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Consider a bounded strongly pseudo-convex domain €2 with
smooth boundary in C™. Let 7 be the Toeplitz algebra on the
Bergman space L2(Q). That is, 7 is the C*-algebra generated
by the Toeplitz operators {T} : f € L>°(Q)}. Extending the
work [27,28] in the special case of the unit ball, we show
that on any such ©, 7 and {Ty : f € VOpaa} + K are
essential commutants of each other, where K is the collection
of compact operators on L2(Q2). On a general  considered in
this paper, the proofs require many new ideas and techniques.
These same techniques also enable us to show that for A € T,
if (Ak.,k.) — 0 as z — 0%, then A is a compact operator.
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1. Introduction

An enduring question in the study of Toeplitz operators is their essential commu-

tativity. In this paper we consider this question on strongly pseudo-convex domains.

It will be beneficial to start the paper with a recollection of necessary definitions and

background.
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Suppose that Z is a collection of bounded operators on a Hilbert space H. Then its
essential commutant is defined to be

EssCom(Z) = {A € B(H) : [A,T] is compact for every T € Z}.

The study of essential commutants began with the classic papers of Johnson-Parrott [13],
Voiculescu [23] and Popa [19]. Ever since, essential-commutant problems have become a
mainstay of operator theory and operator algebras. As it turns out, many of the most
interesting examples in the study of essential commutants are associated with Toeplitz
operators, of various kinds [6,7,9,11,24,25 27 28]. This is perhaps due to the fact that
Toeplitz operators are given by explicit formulas, and such formulas are necessary for
the estimates that lead to the eventual results.

In this paper we consider an arbitrary bounded, strongly pseudo-convex domain 2
with smooth boundary in C". Recall that the Bergman space L2(f2) is the collection of
analytic functions h on €2 satisfying the condition

/|h|2dv < 00,
Q

where dv is the volume measure on Q. Let P : L?(Q2) — L2(£2) be the orthogonal
projection. For each f € L>°(§2), we have the Toeplitz operator T defined by the formula

T¢h = P(fh), he LZ(Q).

Let 7 denote the C*-algebra generated by {Ty : f € L*>(Q)}. Then T is called the
Toeplitz algebra on the Bergman space L2(Q). We have 17 =Tj for f € L*(12). Thus
the C*-algebra 7T is the closure with respect to operator norm of

m
{ZTflefzf "'Tfkj Zk‘,mE N and fij € LOO(Q) for1<i<kandl1 <j Sm}
=1

50

It is well known that 7 contains K, the collection of compact operators on L2(£2) [22,
Theorem 4.1.25], which is a convenient fact for the study of essential commutants.

In the case of the unit ball B in C™, the essential commutant problems related to 7
were solved in [27,28], with [26, Theorem 1.3] playing a pivotal role. Specifically, in the
case of the unit ball, it was shown that EssCom(7) = {Tf : f € VOpaa} + K in [27] and
that EssCom{T} : f € VOpqa} = T in [28]. Once one knows that, a question naturally
presents itself: what happens if one replaces the unit ball B by a general strongly pseudo-
convex domain 27 Equally naturally, one would expect that the same results hold on a
general (2. But here one immediately runs into two difficulties:

(1) The works in [27,28], particularly in [26], rely heavily on the explicit formula for
the Bergman metric 8 on B. Without such an explicit formula, it is not clear how to
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redo many of the estimates in [27,28]. By contrast, in the case of a general strongly
pseudo-convex domain, we only know the asymptotics of the Bergman metric [10,20],
but we do not have a formula for it that is explicit enough. In other words, on a general
Q, we do not have a good enough handle on the Bergman metric to do many of the
necessary estimates. The same is true if one considers the Kobayashi metric instead of
the Bergman metric.

(2) The techniques in [26-28] depend heavily on the Mobius transforms on B. But on
a general strongly pseudo-convex domain €2, there is no such thing as Moébius transform.
In other words, compared with the unit ball, a general €2 totally lacks global symmetry.
Compared with (1), this difficulty is more substantial, but it also makes an exciting
challenge: can we prove the results in [27,28] on a domain without symmetry?

We are pleased to report that we have managed to overcome these difficulties. The
way we deal with difficulty (1) is to simply introduce a metric that serves our purpose.
Since {2 is a strongly pseudo-convex domain, it has a defining function r, i.e., Q = {z €
C" : r(z) < 0}. Then the formula

1
—1(z)

bij(2) = 9;0; log 1<4,j <mn,

for z near 0f gives us the infinitesimal generator of a metric d on ). The above formula
is explicit enough to allow us to do all the necessary analysis. The precise definition of
d will be given at the beginning of Section 2.

Difficulty (2) simply requires new approaches. Examining the involvements of Mdbius
transforms in [27,28] one by one, we have managed to find a new idea or new technique
as a replacement in each case. Thus the results about essential commutants mentioned
above can indeed be proved without symmetry.

To state our results, we need the notion of wanishing oscillation, which was first
introduced in [4,3] for functions on bounded symmetric domains with respect to the
Bergman metric. In this paper we need to define functions of vanishing oscillation with
respect to the metric d on . Let f be a continuous function on Q. Then f is said to
have vanishing oscillation if

Zlirélﬂsup{|f(z) — f(w)]:w e Q and d(z,w) < 1} =0.
Let VO denote the collection of functions of vanishing oscillation on 2. Further, define
VOpaga = VO N L™ (Q).
Our main results are the two theorems below:
Theorem 1.1. On any bounded, strongly pseudo-convexr domain ) with smooth boundary

in C™, the following hold true:
(i) The Toeplitz algebra T is the essential commutant of {Ty : f € VOy4a}-
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(i) The essential commutant of T equals {Ty : f € VOpaa} + K.

Let Q denote the Calkin algebra B(L2(Q))/K. For any X C Q, write X’ for its
commutant in Q. That is, X' ={Y € Q : [Y, X] =0 for every X € X}. Let

T B(L?L(Q)) — Q

be the quotient homomorphism. Then 7(EssCom(Z)) = {n(2)} for every subset Z C
B(L?(£2)). Obviously, a subset A of Q satisfies the double-commutant relation A = A"
if and only if A = G’ for some G C Q. Thus Theorem 1.1(i) implies that 7(7) satisfies
the double-commutant relation in Q.

As it turns out, the techniques that allow us to prove Theorem 1.1(i), also give us a
classic compactness criterion for A € T in terms of its Berezin transform on . Let us
write k., z € Q, for the normalized reproducing kernel for the Bergman space L2(2).

Theorem 1.2. Consider any bounded, strongly pseudo-conver domain Q with smooth
boundary in C™. Let A€ T. If

1. A —_— 1-1
. 1%19( k., k) =0, (1.1)
then A is a compact operator on L2().

At this point, it is appropriate to briefly recall the long history of this line of investi-
gations. The first result of this genre was due to Axler and Zheng [1], where the domain
was the unit disc in C and A was a finite algebraic combination of Toeplitz operators.
Later in [21], Sudrez showed that for any A in the Toeplitz algebra on the unit ball B in
C™, the condition

lim (Ak., k.) =0
Ei

implies that A is a compact operator. The fact that Sudrez was able to do this for
arbitrary A € T on the ball, rather than just for finite algebraic combinations of Toeplitz
operators, was considered to be a major breakthrough. Consequently, [21] inspired many
generalizations [2,12,29], including generalizations on the Fock space. But all these papers
depend on the Mobius transforms on the domain in question. In this regard, Theorem 1.2
is the first to remove any and all involvement of Mdbius transforms, since in general there
aren’t any on ).

The rest of the paper is taken up by the proofs of these results. Since this paper is
quite long, we conclude the Introduction by summarizing the main steps in the proofs.

As it turns out, the key to the whole paper is the proof of Theorem 1.1(i); the other
results in the paper rely on this part of the work. It takes Sections 2-9 to prove Theo-
rem 1.1(i), which explains why the paper is so long.
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First of all, in Section 2 we precisely define the metric d mentioned above. In addition
to d, another important quantity for the paper is the “gauge”

plz,w) = |z — wf” + [{z — w, (9r)(2))|

on Q. We list a number of well known facts involving r, p(z,w) and d in Section 2.
Section 3 brings in another important ingredient for our analysis, the function

F(z,w) = [r(2)| + [r(w)] + p(z, w),

which is a familiar fixture on strongly pseudo-convex domains. The main result of the
section is Lemma 3.8, which is a version of the Forelli-Rudin estimates for 2 in which d
and F' are quantitatively involved.

Sections 4 and 5 are devoted to operators that are discrete sums constructed from
the Bergman kernel K (z,w) over d-lattices. The main goal for these two sections is
Corollary 5.3, which provides the norm-continuity of such discrete sums under small
perturbation of the lattice.

In Section 6, we introduce LOC(A), the class of “localized versions of A” for any
bounded operator A on L2(2). Using Lemma 3.8 and Corollary 5.3 mentioned above,
we show in Section 6 that LOC(A) C T for every A € B(L2(Q)). Since this is one of
the two key steps in the proof of Theorem 1.1(i), let us explain a little more. To prove
LOC(A) C T, we introduce the collection Dy of operators of the form

Z ek, ® k'y(z)a

zel

precisely defined in Definition 6.3. The proof of LOC(A) C T is divided into two parts:
in Proposition 6.4 we show that Dy C T and in Proposition 6.6 we show that LOC(A)
is contained in the norm closure of the linear span of Dy. Both parts require some work.

Section 7 is devoted to matters related to functions of vanishing oscillation. In partic-
ular, we consider the scalar quantity

diff(f) = sup{|f(z) — f(w)] : z,w € Q such that d(z,w) < 1},

which is another essential ingredient in the proof of Theorem 1.1(i). We show that every
operator in EssCom{T} : f € VOyqq} satisfies an “e-6” condition involving “diff”.

Section 8 is the other key step in the proof of Theorem 1.1(i), namely the construction
of approximate partitions of the unity on 2. There are two competing requirements that
must be satisfied: (1) The “diff” for the partition functions must be small. (2) There
is a fixed, finite cap on the overlaps of the sets involved. This construction is based
on a suitable analogue of “radial-spherical decomposition” for €. As it turns out, the
gauge p(z, w) plays the role of “spherical coordinates” in our decomposition, whereas the
defining function r gives us a convenient “radial coordinate”.
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With all the above preparation, we prove Theorem 1.1(i) in Section 9. The gist of the
proof is that the “e-0” condition mentioned above characterizes the membership X € 7.
The same work also shows that for A € T, if

lim  sup  |(Aky, k)| =0 (1.2)
zﬁaﬂweD(LR)

for every given 0 < R < oo, then A is a compact operator. This is a major step in the
proof of Theorem 1.2. In fact, what remains for the proof of Theorem 1.2 is to show that
(1.1) implies (1.2).

Then in Section 10, we turn to the proof of part (ii) in Theorem 1.1. With the work in
Section 9, this is now relatively easy. First of all, Theorem 1.1(i) tells us that EssCom(7)
coincides with the essential center of 7. That is, EssCom(7) C 7. Then we show that
the membership A € EssCom(7) implies that the Berezin transform A of A is in VOpgq.
Since A —T; € T, the membership A € VOpaq and the work in Section 9 lead to an
easy proof of the fact that A — T; € K, which proves Theorem 1.1(ii).

Finally, in Section 11 we show that (1.1) indeed implies (1.2). For all previous works
involving this step, this was easy, because one could use Mobius transforms. But in
our case of a general strongly pseudo-convex domain, this becomes a non-trivial step.
Material from Sections 2—4 will be needed for this step.

Acknowledgments We would like to thank the referee for the careful reading of the
manuscript, for the constructive suggestions, and for providing reference [8].

2. A metric on 2 and related facts

First of all, we cite [15,20] as general references for strongly pseudo-convex domains.
Throughout the paper, 2 denotes a bounded, connected, strongly pseudo-convex domain
in C™ with smooth boundary. More precisely, we always assume that 2 is bounded and
connected, and that there is a real-valued C'*° function r defined in an open neighborhood
of the closure of ) such that the following three conditions are satisfied:

(1) Q={zeC":r(z) <0}

(2) [(Vr)(2)| # 0 for every z € Of).

(3) There is a ¢ > 0 such that

n

Y (@) ()& = el + - + [€al?) (2.1)

,j=1

for all z € 90 and &;,...,¢&, € C.
Such an 7 is called a defining function for the domain. We choose such a defining function
r for the domain ) and fix it for the rest of the paper.

It will be convenient to adopt the following convention: We will consider C" as a
column space whenever an n X n matrix acts on it. When there is no matrix involved,
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we will consider C™ either as a column space or as a row space, whichever is more
appropriate.

Let A(z) be the n X n matrix whose entry in the intersection of i-th column and j-row
is (9;0;7)(2), i,j = 1,...,n. By (2) and (3), there is a § > 0 such that if w € Q and
r(w) > —30, then |(Vr)(w)| # 0 and

(A(w)E, &) = (c/2)[¢)? (2.2)

for all £ € C™. Let ¢ : R — [0, 1] be a C* function such that ¢» = 1 on [—6,00) and
1 =0 on (—oo, —26]. Write ¢;; for Kronecker’s delta. We then define

1 = 1 _
— OGN+ 5 ONE@E) ) + (1= vr ) 2

fori,j € {1,...,n} and z € Q. Let B(z) be the n x n matrix whose entry in the inter-

b5 (2) = wir(a))

section of i-th column and j-row is b;;(2), 4,7 = 1,...,n. From (2.2) and the definition
of ¥ we see that the B(z) is invertible for every z € 2. Thus the local Hermitian form

Hz(fﬂ?) = <B(Z)§777>7 fa77 € TZQ = Cna

generates a non-degenerate metric d on ). That is, for z,w € ,

d(zvw) = inf [ /Bl 0. 7O, (2.4)

where the infimum is taken over all C! maps g : [0, 1] —  satisfying the conditions g(0)
= z and g(1) = w. The definition of ) ensures that for 4,5 € {1,...,n},

bij(z) = 0;0; log whenever — 6 <r(z) <0.

1
—r(2)

Denote 0 = (51, ..., 0n), which will play a prominent role throughout the paper. Then

(B(2)¢,¢) =

(AR)EE) (1€ @I B
) + ( —0) ) whenever — 6 < r(z) <0, (2.5)

& € C™. Formula (2.5) makes it clear that the metric d is asymptotically equivalent to the
Bergman metric on (). There are many papers on this subject, and for a recent reference
we cite [8, Theorem 1.2].

In the rest of the section, we collect a number of facts about 2, the defining function
r and the metric d, which will be cited in later sections. These facts are essentially well
known for strongly pseudo-convex domains, and their proofs only involve elementary
techniques. For these reasons the proofs of the lemmas and propositions in this section
will be omitted.
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Lemma 2.1. There is a co1 > 0 such that —r(w) > —cp127 2=y (2) for all z,w € Q.
Lemma 2.2. (1) There is a 0 < C' < oo such that

|z — w| < Cd(z,w)2*4=)  /—r(2)

for all z,w € Q.
(2) There is a constant 0 < Cy.9 < 00 such that

|z = wf* + (2 = w, (0r)(2))| < Cazfd(z,w) + d*(z,w)}22 1) (—r(2))
for all z,w € Q.

Definition 2.3. For n € C™"\{0}, a > 0 and b > 0, we let P(n;a,b) be the collection of
vectors u + v satisfying the following three conditions:

(1) u,v € C™ with |u] < a and |v| < b.

(2) u L.

(B)ve{in:{eCh

For z € Q and a > 0, we define
D(z,a) ={w € Q:d(z,w) < a}.
As expected, the d-balls are approximated by the “polyballs” in Definition 2.3:
Proposition 2.4. Given any 0 < a < 0o, there are 0 < ¢ < C' < oo such that
2+ P((0r)(2);ey/=r(2), —cr(2)) C D(z,a) C z + P((9r)(2); Cy/—r(2), —Cr(2))
for every z € Q satisfying the condition —r(z) < 6.
Proposition 2.5. There is a 0 < Cy5 < 00 such that if 0 < a < 1/2, then
D(z,a) C z+ P((8r)(2); Cosar/—7(z), —Casar(z))
for every z € Q satisfying the condition —r(z) < 6.

On the domain 2 we define the measure

dv(z)

W= gy

(2.6)

Proposition 2.6. For each a € (0,00), there are 0 < c¢(a) < C(a) < oo such that

e(a) < u(D(z,a)) < C(a)
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for every z € Q.
For each 0 < € < 0, define the surface
Se={z€C": —r(z) =€}.
In particular, we have Sy = 012, the boundary of the domain €.
Proposition 2.7. There exist a finite open cover Uy, ..., Uy, of
H={ze€C":0< —r(2) <0/2}
in C" and a 1 < C < oo such that the following holds true: Suppose that 0 < € < 6/2
and that z,w € Sc NU; for some i € {1,...,m}. Furthermore, suppose that there is an

R > 1 such that |z — w| < Ry/e and |(z — w, (0r)(2))| < R%e. Then d(z,w) < CR2.

For each 0 < € < 6/2, we write do. for the natural surface measure on S,. For every
triple of 0 < e < 0/2, ( € S, and ¢t > 0, we define

Qe(C7t) = {g € Se : |C*€|2 + ‘<C*§v (éT)(C)H < t}'

It is well known that Se, p, ¢ is a space of homogeneous type in the sense of Coifman
and Weiss [5]. Consequently, we have

Proposition 2.8. There are constants 0 <7 < 0/2 and 0 < ca.5 < Cqyg < 00 such that

cast" <0 (Qe((, 1)) < Cost™

forall0<e<7,¢€S8 and 0 <t < Ty, where Ty = sup{|u — v|?> + [{u — v, (Or)(u))| :
u,v € Q}.

Proposition 2.9. There is a constant 0 < Cy9 < oo such that the following holds true:
Let z€Q, k€Z and j € Z. Then the volume of the set

W ={w e Q: 28 (—r(2) < —r(w) < 2°(—r(2))
and |z —w|* +|(z — w, (Or)(2))] < 2"+ (=r(2))}
does not exceed Co 92" (—2Fr(2))n+1.
Definition 2.10. (i) Let a be a positive number. A subset I" of €2 is said to be a-separated

if D(z,a) N D(w,a) = 0 for all distinct elements z, w in T.
(ii) A subset I" of § is simply said to be separated if it is a-separated for some a > 0.
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Lemma 2.11. (1) For any pair of 0 < a < 0o and 0 < R < oo, there is a natural number
N = N(a, R) such that for every a-separated set T’ in Q and every z € Q, we have

card{u € T : d(u,z) < R} < N.
(2) For any pair of 0 < a < R < oo, there is a natural number m = m(a, R) such that
every a-separated set I' in Q0 admits a partition T' =T U--- UL, with the property that
for every j € {1,...,m}, the set T'; is R-separated.

3. Forelli-Rudin estimates on 2

‘We will need the familiar functions

X w) = =) = 3 2 oy ) L5 D)

and
F(z,w) = [r(z)| + [r(w)] + p(z, w)
associated with Q and r, which are standard fixtures on strongly pseudo-convex domains.
Lemma 3.1. [18,20] There is a 6 > 0 such that
X (z,w)| = [r(2)] + [r(w)] + [ImX (z,w)| + |2 — w|* = F(2,w)
in the region Rs = {(z,w) € QA x Q: |[r(2)| + |r(w)| + |z — w| < §}.
Below is what one usually refers to as the Forelli-Rudin estimates:

Lemma 3.2. [18,20] Let a € R and k > —1. Then for z € Q,

/%d”(w)% 10g{\rz\ 1} ZZZig
Q ’ ‘7’( )‘ a ifa>0

Recall that for any z € Q with 0 < —7(2) < 0, we have (9r)(z) # 0 as a vector in C™.

Definition 3.3. For z € () satisfying the condition 0 < —r(z) < 6, let u, denote the unit
vector (0r)(2)/|(0r)(z)] in C™.
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Lemma 3.4. There exist constants 09 > 0 and 0 < C34 < oo such that if z € Q and
i € Z satisfy the condition —2iT1r(z) < &g, then for every x € [1,2] we have

d(z + 2'r(2)us, 2 + 22'r(2)u,) < Cs.4. (3.2)
Moreover, if —r(z) < do, then d(z,z + su,) < Cs4 for every s € [r(2),0].

Proof. Let z € Q be such that 0 < —r(z) < 6. Then

d _ _
ET(Z + tuy) = 2Re(uz, (0r)(z + tuy)) = 2|/(0r)(2)| + O(|t])-
Thus there is a 0 < §y < 6 such that if —r(z) < dg, then
the function ¢+ r(z + tu,) is increasing on [—dg, do].

Now let z € Q and i € Z; be such that —2i*1r(2) < d. Let = € [1,2]. Then for any
s < &' in the interval [227(2), 2!r(z)], the above monotonicity guarantees r(z + su,) <
r(z+ s'u,), i.e., —r(z + s'u,) < —r(z+ su,). For such a pair of s and &', it follows from
(2.3), (2.4) and the above monotonicity that

(2 s's) = (s sus)| _ o =274 () = 2(=r(2))

d "uz, 2) < C -
(z+su zZ 4+ su )— 7T(Z+S/uz) — 7217,(2)

:C7

which proves (3.2). Similarly, if —r(z) < do, then for every s € [r(z),0] we have r(z +
su,) < r(z), i.e,, —r(z + su,) > —r(z). Hence the same argument shows that d(z,z +
su,) < Clz — (2 + suz)|/(—=r(2)) < C. This proves the lemma. O

Lemma 3.5. There exist constants 0 < ¢35 < 1 and 0 < d; < &g, where §g was given in
Lemma 3.4, such that if z € Q satisfies the condition —r(z) < 61 and if =61 <t <0,
then

—r(z 4 tuy) + r(z) > c35t]
Proof. Taylor expansion [17] gives us
r(z + tu,) = r(2) + 2tRe(u,, (Or)(2)) + O(t?) = r(2) + 2t|(0r)(2)| + O(?).

In other words, r(z +tu.) —7(z) = {2|(0r)(2)|+O(t)}t. From this the desired conclusion
becomes obvious. O

Proposition 3.6. There is a constant 0 < Cs¢ < oo such that if z,w € § satisfy the
conditions r(z) = r(w) and |z — w|® + |(z — w, (9r)(2))| < —2/r(2), j € Zy, then
d(z,w) < Cs.6(1+ j).
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Using Lemma 3.5 and the sets Uy, ..., U,, from Proposition 2.7, the proof of Propo-
sition 3.6 is again an elementary argument. We omit the details.

Lemma 3.7. There is a 1 < Cs7 < oo such that if z,w € Q satisfy the conditions
2671 (—r(2)) < —r(w) < 28(=1(2)) and |z — w? + [(z — w, (9r)(2))] < 2" (=r(2)),
where k € Z and j € Zy, then d(z,w) < C3.7(1 + |k| + 7).

Proof. (1) First, let us consider the case where k& > 1. (1.a) Further, suppose that
2F(—r(2)) > c3.561/4, where c35 and d; are the constants in Lemma 3.5. Then the
condition 2¥71(—r(2)) < —r(w) < 2F(—r(2)) implies —r(w) > c3.501/8. If we also have
—r(z) > c3.501/4, then of course, d(z,w) < Cq, regardless of other conditions. Suppose
that —r(z) < ¢3.501/4. Let k' be the largest integer such that —2%+17(2) < ¢3.56;. Set

2 =24 28 (2)u,.
Since —2F7(2) > c3.501/4, we have k' +1 < k+2, i.e., k' < k. It follows from Lemma 3.4

that d(z,2") < Cs.4(K'+2) < Cs.4(k+2). By Lemma 3.5, we have ¢ 528 T1|r(2)] < —r(2/).
The choice of £’ ensures that —2k/+2r(z) > c3.501. Hence the above implies

c3561/2 < —r(2).
Thus d(z',w) < Cy, and consequently d(z,w) < Cs.4(k + 2) + Co < Csk in this subcase.
(1.b) Suppose that 28(—r(z)) < c3.501/4. Then —r(w) < 28(—r(2)) < ¢3.501/4. By
Lemma 3.5, we have

03.5(51 § —7”(2’ — 51’U,Z).

Hence —r(z — §1u,) > —r(w). Since —r(z) < 28-1(—r(2)) < —r(w), there is an s €
[—01, 0] such that r(z + su,) = r(w). Also, Lemma 3.5 tells us that
cssls| < —r(z 4 suy) = —r(w) < —2Fr(2). (3.3)

Thus |s| < —c5 £2Fr(2). Now the condition 2F(—r(2)) < c3.561/4 implies —c5 §2Fr(2) <
61/4. Therefore it follows from Lemma 3.4 and the inequality |s| < —c5 12Fr(2) that

d(z,z + su,) < C34{1+ Cs 1og(2k/03_5)} < Cyk.
Thus what remains for this subcase is to show that
d(z + su,,w) < Cs(1 4+ ).

For convenience, let us denote { = z + su,. Since r(¢) = r(w), to prove the above
inequality, by Proposition 3.6, it suffices to show that
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€ = wl? + (¢ = w, (9r) ()] < C62’ (—r(C))- (3.4)

y (3:3), IC— 2| = [s] < c5 12k( r(2)) < (2/es.5)(—r(¢)). Since Q is bounded, we have
|¢ — 2|2 < C7|¢ — 2]|. Therefore

€ = wl? <2I¢ = 2 + 2|2 — w|* < Cs(=r(¢)) + 2577 (=r(2)) < Co2? (=1(C)).
We have [(z — w, (0r)(2))| < 2517 (—r(z)) by assumption. Also,
46— 0, (Br)(O) — {z = w, (Br)(D] < Cole 2] < Cun(~r(C)).
Since 271 (—r(2)) < —r((), these inequalities prove (3.4). Thus the case k > 1 is proved.
(2) Now suppose that & < 0. Note that the condition 2¢¥71(—r(2)) < —r(w) <

2F(—r(2)) implies that 27%(—r(w)) < —r(z) < 278 (—r(w)). Also, the condition
|z — w|? + |{z — w, (Or)(2))| < 2¥+7(—r(2)) can be rewritten as

o= 0l 4 (2~ w, (Br) ()] < 2" (~r(w).
Since |(z — w, (9r)(2)) — (z — w, (9r)(w))| < Ci2|z — w|?, we now have

2 =l + (2 — w, (9r)(w))] < Cra2 (—r(w)).
Thus case (2) follows from case (1) by reversing the roles of z and w. O

We need the following “vanishing” version of Lemma 3.2.

Lemma 3.8. Given any a >0 and k > —1, there are 0 < C < 0o and s > 0 such that

|r(w)|"|r(2)[* R
AT PARJE <
/ Fz,w)niitnta dv(w) < C2
Q\D(z,R)

for all z € Q and R > 3C5.7, where C3.7 is the constant in Lemma 5.7.
Proof. For z € Q) and k € Z we define the sets

Zoo = {w € Q: 2" (=r(2)) < —r(w) < 28(—r(2))
and |z —w|® + [(z = w, (9r)(2))| < 2°(=r(2))} and
Zogy = {w € Q: 287 (—r(2)) < —r(w) < 28(—r(2))
and 28971 (—r(2)) < |2 = wl’ + [(z — w, (9r)(2))] < 257 (=r(2))}, > 1.

By the definition of F(z,w), for all k > 0 and j7 > 0, if w € Z, ;, then
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r@)"lr)I* . (2Fr(z)

K a C
QI g, @G _ 1
Flewyieee = SRR (e)

)n+1+/-c+a - 2(n+1+a)k2(n+1+n+a)j|r<z)|n+1 .
In the case k <0, j > 0 and w € Z,;, ;, we have

r)"r(* G Cp27*
F(z,w)rtttete = (Jr(z)] + 26 |r(2)[)ratrete (14 2k7)natbntalp(z) [t

By Proposition 2.9, v(Z,. ;) < C32™ (—2Fr(z))"*1. Thus if k¥ > 0 and j > 0, then

[ < GOPICRR Gy

F(Z7w)n+1+n+a — 2(n+1+a)k2(n+1+ﬁ+a)j|T(Z)|n+1 - 2ak9(1+k+a)j’ (35)

Zzik,j
Similarly, in the case k < 0 and j > 0, we have

‘ |T‘ )|a @)@, - 022nkc32nj(_2kr(z))n+1 B 052n(k+j)2(1+n)k
F Z ’LU n+1+n+a ’U(’U)) — (1 +2k+j)n+1+n+a|r(z)|n+1 - (1 +2k+j)n+1+n+a
z k,j

(3.6)
and 204mk — o(+m)k/2  9(+r)(k+7)/2 . 9=(1+r)j/2 Tet R > 3Cj57. By Lemma 3.7,

the condition Z,.; ;\D(z, R) # 0 implies either |k| > (2C57) 'R or j > (2C37)"'R
Therefore

[r(w)[*[r(2)|" (2)|*
/ Fle,wyrrinra VW) < > de(w),
Q\D(z,R) (kJEER) 7,
where E(R) = {(k,j) € Z x Z: either |k| > (2C3.7)"'R or j > (2C37) 'R}. Using
(3.5) and (3.6), it is now elementary to verify that the lemma holds for every 0 < s <

(2C5.7) ' min{a, (1 +x)/2}. O

Lemma 3.9. Given any a > 0 and k > —1, there is a 0 < C' < oo such that
|r(w)[*[r(2)|"
/d(z,w)de(w) S C
Q
for every z € Q.
Proof. Given any z € Q, define Fy = D(z,3C37) and

E;=D(z3+1)Cs57)\D(z,(3+i—1)C5.7)

for i > 1. For each i € Z, if w € E;, then d(z,w) < (3 +i)C5.7. Hence
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w)|*r(2)|" S r(w)r(z)|
/d Pz w)n+1+ﬁ+adv(w) 2(3—1—2 )C3 .7 n+1+n+adv(w).
=0

We now apply Lemma 3.2 to the term where ¢ = 0 and Lemma 3.8 to the terms where
i > 1. The result of this is

r(w)|®|r(z)|* > . s(34i
/ d(z,w)ﬁmdv(w) <3C37Co+ Y _(3+1)C5702 3G 1C0r,
’ i=1

Since Lemma 3.8 guarantees that s > 0, the right-hand side is finite. O

We end the section with another elementary fact about the function F(z,w) that is
essentially well known:

Lemma 3.10. There exist constants 0 < ag < 1/2 and 0 < C5.10 < 0o such that for any
z, 2w, w' € Q satisfying the conditions d(z,2') < ag and d(w,w’) < ag, we have

F(z,w) < C3.10F (2, w).
4. Estimates related to the Bergman kernel

Let K(z,w) be the Bergman kernel for ). By definition, it has the symmetry K (w, z)
= K(z,w). The following well-known result of Fefferman gives us a good handle on K:

Theorem 4.1. [10, Theorem 2] The Bergman kernel has the form

K(z,w) = C|(Vr)(w)|*detl(w) X~V (2, w) + K (z, w)
on Rs ={(z,w) € AxQ:|r(z)] + |r(w)| + |z —w| < 6} for some & > 0, where L is the
Levi form for the domain Q, X is given by (3.1), and K is an admissible kernel of weight
> —n — (1/2). That is, there is a constant C' such that |K(z,w)| < C'F(z,w)~"~(1/2),

For any § > 0, the Bergman kernel K is known to be bounded on (2 x Q)\Rs [14].
One obvious implication of Theorem 4.1 is that

cr(2)| " <K (2,2)| < Clr(2) ™Y, ze Q. (4.1)
For each z € , let us denote K,(w) = K(w, z). Then it has the reproducing property
h(z) = (h, K)

for h € L2(Q). We write k, for the normalized reproducing kernel, i.e., k, = K, /|| K.||.
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Lemma 4.2. Given any 0 <n < 1/2 and a > 0, there are constants s > 0 and 0 < Cy2 <
oo such that

1/2 1/2\ n+1
sup ()| S )2 (MR T < g e

z€Q wel\D(z,R) F(z,w)
for every a-separated set T' in 0 and every R > 3C5.7 + 1.

Proof. Let 0 < n < 1/2 and a > 0 be given. Define @ = (1/3) min{ao, a}, where aq is
the constants in Lemma 3.10. Suppose that I' is an a-separated set in 2. Then

D(w,a)ND(w',a) =0 for all w#w' in T.
Applying Lemmas 2.1 and 3.10, for ¢ € D(w, @) we have

n+(1/2)4n (n+1)/2 n+(1/2)+n (n+1)/2
r(w)] I Q) ()2
'z w)mH - Fz ¢

Thus for 2z € Q) we have

3 w)| (/24

Sl

wEF\D(z,R) (
S [ () /2] () (/2
: GFXD: u(D(w, @) / F(z,¢)rt! du(¢)
Y D(w,a)
< / rQIE

c(@)

O\D(z,R—a)

F(z, Ot

where the second < is justified by Proposition 2.6. Applying Lemma 3.8 to the last
integral, the desired conclusion follows. 0O

Lemma 4.3. There is a constant 0 < Cy3 < oo such that
£(2)] < Caslr(2)] "2 fxp
for all f € L2(Q) and z € Q, where || fX D)l is the norm of fXp(.1) in L*().

Proof. It is easy to see that the conclusion is trivial if —r(z) > 6. Suppose that —r(z) < 6.
Then Proposition 2.4 provides a ¢ > 0 such that

D(z,1) D z + P((9r)(2); clr(2)'/2, clr(2)))

for every such z. Averaging on the polyball, for f € L2(Q) we have
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1
] ) dv.
|f( )| < U('p((ar)(z);c|7‘(2)|1/2,C|T(Z)|)) / |f|

24+P((9r)(2);elr(2)]1/2,¢lr(2)])

Applying the Cauchy-Schwarz inequality on the right, the desired conclusion follows. O

Lemma 4.4. Given any complex dimension m € N, there is a constant 0 < Cy4(m) < 00
such that the following bound holds: Let 0 < p < oo and define B(p) = {z € C™ : |z] <
p}. Then for every u € C™ with |u| < p/2 and every analytic function f on B(p), we
have

C’
) — <>|<'Z' 44 /Ifldvm
B(p)

Proof. By standard integration formulas on the ball, there is a C'= C(m) such that
(©:000) < 557 [ loldon (12)
B(l

for every analytic function g on B(1) = {z € C™ : |z| < 1} and every j € {1,...,m}.
Suppose that u = (u1, ..., uny). If f is analytic on B(p), then

1
0/
Since |u| < p/2, for every t € [0,1] we have tu + B(p/2) C B(p). From (4.2) and the
scaling properties of 9; and dv,, we deduce

Etl&

Jj=1

1m
fltuydt = [ (0, f)(tu)ujdt.
/

(01 (tu)] < % - % / \Fldvm.

tut+B(p/2)

Since v, (B(p/2)) = 272™v,,(B(p)), we see that the constant Cy 4(m) = m2?mH1C will
do for the lemma. O

Lemma 4.5. There exist constants 0 < Cy5 < 00 and 0 < c4.5 < 1 such that
| (w) = £(2)] < Casd(z,w)|r(2)]" D72 fxpe
for every pair of z,w € Q satisfying the condition d(z,w) < cs.5 and every f € L2(Q).

Proof. By Lemma 2.1, there is a 0 < 6; < 6 such that if —r(z) > 6 and d(z,w) < 1,
then —r(w) > 6. Since {¢ € Q: —r({) > 61} is a compact subset of 2, we see that the
case —r(z) > 0 is trivial.
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Suppose that —r(z) < 6. Then Proposition 2.4 provides a ¢ > 0 such that
D(z2,1) D z + P((9r)(2); clr(2)'/2, clr(2))) (4.3)
for every such z. By Proposition 2.5, there is an 0 < a < 1/2 such that
D(z,a) C 2+ P((9r)(2); (¢/2)r(2)|'/, (¢/2)Ir(2)]) (4.4)

for every such z. Set ¢4 5 = a. Let w € € be such that d(z,w) < a. Then we can write
w = z+ x4y, where L (9r)(z) and y € {n(dr)(z) : n € C}. By (4.4), we have
x| < (¢/2)[r(2)['/? and |y| < (¢/2)|r(2)|-

Let f € L2(2) be given. Define F(¢) = f(z+&+y) for € L (9r)(2) with |¢] < c|r(2)|"/2.
Applying Lemma 4.4 to the case where p = c|r(z)|*/?, we have

. > - ) — |1“ . 04.4(TL - ].) »
) = £+ 9)| = |P@) = PO < T8 UHMB)!Wmdnl, (45)

where B = {¢€ € C™: (£,(0r)(2)) = 0 and |¢| < c|r(2)[*/?}. On the other hand, for every
¢ € B we have

1

(D((C/2)|r(z)|))m( /3)Ir())

[EEI=1f+E+y)l < o |f(z+ &+ y + nuz)|dA(n),

(4.6)
where u, = (5r)(z)/|(5r)(z)| and D((¢/2)|r(2)]) = {n € C : In| < (¢/2)|r(2)|}. Note

that v, _1(B) = ¢n_1(c|r(2)|"/?)?*=2 = a1 |r(2)[*~*. Combining (4.5), (4.6) and (4.3), we
obtain

fw) - sl < 0 S [ e

22 ()|
D(z,1)
Applying the Cauchy-Schwarz inequality and Proposition 2.6, we have

lz[  Cive(D(z1)) lz[  Callfxpel
|f(w) = f(z+y)| < TR ) XDl < SO T

Since d(z,w) < o and a < 1/2, Lemma 2.2(1) gives us that |z|/|r(2)|"/? < Csd(z,w).
Hence

[f(w) = f(z +y)| < Cad(z,w)|r(2)| "V fxpe . (4.7)

Next we show that
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(2 +9) = f(2)] < Csd(z,w)lr ()|~ " V2| fxpill, (4.8)

which together with (4.7) will complete the proof of the lemma.
To prove (4.8), we write y = Bu,, where § € C. Define G(n) = f(z + nu,) for n e C
with |n| < ¢|r(2)|. Now, applying Lemma 4.4 to the case where p = ¢|r(z)|, we have

18] Caa(l)
cr(z)]  A(D(c|r(z)])) |GldA, (4.9
D(elr(2)))

[f(z+y) = fRI=1G(B) - G(0)] <

where D(c|r(z)|) = {n € C: |n| < c|r(z)|}. For each n € D(c|r(z)|) we have

G| = [f(2 +1us)] < ﬁ / F+€+mu)ldonr(€),  (4.10)
B

where B = {¢ € C™ : (£,(9r)(2)) = 0 and [¢] < c|r(2)|*/?}. Note that |3] = |y|. Thus
(4.9), (4.10) and (4.3) together give us

ety —fa) < J . _Co / \fldo.

[r(2)] [r(z)["*
D(z,1)

Since d(z,w) < a and o < 1/2, Lemma 2.2 implies that |y|/|r(z)| < Crd(z,w). Applying
the Cauchy-Schwarz inequality and Proposition 2.6 on the right-hand side, we obtain
(4.8). This completes the proof. O

Proposition 4.6. There is a constant Cyg such that if z,w € Q satisfies the condition
d(z,w) < ca.5, where ¢y 5 was given in Lemma 4.5, then

[(f, k2 — kw)| < Caed(z,w)|| fXDez1)ll
for every f € L2(2). Consequently, if d(z,w) < cy5, then ||k, — ky| < Cyed(z,w).

Proof. Write K.(¢) = K((,%), the unnormalized reproducing kernel. Note that
Lemma 4.5 implies that ||K, — K| < Cysd(z,w)|r(z)|~"+1D/2 if d(z,w) < c4.5. There-
fore

I = [ Kwlll < Casd(z,w)lr(z)[~" D2 i d(z,w) < s
Combining this with (4.1), the condition d(z,w) < c4.5, and Lemma 2.1, we obtain

A = (1w ]

N~ = Kl ™ =
M |

< Chd(z,w)|r(z)|(T1/2 (4.11)

when d(z,w) < cg.5. Let f € L2(Q). Then
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(f ke = kw) = FECT = flw)]| Kol 7
= (f(2) = FD Kol + FEUENT = Ko7 (412)

Applying Lemma 4.5, we have

1£(2) = F) || Kl ™" < Casd(z,w)[r(2)| "2 fxpeen | Kl
< Cod(z, w) || fxD(21) s (4.13)

where the second < follows from (4.1), the condition d(z,w) < ¢4.5, and Lemma 2.1. On
the other hand, Lemma 4.3 tells us that

1£(2)] < Cuslr() "2 fxpe -
Combining this with (4.11), we obtain
LFNECNT = Kl 71 < C1Casd(z, w)ll XDl (4.14)
Obviously, the lemma follows from (4.12), (4.13) and (4.14). O

Lemma 4.7. There is a cq7 > 0 such that for any pair of z,w € Q, if d(z,w) < cy7, then
[(kz, kw)| > 1/2.

Proof. We have 1 — Re(k,, ky,) = 271||k. — ky||?. By Proposition 4.6, there is a c4.7 > 0
such that for any pair of z,w € Q, if d(z,w) < ¢4, then ||k, — k|| < 1. Thus if
d(z,w) < cq.7, then 1 — Re(k,, k) < 1/2, which implies |(k., k)| > 1/2. O

5. Discrete sums

We now consider operators constructed from the Bergman kernel.

Lemma 5.1. There is a constant 0 < Cs.1 < oo such that the following estimate holds:
Let T' be any 1-separated set in Q. Suppose that {e, : z € T'} is an orthonormal set and
{c. : z €T} is a bounded set of complex coefficients. Then

Z ek, ®e,

zel

< Cs.1supe.]|.
zel

Proof. Given such I, {e, : z € I'} and {c, : z € T'}, define the operator

A= Zczkz ®e,.

zel

Then for every f € L%(£2) we have
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A'f = ZEZ||KZ||_1f(z)ez
zell

From Lemma 4.3 and (4.1) we obtain

1A FI1P < G253 Y les P2 Ir ()7 fxneen 1P < (Cis/0) S‘éIF>|Cz|2Hf||2~

zel

Since f € L2(1) is arbitrary, this means that ||A|| = ||A*|| < ¢™/2Cy35up,cp|c.|. O

Lemma 5.2. Let I' be a 1-separated set in ). Suppose that for every z € T', we have a
C(z) € Q with d(z,{(2)) < ca5. Then for every orthonormal set {e, : z € T'} and for
every bounded set of complex coefficients {c, : z € T'}, we have

Zczk: ®ey — ZCZkC(Z ® e,

zel zel

<C4esup\cz|d( ((2))-

Proof. Write

D:ZCZkZ@)SZ*ZCzkg(z)@ez Zcz . —k ®€z

zel zel zell

For any f € L2(Q2), we have

D*f = Zéz<f, k., — k<(2)>€z

zel

Applying Proposition 4.6, if d(z,{(2)) < c45 for every z € T, then

1D FII* =D lea(f ke = ko)) P < Ce D leaPd (2, ¢ xneen I

zel zel
< Cfgsup leo[*d* (2, C(2) | F]1*.
zel
Since f € L2(1) is arbitrary, this implies ||D|| = || D*|| < Cygsup,cr |c:]d(2,{(2)). O

Corollary 5.3. Given any a > 0, 0 < C < oo and € > 0, there is a § > 0 such that the
following estimate holds: Let T be an a-separated set in . Suppose that ¢, ¢', 1 and )’
are maps from I' into Q. If the inequalities

d(z,0(2)) C, d(z,9(2)) <C, dp(2),¢'(2)) <0, d(i(2),9'(2)) <6

hold for every z € T, then for any bounded set of coefficients {c, : z € T'} we have

Z Czkpz) @ ky(z) — Z Cakipr(z) @y (2)

< esup e,
zel zeT zel
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Proof. For z,w € T, if d(z,w) > 2C + 2, then d(¢(2), p(w)) > 2 and d(¢(z), ¥(w)) > 2.
By Lemma 2.11, there isan N € N determined by a and C such that I' admits a partition

'=ryuU---ul'y

with the property that for each j € {1,..., N}, the sets {¢(2) : z € I';} and {¢(z) : z €
I';} are 1-separated. Pick an orthonormal set {e, : z € T'}. Fixing a j € {1,..., N} for
the moment, we have

D ko) ® ki) = D Cbipi(s) @ ky(z) = AB" — A'B”,

zel'y z€l;
where
A= Z Cehpz) @€z, B = Z ky(z) ® €z,
ZGFJ‘ ZGFJ
Al = Z Czkpr(z) @ €z, B = Z ky/(z) ® €.
ZGFJ' ZGFJ
We have

AB* — A'B" = (A—- A"B* + A(B* — B"").

Since {p(z) : z € T';} and {¢(z) : z € T';} are 1-separated, if we apply Lemma 5.2 to
A— A" and B — B’ and Lemma 5.1 to B and A’, we see that

|4B" — A'B"|| < g sup |
when ¢ is sufficiently small. This completes the proof. O
6. Operators in the Toeplitz algebra 7T~
Define the measure
di(w) = K(w,w)dv(w)

on €. Compared with the measure du defined by (2.6), (4.1) tells us that cu(E) < i(E) <
Cu(E) for each Borel set E. Given an f € L*>(f2), we have the integral representation

D:/ﬂMM®MMW) (6.1)

for the Toeplitz operator T'. This formula is obtained by direct verification. Starting from
this representation, we will show that the Toeplitz algebra 7 contains certain classes of
operators. The two main steps in the section are Propositions 6.4 and 6.6 below.
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Proposition 6.1. Suppose that T is a separated set in Q and that {c, : z € T'} is a bounded
set of complex coefficients. Then the operator

> ek @k

zel

belongs to the closure of {Ty : f € L>(Q)} with respect to the operator norm.

Proof. By Lemma 2.11, we may assume that I' is 1-separated. Let € > 0 be given. Since
Sup,cr |c.| < 00, it follows from Corollary 5.3 that there is a § > 0 such that

<e (6.2)

D ek @k =Y ki) @ k()
2€T zel

if ((z) € D(z,9) for every z € I'. We may, of course, assume that § < 1, consequently
D(z,6) N D(w,8) =0 for all z# w in T.
Define the function

= Z; mm)(m) (6.3)

on . By (4.1) and Proposition 2.6, there is an 8 > 0 such that f(D(z,d)) > 8 for every
z € Q. Hence ¢ € L*>(Q2). We will show that

> ek @k, T,
zel

<e. (6.4)

To prove this, we define the measure dv, = {ﬂ(D(z,(s))}’lxD(z,(;)dﬂ for every z € T.
Then it follows from (6.1) and (6.3) that

T,=> c. / ky @ kydv, (w).
zel

Note that each dv, is a probability measure concentrated on D(z, ). Hence dv, is in the
weak-* closure of convex combinations of unit point masses on D(z,0). Therefore T, is
the limit in weak operator topology of operators of the form

1 k
T = E chzk((z;j) ® kC(z§j)’

j=1zel

where k € N and ((z;j) € D(z,0) for all z € " and j € {1,...,k}. By (6.2),

<e. (6.5)

D ceke ® ke =) echie(ay) ® Keay)

zel zel

k
> ek @k, —TH < %Z
j=1

zel
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Since T, is the weak limit of such T"s, it follows that

Z ¢k, ® k., — T, is the weak limit of operators of the form Z ek, @k, —T.
zell zel

Therefore (6.4) follows from (6.5). Since € > 0 is arbitrary, this completes the proof. O
Next we remind the reader of a well-known fact:

Proposition 6.2. /22, Theorem 4.1.25] The Toeplitz algebra T contains K, the collection
of compact operators on the Bergman space L2().

Definition 6.3. (a) Let Dy denote the collection of operators of the form

Z ck, ® k'y(z)v
zell

where T is any separated set in , {c, : z € '} is any bounded set of complex coefficients,
and v : ' — Q is any map for which there is a 0 < C' < oo such that

d(z,7(2)) < C

for every z € I
(b) Let D denote the closure of the linear span of Dy with respect to the operator norm.
(c) For any A € B(L2(Q)), Do(A) denotes the collection of operators of the form

> e Akyzy, Bpe) k() @ k(s
zel

where I' is a separated set in Q, {c, : z € I'} is a bounded set of coefficients, and
0, : I' = Q are maps for which there is a 0 < C' < oo such that d(z,¢(z)) < C and
d(z,¢%(z)) < C for every z € T

(d) For any A € B(L2(€2)), D(A) denotes the closure of the linear span of Dy(A) with
respect to the operator norm.

Proposition 6.4. We have the inclusion Dy C T. Consequently, D C T.

Proof. Let I, {c, : 2z € '}, v and C be as described in Definition 6.3(a), and consider

T= Z ek, ® k',y(z).
zel

To show that T' € T, by Lemma 2.11, we may assume that

d(z,w) >4C+2 forall z#w in T. (6.6)
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For each z € T, since d(z,7v(z)) < C, by (2.4) there is a C* map g, : [0, 1] — € such that
9:(0) = z, g.(1) = v(2), and such that the number

[ - / N rROAONACL
0

satisfies the condition £, < 2C'. Pick a k € N such that 2C'/k < min{ag, c4.7}, where ag
and c4 7 are the constants in Lemmas 3.10 and 4.7 respectively. For each z € I'; there
are

0=12(20)<z(z,1) < ---<x(z,k—1) <za(z,k) =1

such that

z(2,5)

VB )50, 92OVt = 1.

0

for j =0,1,...,k. For each pair of z € T and j € {0,1,...,k}, we now define

i (2) = g:(2(2, 7))

We have v9(z) = z and yx(z) = v(2), z € I'. Since ¢, < 2C, for all 0 < j < k and
zel,

z(z,j+1)
d(j(2);7541(2)) < / V(B(g:(1))gL(1), 9. (t))dt = €. /k < min{ao, ca.7}.

z(2,5)

By Lemma 4.7, this ensures that

|<k%‘(z)’k7j+1(z)>| > 1/2 (6'7)

forall0 < j < kand z €.
To prove that T € T, it suffices to show that for every j € {0,1,...,k} and every
subset E of I', we have

> ek ®@ky ) €T, (6.8)

z€EE

We will accomplish this by an induction on j. Since vy(z) = z for every z € T, the
case j = 0 follows from Proposition 6.1. Suppose now that 0 < j < k and that (6.8)
holds for this j and for every E C I'. To simplify notation, for every S C I, let us
denote
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Xs=) k. ®ky, and Ys=) 1

Ty R ® k)
z€S z€S (Fry1(2)0 By (2)) s o

By the induction hypothesis, we have Xg € 7. By (6.7) and Proposition 6.1, we also
have Yg € T. Therefore XgYs € T for every S C I'. To complete the induction, it
suffices to show that given E C I and € > 0, there is a finite partition £ = S;U---USy
such that

HXSl Yo, 4+ Xoy Yoy — > ok @by (2 (6.9)

z€E

To see how this is done, first note that for any partition £ =S, U--- U Sy,

Xslysl 4+ +XSNYSN — Z ck, ® k,yj+1(z)

zelR

(K1 w)s by (2)
- i k. @k .y = UWV,
Z Z ¢ <k%+l(w)7 k? (w)> & Ky (w) =

v=1 z,weS,
zF#w

where

U = Z c.k.®e,, V= Z k»yj+1(z) ®e, and
zeFE z€E

W = Z Z ’YJ+1(7U)7 'YJ(Z)>>62 ® ew,

v=1 z,w€S, < Yit+1(w)s k’Y](w)
zF#w

where {e, : z € E'} is an orthonormal set.

By (6.6), {yj+1(2) : z € E} is a l-separated set. Thus Lemma 5.1 provides
the bound [|[V| < Cs;. Similarly, [|[U|| < Csic, where ¢ = sup,cr|c.|. Conse-
quently

Thus we need to find a partition £ = Sy U--- U Sy such that ||W] is small. To do
this, consider an R > 3C5.7 + 1, whose value will be determined below. By Lemma 2.11,
there is a partition E = S; U --- U Sy such that for every v € {1,..., N}, the con-
ditions z,w € S, and z # w imply d(z,w) > R. With Si,...,Sy so chosen, we
define

< C3ac|Wll. (6.10)

X, Yo, + -+ Xoy Yoy — Yk ®ky ()
z€E

F=J{(mw) €8x Sy 2 £ ).

We can rewrite W in the form
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W = Z a(z,w)e, @ ey,
(z,w)EEXE

where

(ki y () ki ()
<kvj+1( )k"rj( )) if (Z,U)) cF
a(sz) — Vj41 (w) Ry (w)

0 it (zw) ¢ F

Recall that d(v,(2),vp+1(2)) < ag for all z € T and 0 < p < k. Recalling (6.7) and
applying Theorem 4.1 and Lemmas 3.1, 2.1, and Lemma 3.10 multiple times, we ob-
tain

la(z,w)| < 2 (K (75(2), vi+1(w))] < Cl(I?"(yj(z))|1/2|r(7j+1(w))1/2)n+1

||K’Yj+1(w)||||K'yj(z)|| - F(’Yj(z)77j+l('w))

< Cy ( |T(Z)|;/(2Z|7r£}1;;)|1/2 ) n+1

for (z,w) € F. Pick an n € (0,1/2) and define h(w) = |r(w)|"/D+1 w e T. If (2,w) €
F, then d(z,w) > R by design. Since E is l-separated, it follows from Lemma 4.2
that

r(z 1/27"11} 1/2\ n+1
3 Ja(zw)h(w) < C: Y |r(w)(n/2)+n(| ()2 (w)] > - C;S;”h(z)

weE wEE\D(z,R) F(z,w)

for every z € E. A similar inequality holds for }__p |a(z,w)|h(z), w € E. By the stan-
dard Schur test, we conclude that |[W|| < CoCy227%F. Recalling (6.10), we see that
(6.9) holds if we pick R > 3C3.7 + 1 such that C2 ;cCoCy.227 % < e. This completes the
proof. O

Following the ideas in [28], we will now generalize the notion of localized operators to
strongly pseudo-convex domains.

Definition 6.5. Let A be a bounded operator on the Bergman space L2(£2). Then LOC(A)
denotes the collection of operators of the form

T =Y T; ATy, (6.11)
zel

where T' is any separated set in Q and {f, : z € T'} is any family of continuous functions
on ) satisfying the following three conditions:

(1) There is a 0 < p < oo such that f, =0 on Q\D(z, p) for every z € T.

(2) The inequality 0 < f, < 1 holds on 2 for every z € T".
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(3) The family {f, : z € T'} satisfies a uniform Lipschitz condition on Q with respect to
the metric d. That is, there is a 0 < C' < oo such that |f,(¢) — f-(£)| < Cd((,§) for all
zeTl and (,€ € Q.

Proposition 6.6. For every bounded operator A on L2(2), we have LOC(A) C D(A).

Proof. Let A be a bounded operator on L2(€2), and consider a T' given by (6.11). To prove
that T € D(A), by Lemma 2.11, we may assume that I" is 1-separated. For convenience,
let us define the product measure v = i X i on Q x Q. By (6.1), for each z € T we have

Ty ATy, = // hey(u, v)ky ® kydv(u,v), (6.12)
where
h, (uv U) = fz(u)fz(v) <Akva ku> (613)

By condition (1) above, h, vanishes on the complement of D(z,p) X D(z,p). It follows
from Proposition 4.6 and condition (3) above that for any a > 0, there is a b > 0 such
that

sup | (u,v) — h(u/,0")| <a if d(u,u') <b and d(v,v") <b. (6.14)
zel
The rest of the proof is divided into two steps.

Step 1. We first show that for any e > 0, there is a 0 < § < p such that the following
holds true: Suppose that A is a subset of I'. For each z € A, let ¢(2),%(z) € D(z,p).
For each z € A, suppose that we have a Borel set E, = F, x G, with F, C D(¢(2),9),
G, C D(¢(z),6) and v(E,) > 0. Finally, for each z € A, let a, € [0,2]. Then

‘ z

a4z ha (1, 0) kg ® kydi(u,v) — 3 azha (0(2),1(2)) k() @ k(s
Z@:\V(EZ)ZZ/ ) ¥ (=) @ Fy(z)

zEN

<e.

(6.15)

To prove this, denote

a,
zEA E.
Z =" a:ha((2), ¥(2) ki) @ k(s
zENA

Note that for each z € A, {xg./v(E.)}dv is a probability measure concentrated on E,.
Thus it is in the weak-* closure of convex combinations of unit point masses on F..
Consequently W is in the closure in weak operator topology of operators of the form
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k
1 . .
W' = E Z Z azhz(u(z;])a U(Z;]))ku(z;j) & kv(z;j)a

j=1z€eA

where k € N and, for each 1 < j < k, we have (u(z;7),v(2;J)) € E., i.e., u(z;j) € F,
and v(z;j) € G, z € A. Tt is easy to see that

k
1
- ::Z;:E: )( 4—)/
where

Xj:Zaz{hz(u(z;j),v(z;j))*hz( (2), ¥(2) }hu(zij) @ ku(zyy)  and

zEN
Y=Y azh. $(2)ku(zig) ® ku(esjy — D azha( V(2)kp(z) @ ky(z)-
zEN z€EA

From (6.14) and Lemmas 2.11 and 5.1 we see that there is a §; > 0 such that | X[ <e/2
for every 1 < j < kif § < 4;. By Corollary 5.3, there is a d2 > 0 such that ||Y;| < ¢/2 for
every 1 < j <k if § < d9. Hence for any 0 < § < min{dy, d2, p}, we have [|[W' — Z|| <e.
Since W — Z is the weak limit of operators of the form W’ — Z, we have |W — Z|| < €
for any choice of 0 < § < min{dy, d2, p}. This proves (6.15) and completes Step I.

Step II. Recall that v = i X i. By (4.1) and Proposition 2.6, there is an N € N such
that N > v(D(w,2p) x D(w,2p)) for every w € €. Let € > 0 be given. We will now find
a B € span(Dy(A)) such that

|T - B|| < Ne. (6.16)

Since € > 0 is arbitrary, this will imply the membership T' € D(A). To find such a
B € span(Dy(A)), let & be the number provided for this € in Step I. For each z € T,
there is a subset S, in D(z, p) that is maximal with respect to the property

D(x,0/2)ND(y,0/2) =0 forall z#y in S,.

By Proposition 2.6 and the fact that u(D(z,2p)) < oo, we see that S, is a finite set, and
consequently we can represent it in the form S, = {¢(z;1),...,¢(z;m(z))} with some
m(z) € N. The maximality of S, implies that U;n:(f)D(gp(z;j)ﬁ) D D(z,p). Thus for
each z € I', a standard set-theoretical argument gives us Borel sets

F(z;1),...,F(z;m(z))
with the following properties:

(i) D(¢(2;4),8/2) C F(z;5) C D(p(z;7),0) for each j € {1,...,m(2)}.
(ii) F(z;9) N F(z;5) =0 for all i # j in {1,...,m(2)}.
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(iii) D(,p) C U5 F(2:5) € D(2,2p).
We now define E.; j = F(z;i) X F(z;j) for z€ ' and 4,5 € {1,...,m(2)}.
Let z € T'. Since h, vanishes on (2 x Q)\(D(z, p) x D(z, p)), (iii) and (ii) imply

T, AT, — Z mz / / (1, V) @ Byl (11, ). (6.17)

By (i) and Proposition 2.6, there is a k¥ € N such that 1/k < v(E,,; ;) for all z € T
and ¢,5 € {1,...,m(2)}. For such a triple of z,1, j, we let p(z; i, j) be the largest natural
number satisfying the condition p(z;i,j)/k < v(E..; ;). Define

k

——V Ez;i,‘
PRI

a(z;4,7) =

for z € T and 4,5 € {1,...,m(z)}. Then 0 < a(z;4,j) < 2, because the definition of
p(z;4,j) ensures that {p(z;4,j) + 1}/k > v(E,,; ;). We can now rewrite (6.17) in the
form

1mZmZ 7273
Asz—EZZ (z;1,7) EZ” // (u,v)ky ® kydv(u,v). (6.18)

)

Ez i,
On the other hand, for every z € I', we have

2)

(2) m(z) m(z) m(z) m(z)

(24, 5) _kZZPZZ] <kzz E..ij)

1 =1 j=1 =1 j=1

< kv(D(z,2p) x D(2,2p)) < kN.

m

—~

3

1

.
Il

<.
Il

We can regard p(z;14,5) as the “multiplicity” with which the triple (z,4,j) appears in
(6.18). The above estimate shows that for a fixed z € T, all the multiplicities add up to
something less than or equal to kIN. Thus there are subsets I'y,I's,...,T'xny of I' such
that

kN
> Ty ATy = %Z Z (22 8), // ko ® kydi(u,v), (6.19)

»el er, 21(z£ J(z, E)
z 3i(2,£),7(=,2)

where for each pair of £ € {1,...,kN} and z € T'y we have i(z,¢),j(z,¢) € {1,...,m(2)}.
For each ¢ € {1,...,kN}, deﬁne

By = Z a(z;i(2,£), (2, 0))h=(@(2:i(2,£)), 0(2; §(2,€)) Ep(21i(2,0)) @ Kp(215(2,0)) -

zely
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Since ¢(z;i(z,£)), ¢(z;j(2,€)) € D(z, p) for every z € Iy, recalling Definition 6.3(c) and
(6.13), we have By € Dy(A). Therefore the operator

1 kN
=2 > B (6.20)
=1

belongs to the linear span of Dy(A). By the choice of § and Step I, we have
’Za(zz(zé // 2(u, 0)ky ® kydv(u,v) — By

zely V(Ez i(2,4),5(z, é)
1 < ¢ < kN. Combining this with (6.19) and (6.20), we see that ||T'— BJ| does not exceed

z 3i(2,£),j(=,2)

1% Za(z i(z,0),] // uw @ kydv(u,v) — Byl| < Ne
z oAl < Ne.
ko= V(Ei(2,0),5(=0))

z€l z i(z,£),j(z,2)

This proves (6.16) and completes the proof of the proposition. O

It follows from Lemma 2.11 that D(A) C D for every A € B(L2(Q)) (cf. Definition 6.3).
Thus from Propositions 6.6 and 6.4 we immediately obtain

Corollary 6.7. For every bounded operator A on L?(Q), we have LOC(A) C T
7. Oscillation and compactness
For a continuous function f on 2, we define the scalar quantity
diff(f) = sup{|f(z) — f(w)] : z,w € & such that d(z,w) < 1}.
Lemma 7.1. For any continuous function f on Q and any k € N, we have
f(2) = f(w)| < (k + 1)diff(f) (7.1)
for any pair of z,w € Q satisfying the condition d(z,w) < k.

Proof. Let z,w €  be such that d(z,w) < k. By (2.4), there is a C* map ~: [0,1] — Q
such that v(0) = z, v(1) = w and

1
/ VBOET @@t < k+ 1. (7.2)
0

There are 0 =29 < 27 < -+ <2 < 241 = 1 such that
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| VE@OR O @ = g [ VOO (1)

for 0 < j < k. Define z; = v(z;), j = 0,1,...,k+ 1. Then zp = 2z and 2541 = w. It
follows from (7.2), (7.3) and (2.4) that d(z;,zj4+1) < 1, consequently

|f(25) = f(zj41)] < difE(f)

for 5 = 0,1,...,k. With this inequality, (7.1) follows from a standard telescoping
sum. 0O

Recall that P denotes the orthogonal projection from L?*() onto L2(12).

Lemma 7.2. There is a constant 0 < Cro < 0o such that ||[My, P)|| < Cradiff(f) for
every bounded continuous function f on €.

Proof. Let T be the integral operator on L?(Q2) with the function
{d(z, w) + 2} K (z, w)]

as its integral kernel. We know that |K(z,w)| = |K(w,z2)|. Recall that the Bergman
kernel K is bounded on (Q x Q)\Rs for any 6 > 0 [14]. Thus it follows from Theorem 4.1
and Lemma 3.1 that |K(z,w)| < C1F(z,w) "~ ! for all z,w € Q. Combining this fact
with Lemmas 3.9 and 3.2, and with the Schur test, we see that the operator T is bounded
on L?(Q). Let f be a bounded continuous function on 2. It follows from Lemma 7.1 that

[(f(2) = f(w) K (2, w)| < diff(f){d(z,w) + 2} K(z, w)|
for all z,w € Q. Hence ||[My, P]|| < diff(/)||T). O
Recall that a continuous function f on 2 is said to have vanishing oscillation if
Zl_i%lﬂsupﬂf(z) — f(w)]:w e Q and d(z,w) < 1} = 0.

We denote by VOpqq the collection of continuous functions of vanishing oscillation on €2
that are also bounded.

Proposition 7.3. For each f € VOyqq, the commutator [My, P] is compact.

Proof. It suffices to consider f € VOpqq with ||f]c < 1. For each R > 0, we will
decompose f in the form f = gr + hr, where gg has a compact support and hg satisfies
the conditions diff(hg) < R~! and ||hg||« < 1. Since gg has a compact support, [M,, P]

9gRr>
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is compact. On the other hand, Lemma 7.2 tells us that |[M},, P]|| = 0 as R — oc.
Thus such a general decomposition implies the compactness of [My, P].
To decompose f, let R > 0 be given. Since f € VOpqq, there is a t > 0 such that

1f(2) = flw)| < (2R)™' if z€ H; and d(z,w) <1, (7.4)

where H;, = {¢ € Q: —r({) < t}, and we may assume H; # Q. Define

() (2R)"'z if 0<z<2R

x) = .

. 1 i @>2R

Then ¢p satisfies the Lipschitz condition |pgr(z) — pr(y)| < (2R) "tz — y| for z,y €
[0,00). For a non-empty set £ C Q and z € Q, we denote d(z, F) = inf{d(z,() : ( € E}
as usual. By the triangle inequality for d, |d(z, E) — d(w, E)| < d(z,w) for all z,w € Q.
Hence

[or(d(z, E)) = pr(d(w, B))| < (2R)"d(2, B) — d(w, E)] < 2R)'d(z,w)  (7.5)
for all z,w € 2. We now define

9r(2) = f(2)(1 = ¢pr(d(z,))) and  hg(z) = f(2)er(d(z, L)),

where , = {( € Q: —r({) > t}. Since || f|loc <1 and ||¢r|lcc = 1, we have

|hr(z) = hr(w)| < [f(2) = f(w)] + |er(d(z, Q) — pr(d(w, )]

If hg(z) — hr(w) # 0, then either z € H; or w € Hy. Thus if d(z,w) < 1 and hg(z) —
hr(w) # 0, then it follows from (7.4) and (7.5) that |hr(2) — hr(w)| < 1/R. That is,
diff(hgr) < 1/R as promised. On the other hand, if gr(z) # 0, then d(z,€:) < 2R. By
Lemma 2.1, this means that —r(z) > ¢(R)t, where ¢(R) > 0 is a constant determined
by R. Hence the support of gr is a compact set contained in 2. This completes the
proof. O

Lemma 7.4. Let f1,..., fr... be a sequence of continuous functions on  satisfying the
following four conditions:

(1) There is a 0 < C < 0o such that || filleo < C for every k € N.

(2) For every k € N, there exist ap > by, > 0 such that f =0 on Qq, U Hy, .

(3) limk*)oo ap — 0.
Then there is an infinite subset I of N such that f; € VOpaq for every J C I, where

fr=" I

keJ
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Proof. By condition (3) and Lemma 2.1, we can inductively pick a sequence of natural
numbers k(1) < k(2) < --- < k(j) <--- such that a1y < bg(;) and

d(z,w) >2 if —7(2) <apgyry) and —r(w) > by (7.6)

for every j € N. Let I = {k(1),k(2),...,k(j),...}.
For each k € N, define Ry = {z € Q : by < —r(2) < ax}. Then (2) says that f, =0
on Q\Ry. It follows from (7.6) that

if z € Ry(jy and w € Ry for j # j" in N, then d(z,w) > 2. (7.7)

This immediately implies that if J C I, then f; is continuous on 2. Moreover, since
Ry "Ry = 0 whenever j # j', it follows from (1) and (2) that || f||oc < C for every
J C I. That is, such an f; is bounded on €.

Let jo € N, and let z,w € Q satisfy the conditions —r(z) < ag(;,) and d(z,w) < 1.
Then it follows from (7.7) that there is at most one j € N such that fi(;)(2)— fi(j) (w) # 0.
Furthermore, by (7.6), if such a j exists, then it must satisfy the condition j > jo. Thus
for z,w € €2 satisfying the conditions —r(z) < ay(;,) and d(z,w) < 1, we have

[£5(2) = f5(w)| < sup{diff(fi;)) : j = jo}

for every J C I. Applying conditions (3) and (4), this means that for every J C I, f;
has vanishing oscillation. O

Definition 7.5. (a) For each t > 0, the symbol A(t) denotes the collection of continuous
functions g on € satisfying the following three conditions:

(1) 0 < g(2) <1 for every z € Q.

(2) g(2) =1 when z € Q, ={C € Q:—r(¢) >t}

(3) There is a t’ = t'(g) € (0,t) such that g(z) = 0 whenever —r(z) < ¢'.
(b) Let ¢ > 0 and § > 0. Then A(t;0) denotes the collection of functions g € A(t)
satisfying the additional condition diff(g) < ¢.

Lemma 7.6. For allt > 0 and § > 0, we have A(t;0) # 0.

— [0,1] be a
Lipschitz function with Lipschitz constant ¢. Furthermore, suppose that ¢(0) = 1 and
that 1) = 0 on [R, 00) for a sufficiently large R. Let ¢ > 0 be such that Q; # ) (otherwise,
(2) is trivial). By Lemma 2.1, the function f(2) = ¥(d(z,€)) is in A(¢;6). O

Proof. This is similar to the proof of Proposition 7.3. Let ¢ : [0, 00)

Lemma 7.7. Given any pair of f € L>(Q) and h € L2(Q), we have

ltiigsup{Hngh —Trh| g€ A(t)} =0. (7.8)
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Proof. Denote H, = {z € Q: —r(z) < t} as before. By Definition 7.5(a), we have

|1 Tgh —Tih|* < || fgh — fh|* < Hfllio/lh(Z)\de(Z)
Hy

for all g € A(t), f € L>=(Q) and h € L2(Q). This obviously implies (7.8). O
For a bounded operator A on a Hilbert space H, denote
|Allg = inf{||A+ K| : K is any compact operator on H},
which is the essential norm of A.

Lemma 7.8. [16, Lemma 2.1] Let {B;} be a sequence of compact operators on a Hilbert
space H satisfying the following conditions:

(a) Both sequences {B;} and {B}} converge to 0 in the strong operator topology.

(b) The limit lim;_, || B;|| exists.

Then there exist natural numbers i(1) < i(2) < --- < i(m) < --- such that the sum

00 N
> Bigwy = lim Y B
m=1 1

m=

exists in the strong operator topology and we have

‘ ZBz(m)H = lim [|Bi]l
m=1 Q

Definition 7.9. For ¢ > 0 and § > 0, the symbol ®(¢; ) denotes the collection of contin-
uwous functions f on €2 satisfying the following three conditions:

(1) 0 < f(2) <1 for every z € Q.

(2) f(2) = 0 whenever —r(z) > t.

(3) diff(f) <.

In analogy with [28, Proposition 3.7], every operator in EssCom({T,; : g € VOpaa})
satisfies the following “e-¢” condition:

Proposition 7.10. Let X be an operator in the essential commutant of {Ty : g € VOpga}-
Then for every € > 0, there is a § = §(X,€) > 0 such that

ltiigsup{\l[Xv Tyl : f € ©(t:0)} <e.

Using 7.4-7.9 above, the proof of Proposition 7.10 is a repeat of the proof of Propo-
sition 3.7 in [28], modified in the obvious way. For that reason we will omit the proof of
Proposition 7.10 here.
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Lemma 7.11. Let hy,...,hg ... be a sequence of continuous functions on ), and denote
Uy ={2€ Q: hi(z) # 0}, k € N. Suppose that this sequence has the property that there
is an a > 1 such that inf{d(z,w) : z € Uj,w € Ux} > a for every pair of j # k in N.
Then the function h =< | hj, has the property that diff(h) < suppen diff(hy).

Proof. Observe that, under the assumption, for any pair of z,w € 2 satisfying the
condition d(z,w) < 1, the cardinality of the set {k € N : hy(2) — hi(w) # 0} is at most
1. O

8. Approximate partition of unity

In this section the boundary 02 of the domain plays a prominent role. It will be
beneficial to make a simplification of notation: for ¢ € 9Q and ¢t > 0, let us write

QG 1) ={£ €0 |¢ — &7 + [{(C = & (O] < 1.

In other words, in terms of the notation in Section 2, we have Q({,t) = Qo (¢, t). Similarly,
we will write do for doy. That is, do is the surface measure on 0f).

Lemma 8.1. There is a constant 1 < Cg1 < oo such that for any triple of (,& € 02 and

t>0,if Q¢ 1) NQ(E, t) # 0, then Q(&,t) C Q(C, Csat).
This lemma is rather obvious and we will omit its proof.

Corollary 8.2. Consider any ¢ € 9Q and t > 0. If x,y € 9Q are such that x € Q((,t)
and Yy ¢ Q(<7 CS.lt)7 then Yy % Q(.T,t)

Proof. If z € Q((,t), then Q(z,t) N Q(¢,t) # 0. By Lemma 8.1, we have Q(z,t) C
Q(¢,Cs.1t). Therefore if y ¢ Q(¢, Cs.1t), then y ¢ Q(z,t). O

Lemma 8.3. There is a constant 0 < Cg 3 < oo such that the following bound holds: Let
t > 0, and let E be a subset of OQ that has the property Q(z,t) N Q(y,t) = O for all
x #y in E. Then for any R > 1 and any ¢ € 012,

card{z € E: Q(z, Rt) N Q({, Rt) # 0} < Cs3R™.

Proof. It ¢t > Ty (see Proposition 2.8), then the property of E implies card(E) < 1
Suppose that 0 < t < Tp. If Q(z, Rt) N Q(¢, Rt) # 0, then Q(z, Rt) C Q(¢,Cs1Rt) b
Lemma 8.1. Let Eg = {z € E: Q(x, Rt) N Q((, Rt) # 0}. Since Q(z,t) N Q(y,t) = 0 fo
all z # y in E, we have

card(Ep) inf o(Q(x,t)) < Z o(Q(z,t)) = a( U Q(m,t)) < o(Q(¢,Cs 1 RY)).

zeEy
z€FEqy x€Ey
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Applying Proposition 2.8 to the case p = 0, we have
card(Ep)ca st™ < Cy8(Cs 1 RE)™.

Cancelling out ¢ and simplifying, we see that the lemma holds for the constant Cs 3 =
(Cag/cas)Cgq. O

The first order Taylor expansion for r reads

r(z +u) = r(z) + 2Re(u, (Or)(2)) + / 2Re(u, (0r)(z + zu) — (0r)(z2))dz.
0

Thus r(z + t(0r)(2)) = r(z) + 2t|(9r)(2)|? + O(t?) when [t| is small. Recall that dr does
not vanish on 90€2. Hence when z is close to 92 and t is positive and small, we have

r(z +1(0r)(2) > r(2) +¢|(9r)(2)|*.

Thus for each z € Q near 99, thereis a t, > 0, ¢, ~ |r(z)], such that r(z+t,(dr)(z)) = 0.
Let us restate this fact more precisely: There exist a J € N and a 0 < C}, < oo such that
for every z € Hy—y = {¢ € Q: —r(¢) < 277}, there is a p(z) € 99 such that

|2 = p(2)] < Cplr(2)]. (8.1)

In other words, there is a map p : Hy—s — 02 such that the above bound holds for every
z € Hy— 5. Note that our choice above does not promise any kind of continuity for the
map p, but that does not matter for our purpose.

This p and the defining function r together allow us to decompose Hy-s in a manner
that is analogous to the radial-spherical decomposition for the unit ball in [28]. More
specifically, p plays the role of “spherical coordinates”, while —r is the analogue of “radial
coordinate”. Because we only need a large-scale, or “coarse”, decomposition, (8.1) is all
that we need to know about p.

Lemma 8.4. There is a constant 0 < Cg 4 < 0o such that

2 — P + {2 = o, (9r) ()]
< 3{]z = wf? + (= = w, () ()]} + Cs.aflz — /| + [w — w']}

for all z,w, 2, w' € Q= QUON.

Proof. It is elementary that |2’ — w’'|* < 3|z — w|? + 3|z — 2/|? + 3|w — w'|?. Since Q is
bounded, there is a O} such that |¢ — ¢| < C for all ¢, € € Q. Hence

|2 —w'|* < 3]z —w]* +3C1{|z — 2| + |w—w'|}. (8.2)
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Similarly, since dr is bounded and satisfies a Lipschitz condition on , we have
(=" = w',(0r) (D] < (|2 = 2| + [w = w'](Or) ()] + |{z = w, (Fr)(2'))]
< Colz = 2| + [w —w']) + [z — w, (9r)(2))| + |2 — w]|(9r) (") — (9r) ()|
< Collz = 2|+ |w = w']) + |z — w, (r)(2))| + Cs]z — #/|. (8.3)
Obviously, the lemma follows from (8.2) and (8.3). O
We begin the decomposition with natural numbers m > J and j > 1. Define
dmj=m2779" @y j=Cs1m279™ and b,;=Cs m277", (8.4)

where Cy 1 is the constant in Lemma 8.1. That is, ay,,; = Cg.1dm,; and by, j = Cg'ldm’j.
Let E,, ; be a subset of 9 that is mazimal with respect to the property

Qu,dp ;) NQ(v,dp, ;) =0 forall u#veE,;. (8.5)
By the maximality of E,, ; and Lemma 8.1, we have

U Q. am;) =09 (8.6)

uCEop, j

Fix a natural number Ny such that Ny > Cg3(C3)", where Cg 3 is the constant in
Lemma 8.3. Since by, j = CZ1d, ;, it follows from (8.5) and Lemma 8.3 that

card{v € E,, j : Q(v,bm ;) N Q(u, by, ;) # 0} < No (8.7)
for every u € E,, ;. Now, given any m > J, j > 1 and u € E,, ;, we define the sets

Apjuw=1{2€Q:p(2) € Q(u,an, ;) and 2—(+m —r(z) > 2_(j+2)m} and
B juw=1{2€Q:p(2) € Q(u,by,, ;) and 2Im —r(z) > 2_(j+3)m}.
It follows from (8.6) that
U U Amju=Hy2m ={z€Q: —r(2) <272} (8.8)
J=lu€eE, ;

Note that even though we have (8.8), we do not know that every A, ;. is non-empty
from its definition. Nevertheless, we have

Lemma 8.5. There is a constant J < Mg s < 0o such that if m > Mg s, then Ay, jo # 0
forallj > 1 andu € E,, ;.
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Proof. By the Taylor expansion for r, there are constants J < M; < co and 0 < C; < o0
such that if m > My, then for every pair of j > 1 and u € E,, ; there is a «’ such that
—r(u') = 270F6/2Dm and |u — u'| < Cy(—r(u')). By Lemma 8.4, we have

lu— /> + |(u— ', (9r)(w))| < Csalu —u'| < Cs4Cy(—r(u')) = Cg 4C1270HE/2)m,
Applying Lemma 8.4 again and recalling (8.1), we have

lu— p(u )+ {u = p(u), (0r)(w))| < 3{|u —u'|> + |{u — o', (Ir)(w))|} + Cy.alu’ — p(u')|
< 36’8.4012*@*(3/2))7” + 08.4cp2*(j+(3/2))m.

Let Mg.5 > M, be such that Mg s > 3C5 4C1+Cs.4Cp. If m > Mg 5, then v’ € Ay, jo. O

Lemma 8.6. There is a constant Mg 5+ 100 < Mg g < 0o such that for m > Mgg, 7 > 1,
and u € Ep, j, if 2 € Apy ju and w € Q\Byy, ju, then d(z,w) > (1/13)m.

Proof. Set M; = max{Msg5 + 100,10Cs 4}, where Cs4 and Mg 5 are the constants in
Lemmas 8.4 and 8.5 respectively. Consider any m > Mi, j > 1 and u € E,, ;. For a pair
of z € Ay, ju and w € Q\Byy, j o, there are three possibilities, depending on the value of
r(w).

(1) Suppose that —r(w) > 277", Then r(2)/r(w) < 2=0+m /2=im — 9=m Combin-
ing this with Lemma 2.1, we have ¢y 12744 ®?) < r(z)/r(w) < 27™. Hence

d(z,w) > (1/4)m + (1/4){log c2.1/ log 2}.

Let My > M be such that (1/2)My > |logeca1/log2|. Thus if m > Ms, then for all
J>1lu€ Ey,;, 2€ Anp juand w € Q\B,y, ;., we have

d(z,w) > (1/8)m (8.9)

under the condition —r(w) > 279™,

(2) Suppose that —r(w) < 2-0UF3)™ Then r(w)/r(z) < 2-0+3)m /2-(+2)m — g=m,
From Lemma 2.1 we now deduce cp 2744 < r(w)/r(z) < 27™. Thus (8.9) again
holds under the condition —r(w) < 2=U+3)m when m > M,.

(3) Suppose that 2=0U+3)™ < —p(w) < 279™, Then by the definition of B,, ;, we have
p(w) ¢ Q(u, by, ;). In contrast, since z € A, j,u, we have p(z) € Q(u, @, ;). Since by, ; =
Cs.1Gy,j, by Corollary 8.2 we have p(w) ¢ Q(p(2), am, ;). Recall that a,, ; = Cs1m2~9™
and that Cg; > 1. Thus it follows from Lemma 8.4 and (8.1) that

m2™" < am,; < |p(2) = p(w)]* +{p(2) = p(w), (9r)(p(2)))]
<3{le —wl* + [{z = w, (Or)(2))|} + Cs.aCp{lr(2)| + |r(w)[}
< 3{lz —w’ + |{z = w, (@) (2))]} + Co.aCp{27UHD™ - 279},
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Now we pick an M3 > M, such that M3 > 4Cs4C,, ie., (1/2)Ms > 2Cs.4C,. When
m > Ms, elementary manipulations turn the above into the inequality

(1/6)m27™7 < |z — w|* + [z — w, (9r)(2))].
Combining this with Lemma 2.2(2), we obtain
(1/6)m2™™ < Cyo{d(z, w) + d?(z,w)}2124E) (—p(2)).
Since —r(z) < 2-U+D™ this implies
(1/6)m2™ < Cyof{d(z,w) + d?(z, w)}2124=w),

From this inequality it is elementary to deduce that there is an Mg g > M3 such that if
m > Mg g, then d(z,w) > (1/13)m. Combining this with (8.9), the proof is complete. O

By Lemma 8.5, for every triple of m > Mg, 7 > 1 and u € E,, ;, we can pick a
Zmju € Am.jou- (8.10)
This pick will be fixed for the rest of the paper.

Lemma 8.7. There is a constant Mg g < Mg7 < oo such that if m > Mg 7, then there is
an 0 < R,, < oo which has the property that

Bm,j,u C D(Z7n,j,ua Rm) (811)
forallj>1 andu € E,, ;.

Proof. Suppose that m > Mzgs. Given any j > 1 and u € E,, ;, we have 2-(+2m <
—1(2m ) < 270UFD™ by (8.10). Now let w € By j . Then 270+ < —p(w) < 279m,
which means —272"7(zy, o) < —r(w) < =227 (2, ;). In other words, we have

2k_1(—r(zm’j,u)) < —r(w) < Qk(—r(zm,j’u)) for some k € Z with |k| <2m. (8.12)

We have p(w) € Q(u, by, ;). Since p(2m ju) € Qu, am, ;) C Q(u, by, ;), Lemma 8.1 gives
us Q(u, b, j) C Q(P(2m,ju) Cs.1bm ;). Hence p(w) € Q(p(2m,ju); Cs.1bm,;). That is,

[p(2m.j.u) = p(w)[* +1{p(2m.j.0) = p(w), () (P(2m5,0)))] < Cs.1bm,j-

Applying Lemma 8.4 and (8.1), we obtain

2 — WP+ (Zmju — w0, (07) (Zm )| < 3Cs.1bm,; + Cs.aCp(|7(2m,j.u)| + r(w)])
< 308 ;m279™ 4 205 4,C,279™ < (3C5 ym + 208.4C,)2*™ (=7 (2m ju))-
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Let Mg 7 > Mg be such that (305’_1M8‘7 + 208.401,)2_]\/[8'7 < 1. When m > Mg 7, the
above inequality gives us

2, = W+ [(2m, g — w0, (07) (Zm )| < 22" (=7 (2 j.u))

< 2k+3m+‘k|(*r(zm,jyu))- (8'13)

Combining (8.12) and (8.13) with Lemma 3.7, we obtain d(zm, ju,w) < Cs7(1 + |k| +
3m+1k|) < Cs37(1+7Tm). Thus when m > Mg 7, (8.11) holds for R,,, = C37(1+7m). O

In the above we picked constants such that Mg 7 > Mg g > Mg 5+ 100 and Mg 5 > J.
Thus if m > Mg 7, then m/13 > 7. Now, for every m > Mg 7, we define the function

_ { 1—{(m/13) =4} 'z for 0<z< (m/13)—4 514)

fm(@) = 0 for (m/13)—4<z<oo

Obviously, f,, satisfies the Lipschitz condition | fy, () — fin (y)| < {(m/13) —4} |z —y],
x,y € [0,00). For every triple of m > Mg 7, j € N and u € E,, j, we define

fm,j,u(z) = fm(d(Z;Am)j7u)) for z € Q.

Lemma 8.8. For every triple of m > Mgz, j € N and u € E,, ;, the function fm ju
defined above has the following five properties:

(a) The inequality 0 < fi, ju <1 holds on B.

(b) fm,ju =1 on the set Ay, ju.

(©) | frmju(2) = fmju(w)] < {(m/13) — 4}~ 1d(z,w) for all z,w € Q.

(d) If fm,ju(2) #0 and w € Q\By, ju, then d(z,w) > 4.

(e) We have diff(fm. ju) < {(m/13) — 4}~ L.

Proof. (a) and (b) follow directly from the definitions of f,, and fn, ;.. Then note that

| fingu(2) = fngau(w)] = | fn(d(z, Amja)) = Fru(d(w, A ju)]

1 d(z,w)
< mm(zw‘lma,u) —d(w, Am ju)| < (m/13) -4

which proves (c). For (d), observe that if f,, ; ,(z) # 0, then d(z, Ay, ju) < (Mm/13) — 4.

This means that there is a 2’ € A, ;,, such that d(z,2") < (m/13) —4. If w € Q\ By, j u,
then Lemma 8.6 tells us that d(2’,w) > m/13. By the triangle inequality,

d(z,w) > d(2',w) —d(z,2") > (m/13) — {(m/13) — 4} = 4.

Hence (d) holds. Finally, note that (e) is an immediate consequence of (¢). O
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By (8.7) and a standard maximality argument, each E,, ; admits a partition

1 N
Ep =By U UEY (8.15)
such that for every v € {1,..., Ny}, we have Q(u, by, ;) N Q(v, by, ;) = 0 for all u # v in
E,(:)] Therefore for each v € {1,..., Ny}, the conditions u,v € Ef:)j and u # v imply

By ju 0 Binjw = 0.

Definition 8.9. Let m > Mg, be given. (a) For each pair of k € {1,2,3} and v €
{1,...,No}, where Ny is the integer that appears in (8.7) and (8.15), let 18%) denote
the collection of all triples m, 3j + k, u satisfying the conditions j € Z, and u € Eg’)?)j_i_n.
(b) For x € {1,2,3}, v € {1,...,Np} and ¢ € N, let Iﬁ;’j;) denote the collection of all
triples m, 3j + k, u satisfying the conditions 0 < j < g and u € EY)

m,3j+K"
(c) Denote I, = U3_, UNo, .

The elements in I,,, equivalently the subscripts in Ay, ju, Bm,ju and fo ju, are
obviously quite cumbersome to write as triples. For this we have the following remedy:

Notation 8.10. (1) We will use the symbol w to represent the triple m, j, u.
(2) For any subset I of I, denote f; = > ; fo and Fr =3, f2.

Lemma 8.11. Let m > Mgz, k € {1,2,3} and v € {1,...,No}. Then for any w # ' in
L(,l{"{), we have B, N B, = 0.

Proof. If w = (m,3j + k,u) and W’ = (m,35 + k,v) for a pair of u # v in Er(:’):,,ij,
then by the property of the partition (8.15) we already know that B, N B, = ). The
other possibility is that w = (m,3j + k,u) and W’ = (m,3j" + k,v) with u € B sjtn
and v € Ef;y)gj,_m, where j # 5. If j # j/, then |(35 + k) — (35’ + k)| > 3, which ensures
B,, N B, = by the values of —r on B, and B,,,. O

Lemma 8.12. Let m > Mgy, k € {1,2,3} and v € {1,...,No}. Then for every subset I
of I | we have f; € ®(27™; ((m/13) — 4)~1).

Proof. Let I C LSTV ) TFor each w € I , [ is continuous on ) and satisfies the condition
0 < f, < 1. Lemma 8.11 tells us that for w # ' in I, we have B, N B, = (. By
Lemma 8.8(d), if z,w € Q are such that f,(z) # 0 and f,(w) # 0, then d(z,w) > 4.
It follows that f; is continuous on B and that 0 < f; < 1. Furthermore, we can invoke
Lemma 7.11 to obtain diff(f;) < sup,,¢; diff(f.,) < ((m/13) —4)~!, where the second <
follows from Lemma 8.8(e).

Since I € I, if w € I, then By C Hy-nm = {€ € Q:—r() < 27"} Since
Lemma 8.8(d) says that f,, = 0 on Q\B,,, we conclude that fy =0on {¢ € Q: —r(¢) >
27%m1 Recalling Definition 7.9, this completes the verification of the membership f; €
®(27™; ((m/13) —4)~Y). O
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Lemma 8.13. Let m > Mg 7, k € {1,2,3} and v € {1,...,No}, and let I be any subset
of I,(f{’ﬁ). Then for every bounded operator A on L2(S2), we have

> Ty, ATy, € LOC(A).
wel

Proof. Given any I C IT(,QJ’H), consider the set I' = {z, : w € I}, where 2z, was picked
in (8.10). By Lemmas 8.11 and 8.6, T" is an (m/26)-separated set in 2. Define f, = f,
for each w € I. We need to verify that the functions {f, : z, € I'} satisfy conditions
(1)-(3) in Definition 6.5. First of all, (2) follows from Lemma 8.8(a). Lemma 8.7 tells us
that for each w € I, we have B,, C D(z,, R.,). By Lemma 8.8(d), we have f,, = 0 on
O\D(zy, Rp), verifying (1). Finally, condition (3) follows from Lemma 8.8(c). O

9. The essential commutant of {T : f € VOpqa}

To prove Theorem 1.1(i), let us first recall

Lemma 9.1. Let {f1,..., fi} be a finite set of functions in L>°(Q) with the property that
fifi =0 forall j # k in {1,...,£}. Let A be any bounded operator on the Bergman
space L2(QY). Then there exist compler numbers {yi,...,ve} with || = 1 for every
ke{l,...,¢} and a subset E of {1,...,¢} such that if we define

F=>fi, G= > fo F'=) wh and G'= > wf

keE ke{l,.. . 0\E keE ke{l,.. L\E

then

STy, ATy || < 4T AT + | Ter AT ).

itk

This lemma was proved in the case of the unit ball as Lemma 5.1 in [28]. But the
proof in the case of a general () is exactly the same. The only property of Toeplitz
operators that was used in the proof of [28, Lemma 5.1] was that a Toeplitz operator is
the compression to a subspace of a multiplication operator on an L?. Thus not only does
Lemma 9.1 hold, its analogue also holds, for example, in the setting of Hardy spaces.
For that reason we will not repeat the proof of Lemma 9.1 here.

Recall that we write C for the collection of compact operators on the Bergman space
L2(Q2). Furthermore, Proposition 6.2 tells us that X C 7. Also recall that for each
f € L>(2), we have the Hankel operator H defined by the formula

Hih = (1— P)(fh), he Li(Q).

Proof of Theorem 1.1(i). For f,g € L>(Q), we have
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[Ty, T, = PM;PM,P — PM,PM;P = PM,(1 — P)M;P — PM(1 — P)M,P
= [P, My](1 — P)[My, P| — [P, Mf](1 — P)[My, P].
Thus it follows from Proposition 7.3 that EssCom{T} : f € VOnaa} D {T, : g € L>=(Q)}.
Since {T, : g € L>(Q)} generates T, we conclude that EssCom{Ty : f € VOpaa} D T.
Thus we only need to prove that EssCom{Ty : f € VOpaa} C 7.

Let X € EssCom{Ty : f € VOpaa} be given. To show that X € T, pick any ¢ > 0. It
suffices to produce a decomposition X =Y + Z such that Y € T and

121l < 3No{16(2 + [|X]) + [| X[| + 2}, (9.1)

where Ny is the constant that appears in (8.7) and (8.15).
First, we apply Proposition 7.10, which provides a § > 0 and a t* > 0 such that

I[X,T¢]|| < 2e forevery f e ®(t*;0). (9.2)
Then we apply Lemma 7.2, which tells us that there is a 8’ > 0 such that
AR (9.3)

for every bounded continuous function g on Q with diff(g) < ¢’. With 4, ¢t* and ¢’ so
fixed, we pick an integer m > Mg ;7 satisfying the conditions

((m/13) —4)~! <min{e, 6,0’} and 27™ < t*. (9.4)

With m so fixed, let us consider the function F7,, given in Notation 8.10(2). Since

3 No
Fr, =Y Y Fum (9.5)

rk=1lv=1

and since by Lemma &8.12 each FI(”"‘) satisfies the inequality 0 < FI<V,H) <1 on £, we

have 0 < Fy, < 3Ny on Q. By Lemma 8.8(b) and (8.8), we have FI:(Z) > 1 whenever
—7r(2) < 272™. Thus we have shown that the function

h = xq, 5. + FI, (9.6)

satisfies the inequality 1 < h < 3Ng + 1 on Q, where Qy-2m = {( € Q : —r(¢) > 272m}.

This guarantees that the positive Toeplitz operator T} is both bounded and invertible

on L2(Q). Moreover, [T}, | < 1. Since T}, € T and T is a C*-algebra, we have T), * € T.
By (9.6) and (9.5), we have the decomposition

3 Ny
X = XTI, = Xo + Z Z Xor, (9.7)

k=1lv=1
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where

Xo=XTy, , T, and X,.=XTp, T
for 1 <k <3 and 1 < v < Ny. Obviously, the Toeplitz operator T,,, ,,, 18 compact.
2— m
Hence, by Proposition 6.2, Xg € K C T.
We further decompose each X, .. To do that, define the operators

Vo= Y T, XTp, T and A= Y Ty, XTp T, (9.8)
well™ w,w' €I
w#w’

Obviously, Y, + Avw =T¢ , .  XTF (., T, ' (cf. Notation 8.10). We further define
I’V‘nr, I‘m’

By =X Tt o )Ts 0 Ty '+ XH ., Hy Tyt (9.9)

It follows from Lemmas 8.8(d) and 8.11 that Fyw.x = f?(m). For any real-valued f €
L>=(Q), we have Ty> = TF + H} Hy. Therefore

XI/,H =Y+ Ay,n + By,n- (910)

Since T}~ e T, it follows from Lemma 8.13 and Corollary 6.7 that Y,.eT.
To estimate || A, .|, first observe that on L?(Q), we have the strong convergence

> My, XPMy,— > M XPM;, as q— oo,

w,wlelfri'”;) w,wlelfn”"")

wHw’ w#w'

where If(rlfj; ) was given by Definition 8.9(b). Compressing this strong convergence to

L2(2) and using the bound ||T}, || < 1, we see that there is a ¢ € N such that

|Apsll < 2| Zywll, where Z,.= > Ty XTy,. (9.11)
w,wlelfn":;)

w#w’

Since f,, for = 0 for w # W' in L({’ff), by Lemma 9.1, there are complex numbers {~,, :
w e IT(,ZL’,’;)} of modulus 1 and a subset I of Ir(rl:,’;) such that if we define

F:quu G = Z fwy FlZZ’waw and G' = Z '7wfw7

wel UJEI—,(,’L/:;)\I wel wEIT(,lL',’?\I
then

1Zvkll < A(|Tr XTg|| + | Te X Tr|))- (9-12)
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Note that T XTr = T/ [X, Tr) + Te:TrX. We have F € ®(27™; ((m/13) — 4)71) by
Lemma 8.12. Hence it follows from (9.4) and (9.2) that

1 Te [ X, Trlll < [[[X, Tr]l| < 2e. (9-13)

Since B, N B, = @ for all w # ' in Iy(,'{’ﬁ), we have G'F = 0 on (), and consequently
TeTr = —HZ Hp. Since diff(F) < ((m/13) —4)~", by (9.4) and (9.3), we have

1 Te TrX|| < [[HR[IX] < 1 X]le.
Combining this with (9.13), we see that ||Te XTF| < (2 + || X]|)e. The same argument
also shows that | Te XTg| < (2 4+ || X||)e. Substituting these in (9.12) and recalling
(9.11), we obtain

|4, k]l < 16(2 4+ || X||)e. (9.14)

Next we estimate || B, ||

Lemma 8.12 tells us that diff(f,w.x) < ((m/13) —4)~". Combining this with (9.4)

and (9.3), and with the fact |7}, || < 1, we obtain

IXHF o Hy o Ty < IXNH o < X e

Again, Lemma 8.12 says that f,o. € ®(27™;((m/13) —4)~"). Hence it follows from
(9.4) and (9.2) that

||[X7 TfI(V,N)]TfI(u,N) Th_1 H < ”[X’ Tfl(y,,i)]” < 2e.
Recalling (9.9), from the above two inequalities we obtain
Byl < (IX]| + 2)e. (9.15)
To summarize, we have shown that for each pair of 1 <k < 3 and 1 < v < Ny, we have

the decomposition (9.10) where Y, , € T and where A, ., B, . satisfy estimates (9.14)
and (9.15) respectively. Combining (9.10) with (9.7), we have X =Y + Z, where

3 No 3 No
Y=Xo+ Y > Y and Z=) > (A + B, (9.16)
k=1v=1 r=1v=1

Now, (9.1) follows from (9.14) and (9.15), and we have shown that Y € 7. This completes
the proof of part (i) in Theorem 1.1. O

Proposition 9.2. For X € T, if LOC(X) C K, then X is compact.
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Proof. Let X € 7 and suppose that LOC(X) C K. As we showed above, for every € > 0,
X admits a decomposition X =Y + Z, where Y and Z are given by (9.16), with X
known to be compact. By (9.8) and Lemma 8.13, the condition LOC(X) C K implies
Y, . € K. Thus Y is compact. Since Z satisfies (9.1), this shows that X is compact. O

Proposition 9.3. Let X € T. Suppose that X has the property that for every 0 < R < oo,

lim  sup [(Xkuw,k:)| =0. (9.17)
202 weD(z,R)

Then X is a compact operator.

Proof. Recall from Proposition 6.6 that LOC(X) C D(X). Combining this with Propo-
sition 9.2, it suffices to prove the inclusion Dy(X) C K under the assumption that (9.17)
holds for every 0 < R < co. By Definition 6.3(c), we need to show that the operator

T = c:(Xkyz, bip()ko(z) ® Fuz)
zel

is compact, where I is a separated set in , {c, : z € '} is a bounded set of coefficients,
and ¢,9 : I' — Q are maps for which there is a 0 < C < oo such that d(z,¢(z)) < C
and d(z,9(z)) < C for every z € T.

By the assumption on ¢, ¥ and Lemma 2.11, there is a partition I' =T’y U- - -UT'g such
that for each 1 < j < k, the conditions z,w € I'; and z # w imply d(¢(z), ¢(w)) > 2 and
d(¢(z),¥(w)) > 2. Hence for each 1 < j < k, thesets {¢(z) : z € I';} and {¢(2) : z € T';}
are 1-separated. This leads to the decomposition T'= T + - - - + T}, where

Ty =Y cx(Xky(eys ko) Re(z) @ k)
ZGFJ'

for every 1 < j < k. Thus it suffices to show that T} € K for every 1 < j < k. Fix such a
j for the moment. For each § > 0, denote I'; s = {z € T'; : —r(z) < §}. Using an obvious
finite-rank approximation and applying Lemma 5.1, for each § > 0, we have

1T5lle < < CEic sup [((Xky(z) k(o)

zel'; s

Z [ <Xk’¢,(z), k@(z)>k¢(z) ® kw(z)

z€l'; 5

where ¢ = sup,cr |c.|. Since d(z, ¢(z)) < C and d(z,v¢(z)) < C for every z € T, it follows
from (9.17) that the right-hand side tends to 0 as ¢ | 0. Thus ||T}j||g = 0, i.e., T; is a
compact operator. This completes the proof. O

As an immediate consequence of Proposition 9.3, we have
Corollary 9.4. Let X € T. Then X is compact if and only if

lim || Xk, | = 0.
z— 00
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10. The essential commutant of the Toeplitz algebra

We now turn to the proof of part (ii) in Theorem 1.1.

Proposition 10.1. If f € VOyqq, then
lim |[(f = f(2))k:|| = 0.

z—00Q

Proof. Let f € VOyqq and consider a large R > 0. Given any z € ), we have

I(f = F@)ha? = / ) — F(2) P ke (w) Pdv(a)

D(z,R)
b [ ) = Pk )P )
Q\D(z,R)

[r(z)|"*
< sup  |f(w) = f(2)F +CillfIIA / ——————dv(w).
L 1) = SR+ Gl o pEradv)

Q\D(z,R)
Applying Lemma 3.8, there are constants 0 < C5 < oo and s > 0 such that
I(f = FEDEI? < sup [f(w) = f(2)]* + Cal| fl1227°F. (10.1)

weD(z,R)

Now we use the fact that f has vanishing oscillation: Using the cutoff functions provided
by Lemma 7.6, for any § > 0, we can write f = fi; + fo, where f; has a compact support
in 2 and diff(f2) < 6. Combining this fact with Lemma 7.1, we see that

lim = sup [f(w) = f(2)| =0

2=0Q e D(2,R)
once an R > 0 is given. This and (10.1) together imply that ||(f — f(2))k.|| — 0 as
z — 0f). This completes the proof. O

Proposition 10.2. Suppose that {z;} and {w;} are sequences in Q satisfying the following
two conditions:

(1) limj 00 7(25) = 0.

(2) There is a constant 0 < C' < oo such that d(zj,w;) < C for every j € N.
Then for every A € EssCom(T) we have

lim [|[A, k., @ k||| = 0. (10.2)
]*)OO : -

Proof. For the given {z;}, {w,} and A, suppose that (10.2) did not hold. Then, replacing
{#;}, {w;} by subsequences if necessary, we may assume that there is a ¢ > 0 such that



Y. Wang, J. Xia / Journal of Functional Analysis 280 (2021) 108775 49

lim [[[A, k., ® ku, ||| = c. (10.3)
j—o0

We will show that this leads to a contradiction.

By condition (1) and Lemma 2.1, there is a sequence j; < jo < +++ < j, < -+ of
natural numbers such that —r(z;,,,) < —r(z;,) for every v € N and such that the set
{#;, : v € N} is 1-separated. For each v € N, we now define the operator

Bl/ = [Aa kzj-y ® k’wj'y]7

whose rank is at most 2. By conditions (1), (2) and Lemma 2.1, we also have that
r(wj) — 0 as j — oo. Thus both sequences of vectors {k.,} and {k,,} converge to 0
weakly in L2(£2). Consequently we have the convergence

lim B, =0 and lim B =0
vV—00 vV—00

in the strong operator topology. Thus by (10.3) and Lemma 7.8, there is a subsequence
v(l) <v(2) <---<wv(m) <--- of natural numbers such that the sum

B = Z Bum)

m=1

converges strongly with ||B||g = ¢ > 0. Thus B is not compact. Now define the operator

Y= Z kzjv(m) ® kwiu(m)'

m=1

Since the set {z;, : v € N} is l-separated and since condition (2) holds, by Proposi-
tion 6.4 we have Y € 7. Since A € EssCom(7), the commutator [A,Y] is compact. On
the other hand, we clearly have [A,Y] = B, which is not compact because ||B|g > 0.
This gives us the contradiction promised earlier. O

Lemma 10.3. /27, Lemma 5.1] Let T be a bounded, self-adjoint operator on a Hilbert
space H. Then for each unit vector x € H we have ||[T,z @ z]|| = ||(T — Tz, z))z||.

Lemma 10.4. /27, Lemma 5.2] Let T be a bounded, self-adjoint operator on a Hilbert
space H. Then for every pair of unit vectors x,y € H we have

(T, x) = (Ty,y)| <|[[T;x @yl + [Tz @ 2]|| + [Ty @ y]||-
For a bounded operator A on L2(2), we define the function

A(2) = (Ak, k), =z € Q.

Recall that A is commonly called the Berezin transform of the operator A.
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Proposition 10.5. If A € EssCom(T), then its Berezin transform A is in VOpaq.

Proof. It suffices to consider a self-adjoint A € EssCom(7). Obviously, A is bounded,
and Proposition 4.6 tells us that it is continuous on Q. If it were true that A ¢ VO, then
there would be a ¢ > 0 and sequences {z;}, {w;} in Q with

lim r(z;) =0 (10.4)

j—o0
such that for every j € N, we have d(z;,w;) <1 and
[(Aks,bsy) = (A, )| = A() — Awy)| > e (105)
But on the other hand, it follows from Lemma 10.4 that
[( Ak ey ) = (AR, Ry )| < ITA; Bey @ ][4 (ITA; K2y @z ]I 4 [A; Bw, @ K- (10.6)

By (10.4) and the condition d(z;,w;) < 1, j € N, we can apply Proposition 10.2 to
obtain

lim [[[A, k., ®ky, ]l =0 and lim [[[A, k., ® k]| = 0. (10.7)
j—00 : : j—oo ; :

J

By Lemma 2.1, conditions (10.4) and d(z;,w;) < 1, j € N, also imply lim;_, 7(w;) = 0.
Thus Proposition 10.2 also provides that

lim [[[A, ku, ® ku, ]| = 0. (10.8)
Jj—o0

Obviously, (10.6), (10.7) and (10.8) together contradict (10.5). O
Lemma 10.6. If A € EssCom(T), then

li A—-Ti)k.|| =0.
lim [[(A = Tpk:]| =0

Proof. Again, it suffices to consider a self-adjoint A € EssCom(7T). Then it follows from
Lemma 10.3 and Proposition 10.2 that

Jim [[(A = Ak = lim 4,k @ k]| =0.

Therefore it suffices to show that

i [|(T5 — A(2)k = 0.

Since ||(T5—A(2))k.|| < ||[(A—A(z2))k. ||, this follows from Propositions 10.5 and 10.1. O
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Finally, we are ready to determine the essential commutant of 7.

Proof of Theorem 1.1(ii). Again, it follows from Proposition 7.3 that EssCom(7) D
{Tf : f e VObdd} + K.

For the reverse inclusion, consider any A € EssCom(7). We need to show that A €
{Ty : f € VOpaa}+K. We know that A € VOpqq from Proposition 10.5. Hence it suffices
to show that A —T'; is compact. For this we apply Lemma 10.6, which gives us

Jim |4 - Tk | = 0. (10.9)

The membership A € EssCom(7) implies, of course, that A € EssCom{T} : f € VOpqq}.
Hence Theorem 1.1(i) tells us that A € 7. Consequently, A—T; € T. By Corollary 9.4,
the membership A —T; € T and (10.9) together imply that A —T; is compact. O

11. Berezin transform near the boundary

The purpose of this section is to show that condition (9.17) is implied by the vanishing
of Berezin transform near 0). This along with Proposition 9.3 will give us the proof of
Theorem 1.2. To begin, we need to fix some necessary constants:

Lemma 11.1. (1) There is a 0 < co < 1 such that z+P((0r)(2); 2cor/—7(2), —2cor(2)) C
D(z,1) for every z € Q satisfying the condition —r(z) < 6.

(2) There is a by > 0 such that D(z,3by) C z+P((0r)(2); cor/—7(2), —cor(2)) for every
z € Q satisfying the condition —r(z) < 6.

(3) There is an ag > 0 such that z+P((0r)(2); ao\/—r(2), —agr(z)) C D(z,by) for every
z € Q satisfying the condition —r(z) < 0.

Proof. By Proposition 2.4, there is a 0 < ¢ < 1 such that z + P((0r)(2); c\/—7(2),
—cr(z)) C D(z,1) for every z € Q satisfying the condition —r(z) < 6. Then ¢y = ¢/2
will do for (1).

To prove (2), take any 0 < b < 1/2 such that Cs 5b < ¢g. By Proposition 2.5, we have

D(z,b) C z+ P((0r)(2); con/—1(2), —cor(2))

whenever —r(z) < 6. Thus (2) holds for the constant by = b/3.
Finally, note that (3) is a direct consequence of Proposition 2.4. O

Once the above constants are fixed, we can introduce the following “polyballs”:
Definition 11.2. (1) Let

P = {(u1,usg, ..., uy) € C" : |us| < ag and (Jug|? + - + |ua]®)/? < ao},
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Q= {(u,uz...,uy) € C": Jus| < co and (Jug|® + - + |un|*)/? < co} and

R ={(u,uz...,uy) € C": |ui| < 2¢o and (Jua|®> + - + Jun )2 < 2¢0}.

(2) For each z € Q satisfying the condition —r(z) < 6, let S, be the linear transformation
on C" given by the formula

S.(ur,ug, ... up) = 2)ur, / —r(2)ug, ..., —r(2)un),  (ur,ug,...u,) € C™.

(3) For each z € Q satisfying the condition —r(z) < 6, let U, be a unitary transformation
on C" such that U, {(0,ua,...,upn) : Uz, ..., u, € C} = {u € C": (u, (r)(z)) = 0}.
(4) For each z € Q satisfying the condition —r(z) < 4, denote V, = U.S,.

Proposition 11.3. Suppose that U is a connected open set in C™ that is symmetric with
respect to conjugation. That is, (w1,...,w,) € U if and only if (wy,...,w,) € U. Let
F be an analytic function on the domain U x U in C™ x C". If F(z,z) = 0 for every
z € U, then F is identically zero on U x U.

Proof. For each j € {1,...,n}, let e; denote the vector in C™ whose j-th component is
1 and whose other components are 0. We then define

(d; F)(w, z) = 1 and

; (3 n Zﬂ)F(w + (@ +iy)es, 2 + (z +iy)e;)

ox dy

x:O:y

05 w.2) = 5 (55 = i )Flw+ (ot i)

m:O:y

for j € {1,...,n} and w, z € U. It is straightforward to verify that for every multi-index
a € 27, we have d*F = 0°F. Since F(z,z) = 0 for every z € U, an easy induction on
|| yields (d*F')(Z,z) = 0 for every z € U and every a € Z'}. Thus if we fix any z € U,
then (0“F)(z,z) = 0 for every a € Z7}. By the standard power-series expansion, this
means that the analytic function f.({) = F((,2), ¢ € U, vanishes on a small open ball
containing Zz. Since U is connected, we conclude that f, = 0 on U. Since this is true for
every z € U, it follows that F' is identically zero on U x U. O

Proposition 11.4. Let A be a bounded operator on the Bergman space L2(Q). If
lim (Ak.,k.) =0, 11.1
ligy (ke k) =0 -y
then for every given 0 < R < oo we have

lim  sup [(Aky,k.)| =0. (11.2)
z— 00 ’UJGD(Z R)
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Proof. Given (11.1), suppose that (11.2) failed for some 0 < R < co. We will show that
this results in a contradiction. First of all, the failure of (11.2) for this particular R means
that there is an € > 0 and sequences {z;}, {w;} in Q such that

lim r(z;) =0 (11.3)

J—ro0
and at the same time, d(z;,w;) < R and

(Ak, k)| > € (11.4)

for every j > 1. Since d(zj,w;) < R, for every j > 1 we have a C! map g; : [0,1] — Q
such that ¢;(0) = z;, g;(1) = w; and

1
[ B g 0. g0 < r 1 (11.5)
0

By (11.3), (11.5) and Lemma 2.1, discarding a finite number of j’s if necessary, we may
assume that —r(g;(t)) < 0 for all j and t € [0,1]. Thus Lemma 11.1 can be applied
on all these paths. With the by provided by Lemma 11.1, we pick an m € N such that
(R+1)/m < by. Thus for every j > 1, there is a partition

0= :L‘j(O) < I'j(l) < - < xj(m) =1
of the interval [0, 1] such that

()
| B 0.g o <
)

Zj (i—l

R+1
m

< by (11.6)

for every 1 < i < m. Now, for every pair of j > 1 and 0 < i < m, we define

2 = g3(a;(0)).

(0)

In particular, we have z; =z and z](-m)

= wj for all j.
Recall that we write K, (¢) = K((, z), which is the (unnormalized) reproducing kernel
for L2(Q2). Let us denote
(I)(wv Z) = <AKwu KZ>7

w, z € ). For every pair of 7 > 1 and 0 < i < m, we define the function

FOC) = e (o) +V,08 4 +V,0€) | (11.7)
J J
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(, & € R. A review of Definitions 11.2 and 2.3 gives us the identity

zj(-i) + VZJ@’R = z](-i) + ’P((ér)(zj(-i)); 2¢94/ —r(zj(-i)), —QCor(ZJ(-i))). (11.8)

Therefore Lemma 11.1 ensures that each Fj(i) is well defined, and it is obviously an
analytic function of R x R. By (11.8), Lemma 11.1(1) and (11.5), if w = z](i) + VZ@Z

for some ¢ € R, then d(w,zj(-o)) < R+ 2. Thus by (4.1) and Lemma 2.1, there is a
C1 = C1(R) such that

IF(¢,6)] < Cu|All

for all (,£ € R, 7 > 1and 0 < i < m. Hence for each 0 < i < m, {Fj(i) :j>1}is a
normal family of analytic functions on R x R. Consequently there is a sequence

j1<j2<...<jy<...

in N such that for every 0 < i < m, the sequence {Fj(j)}yeN is uniformly convergent on
each compact subset of R x R. For every 0 < i < m, define the function

FO = lim FY (11.9)

v—oo IV

on R x R. Next we show that every F* is identically zero on R x R.
We will accomplish this by an induction on 4. First, let us show that F() is the zero
function. For 7 > 1 and ¢ € R, we have

IO = (57 1,0 04+ V00).

As we explained above, (4.1) and Lemma 2.1 together guarantee that

IFOCOl< o

Ak k .
< ZJ(-O)-Q-VZ(‘(JK7 ZJ(-O)+VZ(0)C
J J

By (11.3) and Lemmas 11.1(1) and 2.1, for each ( € R we have r(zj(.o) + Vzng) — 0
as j — oo. Thus, combining the above inequality with (11.1) and (11.9), wejﬁnd that
F(O)(Z7 ¢) = 0 for every ¢ € R. By Proposition 11.3, F() s identically zero on R x R.

Now suppose that 0 < i < m and that we have shown that F(®) is identically zero on
R x R. We need to show that F(+1) is also identically zero on R x R. By (11.6), we
have d(zj(i), z§i+1)) < bo. A review of Definition 11.2 and Lemma 11.1 gives us

A 1V P € DY by) € D2 3b0) € 27 + V.0 Q. (11.10)
j J
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Let £ € R be given. By (11.7) and (11.10), for any ¢ € P, there is an 1;(¢) € Q such
that

FO( ¢) = FO (0 (0), €). (11.11)

Since Q is a compact set in R and since F(*) =0, by (11.9) we have
Tim sup{|F}"(n,€)] :n € Q} = 0.

Combining this with (11.11) and (11.9), we find that FG+1(¢,€) = 0 for every ¢ € P.
Since P is a non-empty open subset of R, this implies that FUTD(¢,€) = 0 for every
¢ € R. Since this is true for every £ € R, we conclude that F(+1) is identically zero on
R x R. This completes the induction on <.

In particular, the above tells us that F(™) =0 on R x R, and consequently

lim F"™(0,0) = F(™(0,0) = 0. (11.12)

v—00

Recalling (11.7), we have
m 0)\|n m 0 n
F™(0,0) = [r(2\)" 1o (2™ D) = 1z, )" HAK,,, K, )
Since d(wj,, z;,) < R, from (4.1) and Lemma 2.1 we obtain
Ak, ke, )] < Col FJ™(0,0).
This and (11.12) together contradict (11.4). This completes the proof. O
Proof of Theorem 1.2. This follows immediately from Propositions 11.4 and 9.3. O
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