

Contents lists available at ScienceDirect

Journal of Functional Analysis

Essential commutants on strongly pseudo-convex domains

Yi Wang ¹, Jingbo Xia *

Department of Mathematics, State University of New York at Buffalo, Buffalo, NY 14260, United States of America

ARTICLE INFO

Article history:
Received 29 May 2019
Accepted 3 September 2020
Available online 28 September 2020
Communicated by K. Seip

Keywords: Strongly pseudo-convex domain Toeplitz algebra Essential commutant

ABSTRACT

Consider a bounded strongly pseudo-convex domain Ω with smooth boundary in \mathbb{C}^n . Let \mathcal{T} be the Toeplitz algebra on the Bergman space $L^2_a(\Omega)$. That is, \mathcal{T} is the C^* -algebra generated by the Toeplitz operators $\{T_f: f \in L^\infty(\Omega)\}$. Extending the work [27,28] in the special case of the unit ball, we show that on any such Ω , \mathcal{T} and $\{T_f: f \in \mathrm{VO}_{\mathrm{bdd}}\} + \mathcal{K}$ are essential commutants of each other, where \mathcal{K} is the collection of compact operators on $L^2_a(\Omega)$. On a general Ω considered in this paper, the proofs require many new ideas and techniques. These same techniques also enable us to show that for $A \in \mathcal{T}$, if $\langle Ak_z, k_z \rangle \to 0$ as $z \to \partial \Omega$, then A is a compact operator. © 2020 Elsevier Inc. All rights reserved.

1. Introduction

An enduring question in the study of Toeplitz operators is their essential commutativity. In this paper we consider this question on strongly pseudo-convex domains. It will be beneficial to start the paper with a recollection of necessary definitions and background.

^{*} Corresponding author.

E-mail addresses: yiwangfdu@gmail.com (Y. Wang), jxia@acsu.buffalo.edu (J. Xia).

Supported in part by National Science Foundation grant DMS-1900076.

Suppose that \mathcal{Z} is a collection of bounded operators on a Hilbert space \mathcal{H} . Then its essential commutant is defined to be

$$\operatorname{EssCom}(\mathcal{Z}) = \{ A \in \mathcal{B}(\mathcal{H}) : [A, T] \text{ is compact for every } T \in \mathcal{Z} \}.$$

The study of essential commutants began with the classic papers of Johnson-Parrott [13], Voiculescu [23] and Popa [19]. Ever since, essential-commutant problems have become a mainstay of operator theory and operator algebras. As it turns out, many of the most interesting examples in the study of essential commutants are associated with Toeplitz operators, of various kinds [6,7,9,11,24,25,27,28]. This is perhaps due to the fact that Toeplitz operators are given by explicit formulas, and such formulas are necessary for the estimates that lead to the eventual results.

In this paper we consider an arbitrary bounded, strongly pseudo-convex domain Ω with smooth boundary in \mathbb{C}^n . Recall that the Bergman space $L_a^2(\Omega)$ is the collection of analytic functions h on Ω satisfying the condition

$$\int_{\Omega} |h|^2 dv < \infty,$$

where dv is the volume measure on Ω . Let $P: L^2(\Omega) \to L^2_a(\Omega)$ be the orthogonal projection. For each $f \in L^{\infty}(\Omega)$, we have the Toeplitz operator T_f defined by the formula

$$T_f h = P(fh), \quad h \in L_a^2(\Omega).$$

Let \mathcal{T} denote the C^* -algebra generated by $\{T_f: f \in L^{\infty}(\Omega)\}$. Then \mathcal{T} is called the *Toeplitz algebra* on the Bergman space $L^2_a(\Omega)$. We have $T_f^* = T_{\bar{f}}$ for $f \in L^{\infty}(\Omega)$. Thus the C^* -algebra \mathcal{T} is the closure with respect to operator norm of

$$\bigg\{\sum_{j=1}^m T_{f_{1j}}T_{f_{2j}}\cdots T_{f_{kj}}: k, m \in \mathbf{N} \text{ and } f_{ij} \in L^{\infty}(\Omega) \text{ for } 1 \leq i \leq k \text{ and } 1 \leq j \leq m\bigg\}.$$

It is well known that \mathcal{T} contains \mathcal{K} , the collection of compact operators on $L_a^2(\Omega)$ [22, Theorem 4.1.25], which is a convenient fact for the study of essential commutants.

In the case of the unit ball **B** in \mathbb{C}^n , the essential commutant problems related to \mathcal{T} were solved in [27,28], with [26, Theorem 1.3] playing a pivotal role. Specifically, in the case of the unit ball, it was shown that $\operatorname{EssCom}(\mathcal{T}) = \{T_f : f \in \operatorname{VO}_{\operatorname{bdd}}\} + \mathcal{K}$ in [27] and that $\operatorname{EssCom}\{T_f : f \in \operatorname{VO}_{\operatorname{bdd}}\} = \mathcal{T}$ in [28]. Once one knows that, a question naturally presents itself: what happens if one replaces the unit ball **B** by a general strongly pseudoconvex domain Ω ? Equally naturally, one would expect that the same results hold on a general Ω . But here one immediately runs into two difficulties:

(1) The works in [27,28], particularly in [26], rely heavily on the explicit formula for the Bergman metric β on **B**. Without such an explicit formula, it is not clear how to

redo many of the estimates in [27,28]. By contrast, in the case of a general strongly pseudo-convex domain, we only know the *asymptotics* of the Bergman metric [10,20], but we do not have a formula for it that is explicit enough. In other words, on a general Ω , we do not have a good enough handle on the Bergman metric to do many of the necessary estimates. The same is true if one considers the Kobayashi metric instead of the Bergman metric.

(2) The techniques in [26–28] depend heavily on the Möbius transforms on **B**. But on a general strongly pseudo-convex domain Ω , there is no such thing as Möbius transform. In other words, compared with the unit ball, a general Ω totally lacks global symmetry. Compared with (1), this difficulty is more substantial, but it also makes an exciting challenge: can we prove the results in [27,28] on a domain without symmetry?

We are pleased to report that we have managed to overcome these difficulties. The way we deal with difficulty (1) is to simply introduce a metric that serves our purpose. Since Ω is a strongly pseudo-convex domain, it has a defining function r, i.e., $\Omega = \{z \in \mathbb{C}^n : r(z) < 0\}$. Then the formula

$$b_{ij}(z) = \partial_i \bar{\partial}_j \log \frac{1}{-r(z)}, \quad 1 \le i, j \le n,$$

for z near $\partial\Omega$ gives us the infinitesimal generator of a metric d on Ω . The above formula is explicit enough to allow us to do all the necessary analysis. The precise definition of d will be given at the beginning of Section 2.

Difficulty (2) simply requires new approaches. Examining the involvements of Möbius transforms in [27,28] one by one, we have managed to find a new idea or new technique as a replacement in each case. Thus the results about essential commutants mentioned above can indeed be proved without symmetry.

To state our results, we need the notion of vanishing oscillation, which was first introduced in [4,3] for functions on bounded symmetric domains with respect to the Bergman metric. In this paper we need to define functions of vanishing oscillation with respect to the metric d on Ω . Let f be a continuous function on Ω . Then f is said to have vanishing oscillation if

$$\lim_{z \to \partial \Omega} \sup\{|f(z) - f(w)| : w \in \Omega \text{ and } d(z, w) \le 1\} = 0.$$

Let VO denote the collection of functions of vanishing oscillation on Ω . Further, define

$$VO_{bdd} = VO \cap L^{\infty}(\Omega).$$

Our main results are the two theorems below:

Theorem 1.1. On any bounded, strongly pseudo-convex domain Ω with smooth boundary in \mathbb{C}^n , the following hold true:

(i) The Toeplitz algebra \mathcal{T} is the essential commutant of $\{T_f : f \in VO_{bdd}\}$.

(ii) The essential commutant of \mathcal{T} equals $\{T_f : f \in VO_{bdd}\} + \mathcal{K}$.

Let \mathcal{Q} denote the Calkin algebra $\mathcal{B}(L_a^2(\Omega))/\mathcal{K}$. For any $\mathcal{X} \subset \mathcal{Q}$, write \mathcal{X}' for its commutant in \mathcal{Q} . That is, $\mathcal{X}' = \{Y \in \mathcal{Q} : [Y, X] = 0 \text{ for every } X \in \mathcal{X}\}$. Let

$$\pi: \mathcal{B}(L^2_q(\Omega)) \to \mathcal{Q}$$

be the quotient homomorphism. Then $\pi(\operatorname{EssCom}(\mathcal{Z})) = \{\pi(\mathcal{Z})\}'$ for every subset $\mathcal{Z} \subset \mathcal{B}(L_a^2(\Omega))$. Obviously, a subset \mathcal{A} of \mathcal{Q} satisfies the double-commutant relation $\mathcal{A} = \mathcal{A}''$ if and only if $\mathcal{A} = \mathcal{G}'$ for some $\mathcal{G} \subset \mathcal{Q}$. Thus Theorem 1.1(i) implies that $\pi(\mathcal{T})$ satisfies the double-commutant relation in \mathcal{Q} .

As it turns out, the techniques that allow us to prove Theorem 1.1(i), also give us a classic compactness criterion for $A \in \mathcal{T}$ in terms of its Berezin transform on Ω . Let us write $k_z, z \in \Omega$, for the normalized reproducing kernel for the Bergman space $L_a^2(\Omega)$.

Theorem 1.2. Consider any bounded, strongly pseudo-convex domain Ω with smooth boundary in \mathbb{C}^n . Let $A \in \mathcal{T}$. If

$$\lim_{z \to \partial \Omega} \langle Ak_z, k_z \rangle = 0, \tag{1.1}$$

then A is a compact operator on $L_a^2(\Omega)$.

At this point, it is appropriate to briefly recall the long history of this line of investigations. The first result of this genre was due to Axler and Zheng [1], where the domain was the unit disc in \mathbf{C} and A was a finite algebraic combination of Toeplitz operators. Later in [21], Suárez showed that for any A in the Toeplitz algebra on the unit ball \mathbf{B} in \mathbf{C}^n , the condition

$$\lim_{|z|\uparrow 1} \langle Ak_z, k_z \rangle = 0$$

implies that A is a compact operator. The fact that Suárez was able to do this for arbitrary $A \in \mathcal{T}$ on the ball, rather than just for finite algebraic combinations of Toeplitz operators, was considered to be a major breakthrough. Consequently, [21] inspired many generalizations [2,12,29], including generalizations on the Fock space. But all these papers depend on the Möbius transforms on the domain in question. In this regard, Theorem 1.2 is the first to remove any and all involvement of Möbius transforms, since in general there aren't any on Ω .

The rest of the paper is taken up by the proofs of these results. Since this paper is quite long, we conclude the Introduction by summarizing the main steps in the proofs.

As it turns out, the key to the whole paper is the proof of Theorem 1.1(i); the other results in the paper rely on this part of the work. It takes Sections 2–9 to prove Theorem 1.1(i), which explains why the paper is so long.

First of all, in Section 2 we precisely define the metric d mentioned above. In addition to d, another important quantity for the paper is the "gauge"

$$\rho(z, w) = |z - w|^2 + |\langle z - w, (\bar{\partial}r)(z)\rangle|$$

on Ω . We list a number of well known facts involving r, $\rho(z, w)$ and d in Section 2. Section 3 brings in another important ingredient for our analysis, the function

$$F(z, w) = |r(z)| + |r(w)| + \rho(z, w),$$

which is a familiar fixture on strongly pseudo-convex domains. The main result of the section is Lemma 3.8, which is a version of the Forelli-Rudin estimates for Ω in which d and F are quantitatively involved.

Sections 4 and 5 are devoted to operators that are discrete sums constructed from the Bergman kernel K(z, w) over d-lattices. The main goal for these two sections is Corollary 5.3, which provides the norm-continuity of such discrete sums under small perturbation of the lattice.

In Section 6, we introduce LOC(A), the class of "localized versions of A" for any bounded operator A on $L_a^2(\Omega)$. Using Lemma 3.8 and Corollary 5.3 mentioned above, we show in Section 6 that LOC(A) $\subset \mathcal{T}$ for every $A \in \mathcal{B}(L_a^2(\Omega))$. Since this is one of the two key steps in the proof of Theorem 1.1(i), let us explain a little more. To prove LOC(A) $\subset \mathcal{T}$, we introduce the collection \mathcal{D}_0 of operators of the form

$$\sum_{z\in\Gamma}c_zk_z\otimes k_{\gamma(z)},$$

precisely defined in Definition 6.3. The proof of LOC(A) $\subset \mathcal{T}$ is divided into two parts: in Proposition 6.4 we show that $\mathcal{D}_0 \subset \mathcal{T}$ and in Proposition 6.6 we show that LOC(A) is contained in the norm closure of the linear span of \mathcal{D}_0 . Both parts require some work.

Section 7 is devoted to matters related to functions of vanishing oscillation. In particular, we consider the scalar quantity

$$\operatorname{diff}(f) = \sup\{|f(z) - f(w)| : z, w \in \Omega \text{ such that } d(z, w) \le 1\},\$$

which is another essential ingredient in the proof of Theorem 1.1(i). We show that every operator in EssCom $\{T_f: f \in VO_{bdd}\}$ satisfies an " ϵ - δ " condition involving "diff".

Section 8 is the other key step in the proof of Theorem 1.1(i), namely the construction of approximate partitions of the unity on Ω . There are two competing requirements that must be satisfied: (1) The "diff" for the partition functions must be small. (2) There is a fixed, finite cap on the overlaps of the sets involved. This construction is based on a suitable analogue of "radial-spherical decomposition" for Ω . As it turns out, the gauge $\rho(z,w)$ plays the role of "spherical coordinates" in our decomposition, whereas the defining function r gives us a convenient "radial coordinate".

With all the above preparation, we prove Theorem 1.1(i) in Section 9. The gist of the proof is that the " ϵ - δ " condition mentioned above characterizes the membership $X \in \mathcal{T}$. The same work also shows that for $A \in \mathcal{T}$, if

$$\lim_{z \to \partial\Omega} \sup_{w \in D(z,R)} |\langle Ak_w, k_z \rangle| = 0 \tag{1.2}$$

for every given $0 < R < \infty$, then A is a compact operator. This is a major step in the proof of Theorem 1.2. In fact, what remains for the proof of Theorem 1.2 is to show that (1.1) implies (1.2).

Then in Section 10, we turn to the proof of part (ii) in Theorem 1.1. With the work in Section 9, this is now relatively easy. First of all, Theorem 1.1(i) tells us that $\operatorname{EssCom}(\mathcal{T})$ coincides with the essential center of \mathcal{T} . That is, $\operatorname{EssCom}(\mathcal{T}) \subset \mathcal{T}$. Then we show that the membership $A \in \operatorname{EssCom}(\mathcal{T})$ implies that the Berezin transform \tilde{A} of A is in $\operatorname{VO}_{\operatorname{bdd}}$. Since $A - T_{\tilde{A}} \in \mathcal{T}$, the membership $\tilde{A} \in \operatorname{VO}_{\operatorname{bdd}}$ and the work in Section 9 lead to an easy proof of the fact that $A - T_{\tilde{A}} \in \mathcal{K}$, which proves Theorem 1.1(ii).

Finally, in Section 11 we show that (1.1) indeed implies (1.2). For all previous works involving this step, this was easy, because one could use Möbius transforms. But in our case of a general strongly pseudo-convex domain, this becomes a non-trivial step. Material from Sections 2-4 will be needed for this step.

Acknowledgments We would like to thank the referee for the careful reading of the manuscript, for the constructive suggestions, and for providing reference [8].

2. A metric on Ω and related facts

First of all, we cite [15,20] as general references for strongly pseudo-convex domains. Throughout the paper, Ω denotes a bounded, connected, strongly pseudo-convex domain in \mathbb{C}^n with smooth boundary. More precisely, we always assume that Ω is bounded and connected, and that there is a real-valued C^{∞} function r defined in an open neighborhood of the closure of Ω such that the following three conditions are satisfied:

- (1) $\Omega = \{ z \in \mathbf{C}^n : r(z) < 0 \}.$
- (2) $|(\nabla r)(z)| \neq 0$ for every $z \in \partial \Omega$.
- (3) There is a c > 0 such that

$$\sum_{i,j=1}^{n} (\partial_i \bar{\partial}_j r)(z) \xi_i \bar{\xi}_j \ge c(|\xi_1|^2 + \dots + |\xi_n|^2)$$
 (2.1)

for all $z \in \partial \Omega$ and $\xi_1, \ldots, \xi_n \in \mathbf{C}$.

Such an r is called a defining function for the domain. We choose such a defining function r for the domain Ω and fix it for the rest of the paper.

It will be convenient to adopt the following convention: We will consider \mathbb{C}^n as a column space whenever an $n \times n$ matrix acts on it. When there is no matrix involved,

we will consider \mathbb{C}^n either as a column space or as a row space, whichever is more appropriate.

Let A(z) be the $n \times n$ matrix whose entry in the intersection of *i*-th column and *j*-row is $(\partial_i \bar{\partial}_j r)(z)$, $i, j = 1, \ldots, n$. By (2) and (3), there is a $\theta > 0$ such that if $w \in \Omega$ and $r(w) > -3\theta$, then $|(\nabla r)(w)| \neq 0$ and

$$\langle A(w)\xi, \xi \rangle \ge (c/2)|\xi|^2 \tag{2.2}$$

for all $\xi \in \mathbf{C}^n$. Let $\psi : \mathbf{R} \to [0,1]$ be a C^{∞} function such that $\psi = 1$ on $[-\theta, \infty)$ and $\psi = 0$ on $(-\infty, -2\theta]$. Write δ_{ij} for Kronecker's delta. We then define

$$b_{ij}(z) = \psi(r(z)) \left(\frac{1}{-r(z)} (\partial_i \bar{\partial}_j r)(z) + \frac{1}{r^2(z)} (\partial_i r)(z) (\bar{\partial}_j r)(z) \right) + (1 - \psi(r(z))) \delta_{ij} \quad (2.3)$$

for $i, j \in \{1, ..., n\}$ and $z \in \Omega$. Let $\mathcal{B}(z)$ be the $n \times n$ matrix whose entry in the intersection of *i*-th column and *j*-row is $b_{ij}(z)$, i, j = 1, ..., n. From (2.2) and the definition of ψ we see that the $\mathcal{B}(z)$ is invertible for every $z \in \Omega$. Thus the local Hermitian form

$$H_z(\xi, \eta) = \langle \mathcal{B}(z)\xi, \eta \rangle, \quad \xi, \eta \in T_z\Omega = \mathbf{C}^n,$$

generates a non-degenerate metric d on Ω . That is, for $z, w \in \Omega$,

$$d(z,w) = \inf \int_{0}^{1} \sqrt{\langle \mathcal{B}(g(t))g'(t), g'(t)\rangle} dt, \qquad (2.4)$$

where the infimum is taken over all C^1 maps $g:[0,1]\to\Omega$ satisfying the conditions g(0)=z and g(1)=w. The definition of ψ ensures that for $i,j\in\{1,\ldots,n\}$,

$$b_{ij}(z) = \partial_i \bar{\partial}_j \log \frac{1}{-r(z)}$$
 whenever $-\theta \le r(z) < 0$.

Denote $\bar{\partial} = (\bar{\partial}_1, \dots, \bar{\partial}_n)$, which will play a prominent role throughout the paper. Then

$$\langle \mathcal{B}(z)\xi, \xi \rangle = \frac{\langle A(z)\xi, \xi \rangle}{-r(z)} + \left(\frac{|\langle \xi, (\bar{\partial}r)(z)\rangle|}{-r(z)}\right)^2 \quad \text{whenever} \quad -\theta \le r(z) < 0, \tag{2.5}$$

 $\xi \in \mathbf{C}^n$. Formula (2.5) makes it clear that the metric d is asymptotically equivalent to the Bergman metric on Ω . There are many papers on this subject, and for a recent reference we cite [8, Theorem 1.2].

In the rest of the section, we collect a number of facts about Ω , the defining function r and the metric d, which will be cited in later sections. These facts are essentially well known for strongly pseudo-convex domains, and their proofs only involve elementary techniques. For these reasons the proofs of the lemmas and propositions in this section will be omitted.

Lemma 2.1. There is a $c_{2,1} > 0$ such that $-r(w) \ge -c_{2,1}2^{-4d(z,w)}r(z)$ for all $z, w \in \Omega$.

Lemma 2.2. (1) There is a $0 < C < \infty$ such that

$$|z - w| \le Cd(z, w)2^{4d(z, w)}\sqrt{-r(z)}$$

for all $z, w \in \Omega$.

(2) There is a constant $0 < C_{2,2} < \infty$ such that

$$|z-w|^2 + |\langle z-w, (\bar{\partial}r)(z)\rangle| \le C_{2.2} \{d(z,w) + d^2(z,w)\} 2^{12d(z,w)} (-r(z))$$

for all $z, w \in \Omega$.

Definition 2.3. For $\eta \in \mathbb{C}^n \setminus \{0\}$, a > 0 and b > 0, we let $\mathcal{P}(\eta; a, b)$ be the collection of vectors u + v satisfying the following three conditions:

- (1) $u, v \in \mathbf{C}^n$ with |u| < a and |v| < b.
- (2) $u \perp \eta$.
- (3) $v \in \{\xi \eta : \xi \in \mathbf{C}\}.$

For $z \in \Omega$ and a > 0, we define

$$D(z,a) = \{w \in \Omega : d(z,w) < a\}.$$

As expected, the d-balls are approximated by the "polyballs" in Definition 2.3:

Proposition 2.4. Given any $0 < a < \infty$, there are $0 < c \le C < \infty$ such that

$$z + \mathcal{P}((\bar{\partial}r)(z); c\sqrt{-r(z)}, -cr(z)) \subset D(z, a) \subset z + \mathcal{P}((\bar{\partial}r)(z); C\sqrt{-r(z)}, -Cr(z))$$

for every $z \in \Omega$ satisfying the condition $-r(z) < \theta$.

Proposition 2.5. There is a $0 < C_{2.5} < \infty$ such that if 0 < a < 1/2, then

$$D(z,a) \subset z + \mathcal{P}((\bar{\partial}r)(z); C_{2.5}a\sqrt{-r(z)}, -C_{2.5}ar(z))$$

for every $z \in \Omega$ satisfying the condition $-r(z) < \theta$.

On the domain Ω we define the measure

$$d\mu(z) = \frac{dv(z)}{(-r(z))^{n+1}}. (2.6)$$

Proposition 2.6. For each $a \in (0, \infty)$, there are $0 < c(a) \le C(a) < \infty$ such that

$$c(a) \le \mu(D(z,a)) \le C(a)$$

for every $z \in \Omega$.

For each $0 \le \epsilon < \theta$, define the surface

$$S_{\epsilon} = \{ z \in \mathbf{C}^n : -r(z) = \epsilon \}.$$

In particular, we have $S_0 = \partial \Omega$, the boundary of the domain Ω .

Proposition 2.7. There exist a finite open cover U_1, \ldots, U_m of

$$H = \{ z \in \mathbf{C}^n : 0 \le -r(z) \le \theta/2 \}$$

in \mathbb{C}^n and a $1 \leq C < \infty$ such that the following holds true: Suppose that $0 < \epsilon \leq \theta/2$ and that $z, w \in S_{\epsilon} \cap U_i$ for some $i \in \{1, \ldots, m\}$. Furthermore, suppose that there is an $R \geq 1$ such that $|z - w| \leq R\sqrt{\epsilon}$ and $|\langle z - w, (\bar{\partial}r)(z) \rangle| \leq R^2\epsilon$. Then $d(z, w) \leq CR^2$.

For each $0 \le \epsilon \le \theta/2$, we write $d\sigma_{\epsilon}$ for the natural surface measure on S_{ϵ} . For every triple of $0 \le \epsilon \le \theta/2$, $\zeta \in S_{\epsilon}$ and t > 0, we define

$$Q_{\epsilon}(\zeta, t) = \{ \xi \in S_{\epsilon} : |\zeta - \xi|^2 + |\langle \zeta - \xi, (\bar{\partial}r)(\zeta) \rangle| < t \}.$$

It is well known that S_{ϵ} , ρ , σ_{ϵ} is a space of homogeneous type in the sense of Coifman and Weiss [5]. Consequently, we have

Proposition 2.8. There are constants $0 < \tau \le \theta/2$ and $0 < c_{2.8} \le C_{2.8} < \infty$ such that

$$c_{2.8}t^n \le \sigma_{\epsilon}(Q_{\epsilon}(\zeta, t)) \le C_{2.8}t^n$$

for all $0 \le \epsilon \le \tau$, $\zeta \in S_{\epsilon}$ and $0 < t \le T_0$, where $T_0 = \sup\{|u - v|^2 + |\langle u - v, (\bar{\partial}r)(u)\rangle| : u, v \in \Omega\}$.

Proposition 2.9. There is a constant $0 < C_{2.9} < \infty$ such that the following holds true: Let $z \in \Omega$, $k \in \mathbf{Z}$ and $j \in \mathbf{Z}_+$. Then the volume of the set

$$W_{z;k,j} = \{ w \in \Omega : 2^{k-1}(-r(z)) < -r(w) \le 2^k(-r(z))$$

and $|z - w|^2 + |\langle z - w, (\bar{\partial}r)(z) \rangle| \le 2^{k+j}(-r(z)) \}$

does not exceed $C_{2.9}2^{nj}(-2^kr(z))^{n+1}$.

Definition 2.10. (i) Let a be a positive number. A subset Γ of Ω is said to be a-separated if $D(z,a) \cap D(w,a) = \emptyset$ for all distinct elements z, w in Γ .

(ii) A subset Γ of Ω is simply said to be separated if it is a-separated for some a > 0.

Lemma 2.11. (1) For any pair of $0 < a < \infty$ and $0 < R < \infty$, there is a natural number N = N(a, R) such that for every a-separated set Γ in Ω and every $z \in \Omega$, we have

$$card\{u \in \Gamma : d(u, z) \le R\} \le N.$$

(2) For any pair of $0 < a \le R < \infty$, there is a natural number m = m(a, R) such that every a-separated set Γ in Ω admits a partition $\Gamma = \Gamma_1 \cup \cdots \cup \Gamma_m$ with the property that for every $j \in \{1, \ldots, m\}$, the set Γ_j is R-separated.

3. Forelli-Rudin estimates on Ω

We will need the familiar functions

$$X(z,w) = -r(w) - \sum_{j=1}^{n} \frac{\partial r(w)}{\partial w_j} (z_j - w_j) - \frac{1}{2} \sum_{j,k=1}^{n} \frac{\partial^2 r(w)}{\partial w_j \partial w_k} (z_j - w_j) (z_k - w_k), \quad (3.1)$$

$$\rho(z,w) = |z - w|^2 + |\langle z - w, (\bar{\partial}r)(z) \rangle|$$

and

$$F(z, w) = |r(z)| + |r(w)| + \rho(z, w)$$

associated with Ω and r, which are standard fixtures on strongly pseudo-convex domains.

Lemma 3.1. [18,20] There is a $\delta > 0$ such that

$$|X(z,w)| \approx |r(z)| + |r(w)| + |ImX(z,w)| + |z-w|^2 \approx F(z,w)$$

in the region $\mathcal{R}_{\delta} = \{(z, w) \in \Omega \times \Omega : |r(z)| + |r(w)| + |z - w| < \delta\}.$

Below is what one usually refers to as the Forelli-Rudin estimates:

Lemma 3.2. [18,20] Let $a \in \mathbb{R}$ and $\kappa > -1$. Then for $z \in \Omega$,

$$\int_{\Omega} \frac{|r(w)|^{\kappa}}{F(z,w)^{n+1+\kappa+a}} dv(w) \approx \begin{cases} 1 & \text{if } a < 0 \\ \log\left\{|r(z)|^{-1}\right\} & \text{if } a = 0 \\ |r(z)|^{-a} & \text{if } a > 0 \end{cases}.$$

Recall that for any $z \in \overline{\Omega}$ with $0 \le -r(z) \le \theta$, we have $(\bar{\partial}r)(z) \ne 0$ as a vector in \mathbb{C}^n .

Definition 3.3. For $z \in \Omega$ satisfying the condition $0 < -r(z) < \theta$, let u_z denote the unit vector $(\bar{\partial}r)(z)/|(\bar{\partial}r)(z)|$ in \mathbb{C}^n .

Lemma 3.4. There exist constants $\delta_0 > 0$ and $0 < C_{3.4} < \infty$ such that if $z \in \Omega$ and $i \in \mathbf{Z}_+$ satisfy the condition $-2^{i+1}r(z) < \delta_0$, then for every $x \in [1, 2]$ we have

$$d(z + 2^{i}r(z)u_{z}, z + x2^{i}r(z)u_{z}) \le C_{3.4}.$$
(3.2)

Moreover, if $-r(z) < \delta_0$, then $d(z, z + su_z) \le C_{3.4}$ for every $s \in [r(z), 0]$.

Proof. Let $z \in \Omega$ be such that $0 < -r(z) < \theta$. Then

$$\frac{d}{dt}r(z+tu_z) = 2\operatorname{Re}\langle u_z, (\bar{\partial}r)(z+tu_z)\rangle = 2|(\bar{\partial}r)(z)| + O(|t|).$$

Thus there is a $0 < \delta_0 < \theta$ such that if $-r(z) < \delta_0$, then

the function $t \mapsto r(z + tu_z)$ is increasing on $[-\delta_0, \delta_0]$.

Now let $z \in \Omega$ and $i \in \mathbf{Z}_+$ be such that $-2^{i+1}r(z) < \delta_0$. Let $x \in [1,2]$. Then for any $s \le s'$ in the interval $[x2^ir(z), 2^ir(z)]$, the above monotonicity guarantees $r(z + su_z) \le r(z + s'u_z)$, i.e., $-r(z + s'u_z) \le -r(z + su_z)$. For such a pair of s and s', it follows from (2.3), (2.4) and the above monotonicity that

$$d(z + s'u_z, z + su_z) \le C \frac{|(z + s'u_z) - (z + su_z)|}{-r(z + s'u_z)} \le C \frac{|-2^{i+1}r(z) - 2^{i}(-r(z))|}{-2^{i}r(z)} = C,$$

which proves (3.2). Similarly, if $-r(z) < \delta_0$, then for every $s \in [r(z), 0]$ we have $r(z + su_z) \le r(z)$, i.e., $-r(z + su_z) \ge -r(z)$. Hence the same argument shows that $d(z, z + su_z) \le C|z - (z + su_z)|/(-r(z)) \le C$. This proves the lemma. \square

Lemma 3.5. There exist constants $0 < c_{3.5} \le 1$ and $0 < \delta_1 \le \delta_0$, where δ_0 was given in Lemma 3.4, such that if $z \in \Omega$ satisfies the condition $-r(z) < \delta_1$ and if $-\delta_1 \le t \le 0$, then

$$-r(z + tu_z) + r(z) \ge c_{3.5}|t|.$$

Proof. Taylor expansion [17] gives us

$$r(z+tu_z)=r(z)+2t\mathrm{Re}\langle u_z,(\bar{\partial}r)(z)\rangle+O(t^2)=r(z)+2t|(\bar{\partial}r)(z)|+O(t^2).$$

In other words, $r(z+tu_z)-r(z)=\{2|(\bar{\partial}r)(z)|+O(t)\}t$. From this the desired conclusion becomes obvious. \Box

Proposition 3.6. There is a constant $0 < C_{3.6} < \infty$ such that if $z, w \in \Omega$ satisfy the conditions r(z) = r(w) and $|z - w|^2 + |\langle z - w, (\bar{\partial}r)(z) \rangle| \le -2^j r(z)$, $j \in \mathbf{Z}_+$, then $d(z, w) \le C_{3.6}(1 + j)$.

Using Lemma 3.5 and the sets U_1, \ldots, U_m from Proposition 2.7, the proof of Proposition 3.6 is again an elementary argument. We omit the details.

Lemma 3.7. There is a $1 \leq C_{3.7} < \infty$ such that if $z, w \in \Omega$ satisfy the conditions $2^{k-1}(-r(z)) \leq -r(w) \leq 2^k(-r(z))$ and $|z-w|^2 + |\langle z-w, (\bar{\partial}r)(z)\rangle| < 2^{k+j}(-r(z))$, where $k \in \mathbb{Z}$ and $j \in \mathbb{Z}_+$, then $d(z, w) < C_{3.7}(1 + |k| + j)$.

Proof. (1) First, let us consider the case where $k \geq 1$. (1.a) Further, suppose that $2^k(-r(z)) \geq c_{3.5}\delta_1/4$, where $c_{3.5}$ and δ_1 are the constants in Lemma 3.5. Then the condition $2^{k-1}(-r(z)) \leq -r(w) \leq 2^k(-r(z))$ implies $-r(w) \geq c_{3.5}\delta_1/8$. If we also have $-r(z) \geq c_{3.5}\delta_1/4$, then of course, $d(z,w) \leq C_1$, regardless of other conditions. Suppose that $-r(z) < c_{3.5}\delta_1/4$. Let k' be the largest integer such that $-2^{k'+1}r(z) < c_{3.5}\delta_1$. Set

$$z' = z + 2^{k'+1} r(z) u_z.$$

Since $-2^k r(z) \ge c_{3.5} \delta_1/4$, we have k'+1 < k+2, i.e., $k' \le k$. It follows from Lemma 3.4 that $d(z,z') \le C_{3.4}(k'+2) \le C_{3.4}(k+2)$. By Lemma 3.5, we have $c_{3.5} 2^{k'+1} |r(z)| \le -r(z')$. The choice of k' ensures that $-2^{k'+2} r(z) \ge c_{3.5} \delta_1$. Hence the above implies

$$c_{3.5}^2 \delta_1/2 \le -r(z').$$

Thus $d(z', w) \leq C_2$, and consequently $d(z, w) \leq C_{3.4}(k+2) + C_2 \leq C_3 k$ in this subcase. (1.b) Suppose that $2^k(-r(z)) < c_{3.5}\delta_1/4$. Then $-r(w) \leq 2^k(-r(z)) < c_{3.5}\delta_1/4$. By Lemma 3.5, we have

$$c_{3.5}\delta_1 \le -r(z - \delta_1 u_z).$$

Hence $-r(z-\delta_1 u_z) > -r(w)$. Since $-r(z) \leq 2^{k-1}(-r(z)) \leq -r(w)$, there is an $s \in [-\delta_1, 0]$ such that $r(z+su_z)=r(w)$. Also, Lemma 3.5 tells us that

$$c_{3.5}|s| \le -r(z + su_z) = -r(w) \le -2^k r(z). \tag{3.3}$$

Thus $|s| \le -c_{3.5}^{-1}2^k r(z)$. Now the condition $2^k(-r(z)) < c_{3.5}\delta_1/4$ implies $-c_{3.5}^{-1}2^k r(z) \le \delta_1/4$. Therefore it follows from Lemma 3.4 and the inequality $|s| \le -c_{3.5}^{-1}2^k r(z)$ that

$$d(z, z + su_z) \le C_{3.4} \{ 1 + C_3 \log(2^k / c_{3.5}) \} \le C_4 k.$$

Thus what remains for this subcase is to show that

$$d(z + su_z, w) \le C_5(1+j).$$

For convenience, let us denote $\zeta = z + su_z$. Since $r(\zeta) = r(w)$, to prove the above inequality, by Proposition 3.6, it suffices to show that

$$|\zeta - w|^2 + |\langle \zeta - w, (\bar{\partial}r)(\zeta) \rangle| \le C_6 2^j (-r(\zeta)). \tag{3.4}$$

By (3.3), $|\zeta - z| = |s| \le c_{3.5}^{-1} 2^k (-r(z)) \le (2/c_{3.5}) (-r(\zeta))$. Since Ω is bounded, we have $|\zeta - z|^2 \le C_7 |\zeta - z|$. Therefore

$$|\zeta - w|^2 \le 2|\zeta - z|^2 + 2|z - w|^2 \le C_8(-r(\zeta)) + 2^{k+j+1}(-r(z)) \le C_9 2^j (-r(\zeta)).$$

We have $|\langle z-w,(\bar{\partial}r)(z)\rangle|<2^{k+j}(-r(z))$ by assumption. Also,

$$|\langle \zeta - w, (\bar{\partial}r)(\zeta) \rangle - \langle z - w, (\bar{\partial}r)(z) \rangle| \le C_{10}|\zeta - z| \le C_{11}(-r(\zeta)).$$

Since $2^{k-1}(-r(z)) \le -r(\zeta)$, these inequalities prove (3.4). Thus the case $k \ge 1$ is proved. (2) Now suppose that $k \le 0$. Note that the condition $2^{k-1}(-r(z)) \le -r(w) \le 2^k(-r(z))$ implies that $2^{-k}(-r(w)) \le -r(z) \le 2^{-k+1}(-r(w))$. Also, the condition $|z-w|^2 + |\langle z-w, (\bar{\partial}r)(z)\rangle| < 2^{k+j}(-r(z))$ can be rewritten as

$$|z - w|^2 + |\langle z - w, (\bar{\partial}r)(z)\rangle| < 2^{1+j}(-r(w)).$$

Since $|\langle z-w,(\bar{\partial}r)(z)\rangle - \langle z-w,(\bar{\partial}r)(w)\rangle| \leq C_{12}|z-w|^2$, we now have

$$|z-w|^2 + |\langle z-w, (\bar{\partial}r)(w)\rangle| < C_{13}2^j(-r(w)).$$

Thus case (2) follows from case (1) by reversing the roles of z and w. \square

We need the following "vanishing" version of Lemma 3.2.

Lemma 3.8. Given any a > 0 and $\kappa > -1$, there are $0 < C < \infty$ and s > 0 such that

$$\int_{\Omega \setminus D(z,R)} \frac{|r(w)|^{\kappa} |r(z)|^a}{F(z,w)^{n+1+\kappa+a}} dv(w) \le C2^{-sR}$$

for all $z \in \Omega$ and $R \geq 3C_{3.7}$, where $C_{3.7}$ is the constant in Lemma 3.7.

Proof. For $z \in \Omega$ and $k \in \mathbf{Z}$ we define the sets

$$Z_{z;k,0} = \{ w \in \Omega : 2^{k-1}(-r(z)) \le -r(w) < 2^k(-r(z))$$
and $|z - w|^2 + |\langle z - w, (\bar{\partial}r)(z) \rangle| < 2^k(-r(z)) \}$ and
$$Z_{z;k,j} = \{ w \in \Omega : 2^{k-1}(-r(z)) \le -r(w) < 2^k(-r(z))$$
and $2^{k+j-1}(-r(z)) \le |z - w|^2 + |\langle z - w, (\bar{\partial}r)(z) \rangle| < 2^{k+j}(-r(z)) \}, \quad j \ge 1.$

By the definition of F(z, w), for all $k \geq 0$ and $j \geq 0$, if $w \in Z_{z;k,j}$, then

$$\frac{|r(w)|^{\kappa}|r(z)|^a}{F(z,w)^{n+1+\kappa+a}} \le C_1 \frac{(2^k|r(z)|)^{\kappa}|r(z)|^a}{(2^{k+j}|r(z)|)^{n+1+\kappa+a}} = \frac{C_1}{2^{(n+1+a)k}2^{(n+1+\kappa+a)j}|r(z)|^{n+1}}.$$

In the case k < 0, $j \ge 0$ and $w \in Z_{z;k,j}$, we have

$$\frac{|r(w)|^{\kappa}|r(z)|^a}{F(z,w)^{n+1+\kappa+a}} \leq \frac{C_2(2^k|r(z)|)^{\kappa}|r(z)|^a}{(|r(z)|+2^{k+j}|r(z)|)^{n+1+\kappa+a}} = \frac{C_22^{\kappa k}}{(1+2^{k+j})^{n+1+\kappa+a}|r(z)|^{n+1}}.$$

By Proposition 2.9, $v(Z_{z;k,j}) \leq C_3 2^{nj} (-2^k r(z))^{n+1}$. Thus if $k \geq 0$ and $j \geq 0$, then

$$\int_{Z_{z;k,j}} \frac{|r(w)|^{\kappa} |r(z)|^{a}}{F(z,w)^{n+1+\kappa+a}} dv(w) \le \frac{C_{1}C_{3}2^{nj}(-2^{k}r(z))^{n+1}}{2^{(n+1+a)k}2^{(n+1+\kappa+a)j} |r(z)|^{n+1}} = \frac{C_{4}}{2^{ak}2^{(1+\kappa+a)j}}. \quad (3.5)$$

Similarly, in the case k < 0 and $j \ge 0$, we have

$$\int\limits_{Z_{z;k,j}} \frac{|r(w)|^{\kappa}|r(z)|^{a}}{F(z,w)^{n+1+\kappa+a}} dv(w) \leq \frac{C_{2}2^{\kappa k}C_{3}2^{nj}(-2^{k}r(z))^{n+1}}{(1+2^{k+j})^{n+1+\kappa+a}|r(z)|^{n+1}} = \frac{C_{5}2^{n(k+j)}2^{(1+\kappa)k}}{(1+2^{k+j})^{n+1+\kappa+a}}$$

$$(3.6)$$

and $2^{(1+\kappa)k} = 2^{(1+\kappa)k/2} \cdot 2^{(1+\kappa)(k+j)/2} \cdot 2^{-(1+\kappa)j/2}$. Let $R \geq 3C_{3.7}$. By Lemma 3.7, the condition $Z_{z;k,j} \setminus D(z,R) \neq \emptyset$ implies either $|k| \geq (2C_{3.7})^{-1}R$ or $j \geq (2C_{3.7})^{-1}R$. Therefore

$$\int\limits_{\Omega \backslash D(z,R)} \frac{|r(w)|^{\kappa} |r(z)|^{a}}{F(z,w)^{n+1+\kappa+a}} dv(w) \leq \sum_{(k,j) \in E(R)} \int\limits_{Z_{z;k,j}} \frac{|r(w)|^{\kappa} |r(z)|^{a}}{F(z,w)^{n+1+\kappa+a}} dv(w),$$

where $E(R) = \{(k, j) \in \mathbf{Z} \times \mathbf{Z}_+: \text{ either } |k| \geq (2C_{3.7})^{-1}R \text{ or } j \geq (2C_{3.7})^{-1}R \}$. Using (3.5) and (3.6), it is now elementary to verify that the lemma holds for every $0 < s < (2C_{3.7})^{-1} \min\{a, (1+\kappa)/2\}$. \square

Lemma 3.9. Given any a > 0 and $\kappa > -1$, there is a $0 < C < \infty$ such that

$$\int\limits_{\Omega} d(z,w) \frac{|r(w)|^{\kappa} |r(z)|^a}{F(z,w)^{n+1+\kappa+a}} dv(w) \le C$$

for every $z \in \Omega$.

Proof. Given any $z \in \Omega$, define $E_0 = D(z, 3C_{3.7})$ and

$$E_i = D(z, (3+i)C_{3.7}) \setminus D(z, (3+i-1)C_{3.7})$$

for $i \geq 1$. For each $i \in \mathbf{Z}_+$, if $w \in E_i$, then $d(z,w) < (3+i)C_{3,7}$. Hence

$$\int_{\Omega} d(z,w) \frac{|r(w)|^{\kappa} |r(z)|^{a}}{F(z,w)^{n+1+\kappa+a}} dv(w) \le \sum_{i=0}^{\infty} (3+i) C_{3.7} \int_{E_{i}} \frac{|r(w)|^{\kappa} |r(z)|^{a}}{F(z,w)^{n+1+\kappa+a}} dv(w).$$

We now apply Lemma 3.2 to the term where i = 0 and Lemma 3.8 to the terms where i > 1. The result of this is

$$\int_{\Omega} d(z,w) \frac{|r(w)|^{\kappa} |r(z)|^{a}}{F(z,w)^{n+1+\kappa+a}} dv(w) \le 3C_{3.7}C_0 + \sum_{i=1}^{\infty} (3+i)C_{3.7}C2^{-s(3+i-1)C_{3.7}}.$$

Since Lemma 3.8 guarantees that s > 0, the right-hand side is finite. \square

We end the section with another elementary fact about the function F(z, w) that is essentially well known:

Lemma 3.10. There exist constants $0 < a_0 < 1/2$ and $0 < C_{3.10} < \infty$ such that for any $z, z', w, w' \in \Omega$ satisfying the conditions $d(z, z') < a_0$ and $d(w, w') < a_0$, we have

$$F(z, w) \le C_{3.10} F(z', w').$$

4. Estimates related to the Bergman kernel

Let K(z, w) be the Bergman kernel for Ω . By definition, it has the symmetry $K(w, z) = \overline{K(z, w)}$. The following well-known result of Fefferman gives us a good handle on K:

Theorem 4.1. [10, Theorem 2] The Bergman kernel has the form

$$K(z,w) = C|(\nabla r)(w)|^2 \det \mathcal{L}(w) X^{-(n+1)}(z,w) + \tilde{K}(z,w)$$

on $\mathcal{R}_{\delta} = \{(z, w) \in \Omega \times \Omega : |r(z)| + |r(w)| + |z - w| < \delta\}$ for some $\delta > 0$, where \mathcal{L} is the Levi form for the domain Ω , X is given by (3.1), and \tilde{K} is an admissible kernel of weight $\geq -n - (1/2)$. That is, there is a constant C' such that $|\tilde{K}(z, w)| \leq C' F(z, w)^{-n - (1/2)}$.

For any $\delta > 0$, the Bergman kernel K is known to be bounded on $(\Omega \times \Omega) \setminus \mathcal{R}_{\delta}$ [14]. One obvious implication of Theorem 4.1 is that

$$c|r(z)|^{-n-1} \le |K(z,z)| \le C|r(z)|^{-n-1}, \quad z \in \Omega.$$
 (4.1)

For each $z \in \Omega$, let us denote $K_z(w) = K(w, z)$. Then it has the reproducing property

$$h(z) = \langle h, K_z \rangle$$

for $h \in L_a^2(\Omega)$. We write k_z for the normalized reproducing kernel, i.e., $k_z = K_z / \|K_z\|$.

Lemma 4.2. Given any $0 < \eta < 1/2$ and a > 0, there are constants s > 0 and $0 < C_{4.2} < \infty$ such that

$$\sup_{z \in \Omega} |r(z)|^{-(n/2) - \eta} \sum_{w \in \Gamma \setminus D(z,R)} |r(w)|^{(n/2) + \eta} \left(\frac{|r(z)|^{1/2} |r(w)|^{1/2}}{F(z,w)} \right)^{n+1} \le C_{4.2} 2^{-sR}$$

for every a-separated set Γ in Ω and every $R \geq 3C_{3.7} + 1$.

Proof. Let $0 < \eta < 1/2$ and a > 0 be given. Define $\alpha = (1/3) \min\{a_0, a\}$, where a_0 is the constants in Lemma 3.10. Suppose that Γ is an a-separated set in Ω . Then

$$D(w, \alpha) \cap D(w', \alpha) = \emptyset$$
 for all $w \neq w'$ in Γ .

Applying Lemmas 2.1 and 3.10, for $\zeta \in D(w, \alpha)$ we have

$$\frac{|r(w)|^{n+(1/2)+\eta}|r(z)|^{(n+1)/2}}{F(z,w)^{n+1}} \leq C \frac{|r(\zeta)|^{n+(1/2)+\eta}|r(z)|^{(n+1)/2}}{F(z,\zeta)^{n+1}}.$$

Thus for $z \in \Omega$ we have

$$\sum_{w \in \Gamma \setminus D(z,R)} |r(w)|^{(n/2)+\eta} \left(\frac{|r(z)|^{1/2} |r(w)|^{1/2}}{F(z,w)} \right)^{n+1} \\
\leq \sum_{w \in \Gamma \setminus D(z,R)} \frac{C}{\mu(D(w,\alpha))} \int_{D(w,\alpha)} \frac{|r(\zeta)|^{n+(1/2)+\eta} |r(z)|^{(n+1)/2}}{F(z,\zeta)^{n+1}} d\mu(\zeta) \\
\leq \frac{C}{c(\alpha)} \int_{D(z,R-\alpha)} \frac{|r(\zeta)|^{-(1/2)+\eta} |r(z)|^{(n+1)/2}}{F(z,\zeta)^{n+1}} dv(\zeta),$$

where the second \leq is justified by Proposition 2.6. Applying Lemma 3.8 to the last integral, the desired conclusion follows. \Box

Lemma 4.3. There is a constant $0 < C_{4.3} < \infty$ such that

$$|f(z)| \le C_{4.3} |r(z)|^{-(n+1)/2} ||f\chi_{D(z,1)}||$$

for all $f \in L_a^2(\Omega)$ and $z \in \Omega$, where $||f\chi_{D(z,1)}||$ is the norm of $f\chi_{D(z,1)}$ in $L^2(\Omega)$.

Proof. It is easy to see that the conclusion is trivial if $-r(z) \ge \theta$. Suppose that $-r(z) < \theta$. Then Proposition 2.4 provides a c > 0 such that

$$D(z,1) \supset z + \mathcal{P}((\bar{\partial}r)(z); c|r(z)|^{1/2}, c|r(z)|)$$

for every such z. Averaging on the polyball, for $f \in L^2_a(\Omega)$ we have

$$|f(z)| \le \frac{1}{v(\mathcal{P}((\bar{\partial}r)(z); c|r(z)|^{1/2}, c|r(z)|))} \int_{z+\mathcal{P}((\bar{\partial}r)(z); c|r(z)|^{1/2}, c|r(z)|)} |f| dv$$

Applying the Cauchy-Schwarz inequality on the right, the desired conclusion follows.

Lemma 4.4. Given any complex dimension $m \in \mathbb{N}$, there is a constant $0 < C_{4.4}(m) < \infty$ such that the following bound holds: Let $0 < \rho < \infty$ and define $B(\rho) = \{z \in \mathbb{C}^m : |z| < \rho\}$. Then for every $u \in \mathbb{C}^m$ with $|u| < \rho/2$ and every analytic function f on $B(\rho)$, we have

$$|f(u) - f(0)| \le \frac{|u|}{\rho} \cdot \frac{C_{4.4}(m)}{v_m(B(\rho))} \int_{B(\rho)} |f| dv_m.$$

Proof. By standard integration formulas on the ball, there is a C = C(m) such that

$$|(\partial_j g)(0)| \le \frac{C}{v_m(B(1))} \int_{B(1)} |g| dv_m$$
 (4.2)

for every analytic function g on $B(1) = \{z \in \mathbf{C}^m : |z| < 1\}$ and every $j \in \{1, ..., m\}$. Suppose that $u = (u_1, ..., u_m)$. If f is analytic on $B(\rho)$, then

$$f(u) - f(0) = \int_{0}^{1} \frac{d}{dt} f(tu) dt = \int_{0}^{1} \sum_{j=1}^{m} (\partial_{j} f)(tu) u_{j} dt.$$

Since $|u| < \rho/2$, for every $t \in [0,1]$ we have $tu + B(\rho/2) \subset B(\rho)$. From (4.2) and the scaling properties of ∂_j and dv_m we deduce

$$|(\partial_j f)(tu)| \le \frac{2}{\rho} \cdot \frac{C}{v_m(B(\rho/2))} \int_{tu+B(\rho/2)} |f| dv_m.$$

Since $v_m(B(\rho/2)) = 2^{-2m}v_m(B(\rho))$, we see that the constant $C_{4.4}(m) = m2^{2m+1}C$ will do for the lemma. \square

Lemma 4.5. There exist constants $0 < C_{4.5} < \infty$ and $0 < c_{4.5} < 1$ such that

$$|f(w) - f(z)| \le C_{4.5} d(z, w) |r(z)|^{-(n+1)/2} ||f\chi_{D(z,1)}||$$

for every pair of $z, w \in \Omega$ satisfying the condition $d(z, w) < c_{4.5}$ and every $f \in L^2_a(\Omega)$.

Proof. By Lemma 2.1, there is a $0 < \theta_1 < \theta$ such that if $-r(z) \ge \theta$ and $d(z, w) \le 1$, then $-r(w) \ge \theta_1$. Since $\{\zeta \in \Omega : -r(\zeta) \ge \theta_1\}$ is a compact subset of Ω , we see that the case $-r(z) \ge \theta$ is trivial.

Suppose that $-r(z) < \theta$. Then Proposition 2.4 provides a c > 0 such that

$$D(z,1) \supset z + \mathcal{P}((\bar{\partial}r)(z); c|r(z)|^{1/2}, c|r(z)|)$$
 (4.3)

for every such z. By Proposition 2.5, there is an $0 < \alpha < 1/2$ such that

$$D(z,\alpha) \subset z + \mathcal{P}((\bar{\partial}r)(z); (c/2)|r(z)|^{1/2}, (c/2)|r(z)|)$$
 (4.4)

for every such z. Set $c_{4.5} = \alpha$. Let $w \in \Omega$ be such that $d(z, w) < \alpha$. Then we can write w = z + x + y, where $x \perp (\bar{\partial}r)(z)$ and $y \in \{\eta(\bar{\partial}r)(z) : \eta \in \mathbf{C}\}$. By (4.4), we have $|x| < (c/2)|r(z)|^{1/2}$ and |y| < (c/2)|r(z)|.

Let $f \in L_a^2(\Omega)$ be given. Define $F(\xi) = f(z+\xi+y)$ for $\xi \perp (\bar{\partial}r)(z)$ with $|\xi| < c|r(z)|^{1/2}$. Applying Lemma 4.4 to the case where $\rho = c|r(z)|^{1/2}$, we have

$$|f(w) - f(z+y)| = |F(x) - F(0)| \le \frac{|x|}{c|r(z)|^{1/2}} \cdot \frac{C_{4.4}(n-1)}{v_{n-1}(B)} \int_{B} |F| dv_{n-1}, \tag{4.5}$$

where $B = \{ \xi \in \mathbf{C}^n : \langle \xi, (\bar{\partial}r)(z) \rangle = 0 \text{ and } |\xi| < c|r(z)|^{1/2} \}$. On the other hand, for every $\xi \in B$ we have

$$|F(\xi)| = |f(z+\xi+y)| \le \frac{1}{A(D((c/2)|r(z)|))} \int_{D((c/2)|r(z)|)} |f(z+\xi+y+\eta u_z)| dA(\eta),$$
(4.6)

where $u_z = (\bar{\partial}r)(z)/|(\bar{\partial}r)(z)|$ and $D((c/2)|r(z)|) = \{\eta \in \mathbf{C} : |\eta| < (c/2)|r(z)|\}$. Note that $v_{n-1}(B) = c_{n-1}(c|r(z)|^{1/2})^{2n-2} = a_1|r(z)|^{n-1}$. Combining (4.5), (4.6) and (4.3), we obtain

$$|f(w) - f(z+y)| \le \frac{|x|}{|r(z)|^{1/2}} \cdot \frac{C_1}{|r(z)|^{n+1}} \int_{D(z,1)} |f| dv.$$

Applying the Cauchy-Schwarz inequality and Proposition 2.6, we have

$$|f(w) - f(z+y)| \le \frac{|x|}{|r(z)|^{1/2}} \cdot \frac{C_1 \sqrt{v(D(z,1))}}{|r(z)|^{n+1}} ||f\chi_{D(z,1)}|| \le \frac{|x|}{|r(z)|^{1/2}} \cdot \frac{C_2 ||f\chi_{D(z,1)}||}{|r(z)|^{(n+1)/2}}.$$

Since $d(z, w) < \alpha$ and $\alpha < 1/2$, Lemma 2.2(1) gives us that $|x|/|r(z)|^{1/2} \le C_3 d(z, w)$. Hence

$$|f(w) - f(z+y)| \le C_4 d(z,w)|r(z)|^{-(n+1)/2} ||f\chi_{D(z,1)}||.$$
 (4.7)

Next we show that

$$|f(z+y) - f(z)| \le C_5 d(z,w)|r(z)|^{-(n+1)/2} ||f\chi_{D(z,1)}||, \tag{4.8}$$

which together with (4.7) will complete the proof of the lemma.

To prove (4.8), we write $y = \beta u_z$, where $\beta \in \mathbf{C}$. Define $G(\eta) = f(z + \eta u_z)$ for $\eta \in \mathbf{C}$ with $|\eta| < c|r(z)|$. Now, applying Lemma 4.4 to the case where $\rho = c|r(z)|$, we have

$$|f(z+y) - f(z)| = |G(\beta) - G(0)| \le \frac{|\beta|}{c|r(z)|} \cdot \frac{C_{4.4}(1)}{A(D(c|r(z)|))} \int_{D(c|r(z)|)} |G|dA, \quad (4.9)$$

where $D(c|r(z)|) = \{ \eta \in \mathbf{C} : |\eta| < c|r(z)| \}$. For each $\eta \in D(c|r(z)|)$ we have

$$|G(\eta)| = |f(z + \eta u_z)| \le \frac{1}{v_{n-1}(B)} \int_{B} |f(z + \xi + \eta u_z)| dv_{n-1}(\xi), \tag{4.10}$$

where $B = \{ \xi \in \mathbf{C}^n : \langle \xi, (\bar{\partial}r)(z) \rangle = 0 \text{ and } |\xi| < c|r(z)|^{1/2} \}$. Note that $|\beta| = |y|$. Thus (4.9), (4.10) and (4.3) together give us

$$|f(z+y) - f(z)| \le \frac{|y|}{|r(z)|} \cdot \frac{C_6}{|r(z)|^{n+1}} \int_{D(z,1)} |f| dv.$$

Since $d(z, w) < \alpha$ and $\alpha < 1/2$, Lemma 2.2 implies that $|y|/|r(z)| \le C_7 d(z, w)$. Applying the Cauchy-Schwarz inequality and Proposition 2.6 on the right-hand side, we obtain (4.8). This completes the proof. \square

Proposition 4.6. There is a constant $C_{4.6}$ such that if $z, w \in \Omega$ satisfies the condition $d(z, w) < c_{4.5}$, where $c_{4.5}$ was given in Lemma 4.5, then

$$|\langle f, k_z - k_w \rangle| \le C_{4.6} d(z, w) ||f \chi_{D(z, 1)}||$$

for every $f \in L_a^2(\Omega)$. Consequently, if $d(z, w) < c_{4.5}$, then $||k_z - k_w|| \le C_{4.6}d(z, w)$.

Proof. Write $K_z(\zeta) = K(\zeta, z)$, the unnormalized reproducing kernel. Note that Lemma 4.5 implies that $||K_z - K_w|| \le C_{4.5} d(z, w) |r(z)|^{-(n+1)/2}$ if $d(z, w) < c_{4.5}$. Therefore

$$|||K_z|| - ||K_w||| \le C_{4.5} d(z, w) |r(z)|^{-(n+1)/2}$$
 if $d(z, w) < c_{4.5}$.

Combining this with (4.1), the condition $d(z, w) < c_{4.5}$, and Lemma 2.1, we obtain

$$|||K_z||^{-1} - ||K_w||^{-1}| = \frac{|||K_z|| - ||K_w|||}{||K_z|| ||K_w||} \le C_1 d(z, w) |r(z)|^{(n+1)/2}$$
(4.11)

when $d(z, w) < c_{4.5}$. Let $f \in L_a^2(\Omega)$. Then

$$\langle f, k_z - k_w \rangle = f(z) \|K_z\|^{-1} - f(w) \|K_w\|^{-1}$$

= $(f(z) - f(w)) \|K_w\|^{-1} + f(z) (\|K_z\|^{-1} - \|K_w\|^{-1}).$ (4.12)

Applying Lemma 4.5, we have

$$|f(z) - f(w)| ||K_w||^{-1} \le C_{4.5} d(z, w) |r(z)|^{-(n+1)/2} ||f\chi_{D(z,1)}|| ||K_w||^{-1}$$

$$\le C_2 d(z, w) ||f\chi_{D(z,1)}||, \tag{4.13}$$

where the second \leq follows from (4.1), the condition $d(z, w) < c_{4.5}$, and Lemma 2.1. On the other hand, Lemma 4.3 tells us that

$$|f(z)| \le C_{4.3}|r(z)|^{-(n+1)/2}||f\chi_{D(z,1)}||.$$

Combining this with (4.11), we obtain

$$|f(z)|||K_z||^{-1} - ||K_w||^{-1}| \le C_1 C_{4.3} d(z, w) ||f\chi_{D(z, 1)}||.$$
(4.14)

Obviously, the lemma follows from (4.12), (4.13) and (4.14). \square

Lemma 4.7. There is a $c_{4.7} > 0$ such that for any pair of $z, w \in \Omega$, if $d(z, w) \le c_{4.7}$, then $|\langle k_z, k_w \rangle| \ge 1/2$.

Proof. We have $1 - \operatorname{Re}\langle k_z, k_w \rangle = 2^{-1} ||k_z - k_w||^2$. By Proposition 4.6, there is a $c_{4.7} > 0$ such that for any pair of $z, w \in \Omega$, if $d(z, w) \leq c_{4.7}$, then $||k_z - k_w|| \leq 1$. Thus if $d(z, w) \leq c_{4.7}$, then $1 - \operatorname{Re}\langle k_z, k_w \rangle \leq 1/2$, which implies $|\langle k_z, k_w \rangle| \geq 1/2$. \square

5. Discrete sums

We now consider operators constructed from the Bergman kernel.

Lemma 5.1. There is a constant $0 < C_{5.1} < \infty$ such that the following estimate holds: Let Γ be any 1-separated set in Ω . Suppose that $\{e_z : z \in \Gamma\}$ is an orthonormal set and $\{c_z : z \in \Gamma\}$ is a bounded set of complex coefficients. Then

$$\left\| \sum_{z \in \Gamma} c_z k_z \otimes e_z \right\| \le C_{5.1} \sup_{z \in \Gamma} |c_z|.$$

Proof. Given such Γ , $\{e_z : z \in \Gamma\}$ and $\{c_z : z \in \Gamma\}$, define the operator

$$A = \sum_{z \in \Gamma} c_z k_z \otimes e_z.$$

Then for every $f \in L_a^2(\Omega)$ we have

$$A^* f = \sum_{z \in \Gamma} \bar{c}_z ||K_z||^{-1} f(z) e_z.$$

From Lemma 4.3 and (4.1) we obtain

$$\|A^*f\|^2 \leq C_{4.3}^2 \sum_{z \in \Gamma} |c_z|^2 \|K_z\|^{-2} |r(z)|^{-n-1} \|f\chi_{D(z,1)}\|^2 \leq (C_{4.3}^2/c) \sup_{z \in \Gamma} |c_z|^2 \|f\|^2.$$

Since $f \in L_a^2(\Omega)$ is arbitrary, this means that $||A|| = ||A^*|| \le c^{-1/2}C_{4.3}\sup_{z \in \Gamma} |c_z|$. \square

Lemma 5.2. Let Γ be a 1-separated set in Ω . Suppose that for every $z \in \Gamma$, we have a $\zeta(z) \in \Omega$ with $d(z, \zeta(z)) < c_{4.5}$. Then for every orthonormal set $\{e_z : z \in \Gamma\}$ and for every bounded set of complex coefficients $\{c_z : z \in \Gamma\}$, we have

$$\left\| \sum_{z \in \Gamma} c_z k_z \otimes e_z - \sum_{z \in \Gamma} c_z k_{\zeta(z)} \otimes e_z \right\| \le C_{4.6} \sup_{z \in \Gamma} |c_z| d(z, \zeta(z)).$$

Proof. Write

$$D = \sum_{z \in \Gamma} c_z k_z \otimes e_z - \sum_{z \in \Gamma} c_z k_{\zeta(z)} \otimes e_z = \sum_{z \in \Gamma} c_z (k_z - k_{\zeta(z)}) \otimes e_z.$$

For any $f \in L_a^2(\Omega)$, we have

$$D^*f = \sum_{z \in \Gamma} \bar{c}_z \langle f, k_z - k_{\zeta(z)} \rangle e_z.$$

Applying Proposition 4.6, if $d(z, \zeta(z)) < c_{4.5}$ for every $z \in \Gamma$, then

$$\begin{split} \|D^*f\|^2 &= \sum_{z \in \Gamma} |\bar{c}_z \langle f, k_z - k_{\zeta(z)} \rangle|^2 \leq C_{4.6}^2 \sum_{z \in \Gamma} |c_z|^2 d^2(z, \zeta(z)) \|f\chi_{D(z, 1)}\|^2 \\ &\leq C_{4.6}^2 \sup_{z \in \Gamma} |c_z|^2 d^2(z, \zeta(z)) \|f\|^2. \end{split}$$

Since $f \in L_a^2(\Omega)$ is arbitrary, this implies $||D|| = ||D^*|| \le C_{4.6} \sup_{z \in \Gamma} |c_z| d(z, \zeta(z))$. \square

Corollary 5.3. Given any a > 0, $0 \le C < \infty$ and $\epsilon > 0$, there is a $\delta > 0$ such that the following estimate holds: Let Γ be an a-separated set in Ω . Suppose that φ , φ' , ψ and ψ' are maps from Γ into Ω . If the inequalities

$$d(z,\varphi(z)) \leq C, \quad d(z,\psi(z)) \leq C, \quad d(\varphi(z),\varphi'(z)) \leq \delta, \quad d(\psi(z),\psi'(z)) \leq \delta$$

hold for every $z \in \Gamma$, then for any bounded set of coefficients $\{c_z : z \in \Gamma\}$ we have

$$\left\| \sum_{z \in \Gamma} c_z k_{\varphi(z)} \otimes k_{\psi(z)} - \sum_{z \in \Gamma} c_z k_{\varphi'(z)} \otimes k_{\psi'(z)} \right\| \le \epsilon \sup_{z \in \Gamma} |c_z|.$$

Proof. For $z, w \in \Gamma$, if d(z, w) > 2C + 2, then $d(\varphi(z), \varphi(w)) > 2$ and $d(\psi(z), \psi(w)) > 2$. By Lemma 2.11, there is an $N \in \mathbb{N}$ determined by a and C such that Γ admits a partition

$$\Gamma = \Gamma_1 \cup \cdots \cup \Gamma_N$$

with the property that for each $j \in \{1, ..., N\}$, the sets $\{\varphi(z) : z \in \Gamma_j\}$ and $\{\psi(z) : z \in \Gamma_j\}$ are 1-separated. Pick an orthonormal set $\{e_z : z \in \Gamma\}$. Fixing a $j \in \{1, ..., N\}$ for the moment, we have

$$\sum_{z \in \Gamma_j} c_z k_{\varphi(z)} \otimes k_{\psi(z)} - \sum_{z \in \Gamma_j} c_z k_{\varphi'(z)} \otimes k_{\psi'(z)} = AB^* - A'B'^*,$$

where

$$A = \sum_{z \in \Gamma_j} c_z k_{\varphi(z)} \otimes e_z, \quad B = \sum_{z \in \Gamma_j} k_{\psi(z)} \otimes e_z,$$
$$A' = \sum_{z \in \Gamma_j} c_z k_{\varphi'(z)} \otimes e_z, \quad B' = \sum_{z \in \Gamma_j} k_{\psi'(z)} \otimes e_z.$$

We have

$$AB^* - A'B'^* = (A - A')B^* + A'(B^* - B'^*).$$

Since $\{\varphi(z):z\in\Gamma_j\}$ and $\{\psi(z):z\in\Gamma_j\}$ are 1-separated, if we apply Lemma 5.2 to A-A' and B-B' and Lemma 5.1 to B and A', we see that

$$||AB^* - A'B'^*|| \le \frac{\epsilon}{N} \sup_{z \in \Gamma} |c_z|$$

when δ is sufficiently small. This completes the proof. \Box

6. Operators in the Toeplitz algebra \mathcal{T}

Define the measure

$$d\tilde{\mu}(w) = K(w, w)dv(w)$$

on Ω . Compared with the measure $d\mu$ defined by (2.6), (4.1) tells us that $c\mu(E) \leq \tilde{\mu}(E) \leq C\mu(E)$ for each Borel set E. Given an $f \in L^{\infty}(\Omega)$, we have the integral representation

$$T_f = \int f(w)k_w \otimes k_w d\tilde{\mu}(w) \tag{6.1}$$

for the Toeplitz operator T_f . This formula is obtained by direct verification. Starting from this representation, we will show that the Toeplitz algebra \mathcal{T} contains certain classes of operators. The two main steps in the section are Propositions 6.4 and 6.6 below.

Proposition 6.1. Suppose that Γ is a separated set in Ω and that $\{c_z : z \in \Gamma\}$ is a bounded set of complex coefficients. Then the operator

$$\sum_{z \in \Gamma} c_z k_z \otimes k_z$$

belongs to the closure of $\{T_f: f \in L^{\infty}(\Omega)\}$ with respect to the operator norm.

Proof. By Lemma 2.11, we may assume that Γ is 1-separated. Let $\epsilon > 0$ be given. Since $\sup_{z \in \Gamma} |c_z| < \infty$, it follows from Corollary 5.3 that there is a $\delta > 0$ such that

$$\left\| \sum_{z \in \Gamma} c_z k_z \otimes k_z - \sum_{z \in \Gamma} c_z k_{\zeta(z)} \otimes k_{\zeta(z)} \right\| \le \epsilon \tag{6.2}$$

if $\zeta(z) \in D(z, \delta)$ for every $z \in \Gamma$. We may, of course, assume that $\delta < 1$, consequently $D(z, \delta) \cap D(w, \delta) = \emptyset$ for all $z \neq w$ in Γ .

Define the function

$$\varphi = \sum_{z \in \Gamma} \frac{c_z}{\tilde{\mu}(D(z,\delta))} \chi_{D(z,\delta)}$$
(6.3)

on Ω . By (4.1) and Proposition 2.6, there is an $\beta > 0$ such that $\tilde{\mu}(D(z,\delta)) \geq \beta$ for every $z \in \Omega$. Hence $\varphi \in L^{\infty}(\Omega)$. We will show that

$$\left\| \sum_{z \in \Gamma} c_z k_z \otimes k_z - T_{\varphi} \right\| \le \epsilon. \tag{6.4}$$

To prove this, we define the measure $d\nu_z = \{\tilde{\mu}(D(z,\delta))\}^{-1}\chi_{D(z,\delta)}d\tilde{\mu}$ for every $z \in \Gamma$. Then it follows from (6.1) and (6.3) that

$$T_{\varphi} = \sum_{z \in \Gamma} c_z \int k_w \otimes k_w d\nu_z(w).$$

Note that each $d\nu_z$ is a probability measure concentrated on $D(z, \delta)$. Hence $d\nu_z$ is in the weak-* closure of convex combinations of unit point masses on $D(z, \delta)$. Therefore T_{φ} is the limit in weak operator topology of operators of the form

$$T = \frac{1}{k} \sum_{j=1}^{k} \sum_{z \in \Gamma} c_z k_{\zeta(z;j)} \otimes k_{\zeta(z;j)},$$

where $k \in \mathbb{N}$ and $\zeta(z; j) \in D(z, \delta)$ for all $z \in \Gamma$ and $j \in \{1, ..., k\}$. By (6.2),

$$\left\| \sum_{z \in \Gamma} c_z k_z \otimes k_z - T \right\| \le \frac{1}{k} \sum_{j=1}^k \left\| \sum_{z \in \Gamma} c_z k_z \otimes k_z - \sum_{z \in \Gamma} c_z k_{\zeta(z;j)} \otimes k_{\zeta(z;j)} \right\| \le \epsilon. \tag{6.5}$$

Since T_{φ} is the weak limit of such T's, it follows that

$$\sum_{z\in\Gamma} c_z k_z \otimes k_z - T_\varphi \ \text{ is the weak limit of operators of the form } \ \sum_{z\in\Gamma} c_z k_z \otimes k_z - T.$$

Therefore (6.4) follows from (6.5). Since $\epsilon > 0$ is arbitrary, this completes the proof. \Box

Next we remind the reader of a well-known fact:

Proposition 6.2. [22, Theorem 4.1.25] The Toeplitz algebra \mathcal{T} contains \mathcal{K} , the collection of compact operators on the Bergman space $L_a^2(\Omega)$.

Definition 6.3. (a) Let \mathcal{D}_0 denote the collection of operators of the form

$$\sum_{z\in\Gamma}c_zk_z\otimes k_{\gamma(z)},$$

where Γ is any separated set in Ω , $\{c_z : z \in \Gamma\}$ is any bounded set of complex coefficients, and $\gamma : \Gamma \to \Omega$ is any map for which there is a $0 \le C < \infty$ such that

$$d(z, \gamma(z)) \le C$$

for every $z \in \Gamma$.

- (b) Let \mathcal{D} denote the closure of the linear span of \mathcal{D}_0 with respect to the operator norm.
- (c) For any $A \in \mathcal{B}(L_a^2(\Omega)), \mathcal{D}_0(A)$ denotes the collection of operators of the form

$$\sum_{z \in \Gamma} c_z \langle Ak_{\psi(z)}, k_{\varphi(z)} \rangle k_{\varphi(z)} \otimes k_{\psi(z)},$$

where Γ is a separated set in Ω , $\{c_z : z \in \Gamma\}$ is a bounded set of coefficients, and $\varphi, \psi : \Gamma \to \Omega$ are maps for which there is a $0 \le C < \infty$ such that $d(z, \varphi(z)) \le C$ and $d(z, \psi(z)) \le C$ for every $z \in \Gamma$.

(d) For any $A \in \mathcal{B}(L_a^2(\Omega))$, $\mathcal{D}(A)$ denotes the closure of the linear span of $\mathcal{D}_0(A)$ with respect to the operator norm.

Proposition 6.4. We have the inclusion $\mathcal{D}_0 \subset \mathcal{T}$. Consequently, $\mathcal{D} \subset \mathcal{T}$.

Proof. Let Γ , $\{c_z : z \in \Gamma\}$, γ and C be as described in Definition 6.3(a), and consider

$$T = \sum_{z \in \Gamma} c_z k_z \otimes k_{\gamma(z)}.$$

To show that $T \in \mathcal{T}$, by Lemma 2.11, we may assume that

$$d(z,w) > 4C + 2 \quad \text{for all} \ \ z \neq w \quad \text{in} \quad \Gamma. \tag{6.6}$$

For each $z \in \Gamma$, since $d(z, \gamma(z)) \leq C$, by (2.4) there is a C^1 map $g_z : [0, 1] \to \Omega$ such that $g_z(0) = z$, $g_z(1) = \gamma(z)$, and such that the number

$$\ell_z = \int_0^1 \sqrt{\langle \mathcal{B}(g_z(t))g_z'(t), g_z'(t)\rangle} dt$$

satisfies the condition $\ell_z \leq 2C$. Pick a $k \in \mathbb{N}$ such that $2C/k < \min\{a_0, c_{4.7}\}$, where a_0 and $c_{4.7}$ are the constants in Lemmas 3.10 and 4.7 respectively. For each $z \in \Gamma$, there are

$$0 = x(z,0) \le x(z,1) \le \dots \le x(z,k-1) \le x(z,k) = 1$$

such that

$$\int\limits_{0}^{x(z,j)}\sqrt{\langle\mathcal{B}(g_{z}(t))g_{z}'(t),g_{z}'(t)\rangle}dt=\frac{j}{k}\ell_{z}$$

for j = 0, 1, ..., k. For each pair of $z \in \Gamma$ and $j \in \{0, 1, ..., k\}$, we now define

$$\gamma_j(z) = g_z(x(z,j)).$$

We have $\gamma_0(z) = z$ and $\gamma_k(z) = \gamma(z)$, $z \in \Gamma$. Since $\ell_z \leq 2C$, for all $0 \leq j < k$ and $z \in \Gamma$,

$$d(\gamma_j(z), \gamma_{j+1}(z)) \le \int_{x(z,j)}^{x(z,j+1)} \sqrt{\langle \mathcal{B}(g_z(t))g_z'(t), g_z'(t)\rangle} dt = \ell_z/k < \min\{a_0, c_{4.7}\}.$$

By Lemma 4.7, this ensures that

$$|\langle k_{\gamma_j(z)}, k_{\gamma_{j+1}(z)} \rangle| \ge 1/2 \tag{6.7}$$

for all $0 \le j < k$ and $z \in \Gamma$.

To prove that $T \in \mathcal{T}$, it suffices to show that for every $j \in \{0, 1, ..., k\}$ and every subset E of Γ , we have

$$\sum_{z \in F} c_z k_z \otimes k_{\gamma_j(z)} \in \mathcal{T}. \tag{6.8}$$

We will accomplish this by an induction on j. Since $\gamma_0(z)=z$ for every $z\in\Gamma$, the case j=0 follows from Proposition 6.1. Suppose now that $0\leq j< k$ and that (6.8) holds for this j and for every $E\subset\Gamma$. To simplify notation, for every $S\subset\Gamma$, let us denote

$$X_S = \sum_{z \in S} c_z k_z \otimes k_{\gamma_j(z)} \quad \text{and} \quad Y_S = \sum_{z \in S} \frac{1}{\langle k_{\gamma_{j+1}(z)}, k_{\gamma_j(z)} \rangle} k_{\gamma_{j+1}(z)} \otimes k_{\gamma_{j+1}(z)}.$$

By the induction hypothesis, we have $X_S \in \mathcal{T}$. By (6.7) and Proposition 6.1, we also have $Y_S \in \mathcal{T}$. Therefore $X_S Y_S \in \mathcal{T}$ for every $S \subset \Gamma$. To complete the induction, it suffices to show that given $E \subset \Gamma$ and $\epsilon > 0$, there is a finite partition $E = S_1 \cup \cdots \cup S_N$ such that

$$\left\| X_{S_1} Y_{S_1} + \dots + X_{S_N} Y_{S_N} - \sum_{z \in E} c_z k_z \otimes k_{\gamma_{j+1}(z)} \right\| \le \epsilon.$$
 (6.9)

To see how this is done, first note that for any partition $E = S_1 \cup \cdots \cup S_N$,

$$X_{S_1}Y_{S_1} + \dots + X_{S_N}Y_{S_N} - \sum_{z \in E} c_z k_z \otimes k_{\gamma_{j+1}(z)}$$

$$= \sum_{\nu=1}^N \sum_{\substack{z,w \in S_\nu \\ z \neq w}} c_z \frac{\langle k_{\gamma_{j+1}(w)}, k_{\gamma_j(z)} \rangle}{\langle k_{\gamma_{j+1}(w)}, k_{\gamma_j(w)} \rangle} k_z \otimes k_{\gamma_{j+1}(w)} = UWV^*,$$

where

$$U = \sum_{z \in E} c_z k_z \otimes e_z, \quad V = \sum_{z \in E} k_{\gamma_{j+1}(z)} \otimes e_z \quad \text{and}$$

$$W = \sum_{\nu=1}^{N} \sum_{\substack{z,w \in S_{\nu} \\ z \neq w}} \frac{\langle k_{\gamma_{j+1}(w)}, k_{\gamma_{j}(z)} \rangle}{\langle k_{\gamma_{j+1}(w)}, k_{\gamma_{j}(w)} \rangle} e_z \otimes e_w,$$

where $\{e_z : z \in E\}$ is an orthonormal set.

By (6.6), $\{\gamma_{j+1}(z):z\in E\}$ is a 1-separated set. Thus Lemma 5.1 provides the bound $\|V\|\leq C_{5.1}$. Similarly, $\|U\|\leq C_{5.1}c$, where $c=\sup_{z\in\Gamma}|c_z|$. Consequently

$$\left\| X_{S_1} Y_{S_1} + \dots + X_{S_N} Y_{S_N} - \sum_{z \in E} c_z k_z \otimes k_{\gamma_{j+1}(z)} \right\| \le C_{5,1}^2 c \|W\|.$$
 (6.10)

Thus we need to find a partition $E = S_1 \cup \cdots \cup S_N$ such that ||W|| is small. To do this, consider an $R > 3C_{3.7} + 1$, whose value will be determined below. By Lemma 2.11, there is a partition $E = S_1 \cup \cdots \cup S_N$ such that for every $\nu \in \{1, \ldots, N\}$, the conditions $z, w \in S_{\nu}$ and $z \neq w$ imply d(z, w) > R. With S_1, \ldots, S_N so chosen, we define

$$\mathcal{F} = \bigcup_{\nu=1}^{N} \{ (z, w) \in S_{\nu} \times S_{\nu} : z \neq w \}.$$

We can rewrite W in the form

$$W = \sum_{(z,w)\in E\times E} a(z,w)e_z \otimes e_w,$$

where

$$a(z, w) = \begin{cases} \frac{\langle k_{\gamma_{j+1}(w)}, k_{\gamma_{j}(z)} \rangle}{\langle k_{\gamma_{j+1}(w)}, k_{\gamma_{j}(w)} \rangle} & \text{if} \quad (z, w) \in \mathcal{F} \\ 0 & \text{if} \quad (z, w) \notin \mathcal{F} \end{cases}.$$

Recall that $d(\gamma_p(z), \gamma_{p+1}(z)) < a_0$ for all $z \in \Gamma$ and $0 \le p < k$. Recalling (6.7) and applying Theorem 4.1 and Lemmas 3.1, 2.1, and Lemma 3.10 multiple times, we obtain

$$|a(z,w)| \le 2 \frac{|K(\gamma_j(z), \gamma_{j+1}(w))|}{\|K_{\gamma_{j+1}(w)}\| \|K_{\gamma_j(z)}\|} \le C_1 \left(\frac{|r(\gamma_j(z))|^{1/2}|r(\gamma_{j+1}(w))|^{1/2}}{F(\gamma_j(z), \gamma_{j+1}(w))}\right)^{n+1}$$

$$\le C_2 \left(\frac{|r(z)|^{1/2}|r(w)|^{1/2}}{F(z,w)}\right)^{n+1}$$

for $(z, w) \in \mathcal{F}$. Pick an $\eta \in (0, 1/2)$ and define $h(w) = |r(w)|^{(n/2)+\eta}$, $w \in \Gamma$. If $(z, w) \in \mathcal{F}$, then d(z, w) > R by design. Since E is 1-separated, it follows from Lemma 4.2 that

$$\sum_{w \in E} |a(z, w)| h(w) \le C_2 \sum_{w \in E \setminus D(z, R)} |r(w)|^{(n/2) + \eta} \left(\frac{|r(z)|^{1/2} |r(w)|^{1/2}}{F(z, w)} \right)^{n+1} \le \frac{C_2 C_{4.2}}{2^{sR}} h(z)$$

for every $z \in E$. A similar inequality holds for $\sum_{z \in E} |a(z,w)| h(z)$, $w \in E$. By the standard Schur test, we conclude that $||W|| \leq C_2 C_{4.2} 2^{-sR}$. Recalling (6.10), we see that (6.9) holds if we pick $R > 3C_{3.7} + 1$ such that $C_{5.1}^2 cC_2 C_{4.2} 2^{-sR} \leq \epsilon$. This completes the proof. \square

Following the ideas in [28], we will now generalize the notion of localized operators to strongly pseudo-convex domains.

Definition 6.5. Let A be a bounded operator on the Bergman space $L_a^2(\Omega)$. Then LOC(A) denotes the collection of operators of the form

$$T = \sum_{z \in \Gamma} T_{f_z} A T_{f_z}, \tag{6.11}$$

where Γ is any separated set in Ω and $\{f_z : z \in \Gamma\}$ is any family of continuous functions on Ω satisfying the following three conditions:

- (1) There is a $0 < \rho < \infty$ such that $f_z = 0$ on $\Omega \setminus D(z, \rho)$ for every $z \in \Gamma$.
- (2) The inequality $0 \le f_z \le 1$ holds on Ω for every $z \in \Gamma$.

(3) The family $\{f_z: z \in \Gamma\}$ satisfies a uniform Lipschitz condition on Ω with respect to the metric d. That is, there is a $0 < C < \infty$ such that $|f_z(\zeta) - f_z(\xi)| \le Cd(\zeta, \xi)$ for all $z \in \Gamma$ and $\zeta, \xi \in \Omega$.

Proposition 6.6. For every bounded operator A on $L_a^2(\Omega)$, we have $LOC(A) \subset \mathcal{D}(A)$.

Proof. Let A be a bounded operator on $L_a^2(\Omega)$, and consider a T given by (6.11). To prove that $T \in \mathcal{D}(A)$, by Lemma 2.11, we may assume that Γ is 1-separated. For convenience, let us define the product measure $\nu = \tilde{\mu} \times \tilde{\mu}$ on $\Omega \times \Omega$. By (6.1), for each $z \in \Gamma$ we have

$$T_{f_z}AT_{f_z} = \iint h_z(u,v)k_u \otimes k_v d\nu(u,v), \qquad (6.12)$$

where

$$h_z(u,v) = f_z(u)f_z(v)\langle Ak_v, k_u \rangle. \tag{6.13}$$

By condition (1) above, h_z vanishes on the complement of $D(z, \rho) \times D(z, \rho)$. It follows from Proposition 4.6 and condition (3) above that for any a > 0, there is a b > 0 such that

$$\sup_{z \in \Gamma} |h_z(u, v) - h_z(u', v')| \le a \quad \text{if} \ d(u, u') \le b \ \text{and} \ d(v, v') \le b. \tag{6.14}$$

The rest of the proof is divided into two steps.

Step I. We first show that for any $\epsilon > 0$, there is a $0 < \delta \le \rho$ such that the following holds true: Suppose that Λ is a subset of Γ . For each $z \in \Lambda$, let $\varphi(z), \psi(z) \in D(z, \rho)$. For each $z \in \Lambda$, suppose that we have a Borel set $E_z = F_z \times G_z$ with $F_z \subset D(\varphi(z), \delta)$, $G_z \subset D(\psi(z), \delta)$ and $\nu(E_z) > 0$. Finally, for each $z \in \Lambda$, let $a_z \in [0, 2]$. Then

$$\left\| \sum_{z \in \Lambda} \frac{a_z}{\nu(E_z)} \iint_{E_z} h_z(u, v) k_u \otimes k_v d\nu(u, v) - \sum_{z \in \Lambda} a_z h_z(\varphi(z), \psi(z)) k_{\varphi(z)} \otimes k_{\psi(z)} \right\| \le \epsilon.$$
(6.15)

To prove this, denote

$$W = \sum_{z \in \Lambda} \frac{a_z}{\nu(E_z)} \iint_{E_z} h_z(u, v) k_u \otimes k_v d\nu(u, v) \quad \text{and}$$
$$Z = \sum_{z \in \Lambda} a_z h_z(\varphi(z), \psi(z)) k_{\varphi(z)} \otimes k_{\psi(z)}.$$

Note that for each $z \in \Lambda$, $\{\chi_{E_z}/\nu(E_z)\}d\nu$ is a probability measure concentrated on E_z . Thus it is in the weak-* closure of convex combinations of unit point masses on E_z . Consequently W is in the closure in weak operator topology of operators of the form

$$W' = \frac{1}{k} \sum_{j=1}^{k} \sum_{z \in \Lambda} a_z h_z(u(z;j), v(z;j)) k_{u(z;j)} \otimes k_{v(z;j)},$$

where $k \in \mathbb{N}$ and, for each $1 \leq j \leq k$, we have $(u(z;j), v(z;j)) \in E_z$, i.e., $u(z;j) \in F_z$ and $v(z;j) \in G_z$, $z \in \Lambda$. It is easy to see that

$$W' - Z = \frac{1}{k} \sum_{j=1}^{k} (X_j + Y_j),$$

where

$$\begin{split} X_j &= \sum_{z \in \Lambda} a_z \{h_z(u(z;j),v(z;j)) - h_z(\varphi(z),\psi(z))\} k_{u(z;j)} \otimes k_{v(z;j)} \quad \text{and} \\ Y_j &= \sum_{z \in \Lambda} a_z h_z(\varphi(z),\psi(z)) k_{u(z;j)} \otimes k_{v(z;j)} - \sum_{z \in \Lambda} a_z h_z(\varphi(z),\psi(z)) k_{\varphi(z)} \otimes k_{\psi(z)}. \end{split}$$

From (6.14) and Lemmas 2.11 and 5.1 we see that there is a $\delta_1 > 0$ such that $||X_j|| \le \epsilon/2$ for every $1 \le j \le k$ if $\delta \le \delta_1$. By Corollary 5.3, there is a $\delta_2 > 0$ such that $||Y_j|| \le \epsilon/2$ for every $1 \le j \le k$ if $\delta \le \delta_2$. Hence for any $0 < \delta \le \min\{\delta_1, \delta_2, \rho\}$, we have $||W' - Z|| \le \epsilon$. Since W - Z is the weak limit of operators of the form W' - Z, we have $||W - Z|| \le \epsilon$ for any choice of $0 < \delta \le \min\{\delta_1, \delta_2, \rho\}$. This proves (6.15) and completes Step I.

Step II. Recall that $\nu = \tilde{\mu} \times \tilde{\mu}$. By (4.1) and Proposition 2.6, there is an $N \in \mathbb{N}$ such that $N \geq \nu(D(w, 2\rho) \times D(w, 2\rho))$ for every $w \in \Omega$. Let $\epsilon > 0$ be given. We will now find a $B \in \text{span}(\mathcal{D}_0(A))$ such that

$$||T - B|| \le N\epsilon. \tag{6.16}$$

Since $\epsilon > 0$ is arbitrary, this will imply the membership $T \in \mathcal{D}(A)$. To find such a $B \in \text{span}(\mathcal{D}_0(A))$, let δ be the number provided for this ϵ in Step I. For each $z \in \Gamma$, there is a subset S_z in $D(z, \rho)$ that is maximal with respect to the property

$$D(x, \delta/2) \cap D(y, \delta/2) = \emptyset$$
 for all $x \neq y$ in S_z .

By Proposition 2.6 and the fact that $\mu(D(z,2\rho)) < \infty$, we see that S_z is a finite set, and consequently we can represent it in the form $S_z = \{\varphi(z;1), \ldots, \varphi(z;m(z))\}$ with some $m(z) \in \mathbf{N}$. The maximality of S_z implies that $\bigcup_{j=1}^{m(z)} D(\varphi(z;j),\delta) \supset D(z,\rho)$. Thus for each $z \in \Gamma$, a standard set-theoretical argument gives us Borel sets

$$F(z;1),\ldots,F(z;m(z))$$

with the following properties:

- (i) $D(\varphi(z;j),\delta/2) \subset F(z;j) \subset D(\varphi(z;j),\delta)$ for each $j \in \{1,\ldots,m(z)\}$.
- (ii) $F(z;i) \cap F(z;j) = \emptyset$ for all $i \neq j$ in $\{1,\ldots,m(z)\}$.

(iii)
$$D(z,\rho) \subset \bigcup_{j=1}^{m(z)} F(z;j) \subset D(z,2\rho).$$

We now define $E_{z;i,j} = F(z;i) \times F(z;j)$ for $z \in \Gamma$ and $i,j \in \{1,\ldots,m(z)\}$.

Let $z \in \Gamma$. Since h_z vanishes on $(\Omega \times \Omega) \setminus (D(z, \rho) \times D(z, \rho))$, (iii) and (ii) imply

$$T_{f_z} A T_{f_z} = \sum_{i=1}^{m(z)} \sum_{j=1}^{m(z)} \iint_{E_{z;i,j}} h_z(u,v) k_u \otimes k_v d\nu(u,v).$$
 (6.17)

By (i) and Proposition 2.6, there is a $k \in \mathbb{N}$ such that $1/k < \nu(E_{z;i,j})$ for all $z \in \Gamma$ and $i, j \in \{1, \ldots, m(z)\}$. For such a triple of z, i, j, we let p(z; i, j) be the largest natural number satisfying the condition $p(z; i, j)/k \le \nu(E_{z;i,j})$. Define

$$a(z; i, j) = \frac{k}{p(z; i, j)} \nu(E_{z; i, j})$$

for $z \in \Gamma$ and $i, j \in \{1, \ldots, m(z)\}$. Then $0 < a(z; i, j) \le 2$, because the definition of p(z; i, j) ensures that $\{p(z; i, j) + 1\}/k > \nu(E_{z;i,j})$. We can now rewrite (6.17) in the form

$$T_{f_z}AT_{f_z} = \frac{1}{k} \sum_{i=1}^{m(z)} \sum_{j=1}^{m(z)} p(z;i,j) \frac{a(z;i,j)}{\nu(E_{z;i,j})} \iint_{E_{z;i,j}} h_z(u,v) k_u \otimes k_v d\nu(u,v).$$
(6.18)

On the other hand, for every $z \in \Gamma$, we have

$$\sum_{i=1}^{m(z)} \sum_{j=1}^{m(z)} p(z;i,j) = k \sum_{i=1}^{m(z)} \sum_{j=1}^{m(z)} \frac{p(z;i,j)}{k} \le k \sum_{i=1}^{m(z)} \sum_{j=1}^{m(z)} \nu(E_{z;i,j})$$

$$\le k\nu(D(z,2\rho) \times D(z,2\rho)) \le kN.$$

We can regard p(z; i, j) as the "multiplicity" with which the triple (z, i, j) appears in (6.18). The above estimate shows that for a fixed $z \in \Gamma$, all the multiplicities add up to something less than or equal to kN. Thus there are subsets $\Gamma_1, \Gamma_2, \ldots, \Gamma_{kN}$ of Γ such that

$$\sum_{z \in \Gamma} T_{f_z} A T_{f_z} = \frac{1}{k} \sum_{\ell=1}^{kN} \sum_{z \in \Gamma_{\ell}} \frac{a(z; i(z, \ell), j(z, \ell))}{\nu(E_{z; i(z, \ell), j(z, \ell)})} \iint_{E_{z; i(z, \ell), j(z, \ell)}} h_z(u, v) k_u \otimes k_v d\nu(u, v), \quad (6.19)$$

where for each pair of $\ell \in \{1, ..., kN\}$ and $z \in \Gamma_{\ell}$ we have $i(z, \ell), j(z, \ell) \in \{1, ..., m(z)\}$. For each $\ell \in \{1, ..., kN\}$, define

$$B_{\ell} = \sum_{z \in \Gamma_{\ell}} a(z; i(z, \ell), j(z, \ell)) h_z(\varphi(z; i(z, \ell)), \varphi(z; j(z, \ell))) k_{\varphi(z; i(z, \ell))} \otimes k_{\varphi(z; j(z, \ell))}.$$

Since $\varphi(z; i(z, \ell)), \varphi(z; j(z, \ell)) \in D(z, \rho)$ for every $z \in \Gamma_{\ell}$, recalling Definition 6.3(c) and (6.13), we have $B_{\ell} \in \mathcal{D}_0(A)$. Therefore the operator

$$B = \frac{1}{k} \sum_{\ell=1}^{kN} B_{\ell} \tag{6.20}$$

belongs to the linear span of $\mathcal{D}_0(A)$. By the choice of δ and Step I, we have

$$\left\| \sum_{z \in \Gamma_{\ell}} \frac{a(z; i(z,\ell), j(z,\ell))}{\nu(E_{z;i(z,\ell),j(z,\ell)})} \iint_{E_{z;i(z,\ell),j(z,\ell)}} h_z(u,v) k_u \otimes k_v d\nu(u,v) - B_{\ell} \right\| \le \epsilon,$$

 $1 \le \ell \le kN$. Combining this with (6.19) and (6.20), we see that ||T - B|| does not exceed

$$\frac{1}{k} \sum_{\ell=1}^{kN} \left\| \sum_{z \in \Gamma_{\ell}} \frac{a(z; i(z,\ell), j(z,\ell))}{\nu(E_{z;i(z,\ell),j(z,\ell)})} \iint_{E_{z;i(z,\ell),j(z,\ell)}} h_z(u,v) k_u \otimes k_v d\nu(u,v) - B_{\ell} \right\| \leq N\epsilon.$$

This proves (6.16) and completes the proof of the proposition. \Box

It follows from Lemma 2.11 that $\mathcal{D}(A) \subset \mathcal{D}$ for every $A \in \mathcal{B}(L_a^2(\Omega))$ (cf. Definition 6.3). Thus from Propositions 6.6 and 6.4 we immediately obtain

Corollary 6.7. For every bounded operator A on $L_a^2(\Omega)$, we have $LOC(A) \subset \mathcal{T}$

7. Oscillation and compactness

For a continuous function f on Ω , we define the scalar quantity

$$\operatorname{diff}(f) = \sup\{|f(z) - f(w)| : z, w \in \Omega \text{ such that } d(z, w) \le 1\}.$$

Lemma 7.1. For any continuous function f on Ω and any $k \in \mathbb{N}$, we have

$$|f(z) - f(w)| \le (k+1)\operatorname{diff}(f) \tag{7.1}$$

for any pair of $z, w \in \Omega$ satisfying the condition $d(z, w) \leq k$.

Proof. Let $z, w \in \Omega$ be such that $d(z, w) \leq k$. By (2.4), there is a C^1 map $\gamma : [0, 1] \to \Omega$ such that $\gamma(0) = z, \gamma(1) = w$ and

$$\int_{0}^{1} \sqrt{\langle \mathcal{B}(\gamma(t))\gamma'(t), \gamma'(t)\rangle} dt \le k + 1.$$
 (7.2)

There are $0 = x_0 \le x_1 \le \cdots \le x_k \le x_{k+1} = 1$ such that

$$\int_{x_{j}}^{x_{j+1}} \sqrt{\langle \mathcal{B}(\gamma(t))\gamma'(t), \gamma'(t) \rangle} dt = \frac{1}{k+1} \int_{0}^{1} \sqrt{\langle \mathcal{B}(\gamma(t))\gamma'(t), \gamma'(t) \rangle} dt$$
 (7.3)

for $0 \le j \le k$. Define $z_j = \gamma(x_j)$, j = 0, 1, ..., k + 1. Then $z_0 = z$ and $z_{k+1} = w$. It follows from (7.2), (7.3) and (2.4) that $d(z_j, z_{j+1}) \le 1$, consequently

$$|f(z_j) - f(z_{j+1})| \le \operatorname{diff}(f)$$

for $j=0,1,\ldots,k$. With this inequality, (7.1) follows from a standard telescoping sum. \square

Recall that P denotes the orthogonal projection from $L^2(\Omega)$ onto $L^2_a(\Omega)$.

Lemma 7.2. There is a constant $0 < C_{7.2} < \infty$ such that $||[M_f, P]|| \le C_{7.2} diff(f)$ for every bounded continuous function f on Ω .

Proof. Let T be the integral operator on $L^2(\Omega)$ with the function

$${d(z,w) + 2}|K(z,w)|$$

as its integral kernel. We know that |K(z,w)| = |K(w,z)|. Recall that the Bergman kernel K is bounded on $(\Omega \times \Omega) \setminus \mathcal{R}_{\delta}$ for any $\delta > 0$ [14]. Thus it follows from Theorem 4.1 and Lemma 3.1 that $|K(z,w)| \leq C_1 F(z,w)^{-n-1}$ for all $z,w \in \Omega$. Combining this fact with Lemmas 3.9 and 3.2, and with the Schur test, we see that the operator T is bounded on $L^2(\Omega)$. Let f be a bounded continuous function on Ω . It follows from Lemma 7.1 that

$$|(f(z) - f(w))K(z, w)| \le \operatorname{diff}(f)\{d(z, w) + 2\}|K(z, w)|$$

for all $z, w \in \Omega$. Hence $||[M_f, P]|| \le \text{diff}(f)||T||$. \square

Recall that a continuous function f on Ω is said to have vanishing oscillation if

$$\lim_{z \to \partial \Omega} \sup\{|f(z) - f(w)| : w \in \Omega \text{ and } d(z, w) \le 1\} = 0.$$

We denote by VO_{bdd} the collection of continuous functions of vanishing oscillation on Ω that are also bounded.

Proposition 7.3. For each $f \in VO_{bdd}$, the commutator $[M_f, P]$ is compact.

Proof. It suffices to consider $f \in VO_{bdd}$ with $||f||_{\infty} \leq 1$. For each R > 0, we will decompose f in the form $f = g_R + h_R$, where g_R has a compact support and h_R satisfies the conditions $diff(h_R) \leq R^{-1}$ and $||h_R||_{\infty} \leq 1$. Since g_R has a compact support, $[M_{g_R}, P]$

is compact. On the other hand, Lemma 7.2 tells us that $||[M_{h_R}, P]|| \to 0$ as $R \to \infty$. Thus such a general decomposition implies the compactness of $[M_f, P]$.

To decompose f, let R > 0 be given. Since $f \in VO_{bdd}$, there is a t > 0 such that

$$|f(z) - f(w)| \le (2R)^{-1}$$
 if $z \in H_t$ and $d(z, w) \le 1$, (7.4)

where $H_t = \{ \zeta \in \Omega : -r(\zeta) < t \}$, and we may assume $H_t \neq \Omega$. Define

$$\varphi_R(x) = \begin{cases} (2R)^{-1}x & \text{if } 0 \le x \le 2R \\ 1 & \text{if } x > 2R \end{cases}.$$

Then φ_R satisfies the Lipschitz condition $|\varphi_R(x) - \varphi_R(y)| \leq (2R)^{-1}|x - y|$ for $x, y \in [0, \infty)$. For a non-empty set $E \subset \Omega$ and $z \in \Omega$, we denote $d(z, E) = \inf\{d(z, \zeta) : \zeta \in E\}$ as usual. By the triangle inequality for d, $|d(z, E) - d(w, E)| \leq d(z, w)$ for all $z, w \in \Omega$. Hence

$$|\varphi_R(d(z,E)) - \varphi_R(d(w,E))| \le (2R)^{-1}|d(z,E) - d(w,E)| \le (2R)^{-1}d(z,w)$$
 (7.5)

for all $z, w \in \Omega$. We now define

$$g_R(z) = f(z)(1 - \varphi_R(d(z, \Omega_t)))$$
 and $h_R(z) = f(z)\varphi_R(d(z, \Omega_t)),$

where $\Omega_t = \{\zeta \in \Omega : -r(\zeta) \ge t\}$. Since $||f||_{\infty} \le 1$ and $||\varphi_R||_{\infty} = 1$, we have

$$|h_R(z) - h_R(w)| \le |f(z) - f(w)| + |\varphi_R(d(z, \Omega_t)) - \varphi_R(d(w, \Omega_t))|.$$

If $h_R(z) - h_R(w) \neq 0$, then either $z \in H_t$ or $w \in H_t$. Thus if $d(z, w) \leq 1$ and $h_R(z) - h_R(w) \neq 0$, then it follows from (7.4) and (7.5) that $|h_R(z) - h_R(w)| \leq 1/R$. That is, $\operatorname{diff}(h_R) \leq 1/R$ as promised. On the other hand, if $g_R(z) \neq 0$, then $d(z, \Omega_t) < 2R$. By Lemma 2.1, this means that $-r(z) \geq c(R)t$, where c(R) > 0 is a constant determined by R. Hence the support of g_R is a compact set contained in Ω . This completes the proof. \square

Lemma 7.4. Let $f_1, \ldots, f_k \ldots$ be a sequence of continuous functions on Ω satisfying the following four conditions:

- (1) There is a $0 < C < \infty$ such that $||f_k||_{\infty} \leq C$ for every $k \in \mathbb{N}$.
- (2) For every $k \in \mathbb{N}$, there exist $a_k > b_k > 0$ such that $f_k = 0$ on $\Omega_{a_k} \cup H_{b_k}$.
- $(3) \lim_{k \to \infty} a_k = 0.$
- (4) $\lim_{k\to\infty} diff(f_k) = 0$.

Then there is an infinite subset I of N such that $f_J \in VO_{bdd}$ for every $J \subset I$, where

$$f_J = \sum_{k \in J} f_k.$$

Proof. By condition (3) and Lemma 2.1, we can inductively pick a sequence of natural numbers $k(1) < k(2) < \cdots < k(j) < \cdots$ such that $a_{k(j+1)} < b_{k(j)}$ and

$$d(z, w) \ge 2$$
 if $-r(z) \le a_{k(j+1)}$ and $-r(w) \ge b_{k(j)}$ (7.6)

for every $j \in \mathbf{N}$. Let $I = \{k(1), k(2), \dots, k(j), \dots\}$.

For each $k \in \mathbb{N}$, define $\mathcal{R}_k = \{z \in \Omega : b_k \leq -r(z) \leq a_k\}$. Then (2) says that $f_k = 0$ on $\Omega \setminus \mathcal{R}_k$. It follows from (7.6) that

if
$$z \in \mathcal{R}_{k(j)}$$
 and $w \in \mathcal{R}_{k(j')}$ for $j \neq j'$ in **N**, then $d(z, w) \ge 2$. (7.7)

This immediately implies that if $J \subset I$, then f_J is continuous on Ω . Moreover, since $\mathcal{R}_{k(j)} \cap \mathcal{R}_{k(j')} = \emptyset$ whenever $j \neq j'$, it follows from (1) and (2) that $||f_J||_{\infty} \leq C$ for every $J \subset I$. That is, such an f_J is bounded on Ω .

Let $j_0 \in \mathbf{N}$, and let $z, w \in \Omega$ satisfy the conditions $-r(z) \leq a_{k(j_0)}$ and $d(z, w) \leq 1$. Then it follows from (7.7) that there is at most one $j \in \mathbf{N}$ such that $f_{k(j)}(z) - f_{k(j)}(w) \neq 0$. Furthermore, by (7.6), if such a j exists, then it must satisfy the condition $j \geq j_0$. Thus for $z, w \in \Omega$ satisfying the conditions $-r(z) \leq a_{k(j_0)}$ and $d(z, w) \leq 1$, we have

$$|f_J(z) - f_J(w)| \le \sup\{\text{diff}(f_{k(j)}) : j \ge j_0\}$$

for every $J \subset I$. Applying conditions (3) and (4), this means that for every $J \subset I$, f_J has vanishing oscillation. \square

Definition 7.5. (a) For each t > 0, the symbol $\Lambda(t)$ denotes the collection of *continuous* functions g on Ω satisfying the following three conditions:

- (1) $0 \le g(z) \le 1$ for every $z \in \Omega$.
- (2) g(z) = 1 when $z \in \Omega_t = \{\zeta \in \Omega : -r(\zeta) \ge t\}$.
- (3) There is a $t' = t'(g) \in (0, t)$ such that g(z) = 0 whenever $-r(z) \le t'$.
- (b) Let t > 0 and $\delta > 0$. Then $\Lambda(t; \delta)$ denotes the collection of functions $g \in \Lambda(t)$ satisfying the additional condition $\text{diff}(g) \leq \delta$.

Lemma 7.6. For all t > 0 and $\delta > 0$, we have $\Lambda(t; \delta) \neq \emptyset$.

Proof. This is similar to the proof of Proposition 7.3. Let $\psi:[0,\infty)\to[0,1]$ be a Lipschitz function with Lipschitz constant δ . Furthermore, suppose that $\psi(0)=1$ and that $\psi=0$ on $[R,\infty)$ for a sufficiently large R. Let t>0 be such that $\Omega_t\neq\emptyset$ (otherwise, (2) is trivial). By Lemma 2.1, the function $f(z)=\psi(d(z,\Omega_t))$ is in $\Lambda(t;\delta)$. \square

Lemma 7.7. Given any pair of $f \in L^{\infty}(\Omega)$ and $h \in L_a^2(\Omega)$, we have

$$\lim_{t \downarrow 0} \sup \{ \|T_{fg}h - T_f h\| : g \in \Lambda(t) \} = 0.$$
 (7.8)

Proof. Denote $H_t = \{z \in \Omega : -r(z) < t\}$ as before. By Definition 7.5(a), we have

$$||T_{fg}h - T_fh||^2 \le ||fgh - fh||^2 \le ||f||_{\infty}^2 \int_{H_*} |h(z)|^2 dv(z)$$

for all $g \in \Lambda(t)$, $f \in L^{\infty}(\Omega)$ and $h \in L_a^2(\Omega)$. This obviously implies (7.8). \square

For a bounded operator A on a Hilbert space \mathcal{H} , denote

$$||A||_{\mathcal{Q}} = \inf\{||A+K|| : K \text{ is any compact operator on } \mathcal{H}\},$$

which is the essential norm of A.

Lemma 7.8. [16, Lemma 2.1] Let $\{B_i\}$ be a sequence of compact operators on a Hilbert space \mathcal{H} satisfying the following conditions:

- (a) Both sequences $\{B_i\}$ and $\{B_i^*\}$ converge to 0 in the strong operator topology.
- (b) The limit $\lim_{i\to\infty} ||B_i||$ exists.

Then there exist natural numbers $i(1) < i(2) < \cdots < i(m) < \cdots$ such that the sum

$$\sum_{m=1}^{\infty} B_{i(m)} = \lim_{N \to \infty} \sum_{m=1}^{N} B_{i(m)}$$

exists in the strong operator topology and we have

$$\left\| \sum_{m=1}^{\infty} B_{i(m)} \right\|_{\mathcal{Q}} = \lim_{i \to \infty} \|B_i\|.$$

Definition 7.9. For t > 0 and $\delta > 0$, the symbol $\Phi(t; \delta)$ denotes the collection of *continuous* functions f on Ω satisfying the following three conditions:

- (1) $0 \le f(z) \le 1$ for every $z \in \Omega$.
- (2) f(z) = 0 whenever $-r(z) \ge t$.
- (3) $\operatorname{diff}(f) \leq \delta$.

In analogy with [28, Proposition 3.7], every operator in $\operatorname{EssCom}(\{T_g : g \in \operatorname{VO}_{\operatorname{bdd}}\})$ satisfies the following " ϵ - δ " condition:

Proposition 7.10. Let X be an operator in the essential commutant of $\{T_g : g \in VO_{bdd}\}$. Then for every $\epsilon > 0$, there is a $\delta = \delta(X, \epsilon) > 0$ such that

$$\lim_{t\downarrow 0}\sup\{\|[X,T_f]\|:f\in\Phi(t;\delta)\}\leq\epsilon.$$

Using 7.4-7.9 above, the proof of Proposition 7.10 is a repeat of the proof of Proposition 3.7 in [28], modified in the obvious way. For that reason we will omit the proof of Proposition 7.10 here.

Lemma 7.11. Let $h_1, \ldots, h_k \ldots$ be a sequence of continuous functions on Ω , and denote $U_k = \{z \in \Omega : h_k(z) \neq 0\}$, $k \in \mathbb{N}$. Suppose that this sequence has the property that there is an a > 1 such that $\inf\{d(z, w) : z \in U_j, w \in U_k\} \geq a$ for every pair of $j \neq k$ in \mathbb{N} . Then the function $h = \sum_{k=1}^{\infty} h_k$ has the property that $diff(h) \leq \sup_{k \in \mathbb{N}} diff(h_k)$.

Proof. Observe that, under the assumption, for any pair of $z, w \in \Omega$ satisfying the condition $d(z, w) \leq 1$, the cardinality of the set $\{k \in \mathbf{N} : h_k(z) - h_k(w) \neq 0\}$ is at most 1. \square

8. Approximate partition of unity

In this section the boundary $\partial\Omega$ of the domain plays a prominent role. It will be beneficial to make a simplification of notation: for $\zeta \in \partial\Omega$ and t > 0, let us write

$$Q(\zeta, t) = \{ \xi \in \partial \Omega : |\zeta - \xi|^2 + |\langle \zeta - \xi, (\bar{\partial}r)(\zeta) \rangle| < t \}.$$

In other words, in terms of the notation in Section 2, we have $Q(\zeta, t) = Q_0(\zeta, t)$. Similarly, we will write $d\sigma$ for $d\sigma_0$. That is, $d\sigma$ is the surface measure on $\partial\Omega$.

Lemma 8.1. There is a constant $1 \leq C_{8.1} < \infty$ such that for any triple of $\zeta, \xi \in \partial \Omega$ and t > 0, if $Q(\zeta, t) \cap Q(\xi, t) \neq \emptyset$, then $Q(\xi, t) \subset Q(\zeta, C_{8.1}t)$.

This lemma is rather obvious and we will omit its proof.

Corollary 8.2. Consider any $\zeta \in \partial \Omega$ and t > 0. If $x, y \in \partial \Omega$ are such that $x \in Q(\zeta, t)$ and $y \notin Q(\zeta, C_{8,1}t)$, then $y \notin Q(x, t)$.

Proof. If $x \in Q(\zeta, t)$, then $Q(x, t) \cap Q(\zeta, t) \neq \emptyset$. By Lemma 8.1, we have $Q(x, t) \subset Q(\zeta, C_{8.1}t)$. Therefore if $y \notin Q(\zeta, C_{8.1}t)$, then $y \notin Q(x, t)$. \square

Lemma 8.3. There is a constant $0 < C_{8.3} < \infty$ such that the following bound holds: Let t > 0, and let E be a subset of $\partial \Omega$ that has the property $Q(x,t) \cap Q(y,t) = \emptyset$ for all $x \neq y$ in E. Then for any $R \geq 1$ and any $\zeta \in \partial \Omega$,

$$card\{x \in E : Q(x,Rt) \cap Q(\zeta,Rt) \neq \emptyset\} \leq C_{8.3}R^n.$$

Proof. It $t > T_0$ (see Proposition 2.8), then the property of E implies $\operatorname{card}(E) \leq 1$. Suppose that $0 < t \leq T_0$. If $Q(x,Rt) \cap Q(\zeta,Rt) \neq \emptyset$, then $Q(x,Rt) \subset Q(\zeta,C_{8.1}Rt)$ by Lemma 8.1. Let $E_0 = \{x \in E : Q(x,Rt) \cap Q(\zeta,Rt) \neq \emptyset\}$. Since $Q(x,t) \cap Q(y,t) = \emptyset$ for all $x \neq y$ in E, we have

$$\operatorname{card}(E_0) \inf_{x \in E_0} \sigma(Q(x,t)) \le \sum_{x \in E_0} \sigma(Q(x,t)) = \sigma\left(\bigcup_{x \in E_0} Q(x,t)\right) \le \sigma(Q(\zeta, C_{8.1}Rt)).$$

Applying Proposition 2.8 to the case $\rho = 0$, we have

$$\operatorname{card}(E_0)c_{2.8}t^n \le C_{2.8}(C_{8.1}Rt)^n.$$

Cancelling out t^n and simplifying, we see that the lemma holds for the constant $C_{8.3} = (C_{2.8}/c_{2.8})C_{8.1}^n$. \square

The first order Taylor expansion for r reads

$$r(z+u) = r(z) + 2\operatorname{Re}\langle u, (\bar{\partial}r)(z)\rangle + \int_{0}^{1} 2\operatorname{Re}\langle u, (\bar{\partial}r)(z+xu) - (\bar{\partial}r)(z)\rangle dx.$$

Thus $r(z+t(\bar{\partial}r)(z))=r(z)+2t|(\bar{\partial}r)(z)|^2+O(t^2)$ when |t| is small. Recall that $\bar{\partial}r$ does not vanish on $\partial\Omega$. Hence when z is close to $\partial\Omega$ and t is positive and small, we have

$$r(z + t(\bar{\partial}r)(z)) \ge r(z) + t|(\bar{\partial}r)(z)|^2$$
.

Thus for each $z \in \Omega$ near $\partial \Omega$, there is a $t_z > 0$, $t_z \approx |r(z)|$, such that $r(z+t_z(\bar{\partial}r)(z)) = 0$. Let us restate this fact more precisely: There exist a $J \in \mathbb{N}$ and a $0 < C_p < \infty$ such that for every $z \in H_{2^{-J}} = \{\zeta \in \Omega : -r(\zeta) < 2^{-J}\}$, there is a $p(z) \in \partial \Omega$ such that

$$|z - p(z)| \le C_p|r(z)|. \tag{8.1}$$

In other words, there is a map $p: H_{2^{-J}} \to \partial \Omega$ such that the above bound holds for every $z \in H_{2^{-J}}$. Note that our choice above does not promise any kind of continuity for the map p, but that does not matter for our purpose.

This p and the defining function r together allow us to decompose $H_{2^{-J}}$ in a manner that is analogous to the radial-spherical decomposition for the unit ball in [28]. More specifically, p plays the role of "spherical coordinates", while -r is the analogue of "radial coordinate". Because we only need a large-scale, or "coarse", decomposition, (8.1) is all that we need to know about p.

Lemma 8.4. There is a constant $0 < C_{8.4} < \infty$ such that

$$|z' - w'|^2 + |\langle z' - w', (\bar{\partial}r)(z')\rangle|$$

$$\leq 3\{|z - w|^2 + |\langle z - w, (\bar{\partial}r)(z)\rangle|\} + C_{8.4}\{|z - z'| + |w - w'|\}$$

for all $z, w, z', w' \in \overline{\Omega} = \Omega \cup \partial \Omega$.

Proof. It is elementary that $|z'-w'|^2 \leq 3|z-w|^2+3|z-z'|^2+3|w-w'|^2$. Since Ω is bounded, there is a C_1 such that $|\zeta-\xi|\leq C_1$ for all $\zeta,\xi\in\overline{\Omega}$. Hence

$$|z' - w'|^2 \le 3|z - w|^2 + 3C_1\{|z - z'| + |w - w'|\}. \tag{8.2}$$

Similarly, since $\bar{\partial}r$ is bounded and satisfies a Lipschitz condition on $\bar{\Omega}$, we have

$$\begin{aligned} |\langle z' - w', (\bar{\partial}r)(z') \rangle| &\leq (|z - z'| + |w - w'|) |(\bar{\partial}r)(z')| + |\langle z - w, (\bar{\partial}r)(z') \rangle| \\ &\leq C_2(|z - z'| + |w - w'|) + |\langle z - w, (\bar{\partial}r)(z) \rangle| + |z - w||(\bar{\partial}r)(z') - (\bar{\partial}r)(z)| \\ &\leq C_2(|z - z'| + |w - w'|) + |\langle z - w, (\bar{\partial}r)(z) \rangle| + C_3|z - z'|. \end{aligned}$$
(8.3)

Obviously, the lemma follows from (8.2) and (8.3). \square

We begin the decomposition with natural numbers m > J and $j \ge 1$. Define

$$d_{m,j} = m2^{-jm}, \quad a_{m,j} = C_{8.1}m2^{-jm} \quad \text{and} \quad b_{m,j} = C_{8.1}^2m2^{-jm},$$
 (8.4)

where $C_{8.1}$ is the constant in Lemma 8.1. That is, $a_{m,j} = C_{8.1}d_{m,j}$ and $b_{m,j} = C_{8.1}^2d_{m,j}$. Let $E_{m,j}$ be a subset of $\partial\Omega$ that is maximal with respect to the property

$$Q(u, d_{m,j}) \cap Q(v, d_{m,j}) = \emptyset \quad \text{for all} \quad u \neq v \in E_{m,j}.$$
(8.5)

By the maximality of $E_{m,j}$ and Lemma 8.1, we have

$$\bigcup_{u \in E_{m,j}} Q(u, a_{m,j}) = \partial \Omega. \tag{8.6}$$

Fix a natural number N_0 such that $N_0 \geq C_{8.3}(C_{8.1}^2)^n$, where $C_{8.3}$ is the constant in Lemma 8.3. Since $b_{m,j} = C_{8.1}^2 d_{m,j}$, it follows from (8.5) and Lemma 8.3 that

$$\operatorname{card}\{v \in E_{m,j} : Q(v, b_{m,j}) \cap Q(u, b_{m,j}) \neq \emptyset\} \le N_0$$
 (8.7)

for every $u \in E_{m,j}$. Now, given any m > J, $j \ge 1$ and $u \in E_{m,j}$, we define the sets

$$A_{m,j,u} = \{ z \in \Omega : p(z) \in Q(u, a_{m,j}) \text{ and } 2^{-(j+1)m} > -r(z) \ge 2^{-(j+2)m} \} \text{ and } B_{m,j,u} = \{ z \in \Omega : p(z) \in Q(u, b_{m,j}) \text{ and } 2^{-jm} > -r(z) > 2^{-(j+3)m} \}.$$

It follows from (8.6) that

$$\bigcup_{j=1}^{\infty} \bigcup_{u \in E_{m,j}} A_{m,j,u} = H_{2^{-2m}} = \{ z \in \Omega : -r(z) < 2^{-2m} \}.$$
 (8.8)

Note that even though we have (8.8), we do not know that every $A_{m,j,u}$ is non-empty from its definition. Nevertheless, we have

Lemma 8.5. There is a constant $J < M_{8.5} < \infty$ such that if $m \ge M_{8.5}$, then $A_{m,j,u} \ne \emptyset$ for all $j \ge 1$ and $u \in E_{m,j}$.

Proof. By the Taylor expansion for r, there are constants $J < M_1 < \infty$ and $0 < C_1 < \infty$ such that if $m \ge M_1$, then for every pair of $j \ge 1$ and $u \in E_{m,j}$ there is a u' such that $-r(u') = 2^{-(j+(3/2))m}$ and $|u - u'| \le C_1(-r(u'))$. By Lemma 8.4, we have

$$|u - u'|^2 + |\langle u - u', (\bar{\partial}r)(u)\rangle| \le C_{8.4}|u - u'| \le C_{8.4}C_1(-r(u')) = C_{8.4}C_12^{-(j+(3/2))m}.$$

Applying Lemma 8.4 again and recalling (8.1), we have

$$|u - p(u')|^2 + |\langle u - p(u'), (\bar{\partial}r)(u)\rangle| \le 3\{|u - u'|^2 + |\langle u - u', (\bar{\partial}r)(u)\rangle|\} + C_{8.4}|u' - p(u')|$$

$$\le 3C_{8.4}C_12^{-(j+(3/2))m} + C_{8.4}C_n2^{-(j+(3/2))m}.$$

Let $M_{8.5} \ge M_1$ be such that $M_{8.5} \ge 3C_{8.4}C_1 + C_{8.4}C_p$. If $m \ge M_{8.5}$, then $u' \in A_{m,j,u}$.

Lemma 8.6. There is a constant $M_{8.5} + 100 \le M_{8.6} < \infty$ such that for $m \ge M_{8.6}$, $j \ge 1$, and $u \in E_{m,j}$, if $z \in A_{m,j,u}$ and $w \in \Omega \setminus B_{m,j,u}$, then $d(z,w) \ge (1/13)m$.

Proof. Set $M_1 = \max\{M_{8.5} + 100, 10C_{8.4}\}$, where $C_{8.4}$ and $M_{8.5}$ are the constants in Lemmas 8.4 and 8.5 respectively. Consider any $m \ge M_1$, $j \ge 1$ and $u \in E_{m,j}$. For a pair of $z \in A_{m,j,u}$ and $w \in \Omega \setminus B_{m,j,u}$, there are three possibilities, depending on the value of r(w).

(1) Suppose that $-r(w) \ge 2^{-jm}$. Then $r(z)/r(w) \le 2^{-(j+1)m}/2^{-jm} = 2^{-m}$. Combining this with Lemma 2.1, we have $c_{2,1}2^{-4d(w,z)} \le r(z)/r(w) \le 2^{-m}$. Hence

$$d(z,w) \ge (1/4)m + (1/4)\{\log c_{2.1}/\log 2\}.$$

Let $M_2 \ge M_1$ be such that $(1/2)M_2 \ge |\log c_{2,1}/\log 2|$. Thus if $m \ge M_2$, then for all $j \ge 1$, $u \in E_{m,j}$, $z \in A_{m,j,u}$ and $w \in \Omega \setminus B_{m,j,u}$, we have

$$d(z,w) \ge (1/8)m \tag{8.9}$$

under the condition $-r(w) \ge 2^{-jm}$.

- (2) Suppose that $-r(w) \leq 2^{-(j+3)m}$. Then $r(w)/r(z) \leq 2^{-(j+3)m}/2^{-(j+2)m} = 2^{-m}$. From Lemma 2.1 we now deduce $c_{2.1}2^{-4d(z,w)} \leq r(w)/r(z) \leq 2^{-m}$. Thus (8.9) again holds under the condition $-r(w) \leq 2^{-(j+3)m}$ when $m \geq M_2$.
- (3) Suppose that $2^{-(j+3)m} < -r(w) < 2^{-jm}$. Then by the definition of $B_{m,j,u}$ we have $p(w) \notin Q(u,b_{m,j})$. In contrast, since $z \in A_{m,j,u}$, we have $p(z) \in Q(u,a_{m,j})$. Since $b_{m,j} = C_{8.1}a_{m,j}$, by Corollary 8.2 we have $p(w) \notin Q(p(z),a_{m,j})$. Recall that $a_{m,j} = C_{8.1}m2^{-jm}$ and that $C_{8.1} \ge 1$. Thus it follows from Lemma 8.4 and (8.1) that

$$m2^{-mj} \le a_{m,j} \le |p(z) - p(w)|^2 + |\langle p(z) - p(w), (\bar{\partial}r)(p(z))\rangle|$$

$$\le 3\{|z - w|^2 + |\langle z - w, (\bar{\partial}r)(z)\rangle|\} + C_{8.4}C_p\{|r(z)| + |r(w)|\}$$

$$\le 3\{|z - w|^2 + |\langle z - w, (\bar{\partial}r)(z)\rangle|\} + C_{8.4}C_p\{2^{-(j+1)m} + 2^{-jm}\}.$$

Now we pick an $M_3 \ge M_2$ such that $M_3 \ge 4C_{8.4}C_p$, i.e., $(1/2)M_3 \ge 2C_{8.4}C_p$. When $m \ge M_3$, elementary manipulations turn the above into the inequality

$$(1/6)m2^{-mj} \le |z-w|^2 + |\langle z-w, (\bar{\partial}r)(z)\rangle|.$$

Combining this with Lemma 2.2(2), we obtain

$$(1/6)m2^{-mj} \le C_{2.2}\{d(z,w) + d^2(z,w)\}2^{12d(z,w)}(-r(z)).$$

Since $-r(z) \le 2^{-(j+1)m}$, this implies

$$(1/6)m2^m \le C_{2.2}\{d(z,w) + d^2(z,w)\}2^{12d(z,w)}.$$

From this inequality it is elementary to deduce that there is an $M_{8.6} \ge M_3$ such that if $m \ge M_{8.6}$, then $d(z, w) \ge (1/13)m$. Combining this with (8.9), the proof is complete. \square

By Lemma 8.5, for every triple of $m \ge M_{8.5}$, $j \ge 1$ and $u \in E_{m,j}$, we can pick a

$$z_{m,j,u} \in A_{m,j,u}. \tag{8.10}$$

This pick will be fixed for the rest of the paper.

Lemma 8.7. There is a constant $M_{8.6} < M_{8.7} < \infty$ such that if $m \ge M_{8.7}$, then there is an $0 < R_m < \infty$ which has the property that

$$B_{m,j,u} \subset D(z_{m,j,u}, R_m) \tag{8.11}$$

for all $j \geq 1$ and $u \in E_{m,j}$.

Proof. Suppose that $m \geq M_{8.5}$. Given any $j \geq 1$ and $u \in E_{m,j}$, we have $2^{-(j+2)m} \leq -r(z_{m,j,u}) < 2^{-(j+1)m}$ by (8.10). Now let $w \in B_{m,j,u}$. Then $2^{-(j+3)m} < -r(w) < 2^{-jm}$, which means $-2^{-2m}r(z_{m,j,u}) \leq -r(w) \leq -2^{2m}r(z_{m,j,u})$. In other words, we have

$$2^{k-1}(-r(z_{m,j,u})) \le -r(w) \le 2^k(-r(z_{m,j,u}))$$
 for some $k \in \mathbf{Z}$ with $|k| \le 2m$. (8.12)

We have $p(w) \in Q(u, b_{m,j})$. Since $p(z_{m,j,u}) \in Q(u, a_{m,j}) \subset Q(u, b_{m,j})$, Lemma 8.1 gives us $Q(u, b_{m,j}) \subset Q(p(z_{m,j,u}), C_{8.1}b_{m,j})$. Hence $p(w) \in Q(p(z_{m,j,u}), C_{8.1}b_{m,j})$. That is,

$$|p(z_{m,i,u}) - p(w)|^2 + |\langle p(z_{m,i,u}) - p(w), (\bar{\partial}r)(p(z_{m,i,u}))\rangle| < C_{8.1}b_{m,i}$$

Applying Lemma 8.4 and (8.1), we obtain

$$|z_{m,j,u} - w|^2 + |\langle z_{m,j,u} - w, (\bar{\partial}r)(z_{m,j,u})\rangle| < 3C_{8.1}b_{m,j} + C_{8.4}C_p(|r(z_{m,j,u})| + |r(w)|)$$

$$\leq 3C_{8.1}^3 m 2^{-jm} + 2C_{8.4}C_p 2^{-jm} < (3C_{8.1}^3 m + 2C_{8.4}C_p)2^{2m}(-r(z_{m,j,u})).$$

Let $M_{8.7} > M_{8.6}$ be such that $(3C_{8.1}^3 M_{8.7} + 2C_{8.4} C_p) 2^{-M_{8.7}} \le 1$. When $m \ge M_{8.7}$, the above inequality gives us

$$|z_{m,j,u} - w|^2 + |\langle z_{m,j,u} - w, (\bar{\partial}r)(z_{m,j,u})\rangle| < 2^{3m}(-r(z_{m,j,u}))$$

$$\leq 2^{k+3m+|k|}(-r(z_{m,j,u})). \tag{8.13}$$

Combining (8.12) and (8.13) with Lemma 3.7, we obtain $d(z_{m,j,u}, w) < C_{3.7}(1 + |k| + 3m + |k|) \le C_{3.7}(1+7m)$. Thus when $m \ge M_{8.7}$, (8.11) holds for $R_m = C_{3.7}(1+7m)$.

In the above we picked constants such that $M_{8.7} > M_{8.6} \ge M_{8.5} + 100$ and $M_{8.5} > J$. Thus if $m \ge M_{8.7}$, then m/13 > 7. Now, for every $m \ge M_{8.7}$, we define the function

$$\tilde{f}_m(x) = \begin{cases} 1 - \{(m/13) - 4\}^{-1}x & \text{for } 0 \le x \le (m/13) - 4 \\ 0 & \text{for } (m/13) - 4 < x < \infty \end{cases}$$
(8.14)

Obviously, \tilde{f}_m satisfies the Lipschitz condition $|\tilde{f}_m(x) - \tilde{f}_m(y)| \le \{(m/13) - 4\}^{-1}|x - y|, x, y \in [0, \infty)$. For every triple of $m \ge M_{8.7}$, $j \in \mathbb{N}$ and $u \in E_{m,j}$, we define

$$f_{m,j,u}(z) = \tilde{f}_m(d(z, A_{m,j,u}))$$
 for $z \in \Omega$.

Lemma 8.8. For every triple of $m \geq M_{8.7}$, $j \in \mathbb{N}$ and $u \in E_{m,j}$, the function $f_{m,j,u}$ defined above has the following five properties:

- (a) The inequality $0 \le f_{m,j,u} \le 1$ holds on **B**.
- (b) $f_{m,j,u} = 1$ on the set $A_{m,j,u}$.
- (c) $|f_{m,j,u}(z) f_{m,j,u}(w)| \le \{(m/13) 4\}^{-1} d(z, w) \text{ for all } z, w \in \Omega.$
- (d) If $f_{m,j,u}(z) \neq 0$ and $w \in \Omega \backslash B_{m,j,u}$, then $d(z,w) \geq 4$.
- (e) We have $diff(f_{m,j,u}) \leq \{(m/13) 4\}^{-1}$.

Proof. (a) and (b) follow directly from the definitions of \tilde{f}_m and $f_{m,j,u}$. Then note that

$$|f_{m,j,u}(z) - f_{m,j,u}(w)| = |\tilde{f}_m(d(z, A_{m,j,u})) - \tilde{f}_m(d(w, A_{m,j,u}))|$$

$$\leq \frac{1}{(m/13) - 4} |d(z, A_{m,j,u}) - d(w, A_{m,j,u})| \leq \frac{d(z, w)}{(m/13) - 4},$$

which proves (c). For (d), observe that if $f_{m,j,u}(z) \neq 0$, then $d(z, A_{m,j,u}) < (m/13) - 4$. This means that there is a $z' \in A_{m,j,u}$ such that $d(z,z') \leq (m/13) - 4$. If $w \in \Omega \setminus B_{m,j,u}$, then Lemma 8.6 tells us that $d(z',w) \geq m/13$. By the triangle inequality,

$$d(z,w) \ge d(z',w) - d(z,z') \ge (m/13) - \{(m/13) - 4\} = 4.$$

Hence (d) holds. Finally, note that (e) is an immediate consequence of (c).

By (8.7) and a standard maximality argument, each $E_{m,j}$ admits a partition

$$E_{m,j} = E_{m,j}^{(1)} \cup \dots \cup E_{m,j}^{(N_0)}$$
 (8.15)

such that for every $\nu \in \{1, \ldots, N_0\}$, we have $Q(u, b_{m,j}) \cap Q(v, b_{m,j}) = \emptyset$ for all $u \neq v$ in $E_{m,j}^{(\nu)}$. Therefore for each $\nu \in \{1, \ldots, N_0\}$, the conditions $u, v \in E_{m,j}^{(\nu)}$ and $u \neq v$ imply $B_{m,j,u} \cap B_{m,j,v} = \emptyset$.

Definition 8.9. Let $m \geq M_{8.7}$ be given. (a) For each pair of $\kappa \in \{1, 2, 3\}$ and $\nu \in \{1, \ldots, N_0\}$, where N_0 is the integer that appears in (8.7) and (8.15), let $I_m^{(\nu,\kappa)}$ denote the collection of all triples $m, 3j + \kappa, u$ satisfying the conditions $j \in \mathbf{Z}_+$ and $u \in E_{m,3j+\kappa}^{(\nu)}$. (b) For $\kappa \in \{1, 2, 3\}$, $\nu \in \{1, \ldots, N_0\}$ and $q \in \mathbf{N}$, let $I_{m,q}^{(\nu,\kappa)}$ denote the collection of all triples $m, 3j + \kappa, u$ satisfying the conditions $0 \leq j \leq q$ and $u \in E_{m,3j+\kappa}^{(\nu)}$. (c) Denote $I_m = \bigcup_{\kappa=1}^3 \bigcup_{\nu=1}^{N_0} I_m^{(\nu,\kappa)}$.

The elements in I_m , equivalently the subscripts in $A_{m,j,u}$, $B_{m,j,u}$ and $f_{m,j,u}$, are obviously quite cumbersome to write as triples. For this we have the following remedy:

Notation 8.10. (1) We will use the symbol ω to represent the triple m, j, u. (2) For any subset I of I_m , denote $f_I = \sum_{\omega \in I} f_\omega$ and $F_I = \sum_{\omega \in I} f_\omega^2$.

Lemma 8.11. Let $m \geq M_{8.7}$, $\kappa \in \{1, 2, 3\}$ and $\nu \in \{1, \dots, N_0\}$. Then for any $\omega \neq \omega'$ in $I_m^{(\nu,\kappa)}$, we have $B_{\omega} \cap B_{\omega'} = \emptyset$.

Proof. If $\omega = (m, 3j + \kappa, u)$ and $\omega' = (m, 3j + \kappa, v)$ for a pair of $u \neq v$ in $E_{m,3j+\kappa}^{(\nu)}$, then by the property of the partition (8.15) we already know that $B_{\omega} \cap B_{\omega'} = \emptyset$. The other possibility is that $\omega = (m, 3j + \kappa, u)$ and $\omega' = (m, 3j' + \kappa, v)$ with $u \in E_{m,3j+\kappa}^{(\nu)}$ and $v \in E_{m,3j'+\kappa}^{(\nu)}$, where $j \neq j'$. If $j \neq j'$, then $|(3j + \kappa) - (3j' + \kappa)| \geq 3$, which ensures $B_{\omega} \cap B_{\omega'} = \emptyset$ by the values of -r on B_{ω} and $B_{\omega'}$. \square

Lemma 8.12. Let $m \ge M_{8.7}$, $\kappa \in \{1, 2, 3\}$ and $\nu \in \{1, ..., N_0\}$. Then for every subset I of $I_m^{(\nu,\kappa)}$, we have $f_I \in \Phi(2^{-m}; ((m/13) - 4)^{-1})$.

Proof. Let $I \subset I_m^{(\nu,\kappa)}$. For each $\omega \in I$, f_ω is continuous on Ω and satisfies the condition $0 \le f_\omega \le 1$. Lemma 8.11 tells us that for $\omega \ne \omega'$ in I, we have $B_\omega \cap B_{\omega'} = \emptyset$. By Lemma 8.8(d), if $z, w \in \Omega$ are such that $f_\omega(z) \ne 0$ and $f_{\omega'}(w) \ne 0$, then $d(z, w) \ge 4$. It follows that f_I is continuous on \mathbf{B} and that $0 \le f_I \le 1$. Furthermore, we can invoke Lemma 7.11 to obtain $\operatorname{diff}(f_I) \le \sup_{\omega \in I} \operatorname{diff}(f_\omega) \le ((m/13) - 4)^{-1}$, where the second \le follows from Lemma 8.8(e).

Since $I \subset I_m^{(\nu,\kappa)}$, if $\omega \in I$, then $B_\omega \subset H_{2^{-\kappa m}} = \{\zeta \in \Omega : -r(\zeta) < 2^{-\kappa m}\}$. Since Lemma 8.8(d) says that $f_\omega = 0$ on $\Omega \backslash B_\omega$, we conclude that $f_I = 0$ on $\{\zeta \in \Omega : -r(\zeta) \ge 2^{-\kappa m}\}$. Recalling Definition 7.9, this completes the verification of the membership $f_I \in \Phi(2^{-m}; ((m/13) - 4)^{-1})$. \square

Lemma 8.13. Let $m \ge M_{8.7}$, $\kappa \in \{1, 2, 3\}$ and $\nu \in \{1, ..., N_0\}$, and let I be any subset of $I_m^{(\nu,\kappa)}$. Then for every bounded operator A on $L_a^2(\Omega)$, we have

$$\sum_{\omega \in I} T_{f_{\omega}} A T_{f_{\omega}} \in LOC(A).$$

Proof. Given any $I \subset I_m^{(\nu,\kappa)}$, consider the set $\Gamma = \{z_\omega : \omega \in I\}$, where z_ω was picked in (8.10). By Lemmas 8.11 and 8.6, Γ is an (m/26)-separated set in Ω . Define $f_{z_\omega} = f_\omega$ for each $\omega \in I$. We need to verify that the functions $\{f_{z_\omega} : z_\omega \in \Gamma\}$ satisfy conditions (1)-(3) in Definition 6.5. First of all, (2) follows from Lemma 8.8(a). Lemma 8.7 tells us that for each $\omega \in I$, we have $B_\omega \subset D(z_\omega, R_m)$. By Lemma 8.8(d), we have $f_{z_\omega} = 0$ on $\Omega \setminus D(z_\omega, R_m)$, verifying (1). Finally, condition (3) follows from Lemma 8.8(c). \square

9. The essential commutant of $\{T_f: f \in VO_{bdd}\}$

To prove Theorem 1.1(i), let us first recall

Lemma 9.1. Let $\{f_1, \ldots, f_\ell\}$ be a finite set of functions in $L^{\infty}(\Omega)$ with the property that $f_j f_k = 0$ for all $j \neq k$ in $\{1, \ldots, \ell\}$. Let A be any bounded operator on the Bergman space $L_a^2(\Omega)$. Then there exist complex numbers $\{\gamma_1, \ldots, \gamma_\ell\}$ with $|\gamma_k| = 1$ for every $k \in \{1, \ldots, \ell\}$ and a subset E of $\{1, \ldots, \ell\}$ such that if we define

$$F = \sum_{k \in E} f_k, \quad G = \sum_{k \in \{1, \dots, \ell\} \setminus E} f_k, \quad F' = \sum_{k \in E} \gamma_k f_k \quad and \quad G' = \sum_{k \in \{1, \dots, \ell\} \setminus E} \gamma_k f_k,$$

then

$$\left\| \sum_{j \neq k} T_{f_j} A T_{f_k} \right\| \le 4(\|T_{F'} A T_G\| + \|T_{G'} A T_F\|).$$

This lemma was proved in the case of the unit ball as Lemma 5.1 in [28]. But the proof in the case of a general Ω is exactly the same. The only property of Toeplitz operators that was used in the proof of [28, Lemma 5.1] was that a Toeplitz operator is the compression to a subspace of a multiplication operator on an L^2 . Thus not only does Lemma 9.1 hold, its analogue also holds, for example, in the setting of Hardy spaces. For that reason we will not repeat the proof of Lemma 9.1 here.

Recall that we write \mathcal{K} for the collection of compact operators on the Bergman space $L_a^2(\Omega)$. Furthermore, Proposition 6.2 tells us that $\mathcal{K} \subset \mathcal{T}$. Also recall that for each $f \in L^{\infty}(\Omega)$, we have the Hankel operator H_f defined by the formula

$$H_f h = (1 - P)(fh), \quad h \in L_a^2(\Omega).$$

Proof of Theorem 1.1(i). For $f, g \in L^{\infty}(\Omega)$, we have

$$\begin{split} [T_f, T_g] &= PM_f PM_g P - PM_g PM_f P = PM_g (1 - P)M_f P - PM_f (1 - P)M_g P \\ &= [P, M_g](1 - P)[M_f, P] - [P, M_f](1 - P)[M_g, P]. \end{split}$$

Thus it follows from Proposition 7.3 that $\operatorname{EssCom}\{T_f: f \in \operatorname{VO}_{\operatorname{bdd}}\} \supset \{T_g: g \in L^{\infty}(\Omega)\}$. Since $\{T_g: g \in L^{\infty}(\Omega)\}$ generates \mathcal{T} , we conclude that $\operatorname{EssCom}\{T_f: f \in \operatorname{VO}_{\operatorname{bdd}}\} \supset \mathcal{T}$. Thus we only need to prove that $\operatorname{EssCom}\{T_f: f \in \operatorname{VO}_{\operatorname{bdd}}\} \subset \mathcal{T}$.

Let $X \in \operatorname{EssCom}\{T_f : f \in \operatorname{VO}_{\operatorname{bdd}}\}\$ be given. To show that $X \in \mathcal{T}$, pick any $\epsilon > 0$. It suffices to produce a decomposition X = Y + Z such that $Y \in \mathcal{T}$ and

$$||Z|| \le 3N_0 \{16(2 + ||X||) + ||X|| + 2\}\epsilon,\tag{9.1}$$

where N_0 is the constant that appears in (8.7) and (8.15).

First, we apply Proposition 7.10, which provides a $\delta > 0$ and a $t^* > 0$ such that

$$||[X, T_f]|| \le 2\epsilon \quad \text{for every } f \in \Phi(t^*; \delta).$$
 (9.2)

Then we apply Lemma 7.2, which tells us that there is a $\delta' > 0$ such that

$$||H_q|| \le \epsilon \tag{9.3}$$

for every bounded continuous function g on Ω with diff $(g) \leq \delta'$. With δ , t^* and δ' so fixed, we pick an integer $m \geq M_{8.7}$ satisfying the conditions

$$((m/13) - 4)^{-1} \le \min\{\epsilon, \delta, \delta'\} \quad \text{and} \quad 2^{-m} \le t^*.$$
 (9.4)

With m so fixed, let us consider the function F_{I_m} given in Notation 8.10(2). Since

$$F_{I_m} = \sum_{\kappa=1}^{3} \sum_{\nu=1}^{N_0} F_{I_m^{(\nu,\kappa)}}$$
 (9.5)

and since by Lemma 8.12 each $F_{I_m^{(\nu,\kappa)}}$ satisfies the inequality $0 \le F_{I_m^{(\nu,\kappa)}} \le 1$ on Ω , we have $0 \le F_{I_m} \le 3N_0$ on Ω . By Lemma 8.8(b) and (8.8), we have $F_{I_m}(z) \ge 1$ whenever $-r(z) < 2^{-2m}$. Thus we have shown that the function

$$h = \chi_{\Omega_{2-2m}} + F_{I_m} \tag{9.6}$$

satisfies the inequality $1 \leq h \leq 3N_0 + 1$ on Ω , where $\Omega_{2^{-2m}} = \{\zeta \in \Omega : -r(\zeta) \geq 2^{-2m}\}$. This guarantees that the positive Toeplitz operator T_h is both bounded and invertible on $L_a^2(\Omega)$. Moreover, $||T_h^{-1}|| \leq 1$. Since $T_h \in \mathcal{T}$ and \mathcal{T} is a C^* -algebra, we have $T_h^{-1} \in \mathcal{T}$. By (9.6) and (9.5), we have the decomposition

$$X = XT_h T_h^{-1} = X_0 + \sum_{\kappa=1}^{3} \sum_{\nu=1}^{N_0} X_{\nu,\kappa}, \tag{9.7}$$

where

$$X_0 = XT_{\chi_{\Omega_{2^{-2m}}}}T_h^{-1}$$
 and $X_{\nu,\kappa} = XT_{F_{I_m^{(\nu,\kappa)}}}T_h^{-1}$

for $1 \leq \kappa \leq 3$ and $1 \leq \nu \leq N_0$. Obviously, the Toeplitz operator $T_{\chi_{\Omega_{2}-2m}}$ is compact. Hence, by Proposition 6.2, $X_0 \in \mathcal{K} \subset \mathcal{T}$.

We further decompose each $X_{\nu,\kappa}$. To do that, define the operators

$$Y_{\nu,\kappa} = \sum_{\omega \in I_m^{(\nu,\kappa)}} T_{f_\omega} X T_{f_\omega} T_h^{-1} \quad \text{and} \quad A_{\nu,\kappa} = \sum_{\substack{\omega,\omega' \in I_m^{(\nu,\kappa)} \\ \omega \neq \omega'}} T_{f_\omega} X T_{f_{\omega'}} T_h^{-1}. \tag{9.8}$$

Obviously, $Y_{\nu,\kappa} + A_{\nu,\kappa} = T_{I_{I_m}^{(\nu,\kappa)}} X T_{I_{I_m}^{(\nu,\kappa)}} T_h^{-1}$ (cf. Notation 8.10). We further define

$$B_{\nu,\kappa} = [X, T_{f_{I_m^{(\nu,\kappa)}}}] T_{f_{I_m^{(\nu,\kappa)}}} T_h^{-1} + X H_{f_{I_m^{(\nu,\kappa)}}}^* H_{f_{I_m^{(\nu,\kappa)}}} T_h^{-1}.$$

$$(9.9)$$

It follows from Lemmas 8.8(d) and 8.11 that $F_{I_m^{(\nu,\kappa)}} = f_{I_m^{(\nu,\kappa)}}^2$. For any real-valued $f \in L^{\infty}(\Omega)$, we have $T_{f^2} = T_f^2 + H_f^* H_f$. Therefore

$$X_{\nu,\kappa} = Y_{\nu,\kappa} + A_{\nu,\kappa} + B_{\nu,\kappa}. \tag{9.10}$$

Since $T_h^{-1} \in \mathcal{T}$, it follows from Lemma 8.13 and Corollary 6.7 that $Y_{\nu,\kappa} \in \mathcal{T}$. To estimate $||A_{\nu,\kappa}||$, first observe that on $L^2(\Omega)$, we have the strong convergence

$$\sum_{\substack{\omega,\omega'\in I_{m,q}^{(\nu,\kappa)}\\\omega\neq\omega'}} M_{f_{\omega}}XPM_{f_{\omega'}} \to \sum_{\substack{\omega,\omega'\in I_{m}^{(\nu,\kappa)}\\\omega\neq\omega'}} M_{f_{\omega}}XPM_{f_{\omega'}} \quad \text{as} \quad q\to\infty,$$

where $I_{m,q}^{(\nu,\kappa)}$ was given by Definition 8.9(b). Compressing this strong convergence to $L_a^2(\Omega)$ and using the bound $||T_h^{-1}|| \leq 1$, we see that there is a $q \in \mathbf{N}$ such that

$$||A_{\nu,\kappa}|| \le 2||Z_{\nu,\kappa}||, \quad \text{where} \quad Z_{\nu,\kappa} = \sum_{\substack{\omega,\omega' \in I_{m,q}^{(\nu,\kappa)} \\ \omega \ne \omega'}} T_{f_{\omega}} X T_{f_{\omega'}}.$$
 (9.11)

Since $f_{\omega}f_{\omega'}=0$ for $\omega\neq\omega'$ in $I_{m,q}^{(\nu,\kappa)}$, by Lemma 9.1, there are complex numbers $\{\gamma_{\omega}:\omega\in I_{m,q}^{(\nu,\kappa)}\}$ of modulus 1 and a subset I of $I_{m,q}^{(\nu,\kappa)}$ such that if we define

$$F = \sum_{\omega \in I} f_{\omega}, \quad G = \sum_{\omega \in I_{m,q}^{(\nu,\kappa)} \setminus I} f_{\omega}, \quad F' = \sum_{\omega \in I} \gamma_{\omega} f_{\omega} \quad \text{and} \quad G' = \sum_{\omega \in I_{m,q}^{(\nu,\kappa)} \setminus I} \gamma_{\omega} f_{\omega},$$

then

$$||Z_{\nu,\kappa}|| \le 4(||T_{F'}XT_G|| + ||T_{G'}XT_F||). \tag{9.12}$$

Note that $T_{G'}XT_F = T_{G'}[X, T_F] + T_{G'}T_FX$. We have $F \in \Phi(2^{-m}; ((m/13) - 4)^{-1})$ by Lemma 8.12. Hence it follows from (9.4) and (9.2) that

$$||T_{G'}[X, T_F]|| \le ||[X, T_F]|| \le 2\epsilon.$$
 (9.13)

Since $B_{\omega} \cap B_{\omega'} = \emptyset$ for all $\omega \neq \omega'$ in $I_m^{(\nu,\kappa)}$, we have G'F = 0 on Ω , and consequently $T_{G'}T_F = -H_{G'}^*H_F$. Since diff $(F) \leq ((m/13) - 4)^{-1}$, by (9.4) and (9.3), we have

$$||T_{G'}T_FX|| \le ||H_F|| ||X|| \le ||X||\epsilon.$$

Combining this with (9.13), we see that $||T_{G'}XT_F|| \leq (2 + ||X||)\epsilon$. The same argument also shows that $||T_{F'}XT_G|| \leq (2 + ||X||)\epsilon$. Substituting these in (9.12) and recalling (9.11), we obtain

$$||A_{\nu,\kappa}|| \le 16(2 + ||X||)\epsilon.$$
 (9.14)

Next we estimate $||B_{\nu,\kappa}||$.

Lemma 8.12 tells us that $\operatorname{diff}(f_{I_m^{(\nu,\kappa)}}) \leq ((m/13)-4)^{-1}$. Combining this with (9.4) and (9.3), and with the fact $||T_h^{-1}|| \leq 1$, we obtain

$$\|XH_{f_{I_{m}^{(\nu,\kappa)}}}^{*}H_{f_{I_{m}^{(\nu,\kappa)}}}T_{h}^{-1}\|\leq\|X\|\|H_{f_{I_{m}^{(\nu,\kappa)}}}\|\leq\|X\|\epsilon.$$

Again, Lemma 8.12 says that $f_{I_m^{(\nu,\kappa)}}\in\Phi(2^{-m};((m/13)-4)^{-1})$. Hence it follows from (9.4) and (9.2) that

$$\|[X,T_{f_{I_{m}^{(\nu,\kappa)}}}]T_{f_{I_{m}^{(\nu,\kappa)}}}T_{h}^{-1}\|\leq\|[X,T_{f_{I_{m}^{(\nu,\kappa)}}}]\|\leq2\epsilon.$$

Recalling (9.9), from the above two inequalities we obtain

$$||B_{\nu,\kappa}|| \le (||X|| + 2)\epsilon.$$
 (9.15)

To summarize, we have shown that for each pair of $1 \le \kappa \le 3$ and $1 \le \nu \le N_0$, we have the decomposition (9.10) where $Y_{\nu,\kappa} \in \mathcal{T}$ and where $A_{\nu,\kappa}$, $B_{\nu,\kappa}$ satisfy estimates (9.14) and (9.15) respectively. Combining (9.10) with (9.7), we have X = Y + Z, where

$$Y = X_0 + \sum_{\kappa=1}^{3} \sum_{\nu=1}^{N_0} Y_{\nu,\kappa} \quad \text{and} \quad Z = \sum_{\kappa=1}^{3} \sum_{\nu=1}^{N_0} (A_{\nu,\kappa} + B_{\nu,\kappa}). \tag{9.16}$$

Now, (9.1) follows from (9.14) and (9.15), and we have shown that $Y \in \mathcal{T}$. This completes the proof of part (i) in Theorem 1.1. \square

Proposition 9.2. For $X \in \mathcal{T}$, if $LOC(X) \subset \mathcal{K}$, then X is compact.

Proof. Let $X \in \mathcal{T}$ and suppose that $LOC(X) \subset \mathcal{K}$. As we showed above, for every $\epsilon > 0$, X admits a decomposition X = Y + Z, where Y and Z are given by (9.16), with X_0 known to be compact. By (9.8) and Lemma 8.13, the condition $LOC(X) \subset \mathcal{K}$ implies $Y_{\nu,\kappa} \in \mathcal{K}$. Thus Y is compact. Since Z satisfies (9.1), this shows that X is compact. \square

Proposition 9.3. Let $X \in \mathcal{T}$. Suppose that X has the property that for every $0 < R < \infty$,

$$\lim_{z \to \partial \Omega} \sup_{w \in D(z,R)} |\langle Xk_w, k_z \rangle| = 0.$$
 (9.17)

Then X is a compact operator.

Proof. Recall from Proposition 6.6 that LOC(X) $\subset \mathcal{D}(X)$. Combining this with Proposition 9.2, it suffices to prove the inclusion $\mathcal{D}_0(X) \subset \mathcal{K}$ under the assumption that (9.17) holds for every $0 < R < \infty$. By Definition 6.3(c), we need to show that the operator

$$T = \sum_{z \in \Gamma} c_z \langle X k_{\psi(z)}, k_{\varphi(z)} \rangle k_{\varphi(z)} \otimes k_{\psi(z)}$$

is compact, where Γ is a separated set in Ω , $\{c_z : z \in \Gamma\}$ is a bounded set of coefficients, and $\varphi, \psi : \Gamma \to \Omega$ are maps for which there is a $0 \le C < \infty$ such that $d(z, \varphi(z)) \le C$ and $d(z, \psi(z)) \le C$ for every $z \in \Gamma$.

By the assumption on φ , ψ and Lemma 2.11, there is a partition $\Gamma = \Gamma_1 \cup \cdots \cup \Gamma_k$ such that for each $1 \leq j \leq k$, the conditions $z, w \in \Gamma_j$ and $z \neq w$ imply $d(\varphi(z), \varphi(w)) > 2$ and $d(\psi(z), \psi(w)) > 2$. Hence for each $1 \leq j \leq k$, the sets $\{\varphi(z) : z \in \Gamma_j\}$ and $\{\psi(z) : z \in \Gamma_j\}$ are 1-separated. This leads to the decomposition $T = T_1 + \cdots + T_k$, where

$$T_{j} = \sum_{z \in \Gamma_{j}} c_{z} \langle X k_{\psi(z)}, k_{\varphi(z)} \rangle k_{\varphi(z)} \otimes k_{\psi(z)}$$

for every $1 \leq j \leq k$. Thus it suffices to show that $T_j \in \mathcal{K}$ for every $1 \leq j \leq k$. Fix such a j for the moment. For each $\delta > 0$, denote $\Gamma_{j,\delta} = \{z \in \Gamma_j : -r(z) \leq \delta\}$. Using an obvious finite-rank approximation and applying Lemma 5.1, for each $\delta > 0$, we have

$$||T_j||_{\mathcal{Q}} \le \left|\left|\sum_{z \in \Gamma_{j,\delta}} c_z \langle X k_{\psi(z)}, k_{\varphi(z)} \rangle k_{\varphi(z)} \otimes k_{\psi(z)}\right|\right| \le C_{5.1}^2 c \sup_{z \in \Gamma_{j,\delta}} |\langle X k_{\psi(z)}, k_{\varphi(z)} \rangle|,$$

where $c = \sup_{z \in \Gamma} |c_z|$. Since $d(z, \varphi(z)) \leq C$ and $d(z, \psi(z)) \leq C$ for every $z \in \Gamma$, it follows from (9.17) that the right-hand side tends to 0 as $\delta \downarrow 0$. Thus $||T_j||_{\mathcal{Q}} = 0$, i.e., T_j is a compact operator. This completes the proof. \square

As an immediate consequence of Proposition 9.3, we have

Corollary 9.4. Let $X \in \mathcal{T}$. Then X is compact if and only if

$$\lim_{z \to \partial \Omega} \|Xk_z\| = 0.$$

10. The essential commutant of the Toeplitz algebra

We now turn to the proof of part (ii) in Theorem 1.1.

Proposition 10.1. If $f \in VO_{bdd}$, then

$$\lim_{z \to \partial \Omega} \|(f - f(z))k_z\| = 0.$$

Proof. Let $f \in VO_{bdd}$ and consider a large R > 0. Given any $z \in \Omega$, we have

$$||(f - f(z))k_z||^2 = \int_{D(z,R)} |f(w) - f(z)|^2 |k_z(w)|^2 dv(w)$$

$$+ \int_{\Omega \setminus D(z,R)} |f(w) - f(z)|^2 |k_z(w)|^2 dv(w)$$

$$\leq \sup_{w \in D(z,R)} |f(w) - f(z)|^2 + C_1 ||f||_{\infty}^2 \int_{\Omega \setminus D(z,R)} \frac{|r(z)|^{n+1}}{F(z,w)^{2n+2}} dv(w).$$

Applying Lemma 3.8, there are constants $0 < C_2 < \infty$ and s > 0 such that

$$||(f - f(z))k_z||^2 \le \sup_{w \in D(z,R)} |f(w) - f(z)|^2 + C_2||f||_{\infty}^2 2^{-sR}.$$
 (10.1)

Now we use the fact that f has vanishing oscillation: Using the cutoff functions provided by Lemma 7.6, for any $\delta > 0$, we can write $f = f_1 + f_2$, where f_1 has a compact support in Ω and diff $(f_2) \leq \delta$. Combining this fact with Lemma 7.1, we see that

$$\lim_{z \to \partial \Omega} \sup_{w \in D(z,R)} |f(w) - f(z)| = 0$$

once an R>0 is given. This and (10.1) together imply that $\|(f-f(z))k_z\|\to 0$ as $z\to\partial\Omega$. This completes the proof. \square

Proposition 10.2. Suppose that $\{z_j\}$ and $\{w_j\}$ are sequences in Ω satisfying the following two conditions:

- $(1) \lim_{j\to\infty} r(z_j) = 0.$
- (2) There is a constant $0 < C < \infty$ such that $d(z_j, w_j) \leq C$ for every $j \in \mathbb{N}$. Then for every $A \in EssCom(\mathcal{T})$ we have

$$\lim_{j \to \infty} \|[A, k_{z_j} \otimes k_{w_j}]\| = 0.$$
 (10.2)

Proof. For the given $\{z_j\}$, $\{w_j\}$ and A, suppose that (10.2) did not hold. Then, replacing $\{z_j\}$, $\{w_j\}$ by subsequences if necessary, we may assume that there is a c > 0 such that

$$\lim_{i \to \infty} \| [A, k_{z_j} \otimes k_{w_j}] \| = c. \tag{10.3}$$

We will show that this leads to a contradiction.

By condition (1) and Lemma 2.1, there is a sequence $j_1 < j_2 < \cdots < j_{\nu} < \cdots$ of natural numbers such that $-r(z_{j_{\nu+1}}) < -r(z_{j_{\nu}})$ for every $\nu \in \mathbf{N}$ and such that the set $\{z_{j_{\nu}} : \nu \in \mathbf{N}\}$ is 1-separated. For each $\nu \in \mathbf{N}$, we now define the operator

$$B_{\nu} = [A, k_{z_{i\nu}} \otimes k_{w_{i\nu}}],$$

whose rank is at most 2. By conditions (1), (2) and Lemma 2.1, we also have that $r(w_j) \to 0$ as $j \to \infty$. Thus both sequences of vectors $\{k_{z_j}\}$ and $\{k_{w_j}\}$ converge to 0 weakly in $L_a^2(\Omega)$. Consequently we have the convergence

$$\lim_{\nu \to \infty} B_{\nu} = 0 \quad \text{and} \quad \lim_{\nu \to \infty} B_{\nu}^* = 0$$

in the strong operator topology. Thus by (10.3) and Lemma 7.8, there is a subsequence $\nu(1) < \nu(2) < \cdots < \nu(m) < \cdots$ of natural numbers such that the sum

$$B = \sum_{m=1}^{\infty} B_{\nu(m)}$$

converges strongly with $||B||_{\mathcal{Q}} = c > 0$. Thus B is not compact. Now define the operator

$$Y = \sum_{m=1}^{\infty} k_{z_{j_{\nu(m)}}} \otimes k_{w_{j_{\nu(m)}}}.$$

Since the set $\{z_{j_{\nu}}: \nu \in \mathbf{N}\}$ is 1-separated and since condition (2) holds, by Proposition 6.4 we have $Y \in \mathcal{T}$. Since $A \in \operatorname{EssCom}(\mathcal{T})$, the commutator [A, Y] is compact. On the other hand, we clearly have [A, Y] = B, which is not compact because $||B||_{\mathcal{Q}} > 0$. This gives us the contradiction promised earlier. \square

Lemma 10.3. [27, Lemma 5.1] Let T be a bounded, self-adjoint operator on a Hilbert space \mathcal{H} . Then for each unit vector $x \in \mathcal{H}$ we have $\|[T, x \otimes x]\| = \|(T - \langle Tx, x \rangle)x\|$.

Lemma 10.4. [27, Lemma 5.2] Let T be a bounded, self-adjoint operator on a Hilbert space \mathcal{H} . Then for every pair of unit vectors $x, y \in \mathcal{H}$ we have

$$|\langle Tx,x\rangle - \langle Ty,y\rangle| \leq \|[T,x\otimes y]\| + \|[T,x\otimes x]\| + \|[T,y\otimes y]\|.$$

For a bounded operator A on $L_a^2(\Omega)$, we define the function

$$\tilde{A}(z) = \langle Ak_z, k_z \rangle, \quad z \in \Omega.$$

Recall that \tilde{A} is commonly called the Berezin transform of the operator A.

Proposition 10.5. If $A \in EssCom(\mathcal{T})$, then its Berezin transform \tilde{A} is in VO_{bdd} .

Proof. It suffices to consider a self-adjoint $A \in \operatorname{EssCom}(\mathcal{T})$. Obviously, \tilde{A} is bounded, and Proposition 4.6 tells us that it is continuous on Ω . If it were true that $\tilde{A} \notin \operatorname{VO}$, then there would be a c > 0 and sequences $\{z_j\}$, $\{w_j\}$ in Ω with

$$\lim_{j \to \infty} r(z_j) = 0 \tag{10.4}$$

such that for every $j \in \mathbb{N}$, we have $d(z_j, w_j) \leq 1$ and

$$|\langle Ak_{z_j}, k_{z_j} \rangle - \langle Ak_{w_j}, k_{w_j} \rangle| = |\tilde{A}(z_j) - \tilde{A}(w_j)| \ge c.$$

$$(10.5)$$

But on the other hand, it follows from Lemma 10.4 that

$$|\langle Ak_{z_i}, k_{z_i} \rangle - \langle Ak_{w_i}, k_{w_i} \rangle| \le ||[A, k_{z_i} \otimes k_{w_i}]|| + ||[A, k_{z_i} \otimes k_{z_i}]|| + ||[A, k_{w_i} \otimes k_{w_i}]||.$$
 (10.6)

By (10.4) and the condition $d(z_j, w_j) \leq 1$, $j \in \mathbb{N}$, we can apply Proposition 10.2 to obtain

$$\lim_{j \to \infty} \|[A, k_{z_j} \otimes k_{w_j}]\| = 0 \quad \text{and} \quad \lim_{j \to \infty} \|[A, k_{z_j} \otimes k_{z_j}]\| = 0.$$
 (10.7)

By Lemma 2.1, conditions (10.4) and $d(z_j, w_j) \le 1$, $j \in \mathbb{N}$, also imply $\lim_{j \to \infty} r(w_j) = 0$. Thus Proposition 10.2 also provides that

$$\lim_{j \to \infty} \| [A, k_{w_j} \otimes k_{w_j}] \| = 0.$$
 (10.8)

Obviously, (10.6), (10.7) and (10.8) together contradict (10.5). \square

Lemma 10.6. If $A \in EssCom(\mathcal{T})$, then

$$\lim_{z \to \partial \Omega} \|(A - T_{\tilde{A}})k_z\| = 0.$$

Proof. Again, it suffices to consider a self-adjoint $A \in \operatorname{EssCom}(\mathcal{T})$. Then it follows from Lemma 10.3 and Proposition 10.2 that

$$\lim_{z \to \partial \Omega} \|(A - \tilde{A}(z))k_z\| = \lim_{z \to \partial \Omega} \|[A, k_z \otimes k_z]\| = 0.$$

Therefore it suffices to show that

$$\lim_{z \to \partial \Omega} \| (T_{\tilde{A}} - \tilde{A}(z)) k_z \| = 0.$$

Since $\|(T_{\tilde{A}} - \tilde{A}(z))k_z\| \le \|(\tilde{A} - \tilde{A}(z))k_z\|$, this follows from Propositions 10.5 and 10.1. \square

Finally, we are ready to determine the essential commutant of \mathcal{T} .

Proof of Theorem 1.1(ii). Again, it follows from Proposition 7.3 that $\operatorname{EssCom}(\mathcal{T}) \supset \{T_f : f \in \operatorname{VO}_{\operatorname{bdd}}\} + \mathcal{K}.$

For the reverse inclusion, consider any $A \in \operatorname{EssCom}(\mathcal{T})$. We need to show that $A \in \{T_f : f \in \operatorname{VO}_{\operatorname{bdd}}\} + \mathcal{K}$. We know that $\tilde{A} \in \operatorname{VO}_{\operatorname{bdd}}$ from Proposition 10.5. Hence it suffices to show that $A - T_{\tilde{A}}$ is compact. For this we apply Lemma 10.6, which gives us

$$\lim_{z \to \partial \Omega} \|(A - T_{\tilde{A}})k_z\| = 0. \tag{10.9}$$

The membership $A \in \operatorname{EssCom}(\mathcal{T})$ implies, of course, that $A \in \operatorname{EssCom}\{T_f : f \in \operatorname{VO}_{\operatorname{bdd}}\}$. Hence Theorem 1.1(i) tells us that $A \in \mathcal{T}$. Consequently, $A - T_{\tilde{A}} \in \mathcal{T}$. By Corollary 9.4, the membership $A - T_{\tilde{A}} \in \mathcal{T}$ and (10.9) together imply that $A - T_{\tilde{A}}$ is compact. \square

11. Berezin transform near the boundary

The purpose of this section is to show that condition (9.17) is implied by the vanishing of Berezin transform near $\partial\Omega$. This along with Proposition 9.3 will give us the proof of Theorem 1.2. To begin, we need to fix some necessary constants:

Lemma 11.1. (1) There is a $0 < c_0 < 1$ such that $z + \mathcal{P}((\bar{\partial}r)(z); 2c_0\sqrt{-r(z)}, -2c_0r(z)) \subset D(z, 1)$ for every $z \in \Omega$ satisfying the condition $-r(z) < \theta$.

- (2) There is a $b_0 > 0$ such that $D(z, 3b_0) \subset z + \mathcal{P}((\bar{\partial}r)(z); c_0\sqrt{-r(z)}, -c_0r(z))$ for every $z \in \Omega$ satisfying the condition $-r(z) < \theta$.
- (3) There is an $a_0 > 0$ such that $z + \mathcal{P}((\bar{\partial}r)(z); a_0\sqrt{-r(z)}, -a_0r(z)) \subset D(z, b_0)$ for every $z \in \Omega$ satisfying the condition $-r(z) < \theta$.

Proof. By Proposition 2.4, there is a 0 < c < 1 such that $z + \mathcal{P}((\bar{\partial}r)(z); c\sqrt{-r(z)}, -cr(z)) \subset D(z,1)$ for every $z \in \Omega$ satisfying the condition $-r(z) < \theta$. Then $c_0 = c/2$ will do for (1).

To prove (2), take any 0 < b < 1/2 such that $C_{2.5}b < c_0$. By Proposition 2.5, we have

$$D(z,b) \subset z + \mathcal{P}((\bar{\partial}r)(z); c_0\sqrt{-r(z)}, -c_0r(z))$$

whenever $-r(z) < \theta$. Thus (2) holds for the constant $b_0 = b/3$.

Finally, note that (3) is a direct consequence of Proposition 2.4. \square

Once the above constants are fixed, we can introduce the following "polyballs":

Definition 11.2. (1) Let

$$\mathcal{P} = \{(u_1, u_2, \dots, u_u) \in \mathbf{C}^n : |u_1| < a_0 \text{ and } (|u_2|^2 + \dots + |u_n|^2)^{1/2} < a_0\},\$$

$$Q = \{(u_1, u_2 \dots, u_u) \in \mathbf{C}^n : |u_1| \le c_0 \text{ and } (|u_2|^2 + \dots + |u_n|^2)^{1/2} \le c_0\} \text{ and }$$
$$\mathcal{R} = \{(u_1, u_2 \dots, u_u) \in \mathbf{C}^n : |u_1| < 2c_0 \text{ and } (|u_2|^2 + \dots + |u_n|^2)^{1/2} < 2c_0\}.$$

(2) For each $z \in \Omega$ satisfying the condition $-r(z) < \theta$, let S_z be the linear transformation on \mathbb{C}^n given by the formula

$$S_z(u_1, u_2, \dots u_n) = (-r(z)u_1, \sqrt{-r(z)}u_2, \dots, \sqrt{-r(z)}u_n), \quad (u_1, u_2, \dots u_n) \in \mathbf{C}^n.$$

- (3) For each $z \in \Omega$ satisfying the condition $-r(z) < \theta$, let \mathcal{U}_z be a unitary transformation on \mathbb{C}^n such that $\mathcal{U}_z\{(0, u_2, \dots, u_n) : u_2, \dots, u_n \in \mathbb{C}\} = \{u \in \mathbb{C}^n : \langle u, (\bar{\partial}r)(z) \rangle = 0\}.$
- (4) For each $z \in \Omega$ satisfying the condition $-r(z) < \theta$, denote $\mathcal{V}_z = \mathcal{U}_z \mathcal{S}_z$.

Proposition 11.3. Suppose that U is a connected open set in \mathbb{C}^n that is symmetric with respect to conjugation. That is, $(w_1, \ldots, w_n) \in U$ if and only if $(\bar{w}_1, \ldots, \bar{w}_n) \in U$. Let F be an analytic function on the domain $U \times U$ in $\mathbb{C}^n \times \mathbb{C}^n$. If $F(\bar{z}, z) = 0$ for every $z \in U$, then F is identically zero on $U \times U$.

Proof. For each $j \in \{1, ..., n\}$, let e_j denote the vector in \mathbb{C}^n whose j-th component is 1 and whose other components are 0. We then define

$$(d_{j}F)(w,z) = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) F(w + \overline{(x+iy)e_{j}}, z + (x+iy)e_{j}) \Big|_{x=0=y} \quad \text{and}$$

$$(\partial_{j}F)(w,z) = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) F(w + (x+iy)e_{j}, z) \Big|_{x=0=y}$$

for $j \in \{1, ..., n\}$ and $w, z \in U$. It is straightforward to verify that for every multi-index $\alpha \in \mathbf{Z}_+^n$, we have $d^{\alpha}F = \partial^{\alpha}F$. Since $F(\bar{z}, z) = 0$ for every $z \in U$, an easy induction on $|\alpha|$ yields $(d^{\alpha}F)(\bar{z}, z) = 0$ for every $z \in U$ and every $\alpha \in \mathbf{Z}_+^n$. Thus if we fix any $z \in U$, then $(\partial^{\alpha}F)(\bar{z}, z) = 0$ for every $\alpha \in \mathbf{Z}_+^n$. By the standard power-series expansion, this means that the analytic function $f_z(\zeta) = F(\zeta, z), \zeta \in U$, vanishes on a small open ball containing \bar{z} . Since U is connected, we conclude that $f_z = 0$ on U. Since this is true for every $z \in U$, it follows that F is identically zero on $U \times U$. \square

Proposition 11.4. Let A be a bounded operator on the Bergman space $L^2_a(\Omega)$. If

$$\lim_{z \to \partial \Omega} \langle Ak_z, k_z \rangle = 0, \tag{11.1}$$

then for every given $0 < R < \infty$ we have

$$\lim_{z \to \partial \Omega} \sup_{w \in D(z,R)} |\langle Ak_w, k_z \rangle| = 0.$$
 (11.2)

Proof. Given (11.1), suppose that (11.2) failed for some $0 < R < \infty$. We will show that this results in a contradiction. First of all, the failure of (11.2) for this particular R means that there is an $\epsilon > 0$ and sequences $\{z_j\}$, $\{w_j\}$ in Ω such that

$$\lim_{j \to \infty} r(z_j) = 0 \tag{11.3}$$

and at the same time, $d(z_j, w_j) < R$ and

$$|\langle Ak_{w_j}, k_{z_j} \rangle| \ge \epsilon \tag{11.4}$$

for every $j \geq 1$. Since $d(z_j, w_j) < R$, for every $j \geq 1$ we have a C^1 map $g_j : [0, 1] \to \Omega$ such that $g_j(0) = z_j$, $g_j(1) = w_j$ and

$$\int_{0}^{1} \sqrt{\langle \mathcal{B}(g_j(t))g_j'(t), g_j'(t)\rangle} dt \le R + 1.$$
(11.5)

By (11.3), (11.5) and Lemma 2.1, discarding a finite number of j's if necessary, we may assume that $-r(g_j(t)) < \theta$ for all j and $t \in [0,1]$. Thus Lemma 11.1 can be applied on all these paths. With the b_0 provided by Lemma 11.1, we pick an $m \in \mathbb{N}$ such that $(R+1)/m < b_0$. Thus for every $j \geq 1$, there is a partition

$$0 = x_i(0) < x_i(1) < \dots < x_i(m) = 1$$

of the interval [0, 1] such that

$$\int_{x_j(i-1)}^{x_j(i)} \sqrt{\langle \mathcal{B}(g_j(t))g_j'(t), g_j'(t) \rangle} dt \le \frac{R+1}{m} < b_0$$
 (11.6)

for every $1 \leq i \leq m$. Now, for every pair of $j \geq 1$ and $0 \leq i \leq m$, we define

$$z_j^{(i)} = g_j(x_j(i)).$$

In particular, we have $z_j^{(0)} = z_j$ and $z_j^{(m)} = w_j$ for all j.

Recall that we write $K_z(\zeta) = K(\zeta, z)$, which is the (unnormalized) reproducing kernel for $L_a^2(\Omega)$. Let us denote

$$\Phi(w,z) = \langle AK_w, K_z \rangle,$$

 $w, z \in \Omega$. For every pair of $j \ge 1$ and $0 \le i \le m$, we define the function

$$F_j^{(i)}(\zeta,\xi) = |r(z_j^{(0)})|^{n+1} \Phi\left(z_j^{(i)} + \mathcal{V}_{z_j^{(i)}} \overline{\zeta}, z_j^{(0)} + \mathcal{V}_{z_j^{(0)}} \xi\right), \tag{11.7}$$

 $\zeta, \xi \in \mathcal{R}$. A review of Definitions 11.2 and 2.3 gives us the identity

$$z_j^{(i)} + \mathcal{V}_{z_j^{(i)}} \mathcal{R} = z_j^{(i)} + \mathcal{P}((\bar{\partial}r)(z_j^{(i)}); 2c_0\sqrt{-r(z_j^{(i)})}, -2c_0r(z_j^{(i)})). \tag{11.8}$$

Therefore Lemma 11.1 ensures that each $F_j^{(i)}$ is well defined, and it is obviously an analytic function of $\mathcal{R} \times \mathcal{R}$. By (11.8), Lemma 11.1(1) and (11.5), if $w = z_j^{(i)} + \mathcal{V}_{z_j^{(i)}}\overline{\zeta}$ for some $\zeta \in \mathcal{R}$, then $d(w, z_j^{(0)}) \leq R + 2$. Thus by (4.1) and Lemma 2.1, there is a $C_1 = C_1(R)$ such that

$$|F_i^{(i)}(\zeta,\xi)| \le C_1 ||A||$$

for all $\zeta, \xi \in \mathcal{R}$, $j \geq 1$ and $0 \leq i \leq m$. Hence for each $0 \leq i \leq m$, $\{F_j^{(i)} : j \geq 1\}$ is a normal family of analytic functions on $\mathcal{R} \times \mathcal{R}$. Consequently there is a sequence

$$j_1 < j_2 < \cdots < j_{\nu} < \cdots$$

in **N** such that for every $0 \le i \le m$, the sequence $\{F_{j_{\nu}}^{(i)}\}_{\nu \in \mathbf{N}}$ is uniformly convergent on each compact subset of $\mathcal{R} \times \mathcal{R}$. For every $0 \le i \le m$, define the function

$$F^{(i)} = \lim_{\nu \to \infty} F_{j_{\nu}}^{(i)} \tag{11.9}$$

on $\mathcal{R} \times \mathcal{R}$. Next we show that every $F^{(i)}$ is identically zero on $\mathcal{R} \times \mathcal{R}$.

We will accomplish this by an induction on i. First, let us show that $F^{(0)}$ is the zero function. For $j \geq 1$ and $\zeta \in \mathcal{R}$, we have

$$F_j^{(0)}(\overline{\zeta},\zeta) = |r(z_j^{(0)})|^{n+1} \Phi\left(z_j^{(0)} + \mathcal{V}_{z_j^{(0)}}\zeta, z_j^{(0)} + \mathcal{V}_{z_j^{(0)}}\zeta\right).$$

As we explained above, (4.1) and Lemma 2.1 together guarantee that

$$|F_j^{(0)}(\overline{\zeta},\zeta)| \leq C_1 \Bigg| \bigg\langle Ak_{z_j^{(0)} + \mathcal{V}_{z_j^{(0)}}\zeta}, k_{z_j^{(0)} + \mathcal{V}_{z_j^{(0)}}\zeta} \bigg\rangle \Bigg|.$$

By (11.3) and Lemmas 11.1(1) and 2.1, for each $\zeta \in \mathcal{R}$ we have $r(z_j^{(0)} + \mathcal{V}_{z_j^{(0)}}\zeta) \to 0$ as $j \to \infty$. Thus, combining the above inequality with (11.1) and (11.9), we find that $F^{(0)}(\overline{\zeta},\zeta) = 0$ for every $\zeta \in \mathcal{R}$. By Proposition 11.3, $F^{(0)}$ is identically zero on $\mathcal{R} \times \mathcal{R}$.

Now suppose that $0 \le i < m$ and that we have shown that $F^{(i)}$ is identically zero on $\mathcal{R} \times \mathcal{R}$. We need to show that $F^{(i+1)}$ is also identically zero on $\mathcal{R} \times \mathcal{R}$. By (11.6), we have $d(z_i^{(i)}, z_i^{(i+1)}) < b_0$. A review of Definition 11.2 and Lemma 11.1 gives us

$$z_j^{(i+1)} + \mathcal{V}_{z_j^{(i+1)}} \mathcal{P} \subset D(z_j^{(i+1)}, b_0) \subset D(z_j^{(i)}, 3b_0) \subset z_j^{(i)} + \mathcal{V}_{z_j^{(i)}} \mathcal{Q}. \tag{11.10}$$

Let $\xi \in \mathcal{R}$ be given. By (11.7) and (11.10), for any $\zeta \in \mathcal{P}$, there is an $\eta_i(\zeta) \in \mathcal{Q}$ such that

$$F_j^{(i+1)}(\zeta,\xi) = F_j^{(i)}(\eta_j(\zeta),\xi). \tag{11.11}$$

Since Q is a compact set in \mathcal{R} and since $F^{(i)} = 0$, by (11.9) we have

$$\lim_{\nu \to \infty} \sup\{|F_{j_{\nu}}^{(i)}(\eta, \xi)| : \eta \in \mathcal{Q}\} = 0.$$

Combining this with (11.11) and (11.9), we find that $F^{(i+1)}(\zeta,\xi)=0$ for every $\zeta\in\mathcal{P}$. Since \mathcal{P} is a non-empty open subset of \mathcal{R} , this implies that $F^{(i+1)}(\zeta,\xi)=0$ for every $\zeta \in \mathcal{R}$. Since this is true for every $\xi \in \mathcal{R}$, we conclude that $F^{(i+1)}$ is identically zero on $\mathcal{R} \times \mathcal{R}$. This completes the induction on i.

In particular, the above tells us that $F^{(m)} = 0$ on $\mathcal{R} \times \mathcal{R}$, and consequently

$$\lim_{N \to \infty} F_{j_{\nu}}^{(m)}(0,0) = F^{(m)}(0,0) = 0. \tag{11.12}$$

Recalling (11.7), we have

$$F_{j_{\nu}}^{(m)}(0,0) = |r(z_{j_{\nu}}^{(0)})|^{n+1} \Phi(z_{j}^{(m)}, z_{j}^{(0)}) = |r(z_{j_{\nu}})|^{n+1} \langle AK_{w_{j_{\nu}}}, K_{z_{j_{\nu}}} \rangle.$$

Since $d(w_{j_{\nu}}, z_{j_{\nu}}) < R$, from (4.1) and Lemma 2.1 we obtain

$$|\langle Ak_{w_{j_{\nu}}}, k_{z_{j_{\nu}}}\rangle| \le C_2 |F_{j_{\nu}}^{(m)}(0,0)|.$$

This and (11.12) together contradict (11.4). This completes the proof.

Proof of Theorem 1.2. This follows immediately from Propositions 11.4 and 9.3.

References

- [1] S. Axler, D. Zheng, Compact operators via the Berezin transform, Indiana Univ. Math. J. 47 (1998) 387 - 400.
- [2] W. Bauer, J. Isralowitz, Compactness characterization of operators in the Toeplitz algebra of the
- Fock space F_{α}^{p} , J. Funct. Anal. 263 (2012) 1323–1355.
 [3] D. Békollé, C. Berger, L. Coburn, K. Zhu, BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal. 93 (1990) 310-350.
- [4] C. Berger, L. Coburn, K. Zhu, Function theory on Cartan domains and the Berezin-Toeplitz symbol calculus, Am. J. Math. 110 (1988) 921–953.
- [5] R. Coifman, G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes. Étude de certaines intégrales singulières, Lecture Notes in Mathematics, vol. 242, Springer-Verlag, Berlin-New York, 1971.
- [6] K. Davidson, On operators commuting with Toeplitz operators modulo the compact operators, J. Funct. Anal. 24 (1977) 291–302.
- [7] M. Didas, J. Eschmeier, K. Everard, On the essential commutant of analytic Toeplitz operators associated with spherical isometries, J. Funct. Anal. 261 (2011) 1361–1383.
- [8] K. Diederich, J. Fornaess, Boundary behavior of the Bergman metric, Asian J. Math. 22 (2018) 291-298.

- [9] J. Eschmeier, K. Everard, Toeplitz projections and essential commutants, J. Funct. Anal. 269 (2015) 1115–1135.
- [10] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974) 1–65.
- [11] K. Guo, S. Sun, The essential commutant of the analytic Toeplitz algebra and some problems related to it (Chinese), Acta Math. Sinica (Chin. Ser.) 39 (1996) 300–313.
- [12] J. Isralowitz, M. Mitkovski, B. Wick, Localization and compactness in Bergman and Fock spaces, Indiana Univ. Math. J. 64 (2015) 1553–1573.
- [13] B. Johnson, S. Parrott, Operators commuting with a von Neumann algebra modulo the set of compact operators, J. Funct. Anal. 11 (1972) 39-61.
- [14] N. Kerzman, The Bergman kernel function. Differentiability at the boundary, Math. Ann. 195 (1972) 149–158.
- [15] S.G. Krantz, Function Theory of Several Complex Variables, second edition, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1992.
- [16] P. Muhly, J. Xia, On automorphisms of the Toeplitz algebra, Am. J. Math. 122 (2000) 1121–1138.
- [17] J. Munkres, Analysis on Manifolds, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1991.
- [18] M. Peloso, Hankel operators on weighted Bergman spaces on strongly pseudoconvex domains, Ill. J. Math. 38 (1994) 223–249.
- [19] S. Popa, The commutant modulo the set of compact operators of a von Neumann algebra, J. Funct. Anal. 71 (1987) 393–408.
- [20] R.M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Graduate Texts in Mathematics, vol. 108, Springer-Verlag, New York, 1986.
- [21] D. Suárez, The essential norm of operators in the Toeplitz algebra on A^p(Bⁿ), Indiana Univ. Math. J. 56 (2007) 2185–2232.
- [22] H. Upmeier, Toeplitz Operators and Index Theory in Several Complex Variables, Operator Theory: Advances and Applications, vol. 81, Birkhäuser Verlag, Basel, 1996.
- [23] D. Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roum. Math. Pures Appl. 21 (1976) 97–113.
- [24] J. Xia, On the essential commutant of $\mathcal{T}(QC)$, Trans. Am. Math. Soc. 360 (2008) 1089–1102.
- [25] J. Xia, Singular integral operators and essential commutativity on the sphere, Can. J. Math. 62 (2010) 889-913.
- [26] J. Xia, Localization and the Toeplitz algebra on the Bergman space, J. Funct. Anal. 269 (2015) 781–814.
- [27] J. Xia, On the essential commutant of the Toeplitz algebra on the Bergman space, J. Funct. Anal. 272 (2017) 5191–5217.
- [28] J. Xia, A double commutant relation in the Calkin algebra on the Bergman space, J. Funct. Anal. 274 (2018) 1631–1656.
- [29] J. Xia, D. Zheng, Localization and Berezin transform on the Fock space, J. Funct. Anal. 264 (2013) 97–117.