mossbauer data were measured on complex 1 and reveal that a
majority of the iron (~80%) in the M&ssbauer sample containing 1
exhibited paramagnetic features originating from a single §'= 5/2
species (Figure 2a). The remaining ~20% iron in the sample
exhibited quadrupole doublet features (see the SI for additional
discussion). The overall spectral simulations by using an §'= 5/2
spin Hamiltonian on the spectra measured at 4.2 K with applied
fields of 45 mT and 7 T are shown in Figure 2a and Figure SS. The
simulation'® revealed that the isomer shift of the §= 5/2 species is
0.52 mm/s, thus confirming that complex 1 is a high-spin ferric
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Figure 1. (a) UV-vis spectral changes showing the formation of 1 upon
addition of H.O2 (10 mM) to a solution containing [Fe"(13-TMC)]* (1.0
mM) and triethylamine (5.0 mM) in TFE at —10 °C. (b) Cold-spray
ionization mass spectrum of 1. Insets show observed isotope distribution
patterns  for  [Fe(III)(*°0.)(13-TMC)]*  (left  panel) and
[Fe(II)( **0,)(13-TMC)]* (right panel). (c) rRaman spectra of 1 in TFE
with %O (black) and O (red) isotopic substitution in the region of Fe-O
and O-O stretches (A« = 785 nm, 77 K). Blue is the °O and '*O difference.
The peak at 790 cm™ may be from an impurity, such as an iron(III)-OOH

species.'> ™

species. The results on 1 are comparable to those reported for
[Fe(II1)(0,) (14-TMC)]*.*

Fe K-edge X-ray absorption spectroscopic (XAS) studies of 1 are
presented in Figure 2b. Formation of 1 causes an ~3.5 eV shift of the
absorption edge to higher energy. Pre-edge feature at ~7111.5 eV in
Fe(II) (13-TMC)(CF:;SOs), shifts to ~7113.5 eV in 1. These shifts
are consistent with a one-electron oxidation of the iron centerin 1 to
Fe(IlI). The extended X-ray absorption fine structure (EXAFS)
region of 1 was modeled as six-coordinate iron with two Fe-O bonds
(1.92 A) and four Fe-N bonds (2.20 A) (Figure 2c, Table S1).
Collectively, the spectroscopic data discussed above unambiguously
assign 1 as an iron(III)-peroxo complex, [Fe(III)(0,)(13-TMC) ",
with an §'= 5/2 spin state. Its geometric structure derived from Fe
K-edge EXAFS is reproduced well by DFT calculations and is
presented in Scheme 1 (see SI for the detailed calculations; Tables
$2 and S3 and Figure S6).
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Figure 2. (a) 4.2 K Mdssbauer spectra (black vertical bars) with the applied
magnetic fields of 0.045 T (top) and 7 T (bottom) and their overall spectral
simulations (red lines) for 1. The simulations of the iron species
representing ~80% of the total iron in the sample are indicated in the green
lines."”” (b) Normalized Fe K-edge XAS data for Fe"(13-TMC)(CFsSOs),
(black) and 1 (red). The inset shows the expanded pre-edge region. (c)
Nonphase-shift corrected Fourier transform (FT) data (black line) and the
corresponding FEFF fit (red line) to the Fe K-edge FT data for 1. The inset
shows the EXAFS data (black line) and fit (red line).

We then performed the reactivity studies of 1 in oxidation
reactions. First, the reactivity of 1 was examined in nucleophilic
oxidative reactions, such as the oxidation of benzaldehyde
derivatives, with a prediction that 1 should react with benzaldehyde
derivatives via a nucleophilic addition (NA) (Scheme 2, pathway a)
and a positive p value would be observed in Hammett plot.*>!"*
With that in mind, we carried out the reaction of 1 with
benzaldehyde derivatives in TFE at —10 °C; 1 disappeared upon the
addition of benzaldehyde and the rate of the disappearance of 1
increased linearly with the increase of the benzaldehyde
concentration (Figure S7). Similarly, the second-order rate
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Figure 3. Hammett plots of log 4 against the o;" values of para-X-
substituents of substrates in the oxidation of (a) para-X-substituted
benzaldehydes and (b) para-X-substituted thioanisoles by 1 in TFE at ~10
°C.

Scheme 2. Reaction Pathways, HAT versus NA, of an Iron(III)-Peroxo
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constants with para-X-substituted benzaldehydes were determined
(Figure S8). Interestingly, when the rate constants (log %) were
plotted against Hammett parameters (o;") of substituents, a
negative p value of —0.77 was obtained in the Hammett plot (Figure
3a; also see Figure S9 for the plot of log 4 against the C(O)-H BDEs
of substituted benzaldehydes). This result is surprising and
suggesting that 1 possesses an electrophilic reactivity, which is
different from the nucleophilic reactivity of other metal-peroxo
species.>'"*® More interestingly, a KIE value of 2.2 was obtained in
the oxidation of benzaldehyde and deuterated benzaldehyde [e.g.,
PhC(=0)H and PhC(=0)D] (Figure S7b), indicating that the
oxidation of benzaldehydes by 1 occurs viaa H(D)-atom abstraction
of PhC(=O)H and PhC(=0)D (Scheme 2, pathway b). In the
oxidation of benzaldehyde by 1, benzoic acid (65(3)%) as a sole
organic product and iron(II) species as a decay product of 1 were
produced (Figure $10). If the reaction of 1 and benzaldehyde occurs
via a NA of the O, group to the carbonyl group of benzaldehyde
(Scheme 2, pathway a), the KIE value should be <1.%"* We
therefore conclude that 1 reacts with benzaldehyde by abstracting an
H-atom via an electrophilic oxidative pathway (Scheme 2, pathway
b).

With the observations that 1 is an electrophilic oxidant and can
abstract an H-atom from benzaldehyde, we conducted the C-H
bond activation reactions with 1,4-cyclohexadiene (CHD, 78 kcal



mol™), 9,10-dihydroanthracene (DHA, 77 kcal mol™), xanthene
(75.5 kcal mol™*), and 10-methyl-9,10-dihydroacridine (AcrH,, 73.7
kcal mol™).*' Addition of DHA to a solution of 1 resulted in the
disappearance of the intermediate and the reaction rate increased
with the increase of the substrate concentration, affording a second-
order rate constant of 7.5 x 102 M s in TFE/MC (v/v 3:1) at —
10°C (Figure S11). We also obtained a KIE value of 5.8(3) in the C-
H bond activation of DHA-As and DHA-d, (Figure S11b). In the
reaction of 1 with DHA, anthracene (48(2)%) with iron(II) species
was produced (Figures S12 and S13). The second-order rate
constants with other substrates, such as AcrHa, xanthene, and CHD,
were also determined (Figure S14), showing the decrease of the &
values with the increase of the BDEs of substrates C-H bonds
(Figure S15). In the oxidation of AcrHa, xanthene, and CHD by 1,
AcrH" (92(4)%), xanthone (38(4)%), and benzene (42(5)%) were
yielded as products, respectively.”” These results clearly suggest that
an H-atom abstraction from the substrates C-H bond by 1 is the rate-
determining step, as observed in the benzaldehyde oxidation
reaction by 1 (vide supra).

The OAT reaction of 1 was also performed with para-X-
substituted thioanisoles. As observed in the benzaldehyde and C-H
bond activation reactions, 1 disappeared upon the addition of
thioanisole (Figure S16a), and the rate of the disappearance of 1
increased with the increase of thioanisole concentration (Figure
S16b). In this reaction, methyl phenyl sulfoxide (63(4)%) was
yielded with iron(III) species as a decay product of 1 (Figures S17
and $18).” Similarly, the second-order rate constants with para-X-
substituted thioanisoles were also determined (Figure $19), and we
obtained a negative p value of -0.61 in Hammett plot when the rate
constants (log &) were plotted against Hammett constants (") of
substituents (Figure 3b). The one-electron reduction potential ( Ziea)
of 1 was also determined to be 0.44 V vs SCE (Figure $20).”*>* These
results led us to conclude that 1 is capable of conducting OAT
reactions with an electrophilic reactivity.

In conclusion, we have reported for the first time a mononuclear
nonheme iron(111)-peroxo complex, [Fe(III)(0.)(13-TMC)]* (1),
with an unusually high Vo0 at ~1000 cm™ and an unprecedented
electrophilic reactivity in the C-H bond activation and OAT
reactions as well as in the oxidation of benzaldehyde in nonheme
iron systems. The observation of the unexpected electrophilic
reactivity of 1 leads us to suggest that nonheme iron-peroxo
intermediates can conduct electrophilic oxidation reactions in
nonheme iron enzymes and biomimetic models, which has never
been considered and/or discussed previously. In future studies,
detailed mechanisms of the HAT and OAT reactions by the
mononuclear nonheme iron(III)-peroxo complex will be
investigated experimentally and theoretically. We will also attempt
to find more examples of synthetic iron-peroxo complexes in
electrophilic oxidation reactions. The effect of the macrocyclic ring
size on the physical and chemical properties of the O:-unit in
[Fe(1I1) (O2)(2-TMC)]* complexes is under investigation in this
laboratory.
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(22) We propose a mechanism for the C-H bond activation by 1 as
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follows: A substrate H-atom abstraction by 1 occurs to form a
followed by the
hydroperoxide O-O bond cleavage of the iron(II)-hydroperoxo

putative iron(II)-hydroperoxo species,

species to form an iron(IV)-oxo complex. Although the proposed
iron(IV)-oxo product was not detected in the reaction solution,
one reviewer suggested that this iron (IV)-oxo complex might also
be involved in the oxidation of organic substrates to give
hydroxylated products. Further experiments, including '*O-
labeled water experiment by in situ prepared [Fe(IV)(O)(13-
TMC)]*, are underway in this laboratory.

It should be noted that metal-oxo complexes are known to exchange their
O-atom with H,'®O prior to O-atom transfer to organic substrates. We
performed OAT reaction of 1 with thioanisole in the presence of 10 uL of
H,"0. Product analysis showed no incorporation of **O into the methyl
phenyl sulfoxide product, suggesting that an iron(IV)-oxo species is not
involved in the OAT reaction.

The ET equilibrium constant (&) between 1 and ferrocene (Fc) was
determined to be 27 from the ET titration of 1 with Fc as shown in Figure
$20. The one-electron reduction potential (Z.d) of 1 was determined to
be 0.44 V vs SCE from the K. value and the one-electron oxidation
potential (Eux ) of Fc (Ex = 0.37 vs SCE) using the Nernst equation.
Surprisingly, Feed value of 1 is even higher than that of iron(IV)-oxo with
14-TMC, [Fe"(0)(14-TMC)]** (Eea = 0.39 vs SCE™), although Ea
value of 1 is somewhat lower than that of corresponding iron(IV)-oxo,
[FeY(0)(13-TMC)]** (Bea = 0.61 vs SCE*®). We suggest that the
electrophilic reactivity of 1 may be resulted from the high reduction
potential of 1.

(a) Lee, Y.-M.; Kotani, H,; Suenobu, T.; Nam, W.; Fukuzumi, S.
Fundamental Electron-Transfer Properties of Non-heme Oxoiron(IV)
Complexes. J. Am. Chem. Soc. 2008, 130, 434-43S. (b) Hong, S.; So, H.;
Yoon, H; Cho, K.-B.; Lee, Y.-M.; Fukuzumi, S.; Nam, W. Reactivity
Comparison of High-Valent Iron(IV)-Oxo Complexes Bearing N-
Tetramethylated Cyclam Ligands with Different Ring Size. Dalton Trans.
2013, 42,7842-784S.





