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Consider a bounded strongly pseudo-convex domain Ω with 
smooth boundary in Cn. Let T be the Toeplitz algebra on the 
Bergman space L2

a(Ω). That is, T is the C∗-algebra generated 
by the Toeplitz operators {Tf : f ∈ L∞(Ω)}. Extending the 
work [27,28] in the special case of the unit ball, we show 
that on any such Ω, T and {Tf : f ∈ VObdd} + K are 
essential commutants of each other, where K is the collection 
of compact operators on L2

a(Ω). On a general Ω considered in 
this paper, the proofs require many new ideas and techniques. 
These same techniques also enable us to show that for A ∈ T , 
if 〈Akz, kz〉 → 0 as z → ∂Ω, then A is a compact operator.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

An enduring question in the study of Toeplitz operators is their essential commu-
tativity. In this paper we consider this question on strongly pseudo-convex domains. 
It will be beneficial to start the paper with a recollection of necessary definitions and 
background.
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Suppose that Z is a collection of bounded operators on a Hilbert space H. Then its 
essential commutant is defined to be

EssCom(Z) = {A ∈ B(H) : [A, T ] is compact for every T ∈ Z}.

The study of essential commutants began with the classic papers of Johnson-Parrott [13], 
Voiculescu [23] and Popa [19]. Ever since, essential-commutant problems have become a 
mainstay of operator theory and operator algebras. As it turns out, many of the most 
interesting examples in the study of essential commutants are associated with Toeplitz 
operators, of various kinds [6,7,9,11,24,25,27,28]. This is perhaps due to the fact that 
Toeplitz operators are given by explicit formulas, and such formulas are necessary for 
the estimates that lead to the eventual results.

In this paper we consider an arbitrary bounded, strongly pseudo-convex domain Ω
with smooth boundary in Cn. Recall that the Bergman space L2

a(Ω) is the collection of 
analytic functions h on Ω satisfying the condition

∫
Ω

|h|2dv < ∞,

where dv is the volume measure on Ω. Let P : L2(Ω) → L2
a(Ω) be the orthogonal 

projection. For each f ∈ L∞(Ω), we have the Toeplitz operator Tf defined by the formula

Tfh = P (fh), h ∈ L2
a(Ω).

Let T denote the C∗-algebra generated by {Tf : f ∈ L∞(Ω)}. Then T is called the 
Toeplitz algebra on the Bergman space L2

a(Ω). We have T ∗
f = Tf̄ for f ∈ L∞(Ω). Thus 

the C∗-algebra T is the closure with respect to operator norm of

{ m∑
j=1

Tf1jTf2j · · ·Tfkj
: k,m ∈ N and fij ∈ L∞(Ω) for 1 ≤ i ≤ k and 1 ≤ j ≤ m

}
.

It is well known that T contains K, the collection of compact operators on L2
a(Ω) [22, 

Theorem 4.1.25], which is a convenient fact for the study of essential commutants.
In the case of the unit ball B in Cn, the essential commutant problems related to T

were solved in [27,28], with [26, Theorem 1.3] playing a pivotal role. Specifically, in the 
case of the unit ball, it was shown that EssCom(T ) = {Tf : f ∈ VObdd} +K in [27] and 
that EssCom{Tf : f ∈ VObdd} = T in [28]. Once one knows that, a question naturally 
presents itself: what happens if one replaces the unit ball B by a general strongly pseudo-
convex domain Ω? Equally naturally, one would expect that the same results hold on a 
general Ω. But here one immediately runs into two difficulties:

(1) The works in [27,28], particularly in [26], rely heavily on the explicit formula for 
the Bergman metric β on B. Without such an explicit formula, it is not clear how to 
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redo many of the estimates in [27,28]. By contrast, in the case of a general strongly 
pseudo-convex domain, we only know the asymptotics of the Bergman metric [10,20], 
but we do not have a formula for it that is explicit enough. In other words, on a general 
Ω, we do not have a good enough handle on the Bergman metric to do many of the 
necessary estimates. The same is true if one considers the Kobayashi metric instead of 
the Bergman metric.

(2) The techniques in [26–28] depend heavily on the Möbius transforms on B. But on 
a general strongly pseudo-convex domain Ω, there is no such thing as Möbius transform. 
In other words, compared with the unit ball, a general Ω totally lacks global symmetry. 
Compared with (1), this difficulty is more substantial, but it also makes an exciting 
challenge: can we prove the results in [27,28] on a domain without symmetry?

We are pleased to report that we have managed to overcome these difficulties. The 
way we deal with difficulty (1) is to simply introduce a metric that serves our purpose. 
Since Ω is a strongly pseudo-convex domain, it has a defining function r, i.e., Ω = {z ∈
Cn : r(z) < 0}. Then the formula

bij(z) = ∂i∂̄j log 1
−r(z) , 1 ≤ i, j ≤ n,

for z near ∂Ω gives us the infinitesimal generator of a metric d on Ω. The above formula 
is explicit enough to allow us to do all the necessary analysis. The precise definition of 
d will be given at the beginning of Section 2.

Difficulty (2) simply requires new approaches. Examining the involvements of Möbius 
transforms in [27,28] one by one, we have managed to find a new idea or new technique 
as a replacement in each case. Thus the results about essential commutants mentioned 
above can indeed be proved without symmetry.

To state our results, we need the notion of vanishing oscillation, which was first 
introduced in [4,3] for functions on bounded symmetric domains with respect to the 
Bergman metric. In this paper we need to define functions of vanishing oscillation with 
respect to the metric d on Ω. Let f be a continuous function on Ω. Then f is said to 
have vanishing oscillation if

lim
z→∂Ω

sup{|f(z) − f(w)| : w ∈ Ω and d(z, w) ≤ 1} = 0.

Let VO denote the collection of functions of vanishing oscillation on Ω. Further, define

VObdd = VO ∩ L∞(Ω).

Our main results are the two theorems below:

Theorem 1.1. On any bounded, strongly pseudo-convex domain Ω with smooth boundary 
in Cn, the following hold true:
(i) The Toeplitz algebra T is the essential commutant of {Tf : f ∈ VObdd}.



4 Y. Wang, J. Xia / Journal of Functional Analysis 280 (2021) 108775
(ii) The essential commutant of T equals {Tf : f ∈ VObdd} + K.

Let Q denote the Calkin algebra B(L2
a(Ω))/K. For any X ⊂ Q, write X ′ for its 

commutant in Q. That is, X ′ = {Y ∈ Q : [Y, X] = 0 for every X ∈ X}. Let

π : B(L2
a(Ω)) → Q

be the quotient homomorphism. Then π(EssCom(Z)) = {π(Z)}′ for every subset Z ⊂
B(L2

a(Ω)). Obviously, a subset A of Q satisfies the double-commutant relation A = A′′

if and only if A = G′ for some G ⊂ Q. Thus Theorem 1.1(i) implies that π(T ) satisfies 
the double-commutant relation in Q.

As it turns out, the techniques that allow us to prove Theorem 1.1(i), also give us a 
classic compactness criterion for A ∈ T in terms of its Berezin transform on Ω. Let us 
write kz, z ∈ Ω, for the normalized reproducing kernel for the Bergman space L2

a(Ω).

Theorem 1.2. Consider any bounded, strongly pseudo-convex domain Ω with smooth 
boundary in Cn. Let A ∈ T . If

lim
z→∂Ω

〈Akz, kz〉 = 0, (1.1)

then A is a compact operator on L2
a(Ω).

At this point, it is appropriate to briefly recall the long history of this line of investi-
gations. The first result of this genre was due to Axler and Zheng [1], where the domain 
was the unit disc in C and A was a finite algebraic combination of Toeplitz operators. 
Later in [21], Suárez showed that for any A in the Toeplitz algebra on the unit ball B in 
Cn, the condition

lim
|z|↑1

〈Akz, kz〉 = 0

implies that A is a compact operator. The fact that Suárez was able to do this for 
arbitrary A ∈ T on the ball, rather than just for finite algebraic combinations of Toeplitz 
operators, was considered to be a major breakthrough. Consequently, [21] inspired many 
generalizations [2,12,29], including generalizations on the Fock space. But all these papers 
depend on the Möbius transforms on the domain in question. In this regard, Theorem 1.2
is the first to remove any and all involvement of Möbius transforms, since in general there 
aren’t any on Ω.

The rest of the paper is taken up by the proofs of these results. Since this paper is 
quite long, we conclude the Introduction by summarizing the main steps in the proofs.

As it turns out, the key to the whole paper is the proof of Theorem 1.1(i); the other 
results in the paper rely on this part of the work. It takes Sections 2–9 to prove Theo-
rem 1.1(i), which explains why the paper is so long.
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First of all, in Section 2 we precisely define the metric d mentioned above. In addition 
to d, another important quantity for the paper is the “gauge”

ρ(z, w) = |z − w|2 + |〈z − w, (∂̄r)(z)〉|

on Ω. We list a number of well known facts involving r, ρ(z, w) and d in Section 2. 
Section 3 brings in another important ingredient for our analysis, the function

F (z, w) = |r(z)| + |r(w)| + ρ(z, w),

which is a familiar fixture on strongly pseudo-convex domains. The main result of the 
section is Lemma 3.8, which is a version of the Forelli-Rudin estimates for Ω in which d
and F are quantitatively involved.

Sections 4 and 5 are devoted to operators that are discrete sums constructed from 
the Bergman kernel K(z, w) over d-lattices. The main goal for these two sections is 
Corollary 5.3, which provides the norm-continuity of such discrete sums under small 
perturbation of the lattice.

In Section 6, we introduce LOC(A), the class of “localized versions of A” for any 
bounded operator A on L2

a(Ω). Using Lemma 3.8 and Corollary 5.3 mentioned above, 
we show in Section 6 that LOC(A) ⊂ T for every A ∈ B(L2

a(Ω)). Since this is one of 
the two key steps in the proof of Theorem 1.1(i), let us explain a little more. To prove 
LOC(A) ⊂ T , we introduce the collection D0 of operators of the form

∑
z∈Γ

czkz ⊗ kγ(z),

precisely defined in Definition 6.3. The proof of LOC(A) ⊂ T is divided into two parts: 
in Proposition 6.4 we show that D0 ⊂ T and in Proposition 6.6 we show that LOC(A)
is contained in the norm closure of the linear span of D0. Both parts require some work.

Section 7 is devoted to matters related to functions of vanishing oscillation. In partic-
ular, we consider the scalar quantity

diff(f) = sup{|f(z) − f(w)| : z, w ∈ Ω such that d(z, w) ≤ 1},

which is another essential ingredient in the proof of Theorem 1.1(i). We show that every 
operator in EssCom{Tf : f ∈ VObdd} satisfies an “ε-δ” condition involving “diff”.

Section 8 is the other key step in the proof of Theorem 1.1(i), namely the construction 
of approximate partitions of the unity on Ω. There are two competing requirements that 
must be satisfied: (1) The “diff” for the partition functions must be small. (2) There 
is a fixed, finite cap on the overlaps of the sets involved. This construction is based 
on a suitable analogue of “radial-spherical decomposition” for Ω. As it turns out, the 
gauge ρ(z, w) plays the role of “spherical coordinates” in our decomposition, whereas the 
defining function r gives us a convenient “radial coordinate”.
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With all the above preparation, we prove Theorem 1.1(i) in Section 9. The gist of the 
proof is that the “ε-δ” condition mentioned above characterizes the membership X ∈ T . 
The same work also shows that for A ∈ T , if

lim
z→∂Ω

sup
w∈D(z,R)

|〈Akw, kz〉| = 0 (1.2)

for every given 0 < R < ∞, then A is a compact operator. This is a major step in the 
proof of Theorem 1.2. In fact, what remains for the proof of Theorem 1.2 is to show that 
(1.1) implies (1.2).

Then in Section 10, we turn to the proof of part (ii) in Theorem 1.1. With the work in 
Section 9, this is now relatively easy. First of all, Theorem 1.1(i) tells us that EssCom(T )
coincides with the essential center of T . That is, EssCom(T ) ⊂ T . Then we show that 
the membership A ∈ EssCom(T ) implies that the Berezin transform Ã of A is in VObdd. 
Since A − TÃ ∈ T , the membership Ã ∈ VObdd and the work in Section 9 lead to an 
easy proof of the fact that A − TÃ ∈ K, which proves Theorem 1.1(ii).

Finally, in Section 11 we show that (1.1) indeed implies (1.2). For all previous works 
involving this step, this was easy, because one could use Möbius transforms. But in 
our case of a general strongly pseudo-convex domain, this becomes a non-trivial step. 
Material from Sections 2–4 will be needed for this step.

Acknowledgments We would like to thank the referee for the careful reading of the 
manuscript, for the constructive suggestions, and for providing reference [8].

2. A metric on Ω and related facts

First of all, we cite [15,20] as general references for strongly pseudo-convex domains. 
Throughout the paper, Ω denotes a bounded, connected, strongly pseudo-convex domain 
in Cn with smooth boundary. More precisely, we always assume that Ω is bounded and 
connected, and that there is a real-valued C∞ function r defined in an open neighborhood 
of the closure of Ω such that the following three conditions are satisfied:

(1) Ω = {z ∈ Cn : r(z) < 0}.
(2) |(∇r)(z)| �= 0 for every z ∈ ∂Ω.
(3) There is a c > 0 such that

n∑
i,j=1

(∂i∂̄jr)(z)ξiξ̄j ≥ c(|ξ1|2 + · · · + |ξn|2) (2.1)

for all z ∈ ∂Ω and ξ1, . . . , ξn ∈ C.
Such an r is called a defining function for the domain. We choose such a defining function 
r for the domain Ω and fix it for the rest of the paper.

It will be convenient to adopt the following convention: We will consider Cn as a 
column space whenever an n × n matrix acts on it. When there is no matrix involved, 
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we will consider Cn either as a column space or as a row space, whichever is more 
appropriate.

Let A(z) be the n ×n matrix whose entry in the intersection of i-th column and j-row 
is (∂i∂̄jr)(z), i, j = 1, . . . , n. By (2) and (3), there is a θ > 0 such that if w ∈ Ω and 
r(w) > −3θ, then |(∇r)(w)| �= 0 and

〈A(w)ξ, ξ〉 ≥ (c/2)|ξ|2 (2.2)

for all ξ ∈ Cn. Let ψ : R → [0, 1] be a C∞ function such that ψ = 1 on [−θ, ∞) and 
ψ = 0 on (−∞, −2θ]. Write δij for Kronecker’s delta. We then define

bij(z) = ψ(r(z))
(

1
−r(z) (∂i∂̄jr)(z) + 1

r2(z) (∂ir)(z)(∂̄jr)(z)
)

+ (1 − ψ(r(z)))δij (2.3)

for i, j ∈ {1, . . . , n} and z ∈ Ω. Let B(z) be the n × n matrix whose entry in the inter-
section of i-th column and j-row is bij(z), i, j = 1, . . . , n. From (2.2) and the definition 
of ψ we see that the B(z) is invertible for every z ∈ Ω. Thus the local Hermitian form

Hz(ξ, η) = 〈B(z)ξ, η〉, ξ, η ∈ TzΩ = Cn,

generates a non-degenerate metric d on Ω. That is, for z, w ∈ Ω,

d(z, w) = inf
1∫

0

√
〈B(g(t))g′(t), g′(t)〉dt, (2.4)

where the infimum is taken over all C1 maps g : [0, 1] → Ω satisfying the conditions g(0)
= z and g(1) = w. The definition of ψ ensures that for i, j ∈ {1, . . . , n},

bij(z) = ∂i∂̄j log 1
−r(z) whenever − θ ≤ r(z) < 0.

Denote ∂̄ = (∂̄1, . . . , ∂̄n), which will play a prominent role throughout the paper. Then

〈B(z)ξ, ξ〉 = 〈A(z)ξ, ξ〉
−r(z) +

(
|〈ξ, (∂̄r)(z)〉|

−r(z)

)2

whenever − θ ≤ r(z) < 0, (2.5)

ξ ∈ Cn. Formula (2.5) makes it clear that the metric d is asymptotically equivalent to the 
Bergman metric on Ω. There are many papers on this subject, and for a recent reference 
we cite [8, Theorem 1.2].

In the rest of the section, we collect a number of facts about Ω, the defining function 
r and the metric d, which will be cited in later sections. These facts are essentially well 
known for strongly pseudo-convex domains, and their proofs only involve elementary 
techniques. For these reasons the proofs of the lemmas and propositions in this section 
will be omitted.
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Lemma 2.1. There is a c2.1 > 0 such that −r(w) ≥ −c2.12−4d(z,w)r(z) for all z, w ∈ Ω.

Lemma 2.2. (1) There is a 0 < C < ∞ such that

|z − w| ≤ Cd(z, w)24d(z,w)
√
−r(z)

for all z, w ∈ Ω.
(2) There is a constant 0 < C2.2 < ∞ such that

|z − w|2 + |〈z − w, (∂̄r)(z)〉| ≤ C2.2{d(z, w) + d2(z, w)}212d(z,w)(−r(z))

for all z, w ∈ Ω.

Definition 2.3. For η ∈ Cn\{0}, a > 0 and b > 0, we let P(η; a, b) be the collection of 
vectors u + v satisfying the following three conditions:

(1) u, v ∈ Cn with |u| < a and |v| < b.
(2) u ⊥ η.
(3) v ∈ {ξη : ξ ∈ C}.

For z ∈ Ω and a > 0, we define

D(z, a) = {w ∈ Ω : d(z, w) < a}.

As expected, the d-balls are approximated by the “polyballs” in Definition 2.3:

Proposition 2.4. Given any 0 < a < ∞, there are 0 < c ≤ C < ∞ such that

z + P((∂̄r)(z); c
√

−r(z),−cr(z)) ⊂ D(z, a) ⊂ z + P((∂̄r)(z);C
√

−r(z),−Cr(z))

for every z ∈ Ω satisfying the condition −r(z) < θ.

Proposition 2.5. There is a 0 < C2.5 < ∞ such that if 0 < a < 1/2, then

D(z, a) ⊂ z + P((∂̄r)(z);C2.5a
√
−r(z),−C2.5ar(z))

for every z ∈ Ω satisfying the condition −r(z) < θ.

On the domain Ω we define the measure

dμ(z) = dv(z)
(−r(z))n+1 . (2.6)

Proposition 2.6. For each a ∈ (0, ∞), there are 0 < c(a) ≤ C(a) < ∞ such that

c(a) ≤ μ(D(z, a)) ≤ C(a)
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for every z ∈ Ω.

For each 0 ≤ ε < θ, define the surface

Sε = {z ∈ Cn : −r(z) = ε}.

In particular, we have S0 = ∂Ω, the boundary of the domain Ω.

Proposition 2.7. There exist a finite open cover U1, . . . , Um of

H = {z ∈ Cn : 0 ≤ −r(z) ≤ θ/2}

in Cn and a 1 ≤ C < ∞ such that the following holds true: Suppose that 0 < ε ≤ θ/2
and that z, w ∈ Sε ∩ Ui for some i ∈ {1, . . . , m}. Furthermore, suppose that there is an 
R ≥ 1 such that |z − w| ≤ R

√
ε and |〈z − w, (∂̄r)(z)〉| ≤ R2ε. Then d(z, w) ≤ CR2.

For each 0 ≤ ε ≤ θ/2, we write dσε for the natural surface measure on Sε. For every 
triple of 0 ≤ ε ≤ θ/2, ζ ∈ Sε and t > 0, we define

Qε(ζ, t) = {ξ ∈ Sε : |ζ − ξ|2 + |〈ζ − ξ, (∂̄r)(ζ)〉| < t}.

It is well known that Sε, ρ, σε is a space of homogeneous type in the sense of Coifman 
and Weiss [5]. Consequently, we have

Proposition 2.8. There are constants 0 < τ ≤ θ/2 and 0 < c2.8 ≤ C2.8 < ∞ such that

c2.8t
n ≤ σε(Qε(ζ, t)) ≤ C2.8t

n

for all 0 ≤ ε ≤ τ , ζ ∈ Sε and 0 < t ≤ T0, where T0 = sup{|u − v|2 + |〈u − v, (∂̄r)(u)〉| :
u, v ∈ Ω}.

Proposition 2.9. There is a constant 0 < C2.9 < ∞ such that the following holds true: 
Let z ∈ Ω, k ∈ Z and j ∈ Z+. Then the volume of the set

Wz;k,j = {w ∈ Ω : 2k−1(−r(z)) < −r(w) ≤ 2k(−r(z))

and |z − w|2 + |〈z − w, (∂̄r)(z)〉| ≤ 2k+j(−r(z))}

does not exceed C2.92nj(−2kr(z))n+1.

Definition 2.10. (i) Let a be a positive number. A subset Γ of Ω is said to be a-separated 
if D(z, a) ∩D(w, a) = ∅ for all distinct elements z, w in Γ.
(ii) A subset Γ of Ω is simply said to be separated if it is a-separated for some a > 0.
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Lemma 2.11. (1) For any pair of 0 < a < ∞ and 0 < R < ∞, there is a natural number 
N = N(a, R) such that for every a-separated set Γ in Ω and every z ∈ Ω, we have

card{u ∈ Γ : d(u, z) ≤ R} ≤ N.

(2) For any pair of 0 < a ≤ R < ∞, there is a natural number m = m(a, R) such that 
every a-separated set Γ in Ω admits a partition Γ = Γ1 ∪ · · · ∪ Γm with the property that 
for every j ∈ {1, . . . , m}, the set Γj is R-separated.

3. Forelli-Rudin estimates on Ω

We will need the familiar functions

X(z, w) = −r(w) −
n∑

j=1

∂r(w)
∂wj

(zj − wj) −
1
2

n∑
j,k=1

∂2r(w)
∂wj∂wk

(zj − wj)(zk − wk), (3.1)

ρ(z, w) = |z − w|2 + |〈z − w, (∂̄r)(z)〉|

and

F (z, w) = |r(z)| + |r(w)| + ρ(z, w)

associated with Ω and r, which are standard fixtures on strongly pseudo-convex domains.

Lemma 3.1. [18,20] There is a δ > 0 such that

|X(z, w)| ≈ |r(z)| + |r(w)| + |ImX(z, w)| + |z − w|2 ≈ F (z, w)

in the region Rδ = {(z, w) ∈ Ω × Ω : |r(z)| + |r(w)| + |z − w| < δ}.

Below is what one usually refers to as the Forelli-Rudin estimates:

Lemma 3.2. [18,20] Let a ∈ R and κ > −1. Then for z ∈ Ω,

∫
Ω

|r(w)|κ
F (z, w)n+1+κ+a

dv(w) ≈

⎧⎪⎨
⎪⎩

1 if a < 0
log

{
|r(z)|−1} if a = 0

|r(z)|−a if a > 0
.

Recall that for any z ∈ Ω with 0 ≤ −r(z) ≤ θ, we have (∂̄r)(z) �= 0 as a vector in Cn.

Definition 3.3. For z ∈ Ω satisfying the condition 0 < −r(z) < θ, let uz denote the unit 
vector (∂̄r)(z)/|(∂̄r)(z)| in Cn.
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Lemma 3.4. There exist constants δ0 > 0 and 0 < C3.4 < ∞ such that if z ∈ Ω and 
i ∈ Z+ satisfy the condition −2i+1r(z) < δ0, then for every x ∈ [1, 2] we have

d(z + 2ir(z)uz, z + x2ir(z)uz) ≤ C3.4. (3.2)

Moreover, if −r(z) < δ0, then d(z, z + suz) ≤ C3.4 for every s ∈ [r(z), 0].

Proof. Let z ∈ Ω be such that 0 < −r(z) < θ. Then

d

dt
r(z + tuz) = 2Re〈uz, (∂̄r)(z + tuz)〉 = 2|(∂̄r)(z)| + O(|t|).

Thus there is a 0 < δ0 < θ such that if −r(z) < δ0, then

the function t �→ r(z + tuz) is increasing on [−δ0, δ0].

Now let z ∈ Ω and i ∈ Z+ be such that −2i+1r(z) < δ0. Let x ∈ [1, 2]. Then for any 
s ≤ s′ in the interval [x2ir(z), 2ir(z)], the above monotonicity guarantees r(z + suz) ≤
r(z + s′uz), i.e., −r(z + s′uz) ≤ −r(z + suz). For such a pair of s and s′, it follows from 
(2.3), (2.4) and the above monotonicity that

d(z + s′uz, z + suz) ≤ C
|(z + s′uz) − (z + suz)|

−r(z + s′uz)
≤ C

| − 2i+1r(z) − 2i(−r(z))|
−2ir(z) = C,

which proves (3.2). Similarly, if −r(z) < δ0, then for every s ∈ [r(z), 0] we have r(z +
suz) ≤ r(z), i.e., −r(z + suz) ≥ −r(z). Hence the same argument shows that d(z, z +
suz) ≤ C|z − (z + suz)|/(−r(z)) ≤ C. This proves the lemma. �
Lemma 3.5. There exist constants 0 < c3.5 ≤ 1 and 0 < δ1 ≤ δ0, where δ0 was given in 
Lemma 3.4, such that if z ∈ Ω satisfies the condition −r(z) < δ1 and if −δ1 ≤ t ≤ 0, 
then

−r(z + tuz) + r(z) ≥ c3.5|t|.

Proof. Taylor expansion [17] gives us

r(z + tuz) = r(z) + 2tRe〈uz, (∂̄r)(z)〉 + O(t2) = r(z) + 2t|(∂̄r)(z)| + O(t2).

In other words, r(z+ tuz) −r(z) = {2|(∂̄r)(z)| +O(t)}t. From this the desired conclusion 
becomes obvious. �
Proposition 3.6. There is a constant 0 < C3.6 < ∞ such that if z, w ∈ Ω satisfy the 
conditions r(z) = r(w) and |z − w|2 + |〈z − w, (∂̄r)(z)〉| ≤ −2jr(z), j ∈ Z+, then 
d(z, w) ≤ C3.6(1 + j).
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Using Lemma 3.5 and the sets U1, . . . , Um from Proposition 2.7, the proof of Propo-
sition 3.6 is again an elementary argument. We omit the details.

Lemma 3.7. There is a 1 ≤ C3.7 < ∞ such that if z, w ∈ Ω satisfy the conditions 
2k−1(−r(z)) ≤ −r(w) ≤ 2k(−r(z)) and |z − w|2 + |〈z − w, (∂̄r)(z)〉| < 2k+j(−r(z)), 
where k ∈ Z and j ∈ Z+, then d(z, w) < C3.7(1 + |k| + j).

Proof. (1) First, let us consider the case where k ≥ 1. (1.a) Further, suppose that 
2k(−r(z)) ≥ c3.5δ1/4, where c3.5 and δ1 are the constants in Lemma 3.5. Then the 
condition 2k−1(−r(z)) ≤ −r(w) ≤ 2k(−r(z)) implies −r(w) ≥ c3.5δ1/8. If we also have 
−r(z) ≥ c3.5δ1/4, then of course, d(z, w) ≤ C1, regardless of other conditions. Suppose 
that −r(z) < c3.5δ1/4. Let k′ be the largest integer such that −2k′+1r(z) < c3.5δ1. Set

z′ = z + 2k
′+1r(z)uz.

Since −2kr(z) ≥ c3.5δ1/4, we have k′ +1 < k+2, i.e., k′ ≤ k. It follows from Lemma 3.4
that d(z, z′) ≤ C3.4(k′+2) ≤ C3.4(k+2). By Lemma 3.5, we have c3.52k

′+1|r(z)| ≤ −r(z′). 
The choice of k′ ensures that −2k′+2r(z) ≥ c3.5δ1. Hence the above implies

c23.5δ1/2 ≤ −r(z′).

Thus d(z′, w) ≤ C2, and consequently d(z, w) ≤ C3.4(k + 2) +C2 ≤ C3k in this subcase.
(1.b) Suppose that 2k(−r(z)) < c3.5δ1/4. Then −r(w) ≤ 2k(−r(z)) < c3.5δ1/4. By 

Lemma 3.5, we have

c3.5δ1 ≤ −r(z − δ1uz).

Hence −r(z − δ1uz) > −r(w). Since −r(z) ≤ 2k−1(−r(z)) ≤ −r(w), there is an s ∈
[−δ1, 0] such that r(z + suz) = r(w). Also, Lemma 3.5 tells us that

c3.5|s| ≤ −r(z + suz) = −r(w) ≤ −2kr(z). (3.3)

Thus |s| ≤ −c−1
3.52kr(z). Now the condition 2k(−r(z)) < c3.5δ1/4 implies −c−1

3.52kr(z) ≤
δ1/4. Therefore it follows from Lemma 3.4 and the inequality |s| ≤ −c−1

3.52kr(z) that

d(z, z + suz) ≤ C3.4{1 + C3 log(2k/c3.5)} ≤ C4k.

Thus what remains for this subcase is to show that

d(z + suz, w) ≤ C5(1 + j).

For convenience, let us denote ζ = z + suz. Since r(ζ) = r(w), to prove the above 
inequality, by Proposition 3.6, it suffices to show that
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|ζ − w|2 + |〈ζ − w, (∂̄r)(ζ)〉| ≤ C62j(−r(ζ)). (3.4)

By (3.3), |ζ − z| = |s| ≤ c−1
3.52k(−r(z)) ≤ (2/c3.5)(−r(ζ)). Since Ω is bounded, we have 

|ζ − z|2 ≤ C7|ζ − z|. Therefore

|ζ − w|2 ≤ 2|ζ − z|2 + 2|z − w|2 ≤ C8(−r(ζ)) + 2k+j+1(−r(z)) ≤ C92j(−r(ζ)).

We have |〈z − w, (∂̄r)(z)〉| < 2k+j(−r(z)) by assumption. Also,

|〈ζ − w, (∂̄r)(ζ)〉 − 〈z − w, (∂̄r)(z)〉| ≤ C10|ζ − z| ≤ C11(−r(ζ)).

Since 2k−1(−r(z)) ≤ −r(ζ), these inequalities prove (3.4). Thus the case k ≥ 1 is proved.
(2) Now suppose that k ≤ 0. Note that the condition 2k−1(−r(z)) ≤ −r(w) ≤

2k(−r(z)) implies that 2−k(−r(w)) ≤ −r(z) ≤ 2−k+1(−r(w)). Also, the condition 
|z − w|2 + |〈z − w, (∂̄r)(z)〉| < 2k+j(−r(z)) can be rewritten as

|z − w|2 + |〈z − w, (∂̄r)(z)〉| < 21+j(−r(w)).

Since |〈z − w, (∂̄r)(z)〉 − 〈z − w, (∂̄r)(w)〉| ≤ C12|z − w|2, we now have

|z − w|2 + |〈z − w, (∂̄r)(w)〉| < C132j(−r(w)).

Thus case (2) follows from case (1) by reversing the roles of z and w. �
We need the following “vanishing” version of Lemma 3.2.

Lemma 3.8. Given any a > 0 and κ > −1, there are 0 < C < ∞ and s > 0 such that

∫
Ω\D(z,R)

|r(w)|κ|r(z)|a
F (z, w)n+1+κ+a

dv(w) ≤ C2−sR

for all z ∈ Ω and R ≥ 3C3.7, where C3.7 is the constant in Lemma 3.7.

Proof. For z ∈ Ω and k ∈ Z we define the sets

Zz;k,0 = {w ∈ Ω : 2k−1(−r(z)) ≤ −r(w) < 2k(−r(z))

and |z − w|2 + |〈z − w, (∂̄r)(z)〉| < 2k(−r(z))} and

Zz;k,j = {w ∈ Ω : 2k−1(−r(z)) ≤ −r(w) < 2k(−r(z))

and 2k+j−1(−r(z)) ≤ |z − w|2 + |〈z − w, (∂̄r)(z)〉| < 2k+j(−r(z))}, j ≥ 1.

By the definition of F (z, w), for all k ≥ 0 and j ≥ 0, if w ∈ Zz;k,j , then
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|r(w)|κ|r(z)|a
F (z, w)n+1+κ+a

≤ C1
(2k|r(z)|)κ|r(z)|a

(2k+j |r(z)|)n+1+κ+a
= C1

2(n+1+a)k2(n+1+κ+a)j |r(z)|n+1 .

In the case k < 0, j ≥ 0 and w ∈ Zz;k,j , we have

|r(w)|κ|r(z)|a
F (z, w)n+1+κ+a

≤ C2(2k|r(z)|)κ|r(z)|a
(|r(z)| + 2k+j |r(z)|)n+1+κ+a

= C22κk

(1 + 2k+j)n+1+κ+a|r(z)|n+1 .

By Proposition 2.9, v(Zz;k,j) ≤ C32nj(−2kr(z))n+1. Thus if k ≥ 0 and j ≥ 0, then

∫
Zz;k,j

|r(w)|κ|r(z)|a
F (z, w)n+1+κ+a

dv(w) ≤ C1C32nj(−2kr(z))n+1

2(n+1+a)k2(n+1+κ+a)j |r(z)|n+1 = C4

2ak2(1+κ+a)j . (3.5)

Similarly, in the case k < 0 and j ≥ 0, we have

∫
Zz;k,j

|r(w)|κ|r(z)|a
F (z, w)n+1+κ+a

dv(w) ≤ C22κkC32nj(−2kr(z))n+1

(1 + 2k+j)n+1+κ+a|r(z)|n+1 = C52n(k+j)2(1+κ)k

(1 + 2k+j)n+1+κ+a

(3.6)

and 2(1+κ)k = 2(1+κ)k/2 · 2(1+κ)(k+j)/2 · 2−(1+κ)j/2. Let R ≥ 3C3.7. By Lemma 3.7, 
the condition Zz;k,j\D(z, R) �= ∅ implies either |k| ≥ (2C3.7)−1R or j ≥ (2C3.7)−1R. 
Therefore

∫
Ω\D(z,R)

|r(w)|κ|r(z)|a
F (z, w)n+1+κ+a

dv(w) ≤
∑

(k,j)∈E(R)

∫
Zz;k,j

|r(w)|κ|r(z)|a
F (z, w)n+1+κ+a

dv(w),

where E(R) = {(k, j) ∈ Z × Z+: either |k| ≥ (2C3.7)−1R or j ≥ (2C3.7)−1R}. Using 
(3.5) and (3.6), it is now elementary to verify that the lemma holds for every 0 < s <
(2C3.7)−1 min{a, (1 + κ)/2}. �
Lemma 3.9. Given any a > 0 and κ > −1, there is a 0 < C < ∞ such that

∫
Ω

d(z, w) |r(w)|κ|r(z)|a
F (z, w)n+1+κ+a

dv(w) ≤ C

for every z ∈ Ω.

Proof. Given any z ∈ Ω, define E0 = D(z, 3C3.7) and

Ei = D(z, (3 + i)C3.7)\D(z, (3 + i− 1)C3.7)

for i ≥ 1. For each i ∈ Z+, if w ∈ Ei, then d(z, w) < (3 + i)C3.7. Hence
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∫
Ω

d(z, w) |r(w)|κ|r(z)|a
F (z, w)n+1+κ+a

dv(w) ≤
∞∑
i=0

(3 + i)C3.7

∫
Ei

|r(w)|κ|r(z)|a
F (z, w)n+1+κ+a

dv(w).

We now apply Lemma 3.2 to the term where i = 0 and Lemma 3.8 to the terms where 
i ≥ 1. The result of this is

∫
Ω

d(z, w) |r(w)|κ|r(z)|a
F (z, w)n+1+κ+a

dv(w) ≤ 3C3.7C0 +
∞∑
i=1

(3 + i)C3.7C2−s(3+i−1)C3.7 .

Since Lemma 3.8 guarantees that s > 0, the right-hand side is finite. �
We end the section with another elementary fact about the function F (z, w) that is 

essentially well known:

Lemma 3.10. There exist constants 0 < a0 < 1/2 and 0 < C3.10 < ∞ such that for any 
z, z′, w, w′ ∈ Ω satisfying the conditions d(z, z′) < a0 and d(w, w′) < a0, we have

F (z, w) ≤ C3.10F (z′, w′).

4. Estimates related to the Bergman kernel

Let K(z, w) be the Bergman kernel for Ω. By definition, it has the symmetry K(w, z)
= K(z, w). The following well-known result of Fefferman gives us a good handle on K:

Theorem 4.1. [10, Theorem 2] The Bergman kernel has the form

K(z, w) = C|(∇r)(w)|2detL(w)X−(n+1)(z, w) + K̃(z, w)

on Rδ = {(z, w) ∈ Ω × Ω : |r(z)| + |r(w)| + |z − w| < δ} for some δ > 0, where L is the 
Levi form for the domain Ω, X is given by (3.1), and K̃ is an admissible kernel of weight 
≥ −n − (1/2). That is, there is a constant C ′ such that |K̃(z, w)| ≤ C ′F (z, w)−n−(1/2).

For any δ > 0, the Bergman kernel K is known to be bounded on (Ω × Ω)\Rδ [14]. 
One obvious implication of Theorem 4.1 is that

c|r(z)|−n−1 ≤ |K(z, z)| ≤ C|r(z)|−n−1, z ∈ Ω. (4.1)

For each z ∈ Ω, let us denote Kz(w) = K(w, z). Then it has the reproducing property

h(z) = 〈h,Kz〉

for h ∈ L2
a(Ω). We write kz for the normalized reproducing kernel, i.e., kz = Kz/‖Kz‖.
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Lemma 4.2. Given any 0 < η < 1/2 and a > 0, there are constants s > 0 and 0 < C4.2 <

∞ such that

sup
z∈Ω

|r(z)|−(n/2)−η
∑

w∈Γ\D(z,R)

|r(w)|(n/2)+η

(
|r(z)|1/2|r(w)|1/2

F (z, w)

)n+1

≤ C4.22−sR

for every a-separated set Γ in Ω and every R ≥ 3C3.7 + 1.

Proof. Let 0 < η < 1/2 and a > 0 be given. Define α = (1/3) min{a0, a}, where a0 is 
the constants in Lemma 3.10. Suppose that Γ is an a-separated set in Ω. Then

D(w,α) ∩D(w′, α) = ∅ for all w �= w′ in Γ.

Applying Lemmas 2.1 and 3.10, for ζ ∈ D(w, α) we have

|r(w)|n+(1/2)+η|r(z)|(n+1)/2

F (z, w)n+1 ≤ C
|r(ζ)|n+(1/2)+η|r(z)|(n+1)/2

F (z, ζ)n+1 .

Thus for z ∈ Ω we have

∑
w∈Γ\D(z,R)

|r(w)|(n/2)+η

(
|r(z)|1/2|r(w)|1/2

F (z, w)

)n+1

≤
∑

w∈Γ\D(z,R)

C

μ(D(w,α))

∫
D(w,α)

|r(ζ)|n+(1/2)+η|r(z)|(n+1)/2

F (z, ζ)n+1 dμ(ζ)

≤ C

c(α)

∫
Ω\D(z,R−α)

|r(ζ)|−(1/2)+η|r(z)|(n+1)/2

F (z, ζ)n+1 dv(ζ),

where the second ≤ is justified by Proposition 2.6. Applying Lemma 3.8 to the last 
integral, the desired conclusion follows. �
Lemma 4.3. There is a constant 0 < C4.3 < ∞ such that

|f(z)| ≤ C4.3|r(z)|−(n+1)/2‖fχD(z,1)‖

for all f ∈ L2
a(Ω) and z ∈ Ω, where ‖fχD(z,1)‖ is the norm of fχD(z,1) in L2(Ω).

Proof. It is easy to see that the conclusion is trivial if −r(z) ≥ θ. Suppose that −r(z) < θ. 
Then Proposition 2.4 provides a c > 0 such that

D(z, 1) ⊃ z + P((∂̄r)(z); c|r(z)|1/2, c|r(z)|)

for every such z. Averaging on the polyball, for f ∈ L2
a(Ω) we have
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|f(z)| ≤ 1
v(P((∂̄r)(z); c|r(z)|1/2, c|r(z)|))

∫
z+P((∂̄r)(z);c|r(z)|1/2,c|r(z)|)

|f |dv.

Applying the Cauchy-Schwarz inequality on the right, the desired conclusion follows. �
Lemma 4.4. Given any complex dimension m ∈ N, there is a constant 0 < C4.4(m) < ∞
such that the following bound holds: Let 0 < ρ < ∞ and define B(ρ) = {z ∈ Cm : |z| <
ρ}. Then for every u ∈ Cm with |u| < ρ/2 and every analytic function f on B(ρ), we 
have

|f(u) − f(0)| ≤ |u|
ρ

· C4.4(m)
vm(B(ρ))

∫
B(ρ)

|f |dvm.

Proof. By standard integration formulas on the ball, there is a C = C(m) such that

|(∂jg)(0)| ≤ C

vm(B(1))

∫
B(1)

|g|dvm (4.2)

for every analytic function g on B(1) = {z ∈ Cm : |z| < 1} and every j ∈ {1, . . . , m}. 
Suppose that u = (u1, . . . , um). If f is analytic on B(ρ), then

f(u) − f(0) =
1∫

0

d

dt
f(tu)dt =

1∫
0

m∑
j=1

(∂jf)(tu)ujdt.

Since |u| < ρ/2, for every t ∈ [0, 1] we have tu + B(ρ/2) ⊂ B(ρ). From (4.2) and the 
scaling properties of ∂j and dvm we deduce

|(∂jf)(tu)| ≤ 2
ρ
· C

vm(B(ρ/2))

∫
tu+B(ρ/2)

|f |dvm.

Since vm(B(ρ/2)) = 2−2mvm(B(ρ)), we see that the constant C4.4(m) = m22m+1C will 
do for the lemma. �
Lemma 4.5. There exist constants 0 < C4.5 < ∞ and 0 < c4.5 < 1 such that

|f(w) − f(z)| ≤ C4.5d(z, w)|r(z)|−(n+1)/2‖fχD(z,1)‖

for every pair of z, w ∈ Ω satisfying the condition d(z, w) < c4.5 and every f ∈ L2
a(Ω).

Proof. By Lemma 2.1, there is a 0 < θ1 < θ such that if −r(z) ≥ θ and d(z, w) ≤ 1, 
then −r(w) ≥ θ1. Since {ζ ∈ Ω : −r(ζ) ≥ θ1} is a compact subset of Ω, we see that the 
case −r(z) ≥ θ is trivial.
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Suppose that −r(z) < θ. Then Proposition 2.4 provides a c > 0 such that

D(z, 1) ⊃ z + P((∂̄r)(z); c|r(z)|1/2, c|r(z)|) (4.3)

for every such z. By Proposition 2.5, there is an 0 < α < 1/2 such that

D(z, α) ⊂ z + P((∂̄r)(z); (c/2)|r(z)|1/2, (c/2)|r(z)|) (4.4)

for every such z. Set c4.5 = α. Let w ∈ Ω be such that d(z, w) < α. Then we can write 
w = z + x + y, where x ⊥ (∂̄r)(z) and y ∈ {η(∂̄r)(z) : η ∈ C}. By (4.4), we have 
|x| < (c/2)|r(z)|1/2 and |y| < (c/2)|r(z)|.

Let f ∈ L2
a(Ω) be given. Define F (ξ) = f(z+ξ+y) for ξ ⊥ (∂̄r)(z) with |ξ| < c|r(z)|1/2. 

Applying Lemma 4.4 to the case where ρ = c|r(z)|1/2, we have

|f(w) − f(z + y)| = |F (x) − F (0)| ≤ |x|
c|r(z)|1/2 · C4.4(n− 1)

vn−1(B)

∫
B

|F |dvn−1, (4.5)

where B = {ξ ∈ Cn : 〈ξ, (∂̄r)(z)〉 = 0 and |ξ| < c|r(z)|1/2}. On the other hand, for every 
ξ ∈ B we have

|F (ξ)| = |f(z + ξ + y)| ≤ 1
A(D((c/2)|r(z)|))

∫
D((c/2)|r(z)|)

|f(z + ξ + y + ηuz)|dA(η),

(4.6)

where uz = (∂̄r)(z)/|(∂̄r)(z)| and D((c/2)|r(z)|) = {η ∈ C : |η| < (c/2)|r(z)|}. Note 
that vn−1(B) = cn−1(c|r(z)|1/2)2n−2 = a1|r(z)|n−1. Combining (4.5), (4.6) and (4.3), we 
obtain

|f(w) − f(z + y)| ≤ |x|
|r(z)|1/2 · C1

|r(z)|n+1

∫
D(z,1)

|f |dv.

Applying the Cauchy-Schwarz inequality and Proposition 2.6, we have

|f(w) − f(z + y)| ≤ |x|
|r(z)|1/2 · C1

√
v(D(z, 1))

|r(z)|n+1 ‖fχD(z,1)‖ ≤ |x|
|r(z)|1/2 ·

C2‖fχD(z,1)‖
|r(z)|(n+1)/2 .

Since d(z, w) < α and α < 1/2, Lemma 2.2(1) gives us that |x|/|r(z)|1/2 ≤ C3d(z, w). 
Hence

|f(w) − f(z + y)| ≤ C4d(z, w)|r(z)|−(n+1)/2‖fχD(z,1)‖. (4.7)

Next we show that
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|f(z + y) − f(z)| ≤ C5d(z, w)|r(z)|−(n+1)/2‖fχD(z,1)‖, (4.8)

which together with (4.7) will complete the proof of the lemma.
To prove (4.8), we write y = βuz, where β ∈ C. Define G(η) = f(z + ηuz) for η ∈ C

with |η| < c|r(z)|. Now, applying Lemma 4.4 to the case where ρ = c|r(z)|, we have

|f(z + y) − f(z)| = |G(β) −G(0)| ≤ |β|
c|r(z)| ·

C4.4(1)
A(D(c|r(z)|))

∫
D(c|r(z)|)

|G|dA, (4.9)

where D(c|r(z)|) = {η ∈ C : |η| < c|r(z)|}. For each η ∈ D(c|r(z)|) we have

|G(η)| = |f(z + ηuz)| ≤
1

vn−1(B)

∫
B

|f(z + ξ + ηuz)|dvn−1(ξ), (4.10)

where B = {ξ ∈ Cn : 〈ξ, (∂̄r)(z)〉 = 0 and |ξ| < c|r(z)|1/2}. Note that |β| = |y|. Thus 
(4.9), (4.10) and (4.3) together give us

|f(z + y) − f(z)| ≤ |y|
|r(z)| ·

C6

|r(z)|n+1

∫
D(z,1)

|f |dv.

Since d(z, w) < α and α < 1/2, Lemma 2.2 implies that |y|/|r(z)| ≤ C7d(z, w). Applying 
the Cauchy-Schwarz inequality and Proposition 2.6 on the right-hand side, we obtain 
(4.8). This completes the proof. �
Proposition 4.6. There is a constant C4.6 such that if z, w ∈ Ω satisfies the condition 
d(z, w) < c4.5, where c4.5 was given in Lemma 4.5, then

|〈f, kz − kw〉| ≤ C4.6d(z, w)‖fχD(z,1)‖

for every f ∈ L2
a(Ω). Consequently, if d(z, w) < c4.5, then ‖kz − kw‖ ≤ C4.6d(z, w).

Proof. Write Kz(ζ) = K(ζ, z), the unnormalized reproducing kernel. Note that 
Lemma 4.5 implies that ‖Kz −Kw‖ ≤ C4.5d(z, w)|r(z)|−(n+1)/2 if d(z, w) < c4.5. There-
fore

|‖Kz‖ − ‖Kw‖| ≤ C4.5d(z, w)|r(z)|−(n+1)/2 if d(z, w) < c4.5.

Combining this with (4.1), the condition d(z, w) < c4.5, and Lemma 2.1, we obtain

|‖Kz‖−1 − ‖Kw‖−1| = |‖Kz‖ − ‖Kw‖|
‖Kz‖‖Kw‖

≤ C1d(z, w)|r(z)|(n+1)/2 (4.11)

when d(z, w) < c4.5. Let f ∈ L2
a(Ω). Then
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〈f, kz − kw〉 = f(z)‖Kz‖−1 − f(w)‖Kw‖−1

= (f(z) − f(w))‖Kw‖−1 + f(z)(‖Kz‖−1 − ‖Kw‖−1). (4.12)

Applying Lemma 4.5, we have

|f(z) − f(w)|‖Kw‖−1 ≤ C4.5d(z, w)|r(z)|−(n+1)/2‖fχD(z,1)‖‖Kw‖−1

≤ C2d(z, w)‖fχD(z,1)‖, (4.13)

where the second ≤ follows from (4.1), the condition d(z, w) < c4.5, and Lemma 2.1. On 
the other hand, Lemma 4.3 tells us that

|f(z)| ≤ C4.3|r(z)|−(n+1)/2‖fχD(z,1)‖.

Combining this with (4.11), we obtain

|f(z)||‖Kz‖−1 − ‖Kw‖−1| ≤ C1C4.3d(z, w)‖fχD(z,1)‖. (4.14)

Obviously, the lemma follows from (4.12), (4.13) and (4.14). �
Lemma 4.7. There is a c4.7 > 0 such that for any pair of z, w ∈ Ω, if d(z, w) ≤ c4.7, then 
|〈kz, kw〉| ≥ 1/2.

Proof. We have 1 −Re〈kz, kw〉 = 2−1‖kz − kw‖2. By Proposition 4.6, there is a c4.7 > 0
such that for any pair of z, w ∈ Ω, if d(z, w) ≤ c4.7, then ‖kz − kw‖ ≤ 1. Thus if 
d(z, w) ≤ c4.7, then 1 − Re〈kz, kw〉 ≤ 1/2, which implies |〈kz, kw〉| ≥ 1/2. �
5. Discrete sums

We now consider operators constructed from the Bergman kernel.

Lemma 5.1. There is a constant 0 < C5.1 < ∞ such that the following estimate holds: 
Let Γ be any 1-separated set in Ω. Suppose that {ez : z ∈ Γ} is an orthonormal set and 
{cz : z ∈ Γ} is a bounded set of complex coefficients. Then

∥∥∥∥∑
z∈Γ

czkz ⊗ ez

∥∥∥∥ ≤ C5.1 sup
z∈Γ

|cz|.

Proof. Given such Γ, {ez : z ∈ Γ} and {cz : z ∈ Γ}, define the operator

A =
∑
z∈Γ

czkz ⊗ ez.

Then for every f ∈ L2
a(Ω) we have



Y. Wang, J. Xia / Journal of Functional Analysis 280 (2021) 108775 21
A∗f =
∑
z∈Γ

c̄z‖Kz‖−1f(z)ez.

From Lemma 4.3 and (4.1) we obtain

‖A∗f‖2 ≤ C2
4.3

∑
z∈Γ

|cz|2‖Kz‖−2|r(z)|−n−1‖fχD(z,1)‖2 ≤ (C2
4.3/c) sup

z∈Γ
|cz|2‖f‖2.

Since f ∈ L2
a(Ω) is arbitrary, this means that ‖A‖ = ‖A∗‖ ≤ c−1/2C4.3 supz∈Γ |cz|. �

Lemma 5.2. Let Γ be a 1-separated set in Ω. Suppose that for every z ∈ Γ, we have a 
ζ(z) ∈ Ω with d(z, ζ(z)) < c4.5. Then for every orthonormal set {ez : z ∈ Γ} and for 
every bounded set of complex coefficients {cz : z ∈ Γ}, we have

∥∥∥∥∑
z∈Γ

czkz ⊗ ez −
∑
z∈Γ

czkζ(z) ⊗ ez

∥∥∥∥ ≤ C4.6 sup
z∈Γ

|cz|d(z, ζ(z)).

Proof. Write

D =
∑
z∈Γ

czkz ⊗ ez −
∑
z∈Γ

czkζ(z) ⊗ ez =
∑
z∈Γ

cz(kz − kζ(z)) ⊗ ez.

For any f ∈ L2
a(Ω), we have

D∗f =
∑
z∈Γ

c̄z〈f, kz − kζ(z)〉ez.

Applying Proposition 4.6, if d(z, ζ(z)) < c4.5 for every z ∈ Γ, then

‖D∗f‖2 =
∑
z∈Γ

|c̄z〈f, kz − kζ(z)〉|2 ≤ C2
4.6

∑
z∈Γ

|cz|2d2(z, ζ(z))‖fχD(z,1)‖2

≤ C2
4.6 sup

z∈Γ
|cz|2d2(z, ζ(z))‖f‖2.

Since f ∈ L2
a(Ω) is arbitrary, this implies ‖D‖ = ‖D∗‖ ≤ C4.6 supz∈Γ |cz|d(z, ζ(z)). �

Corollary 5.3. Given any a > 0, 0 ≤ C < ∞ and ε > 0, there is a δ > 0 such that the 
following estimate holds: Let Γ be an a-separated set in Ω. Suppose that ϕ, ϕ′, ψ and ψ′

are maps from Γ into Ω. If the inequalities

d(z, ϕ(z)) ≤ C, d(z, ψ(z)) ≤ C, d(ϕ(z), ϕ′(z)) ≤ δ, d(ψ(z), ψ′(z)) ≤ δ

hold for every z ∈ Γ, then for any bounded set of coefficients {cz : z ∈ Γ} we have
∥∥∥∥∑ czkϕ(z) ⊗ kψ(z) −

∑
czkϕ′(z) ⊗ kψ′(z)

∥∥∥∥ ≤ ε sup
z∈Γ

|cz|.

z∈Γ z∈Γ
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Proof. For z, w ∈ Γ, if d(z, w) > 2C + 2, then d(ϕ(z), ϕ(w)) > 2 and d(ψ(z), ψ(w)) > 2. 
By Lemma 2.11, there is an N ∈ N determined by a and C such that Γ admits a partition

Γ = Γ1 ∪ · · · ∪ ΓN

with the property that for each j ∈ {1, . . . , N}, the sets {ϕ(z) : z ∈ Γj} and {ψ(z) : z ∈
Γj} are 1-separated. Pick an orthonormal set {ez : z ∈ Γ}. Fixing a j ∈ {1, . . . , N} for 
the moment, we have

∑
z∈Γj

czkϕ(z) ⊗ kψ(z) −
∑
z∈Γj

czkϕ′(z) ⊗ kψ′(z) = AB∗ −A′B′∗,

where

A =
∑
z∈Γj

czkϕ(z) ⊗ ez, B =
∑
z∈Γj

kψ(z) ⊗ ez,

A′ =
∑
z∈Γj

czkϕ′(z) ⊗ ez, B′ =
∑
z∈Γj

kψ′(z) ⊗ ez.

We have

AB∗ −A′B′∗ = (A−A′)B∗ + A′(B∗ −B′∗).

Since {ϕ(z) : z ∈ Γj} and {ψ(z) : z ∈ Γj} are 1-separated, if we apply Lemma 5.2 to 
A −A′ and B −B′ and Lemma 5.1 to B and A′, we see that

‖AB∗ −A′B′∗‖ ≤ ε

N
sup
z∈Γ

|cz|

when δ is sufficiently small. This completes the proof. �
6. Operators in the Toeplitz algebra T

Define the measure

dμ̃(w) = K(w,w)dv(w)

on Ω. Compared with the measure dμ defined by (2.6), (4.1) tells us that cμ(E) ≤ μ̃(E) ≤
Cμ(E) for each Borel set E. Given an f ∈ L∞(Ω), we have the integral representation

Tf =
∫

f(w)kw ⊗ kwdμ̃(w) (6.1)

for the Toeplitz operator Tf . This formula is obtained by direct verification. Starting from 
this representation, we will show that the Toeplitz algebra T contains certain classes of 
operators. The two main steps in the section are Propositions 6.4 and 6.6 below.



Y. Wang, J. Xia / Journal of Functional Analysis 280 (2021) 108775 23
Proposition 6.1. Suppose that Γ is a separated set in Ω and that {cz : z ∈ Γ} is a bounded 
set of complex coefficients. Then the operator

∑
z∈Γ

czkz ⊗ kz

belongs to the closure of {Tf : f ∈ L∞(Ω)} with respect to the operator norm.

Proof. By Lemma 2.11, we may assume that Γ is 1-separated. Let ε > 0 be given. Since 
supz∈Γ |cz| < ∞, it follows from Corollary 5.3 that there is a δ > 0 such that

∥∥∥∥∑
z∈Γ

czkz ⊗ kz −
∑
z∈Γ

czkζ(z) ⊗ kζ(z)

∥∥∥∥ ≤ ε (6.2)

if ζ(z) ∈ D(z, δ) for every z ∈ Γ. We may, of course, assume that δ < 1, consequently 
D(z, δ) ∩D(w, δ) = ∅ for all z �= w in Γ.

Define the function

ϕ =
∑
z∈Γ

cz
μ̃(D(z, δ))χD(z,δ) (6.3)

on Ω. By (4.1) and Proposition 2.6, there is an β > 0 such that μ̃(D(z, δ)) ≥ β for every 
z ∈ Ω. Hence ϕ ∈ L∞(Ω). We will show that

∥∥∥∥∑
z∈Γ

czkz ⊗ kz − Tϕ

∥∥∥∥ ≤ ε. (6.4)

To prove this, we define the measure dνz = {μ̃(D(z, δ))}−1χD(z,δ)dμ̃ for every z ∈ Γ. 
Then it follows from (6.1) and (6.3) that

Tϕ =
∑
z∈Γ

cz

∫
kw ⊗ kwdνz(w).

Note that each dνz is a probability measure concentrated on D(z, δ). Hence dνz is in the 
weak-* closure of convex combinations of unit point masses on D(z, δ). Therefore Tϕ is 
the limit in weak operator topology of operators of the form

T = 1
k

k∑
j=1

∑
z∈Γ

czkζ(z;j) ⊗ kζ(z;j),

where k ∈ N and ζ(z; j) ∈ D(z, δ) for all z ∈ Γ and j ∈ {1, . . . , k}. By (6.2),

∥∥∥∥∑ czkz ⊗ kz − T

∥∥∥∥ ≤ 1
k

k∑∥∥∥∥∑ czkz ⊗ kz −
∑

czkζ(z;j) ⊗ kζ(z;j)

∥∥∥∥ ≤ ε. (6.5)

z∈Γ j=1 z∈Γ z∈Γ
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Since Tϕ is the weak limit of such T ’s, it follows that
∑
z∈Γ

czkz ⊗ kz − Tϕ is the weak limit of operators of the form
∑
z∈Γ

czkz ⊗ kz − T.

Therefore (6.4) follows from (6.5). Since ε > 0 is arbitrary, this completes the proof. �
Next we remind the reader of a well-known fact:

Proposition 6.2. [22, Theorem 4.1.25] The Toeplitz algebra T contains K, the collection 
of compact operators on the Bergman space L2

a(Ω).

Definition 6.3. (a) Let D0 denote the collection of operators of the form
∑
z∈Γ

czkz ⊗ kγ(z),

where Γ is any separated set in Ω, {cz : z ∈ Γ} is any bounded set of complex coefficients, 
and γ : Γ → Ω is any map for which there is a 0 ≤ C < ∞ such that

d(z, γ(z)) ≤ C

for every z ∈ Γ.
(b) Let D denote the closure of the linear span of D0 with respect to the operator norm.
(c) For any A ∈ B(L2

a(Ω)), D0(A) denotes the collection of operators of the form
∑
z∈Γ

cz〈Akψ(z), kϕ(z)〉kϕ(z) ⊗ kψ(z),

where Γ is a separated set in Ω, {cz : z ∈ Γ} is a bounded set of coefficients, and 
ϕ, ψ : Γ → Ω are maps for which there is a 0 ≤ C < ∞ such that d(z, ϕ(z)) ≤ C and 
d(z, ψ(z)) ≤ C for every z ∈ Γ.
(d) For any A ∈ B(L2

a(Ω)), D(A) denotes the closure of the linear span of D0(A) with 
respect to the operator norm.

Proposition 6.4. We have the inclusion D0 ⊂ T . Consequently, D ⊂ T .

Proof. Let Γ, {cz : z ∈ Γ}, γ and C be as described in Definition 6.3(a), and consider

T =
∑
z∈Γ

czkz ⊗ kγ(z).

To show that T ∈ T , by Lemma 2.11, we may assume that

d(z, w) > 4C + 2 for all z �= w in Γ. (6.6)
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For each z ∈ Γ, since d(z, γ(z)) ≤ C, by (2.4) there is a C1 map gz : [0, 1] → Ω such that 
gz(0) = z, gz(1) = γ(z), and such that the number

�z =
1∫

0

√
〈B(gz(t))g′z(t), g′z(t)〉dt

satisfies the condition �z ≤ 2C. Pick a k ∈ N such that 2C/k < min{a0, c4.7}, where a0
and c4.7 are the constants in Lemmas 3.10 and 4.7 respectively. For each z ∈ Γ, there 
are

0 = x(z, 0) ≤ x(z, 1) ≤ · · · ≤ x(z, k − 1) ≤ x(z, k) = 1

such that

x(z,j)∫
0

√
〈B(gz(t))g′z(t), g′z(t)〉dt = j

k
�z

for j = 0, 1, . . . , k. For each pair of z ∈ Γ and j ∈ {0, 1, . . . , k}, we now define

γj(z) = gz(x(z, j)).

We have γ0(z) = z and γk(z) = γ(z), z ∈ Γ. Since �z ≤ 2C, for all 0 ≤ j < k and 
z ∈ Γ,

d(γj(z), γj+1(z)) ≤
x(z,j+1)∫
x(z,j)

√
〈B(gz(t))g′z(t), g′z(t)〉dt = �z/k < min{a0, c4.7}.

By Lemma 4.7, this ensures that

|〈kγj(z), kγj+1(z)〉| ≥ 1/2 (6.7)

for all 0 ≤ j < k and z ∈ Γ.
To prove that T ∈ T , it suffices to show that for every j ∈ {0, 1, . . . , k} and every 

subset E of Γ, we have
∑
z∈E

czkz ⊗ kγj(z) ∈ T . (6.8)

We will accomplish this by an induction on j. Since γ0(z) = z for every z ∈ Γ, the 
case j = 0 follows from Proposition 6.1. Suppose now that 0 ≤ j < k and that (6.8)
holds for this j and for every E ⊂ Γ. To simplify notation, for every S ⊂ Γ, let us 
denote
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XS =
∑
z∈S

czkz ⊗ kγj(z) and YS =
∑
z∈S

1
〈kγj+1(z), kγj(z)〉

kγj+1(z) ⊗ kγj+1(z).

By the induction hypothesis, we have XS ∈ T . By (6.7) and Proposition 6.1, we also 
have YS ∈ T . Therefore XSYS ∈ T for every S ⊂ Γ. To complete the induction, it 
suffices to show that given E ⊂ Γ and ε > 0, there is a finite partition E = S1 ∪ · · · ∪SN

such that ∥∥∥∥XS1YS1 + · · · + XSN
YSN

−
∑
z∈E

czkz ⊗ kγj+1(z)

∥∥∥∥ ≤ ε. (6.9)

To see how this is done, first note that for any partition E = S1 ∪ · · · ∪ SN ,

XS1YS1 + · · · + XSN
YSN

−
∑
z∈E

czkz ⊗ kγj+1(z)

=
N∑

ν=1

∑
z,w∈Sν
z �=w

cz
〈kγj+1(w), kγj(z)〉
〈kγj+1(w), kγj(w)〉

kz ⊗ kγj+1(w) = UWV ∗,

where

U =
∑
z∈E

czkz ⊗ ez, V =
∑
z∈E

kγj+1(z) ⊗ ez and

W =
N∑

ν=1

∑
z,w∈Sν
z �=w

〈kγj+1(w), kγj(z)〉
〈kγj+1(w), kγj(w)〉

ez ⊗ ew,

where {ez : z ∈ E} is an orthonormal set.
By (6.6), {γj+1(z) : z ∈ E} is a 1-separated set. Thus Lemma 5.1 provides 

the bound ‖V ‖ ≤ C5.1. Similarly, ‖U‖ ≤ C5.1c, where c = supz∈Γ |cz|. Conse-
quently ∥∥∥∥XS1YS1 + · · · + XSN

YSN
−

∑
z∈E

czkz ⊗ kγj+1(z)

∥∥∥∥ ≤ C2
5.1c‖W‖. (6.10)

Thus we need to find a partition E = S1 ∪ · · · ∪ SN such that ‖W‖ is small. To do 
this, consider an R > 3C3.7 + 1, whose value will be determined below. By Lemma 2.11, 
there is a partition E = S1 ∪ · · · ∪ SN such that for every ν ∈ {1, . . . , N}, the con-
ditions z, w ∈ Sν and z �= w imply d(z, w) > R. With S1, . . . , SN so chosen, we 
define

F =
N⋃

ν=1
{(z, w) ∈ Sν × Sν : z �= w}.

We can rewrite W in the form
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W =
∑

(z,w)∈E×E

a(z, w)ez ⊗ ew,

where

a(z, w) =

⎧⎨
⎩

〈kγj+1(w),kγj(z)〉
〈kγj+1(w),kγj(w)〉 if (z, w) ∈ F

0 if (z, w) /∈ F
.

Recall that d(γp(z), γp+1(z)) < a0 for all z ∈ Γ and 0 ≤ p < k. Recalling (6.7) and 
applying Theorem 4.1 and Lemmas 3.1, 2.1, and Lemma 3.10 multiple times, we ob-
tain

|a(z, w)| ≤ 2 |K(γj(z), γj+1(w))|
‖Kγj+1(w)‖‖Kγj(z)‖

≤ C1

(
|r(γj(z))|1/2|r(γj+1(w))|1/2

F (γj(z), γj+1(w))

)n+1

≤ C2

(
|r(z)|1/2|r(w)|1/2

F (z, w)

)n+1

for (z, w) ∈ F . Pick an η ∈ (0, 1/2) and define h(w) = |r(w)|(n/2)+η, w ∈ Γ. If (z, w) ∈
F , then d(z, w) > R by design. Since E is 1-separated, it follows from Lemma 4.2
that

∑
w∈E

|a(z, w)|h(w) ≤ C2
∑

w∈E\D(z,R)

|r(w)|(n/2)+η

(
|r(z)|1/2|r(w)|1/2

F (z, w)

)n+1

≤ C2C4.2

2sR h(z)

for every z ∈ E. A similar inequality holds for 
∑

z∈E |a(z, w)|h(z), w ∈ E. By the stan-
dard Schur test, we conclude that ‖W‖ ≤ C2C4.22−sR. Recalling (6.10), we see that 
(6.9) holds if we pick R > 3C3.7 + 1 such that C2

5.1cC2C4.22−sR ≤ ε. This completes the 
proof. �

Following the ideas in [28], we will now generalize the notion of localized operators to 
strongly pseudo-convex domains.

Definition 6.5. Let A be a bounded operator on the Bergman space L2
a(Ω). Then LOC(A)

denotes the collection of operators of the form

T =
∑
z∈Γ

TfzATfz , (6.11)

where Γ is any separated set in Ω and {fz : z ∈ Γ} is any family of continuous functions 
on Ω satisfying the following three conditions:
(1) There is a 0 < ρ < ∞ such that fz = 0 on Ω\D(z, ρ) for every z ∈ Γ.
(2) The inequality 0 ≤ fz ≤ 1 holds on Ω for every z ∈ Γ.
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(3) The family {fz : z ∈ Γ} satisfies a uniform Lipschitz condition on Ω with respect to 
the metric d. That is, there is a 0 < C < ∞ such that |fz(ζ) − fz(ξ)| ≤ Cd(ζ, ξ) for all 
z ∈ Γ and ζ, ξ ∈ Ω.

Proposition 6.6. For every bounded operator A on L2
a(Ω), we have LOC(A) ⊂ D(A).

Proof. Let A be a bounded operator on L2
a(Ω), and consider a T given by (6.11). To prove 

that T ∈ D(A), by Lemma 2.11, we may assume that Γ is 1-separated. For convenience, 
let us define the product measure ν = μ̃× μ̃ on Ω ×Ω. By (6.1), for each z ∈ Γ we have

TfzATfz =
∫∫

hz(u, v)ku ⊗ kvdν(u, v), (6.12)

where

hz(u, v) = fz(u)fz(v)〈Akv, ku〉. (6.13)

By condition (1) above, hz vanishes on the complement of D(z, ρ) ×D(z, ρ). It follows 
from Proposition 4.6 and condition (3) above that for any a > 0, there is a b > 0 such 
that

sup
z∈Γ

|hz(u, v) − hz(u′, v′)| ≤ a if d(u, u′) ≤ b and d(v, v′) ≤ b. (6.14)

The rest of the proof is divided into two steps.
Step I. We first show that for any ε > 0, there is a 0 < δ ≤ ρ such that the following 

holds true: Suppose that Λ is a subset of Γ. For each z ∈ Λ, let ϕ(z), ψ(z) ∈ D(z, ρ). 
For each z ∈ Λ, suppose that we have a Borel set Ez = Fz ×Gz with Fz ⊂ D(ϕ(z), δ), 
Gz ⊂ D(ψ(z), δ) and ν(Ez) > 0. Finally, for each z ∈ Λ, let az ∈ [0, 2]. Then

∥∥∥∥∑
z∈Λ

az
ν(Ez)

∫∫
Ez

hz(u, v)ku ⊗ kvdν(u, v) −
∑
z∈Λ

azhz(ϕ(z), ψ(z))kϕ(z) ⊗ kψ(z)

∥∥∥∥ ≤ ε.

(6.15)

To prove this, denote

W =
∑
z∈Λ

az
ν(Ez)

∫∫
Ez

hz(u, v)ku ⊗ kvdν(u, v) and

Z =
∑
z∈Λ

azhz(ϕ(z), ψ(z))kϕ(z) ⊗ kψ(z).

Note that for each z ∈ Λ, {χEz
/ν(Ez)}dν is a probability measure concentrated on Ez. 

Thus it is in the weak-* closure of convex combinations of unit point masses on Ez. 
Consequently W is in the closure in weak operator topology of operators of the form
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W ′ = 1
k

k∑
j=1

∑
z∈Λ

azhz(u(z; j), v(z; j))ku(z;j) ⊗ kv(z;j),

where k ∈ N and, for each 1 ≤ j ≤ k, we have (u(z; j), v(z; j)) ∈ Ez, i.e., u(z; j) ∈ Fz

and v(z; j) ∈ Gz, z ∈ Λ. It is easy to see that

W ′ − Z = 1
k

k∑
j=1

(Xj + Yj),

where

Xj =
∑
z∈Λ

az{hz(u(z; j), v(z; j)) − hz(ϕ(z), ψ(z))}ku(z;j) ⊗ kv(z;j) and

Yj =
∑
z∈Λ

azhz(ϕ(z), ψ(z))ku(z;j) ⊗ kv(z;j) −
∑
z∈Λ

azhz(ϕ(z), ψ(z))kϕ(z) ⊗ kψ(z).

From (6.14) and Lemmas 2.11 and 5.1 we see that there is a δ1 > 0 such that ‖Xj‖ ≤ ε/2
for every 1 ≤ j ≤ k if δ ≤ δ1. By Corollary 5.3, there is a δ2 > 0 such that ‖Yj‖ ≤ ε/2 for 
every 1 ≤ j ≤ k if δ ≤ δ2. Hence for any 0 < δ ≤ min{δ1, δ2, ρ}, we have ‖W ′ − Z‖ ≤ ε. 
Since W − Z is the weak limit of operators of the form W ′ − Z, we have ‖W − Z‖ ≤ ε

for any choice of 0 < δ ≤ min{δ1, δ2, ρ}. This proves (6.15) and completes Step I.
Step II. Recall that ν = μ̃× μ̃. By (4.1) and Proposition 2.6, there is an N ∈ N such 

that N ≥ ν(D(w, 2ρ) ×D(w, 2ρ)) for every w ∈ Ω. Let ε > 0 be given. We will now find 
a B ∈ span(D0(A)) such that

‖T −B‖ ≤ Nε. (6.16)

Since ε > 0 is arbitrary, this will imply the membership T ∈ D(A). To find such a 
B ∈ span(D0(A)), let δ be the number provided for this ε in Step I. For each z ∈ Γ, 
there is a subset Sz in D(z, ρ) that is maximal with respect to the property

D(x, δ/2) ∩D(y, δ/2) = ∅ for all x �= y in Sz.

By Proposition 2.6 and the fact that μ(D(z, 2ρ)) < ∞, we see that Sz is a finite set, and 
consequently we can represent it in the form Sz = {ϕ(z; 1), . . . , ϕ(z; m(z))} with some 
m(z) ∈ N. The maximality of Sz implies that ∪m(z)

j=1 D(ϕ(z; j), δ) ⊃ D(z, ρ). Thus for 
each z ∈ Γ, a standard set-theoretical argument gives us Borel sets

F (z; 1), . . . , F (z;m(z))

with the following properties:
(i) D(ϕ(z; j), δ/2) ⊂ F (z; j) ⊂ D(ϕ(z; j), δ) for each j ∈ {1, . . . , m(z)}.
(ii) F (z; i) ∩ F (z; j) = ∅ for all i �= j in {1, . . . , m(z)}.
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(iii) D(z, ρ) ⊂ ∪m(z)
j=1 F (z; j) ⊂ D(z, 2ρ).

We now define Ez;i,j = F (z; i) × F (z; j) for z ∈ Γ and i, j ∈ {1, . . . , m(z)}.
Let z ∈ Γ. Since hz vanishes on (Ω × Ω)\(D(z, ρ) ×D(z, ρ)), (iii) and (ii) imply

TfzATfz =
m(z)∑
i=1

m(z)∑
j=1

∫∫
Ez;i,j

hz(u, v)ku ⊗ kvdν(u, v). (6.17)

By (i) and Proposition 2.6, there is a k ∈ N such that 1/k < ν(Ez;i,j) for all z ∈ Γ
and i, j ∈ {1, . . . , m(z)}. For such a triple of z, i, j, we let p(z; i, j) be the largest natural 
number satisfying the condition p(z; i, j)/k ≤ ν(Ez;i,j). Define

a(z; i, j) = k

p(z; i, j)ν(Ez;i,j)

for z ∈ Γ and i, j ∈ {1, . . . , m(z)}. Then 0 < a(z; i, j) ≤ 2, because the definition of 
p(z; i, j) ensures that {p(z; i, j) + 1}/k > ν(Ez;i,j). We can now rewrite (6.17) in the 
form

TfzATfz = 1
k

m(z)∑
i=1

m(z)∑
j=1

p(z; i, j) a(z; i, j)
ν(Ez;i,j)

∫∫
Ez;i,j

hz(u, v)ku ⊗ kvdν(u, v). (6.18)

On the other hand, for every z ∈ Γ, we have

m(z)∑
i=1

m(z)∑
j=1

p(z; i, j) = k

m(z)∑
i=1

m(z)∑
j=1

p(z; i, j)
k

≤ k

m(z)∑
i=1

m(z)∑
j=1

ν(Ez;i,j)

≤ kν(D(z, 2ρ) ×D(z, 2ρ)) ≤ kN.

We can regard p(z; i, j) as the “multiplicity” with which the triple (z, i, j) appears in 
(6.18). The above estimate shows that for a fixed z ∈ Γ, all the multiplicities add up to 
something less than or equal to kN . Thus there are subsets Γ1, Γ2, . . . , ΓkN of Γ such 
that

∑
z∈Γ

TfzATfz = 1
k

kN∑
�=1

∑
z∈Γ�

a(z; i(z, �), j(z, �))
ν(Ez;i(z,�),j(z,�))

∫∫
Ez;i(z,�),j(z,�)

hz(u, v)ku ⊗ kvdν(u, v), (6.19)

where for each pair of � ∈ {1, . . . , kN} and z ∈ Γ� we have i(z, �), j(z, �) ∈ {1, . . . , m(z)}. 
For each � ∈ {1, . . . , kN}, define

B� =
∑

a(z; i(z, �), j(z, �))hz(ϕ(z; i(z, �)), ϕ(z; j(z, �)))kϕ(z;i(z,�)) ⊗ kϕ(z;j(z,�)).

z∈Γ�
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Since ϕ(z; i(z, �)), ϕ(z; j(z, �)) ∈ D(z, ρ) for every z ∈ Γ�, recalling Definition 6.3(c) and 
(6.13), we have B� ∈ D0(A). Therefore the operator

B = 1
k

kN∑
�=1

B� (6.20)

belongs to the linear span of D0(A). By the choice of δ and Step I, we have
∥∥∥∥ ∑

z∈Γ�

a(z; i(z, �), j(z, �))
ν(Ez;i(z,�),j(z,�))

∫∫
Ez;i(z,�),j(z,�)

hz(u, v)ku ⊗ kvdν(u, v) −B�

∥∥∥∥ ≤ ε,

1 ≤ � ≤ kN . Combining this with (6.19) and (6.20), we see that ‖T −B‖ does not exceed

1
k

kN∑
�=1

∥∥∥∥ ∑
z∈Γ�

a(z; i(z, �), j(z, �))
ν(Ez;i(z,�),j(z,�))

∫∫
Ez;i(z,�),j(z,�)

hz(u, v)ku ⊗ kvdν(u, v) −B�

∥∥∥∥ ≤ Nε.

This proves (6.16) and completes the proof of the proposition. �
It follows from Lemma 2.11 that D(A) ⊂ D for every A ∈ B(L2

a(Ω)) (cf. Definition 6.3). 
Thus from Propositions 6.6 and 6.4 we immediately obtain

Corollary 6.7. For every bounded operator A on L2
a(Ω), we have LOC(A) ⊂ T

7. Oscillation and compactness

For a continuous function f on Ω, we define the scalar quantity

diff(f) = sup{|f(z) − f(w)| : z, w ∈ Ω such that d(z, w) ≤ 1}.

Lemma 7.1. For any continuous function f on Ω and any k ∈ N, we have

|f(z) − f(w)| ≤ (k + 1)diff(f) (7.1)

for any pair of z, w ∈ Ω satisfying the condition d(z, w) ≤ k.

Proof. Let z, w ∈ Ω be such that d(z, w) ≤ k. By (2.4), there is a C1 map γ : [0, 1] → Ω
such that γ(0) = z, γ(1) = w and

1∫
0

√
〈B(γ(t))γ′(t), γ′(t)〉dt ≤ k + 1. (7.2)

There are 0 = x0 ≤ x1 ≤ · · · ≤ xk ≤ xk+1 = 1 such that
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xj+1∫
xj

√
〈B(γ(t))γ′(t), γ′(t)〉dt = 1

k + 1

1∫
0

√
〈B(γ(t))γ′(t), γ′(t)〉dt (7.3)

for 0 ≤ j ≤ k. Define zj = γ(xj), j = 0, 1, . . . , k + 1. Then z0 = z and zk+1 = w. It 
follows from (7.2), (7.3) and (2.4) that d(zj , zj+1) ≤ 1, consequently

|f(zj) − f(zj+1)| ≤ diff(f)

for j = 0, 1, . . . , k. With this inequality, (7.1) follows from a standard telescoping 
sum. �

Recall that P denotes the orthogonal projection from L2(Ω) onto L2
a(Ω).

Lemma 7.2. There is a constant 0 < C7.2 < ∞ such that ‖[Mf , P ]‖ ≤ C7.2diff(f) for 
every bounded continuous function f on Ω.

Proof. Let T be the integral operator on L2(Ω) with the function

{d(z, w) + 2}|K(z, w)|

as its integral kernel. We know that |K(z, w)| = |K(w, z)|. Recall that the Bergman 
kernel K is bounded on (Ω ×Ω)\Rδ for any δ > 0 [14]. Thus it follows from Theorem 4.1
and Lemma 3.1 that |K(z, w)| ≤ C1F (z, w)−n−1 for all z, w ∈ Ω. Combining this fact 
with Lemmas 3.9 and 3.2, and with the Schur test, we see that the operator T is bounded 
on L2(Ω). Let f be a bounded continuous function on Ω. It follows from Lemma 7.1 that

|(f(z) − f(w))K(z, w)| ≤ diff(f){d(z, w) + 2}|K(z, w)|

for all z, w ∈ Ω. Hence ‖[Mf , P ]‖ ≤ diff(f)‖T‖. �
Recall that a continuous function f on Ω is said to have vanishing oscillation if

lim
z→∂Ω

sup{|f(z) − f(w)| : w ∈ Ω and d(z, w) ≤ 1} = 0.

We denote by VObdd the collection of continuous functions of vanishing oscillation on Ω
that are also bounded.

Proposition 7.3. For each f ∈ VObdd, the commutator [Mf , P ] is compact.

Proof. It suffices to consider f ∈ VObdd with ‖f‖∞ ≤ 1. For each R > 0, we will 
decompose f in the form f = gR +hR, where gR has a compact support and hR satisfies 
the conditions diff(hR) ≤ R−1 and ‖hR‖∞ ≤ 1. Since gR has a compact support, [MgR , P ]
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is compact. On the other hand, Lemma 7.2 tells us that ‖[MhR
, P ]‖ → 0 as R → ∞. 

Thus such a general decomposition implies the compactness of [Mf , P ].
To decompose f , let R > 0 be given. Since f ∈ VObdd, there is a t > 0 such that

|f(z) − f(w)| ≤ (2R)−1 if z ∈ Ht and d(z, w) ≤ 1, (7.4)

where Ht = {ζ ∈ Ω : −r(ζ) < t}, and we may assume Ht �= Ω. Define

ϕR(x) =
{

(2R)−1x if 0 ≤ x ≤ 2R

1 if x > 2R
.

Then ϕR satisfies the Lipschitz condition |ϕR(x) − ϕR(y)| ≤ (2R)−1|x − y| for x, y ∈
[0, ∞). For a non-empty set E ⊂ Ω and z ∈ Ω, we denote d(z, E) = inf{d(z, ζ) : ζ ∈ E}
as usual. By the triangle inequality for d, |d(z, E) − d(w, E)| ≤ d(z, w) for all z, w ∈ Ω. 
Hence

|ϕR(d(z, E)) − ϕR(d(w,E))| ≤ (2R)−1|d(z, E) − d(w,E)| ≤ (2R)−1d(z, w) (7.5)

for all z, w ∈ Ω. We now define

gR(z) = f(z)(1 − ϕR(d(z,Ωt))) and hR(z) = f(z)ϕR(d(z,Ωt)),

where Ωt = {ζ ∈ Ω : −r(ζ) ≥ t}. Since ‖f‖∞ ≤ 1 and ‖ϕR‖∞ = 1, we have

|hR(z) − hR(w)| ≤ |f(z) − f(w)| + |ϕR(d(z,Ωt)) − ϕR(d(w,Ωt))|.

If hR(z) − hR(w) �= 0, then either z ∈ Ht or w ∈ Ht. Thus if d(z, w) ≤ 1 and hR(z) −
hR(w) �= 0, then it follows from (7.4) and (7.5) that |hR(z) − hR(w)| ≤ 1/R. That is, 
diff(hR) ≤ 1/R as promised. On the other hand, if gR(z) �= 0, then d(z, Ωt) < 2R. By 
Lemma 2.1, this means that −r(z) ≥ c(R)t, where c(R) > 0 is a constant determined 
by R. Hence the support of gR is a compact set contained in Ω. This completes the 
proof. �
Lemma 7.4. Let f1, . . . , fk . . . be a sequence of continuous functions on Ω satisfying the 
following four conditions:

(1) There is a 0 < C < ∞ such that ‖fk‖∞ ≤ C for every k ∈ N.
(2) For every k ∈ N, there exist ak > bk > 0 such that fk = 0 on Ωak

∪Hbk .
(3) limk→∞ ak = 0.
(4) limk→∞ diff(fk) = 0.

Then there is an infinite subset I of N such that fJ ∈ VObdd for every J ⊂ I, where

fJ =
∑

fk.

k∈J
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Proof. By condition (3) and Lemma 2.1, we can inductively pick a sequence of natural 
numbers k(1) < k(2) < · · · < k(j) < · · · such that ak(j+1) < bk(j) and

d(z, w) ≥ 2 if − r(z) ≤ ak(j+1) and − r(w) ≥ bk(j) (7.6)

for every j ∈ N. Let I = {k(1), k(2), . . . , k(j), . . . }.
For each k ∈ N, define Rk = {z ∈ Ω : bk ≤ −r(z) ≤ ak}. Then (2) says that fk = 0

on Ω\Rk. It follows from (7.6) that

if z ∈ Rk(j) and w ∈ Rk(j′) for j �= j′ in N, then d(z, w) ≥ 2. (7.7)

This immediately implies that if J ⊂ I, then fJ is continuous on Ω. Moreover, since 
Rk(j)∩Rk(j′) = ∅ whenever j �= j′, it follows from (1) and (2) that ‖fJ‖∞ ≤ C for every 
J ⊂ I. That is, such an fJ is bounded on Ω.

Let j0 ∈ N, and let z, w ∈ Ω satisfy the conditions −r(z) ≤ ak(j0) and d(z, w) ≤ 1. 
Then it follows from (7.7) that there is at most one j ∈ N such that fk(j)(z) −fk(j)(w) �= 0. 
Furthermore, by (7.6), if such a j exists, then it must satisfy the condition j ≥ j0. Thus 
for z, w ∈ Ω satisfying the conditions −r(z) ≤ ak(j0) and d(z, w) ≤ 1, we have

|fJ(z) − fJ (w)| ≤ sup{diff(fk(j)) : j ≥ j0}

for every J ⊂ I. Applying conditions (3) and (4), this means that for every J ⊂ I, fJ
has vanishing oscillation. �
Definition 7.5. (a) For each t > 0, the symbol Λ(t) denotes the collection of continuous
functions g on Ω satisfying the following three conditions:

(1) 0 ≤ g(z) ≤ 1 for every z ∈ Ω.
(2) g(z) = 1 when z ∈ Ωt = {ζ ∈ Ω : −r(ζ) ≥ t}.
(3) There is a t′ = t′(g) ∈ (0, t) such that g(z) = 0 whenever −r(z) ≤ t′.

(b) Let t > 0 and δ > 0. Then Λ(t; δ) denotes the collection of functions g ∈ Λ(t)
satisfying the additional condition diff(g) ≤ δ.

Lemma 7.6. For all t > 0 and δ > 0, we have Λ(t; δ) �= ∅.

Proof. This is similar to the proof of Proposition 7.3. Let ψ : [0, ∞) → [0, 1] be a 
Lipschitz function with Lipschitz constant δ. Furthermore, suppose that ψ(0) = 1 and 
that ψ = 0 on [R, ∞) for a sufficiently large R. Let t > 0 be such that Ωt �= ∅ (otherwise, 
(2) is trivial). By Lemma 2.1, the function f(z) = ψ(d(z, Ωt)) is in Λ(t; δ). �
Lemma 7.7. Given any pair of f ∈ L∞(Ω) and h ∈ L2

a(Ω), we have

lim sup{‖Tfgh− Tfh‖ : g ∈ Λ(t)} = 0. (7.8)

t↓0
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Proof. Denote Ht = {z ∈ Ω : −r(z) < t} as before. By Definition 7.5(a), we have

‖Tfgh− Tfh‖2 ≤ ‖fgh− fh‖2 ≤ ‖f‖2
∞

∫
Ht

|h(z)|2dv(z)

for all g ∈ Λ(t), f ∈ L∞(Ω) and h ∈ L2
a(Ω). This obviously implies (7.8). �

For a bounded operator A on a Hilbert space H, denote

‖A‖Q = inf{‖A + K‖ : K is any compact operator on H},

which is the essential norm of A.

Lemma 7.8. [16, Lemma 2.1] Let {Bi} be a sequence of compact operators on a Hilbert 
space H satisfying the following conditions:
(a) Both sequences {Bi} and {B∗

i } converge to 0 in the strong operator topology.
(b) The limit limi→∞ ‖Bi‖ exists.
Then there exist natural numbers i(1) < i(2) < · · · < i(m) < · · · such that the sum

∞∑
m=1

Bi(m) = lim
N→∞

N∑
m=1

Bi(m)

exists in the strong operator topology and we have
∥∥∥∥

∞∑
m=1

Bi(m)

∥∥∥∥
Q

= lim
i→∞

‖Bi‖.

Definition 7.9. For t > 0 and δ > 0, the symbol Φ(t; δ) denotes the collection of contin-
uous functions f on Ω satisfying the following three conditions:

(1) 0 ≤ f(z) ≤ 1 for every z ∈ Ω.
(2) f(z) = 0 whenever −r(z) ≥ t.
(3) diff(f) ≤ δ.

In analogy with [28, Proposition 3.7], every operator in EssCom({Tg : g ∈ VObdd})
satisfies the following “ε-δ” condition:

Proposition 7.10. Let X be an operator in the essential commutant of {Tg : g ∈ VObdd}. 
Then for every ε > 0, there is a δ = δ(X, ε) > 0 such that

lim
t↓0

sup{‖[X,Tf ]‖ : f ∈ Φ(t; δ)} ≤ ε.

Using 7.4-7.9 above, the proof of Proposition 7.10 is a repeat of the proof of Propo-
sition 3.7 in [28], modified in the obvious way. For that reason we will omit the proof of 
Proposition 7.10 here.
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Lemma 7.11. Let h1, . . . , hk . . . be a sequence of continuous functions on Ω, and denote 
Uk = {z ∈ Ω : hk(z) �= 0}, k ∈ N. Suppose that this sequence has the property that there 
is an a > 1 such that inf{d(z, w) : z ∈ Uj , w ∈ Uk} ≥ a for every pair of j �= k in N. 
Then the function h =

∑∞
k=1 hk has the property that diff(h) ≤ supk∈N diff(hk).

Proof. Observe that, under the assumption, for any pair of z, w ∈ Ω satisfying the 
condition d(z, w) ≤ 1, the cardinality of the set {k ∈ N : hk(z) − hk(w) �= 0} is at most 
1. �
8. Approximate partition of unity

In this section the boundary ∂Ω of the domain plays a prominent role. It will be 
beneficial to make a simplification of notation: for ζ ∈ ∂Ω and t > 0, let us write

Q(ζ, t) = {ξ ∈ ∂Ω : |ζ − ξ|2 + |〈ζ − ξ, (∂̄r)(ζ)〉| < t}.

In other words, in terms of the notation in Section 2, we have Q(ζ, t) = Q0(ζ, t). Similarly, 
we will write dσ for dσ0. That is, dσ is the surface measure on ∂Ω.

Lemma 8.1. There is a constant 1 ≤ C8.1 < ∞ such that for any triple of ζ, ξ ∈ ∂Ω and 
t > 0, if Q(ζ, t) ∩Q(ξ, t) �= ∅, then Q(ξ, t) ⊂ Q(ζ, C8.1t).

This lemma is rather obvious and we will omit its proof.

Corollary 8.2. Consider any ζ ∈ ∂Ω and t > 0. If x, y ∈ ∂Ω are such that x ∈ Q(ζ, t)
and y /∈ Q(ζ, C8.1t), then y /∈ Q(x, t).

Proof. If x ∈ Q(ζ, t), then Q(x, t) ∩ Q(ζ, t) �= ∅. By Lemma 8.1, we have Q(x, t) ⊂
Q(ζ, C8.1t). Therefore if y /∈ Q(ζ, C8.1t), then y /∈ Q(x, t). �
Lemma 8.3. There is a constant 0 < C8.3 < ∞ such that the following bound holds: Let 
t > 0, and let E be a subset of ∂Ω that has the property Q(x, t) ∩ Q(y, t) = ∅ for all 
x �= y in E. Then for any R ≥ 1 and any ζ ∈ ∂Ω,

card{x ∈ E : Q(x,Rt) ∩Q(ζ,Rt) �= ∅} ≤ C8.3R
n.

Proof. It t > T0 (see Proposition 2.8), then the property of E implies card(E) ≤ 1. 
Suppose that 0 < t ≤ T0. If Q(x, Rt) ∩ Q(ζ, Rt) �= ∅, then Q(x, Rt) ⊂ Q(ζ, C8.1Rt) by 
Lemma 8.1. Let E0 = {x ∈ E : Q(x, Rt) ∩Q(ζ, Rt) �= ∅}. Since Q(x, t) ∩Q(y, t) = ∅ for 
all x �= y in E, we have

card(E0) inf
x∈E0

σ(Q(x, t)) ≤
∑

σ(Q(x, t)) = σ

( ⋃
Q(x, t)

)
≤ σ(Q(ζ, C8.1Rt)).
x∈E0 x∈E0



Y. Wang, J. Xia / Journal of Functional Analysis 280 (2021) 108775 37
Applying Proposition 2.8 to the case ρ = 0, we have

card(E0)c2.8tn ≤ C2.8(C8.1Rt)n.

Cancelling out tn and simplifying, we see that the lemma holds for the constant C8.3 =
(C2.8/c2.8)Cn

8.1. �
The first order Taylor expansion for r reads

r(z + u) = r(z) + 2Re〈u, (∂̄r)(z)〉 +
1∫

0

2Re〈u, (∂̄r)(z + xu) − (∂̄r)(z)〉dx.

Thus r(z + t(∂̄r)(z)) = r(z) + 2t|(∂̄r)(z)|2 +O(t2) when |t| is small. Recall that ∂̄r does 
not vanish on ∂Ω. Hence when z is close to ∂Ω and t is positive and small, we have

r(z + t(∂̄r)(z)) ≥ r(z) + t|(∂̄r)(z)|2.

Thus for each z ∈ Ω near ∂Ω, there is a tz > 0, tz ≈ |r(z)|, such that r(z+tz(∂̄r)(z)) = 0. 
Let us restate this fact more precisely: There exist a J ∈ N and a 0 < Cp < ∞ such that 
for every z ∈ H2−J = {ζ ∈ Ω : −r(ζ) < 2−J}, there is a p(z) ∈ ∂Ω such that

|z − p(z)| ≤ Cp|r(z)|. (8.1)

In other words, there is a map p : H2−J → ∂Ω such that the above bound holds for every 
z ∈ H2−J . Note that our choice above does not promise any kind of continuity for the 
map p, but that does not matter for our purpose.

This p and the defining function r together allow us to decompose H2−J in a manner 
that is analogous to the radial-spherical decomposition for the unit ball in [28]. More 
specifically, p plays the role of “spherical coordinates”, while −r is the analogue of “radial 
coordinate”. Because we only need a large-scale, or “coarse”, decomposition, (8.1) is all 
that we need to know about p.

Lemma 8.4. There is a constant 0 < C8.4 < ∞ such that

|z′ − w′|2 + |〈z′ − w′, (∂̄r)(z′)〉|
≤ 3{|z − w|2 + |〈z − w, (∂̄r)(z)〉|} + C8.4{|z − z′| + |w − w′|}

for all z, w, z′, w′ ∈ Ω = Ω ∪ ∂Ω.

Proof. It is elementary that |z′ − w′|2 ≤ 3|z − w|2 + 3|z − z′|2 + 3|w − w′|2. Since Ω is 
bounded, there is a C1 such that |ζ − ξ| ≤ C1 for all ζ, ξ ∈ Ω. Hence

|z′ − w′|2 ≤ 3|z − w|2 + 3C1{|z − z′| + |w − w′|}. (8.2)
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Similarly, since ∂̄r is bounded and satisfies a Lipschitz condition on Ω, we have

|〈z′ − w′,(∂̄r)(z′)〉| ≤ (|z − z′| + |w − w′|)|(∂̄r)(z′)| + |〈z − w, (∂̄r)(z′)〉|

≤ C2(|z − z′| + |w − w′|) + |〈z − w, (∂̄r)(z)〉| + |z − w||(∂̄r)(z′) − (∂̄r)(z)|

≤ C2(|z − z′| + |w − w′|) + |〈z − w, (∂̄r)(z)〉| + C3|z − z′|. (8.3)

Obviously, the lemma follows from (8.2) and (8.3). �
We begin the decomposition with natural numbers m > J and j ≥ 1. Define

dm,j = m2−jm, am,j = C8.1m2−jm and bm,j = C2
8.1m2−jm, (8.4)

where C8.1 is the constant in Lemma 8.1. That is, am,j = C8.1dm,j and bm,j = C2
8.1dm,j . 

Let Em,j be a subset of ∂Ω that is maximal with respect to the property

Q(u, dm,j) ∩Q(v, dm,j) = ∅ for all u �= v ∈ Em,j . (8.5)

By the maximality of Em,j and Lemma 8.1, we have
⋃

u∈Em,j

Q(u, am,j) = ∂Ω. (8.6)

Fix a natural number N0 such that N0 ≥ C8.3(C2
8.1)n, where C8.3 is the constant in 

Lemma 8.3. Since bm,j = C2
8.1dm,j , it follows from (8.5) and Lemma 8.3 that

card{v ∈ Em,j : Q(v, bm,j) ∩Q(u, bm,j) �= ∅} ≤ N0 (8.7)

for every u ∈ Em,j . Now, given any m > J , j ≥ 1 and u ∈ Em,j , we define the sets

Am,j,u = {z ∈ Ω : p(z) ∈ Q(u, am,j) and 2−(j+1)m > −r(z) ≥ 2−(j+2)m} and

Bm,j,u = {z ∈ Ω : p(z) ∈ Q(u, bm,j) and 2−jm > −r(z) > 2−(j+3)m}.

It follows from (8.6) that

∞⋃
j=1

⋃
u∈Em,j

Am,j,u = H2−2m = {z ∈ Ω : −r(z) < 2−2m}. (8.8)

Note that even though we have (8.8), we do not know that every Am,j,u is non-empty 
from its definition. Nevertheless, we have

Lemma 8.5. There is a constant J < M8.5 < ∞ such that if m ≥ M8.5, then Am,j,u �= ∅
for all j ≥ 1 and u ∈ Em,j.
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Proof. By the Taylor expansion for r, there are constants J < M1 < ∞ and 0 < C1 < ∞
such that if m ≥ M1, then for every pair of j ≥ 1 and u ∈ Em,j there is a u′ such that 
−r(u′) = 2−(j+(3/2))m and |u − u′| ≤ C1(−r(u′)). By Lemma 8.4, we have

|u− u′|2 + |〈u− u′, (∂̄r)(u)〉| ≤ C8.4|u− u′| ≤ C8.4C1(−r(u′)) = C8.4C12−(j+(3/2))m.

Applying Lemma 8.4 again and recalling (8.1), we have

|u− p(u′)|2+|〈u− p(u′), (∂̄r)(u)〉| ≤ 3{|u− u′|2 + |〈u− u′, (∂̄r)(u)〉|} + C8.4|u′ − p(u′)|
≤ 3C8.4C12−(j+(3/2))m + C8.4Cp2−(j+(3/2))m.

Let M8.5 ≥ M1 be such that M8.5 ≥ 3C8.4C1+C8.4Cp. If m ≥ M8.5, then u′ ∈ Am,j,u. �
Lemma 8.6. There is a constant M8.5 + 100 ≤ M8.6 < ∞ such that for m ≥ M8.6, j ≥ 1, 
and u ∈ Em,j, if z ∈ Am,j,u and w ∈ Ω\Bm,j,u, then d(z, w) ≥ (1/13)m.

Proof. Set M1 = max{M8.5 + 100, 10C8.4}, where C8.4 and M8.5 are the constants in 
Lemmas 8.4 and 8.5 respectively. Consider any m ≥ M1, j ≥ 1 and u ∈ Em,j . For a pair 
of z ∈ Am,j,u and w ∈ Ω\Bm,j,u, there are three possibilities, depending on the value of 
r(w).

(1) Suppose that −r(w) ≥ 2−jm. Then r(z)/r(w) ≤ 2−(j+1)m/2−jm = 2−m. Combin-
ing this with Lemma 2.1, we have c2.12−4d(w,z) ≤ r(z)/r(w) ≤ 2−m. Hence

d(z, w) ≥ (1/4)m + (1/4){log c2.1/ log 2}.

Let M2 ≥ M1 be such that (1/2)M2 ≥ | log c2.1/ log 2|. Thus if m ≥ M2, then for all 
j ≥ 1, u ∈ Em,j , z ∈ Am,j,u and w ∈ Ω\Bm,j,u, we have

d(z, w) ≥ (1/8)m (8.9)

under the condition −r(w) ≥ 2−jm.
(2) Suppose that −r(w) ≤ 2−(j+3)m. Then r(w)/r(z) ≤ 2−(j+3)m/2−(j+2)m = 2−m. 

From Lemma 2.1 we now deduce c2.12−4d(z,w) ≤ r(w)/r(z) ≤ 2−m. Thus (8.9) again 
holds under the condition −r(w) ≤ 2−(j+3)m when m ≥ M2.

(3) Suppose that 2−(j+3)m < −r(w) < 2−jm. Then by the definition of Bm,j,u we have 
p(w) /∈ Q(u, bm,j). In contrast, since z ∈ Am,j,u, we have p(z) ∈ Q(u, am,j). Since bm,j =
C8.1am,j , by Corollary 8.2 we have p(w) /∈ Q(p(z), am,j). Recall that am,j = C8.1m2−jm

and that C8.1 ≥ 1. Thus it follows from Lemma 8.4 and (8.1) that

m2−mj ≤ am,j ≤ |p(z) − p(w)|2 + |〈p(z) − p(w), (∂̄r)(p(z))〉|
≤ 3{|z − w|2 + |〈z − w, (∂̄r)(z)〉|} + C8.4Cp{|r(z)| + |r(w)|}
≤ 3{|z − w|2 + |〈z − w, (∂̄r)(z)〉|} + C8.4Cp{2−(j+1)m + 2−jm}.
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Now we pick an M3 ≥ M2 such that M3 ≥ 4C8.4Cp, i.e., (1/2)M3 ≥ 2C8.4Cp. When 
m ≥ M3, elementary manipulations turn the above into the inequality

(1/6)m2−mj ≤ |z − w|2 + |〈z − w, (∂̄r)(z)〉|.

Combining this with Lemma 2.2(2), we obtain

(1/6)m2−mj ≤ C2.2{d(z, w) + d2(z, w)}212d(z,w)(−r(z)).

Since −r(z) ≤ 2−(j+1)m, this implies

(1/6)m2m ≤ C2.2{d(z, w) + d2(z, w)}212d(z,w).

From this inequality it is elementary to deduce that there is an M8.6 ≥ M3 such that if 
m ≥ M8.6, then d(z, w) ≥ (1/13)m. Combining this with (8.9), the proof is complete. �

By Lemma 8.5, for every triple of m ≥ M8.5, j ≥ 1 and u ∈ Em,j , we can pick a

zm,j,u ∈ Am,j,u. (8.10)

This pick will be fixed for the rest of the paper.

Lemma 8.7. There is a constant M8.6 < M8.7 < ∞ such that if m ≥ M8.7, then there is 
an 0 < Rm < ∞ which has the property that

Bm,j,u ⊂ D(zm,j,u, Rm) (8.11)

for all j ≥ 1 and u ∈ Em,j.

Proof. Suppose that m ≥ M8.5. Given any j ≥ 1 and u ∈ Em,j , we have 2−(j+2)m ≤
−r(zm,j,u) < 2−(j+1)m by (8.10). Now let w ∈ Bm,j,u. Then 2−(j+3)m < −r(w) < 2−jm, 
which means −2−2mr(zm,j,u) ≤ −r(w) ≤ −22mr(zm,j,u). In other words, we have

2k−1(−r(zm,j,u)) ≤ −r(w) ≤ 2k(−r(zm,j,u)) for some k ∈ Z with |k| ≤ 2m. (8.12)

We have p(w) ∈ Q(u, bm,j). Since p(zm,j,u) ∈ Q(u, am,j) ⊂ Q(u, bm,j), Lemma 8.1 gives 
us Q(u, bm,j) ⊂ Q(p(zm,j,u), C8.1bm,j). Hence p(w) ∈ Q(p(zm,j,u), C8.1bm,j). That is,

|p(zm,j,u) − p(w)|2 + |〈p(zm,j,u) − p(w), (∂̄r)(p(zm,j,u))〉| < C8.1bm,j .

Applying Lemma 8.4 and (8.1), we obtain

|zm,j,u − w|2+|〈zm,j,u − w, (∂̄r)(zm,j,u)〉| < 3C8.1bm,j + C8.4Cp(|r(zm,j,u)| + |r(w)|)
≤ 3C3

8.1m2−jm + 2C8.4Cp2−jm < (3C3
8.1m + 2C8.4Cp)22m(−r(zm,j,u)).
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Let M8.7 > M8.6 be such that (3C3
8.1M8.7 + 2C8.4Cp)2−M8.7 ≤ 1. When m ≥ M8.7, the 

above inequality gives us

|zm,j,u − w|2 + |〈zm,j,u − w, (∂̄r)(zm,j,u)〉| < 23m(−r(zm,j,u))

≤ 2k+3m+|k|(−r(zm,j,u)). (8.13)

Combining (8.12) and (8.13) with Lemma 3.7, we obtain d(zm,j,u, w) < C3.7(1 + |k| +
3m + |k|) ≤ C3.7(1 +7m). Thus when m ≥ M8.7, (8.11) holds for Rm = C3.7(1 +7m). �

In the above we picked constants such that M8.7 > M8.6 ≥ M8.5 + 100 and M8.5 > J . 
Thus if m ≥ M8.7, then m/13 > 7. Now, for every m ≥ M8.7, we define the function

f̃m(x) =
{

1 − {(m/13) − 4}−1x for 0 ≤ x ≤ (m/13) − 4

0 for (m/13) − 4 < x < ∞
. (8.14)

Obviously, f̃m satisfies the Lipschitz condition |f̃m(x) − f̃m(y)| ≤ {(m/13) −4}−1|x − y|, 
x, y ∈ [0, ∞). For every triple of m ≥ M8.7, j ∈ N and u ∈ Em,j , we define

fm,j,u(z) = f̃m(d(z,Am,j,u)) for z ∈ Ω.

Lemma 8.8. For every triple of m ≥ M8.7, j ∈ N and u ∈ Em,j, the function fm,j,u

defined above has the following five properties:
(a) The inequality 0 ≤ fm,j,u ≤ 1 holds on B.
(b) fm,j,u = 1 on the set Am,j,u.
(c) |fm,j,u(z) − fm,j,u(w)| ≤ {(m/13) − 4}−1d(z, w) for all z, w ∈ Ω.
(d) If fm,j,u(z) �= 0 and w ∈ Ω\Bm,j,u, then d(z, w) ≥ 4.
(e) We have diff(fm,j,u) ≤ {(m/13) − 4}−1.

Proof. (a) and (b) follow directly from the definitions of f̃m and fm,j,u. Then note that

|fm,j,u(z) − fm,j,u(w)| = |f̃m(d(z,Am,j,u)) − f̃m(d(w,Am,j,u))|

≤ 1
(m/13) − 4 |d(z,Am,j,u) − d(w,Am,j,u)| ≤ d(z, w)

(m/13) − 4 ,

which proves (c). For (d), observe that if fm,j,u(z) �= 0, then d(z, Am,j,u) < (m/13) − 4. 
This means that there is a z′ ∈ Am,j,u such that d(z, z′) ≤ (m/13) − 4. If w ∈ Ω\Bm,j,u, 
then Lemma 8.6 tells us that d(z′, w) ≥ m/13. By the triangle inequality,

d(z, w) ≥ d(z′, w) − d(z, z′) ≥ (m/13) − {(m/13) − 4} = 4.

Hence (d) holds. Finally, note that (e) is an immediate consequence of (c). �
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By (8.7) and a standard maximality argument, each Em,j admits a partition

Em,j = E
(1)
m,j ∪ · · · ∪E

(N0)
m,j (8.15)

such that for every ν ∈ {1, . . . , N0}, we have Q(u, bm,j) ∩Q(v, bm,j) = ∅ for all u �= v in 
E

(ν)
m,j . Therefore for each ν ∈ {1, . . . , N0}, the conditions u, v ∈ E

(ν)
m,j and u �= v imply 

Bm,j,u ∩Bm,j,v = ∅.

Definition 8.9. Let m ≥ M8.7 be given. (a) For each pair of κ ∈ {1, 2, 3} and ν ∈
{1, . . . , N0}, where N0 is the integer that appears in (8.7) and (8.15), let I(ν,κ)

m denote 
the collection of all triples m, 3j+κ, u satisfying the conditions j ∈ Z+ and u ∈ E

(ν)
m,3j+κ.

(b) For κ ∈ {1, 2, 3}, ν ∈ {1, . . . , N0} and q ∈ N, let I(ν,κ)
m,q denote the collection of all 

triples m, 3j + κ, u satisfying the conditions 0 ≤ j ≤ q and u ∈ E
(ν)
m,3j+κ.

(c) Denote Im = ∪3
κ=1 ∪N0

ν=1 I
(ν,κ)
m .

The elements in Im, equivalently the subscripts in Am,j,u, Bm,j,u and fm,j,u, are 
obviously quite cumbersome to write as triples. For this we have the following remedy:

Notation 8.10. (1) We will use the symbol ω to represent the triple m, j, u.
(2) For any subset I of Im, denote fI =

∑
ω∈I fω and FI =

∑
ω∈I f

2
ω.

Lemma 8.11. Let m ≥ M8.7, κ ∈ {1, 2, 3} and ν ∈ {1, . . . , N0}. Then for any ω �= ω′ in 
I
(ν,κ)
m , we have Bω ∩Bω′ = ∅.

Proof. If ω = (m, 3j + κ, u) and ω′ = (m, 3j + κ, v) for a pair of u �= v in E(ν)
m,3j+κ, 

then by the property of the partition (8.15) we already know that Bω ∩ Bω′ = ∅. The 
other possibility is that ω = (m, 3j + κ, u) and ω′ = (m, 3j′ + κ, v) with u ∈ E

(ν)
m,3j+κ

and v ∈ E
(ν)
m,3j′+κ, where j �= j′. If j �= j′, then |(3j + κ) − (3j′ + κ)| ≥ 3, which ensures 

Bω ∩Bω′ = ∅ by the values of −r on Bω and Bω′ . �
Lemma 8.12. Let m ≥ M8.7, κ ∈ {1, 2, 3} and ν ∈ {1, . . . , N0}. Then for every subset I
of I(ν,κ)

m , we have fI ∈ Φ(2−m; ((m/13) − 4)−1).

Proof. Let I ⊂ I
(ν,κ)
m . For each ω ∈ I, fω is continuous on Ω and satisfies the condition 

0 ≤ fω ≤ 1. Lemma 8.11 tells us that for ω �= ω′ in I, we have Bω ∩ Bω′ = ∅. By 
Lemma 8.8(d), if z, w ∈ Ω are such that fω(z) �= 0 and fω′(w) �= 0, then d(z, w) ≥ 4. 
It follows that fI is continuous on B and that 0 ≤ fI ≤ 1. Furthermore, we can invoke 
Lemma 7.11 to obtain diff(fI) ≤ supω∈I diff(fω) ≤ ((m/13) − 4)−1, where the second ≤
follows from Lemma 8.8(e).

Since I ⊂ I
(ν,κ)
m , if ω ∈ I, then Bω ⊂ H2−κm = {ζ ∈ Ω : −r(ζ) < 2−κm}. Since 

Lemma 8.8(d) says that fω = 0 on Ω\Bω, we conclude that fI = 0 on {ζ ∈ Ω : −r(ζ) ≥
2−κm}. Recalling Definition 7.9, this completes the verification of the membership fI ∈
Φ(2−m; ((m/13) − 4)−1). �
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Lemma 8.13. Let m ≥ M8.7, κ ∈ {1, 2, 3} and ν ∈ {1, . . . , N0}, and let I be any subset 
of I(ν,κ)

m . Then for every bounded operator A on L2
a(Ω), we have

∑
ω∈I

TfωATfω ∈ LOC(A).

Proof. Given any I ⊂ I
(ν,κ)
m , consider the set Γ = {zω : ω ∈ I}, where zω was picked 

in (8.10). By Lemmas 8.11 and 8.6, Γ is an (m/26)-separated set in Ω. Define fzω = fω
for each ω ∈ I. We need to verify that the functions {fzω : zω ∈ Γ} satisfy conditions 
(1)-(3) in Definition 6.5. First of all, (2) follows from Lemma 8.8(a). Lemma 8.7 tells us 
that for each ω ∈ I, we have Bω ⊂ D(zω, Rm). By Lemma 8.8(d), we have fzω = 0 on 
Ω\D(zω, Rm), verifying (1). Finally, condition (3) follows from Lemma 8.8(c). �
9. The essential commutant of {Tf : f ∈ VObdd}

To prove Theorem 1.1(i), let us first recall

Lemma 9.1. Let {f1, . . . , f�} be a finite set of functions in L∞(Ω) with the property that 
fjfk = 0 for all j �= k in {1, . . . , �}. Let A be any bounded operator on the Bergman 
space L2

a(Ω). Then there exist complex numbers {γ1, . . . , γ�} with |γk| = 1 for every 
k ∈ {1, . . . , �} and a subset E of {1, . . . , �} such that if we define

F =
∑
k∈E

fk, G =
∑

k∈{1,...,�}\E
fk, F ′ =

∑
k∈E

γkfk and G′ =
∑

k∈{1,...,�}\E
γkfk,

then ∥∥∥∥∑
j �=k

TfjATfk

∥∥∥∥ ≤ 4(‖TF ′ATG‖ + ‖TG′ATF ‖).

This lemma was proved in the case of the unit ball as Lemma 5.1 in [28]. But the 
proof in the case of a general Ω is exactly the same. The only property of Toeplitz 
operators that was used in the proof of [28, Lemma 5.1] was that a Toeplitz operator is 
the compression to a subspace of a multiplication operator on an L2. Thus not only does 
Lemma 9.1 hold, its analogue also holds, for example, in the setting of Hardy spaces. 
For that reason we will not repeat the proof of Lemma 9.1 here.

Recall that we write K for the collection of compact operators on the Bergman space 
L2
a(Ω). Furthermore, Proposition 6.2 tells us that K ⊂ T . Also recall that for each 

f ∈ L∞(Ω), we have the Hankel operator Hf defined by the formula

Hfh = (1 − P )(fh), h ∈ L2
a(Ω).

Proof of Theorem 1.1(i). For f, g ∈ L∞(Ω), we have
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[Tf , Tg] = PMfPMgP − PMgPMfP = PMg(1 − P )MfP − PMf (1 − P )MgP

= [P,Mg](1 − P )[Mf , P ] − [P,Mf ](1 − P )[Mg, P ].

Thus it follows from Proposition 7.3 that EssCom{Tf : f ∈ VObdd} ⊃ {Tg : g ∈ L∞(Ω)}. 
Since {Tg : g ∈ L∞(Ω)} generates T , we conclude that EssCom{Tf : f ∈ VObdd} ⊃ T . 
Thus we only need to prove that EssCom{Tf : f ∈ VObdd} ⊂ T .

Let X ∈ EssCom{Tf : f ∈ VObdd} be given. To show that X ∈ T , pick any ε > 0. It 
suffices to produce a decomposition X = Y + Z such that Y ∈ T and

‖Z‖ ≤ 3N0{16(2 + ‖X‖) + ‖X‖ + 2}ε, (9.1)

where N0 is the constant that appears in (8.7) and (8.15).
First, we apply Proposition 7.10, which provides a δ > 0 and a t∗ > 0 such that

‖[X,Tf ]‖ ≤ 2ε for every f ∈ Φ(t∗; δ). (9.2)

Then we apply Lemma 7.2, which tells us that there is a δ′ > 0 such that

‖Hg‖ ≤ ε (9.3)

for every bounded continuous function g on Ω with diff(g) ≤ δ′. With δ, t∗ and δ′ so 
fixed, we pick an integer m ≥ M8.7 satisfying the conditions

((m/13) − 4)−1 ≤ min{ε, δ, δ′} and 2−m ≤ t∗. (9.4)

With m so fixed, let us consider the function FIm given in Notation 8.10(2). Since

FIm =
3∑

κ=1

N0∑
ν=1

F
I
(ν,κ)
m

(9.5)

and since by Lemma 8.12 each F
I
(ν,κ)
m

satisfies the inequality 0 ≤ F
I
(ν,κ)
m

≤ 1 on Ω, we 
have 0 ≤ FIm ≤ 3N0 on Ω. By Lemma 8.8(b) and (8.8), we have FIm(z) ≥ 1 whenever 
−r(z) < 2−2m. Thus we have shown that the function

h = χΩ2−2m + FIm (9.6)

satisfies the inequality 1 ≤ h ≤ 3N0 + 1 on Ω, where Ω2−2m = {ζ ∈ Ω : −r(ζ) ≥ 2−2m}. 
This guarantees that the positive Toeplitz operator Th is both bounded and invertible 
on L2

a(Ω). Moreover, ‖T−1
h ‖ ≤ 1. Since Th ∈ T and T is a C∗-algebra, we have T−1

h ∈ T .
By (9.6) and (9.5), we have the decomposition

X = XThT
−1
h = X0 +

3∑ N0∑
Xν,κ, (9.7)
κ=1 ν=1
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where

X0 = XTχΩ2−2m
T−1
h and Xν,κ = XTF

I
(ν,κ)
m

T−1
h

for 1 ≤ κ ≤ 3 and 1 ≤ ν ≤ N0. Obviously, the Toeplitz operator TχΩ2−2m
is compact. 

Hence, by Proposition 6.2, X0 ∈ K ⊂ T .
We further decompose each Xν,κ. To do that, define the operators

Yν,κ =
∑

ω∈I
(ν,κ)
m

TfωXTfωT
−1
h and Aν,κ =

∑
ω,ω′∈I(ν,κ)

m

ω �=ω′

TfωXTfω′T
−1
h . (9.8)

Obviously, Yν,κ + Aν,κ = Tf
I
(ν,κ)
m

XTf
I
(ν,κ)
m

T−1
h (cf. Notation 8.10). We further define

Bν,κ = [X,Tf
I
(ν,κ)
m

]Tf
I
(ν,κ)
m

T−1
h + XH∗

f
I
(ν,κ)
m

Hf
I
(ν,κ)
m

T−1
h . (9.9)

It follows from Lemmas 8.8(d) and 8.11 that F
I
(ν,κ)
m

= f2
I
(ν,κ)
m

. For any real-valued f ∈
L∞(Ω), we have Tf2 = T 2

f + H∗
fHf . Therefore

Xν,κ = Yν,κ + Aν,κ + Bν,κ. (9.10)

Since T−1
h ∈ T , it follows from Lemma 8.13 and Corollary 6.7 that Yν,κ ∈ T .

To estimate ‖Aν,κ‖, first observe that on L2(Ω), we have the strong convergence
∑

ω,ω′∈I(ν,κ)
m,q

ω �=ω′

MfωXPMfω′ →
∑

ω,ω′∈I(ν,κ)
m

ω �=ω′

MfωXPMfω′ as q → ∞,

where I(ν,κ)
m,q was given by Definition 8.9(b). Compressing this strong convergence to 

L2
a(Ω) and using the bound ‖T−1

h ‖ ≤ 1, we see that there is a q ∈ N such that

‖Aν,κ‖ ≤ 2‖Zν,κ‖, where Zν,κ =
∑

ω,ω′∈I(ν,κ)
m,q

ω �=ω′

TfωXTfω′ . (9.11)

Since fωfω′ = 0 for ω �= ω′ in I(ν,κ)
m,q , by Lemma 9.1, there are complex numbers {γω :

ω ∈ I
(ν,κ)
m,q } of modulus 1 and a subset I of I(ν,κ)

m,q such that if we define

F =
∑
ω∈I

fω, G =
∑

ω∈I
(ν,κ)
m,q \I

fω, F ′ =
∑
ω∈I

γωfω and G′ =
∑

ω∈I
(ν,κ)
m,q \I

γωfω,

then

‖Zν,κ‖ ≤ 4(‖TF ′XTG‖ + ‖TG′XTF ‖). (9.12)
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Note that TG′XTF = TG′ [X, TF ] + TG′TFX. We have F ∈ Φ(2−m; ((m/13) − 4)−1) by 
Lemma 8.12. Hence it follows from (9.4) and (9.2) that

‖TG′ [X,TF ]‖ ≤ ‖[X,TF ]‖ ≤ 2ε. (9.13)

Since Bω ∩ Bω′ = ∅ for all ω �= ω′ in I(ν,κ)
m , we have G′F = 0 on Ω, and consequently 

TG′TF = −H∗
G′HF . Since diff(F ) ≤ ((m/13) − 4)−1, by (9.4) and (9.3), we have

‖TG′TFX‖ ≤ ‖HF ‖‖X‖ ≤ ‖X‖ε.

Combining this with (9.13), we see that ‖TG′XTF ‖ ≤ (2 + ‖X‖)ε. The same argument 
also shows that ‖TF ′XTG‖ ≤ (2 + ‖X‖)ε. Substituting these in (9.12) and recalling 
(9.11), we obtain

‖Aν,κ‖ ≤ 16(2 + ‖X‖)ε. (9.14)

Next we estimate ‖Bν,κ‖.
Lemma 8.12 tells us that diff(f

I
(ν,κ)
m

) ≤ ((m/13) − 4)−1. Combining this with (9.4)
and (9.3), and with the fact ‖T−1

h ‖ ≤ 1, we obtain

‖XH∗
f
I
(ν,κ)
m

Hf
I
(ν,κ)
m

T−1
h ‖ ≤ ‖X‖‖Hf

I
(ν,κ)
m

‖ ≤ ‖X‖ε.

Again, Lemma 8.12 says that f
I
(ν,κ)
m

∈ Φ(2−m; ((m/13) − 4)−1). Hence it follows from 
(9.4) and (9.2) that

‖[X,Tf
I
(ν,κ)
m

]Tf
I
(ν,κ)
m

T−1
h ‖ ≤ ‖[X,Tf

I
(ν,κ)
m

]‖ ≤ 2ε.

Recalling (9.9), from the above two inequalities we obtain

‖Bν,κ‖ ≤ (‖X‖ + 2)ε. (9.15)

To summarize, we have shown that for each pair of 1 ≤ κ ≤ 3 and 1 ≤ ν ≤ N0, we have 
the decomposition (9.10) where Yν,κ ∈ T and where Aν,κ, Bν,κ satisfy estimates (9.14)
and (9.15) respectively. Combining (9.10) with (9.7), we have X = Y + Z, where

Y = X0 +
3∑

κ=1

N0∑
ν=1

Yν,κ and Z =
3∑

κ=1

N0∑
ν=1

(Aν,κ + Bν,κ). (9.16)

Now, (9.1) follows from (9.14) and (9.15), and we have shown that Y ∈ T . This completes 
the proof of part (i) in Theorem 1.1. �
Proposition 9.2. For X ∈ T , if LOC(X) ⊂ K, then X is compact.
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Proof. Let X ∈ T and suppose that LOC(X) ⊂ K. As we showed above, for every ε > 0, 
X admits a decomposition X = Y + Z, where Y and Z are given by (9.16), with X0
known to be compact. By (9.8) and Lemma 8.13, the condition LOC(X) ⊂ K implies 
Yν,κ ∈ K. Thus Y is compact. Since Z satisfies (9.1), this shows that X is compact. �
Proposition 9.3. Let X ∈ T . Suppose that X has the property that for every 0 < R < ∞,

lim
z→∂Ω

sup
w∈D(z,R)

|〈Xkw, kz〉| = 0. (9.17)

Then X is a compact operator.

Proof. Recall from Proposition 6.6 that LOC(X) ⊂ D(X). Combining this with Propo-
sition 9.2, it suffices to prove the inclusion D0(X) ⊂ K under the assumption that (9.17)
holds for every 0 < R < ∞. By Definition 6.3(c), we need to show that the operator

T =
∑
z∈Γ

cz〈Xkψ(z), kϕ(z)〉kϕ(z) ⊗ kψ(z)

is compact, where Γ is a separated set in Ω, {cz : z ∈ Γ} is a bounded set of coefficients, 
and ϕ, ψ : Γ → Ω are maps for which there is a 0 ≤ C < ∞ such that d(z, ϕ(z)) ≤ C

and d(z, ψ(z)) ≤ C for every z ∈ Γ.
By the assumption on ϕ, ψ and Lemma 2.11, there is a partition Γ = Γ1∪· · ·∪Γk such 

that for each 1 ≤ j ≤ k, the conditions z, w ∈ Γj and z �= w imply d(ϕ(z), ϕ(w)) > 2 and 
d(ψ(z), ψ(w)) > 2. Hence for each 1 ≤ j ≤ k, the sets {ϕ(z) : z ∈ Γj} and {ψ(z) : z ∈ Γj}
are 1-separated. This leads to the decomposition T = T1 + · · · + Tk, where

Tj =
∑
z∈Γj

cz〈Xkψ(z), kϕ(z)〉kϕ(z) ⊗ kψ(z)

for every 1 ≤ j ≤ k. Thus it suffices to show that Tj ∈ K for every 1 ≤ j ≤ k. Fix such a 
j for the moment. For each δ > 0, denote Γj,δ = {z ∈ Γj : −r(z) ≤ δ}. Using an obvious 
finite-rank approximation and applying Lemma 5.1, for each δ > 0, we have

‖Tj‖Q ≤
∥∥∥∥ ∑

z∈Γj,δ

cz〈Xkψ(z), kϕ(z)〉kϕ(z) ⊗ kψ(z)

∥∥∥∥ ≤ C2
5.1c sup

z∈Γj,δ

|〈Xkψ(z), kϕ(z)〉|,

where c = supz∈Γ |cz|. Since d(z, ϕ(z)) ≤ C and d(z, ψ(z)) ≤ C for every z ∈ Γ, it follows 
from (9.17) that the right-hand side tends to 0 as δ ↓ 0. Thus ‖Tj‖Q = 0, i.e., Tj is a 
compact operator. This completes the proof. �

As an immediate consequence of Proposition 9.3, we have

Corollary 9.4. Let X ∈ T . Then X is compact if and only if

lim ‖Xkz‖ = 0.

z→∂Ω



48 Y. Wang, J. Xia / Journal of Functional Analysis 280 (2021) 108775
10. The essential commutant of the Toeplitz algebra

We now turn to the proof of part (ii) in Theorem 1.1.

Proposition 10.1. If f ∈ VObdd, then

lim
z→∂Ω

‖(f − f(z))kz‖ = 0.

Proof. Let f ∈ VObdd and consider a large R > 0. Given any z ∈ Ω, we have

‖(f − f(z))kz‖2 =
∫

D(z,R)

|f(w) − f(z)|2|kz(w)|2dv(w)

+
∫

Ω\D(z,R)

|f(w) − f(z)|2|kz(w)|2dv(w)

≤ sup
w∈D(z,R)

|f(w) − f(z)|2 + C1‖f‖2
∞

∫
Ω\D(z,R)

|r(z)|n+1

F (z, w)2n+2 dv(w).

Applying Lemma 3.8, there are constants 0 < C2 < ∞ and s > 0 such that

‖(f − f(z))kz‖2 ≤ sup
w∈D(z,R)

|f(w) − f(z)|2 + C2‖f‖2
∞2−sR. (10.1)

Now we use the fact that f has vanishing oscillation: Using the cutoff functions provided 
by Lemma 7.6, for any δ > 0, we can write f = f1 + f2, where f1 has a compact support 
in Ω and diff(f2) ≤ δ. Combining this fact with Lemma 7.1, we see that

lim
z→∂Ω

sup
w∈D(z,R)

|f(w) − f(z)| = 0

once an R > 0 is given. This and (10.1) together imply that ‖(f − f(z))kz‖ → 0 as 
z → ∂Ω. This completes the proof. �
Proposition 10.2. Suppose that {zj} and {wj} are sequences in Ω satisfying the following 
two conditions:

(1) limj→∞ r(zj) = 0.
(2) There is a constant 0 < C < ∞ such that d(zj , wj) ≤ C for every j ∈ N.

Then for every A ∈ EssCom(T ) we have

lim
j→∞

‖[A, kzj ⊗ kwj
]‖ = 0. (10.2)

Proof. For the given {zj}, {wj} and A, suppose that (10.2) did not hold. Then, replacing 
{zj}, {wj} by subsequences if necessary, we may assume that there is a c > 0 such that
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lim
j→∞

‖[A, kzj ⊗ kwj
]‖ = c. (10.3)

We will show that this leads to a contradiction.
By condition (1) and Lemma 2.1, there is a sequence j1 < j2 < · · · < jν < · · · of 

natural numbers such that −r(zjν+1) < −r(zjν ) for every ν ∈ N and such that the set 
{zjν : ν ∈ N} is 1-separated. For each ν ∈ N, we now define the operator

Bν = [A, kzjν ⊗ kwjν
],

whose rank is at most 2. By conditions (1), (2) and Lemma 2.1, we also have that 
r(wj) → 0 as j → ∞. Thus both sequences of vectors {kzj} and {kwj

} converge to 0
weakly in L2

a(Ω). Consequently we have the convergence

lim
ν→∞

Bν = 0 and lim
ν→∞

B∗
ν = 0

in the strong operator topology. Thus by (10.3) and Lemma 7.8, there is a subsequence 
ν(1) < ν(2) < · · · < ν(m) < · · · of natural numbers such that the sum

B =
∞∑

m=1
Bν(m)

converges strongly with ‖B‖Q = c > 0. Thus B is not compact. Now define the operator

Y =
∞∑

m=1
kzjν(m)

⊗ kwjν(m)
.

Since the set {zjν : ν ∈ N} is 1-separated and since condition (2) holds, by Proposi-
tion 6.4 we have Y ∈ T . Since A ∈ EssCom(T ), the commutator [A, Y ] is compact. On 
the other hand, we clearly have [A, Y ] = B, which is not compact because ‖B‖Q > 0. 
This gives us the contradiction promised earlier. �
Lemma 10.3. [27, Lemma 5.1] Let T be a bounded, self-adjoint operator on a Hilbert 
space H. Then for each unit vector x ∈ H we have ‖[T, x ⊗ x]‖ = ‖(T − 〈Tx, x〉)x‖.

Lemma 10.4. [27, Lemma 5.2] Let T be a bounded, self-adjoint operator on a Hilbert 
space H. Then for every pair of unit vectors x, y ∈ H we have

|〈Tx, x〉 − 〈Ty, y〉| ≤ ‖[T, x⊗ y]‖ + ‖[T, x⊗ x]‖ + ‖[T, y ⊗ y]‖.

For a bounded operator A on L2
a(Ω), we define the function

Ã(z) = 〈Akz, kz〉, z ∈ Ω.

Recall that Ã is commonly called the Berezin transform of the operator A.
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Proposition 10.5. If A ∈ EssCom(T ), then its Berezin transform Ã is in VObdd.

Proof. It suffices to consider a self-adjoint A ∈ EssCom(T ). Obviously, Ã is bounded, 
and Proposition 4.6 tells us that it is continuous on Ω. If it were true that Ã /∈ VO, then 
there would be a c > 0 and sequences {zj}, {wj} in Ω with

lim
j→∞

r(zj) = 0 (10.4)

such that for every j ∈ N, we have d(zj , wj) ≤ 1 and

|〈Akzj , kzj 〉 − 〈Akwj
, kwj

〉| = |Ã(zj) − Ã(wj)| ≥ c. (10.5)

But on the other hand, it follows from Lemma 10.4 that

|〈Akzj , kzj 〉−〈Akwj
, kwj

〉| ≤ ‖[A, kzj ⊗kwj
]‖+‖[A, kzj ⊗kzj ]‖+‖[A, kwj

⊗kwj
]‖. (10.6)

By (10.4) and the condition d(zj, wj) ≤ 1, j ∈ N, we can apply Proposition 10.2 to 
obtain

lim
j→∞

‖[A, kzj ⊗ kwj
]‖ = 0 and lim

j→∞
‖[A, kzj ⊗ kzj ]‖ = 0. (10.7)

By Lemma 2.1, conditions (10.4) and d(zj , wj) ≤ 1, j ∈ N, also imply limj→∞ r(wj) = 0. 
Thus Proposition 10.2 also provides that

lim
j→∞

‖[A, kwj
⊗ kwj

]‖ = 0. (10.8)

Obviously, (10.6), (10.7) and (10.8) together contradict (10.5). �
Lemma 10.6. If A ∈ EssCom(T ), then

lim
z→∂Ω

‖(A− TÃ)kz‖ = 0.

Proof. Again, it suffices to consider a self-adjoint A ∈ EssCom(T ). Then it follows from 
Lemma 10.3 and Proposition 10.2 that

lim
z→∂Ω

‖(A− Ã(z))kz‖ = lim
z→∂Ω

‖[A, kz ⊗ kz]‖ = 0.

Therefore it suffices to show that

lim
z→∂Ω

‖(TÃ − Ã(z))kz‖ = 0.

Since ‖(TÃ−Ã(z))kz‖ ≤ ‖(Ã−Ã(z))kz‖, this follows from Propositions 10.5 and 10.1. �
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Finally, we are ready to determine the essential commutant of T .

Proof of Theorem 1.1(ii). Again, it follows from Proposition 7.3 that EssCom(T ) ⊃
{Tf : f ∈ VObdd} + K.

For the reverse inclusion, consider any A ∈ EssCom(T ). We need to show that A ∈
{Tf : f ∈ VObdd} +K. We know that Ã ∈ VObdd from Proposition 10.5. Hence it suffices 
to show that A − TÃ is compact. For this we apply Lemma 10.6, which gives us

lim
z→∂Ω

‖(A− TÃ)kz‖ = 0. (10.9)

The membership A ∈ EssCom(T ) implies, of course, that A ∈ EssCom{Tf : f ∈ VObdd}. 
Hence Theorem 1.1(i) tells us that A ∈ T . Consequently, A −TÃ ∈ T . By Corollary 9.4, 
the membership A − TÃ ∈ T and (10.9) together imply that A − TÃ is compact. �
11. Berezin transform near the boundary

The purpose of this section is to show that condition (9.17) is implied by the vanishing 
of Berezin transform near ∂Ω. This along with Proposition 9.3 will give us the proof of 
Theorem 1.2. To begin, we need to fix some necessary constants:

Lemma 11.1. (1) There is a 0 < c0 < 1 such that z+P((∂̄r)(z); 2c0
√

−r(z), −2c0r(z)) ⊂
D(z, 1) for every z ∈ Ω satisfying the condition −r(z) < θ.
(2) There is a b0 > 0 such that D(z, 3b0) ⊂ z +P((∂̄r)(z); c0

√
−r(z), −c0r(z)) for every 

z ∈ Ω satisfying the condition −r(z) < θ.
(3) There is an a0 > 0 such that z+P((∂̄r)(z); a0

√
−r(z), −a0r(z)) ⊂ D(z, b0) for every 

z ∈ Ω satisfying the condition −r(z) < θ.

Proof. By Proposition 2.4, there is a 0 < c < 1 such that z + P((∂̄r)(z); c
√

−r(z),
−cr(z)) ⊂ D(z, 1) for every z ∈ Ω satisfying the condition −r(z) < θ. Then c0 = c/2
will do for (1).

To prove (2), take any 0 < b < 1/2 such that C2.5b < c0. By Proposition 2.5, we have

D(z, b) ⊂ z + P((∂̄r)(z); c0
√
−r(z),−c0r(z))

whenever −r(z) < θ. Thus (2) holds for the constant b0 = b/3.
Finally, note that (3) is a direct consequence of Proposition 2.4. �
Once the above constants are fixed, we can introduce the following “polyballs”:

Definition 11.2. (1) Let

P = {(u1, u2, . . . , uu) ∈ Cn : |u1| < a0 and (|u2|2 + · · · + |un|2)1/2 < a0},
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Q = {(u1, u2 . . . , uu) ∈ Cn : |u1| ≤ c0 and (|u2|2 + · · · + |un|2)1/2 ≤ c0} and

R = {(u1, u2 . . . , uu) ∈ Cn : |u1| < 2c0 and (|u2|2 + · · · + |un|2)1/2 < 2c0}.

(2) For each z ∈ Ω satisfying the condition −r(z) < θ, let Sz be the linear transformation 
on Cn given by the formula

Sz(u1, u2, . . . un) = (−r(z)u1,
√
−r(z)u2, . . . ,

√
−r(z)un), (u1, u2, . . . un) ∈ Cn.

(3) For each z ∈ Ω satisfying the condition −r(z) < θ, let Uz be a unitary transformation 
on Cn such that Uz{(0, u2, . . . , un) : u2, . . . , un ∈ C} = {u ∈ Cn : 〈u, (∂̄r)(z)〉 = 0}.
(4) For each z ∈ Ω satisfying the condition −r(z) < θ, denote Vz = UzSz.

Proposition 11.3. Suppose that U is a connected open set in Cn that is symmetric with 
respect to conjugation. That is, (w1, . . . , wn) ∈ U if and only if (w̄1, . . . , w̄n) ∈ U . Let 
F be an analytic function on the domain U × U in Cn × Cn. If F (z̄, z) = 0 for every 
z ∈ U , then F is identically zero on U × U .

Proof. For each j ∈ {1, . . . , n}, let ej denote the vector in Cn whose j-th component is 
1 and whose other components are 0. We then define

(djF )(w, z) = 1
2

(
∂

∂x
+ i

∂

∂y

)
F (w + (x + iy)ej , z + (x + iy)ej)

∣∣∣∣
x=0=y

and

(∂jF )(w, z) = 1
2

(
∂

∂x
− i

∂

∂y

)
F (w + (x + iy)ej , z)

∣∣∣∣
x=0=y

for j ∈ {1, . . . , n} and w, z ∈ U . It is straightforward to verify that for every multi-index 
α ∈ Zn

+, we have dαF = ∂αF . Since F (z̄, z) = 0 for every z ∈ U , an easy induction on 
|α| yields (dαF )(z̄, z) = 0 for every z ∈ U and every α ∈ Zn

+. Thus if we fix any z ∈ U , 
then (∂αF )(z̄, z) = 0 for every α ∈ Zn

+. By the standard power-series expansion, this 
means that the analytic function fz(ζ) = F (ζ, z), ζ ∈ U , vanishes on a small open ball 
containing z̄. Since U is connected, we conclude that fz = 0 on U . Since this is true for 
every z ∈ U , it follows that F is identically zero on U × U . �
Proposition 11.4. Let A be a bounded operator on the Bergman space L2

a(Ω). If

lim
z→∂Ω

〈Akz, kz〉 = 0, (11.1)

then for every given 0 < R < ∞ we have

lim
z→∂Ω

sup |〈Akw, kz〉| = 0. (11.2)

w∈D(z,R)
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Proof. Given (11.1), suppose that (11.2) failed for some 0 < R < ∞. We will show that 
this results in a contradiction. First of all, the failure of (11.2) for this particular R means 
that there is an ε > 0 and sequences {zj}, {wj} in Ω such that

lim
j→∞

r(zj) = 0 (11.3)

and at the same time, d(zj , wj) < R and

|〈Akwj
, kzj 〉| ≥ ε (11.4)

for every j ≥ 1. Since d(zj , wj) < R, for every j ≥ 1 we have a C1 map gj : [0, 1] → Ω
such that gj(0) = zj , gj(1) = wj and

1∫
0

√
〈B(gj(t))g′j(t), g′j(t)〉dt ≤ R + 1. (11.5)

By (11.3), (11.5) and Lemma 2.1, discarding a finite number of j’s if necessary, we may 
assume that −r(gj(t)) < θ for all j and t ∈ [0, 1]. Thus Lemma 11.1 can be applied 
on all these paths. With the b0 provided by Lemma 11.1, we pick an m ∈ N such that 
(R + 1)/m < b0. Thus for every j ≥ 1, there is a partition

0 = xj(0) < xj(1) < · · · < xj(m) = 1

of the interval [0, 1] such that

xj(i)∫
xj(i−1)

√
〈B(gj(t))g′j(t), g′j(t)〉dt ≤

R + 1
m

< b0 (11.6)

for every 1 ≤ i ≤ m. Now, for every pair of j ≥ 1 and 0 ≤ i ≤ m, we define

z
(i)
j = gj(xj(i)).

In particular, we have z(0)
j = zj and z(m)

j = wj for all j.
Recall that we write Kz(ζ) = K(ζ, z), which is the (unnormalized) reproducing kernel 

for L2
a(Ω). Let us denote

Φ(w, z) = 〈AKw,Kz〉,

w, z ∈ Ω. For every pair of j ≥ 1 and 0 ≤ i ≤ m, we define the function

F
(i)
j (ζ, ξ) = |r(z(0)

j )|n+1Φ
(
z
(i)
j + V (i)ζ, z

(0)
j + V (0)ξ

)
, (11.7)
zj zj
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ζ, ξ ∈ R. A review of Definitions 11.2 and 2.3 gives us the identity

z
(i)
j + V

z
(i)
j
R = z

(i)
j + P((∂̄r)(z(i)

j ); 2c0
√
−r(z(i)

j ),−2c0r(z(i)
j )). (11.8)

Therefore Lemma 11.1 ensures that each F (i)
j is well defined, and it is obviously an 

analytic function of R × R. By (11.8), Lemma 11.1(1) and (11.5), if w = z
(i)
j + V

z
(i)
j
ζ

for some ζ ∈ R, then d(w, z(0)
j ) ≤ R + 2. Thus by (4.1) and Lemma 2.1, there is a 

C1 = C1(R) such that

|F (i)
j (ζ, ξ)| ≤ C1‖A‖

for all ζ, ξ ∈ R, j ≥ 1 and 0 ≤ i ≤ m. Hence for each 0 ≤ i ≤ m, {F (i)
j : j ≥ 1} is a 

normal family of analytic functions on R ×R. Consequently there is a sequence

j1 < j2 < · · · < jν < · · ·

in N such that for every 0 ≤ i ≤ m, the sequence {F (i)
jν

}ν∈N is uniformly convergent on 
each compact subset of R ×R. For every 0 ≤ i ≤ m, define the function

F (i) = lim
ν→∞

F
(i)
jν

(11.9)

on R ×R. Next we show that every F (i) is identically zero on R ×R.
We will accomplish this by an induction on i. First, let us show that F (0) is the zero 

function. For j ≥ 1 and ζ ∈ R, we have

F
(0)
j (ζ, ζ) = |r(z(0)

j )|n+1Φ
(
z
(0)
j + V

z
(0)
j

ζ, z
(0)
j + V

z
(0)
j

ζ
)
.

As we explained above, (4.1) and Lemma 2.1 together guarantee that

|F (0)
j (ζ, ζ)| ≤ C1

∣∣∣∣
〈
Ak

z
(0)
j +V

z
(0)
j

ζ
, k

z
(0)
j +V

z
(0)
j

ζ

〉∣∣∣∣.
By (11.3) and Lemmas 11.1(1) and 2.1, for each ζ ∈ R we have r

(
z
(0)
j + V

z
(0)
j

ζ
)
→ 0

as j → ∞. Thus, combining the above inequality with (11.1) and (11.9), we find that 
F (0)(ζ, ζ) = 0 for every ζ ∈ R. By Proposition 11.3, F (0) is identically zero on R ×R.

Now suppose that 0 ≤ i < m and that we have shown that F (i) is identically zero on 
R × R. We need to show that F (i+1) is also identically zero on R × R. By (11.6), we 
have d(z(i)

j , z(i+1)
j ) < b0. A review of Definition 11.2 and Lemma 11.1 gives us

z
(i+1)
j + V (i+1)P ⊂ D(z(i+1)

j , b0) ⊂ D(z(i)
j , 3b0) ⊂ z

(i)
j + V (i)Q. (11.10)
zj zj



Y. Wang, J. Xia / Journal of Functional Analysis 280 (2021) 108775 55
Let ξ ∈ R be given. By (11.7) and (11.10), for any ζ ∈ P, there is an ηj(ζ) ∈ Q such 
that

F
(i+1)
j (ζ, ξ) = F

(i)
j (ηj(ζ), ξ). (11.11)

Since Q is a compact set in R and since F (i) = 0, by (11.9) we have

lim
ν→∞

sup{|F (i)
jν

(η, ξ)| : η ∈ Q} = 0.

Combining this with (11.11) and (11.9), we find that F (i+1)(ζ, ξ) = 0 for every ζ ∈ P. 
Since P is a non-empty open subset of R, this implies that F (i+1)(ζ, ξ) = 0 for every 
ζ ∈ R. Since this is true for every ξ ∈ R, we conclude that F (i+1) is identically zero on 
R ×R. This completes the induction on i.

In particular, the above tells us that F (m) = 0 on R ×R, and consequently

lim
ν→∞

F
(m)
jν

(0, 0) = F (m)(0, 0) = 0. (11.12)

Recalling (11.7), we have

F
(m)
jν

(0, 0) = |r(z(0)
jν

)|n+1Φ
(
z
(m)
j , z

(0)
j

)
= |r(zjν )|n+1〈AKwjν

,Kzjν
〉.

Since d(wjν , zjν ) < R, from (4.1) and Lemma 2.1 we obtain

|〈Akwjν
, kzjν 〉| ≤ C2|F (m)

jν
(0, 0)|.

This and (11.12) together contradict (11.4). This completes the proof. �
Proof of Theorem 1.2. This follows immediately from Propositions 11.4 and 9.3. �
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