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Abstract
Let μ be a regular Borel measure on the open unit ball B in Cn . By a natural formula,
it gives rise to a Toeplitz operator Tμ on the Hardy space H2(S). We characterize the
membership of T s

μ, 0 < s ≤ 1, in any norm ideal C� that satisfies condition (DQK).
The same techniques allow us to compute the Dixmier trace of Tμ when Tμ ∈ C+

1 .
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1 Introduction

Toeplitz operators are usually associated with symbols that are functions. But in this
paper we only consider Toeplitz operators whose symbols are measures. Moreover,
the underlying space will be the Hardy space on the sphere.
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Let S denote the unit sphere {z ∈ Cn : |z| = 1} in Cn . Write dσ for the standard
spherical measure on S with the normalization σ(S) = 1. Recall that the Hardy
space H2(S) is simply the norm closure of the analytic polynomials C[z1, . . . , zn] in
L2(S, dσ). Denote B = {z ∈ Cn : |z| < 1}, the open unit ball in Cn .

Suppose that μ is a regular Borel measure on B. Recall that by the Cauchy integral
formula [18, Section 3.2] and the so-called K -limit, each h ∈ H2(S) is uniquely
identified with an analytic function on B [18, Theorem 5.6.8]. This fact enables us to
define the Toeplitz operator Tμ on the Hardy space H2(S) by the formula

(Tμ f )(z) =
∫
B

f (w)

(1 − 〈z, w〉)n dμ(w), f ∈ H2(S). (1.1)

It is well known that the Toeplitz operator Tμ is bounded on H2(S) if and only
if μ is a Carleson measure for the Hardy space. In the case where n = 1, Luecking
characterized the membership of Tμ in the Schatten class Cp for all 0 < p < ∞ [16].
Recently in [17], Pau and Perälä generalized this Schatten-class characterization to
cover all n ≥ 1.

There are, however, many more important operator ideals other than the Schatten
classes. For example, if one is interested in theDixmier trace [2,9,10,20], one considers
the ideal C+

1 , which is strictly larger than the trace class C1 but contained in every C1+ε ,
ε > 0. In this paper we will take up the task of determining the membership of Tμ in
some of these other operator ideals. But, as the reader will see, the techniques required
to handle these other ideals are completely different from those employed in [16,17].

Let us now introduce the ideals that will be considered in this paper. First of all,
we only consider ideals defined in terms of symmetric gauge functions in the manner
prescribed in [15]. Thus [15] is our standard reference for symmetric norms and
ideals. Let ĉ denote the linear space of sequences {a j } j∈N, where a j ∈R and for every
sequence the set { j ∈ N : a j �= 0} is finite. A symmetric gauge function is a map

� : ĉ → [0,∞)

that has the following properties:

(a) � is a norm on ĉ.
(b) �({1, 0, …, 0, . . . }) = 1.
(c) �({a j } j∈N) = �({|aπ( j)|} j∈N) for every bijection π : N → N.

See [15, page 71]. Given a symmetric gauge function �, we define the symmetric
norm

‖A‖� = sup
j≥1

�({s1(A), . . . , s j (A), 0, . . . , 0, . . . })

for bounded operators, where s1(A), . . . , s j (A), . . . are the singular numbers of A.
On any separable Hilbert space H, the set of operators

C� = {A ∈ B(H) : ‖A‖� < ∞} (1.2)



Toeplitz Operators Associated with Measures... Page 3 of 58 30

is a norm ideal [15, page 68]. That is, C� has the following properties:

• For any B, C ∈ B(H) and A ∈ C�, BAC ∈ C� and ‖BAC‖� ≤ ‖B‖‖A‖�‖C‖.
• If A ∈ C�, then A∗ ∈ C� and ‖A∗‖� = ‖A‖�.
• For any A ∈ C�, ‖A‖ ≤ ‖A‖�, and the equality holds when rank(A) = 1.
• C� is complete with respect to ‖.‖�.

Now an obvious question is, how do we characterize the membership

Tμ ∈ C� (1.3)

for theToeplitz operator defined by (1.1)?Beforewe discuss thismembership problem,
let us first look at some classes of examples of C�.

There are many familiar examples of symmetric gauge functions. For each 1 ≤
p < ∞, the formula �p({a j } j∈N) = (

∑∞
j=1 |a j |p)1/p defines a symmetric gauge

function on ĉ, and the corresponding ideal C�p defined by (1.2) is just the Schatten
class Cp.

The next set of examples that come to mind are the Lorentz ideals [3, Section 4.2],
which can also be defined using symmetric gauge functions, as follows.

For each 1 ≤ p < ∞, we have the symmetric gauge function �+
p defined by the

formula

�+
p ({a j } j∈N) = sup

j≥1

|aπ(1)| + |aπ(2)| + · · · + |aπ( j)|
1−1/p + 2−1/p + · · · + j−1/p , {a j } j∈N ∈ ĉ,

where π : N → N is any bijection such that |aπ(1)| ≥ |aπ(2)| ≥ · · · ≥ |aπ( j)| ≥ · · · ,
which exists because each {a j } j∈N ∈ ĉ only has a finite number of nonzero terms.
Thus we obtain the ideal C�+

p
by (1.2). For simplicity, we will write C+

p for C�+
p
and

‖ · ‖+
p for ‖ · ‖�+

p
. In particular, C+

1 is the ideal on which Dixmier trace is defined.
Similarly, for each 1 < p < ∞ we have the symmetric gauge function

�−
p ({a j } j∈N) =

∞∑
j=1

|aπ( j)|
j (p−1)/p

, {a j } j∈N ∈ ĉ,

where, again, π : N → N is any bijection such that |aπ( j)| ≥ |aπ( j+1)| for every j ∈
N. In this case, the ideal C�−

p
defined by (1.2) is often simply denoted by the symbol

C−
p .
Note that the Lorentz ideals C+

p and C−
p fit nicely in the context of Sects. III.14 and

III.15 in [15]. The notation C+
p and C−

p simply reflects the fact that C−
p ⊂ Cp ⊂ C+

p .
Because of the structure of the Hardy space H2(S), it does not appear easy to

answer the membership question (1.3) for all symmetric gauge functions �. We need
to impose a condition on�. But this condition is satisfied by�p,�−

p and�+
p . Thus we

will characterize the memberships Tμ ∈ C−
p and Tμ ∈ C+

p , and we will do even more.
Note that Tμ is a positive operator, so we can consider its powers. Thus, in addition to
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the membership problem (1.3), we can more generally consider the problem T s
μ ∈ C�

for 0 < s ≤ 1.
The readerwill see that our techniques are so general that ifwe consider the analogue

of the membership problem T s
μ ∈ C� on the Bergman space L2

a(B, dv), then no
condition needs to be imposed on �. In other words, in the Bergman space case our
techniques can handle all symmetric gauge functions �. This is due to the structural
difference between L2

a(B, dv) and H2(S), which will be further explained later. But
first let us discuss the condition that we do need to impose in the Hardy-space case.

For any a = {a j } j∈N and N ∈ N, define the sequence a[N ] = {aNj } j∈N by the
formula

aNj = ai if (i − 1)N + 1 ≤ j ≤ i N , i ∈ N. (1.4)

In other words, a[N ] is obtained from a by repeating each term N times. Alternately,
we can think of a[N ] as a ⊕ · · · ⊕ a, the “direct sum” of N copies of a.

Definition 1.1 [22, Definition 2.2] A symmetric gauge function � is said to satisfy
condition (DQK) if there exist constants 0 < θ < 1 and 0 < α < ∞ such that

�(a[N ]) ≥ αN θ�(a)

for every a ∈ ĉ and every N ∈ N.
Obviously, the symmetric gauge functions �p, 1 ≤ p < ∞, satisfy condition

(DQK). In fact, one can think of (DQK) as an inherent property of the Schatten
classes. But this is one property that is shared by many other classes:

Proposition 1.2 [22, Proposition 5.1] For each 1 < p < ∞, both symmetric gauge
functions �−

p and �+
p satisfy condition (DQK).

Also see [13, Sect. 6]
The case of C+

1 and Dixmier trace will be considered separately in Sects. 7 and 8.
We will determine the membership T s

μ ∈ C� for � satisfying condition (DQK).
Next we discuss the membership criterion, which involves the Bergman-metric struc-
ture of B.

Throughout the paper, β denotes the Bergman metric on B. That is,

β(z, w) = 1

2
log

1 + |ϕw(z)|
1 − |ϕw(z)| , z, w ∈ B,

where ϕz is the Möbius transform of B [18, Section 2.2]. For each z ∈ B and each
a > 0, we define the corresponding β-ball D(z, a) = {w ∈ B : β(z, w) < a}.
Definition 1.3 (i) Let a be a positive number. A subset
 ofB is said to be a-separated

if D(z, a) ∩ D(w, a) = ∅ for all distinct elements z, w in 
.
(ii) Let 0 < a < b < ∞. A subset 
 of B is said to be an a, b-lattice if it is

a-separated and has the property ∪z∈
D(z, b) = B.
(iii) A subset 
 of B is simply said to be separated if it is a-separated for some a > 0.
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To describe the membership criterion for T s
μ ∈ C�, we also need to extend the domain

of symmetric gauge functions beyond the space ĉ. Let� : ĉ → [0,∞) be a symmetric
gauge function. Suppose that {b j } j∈N is an arbitrary sequence of real numbers, i.e.,
the set { j ∈ N : b j �= 0} is not necessarily finite. Following [15, page 80], we define

�({b j } j∈N) = sup
k≥1

�({b1, . . . , bk, 0, . . . , 0, . . . }).

If W is a countable, infinite set, then we define

�({bα}α∈W ) = �({bπ( j)} j∈N),

where π : N → W is any bijection. The properties of symmetric gauge functions
guarantee that the value of �({bα}α∈W ) is independent of the choice of the bijection
π [15, page 71].

Our investigation fits nicely in the following broader context. Given an operator A,
particularly an operator on a reproducing-kernel Hilbert space, one is always interested
in formulas for its set of singular numbers. But as a practical matter, a formula that is
both explicit and exact, is usually not available. Thus one is frequently forced to search
for alternatives: are there quantities given by simple formulas that are equivalent to
{s1(A), s2(A), . . . , s j (A), . . . } in some clearly-defined sense?

Intuitively, for the Toeplitz operator Tμ defined by (1.1), if 
 is an a, b-lattice in B,
then the set of scalar quantities

{
μ(D(z, b))

(1 − |z|2)n : z ∈ 


}
(1.5)

should be equivalent to the set of singular numbers {s1(Tμ), s2(Tμ), . . . , s j (Tμ), . . . }.
The main results of the paper confirm our intuition in two different ways. First, we
have

Theorem 1.4 Suppose that � is a symmetric gauge function satisfying condition
(DQK). Let 0 < s ≤ 1, and let 0 < a < b < ∞ be given such that b ≥ 2a.
Then there exist constants 0 < c ≤ C < ∞ which depend only on �, s, a, b and the
complex dimension n such that

c�

({(
μ(D(z, b))

(1 − |z|2)n
)s}

z∈


)
≤ ‖T s

μ‖� ≤ C�

({(
μ(D(z, b))

(1 − |z|2)n
)s}

z∈


)

for every regular Borel measure μ on B and every a, b-lattice 
 ⊂ B.

Second, the connection between (1.5) and {s1(Tμ), s2(Tμ), . . . , s j (Tμ), . . . } can
be seen through Dixmier trace. As it turns out, the techniques that allow us to prove
Theorem 1.4, also allow us to compute the Dixmier trace of Tμ when Tμ ∈ C+

1 .
In fact, to compute the Dixmier trace of Tμ, we just need a more refined version
of (1.5), which is understandable because computation is more precise than general
estimates. Suppose that
 is an a, b-lattice inBwith b ≥ 2a. ThenB admits a partition
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B = ∪z∈
Ez such that Ez ⊂ D(z, b) for every z ∈ 
. We will show that Tμ has the
same Dixmier trace as the diagonal operator

∑
z∈


czez ⊗ ez,

where {ez : z ∈ 
} is any orthonormal set and

cz =
∫
Ez

dμ(w)

(1 − |w|2)n , (1.6)

z ∈ 
. In other words, Dixmier trace cannot distinguish between the singular numbers
{s j (Tμ) : j ∈ N} and the scalar quantities {cz : z ∈ 
} explicitly given by (1.6). This
fits nicely in our broader context mentioned earlier.

Let us explain a little more of the underlying intuition for both Theorem 1.4 and
the computation of Dixmier trace mentioned above. The determining factor here is
the behavior of the normalized reproducing kernel kz for the Hardy space H2(S). We
have

〈kz, kw〉 =
(

(1 − |z|2)1/2(1 − |w|2)1/2
1 − 〈w, z〉

)n

, (1.7)

z, w ∈ B. The most important thing in the above is the power n, which is what distin-
guishes the Hardy space from other reproducing-kernel Hilbert spaces on B. To prove
a result such as Theorem 1.4, one needs control in both radial and spherical directions
of a certain decomposition. Of the two, the radial direction is more problematic. If we
had a power n+ ε in (1.7) for some ε > 0, then it would give us enough control in the
radial direction to handle all norm ideals C�. But n itself just misses being enough of
a power, if we consider � unconditionally. Then came the realization that in the case
where � satisfies condition (DQK), we can “manufacture” an additional power ε for
control in the necessary estimates. That is why we are able to prove what we prove in
this paper.

In the Bergman-space analogue of (1.7), the corresponding power is n+1. That, as
we explained above, makes the Bergman-space case a much easier case. More to the
point, condition (DQK) is not needed for the analogue of Theorem 1.4 on L2

a(B, dv).
Moreover, the Bergman space version would include the ordinary kind of Toeplitz
operators.

Having explained themotivation for our results, let us also discuss their applications.
These concern certain naturally-occurring examples of Tμ defined by (1.1). Although
these examples of Tμ are well known and can be readily found in the literature (see,
e.g., [16,17]), we list them here along with our own perspectives.

For the first class of examples, we start with a regular Borel measure μ on B.
Since H2(S) consists of analytic functions on B, we have the restriction operator
R : H2(S) → L2(B, dμ). By definition,

〈R∗R f , g〉 = 〈R f , Rg〉L2(B,dμ) =
∫
B
f (w)g(w)dμ(w).
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It is well known that this identity implies R∗R = Tμ. The study of such R has a long
history and is closely related to the problem of extensions of analytic functions [1]. In
recent years, the study of operators of the form R and Tμ = R∗R has taken on added
urgency because of their connections with the Arveson-Douglas conjecture and with
non-commutative geometry. See [6–8,21]. For this class of operators, Theorem 1.4
tells us exactly when |R|s = T s/2

μ is in the ideal C� if � satisfies condition (DQK)
and 0 < s ≤ 1.

For the second class of examples, consider an analytic map ϕ : B → B. It gives
rise to the composition operator Cϕ f = f ◦ ϕ, f ∈ H2(S). Since ϕ is bounded, there
is an X ⊂ S with σ(S\X) = 0 such that the radial limit ϕ∗(ξ) exists when ξ ∈ X . We
have

〈C∗
ϕCϕ f , g〉 =

∫
f (ϕ∗(ξ))g(ϕ∗(ξ))dσ(ξ) =

∫
f (w)g(w)dμ(w), (1.8)

where μ is the pullback of σ by ϕ∗. That is, μ(E) = σ({ξ ∈ X : ϕ∗(ξ) ∈ E}) for
every measurable set E in the closed ball B. Suppose that

|ϕ∗(ξ)| < 1 for σ -a.e. ξ ∈ S. (1.9)

Then the measureμ is concentrated on the open ballB, and (1.8) impliesC∗
ϕCϕ = Tμ.

Again, becauce |Cϕ | = T 1/2
μ , Theorem 1.4 characterizes the membership Cϕ ∈ C� in

terms of the measure μ when � satisfies condition (DQK). Moreover, Theorem 8.2
below gives us the Dixmier trace of C∗

ϕCϕ when C∗
ϕCϕ ∈ C+

1 .
It should be emphasized that (1.9) is essential for obtaining C∗

ϕCϕ = Tμ with a
measure μ concentrated on B. If, for example, we consider the identity map id : B →
B, then C∗

idCid = 1, which cannot be realized as an operator of the form (1.1) on
H2(S).

To conclude the Introduction, let us briefly describe the rest of the paper. Section 2
contains a number of preliminaries concerning the Bergman metric and related esti-
mates. In Sect. 3, we state an operator form of the atomic decomposition on H2(S).
Since we need amore precise statement than what can be found in standard references,
we work out the details in Sect. 3.

In Sect. 4 we present a number of properties of symmetric gauge functions and
symmetric norms. We would like to call particular attention to Proposition 4.6, which
is how condition (DQK) enters our estimates.

With the above preparations, the upper bound in Theorem 1.4 is proved in Sect. 5,
and the lower bound is proved in Sect. 6. The proofs of these two bounds are based
on various decompositions in terms of radial and spherical coordinates, and judicious
regrouping of the terms, which ultimately produce “small factors”. The best way to
explain this is to take a look at (5.24), where we see two small factors on the right-hand
side,

2−2(s(n+t)−n)p and 2−2εn�.
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The factor 2−2(s(n+t)−n)p,which represents decay in the spherical direction, is obtained
through the use of themodified kernelψz,t , whereas the factor 2−2εn�, which represents
decay in the radial direction, is obtained through condition (DQK). But it takes the
long, tedious work up to (5.24) to actually produce these small factors.

Sections 7 and 8 contain calculations of the Dixmier trace of Tμ when Tμ ∈ C+
1 .

More specifically, in Sect. 7 we deal with the case where Tμ is a discrete sum. As
it turns out, this discrete case embodies most of the difficulties and is more tedious
than the estimates in Sect. 5. For example, it requires not one, but two applications
of Proposition 4.6, which take quite a bit of work to set up. The reason for the added
difficulty is that computation of Dixmier trace does not allow the use of the modified
kernel ψz,t . Then in Sect. 8, we deduce the Dixmier trace of a general Tμ ∈ C+

1 from
the discrete case in Sect. 7, which also takes some work.

Finally, Sect. 9 is a very brief discussion of the equivalence of the membership
criterion in Theorem 1.4 with a condition that is given in terms of modified Berezin
transform.

2 Preliminaries

The work in this paper relies heavily on the Bergman-metric structure of the ball. Let
dλ denote the standard Möbius invariant measure on B. That is,

dλ(ζ ) = dv(ζ )

(1 − |ζ |2)n+1 .

Lemma 2.1 (1) For any pair of 0 < a < ∞ and 0 < R < ∞, there is a natural
number N = N (a, R) such that for every a-separated set 
 in B and every z ∈ B,
we have

card{u ∈ 
 : β(u, z) ≤ R} ≤ N .

(2) For any pair of 0 < a ≤ R < ∞, there is a natural number m = m(a, R) such
that every a-separated set 
 in B admits a partition 
 = 
1 ∪ · · · ∪ 
m with the
property that each 
 j is R-separated, j = 1, . . . ,m.

Proof (1) is a simple consequence of the fact that, for any 0 < r < ∞, the value of
λ(D(w, r)) is independent of w ∈ B. Then, by (1), for any 0 < a ≤ R < ∞, there
is an m ∈ N such that if 
 is any a-separated set in B, then card{u ∈ 
 : β(u, v) ≤
2R} ≤ m for every v ∈ 
. By a standard maximality argument, 
 admits a partition

 = 
1 ∪ · · · ∪ 
m such that for every j ∈ {1, . . . ,m}, the conditions u, v ∈ 
 j and
u �= v imply β(u, v) > 2R. Thus each 
 j is R-separated, proving (2). ��
Lemma 2.2 Given any pair of 0 < R1 < ∞ and 0 < R2 < ∞, there is an m ∈
N which has the following property: Suppose that 
 is a 1-separated set in B. Then
for each z ∈ D(0, R1), there is a partition 
 = 
1 ∪ · · · ∪ 
m such that for every
j ∈ {1, . . . ,m}, if u, v ∈ 
 j and if u �= v, then β(ϕu(z), ϕv(z)) > R2.



Toeplitz Operators Associated with Measures... Page 9 of 58 30

Proof It suffices to note that for all z, u, v ∈ B we have

β(u, v) ≤ β(u, ϕu(z)) + β(ϕu(z), ϕv(z)) + β(ϕv(z), v) = 2β(0, z) + β(ϕu(z), ϕv(z)).

Then the desired conclusion follows from Lemma 2.1(2). ��
Lemma 2.3 [25, Lemma 2.3] For all u, v, x, y ∈ B we have

(1 − |ϕu(x)|2)1/2(1 − |ϕv(y)|2)1/2
|1 − 〈ϕu(x), ϕv(y)〉| ≤ 2eβ(x,0)+β(y,0) (1 − |u|2)1/2(1 − |v|2)1/2

|1 − 〈u, v〉| .

Lemma 2.4 [14, Lemma 3.9] The inequality 1− |z|2 ≤ 4e2β(z,w)(1− |w|2) holds for
all z, w ∈ B.

Lemma 2.5 For each t > 0, there is a constant C2.5 = C2.5(t) such that the inequality

∑
v∈


β(v,ξ)≥R

(
(1 − |ξ |2)1/2(1 − |v|2)1/2

|1 − 〈ξ, v〉|
)n+t

(1 − |v|2)n/2 ≤ C2.5e
−t R/2(1 − |ξ |2)n/2

holds for every 1-separated set 
 in B, every ξ ∈ B and every R ≥ 0.

Proof This is similar to [25, Lemma 2.4], but we include the details here for the
convenience of the reader. If w ∈ D(v, 1), then v ∈ D(w, 1) = ϕw(D(0, 1)). Thus
if w ∈ D(v, 1), then v = ϕw(y) for some y ∈ D(0, 1). Let ξ ∈ B. Since ξ = ϕξ (0),
from Lemma 2.3 we obtain

(1 − |ξ |2)1/2(1 − |v|2)1/2
|1 − 〈ξ, v〉| ≤ 2e

(1 − |ξ |2)1/2(1 − |w|2)1/2
|1 − 〈ξ,w〉|

for every w ∈ D(v, 1). Similarly, for w ∈ D(v, 1), Lemma 2.4 gives us

1 − |v|2 ≤ 4e2(1 − |w|2).

Set C1 = (2e)n+t (4e2)n/2. Then the above two inequalities lead to

(
(1 − |ξ |2)1/2(1 − |v|2)1/2

|1 − 〈ξ, v〉|
)n+t

(1 − |v|2)n/2

≤ C1

(
(1 − |ξ |2)1/2(1 − |w|2)1/2

|1 − 〈ξ,w〉|
)n+t

(1 − |w|2)n/2

(2.1)

for every w ∈ D(v, 1). Suppose that 
 is a 1-separated set in B. Then by definition
D(v, 1) ∩ D(v′, 1) = ∅ for v �= v′ in 
. Hence for all ξ ∈ B and R ≥ 0 we have

∑
v∈


β(v,ξ)≥R

(
(1 − |ξ |2)1/2(1 − |v|2)1/2

|1 − 〈ξ, v〉|
)n+t

(1 − |v|2)n/2
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≤
∑
v∈


β(v,ξ)≥R

C1

λ(D(v, 1))

∫
D(v,1)

(
(1 − |ξ |2)1/2(1 − |w|2)1/2

|1 − 〈ξ, w〉|
)n+t

(1 − |w|2)n/2dλ(w)

≤ C1

λ(D(0, 1))

∫
β(w,ξ)≥R−1

(
(1 − |ξ |2)1/2(1 − |w|2)1/2

|1 − 〈ξ, w〉|
)n+t

(1 − |w|2)n/2dλ(w).

(2.2)

To estimate the last integral, note that

(1 − |ξ |2)1/2(1 − |ϕξ (ζ )|2)1/2
|1 − 〈ξ, ϕξ (ζ )〉| = (1 − |ζ |2)1/2.

Thus, making the substitution w = ϕξ (ζ ) and using the Möbius invariance of dλ, we
obtain

∫
β(w,ξ)≥R−1

(
(1 − |ξ |2)1/2(1 − |w|2)1/2

|1 − 〈ξ,w〉|
)n+t

(1 − |w|2)n/2dλ(w)

=
∫

β(0,ζ )≥R−1
(1 − |ζ |2)(n+t)/2(1 − |ϕξ (ζ )|2)n/2dλ(ζ )

= (1 − |ξ |2)n/2
∫

β(0,ζ )≥R−1

dv(ζ )

|1 − 〈ξ, ζ 〉|n(1 − |ζ |2)1−(t/2)
= (∗∗).

It follows from [18, Proposition 1.4.10] that there is a C2 = C2(t) such that

∫
dσ(x)

|1 − 〈z, x〉|n ≤ C2

(1 − |z|2)t/4 (2.3)

for every z ∈B. The conditionβ(0, ζ ) ≥ R−1 implies 1−|ζ | ≤ 2e−2R+2. Combining
(2.3) with the decomposition dv = 2nr2n−1drdσ of the volume measure, we have

∫
β(0,ζ )≥R−1

dv(ζ )

|1 − 〈ξ, ζ 〉|n(1 − |ζ |2)1−(t/2)
≤

∫ 1

max{1−2e−2R+2,0}
C22nr2n−1dr

(1 − r2)1−(t/4)

≤ nC2

∫ 1

max{1−2e−2R+2,0}
dy

(1 − y)1−(t/4)
≤ 4

t
nC2(2e

−2R+2)t/4.

Therefore

(∗∗) ≤ 4

t
(2e2)t/4nC2e

−t R/2(1 − |ξ |2)n/2.

Substituting this in (2.2), we conclude that the lemma holds for the constant

C2.5 = 4n(2e2)t/4C1C2

tλ(D(0, 1))
.

This completes the proof. ��
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The proofs in Sects. 5–8 rely on a standard radial-spherical decomposition of the
ball introduced in [24], which we now review. First of all, the formula

d(u, ξ) = |1 − 〈u, ξ 〉|1/2, u, ξ ∈ S, (2.4)

defines a metric on the unit sphere S [18]. Denote

B(u, r) = {ξ ∈ S : |1 − 〈u, ξ 〉|1/2 < r}

for u ∈ S and r > 0. There is a constant A0 ∈ (2−n,∞) such that

min{2−n, π−1}r2n ≤ σ(B(u, r)) ≤ A0r
2n (2.5)

for all u ∈ S and 0 < r ≤ √
2 [18, Proposition 5.1.4].

For each integer k ≥ 0, let {uk,1, . . . , uk,m(k)} be a subset of S which is maximal
with respect to the property

B(uk, j , 2
−k−1) ∩ B(uk, j ′ , 2

−k−1) = ∅ for all 1 ≤ j < j ′ ≤ m(k). (2.6)

The maximality of {uk,1, . . . , uk,m(k)} implies that

∪m(k)
j=1 B(uk, j , 2

−k) = S. (2.7)

For each pair of k ≥ 0 and 1 ≤ j ≤ m(k), define the subset

Tk, j = {ru : 1 − 2−2k ≤ r < 1 − 2−2(k+1), u ∈ B(uk, j , 2
−k)} (2.8)

of B. Let us also introduce the index set

I = {(k, j) : k ≥ 0, 1 ≤ j ≤ m(k)}. (2.9)

However cumbersome the above system is, it is essential for the proofs in Sects. 5–8.

Lemma 2.6 [24, Lemma 2.4]Given any 0 < a < ∞, there exists a natural number K
such that every a-separated set 
 in B admits a partition 
 = 
1 ∪ · · · ∪ 
K which
has the property that card(
i ∩ Tk, j ) ≤ 1 for all i ∈ {1, . . . , K } and (k, j) ∈ I .

Last but not least, we remind the reader of the following counting lemma:

Lemma 2.7 [23, Lemma 4.1] Let X be a set and let E be a subset of X × X. Suppose
that m is a natural number such that

card{y ∈ X : (x, y) ∈ E} ≤ m and card{y ∈ X : (y, x) ∈ E} ≤ m

for every x ∈ X. Then there exist pairwise disjoint subsets E1, E2, ..., E2m of E such
that

E = E1 ∪ E2 ∪ ... ∪ E2m
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and such that for each 1 ≤ j ≤ 2m, the conditions (x, y), (x ′, y′) ∈ E j and (x, y) �=
(x ′, y′) imply both x �= x ′ and y �= y′.

3 Discrete Sums on the Hardy Space

The proof of Theorem 1.4 requires a class of operators on the Hardy space H2(S)

that are constructed from separated sequences and modified kernel functions. One can
view this section as an operator form of atomic decomposition [26].

First, recall that the formula

kw(ζ ) = (1 − |w|2)n/2

(1 − 〈ζ,w〉)n

gives us the normalized reproducing kernel for the Hardy space H2(S). With that in
mind, for each pair of 0 ≤ t < ∞ and w ∈ B, we define

ψw,t (ζ ) = (1 − |w|2)(n/2)+t

(1 − 〈ζ,w〉)n+t
, (3.1)

ζ ∈ B. In terms of the multiplier

mw(ζ ) = 1 − |w|2
1 − 〈ζ,w〉 , (3.2)

and the normalized reproducing kernel kw, we have the relation

ψw,t = mt
wkw.

In particular, ψw,0 = kw. For t > 0, we think of ψw,t as a modified version of kw.
This modification improves the “decaying rate” of the kernel, as can be seen below:

Proposition 3.1 [12, Proposition 3.1]Given any t > 0, there is a constant 0 < C3.1 <

∞ that depends only on t and the complex dimension n such that

|〈ψz,t , ψw,t 〉| ≤ C3.1

(
(1 − |z|2)1/2(1 − |w|2)1/2

|1 − 〈w, z〉|
)n+t

for all z, w ∈ B.

Suppose thatH1 andH2 are Hilbert spaces. Given any pair of vectors h1 ∈ H1 and
h2 ∈ H2, we define the operator h1 ⊗ h2 : H2 → H1 by the formula

h1 ⊗ h2 f = 〈 f , h2〉h1,
f ∈ H2. The main idea of the paper is to reduce everything to the analysis of such
operators. Consequently operators of the form h1 ⊗h2 will be ubiquitous in the paper.
The main purpose of the section is to establish Propositions 3.2 and 3.8 below.
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Proposition 3.2 Given any t > 0, there is a constant 0 < C3.2 < ∞ that depends
only on t and the complex dimension n such that

∥∥∥∥
∑
w∈


ψw,t ⊗ ew

∥∥∥∥ ≤ C3.2

for every 1-separated set 
 in B, where {ew : w ∈ 
} is any orthonormal set.
Proof Given a 1-separated set 
 and an orthonormal set {ew : w ∈ 
}, let us write

B =
∑
w∈


ψw,t ⊗ ew.

Then

B∗B =
∑

u,w∈


〈ψw,t , ψu,t 〉eu ⊗ ew.

Consider any vector h = ∑
w∈
 cwew. We have

B∗Bh =
∑
u∈


yueu, (3.3)

where

yu =
∑
w∈


〈ψw,t , ψu,t 〉cw,

u ∈ 
. Applying Proposition 3.1, the Cauchy–Schwarz inequality and the case R = 0
in Lemma 2.5, we have

|yu |2 ≤ C2
3.1

( ∑
w∈


(
(1 − |u|2)1/2(1 − |w|2)1/2

|1 − 〈w, u〉|
)n+t

|cw|
)2

≤ C2
3.1

∑
w∈


(
(1 − |u|2)1/2(1 − |w|2)1/2

|1 − 〈w, u〉|
)n+t

(1 − |w|2)n/2

×
∑
w∈


(
(1 − |u|2)1/2(1 − |w|2)1/2

|1 − 〈w, u〉|
)n+t |cw|2

(1 − |w|2)n/2

≤ C2
3.1C2.5

∑
w∈


(
(1 − |u|2)1/2(1 − |w|2)1/2

|1 − 〈w, u〉|
)n+t (

1 − |u|2
1 − |w|2

)n/2

|cw|2

for every u ∈ 
. Applying Lemma 2.5 again with R = 0, we have
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∑
u∈


|yu |2 ≤ C2
3.1C2.5

∑
w∈


∑
u∈


(
(1 − |u|2)1/2(1 − |w|2)1/2

|1 − 〈w, u〉|
)n+t (

1 − |u|2
1 − |w|2

)n/2

|cw|2

≤ C2
3.1C

2
2.5

∑
w∈


|cw|2.

By (3.3), this means ‖B∗Bh‖2 ≤ C2
3.1C

2
2.5‖h‖2. Since the vector h = ∑

w∈
 cwew is
arbitrary, it follows that ‖B‖ ≤ (C3.1C2.5)

1/2. This completes the proof. ��
Proposition 3.3 Given any t > 0, consider the positive operator

Rt =
∫

ψz,t ⊗ ψz,t dλ(z)

on the Hardy space H2(S). There are constants 0 < a ≤ b < ∞ such that a‖h‖2 ≤
〈Rth, h〉 ≤ b‖h‖2 for every h ∈ H2(S).

Proof The upper bound was explicitly stated in [11, Proposition 3.1]. The lower bound
was not explicitly stated there, because it was not need in [11]. But the proof of [11,
Proposition 3.1] clearly contains the lower bound. Indeed identity (3.6) in [11] gives
us

∫
ψz,t (w)ψz,t (w′)dλ(z) =

∞∑
k=0

bk,tC
n−1+k
k 〈w,w′〉k =

∞∑
k=0

bk,t
∑
|α|=k

eα(w)eα(w′),

where eα(w) = {
(n−1+k)!
α!(n−1)!

}1/2
wα , α ∈ Zn+, and

bk,t = n

(∏k−1
j=0(n + t + j)

k!Cn−1+k
k

)2
(n − 1 + k)!∏n−1+k
j=0 (2t + j)

when k ≥ 1. By standard asymptotic expansion (see, e.g., (3.3) in [11]), there is an
a > 0 such that bk,t ≥ a for every k ≥ 0. Recall that {eα : α ∈ Zn+} is the standard
orthonormal basis in H2(S). Therefore the lower bound Rt ≥ a holds. ��

Let L be a subset of B that is maximal with respect to the property of being 1-
separated. This L will be fixed for the rest of the section. Define the function

F =
∑
u∈L

χD(u,2)

on B. By Lemma 2.1, there is a natural number N ∈ N such that

card{v ∈ L : D(u, 2) ∩ D(v, 2) �= ∅} ≤ N

for every u ∈ L. Themaximality ofL implies∪u∈LD(u, 2) =B. Hence the inequality

1 ≤ F ≤ N (3.4)



Toeplitz Operators Associated with Measures... Page 15 of 58 30

holds on the unit ball B. For each t > 0, define the operator

R′
t =

∫
F(w)ψw,t ⊗ ψw,t dλ(w).

By Proposition 3.3 and (3.4), the operator inequality

a ≤ R′
t ≤ bN (3.5)

holds on H2(S). By the definition of F and the Möbius invariance of dλ,

R′
t =

∑
u∈L

∫
D(u,2)

ψw,t ⊗ ψw,t dλ(w) =
∑
u∈L

∫
D(0,2)

ψϕu(z),t ⊗ ψϕu(z),t dλ(z).

Now, for each z ∈ B, define

Yz,t =
∑
u∈L

ψϕu(z),t ⊗ ψϕu(z),t .

Thus we have

R′
t =

∫
D(0,2)

Yz,t dλ(z). (3.6)

Definition 3.4 For any t > 0 and any separated set 
 in B, we denote

E
,t =
∑
w∈


ψw,t ⊗ ψw,t .

Lemma 3.5 (1) Given any 0 < R < ∞, there is an N = N (R) ∈ N which has the
following property: For every pair of t > 0 and ξ ∈ D(0, R), there are 1-separated
sets 
1, . . . , 
N in B such that

Yξ,t = E
1,t + · · · + E
N ,t .

(2) For every 0 < r < 1, we have sup|z|≤r ‖Yz,t‖ < ∞.

Proof For (1), it suffices to take the m provided by Lemma 2.2 for the case where
R1 = R and R2 = 2 to be the N (R). Then (2) follows from (1) and Proposition 3.2. ��
Lemma 3.6 Let t ≥ 0 be given. Then there is a constant C3.6 = C3.6(t) such that

‖ψz,t − ψw,t‖ ≤ C3.6β(z, w) (3.7)

for all z, w ∈ B. Similarly, there is a constant C ′
3.6 = C ′

3.6(t) such that

|〈ψγ,t , kz − kw〉| ≤ C ′
3.6β(z, w)(1 − |z|2)n/2|ψγ,t (z)| (3.8)

for every γ ∈ B and all z, w ∈ B satisfying the condition β(z, w) < 1.
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Proof First of all, by elementary analysis, there is a C = C(n, t) such that

∣∣∣∣1 −
(

1 − |u|2
|1 − 〈u, z〉|2

)(n/2)+t( 1 − 〈z, u〉
1 − 〈y, u〉

)n+t ∣∣∣∣ ≤ C |u| (3.9)

for all u ∈ D(0, 1), z ∈ B and y ∈ B.
We have ‖mz‖∞ = 1 + |z| ≤ 2, consequently ‖ψz,t‖ ≤ 2t , z ∈ B. Thus, to prove

(3.7), it suffices to consider z, w ∈ B satisfying the condition β(z, w) < 1. For such
a pair of z, w, we can write w = ϕz(ξ) with β(0, ξ) = β(z, w) < 1. Then

ψw,t (ζ ) = ψϕz(ξ),t (ζ ) = ψz,t (ζ )

(
1 − |ϕz(ξ)|2
1 − |z|2

)(n/2)+t( 1 − 〈ζ, z〉
1 − 〈ζ, ϕz(ξ)〉

)n+t

.

By [18, Theorem 2.2.2], if we write x = ϕz(ζ ), then ζ = ϕz(x) and

1 − 〈ζ, z〉
1 − 〈ζ, ϕz(ξ)〉 = 1 − 〈ϕz(x), ϕz(0)〉

1 − 〈ϕz(x), ϕz(ξ)〉 = 1 − 〈z, ξ 〉
1 − 〈x, ξ 〉 = 1 − 〈z, ξ 〉

1 − 〈ϕz(ζ ), ξ 〉 .

Similarly,

1 − |ϕz(ξ)|2
1 − |z|2 = 1 − |ξ |2

|1 − 〈ξ, z〉|2 .

Thus we can represent ψw,t as the following “multiplicative perturbation” of ψz,t :

ψw,t (ζ ) = ψz,t (ζ )

(
1 − |ξ |2

|1 − 〈ξ, z〉|2
)(n/2)+t( 1 − 〈z, ξ 〉

1 − 〈ϕz(ζ ), ξ 〉
)n+t

. (3.10)

Since ‖ψz,t‖ ≤ 2t , combining this identity with (3.9), we find that

‖ψz,t − ψw,t‖ ≤ 2tC |ξ |.

We have

β(0, ξ) = 1

2
log

1 + |ξ |
1 − |ξ | ≥ 1

2
log

1

1 − |ξ | .

From this it is elementary to derive that |ξ | ≤ 1 − e−2β(0,ξ) ≤ 2β(0, ξ). Hence

‖ψz,t − ψw,t‖ ≤ 2tC · 2β(0, ξ) = 2t+1Cβ(z, w),

which proves (3.7).
To prove (3.8), note that

〈ψγ,t , kz − kw〉 = (1 − |z|2)n/2ψγ,t (z) − (1 − |w|2)n/2ψγ,t (w).
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Writing w = ϕz(ξ) as in the proof of (3.10), we have

(1 − |w|2)n/2ψγ,t (w) = (1 − |z|2)n/2ψγ,t (z)

(
1 − |ϕz(ξ)|2
1 − |z|2

)n/2( 1 − 〈z, γ 〉
1 − 〈ϕz(ξ), γ 〉

)n+t

= (1 − |z|2)n/2ψγ,t (z)

(
1 − |ξ |2

|1 − 〈ξ, z〉|2
)n/2( 1 − 〈ξ, z〉

1 − 〈ξ, ϕz(γ )〉
)n+t

.

Combining these identities with an obvious variant of (3.9), (3.8) follows. ��
Proposition 3.7 For any given value t > 0, the map z �→ Yz,t from B into B(H2(S))

is continuous with respect to the operator norm.

Proof Let z ∈ B and consider w ∈ U = D(z, 1). By Lemma 3.5(2), we have
supζ∈U ‖Yζ,t‖<∞. To estimate‖Yz,t−Yw,t‖, we pick an orthonormal set { fu : u ∈ L}
and define

Xζ,t =
∑
u∈L

ψϕu(ζ ),t ⊗ fu

for each ζ ∈ U . Since Yζ,t = Xζ,t X∗
ζ,t , we have supζ∈U ‖Xζ,t‖ < ∞. Thus it suffices

to estimate ‖Xz,t − Xw,t‖2 = ‖(Xz,t − Xw,t )
∗(Xz,t − Xw,t )‖.

To do this, we write ρ = β(z, 0). Since w ∈ D(z, 1), we have w ∈ D(0, ρ + 1).
Then by Lemma 2.2, there is an m ∈ N determined by ρ + 1 such that ‖Xz,t − Xw,t‖2
is less than or equal to the sum of at most 2m terms of the form ‖A(Xz,t − Xw,t )‖,
where

A =
∑
v∈


ev ⊗ ψv,t ,


 is a 1-separated set in B, and {ev : v ∈ 
} is an orthonormal set. Note that

A(Xz,t − Xw,t ) =
∑

(v,u)∈
×L
〈ψϕu(z),t − ψϕu(w),t , ψv,t 〉ev ⊗ fu .

Thus for each R > 0, we can write

A(Xz,t − Xw,t ) = Sz,w;R + Tz,w;R, (3.11)

where

Sz,w;R =
∑

(v,u)∈
×L
β(v,u)≤R

〈ψϕu(z),t − ψϕu(w),t , ψv,t 〉ev ⊗ fu and

Tz,w;R =
∑

(v,u)∈
×L
β(v,u)>R

〈ψϕu(z),t − ψϕu(w),t , ψv,t 〉ev ⊗ fu .
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Let ε > 0 be given. We first show that there is an R > 0 such that

‖Tz,w;R‖ ≤ ε/2 for every w ∈ U = D(z, 1). (3.12)

To prove this, note that since β(w, 0) < ρ + 1, Lemma 2.3 gives us

(1 − |ϕu(w)|2)1/2(1 − |v|2)1/2
|1 − 〈ϕu(w), v〉| ≤ 2eρ+1 (1 − |u|2)1/2(1 − |v|2)1/2

|1 − 〈u, v〉|
for v ∈ 
 and u ∈ L. A similar inequality holds with ϕu(z) in place of ϕu(w).
Combining these facts with Proposition 3.1, we obtain

|〈ψϕu(z),t − ψϕu(w),t , ψv,t 〉| ≤ |〈ψϕu(z),t , ψv,t 〉| + |〈ψϕu(w),t , ψv,t 〉|

≤ C1

(
(1 − |u|2)1/2(1 − |v|2)1/2

|1 − 〈u, v〉|
)n+t

,

where C1 = 2(2eρ+1)n+tC3.1. Consider an arbitrary vector h = ∑
u∈L cu fu . Then

Tz,w;Rh =
∑
v∈


yvev, (3.13)

where each yv satisfies the estimate

|yv| ≤ C1

∑
u∈L

β(v,u)>R

(
(1 − |u|2)1/2(1 − |v|2)1/2

|1 − 〈u, v〉|
)n+t

|cu |.

Applying Lemma 2.5 and the Schur-test as in the proof of Proposition 3.2, we obtain

∑
v∈


|yv|2 ≤ C2
1C

2
2.5e

−t R
∑
u∈L

|cu |2.

By (3.13), this means ‖Tz,w;Rh‖2 ≤ C2
1C

2
2.5e

−t R‖h‖2. Since the vector h is arbitrary,
we conclude that ‖Tz,w;R‖ ≤ C1C2.5e−t R/2. Hence there is an R > 0 such that (3.12)
holds.

Fix such an R. Next we show that for this fixed R, there is a 0 < δ < 1 such that if
β(z, w) ≤ δ, then ‖Sz,w;R‖ ≤ ε/2. By (3.11) and (3.12), this will complete our proof.
Since 
 and L are 1-separated, by Lemma 2.1, there is an N ∈ N such that

card{v ∈ 
 : β(v, x) ≤ R} ≤ N and card{u ∈ L : β(u, x) ≤ R} ≤ N

for every x ∈ B. By a standard maximality argument similar to Lemma 2.7, the set

E = {(v, u) ∈ 
 × L : β(v, u) ≤ R}
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admits a partition E = E1∪· · ·∪E2N with the property that for every j ∈ {1, . . . , 2N },
the conditions (v, u), (v′, u′) ∈ E j and (v, u) �= (v′, u′) implybothv �= v′ andu �= u′.
Accordingly, we have the decomposition

Sz,w;R = S1 + · · · + S2N , (3.14)

where

S j =
∑

(v,u)∈E j

〈ψϕu(z),t − ψϕu(w),t , ψv,t 〉ev ⊗ fu

for each j ∈ {1, . . . , 2N }. The property of E j ensures that

‖S j‖ = sup
(v,u)∈E j

|〈ψϕu(z),t − ψϕu(w),t , ψv,t 〉|. (3.15)

On the other hand, it follows from Lemma 3.6 that

|〈ψϕu(z),t − ψϕu(w),t , ψv,t 〉| ≤ ‖ψϕu(z),t − ψϕu(w),t‖‖ψv,t‖
≤ 2tC3.6β(ϕu(z), ϕu(w)) = 2tC3.6β(z, w).

Combining this with (3.14) and (3.15), we find that ‖Sz,w;R‖ ≤ 2N2tC3.6β(z, w).
Thus if we choose 0 < δ < 1 such that 2N2tC3.6δ ≤ ε/2, then for every w satisfying
the condition β(z, w) ≤ δ, we have ‖Sz,w;R‖ ≤ ε/2. This completes the proof. ��
Proposition 3.8 Given any t > 0, there exists a constant δ > 0 and a finite number of
1-separated sets 
1, . . . , 
m in B such that

〈E
1,t f , f 〉 + · · · + 〈E
m ,t f , f 〉 ≥ δ‖ f ‖2

for every f ∈ H2(S).

Proof The closure of D(0, 2) is, of course, a compact subset of B. Recall that we have
the integral formula (3.6) for R′

t . It follows from the norm-continuity provided by
Proposition 3.7 that the integral on the right-hand side of (3.6) is the limit in operator
norm of Riemann sums. In particular, for the a > 0 that appears in (3.5), there is a
Riemann sum S such that ‖R′

t − S‖ ≤ a/2. Then, by (3.5), the operator inequality

S ≥ a/2 (3.16)

holds on H2(S). Since S is a Riemann sum for the integral in (3.6), there are pairwise
disjoint Borel subsets G1, . . . ,Gν in D(0, 2) and z j ∈ G j , j = 1, . . . , ν, such that

S = λ(G1)Yz1,t + · · · + λ(Gν)Yzν ,t . (3.17)

If we set δ = a/{2λ(D(0, 2))}, then from (3.16) and (3.17) we obtain
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Yz1,t + · · · + Yzν ,t ≥ δ.

Now an application of Lemma 3.5(1) completes the proof. ��

4 Norm Ideals and Condition (DQK)

We need a number of basic facts about ‖ · ‖�.

Lemma 4.1 [24, Lemma 3.1] Suppose that A1, . . . , Am are finite-rank operators on a
Hilbert spaceH and let A = A1 +· · ·+ Am. Then for each symmetric gauge function
� and each 0 < s ≤ 1,

‖|A|s‖� ≤ 21−s(‖|A1|s‖� + · · · + ‖|Am |s‖�).

Lemma 4.2 [14, Lemma3.3]Let A and B be twobounded operators. Then the inequal-
ities

‖|AB|s‖� ≤ ‖B‖s‖|A|s‖� and ‖|BA|s‖� ≤ ‖B‖s‖|A|s‖�

hold for every symmetric gauge function � and every 0 < s ≤ 1.

Lemma 4.3 [24, Lemma 5.1] Let {Ak} be a sequence of bounded operators on a
separable Hilbert space H. If {Ak} weakly converges to an operator A, then the
inequality

‖A‖� ≤ sup
k

‖Ak‖�

holds for each symmetric gauge function �.

Recall from [15, page 125] that given a symmetric gauge function �, the formula

�∗({b j } j∈N) = sup

{∣∣∣∣
∞∑
j=1

a jb j

∣∣∣∣ : {a j } j∈N ∈ ĉ,�({a j } j∈N) ≤ 1

}
, {b j } j∈N ∈ ĉ,

defines the symmetric gauge function that is dual to�. Moreover, we have the relation
�∗∗ = � [15, page 125]. This relation implies that for every {a j } j∈N ∈ ĉ, we have

�({a j } j∈N) = sup

{∣∣∣∣
∞∑
j=1

a jb j

∣∣∣∣ : {b j } j∈N ∈ ĉ,�∗({b j } j∈N) ≤ 1

}
. (4.1)

Lemma 4.4 Let� be a symmetric gauge function. Suppose that A and B are operators
such that A∗A ∈ C� and B∗B ∈ C�. Then AB ∈ C�. Moreover,

‖AB‖� ≤ {‖A∗A‖�‖B∗B‖�

}1/2
.
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Proof Let �∗ be the symmetric gauge function that is dual to �. Consider any finite-
rank operator F . We have the polar decomposition F = U |F |, where U is a partial
isometry and |F | = (F∗F)1/2. We can factor F in the form F = F1F2, where
F1 = U |F |1/2 and F2 = |F |1/2. Note that ‖F1F∗

1 ‖�∗ = ‖F‖�∗ = ‖F∗
2 F2‖�∗ . Write

‖·‖2 for the Hilbert-Schmidt norm. By (7.9) on page 63 in [15] and the duality between
� and �∗, we have

|tr(ABF)| = |tr(ABF1F2)| = |tr(F2ABF1)| ≤ ‖F2A‖2‖BF1‖2
= {

tr(A∗F∗
2 F2A)tr(F∗

1 B
∗BF1)

}1/2 = {
tr(F∗

2 F2AA
∗)tr(B∗BF1F∗

1 )
}1/2

≤ {‖F∗
2 F2‖�∗‖AA∗‖�‖B∗B‖�‖F1F∗

1 ‖�∗
}1/2 = {‖AA∗‖�‖B∗B‖�

}1/2 ‖F‖�∗ .

Since this holds for every finite-rank operator F , the lemma now follows from (4.1).
��

Suppose that � is a symmetric gauge function. For each 1 < p < ∞, we define

�(p)({a j } j∈N) = {
�({|a j |p} j∈N)

}1/p

for {a j } j∈N ∈ ĉ. Using the duality mentioned above, it is easy to verify that �(p)

satisfies the triangle inequality and is, therefore, a symmetric gauge function.

Lemma 4.5 Let� be a symmetric gauge function that satisfies condition (DQK). Then
for every 1 < p < ∞, the �(p) defined above also satisfies condition (DQK).

Proof ByDefinition 1.1, there are α and θ such that�(h[N ]) ≥ αN θ�(h) for all h ∈ ĉ
and N ∈ N. Let 1 < p < ∞. Given an a = {a j } j∈N ∈ ĉ, denote b = {|a j |p} j∈N.
Then

�(p)(a[N ]) = {�(b[N ])}1/p ≥ {αN θ�(b)}1/p = α1/pN θ/p�(p)(a)

for every N ∈ N. Thus �(p) satisfies condition (DQK) with constants α1/p and θ/p.
��

An obvious question is, how do we actually use condition (DQK) in the proof of
Theorem 1.4 and in calculation of Dixmier trace? It will be used in the following way:

Proposition 4.6 Suppose that � is a symmetric gauge function satisfying condition
(DQK), and let 0 < s ≤ 1. Then there exist constants 0 < ε < 1 and 1 ≤ C < ∞
which depend only on � and s such that the following estimate holds: Let N ∈ N.
Suppose that

A1, A2, . . . , A j , . . .

are pairwise disjoint subsets of N satisfying the condition card(A j ) ≤ N for every
j ≥ 1. Given a sequence a = {ai }i∈N of complex numbers, define

b j =
(
1

N

∑
i∈A j

|ai |2
)1/2
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for every j ∈ N. Then we have

�({bsj } j∈N) ≤ N−εC�({|ai |s}i∈N).

Proof By definition, there are 0 < θ < 1 and 0 < C < ∞ such that

�(a) ≤ Cm−θ�(a[m]) for all a ∈ ĉ and m ∈ N. (4.2)

Given any N ∈ N, let M ∈N be such that N 1/2 ≤ M < N 1/2+1. Given any sequence
a = {ai }i∈N of complex numbers, define b j as above, j ∈ N. Let E = { j ∈ N : b j �=
0}. Obviously, �({bsj } j∈N) = �({bsj } j∈E ). For each j ∈ E , define

Bj = {i ∈ A j : |ai |2 ≥ b2j/2}.

Finally, define

J1 = { j ∈ E : card(Bj ) > M} and J2 = { j ∈ E : card(Bj ) ≤ M}.

Write β = {bsj } j∈J1 . Since b
s
j ≤ 2s/2|ai |s for every i ∈ Bj and since Bj ∩ Bj ′ = ∅

when j �= j ′, we have �(β[M]) ≤ 2s/2�({|ai |s}i∈N). Combining this with (4.2), we
find that

�(β) ≤ CM−θ�(β[M]) ≤ 2s/2CM−θ�({|ai |s}i∈N) ≤ 2s/2CN−θ/2�({|ai |s}i∈N).

(4.3)

On the other hand, if i ∈ A j\Bj , then |ai |2 < b2j/2. Since card(A j ) ≤ N , we have

1

N

∑
i∈A j\Bj

|ai |2 <
b2j
2

.

Consequently, for each j ∈ E ,

1

M

∑
i∈Bj

M

N
|ai |2 = 1

N

∑
i∈Bj

|ai |2 ≥ b2j
2

.

For each j ∈ J2, since card(Bj ) ≤ M , the above implies that there is an i( j) ∈ Bj

such that (M/N )|ai( j)|2 ≥ b2j/2. Obviously, for j �= j ′ in J2 we have i( j) �= i( j ′).
Hence

�({bsj } j∈J2) ≤ 2s/2(M/N )s/2�({|ai( j)|s} j∈J2) ≤ 2s N−s/4�({|ai |s}i∈N), (4.4)

where for the second ≤ we use the fact that M < N 1/2 + 1. Since E = J1 ∪ J2, the
proposition follows from (4.3) and (4.4). ��
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We conclude the section with two basic lemmas.

Lemma 4.7 [24, Lemma 6.2] If A1, . . . , Am, . . . are trace-class operators, then the
inequality

‖A1 ⊕ · · · ⊕ Am ⊕ · · · ‖� ≤ �({‖A1‖1, . . . , ‖Am‖1, . . . })

holds for every symmetric gauge function�, where ‖·‖1 is the norm of the trace class.

Lemma 4.8 [24, Lemma 2.2] Suppose that X and Y are countable sets and that N
is a natural number. Suppose that T : X → Y is a map that is at most N-to-1.
That is, for every y ∈ Y , card{x ∈ X : T (x) = y} ≤ N. Then for every set of real
numbers {by}y∈Y and every symmetric gauge function �, we have �({bT (x)}x∈X ) ≤
N�({by}y∈Y ).

5 Proof of Theorem 1.4: The Upper Bound

To prove the upper bound in Theorem 1.4, consider a regular Borel measure μ on B.
Given such a μ, we define the measure μ̃ on B by the formula

dμ̃(w) = dμ(w)

(1 − |w|2)n . (5.1)

It is easy to see that we have the integral representation

Tμ =
∫

kw ⊗ kwdμ̃(w)

for the Toeplitz operator Tμ defined by (1.1). This formula is verified by applying both
sides to h ∈ H2(S) and then taking inner product with g ∈ H2(S). Let 0 < a ≤ b <

∞. Suppose that 
 is an a, b-lattice in B. We define

T
 =
∑
z∈


∫
D(z,b)

kw ⊗ kwdμ̃(w).

Since ∪z∈
D(z, b) = B, the operator inequality Tμ ≤ T
 holds on H2(S). It follows
from this operator inequality that for every 0 < s ≤ 1 and every symmetric gauge
function �,

‖T s
μ‖� ≤ ‖T s


‖�.

Thus it suffices to estimate ‖T s

‖�. But this estimate can be further reduced.

Consider any finite subset F of 
 that has the property μ̃(D(z, b)) �= 0 for every
z ∈ F . For such an F , we define

TF =
∑
z∈F

∫
D(z,b)

kw ⊗ kwdμ̃(w).
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Lemma 4.3 implies that ‖T s

‖� is the supremum of ‖T s

F‖� over all such possible F’s.
Thus it suffices to consider an individual TF .

To estimate ‖T s
F‖�, by Lemmas 2.6 and 4.1, partitioning F by a fixed number of

subsets if necessary, we may assume that F has the additional property that

card(F ∩ Tk, j ) ≤ 1 for every (k, j) ∈ I , (5.2)

where Tk, j and I are given by (2.8) and (2.9) respectively. For convenience, let us
write cz = μ̃(D(z, b)) for each z ∈ F . Define the measure

dνz(w) = c−1
z χD(z,b)(w)dμ̃(w) = χD(z,b)(w)

cz(1 − |w|2)n dμ(w)

for each z ∈ F . Then

TF =
∑
z∈F

cz

∫
kw ⊗ kwdνz(w). (5.3)

Obviously, dνz is a probabilitymeasure concentrated on D(z, b). Therefore each dνz is
in theweak-* closure of the convex hull of unit pointmasses on D(z, b). Consequently,
TF is in the closure in strong operator topology of operators of the form

T = 1

d

∑
z∈F

cz

d∑
i=1

kw(z;i) ⊗ kw(z;i), (5.4)

where d ∈ N and for each z ∈ F , we have w(z; i) ∈ D(z, b) for every i ∈ {1, . . . , d}.
Thus, for any given 0 < s ≤ 1, it suffices to estimate ‖T s‖�.

Now we factor T . Pick an orthonormal set {ε(z; i) : z ∈ F, 1 ≤ i ≤ d} and define

W = 1√
d

∑
z∈F

c1/2z

d∑
i=1

kw(z;i) ⊗ ε(z; i). (5.5)

Obviously, we have T = WW ∗. Denote � = �(2). Then

‖T s‖� = ‖(WW ∗)s‖� = ‖(W ∗W )s‖� = ‖|W |2s‖� = ‖|W |s‖2
�(2) = ‖|W |s‖2�.

(5.6)

This reduces the problem to the estimate of ‖|W |s‖� .
To estimate ‖|W |s‖� , pick a t such that st > n. By Proposition 3.8, there are

1-separated sets 
1, . . . , 
m in B such that the operator

A = E
1,t + · · · + E
m ,t (5.7)
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satisfies the inequality A ≥ δ on H2(S) for some δ > 0. By Lemma 4.2, we have

‖|W |s‖� = ‖|A−1AW |s‖� ≤ δ−s‖|AW |s‖�.

For each 1 ≤ r ≤ m, we pick an orthonormal set {e(r;w) : w ∈ 
r } and factor E
r ,t

in the form E
r ,t = Br B∗
r , where

Br =
∑
w∈
r

ψw,t ⊗ e(r;w).

Since A is given by (5.7), applying Lemmas 4.1, 4.2 and Proposition 3.2, we obtain

‖|W |s‖� ≤ 2mδ−sCs
3.2 max

1≤r≤m
‖|B∗

r W |s‖�. (5.8)

To summarize, we have now reduced the proof of the upper bound in Theorem 1.4 to
the estimate of ‖|B∗W |s‖� , where

B =
∑
γ∈G

ψγ,t ⊗ eγ ,

G is a 1-separated set inB and {eγ : γ ∈ G} is an orthonormal set. InvokingLemma2.6
again, we may further assume that G has the additional property

card(G ∩ Tk, j ) ≤ 1 for every (k, j) ∈ I , (5.9)

which, along with (5.2), will be needed for our counting argument below.
Recalling (5.5) and using the reproducing property of kw, we have

B∗W =
∑
γ∈G

∑
z∈F

c1/2z
1√
d

d∑
i=1

(1 − |w(z; i)|2)n/2ψγ,t (w(z; i))eγ ⊗ ε(z; i)

=
∑
γ∈G

∑
z∈F

c1/2z eγ ⊗ fz;γ ,

(5.10)

where

fz;γ = 1√
d

d∑
i=1

(1 − |w(z; i)|2)n/2ψγ,t (w(z; i))ε(z; i) (5.11)

for γ ∈ G and z ∈ F . For each pair of z ∈ F and i ∈ {1, . . . , d}, we have w(z; i) ∈
D(z, b). Thus there is an x(z; i) ∈ D(0, b) such that w(z; i) = ϕz(x(z; i)). By
Lemmas 2.3 and 2.4, there is a constant C1 such that

(1 − |w(z; i)|2)n/2|ψγ,t (w(z; i))| ≤ C1(1 − |z|2)n/2|ψγ,t (z)|
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for all γ ∈ G, z ∈ F and i ∈ {1, . . . , k}. Hence

‖ fz;γ ‖ ≤ C1(1 − |z|2)n/2|ψγ,t (z)| (5.12)

for all γ ∈ G and z ∈ F .
At this point, we need to organize the pairs (γ, z) ∈ G×F using the decomposition

scheme in Sect. 2. First of all, for each integer k ≥ 0 we define

Hk = {w ∈ B : 1 − 2−2k ≤ |w| < 1 − 2−2(k+1)}.

The point is that Hk = ∪m(k)
j=1 Tk, j . Then, for each k ≥ 0, define

Gk = G ∩ Hk and Fk = F ∩ Hk .

By (5.10), we have

B∗W =
∞∑

�=0

Y� +
∞∑

�=1

Z�, (5.13)

where

Y� =
∞∑
k=0

∑
(γ,z)∈Gk×Fk+�

c1/2z eγ ⊗ fz;γ and Z� =
∞∑
k=0

∑
(γ,z)∈Gk+�×Fk

c1/2z eγ ⊗ fz;γ .

Next, from (2.7) we see that there exist Borel sets {Sk, j : (k, j) ∈ I } in the sphere S
that satisfy the following three conditions:

(1) For every (k, j) ∈ I , we have Sk, j ⊂ B(uk, j , 2−k).
(2) For every k ≥ 0 and every pair of j �= j ′ in {1, . . . ,m(k)}, we have Sk, j∩Sk, j ′ = ∅.
(3) For every k ≥ 0, we have ∪m(k)

j=1 Sk, j = S.

We will use these sets to further decompose Y�.
We write each z ∈ F in the form z = |z|ξz with ξz ∈ S. For each pair of k ≥ 0 and

� ≥ 0, we have a partition

Fk+� = Fk,�,1 ∪ · · · ∪ Fk,�,m(k), (5.14)

where

Fk,�, j = {z ∈ Fk+� : ξz ∈ Sk, j }, (5.15)

1 ≤ j ≤ m(k). By (5.9), for each k ≥ 0 there is a Jk ⊂ {1, . . . ,m(k)} such that
Gk = {γk, j : j ∈ Jk} and such that for each j ∈ Jk , γk, j ∈ Tk, j . For k ≥ 0, � ≥ 0,
j ∈ Jk and j ′ ∈ {1, . . . ,m(k)}, we now define

f (�)

k; j, j ′ =
∑

z∈Fk,�, j ′
c1/2z fz;γk, j . (5.16)
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Then

Y� =
∞∑
k=0

∑
j∈Jk

m(k)∑
j ′=1

eγk, j ⊗ f (�)

k; j, j ′ .

We further decompose Y� according to spherical separation. For each k ≥ 0, define

Qk,0 = {( j, j ′) : j ∈ Jk , 1 ≤ j ′ ≤ m(k), d(uk, j , uk, j ′ ) < 2−k+2} and

Qk,p = {( j, j ′) : j ∈ Jk , 1 ≤ j ′ ≤ m(k), 2−k+p+1 ≤ d(uk, j , uk, j ′ ) < 2−k+p+2}, p ≥ 1.

Accordingly, we define

Y (p)
� =

∞∑
k=0

∑
( j, j ′)∈Qk,p

eγk, j ⊗ f (�)

k; j, j ′

for p = 0, 1, 2, . . . . Then, of course,

Y� = Y (0)
� + Y (1)

� + Y (2)
� + · · · + Y (p)

� + · · · . (5.17)

By (2.6), the definition of Qk,p and (2.5), there is a constant M ∈ N such that for each
pair of k ≥ 0, p ≥ 0 and each j ∈ Jk , we have

card{ j ′ : ( j, j ′) ∈ Qk,p} ≤ M22np. (5.18)

Similarly, for k ≥ 0, p ≥ 0 and j ′ ∈ {1, . . . ,m(k)}, we have

card{ j : ( j, j ′) ∈ Qk,p} ≤ M22np. (5.19)

By Lemma 2.7, each Qk,p admits a partition

Qk,p = Q(1)
k,p ∪ · · · ∪ Q(2M22np)

k,p

such that for every 1 ≤ i ≤ 2M22np, the conditions ( j, j ′), (h, h′) ∈ Q(i)
k,p and

( j, j ′) �= (h, h′) imply both j �= h and j ′ �= h′. Accordingly, for every p ≥ 0 we
have

Y (p)
� = Y (p,1)

� + · · · + Y (p,2M22np)
� , (5.20)

where

Y (p,i)
� =

∞∑
k=0

∑
( j, j ′)∈Q(i)

k,p

eγk, j ⊗ f (�)

k; j, j ′ ,
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i = 1, . . . , 2M22np. If k1 �= k2, then obviously eγk1, j1
⊥ eγk2, j2

for all j1 ∈ Jk1 and

j2 ∈ Jk2 . Similarly,when k1 �= k2, a chase of definitions shows that f
(�)

k1; j1, j ′1 ⊥ f (�)

k2; j2, j ′2
for all j1 ∈ Jk1 , j2 ∈ Jk2 , j

′
1 ∈ {1, . . . ,m(k1)} and j ′2 ∈ {1, . . . ,m(k2)}. Now the

property of each Q(i)
k,p guarantees that if ( j, j ′), (h, h′) ∈ Q(i)

k,p and ( j, j ′) �= (h, h′),
then we have both

eγk, j ⊥ eγk,h and f (�)

k; j, j ′ ⊥ f (�)

k;h,h′ .

Because of all this orthogonality, for each pair of p ≥ 0 and 1 ≤ i ≤ 2M22np we
have

‖|Y (p,i)
� |s‖� = �({‖ f (�)

k; j, j ′ ‖s}(k, j, j ′)∈L(i)
p

), (5.21)

where

L(i)
p =

∞⋃
k=0

{
(k, j, j ′) : ( j, j ′) ∈ Q(i)

k,p

}
.

Our next task is to estimate the vector norm ‖ f (�)

k; j, j ′ ‖, (k, j, j ′) ∈ L(i)
p .

By (5.11), for z �= z′ in F , we have 〈 fz;γ , fz′;γ ′ 〉 = 0 for all γ, γ ′ ∈ G. Therefore
it follows from (5.16) and (5.12) that

‖ f (�)

k; j, j ′ ‖2 =
∑

z∈Fk,�, j ′
cz‖ fz;γk, j ‖2 ≤ C2

1

∑
z∈Fk,�, j ′

cz(1 − |z|2)n|ψγk, j ,t (z)|2.

For z ∈ Fk,�, j ′ , we have (1− |γk, j |2)n|ψγk, j ,t (z)|2 = |mγk, j (z)|2n+2t (cf. (3.1), (3.2))
and

(
1 − |z|2

1 − |γk, j |2
)n

≤ 2n
(

1 − |z|
1 − |γk, j |

)n

≤ 2n
(
2−2(k+�)

2−2(k+1)

)n

= C22
−2n�.

Writing C3 = C2
1C2, this gives us

‖ f (�)

k; j, j ′ ‖2 ≤ C32
−2n�

∑
z∈Fk,�, j ′

cz |mγk, j (z)|2n+2t . (5.22)

Since γk, j ∈ Tk, j , there is a ζk, j ∈ B(uk, j , 2−k) such that γk, j = |γk, j |ζk, j . For
z ∈ Fk,�, j ′ , we have ξz ∈ Sk, j ′ , consequently d(ξz, uk, j ′) ≤ 2−k . Hence

{2|1 − 〈z, γk, j 〉|}1/2 ≥ |1 − 〈ξz, ζk, j 〉|1/2 = d(ξz, ζk, j )

≥ d(uk, j ′ , uk, j ) − d(ξz, uk, j ′) − d(ζk, j , uk, j )

≥ d(uk, j ′ , uk, j ) − 2−k+1.
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Thus if (k, j, j ′) ∈ L(i)
p for some p ≥ 1 and z ∈ Fk,�, j ′ , then

{2|1 − 〈z, γk, j 〉|}1/2 ≥ 2−k+p+1 − 2−k+1 ≥ 2−k+p.

Since 1 − |γk, j |2 ≤ 2 · 2−2k , we have |mγk, j (z)| ≤ 4 · 2−2p for z ∈ Fk,�, j ′ and

(k, j, j ′) ∈ L(i)
p , p ≥ 0. Substitute this in (5.22), we find that

‖ f (�)

k; j, j ′ ‖2 ≤ C42
−4(n+t)p2−2n�

∑
z∈Fk,�, j ′

cz (5.23)

for (k, j, j ′) ∈ L(i)
p , p ≥ 0.

Recall that Fk,�, j ′ ⊂ Fk+� ⊂ Hk+�. Thus if z ∈ Fk,�, j ′ , then by (2.8) there is an h
∈ {1, . . . ,m(k + �)} such that ξz ∈ B(uk+�,h, 2−k−�). We have Sk, j ′ ⊂ B(uk, j ′ , 2−k)

by choice. Combining these facts with (5.2) and (5.15), we find that

card(Fk,�, j ′) ≤ card{h : B(uk+�,h, 2
−k−�) ∩ B(uk, j ′ , 2

−k) �= ∅} ≤ C52
2n�,

where the second ≤ is justified by (2.6) and (2.5). Also, the definition of L(i)
p ensures

that Fk1,�, j ′1 ∩ Fk2,�, j ′2 = ∅ for any pair of (k1, j1, j ′1) �= (k2, j2, j ′2) in L(i)
p .

Suppose that our symmetric gauge function � satisfies condition (DQK). By
Lemma 4.5, � = �(2) also satisfies condition (DQK). We now continue with (5.21)
and (5.23). An application of Proposition 4.6 (for which the necessary verification of
conditions was carried out in the preceding paragraph) to � and s gives us

‖|Y (p,i)
� |s‖� ≤ Cs/2

4 2−2s(n+t)p�

({(
2−2n�

∑
z∈Fk,�, j ′

cz

)s/2}
(k, j, j ′)∈L(i)

p

)

≤ Cs/2
4 2−2s(n+t)pC(1 + C5)

s/2(C52
2n�)−ε�({cs/2z }z∈F )

= C62
−2s(n+t)p2−2εn�{�({csz}z∈F )}1/2.

Recalling (5.20) and applying Lemma 4.1, we obtain

‖|Y (p)
� |s‖� ≤ 2

2M22np∑
i=1

‖|Y (p,i)
� |s‖� ≤ 4MC62

−2(s(n+t)−n)p2−2εn�{�({csz}z∈F )}1/2

= C72
−2(s(n+t)−n)p2−2εn�{�({csz}z∈F )}1/2. (5.24)

Proposition 4.6 guarantees that ε > 0. Also, we have s(n + t) − n > 0 by the choice
of t . Recalling (5.17) and applying Lemma 4.1 again, we now have

∥∥∥∥
∣∣∣∣

∞∑
�=0

Y�

∣∣∣∣
s∥∥∥∥

�

≤ 2
∞∑

�=0

∞∑
p=0

‖|Y (p)
� |s‖� ≤ 2C7

∞∑
�=0

∞∑
p=0

2−2(s(n+t)−n)p2−2εn�{�({csz}z∈F )}1/2

= C8{�({csz}z∈F )}1/2.
(5.25)
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Next we turn to the operators Z�, which are much easier to handle because condition
(DQK) will not be needed.

First of all, recall that Gk+� = {γk+�,h : h ∈ Jk+�}, where γk+�,h ∈ Tk+�,h for
every h ∈ Jk+�. By (5.2), for each k ≥ 0 there is an Ik ⊂ {1, . . . ,m(k)} such that Fk
= {zk, j : j ∈ Ik} and such that for each j ∈ Ik , zk, j ∈ Tk, j . For convenience, let us
write

e(�)
k,h = eγk+�,h and ϕ

(�)
k,h, j = fzk, j ;γk+�,h

(cf. (5.11)). With this new notation we have

Z� =
∞∑
k=0

∑
(h, j)∈Jk+�×Ik

c1/2zk, j e
(�)
k,h ⊗ ϕ

(�)
k,h, j .

Now define

Qk,�;0 = {(h, j) ∈ Jk+� × Ik : d(uk, j , uk+�,h) < 2−k+2} and

Qk,�;p = {(h, j) ∈ Jk+� × Ik : 2−k+p+1 ≤ d(uk, j , uk+�,h) < 2−k+p+2}, p ≥ 1.

Accordingly, we define

Z (p)
� =

∞∑
k=0

∑
(h, j)∈Qk,�;p

c1/2zk, j e
(�)
k,h ⊗ ϕ

(�)
k,h, j .

for p = 0, 1, 2, . . . . Then, of course,

Z� = Z (0)
� + Z (1)

� + Z (2)
� + · · · + Z (p)

� + · · · . (5.26)

As in (5.18) and (5.19), from (2.6) and (2.5) we deduce

card{h ∈ Jk+� : (h, j) ∈ Qk,�;p} ≤ M22n(�+p) for every j ∈ Ik and

card{ j ∈ Ik : (h, j) ∈ Qk,�;p} ≤ M22np for every h ∈ Jk+�.

Thus, as in Lemma 2.7, a standard maximality argument gives us a partition

Qk,�;p = Q(1)
k,�;p ∪ · · · ∪ Q(2M22n(�+p))

k,�;p

such that for every i ∈ {1, . . . , 2M22n(�+p)}, the conditions (h, j), (h′, j ′) ∈ Q(i)
k,�;p

and (h, j) �= (h′, j ′) imply both h �= h′ and j �= j ′. Accordingly,

Z (p)
� = Z (p,1)

� + · · · + Z (p,2M22n(�+p))
� , (5.27)
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where

Z (p,i)
� =

∞∑
k=0

∑
(h, j)∈Q(i)

k,�;p

c1/2zk, j e
(�)
k,h ⊗ ϕ

(�)
k,h, j ,

i = 1, . . . , 2M22n(�+p). Define

L(i)
�,p =

∞⋃
k=0

{
(k, h, j) : (h, j) ∈ Q(i)

k,�;p
}

.

The property of Q(i)
k,�;p ensures that for (k, h, j) �= (k′, h′, j ′) in Q(i)

k,�;p, we have both
ϕ

(�)
k,h, j ⊥ ϕ

(�)

k′,h′, j ′ and e(�)
k,h ⊥ e(�)

k′,h′ . Moreover, the projection (k, h, j) �→ (k, j) is

injective on L(i)
�,p. Therefore

‖|Z (p,i)
� |s‖� = �({cs/2zk, j ‖ϕ(�)

k,h, j‖s}(k,h, j)∈L(i)
�,p

)

≤ sup
(k,h, j)∈L(i)

�,p

‖ϕ(�)
k,h, j‖s�({cs/2z }z∈F )

= sup
(k,h, j)∈L(i)

�,p

‖ϕ(�)
k,h, j‖s{�({csz}z∈F )}1/2.

(5.28)

Obviously, we need to estimate ‖ϕ(�)
k,h, j‖. By (5.12), for each (k, h, j) ∈ L(i)

�,p we have

‖ϕ(�)
k,h, j‖ = ‖ fzk, j ;γk+�,h‖ ≤ C1(1 − |zk, j |2)n/2|ψγk+�,h ,t (zk, j )|

≤ C9

∣∣∣∣ 1 − |γk+�,h |
1 − 〈zk, j , γk+�,h〉

∣∣∣∣
(n/2)+t

.

Since γk+�,h ∈ Tk+�,h , we write γk+�,h = |γk+�,h |ζγk+�,h with ζγk+�,h ∈
B(uk+�,h, 2−k−�) as before. Similarly, zk, j = |zk, j |ξzk, j , where ξzk, j ∈ B(uk, j , 2−k).
We have

2|1 − 〈zk, j , γk+�,h〉| ≥ |1 − 〈ξzk, j , ζγk+�,h 〉| = d2(ξzk, j , ζγk+�,h )

and

d(ξzk, j , ζγk+�,h ) ≥ d(uk, j , uk+�,h) − 2−k − 2−k−�.

Thus in the case p ≥ 1, we have

1

|1 − 〈zk, j , γk+�,h〉| ≤ 2

(2−k+p)2
≤ 4 · 22(k−p).
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Since zk, j ∈ Tk, j , the conclusion also holds in the case p = 0. Therefore

‖ϕ(�)
k,h, j‖ ≤ C10{22(k−p)(1 − |γk+�,h |)}(n/2)+t ≤ C10{22(k−p) · 2−2(k+�)}(n/2)+t

= C102
−(n+2t)(p+�)

for every (k, h, j) ∈ L(i)
�,p. Substituting this in (5.28), we obtain

‖|Z (p,i)
� |s‖� ≤ Cs

102
−s(n+2t)(p+�){�({csz}z∈F )}1/2.

Applying Lemma 4.1 to (5.27), we have

‖|Z (p)
� |s‖� ≤ 2

2M22n(p+�)∑
i=1

‖|Z (p,i)
� |s‖� ≤ 4MCs

102
−κ(p+�){�({csz}z∈F )}1/2, (5.29)

where κ = s(n + 2t) − 2n. The choice st > n ensures that κ > 0. Recalling (5.26),
another application of Lemma 4.1 leads to

∥∥∥∥
∣∣∣∣

∞∑
�=1

Z�

∣∣∣∣
s∥∥∥∥

�

≤ 2
∞∑

�=1

∞∑
p=0

‖|Z (p)
� |s‖� ≤ 8MCs

10

∞∑
�=1

∞∑
p=0

2−κ(p+�){�({csz}z∈F )}1/2

= C11{�({csz}z∈F )}1/2.
(5.30)

Recalling (5.25) and applying Lemma 4.1 to (5.13), we find that

‖|B∗W |s‖� ≤ C12{�({csz}z∈F )}1/2,

where C12 = 2(C8 + C11). This and (5.8) together give us

‖|W |s‖� ≤ C13{�({csz}z∈F )}1/2.

Substituting the above in (5.6), we obtain

‖T s‖� = ‖|W |s‖2� ≤ C2
13�({csz}z∈F ).

Since T approximates TF (cf. (5.3) and (5.4)), Lemma 4.3 allows us to conclude that

‖T s
F‖� ≤ C2

13�({csz}z∈F ).

As we recall, F is an arbitrary finite subset of 
 satisfying (5.2) and the condition that
cz = μ̃(D(z, b)) �= 0 for every z ∈ F . Thus it follows from Lemmas 2.6, 4.1 and 4.3
that

‖T s

‖� ≤ 2KC2

13�({μ̃s(D(z, b))}z∈
).
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We know that μ̃(D(z, b)) ≤ C14(1 − |z|2)−nμ(D(z, b)) from Lemma 2.4. Since
‖T s

μ‖� ≤ ‖T s

‖�, this proves the upper bound for ‖T s

μ‖� in Theorem 1.4. ��
Denote Kw(ζ ) = (1− 〈ζ,w〉)−n . Having proved the upper bound in Theorem 1.4,

next we state a consequence of it, which will be convenient for application in Sect. 8.

Proposition 5.1 Let 0 < a < ∞ and 0 < b < ∞ be positive numbers. Suppose that
� is a symmetric gauge function satisfying condition (DQK). Then for any regular
Borel measure μ on B and any a- separated set 
 in B, we have

∥∥∥∥
∑
z∈


∫
D(z,b)

Kw ⊗ Kwdμ(w)

∥∥∥∥
�

≤ C5.1�

({
μ(D(z, b))

(1 − |z|2)n
}
z∈


)
,

where C5.1 is a constant that depends only on a, b, � and the complex dimension n.

Proof Obviously,

∑
z∈


∫
D(z,b)

Kw ⊗ Kwdμ(w) = Tν,

where ν is the measure defined by the formula

dν =
∑
z∈


χD(z,b)dμ.

Since 
 is a-separated, there is a 
′ containing 
 that is maximal with respect to the
property of being a-separated. Thus 
′ is an a, 2a-lattice in B. By the upper bound in
Theorem 1.4, the proposition will follow if we can find a constant C such that

�

({
ν(D(w, 2a))

(1 − |w|2)n
}

w∈
′

)
≤ C�

({
μ(D(z, b))

(1 − |z|2)n
}
z∈


)
. (5.31)

Since 
 is a-separated, by Lemma 2.1, there is an N ∈ N determined by a, b such that
for any w ∈ 
′, card{z ∈ 
 : D(w, 2a) ∩ D(z, b) �= ∅} ≤ N . Let 
′′ = {w ∈ 
′ :
ν(D(w, 2a)) �= 0}. Then for each w ∈ 
′′, there is a z(w) ∈ 
 such that

ν(D(w, 2a)) ≤ Nμ(D(z(w), b)) and β(w, z(w)) ≤ b + 2a.

Combining these two conditions with Lemma 2.4, we see that

�

({
ν(D(w, 2a))

(1 − |w|2)n
}

w∈
′′

)
≤ C1N�

({
μ(D(z(w), b))

(1 − |z(w)|2)n
}

w∈
′′

)
. (5.32)

Ifw, ξ ∈ 
′′ are such that z(w) = z(ξ), then β(w, ξ) ≤ 2b+4a. Thus, by Lemma 2.1,
there is an M ∈ N such that the map w �→ z(w) from 
′′ to 
 is at most M-to-1.
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Applying Lemma 4.8, we have

�

({
μ(D(z(w), b))

(1 − |z(w)|2)n
}

w∈
′′

)
≤ M�

({
μ(D(z, b))

(1 − |z|2)n
}
z∈


)
.

Combining this inequality with (5.32), (5.31) follows. ��

6 Proof of Theorem 1.4: The Lower Bound

The main part of the proof of the lower bound consists of estimates similar to those in
Sect. 5. Therefore many of the notations below are the same as in Sect. 5. But some
modifications and new ideas are necessary for the lower bound.

To prove the lower bound in Theorem 1.4, we again define μ̃ by (5.1) when a
measure μ is given. Let 0 < a ≤ b < ∞. In contrast to Sect. 5, we now need the
inequality

μ(D(z, b))

(1 − |z|2)n ≤ (
4e2b

)n
μ̃(D(z, b)),

z ∈ B, which also follows from Lemma 2.4. Suppose that 
 is an a, b-lattice in B. As
in Sect. 5, we again write cz = μ̃(D(z, b)) for z ∈ 
.

Consider any finite subset F of 
 satisfying the following three conditions:

(a) cz �= 0 for every z ∈ F .
(b) F is R-separated for a sufficiently large R > max{1, 2b}, to be determined later.
(c) F satisfies (5.2).

With such an F , we again define the operator TF by (5.3). Let 0 < s ≤ 1 be given.
Pick a t > 0 such that st > n. But instead of the operator B in Sect. 5, here we need

E =
∑
z∈F

ψz,t ⊗ ez,

where {ez : z ∈ F} is an orthonormal set. Then ‖E‖ ≤ C3.2 by Proposition 3.2. For
any symmetric gauge function �, it follows from Lemma 4.2 that

‖(E∗TF E)s‖� ≤ C2s
3.2‖T s

F‖� ≤ C2s
3.2‖T s

μ‖�,

where the second ≤ holds because TF ≤ Tμ, which is guaranteed by the condition
R > 2b.

Recall from Sect. 5 that operators T given by (5.4) strongly approximate TF . Con-
sider H = span{ez : z ∈ F}, which is a finite-dimensional Hilbert space. We can
regard E∗TF E as an operator on H. Since dim(H) < ∞, all operator topologies on
H are equivalent. Therefore there is a T given by (5.4) such that

‖(E∗T E)s‖� ≤ 2‖(E∗TF E)s‖� ≤ 2C2s
3.2‖T s

μ‖�.
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Once we have this T , we again factor it in the form T = WW ∗, where W is given by
(5.5). Writing � = �(2) as in Sect. 5, we have

‖(E∗T E)s‖� = ‖{E∗W (E∗W )∗}s‖� = ‖|E∗W |2s‖� = ‖|E∗W |s‖2�.

Writing C1 = {2C2s
3.2}1/2, the above gives us

‖|E∗W |s‖� ≤ C1‖T s
μ‖1/2� . (6.1)

Similar to (5.10), we have

E∗W =
∑

γ,z∈F
c1/2z eγ ⊗ fz;γ ,

where fz;γ is given by (5.11). Thus E∗W = D + X , where

D =
∑
z∈F

c1/2z ez ⊗ fz;z and X =
∑

γ,z∈F
γ �=z

c1/2z eγ ⊗ fz;γ .

Since D = E∗W − X , it follows from Lemma 4.1 and (6.1) that

‖|D|s‖� ≤ 2C1‖T s
μ‖1/2� + 2‖|X |s‖�. (6.2)

First, let us look at the operator D.
Because {ez : z ∈ F} and {ε(z; i) : z ∈ F, 1 ≤ i ≤ d} are orthonormal sets, we

have

‖|D|s‖� = �({cs/2z ‖ fz;z‖s}z∈F ).

We need a lower bound for ‖ fz;z‖. By (5.11), we have

‖ fz;z‖ ≥ min
1≤i≤d

(1 − |w(z; i)|2)n/2|ψz,t (w(z; i))|.

Recall that w(z; i) ∈ D(z, b) for every 1 ≤ i ≤ d. Thus it follows from Lemmas 2.3
and 2.4 that there is a δ > 0 which is determined by b, n and t such that

(1 − |w(z; i)|2)n/2|ψz,t (w(z; i))| ≥ δ(1 − |z|2)n/2|ψz,t (z)| = δ

for every 1 ≤ i ≤ d and every z ∈ F . Hence

δs�({cs/2z }z∈F ) ≤ ‖|D|s‖�. (6.3)

Next we consider X , which will be handled in a way similar to the B∗W in Sect. 5.
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Similar to (5.13), we have the decomposition

X = Y0 +
∞∑

�=1

Y� +
∞∑

�=1

Z�,

where

Y� =
∞∑
k=0

∑
(γ,z)∈Fk×Fk+�

c1/2z eγ ⊗ fz;γ and Z� =
∞∑
k=0

∑
(γ,z)∈Fk+�×Fk

c1/2z eγ ⊗ fz;γ

for � ≥ 1, and where

Y0 =
∞∑
k=0

∑
(γ,z)∈Fk×Fk

γ �=z

c1/2z eγ ⊗ fz;γ .

As in Sect. 5, we first consider Y�.
By (5.2), for each k ≥ 0 there is a Jk ⊂ {1, . . . ,m(k)} such that Fk = {γk, j :

j ∈ Jk} and such that for each j ∈ Jk , γk, j ∈ Tk, j . Recall (5.15) for the definition of

Fk,�, j . For k ≥ 0, � ≥ 0, j ∈ Jk and j ′ ∈ {1, . . . ,m(k)}, we now define f (�)

k; j, j ′ by the
formula

f (�)

k; j, j ′ =
∑

z∈Fk,�, j ′
z �=γk, j

c1/2z fz;γk, j , (6.4)

which is a necessary modification of (5.16). (Here, we would like to remind the reader
of the common convention that a summation over the empty index set means 0.) Then

Y� =
∞∑
k=0

∑
j∈Jk

m(k)∑
j ′=1

eγk, j ⊗ f (�)

k; j, j ′ =
∞∑
p=0

Y (p)
�

as in Sect. 5, where

Y (p)
� =

∞∑
k=0

∑
( j, j ′)∈Qk,p

eγk, j ⊗ f (�)

k; j, j ′ (6.5)

for p = 0, 1, 2, . . . , where Qk,p is the same as in Sect. 5.

Lemma 6.1 Let L ∈ N. If R > 3L + 13, then Y (p)
� = 0 whenever we have both

� ≤ L and p ≤ L.
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Proof Consider any pair of γk, j ∈ Fk and z ∈ Fk,�, j ′ , z �= γk, j . Furthermore, suppose
that ( j, j ′) ∈ Qk,p, which, as we recall from Sect. 5, implies

d(uk, j , uk, j ′) < 2−k+p+2.

We have z = |z|ξz and γk, j = |γk, j |ξγk, j . The membership z ∈ Fk,�, j ′ means
2−2(k+�+1) ≤ 1 − |z| ≤ 2−2(k+�) and ξz ∈ Sk, j ′ , i.e., d(ξz, uk, j ′) < 2−k . Similarly,
since γk, j ∈ Tk, j , we have 2−2(k+1) ≤ 1 − |γk, j | ≤ 2−2k and d(ξγk, j , uk, j ) < 2−k .
Hence

|1 − 〈ξz, ξγk, j 〉| = d2(ξz, ξγk, j ) ≤ (2−k+p+2 + 2−k + 2−k)2 ≤ 2−2k+2p+8.

This leads to

|1 − 〈z, γk, j 〉| ≤ |1 − 〈ξz, ξγk, j 〉| + 1 − |z| + 1 − |γk, j | ≤ 2−2k+2p+10.

Therefore

1 − |ϕz(γk, j )|2 = (1 − |z|2)(1 − |γk, j |2)
|1 − 〈z, γk, j 〉|2 ≥ 2−2(k+�+1) · 2−2(k+1)

(2−2k+2p+10)2
= 2−(2�+4p+24).

Consequently

β(z, γk, j ) ≤ 1

2
log

4

1 − |ϕz(γk, j )|2 ≤ � + 2p + 13.

Thus if we have both � ≤ L and p ≤ L , thenβ(z, γk, j ) ≤ 3L+13. But if R > 3L+13,
then there is no such a pair of z �= γk, j in F , because F is supposed to be R-separated.

By (6.4) and (6.5), this means that Y (p)
� = 0 under the conditions R > 3L+13, � ≤ L

and p ≤ L . This completes the proof. ��
Now let L ∈ N, whose value will be determined momentarily. We choose R such

that R > max{3L + 13, 2b}. By (5.24), for all � ≥ 0 and p ≥ 0,

‖|Y (p)
� |s‖� ≤ C72

−2(s(n+t)−n)p2−2εn��({cs/2z }z∈F ),

where, as we recall, the ε > 0 resulted from the (DQK) condition for �. Taking
Lemma 6.1 into account and applying Lemma 4.1, we obtain

∥∥∥∥
∣∣∣∣

∞∑
�=0

Y�

∣∣∣∣
s∥∥∥∥

�

≤ 2
∑

�,p∈Z+
max{�,p}≥L

‖|Y (p)
� |s‖�

≤ 2C7

∑
�,p∈Z+

max{�,p}≥L

2−2(s(n+t)−n)p2−2εn��({cs/2z }z∈F )

≤ C82
−ωL�({cs/2z }z∈F ),
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where ω = 2min{s(n + t) − n, εn}.
For Z�, we similarly retrace the second half of Sect. 5. In particular, (5.29) still

holds. Then, similar to Lemma 6.1, we find that Z (p)
� = 0 if we have both � ≤ L and

p ≤ L , because R > 3L + 13 and F is R-separated. Thus

∥∥∥∥
∣∣∣∣

∞∑
�=1

Z�

∣∣∣∣
s∥∥∥∥

�

≤ C92
−κL�({cs/2z }z∈F ),

where κ = s(n + 2t) − 2n. Then another application of Lemma 4.1 gives us

‖|X |s‖� ≤ 2

∥∥∥∥
∣∣∣∣

∞∑
�=0

Y�

∣∣∣∣
s∥∥∥∥

�

+ 2

∥∥∥∥
∣∣∣∣

∞∑
�=1

Z�

∣∣∣∣
s∥∥∥∥

�

≤ 2(C82
−ωL + C92

−κL)�({cs/2z }z∈F ).

Combining this with (6.2) and (6.3), we obtain

δs�({cs/2z }z∈F ) ≤ 2C1‖T s
μ‖1/2� + 4(C82

−ωL + C92
−κL)�({cs/2z }z∈F ).

We pick L large enough so that 4(C82−ωL +C92−κL) ≤ δs/2, and set R > max{3L+
13, 2b} accordingly. Then the obvious cancellation and simplification in the above
leads to

�({cs/2z }z∈F ) ≤ 4δ−sC1‖T s
μ‖1/2� .

Since � = �(2), this implies that

�({csz}z∈F ) ≤ {4δ−sC1}2‖T s
μ‖�.

Recall that F is any finite subset of 
 satisfying conditions (a), (b), (c). Combining
this inequality with Lemmas 2.1 and 2.6, the desired lower bound in Theorem 1.4
follows. ��

7 Dixmier Trace: The Case of Discrete Sums

In addition to Proposition 1.2, �+
1 is another example of symmetric gauge function

that satisfies condition (DQK). To see this, consider an a = {a j } j∈N ∈ ĉ. It suffices to
consider the case where a j ≥ 0 for every j and we have the descending arrangement

a1 ≥ a2 ≥ · · · ≥ a j ≥ · · · .

Since a j = 0 for all but a finite number of j’s, there is a k ∈ N such that

�+
1 (a) = a1 + · · · + ak

1−1 + · · · + k−1 .
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On the other hand, by (1.4), for any N ∈ N we have

�+
1 (a[N ]) ≥ aN1 + · · · + aNNk

1−1 + · · · + (Nk)−1 = Na1 + · · · + Nak
1−1 + · · · + (Nk)−1 .

Obviously, for any 0 < ε < 1, 1−1 + · · · + (Nk)−1 ≤ CεN ε(1−1 + · · · + k−1).
Therefore

�+
1 (a[N ]) ≥ C−1

ε N 1−ε a1 + · · · + ak
1−1 + · · · + k−1 = C−1

ε N 1−ε�+
1 (a).

This shows that�+
1 satisfies condition (DQK), and we can take any value less than 1 to

be its “θ”. In particular, Theorem 1.4 determines themembership T s
μ ∈ C+

1 , 0 < s ≤ 1.
This enables us to consider the Dixmier trace of Tμ. But before we do that, let

us briefly review the definition of Dixmier trace for the benefit of the reader. First
of all, we cite [3,5,19] as general references. To define the Dixmier trace, one starts
with a Banach limit ω on �∞(N). But in addition to the properties that Banach limits
[4, Section III.7] possess in general, ω is required to have the following “doubling”
property:

(D) For each {ak}k∈N ∈ �∞(N),ω({ak}k∈N) = ω({a1, a1, a2, a2, . . . , ak, ak, . . . }).
Such an ω can be easily constructed. For example, one can start with the doubling

operator D : �∞(N) → �∞(N). That is,

D{a1, a2, . . . , ak, . . . } = {a1, a1, a2, a2, . . . , ak, ak, . . . }

for {ak}k∈N ∈ �∞(N). Take any Banach limits L1 and L2, distinct or identical. Then
an elementary exercise shows that the formula

ω(a) = L2

({
1

k

k∑
j=1

L1(D
ja)

}
k∈N

)
,

a ∈ �∞(N), defines a Banach limit that has the doubling property (D).
With such an ω, for any positive operator A ∈ C+

1 , its Dixmier trace is defined to
be

Trω(A) = ω

({
1

log(k + 1)

k∑
j=1

s j (A)

}
k∈N

)
.

The doubling property of ω ensures the additivity Trω(A + B) = Trω(A) + Trω(B)

for positive operators A, B ∈ C+
1 . Thus Trω naturally extends to a linear functional on

C+
1 . This definition guarantees unitary invariance: Trω(U∗TU ) = Trω(T ) for every

T ∈ C+
1 and every unitary operator U . Since UT is unitarily equivalent to TU , we

have Trω(UT ) = Trω(TU ). From this it follows that Trω(XT ) = Trω(T X) for every
T ∈ C+

1 and every bounded operator X , which is what one expects of a trace.
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Previous calculations of Dixmier trace (see, e.g., [2,9,10,20]) relied heavily on the
principle that if A is in the trace class, then Trω(A) = 0. In this paper, our calculation
of Dixmier trace will be based on two different vanishing principles.

Lemma 7.1 Let A ∈ C+
1 . If the kernel of A contains its range, then Trω(A) = 0.

Proof Let P be the orthogonal projection onto the range of A. If the kernel of A
contains the range of A, then Trω(A) = Trω(PA) = Trω(AP) = Trω(0) = 0. ��

Even though our next lemma is trivial, we would like to state it for the record
anyway. We remind the reader that we write ‖ · ‖+

1 for ‖ · ‖�+
1
.

Lemma 7.2 Let Y1, . . . ,Y j , . . . be operators in C+
1 such that

∑∞
j=1 ‖Y j‖+

1 < ∞.
Define Y = ∑∞

j=1 Y j . If Trω(Y j ) = 0 for every j ∈ N, then Trω(Y ) = 0.

Lemmas 7.1 and 7.2 will guide our calculation of Dixmier trace. Our task is to
extract non-trivial results from these seemingly trivial principles.

Lemma 7.3 Suppose that B is a set and that A is a subset of B. Let h : A → B be an
injective map which has the property that h(a) �= a for every a ∈ A. Then there is a
partition A = E1∪ E2 ∪ E3 such that for every i ∈ {1, 2, 3}, we have h(Ei )∩ Ei = ∅.
Proof By Zorn’s lemma, there is a subset E1 of A that is maximal with respect to
the property h(E1) ∩ E1 = ∅. If E1 �= A, then there is a subset E2 of A\E1 that is
maximal with respect to the property h(E2) ∩ E2 = ∅. Similarly, if E1 ∪ E2 �= A,
then there is a subset E3 of A\{E1 ∪ E2} that is maximal with respect to the property
h(E3) ∩ E3 = ∅.

To complete the proof, it suffices to show that E1 ∪ E2 ∪ E3 = A. Suppose that
there were some x ∈ A\{E1 ∪ E2 ∪ E3}. It follows from the maximality of E1, E2
and E3 that for each i ∈ {1, 2, 3}, if we define Fi = Ei ∪ {x}, then h(Fi ) ∩ Fi �= ∅.
Since h(x) �= x , this means that we have either x ∈ h(Ei ) or h(x) ∈ Ei for each
i ∈ {1, 2, 3}. Our construction ensures that Ei ∩ E j = ∅ when i �= j . Therefore
there is at most one i ∈ {1, 2, 3} such that h(x) ∈ Ei . This leaves a pair of j �= k in
{1, 2, 3} such that x ∈ h(E j ) and x ∈ h(Ek). Since E j ∩ Ek = ∅, this contradicts the
injectivity of h. Hence no such x exists. ��

ThecomputationofDixmier trace is trivialwhen theoperator in question is explicitly
given as a diagonal operatorwith respect to an orthonormal set. Even though it is trivial,
we state the case as a proposition below, which will serve as a convenient reference:

Proposition 7.4 Let E be a countable index set and consider an operator of the form

D =
∑
z∈E

czez ⊗ ez,

where {cz}z∈E are non-negative numbers such that �+
1 ({cz}z∈E ) < ∞, and, most

important, {ez : z ∈ E} is an orthonormal set. Let E ′ = {z ∈ E : cz �= 0}. If



Toeplitz Operators Associated with Measures... Page 41 of 58 30

card(E ′) = ∞, then

Trω(D) = ω

({
1

log(k + 1)

k∑
j=1

cz j

}
k∈N

)
,

where z1, z2, . . . , zk, . . . are an enumeration of the elements in E ′ such that cz j ≥
cz j+1 for every j ∈ N ( the condition �+

1 ({cz}z∈E ) < ∞ ensures that such an
enumeration is possible). If card(E ′) < ∞, then, of course, Trω(D) = 0.

We first consider Tμ where μ is discrete. Our computation shows that for any sep-
arated set 
 in B, Dixmier trace cannot distinguish {kz : z ∈ 
} from an orthonormal
set.

Theorem 7.5 Suppose that 
 is an a- separated set in B for some a > 0. Let {cz}z∈


be non-negative numbers such that �+
1 ({cz}z∈
) < ∞. Then the operator

T =
∑
z∈


czkz ⊗ kz

is in the ideal C+
1 . Moreover, its Dixmier trace is explicitly given by the formula

Trω(T ) = Trω

( ∑
z∈


czez ⊗ ez

)
, (7.1)

where {ez : z ∈ 
} is any orthonormal set.

Proof Obviously, the membership T ∈ C+
1 follows from Proposition 5.1 by applying

it to the symmetric gauge function �+
1 and the discrete measure ν = ∑

z∈
 cz(1 −
|z|2)nδz , where δz denotes the unit point mass at z. Next we compute the Dixmier trace
Trω(T ).

Since this calculation is quite long, let us first explain the main idea involved.
Consider an arbitrary positive operator A in C+

1 . Let {u j : j ∈ N} be an orthonormal
basis for the underlying Hilbert space, and define the operator

A′ =
∞∑
j=1

〈Au j , u j 〉u j ⊗ u j .

It follows from [15, Lemma III.3.1] that ‖A′‖+
1 ≤ ‖A‖+

1 . Hence A′ ∈ C+
1 . Note that

A−A′ is an operatorwhose diagonalwith respect to the orthonormal basis {u j : j ∈ N}
vanishes. Therefore one’s first instinct is to say

Trω(A − A′) = 0, (7.2)

and consequently Trω(A) = Trω(A′). But unfortunately, in such generality this is a
wrong argument for theDixmier trace [19, Section 7.5]. Themain effort belowamounts
to proving (7.2) for our particular A and A′, using the specifics of the operators.
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Let {Sk, j : (k, j) ∈ I } be the Borel sets introduced in Sect. 5, satisfying conditions
(1), (2), (3) there. Again, we write each z ∈ 
 in the form z = |z|ξz with ξz ∈ S.
Define


k = {z ∈ 
 : 1 − 2−2k ≤ |z| < 1 − 2−2(k+1)} (7.3)

for each k ≥ 0. Since the Dixmier trace is linear, decomposing 
 by a finite partition
if necessary, Lemma 2.6 allows us to assume that

card{z ∈ 
k : ξz ∈ Sk, j } ≤ 1 (7.4)

for every (k, j) ∈ I . We pick an orthonormal set {ez : z ∈ 
} and define

B =
∑
z∈


c1/2z kz ⊗ ez .

Obviously, T = BB∗. Define A = B∗B. Since B∗B and BB∗ have identical singular
numbers, we have Trω(T ) = Trω(A). Thus our task becomes the computation of
Trω(A). Then note that

A = A′ + Y ,

where

A′ =
∑
z∈


czez ⊗ ez and Y =
∑

w,z∈

w �=z

c1/2z c1/2w 〈kz, kw〉ew ⊗ ez .

Obviously, A′ ∈ C+
1 and Trω(A′) is the right-hand side of (7.1). Thus, as we explained

earlier, our main task is to show that Trω(Y ) = 0.
The proof of Trω(Y ) = 0 requires two applications of Proposition 4.6 to the sym-

metric gauge function � = �
+(2)
1 , which produce two “small factors”, which in turn

allow Lemma 7.2 to be applied. This involves a decomposition scheme similar to the
one in Sect. 5, but only more complicated. To begin, we have

Y = Y0 +
∞∑

�=1

(Y� + Y ∗
� ), (7.5)

where

Y0 =
∞∑
k=0

∑
w,z∈
k
w �=z

c1/2z c1/2w 〈kz, kw〉ew ⊗ ez and

Y� =
∞∑
k=0

∑
(w,z)∈
k×
k+�

c1/2z c1/2w 〈kz, kw〉ew ⊗ ez, � ≥ 1.

(7.6)
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For each pair of k ≥ 0 and � ≥ 0, we have a partition


k+� = 
k,�,1 ∪ · · · ∪ 
k,�,m(k),

where


k,�, j = {z ∈ 
k+� : ξz ∈ Sk, j }, (7.7)

1 ≤ j ≤ m(k). By (7.4), for each k ≥ 0 there is a Jk ⊂ {1, . . . ,m(k)} such that

k = {γk, j : j ∈ Jk} and such that ξγk, j ∈ Sk, j for each j ∈ Jk .

For k ≥ 0, � ≥ 0, j ∈ Jk and j ′ ∈ {1, . . . ,m(k)}, define

f (�)

k; j, j ′ =
∑

z∈
k,�, j ′
c1/2z 〈kγk, j , kz〉ez . (7.8)

Then

Y� =
∞∑
k=0

∑
j∈Jk

m(k)∑
j ′=1

c1/2γk, j
eγk, j ⊗ f (�)

k; j, j ′

for � ≥ 1. By (7.4), (7.7) and (7.8), we have

Y0 =
∞∑
k=0

∑
( j, j ′)∈Jk×{1,...,m(k)}

j �= j ′

c1/2γk, j
eγk, j ⊗ f (0)

k; j, j ′ .

Now we further decompose Y� according to spherical separation. For each k ≥ 0,
define

Qk,0 = {( j, j ′) : j ∈ Jk, 1 ≤ j ′ ≤ m(k), d(uk, j , uk, j ′) < 2−k+3} and

Qk,p = {( j, j ′) : j ∈ Jk, 1 ≤ j ′ ≤ m(k), 2−k+p+2

≤ d(uk, j , uk, j ′) < 2−k+p+3}, p ≥ 1.

Accordingly, we define

Y (p)
� =

∞∑
k=0

∑
( j, j ′)∈Qk,p

c1/2γk, j
eγk, j ⊗ f (�)

k; j, j ′ (7.9)

if either p ≥ 1 or � ≥ 1. In the case p = 0 and � = 0, we define Y (0)
0 by the above sum

with the extra constraint that the inner sum be taken over all ( j, j ′) ∈ Qk,0 satisfying
the condition j �= j ′. Then, of course,

Y� = Y (0)
� + Y (1)

� + Y (2)
� + · · · + Y (p)

� + · · · , (7.10)
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� ≥ 0. So far, this resembles a portion of Sect. 5. Next we will decompose each Y (p)
� .

Because we no longer have the benefit of the modified kernel ψz,t , the decomposition

of Y (p)
� here is much more complicated than the corresponding part in Sect. 5.

For each pair of k ≥ 0 and p ≥ 0, let Fk;p be a subset of S that is maximal with
respect to the property

B(ξ, 2−k+p) ∩ B(ξ ′, 2−k+p) = ∅ for all ξ �= ξ ′ in Fk;p. (7.11)

From this we obtain Borel sets {Eξ

k;p : ξ ∈ Fk;p} with the following three properties:

(a) ∪ξ∈Fk;p E
ξ

k;p = S

(b) Eξ

k;p ⊂ B(ξ, 2−k+p+1) for every ξ ∈ Fk;p.
(c) Eξ

k;p ∩ Eξ ′
k;p = ∅ for all ξ �= ξ ′ in Fk;p.

Now we define the operator

Z ξ,ξ ′
k,�;p =

∑
uk, j∈Eξ

k;p,uk, j ′ ∈Eξ ′
k;p

( j, j ′)∈Qk,p

c1/2γk, j
eγk, j ⊗ f (�)

k; j, j ′ (7.12)

if either p ≥ 1 or � ≥ 1. Also, in the case where we have both � = 0 and p = 0,
define

Z ξ,ξ ′
k,0;0 =

∑
uk, j∈Eξ

k;0,uk, j ′ ∈Eξ ′
k;0

( j, j ′)∈Qk,0, j �= j ′

c1/2γk, j
eγk, j ⊗ f (0)

k; j, j ′ .

Furthermore, define the set

Gk;p = {(ξ, ξ ′) ∈ Fk;p × Fk;p : there is at least one ( j, j ′) ∈ Qk,p such that

uk, j ∈ Eξ

k;p and uk, j ′ ∈ Eξ ′
k;p}.

This allows us to rewrite (7.9) as

Y (p)
� =

∞∑
k=0

∑
(ξ,ξ ′)∈Gk;p

Z ξ,ξ ′
k,�;p.

Now suppose that the conditions (ξ, ξ ′) ∈ Fk;p × Fk;p, uk, j ∈ Eξ

k;p, uk, j ′ ∈ Eξ ′
k;p and

( j, j ′) ∈ Qk,p are simultaneously satisfied. Then

d(ξ, ξ ′) ≤ d(ξ, uk, j ) + d(uk, j , uk, j ′) + d(uk, j ′ , ξ
′)

≤ 2−k+p+1 + 2−k+p+3 + 2−k+p+1 < 2−k+p+4.
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Combining this with (7.11) and (2.5), we see that there is a constant N ∈ N such that

card{ξ ′ : (ξ, ξ ′) ∈ Gk;p} ≤ N and card{ξ ′ : (ξ ′, ξ) ∈ Gk;p} ≤ N

for all k ≥ 0, p ≥ 0 and ξ ∈ Fk;p. Thus for eachGk;p, Lemma 2.7 provides a partition

Gk;p = G(1)
k;p ∪ · · · ∪ G(2N )

k;p

such that for every i ∈ {1, . . . , 2N }, the conditions (ξ, ξ ′), (η, η′) ∈ G(i)
k;p and

(ξ, ξ ′) �= (η, η′) imply both ξ �= η and ξ ′ �= η′. Accordingly, we have

Y (p)
� = Y (p,1)

� + · · · + Y (p,2N )
� , (7.13)

where

Y (p,i)
� =

∞∑
k=0

∑
(ξ,ξ ′)∈G(i)

k;p

Z ξ,ξ ′
k,�;p. (7.14)

for each i ∈ {1, . . . , 2N }.
Now define

W ξ,ξ ′
k,�;p =

∑
uk, j∈Eξ

k;p,uk, j ′ ∈Eξ ′
k;p

( j, j ′)∈Qk,p

eγk, j ⊗ f (�)

k; j, j ′ (7.15)

if either p ≥ 1 or � ≥ 1, and impose the extra condition j �= j ′ in the sum when
� = 0 = p (the same will be assumed below). It is clear from (7.12) that Y (p,i)

� =
VW (p,i)

� , where

V =
∞∑
k=0

∑
j∈Jk

c1/2γk, j
eγk, j ⊗ eγk, j and W (p,i)

� =
∞∑
k=0

∑
(ξ,ξ ′)∈G(i)

k;p

W ξ,ξ ′
k,�;p.

Applying Lemma 4.4, we have

‖Y (p,i)
� ‖+

1 ≤ {‖V ∗V ‖+
1 ‖W (p,i)

� W (p,i)∗
� ‖+

1 }1/2
= {�+

1 ({cz}z∈
)‖W (p,i)
� W (p,i)∗

� ‖+
1 }1/2.

(7.16)

Thus we need to estimate ‖W (p,i)
� W (p,i)∗

� ‖+
1 .

For any given k ≥ 0 and (ξ, ξ ′), the range of W ξ,ξ ′
k,�;p is contained in the linear span

of {eγk, j : uk, j ∈ Eξ

k;p}, whereas the range of W ξ,ξ ′∗
k,�;p is contained in the linear span of
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{ez : z ∈ 
k,�, j ′ and uk, j ′ ∈ Eξ ′
k;p}. Thus for each i ∈ {1, . . . , 2N }, by the property of

G(i)
k;p, the conditions (ξ, ξ ′), (η, η′) ∈ G(i)

k;p and (ξ, ξ ′) �= (η, η′) imply both

range(W ξ,ξ ′
k,�;p) ⊥ range(W η,η′

k,�;p) and range(W ξ,ξ ′∗
k,�;p) ⊥ range(W η,η′∗

k,�;p ).

If k �= κ , then, of course, we have

range(W ξ,ξ ′
k,�;p) ⊥ range(W η,η′

κ,�;p) and range(W ξ,ξ ′∗
k,�;p) ⊥ range(W η,η′∗

κ,�;p )

for all (ξ, ξ ′) ∈ G(i)
k;p and (η, η′) ∈ G(i)

κ;p. From the above orthogonality it follows
that

W (p,i)
� W (p,i)∗

� =
∞∑
k=0

∑
(ξ,ξ ′)∈G(i)

k;p

W ξ,ξ ′
k,�;pW

ξ,ξ ′∗
k,�;p ,

and that the right-hand side is an orthogonal sum. Thus Lemma 4.7 gives us

‖W (p,i)
� W (p,i)∗

� ‖+
1 ≤ �+

1

(
{‖W ξ,ξ ′

k,�;pW
ξ,ξ ′∗
k,�;p‖1}(ξ,ξ ′)∈G(i)

k;p,k≥0

)
. (7.17)

On the other hand, it follows from (7.15), (7.7) and (7.8) that

W ξ,ξ ′
k,�;pW

ξ,ξ ′∗
k,�;p =

∑
uk, j∈Eξ

k;p,uk, j ′ ∈Eξ ′
k;p

( j, j ′)∈Qk,p

∑
uk,h∈Eξ

k;p,uk, j ′ ∈Eξ ′
k;p

(h, j ′)∈Qk,p

〈 f (�)

k;h, j ′ , f (�)

k; j, j ′ 〉eγk, j ⊗ eγk,h .

Consequently

‖W ξ,ξ ′
k,�;pW

ξ,ξ ′∗
k,�;p‖1 = tr(W ξ,ξ ′

k,�;pW
ξ,ξ ′∗
k,�;p) =

∑
uk, j∈Eξ

k;p,uk, j ′ ∈Eξ ′
k;p

( j, j ′)∈Qk,p

‖ f (�)

k; j, j ′ ‖2.

Similar to the proof of (5.22), in the current situation we have

‖ f (�)
k; j, j ′ ‖2 =

∑
z∈
k,�, j ′

cz(1 − |z|2)n |kγk, j (z)|2 =
∑

z∈
k,�, j ′
cz

(
1 − |z|2

1 − |γk, j |2
)n

|mγk, j (z)|2n

≤ C02
−2n�

∑
z∈
k,�, j ′

cz |mγk, j (z)|2n .

For any ( j, j ′) ∈ Qk,p and z ∈ 
k,�, j ′ , we have |mγk, j (z)| ≤ C12−2p as the argument
following (5.22) shows. (We emphasize that this includes the case where p = 0.)
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Define

d(�)

k, j ′ =
(
2−2n�

∑
z∈
k,�, j ′

cz

)1/2

(7.18)

for (k, j ′) ∈ I . Then the above estimates tell us that

‖W ξ,ξ ′
k,�;pW

ξ,ξ ′∗
k,�;p‖1 ≤ C22

−4np
∑

uk, j∈Eξ
k;p,uk, j ′ ∈Eξ ′

k;p
( j, j ′)∈Qk,p

(
d(�)

k, j ′
)2

.

By (b), (2.6) and (2.5), we have card{ j : uk, j ∈ Eξ

k;p} ≤ C322np. Thus

‖W ξ,ξ ′
k,�;pW

ξ,ξ ′∗
k,�;p‖1 ≤ C42

−2np
∑

uk, j ′ ∈Eξ ′
k;p

(
d(�)

k, j ′
)2 = C42

−2np
∑

(k, j ′)∈Aξ ′
k;p

(
d(�)

k, j ′
)2

,

where Aξ ′
k;p = {(k, j ′) : uk, j ′ ∈ Eξ ′

k;p}. This suggests that we should define

ϕ
ξ,ξ ′
k,�;p =

(
2−2np

∑
(k, j ′)∈Aξ ′

k;p

(
d(�)

k, j ′
)2 )1/2

for (ξ, ξ ′) ∈ G(i)
k;p. The above now becomes

‖W ξ,ξ ′
k,�;pW

ξ,ξ ′∗
k,�;p‖1 ≤ C4

(
ϕ

ξ,ξ ′
k,�;p

)2
.

Denote � = �
+(2)
1 . Since �+

1 satisfies condition (DQK), Lemma 4.5 says that � also
satisfies condition (DQK), which enables us to apply Proposition 4.6 here.

For (ξ, ξ ′) �= (η, η′) in G(i)
k;p, since ξ ′ �= η′, we have Aξ ′

k;p ∩ Aη′
k;p = ∅. Also,

card(Aξ ′
k;p) ≤ C322np as we explained above. Applying Proposition 4.6 to�, we have

�+
1

(
{‖W ξ,ξ ′

k,�;p W ξ,ξ ′∗
k,�;p‖1}(ξ,ξ ′)∈G(i)

k;p,k≥0

)
≤ C4�

+
1

({(
ϕ

ξ,ξ ′
k,�;p

)2 }
(ξ,ξ ′)∈G(i)

k;p,k≥0

)

= C4

(
�

({ϕξ,ξ ′
k,�;p}(ξ,ξ ′)∈G(i)

k;p ,k≥0

))2

≤ C4

(
C52

−2εnp�
({d(�)

k, j ′ }(k, j ′)∈I
))2

.

(7.19)

From (7.7) and the properties of {Sk, j : (k, j) ∈ I } stated in Sect. 5 we see that

k,�, j ∩ 
k,�, j ′ = ∅ if j �= j ′. For k �= κ , we have 
k,�, j ∩ 
κ,�,h = ∅ for all
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possible j and h. Furthermore, from (7.7), (7.3), (7.4), (2.6) and (2.5) we obtain
card(
k,�, j ′) ≤ C622n�. Recalling (7.18) and applying Proposition 4.6 again, we have

�
({d(�)

k, j ′ }(k, j ′)∈I ) ≤ C72
−2εn��({c1/2z }z∈
).

Substituting this in (7.19) and recalling the relation � = �
+(2)
1 , we find that

�+
1

(
{‖W ξ,ξ ′

k,�;pW
ξ,ξ ′∗
k,�;p‖1}(ξ,ξ ′)∈G(i)

k;p,k≥0

)
≤ C82

−4εnp2−4εn��+
1 ({cz}z∈
).

Combining this with (7.17) and (7.16), we obtain

‖Y (p,i)
� ‖+

1 ≤ C1/2
8 2−2εn(p+�)�+

1 ({cz}z∈
).

Recalling (7.13), we now have

‖Y (p)
� ‖+

1 ≤ 2NC1/2
8 2−2εn(p+�)�+

1 ({cz}z∈
)

for all � ≥ 0 and p ≥ 0. Thus

∞∑
�=0

∞∑
p=0

‖Y (p)
� ‖+

1 +
∞∑

�=1

∞∑
p=0

‖Y (p)∗
� ‖+

1 < ∞.

Combining this fact with (7.5), (7.10) andwith Lemma 7.2, the conclusion Trω(Y ) = 0
will follow if we can show that Trω(Y (p)

� ) = 0 for every pair of � ≥ 0 and p ≥ 0.

To prove that Trω(Y (p)
� ) = 0, let a pair of � ≥ 0 and p ≥ 0 be given. By (7.9), (7.8)

and (7.7), we need to consider γk, j = |γk, j |ξγk, j ∈ 
k and z = |z|ξz ∈ 
k+�, where
ξγk, j ∈ Sk, j , ξz ∈ Sk, j ′ and ( j, j ′) ∈ Qk,p. For such a pair of γk, j and z, we have

d(ξγk, j , ξz) ≤ d(ξγk, j , uk, j ) + d(uk, j , uk, j ′) + d(uk, j ′ , ξz)

< 2−k + 2−k+p+3 + 2−k ≤ 2−k+p+4.

Therefore

|1 − 〈z, γk, j 〉| ≤ |1 − 〈ξz, ξγk, j 〉| + 1 − |z| + 1 − |γk, j | ≤ 3 · 2−2k+2p+8.

Consequently

1 − |ϕγk, j (z)|2 = (1 − |γk, j |2)(1 − |z|2)
|1 − 〈z, γk, j 〉|2

≥ 2−2(k+1) · 2−2(k+�+1)

(3 · 2−2k+2p+8)2
= 1

32 · 220 · 22�+4p .
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This implies that there is a constant 0 < R�,p < ∞ such that for γk, j = |γk, j |ξγk, j ∈

k and z = |z|ξz ∈ 
k+� satisfying the conditions ξγk, j ∈ Sk, j , ξz ∈ Sk, j ′ and
( j, j ′) ∈ Qk,p, we have β(γk, j , z) < R�,p. Thus another look at (7.9) and (7.8) gives
us the new representation

Y (p)
� =

∑
(w,z)∈��,p

c1/2z c1/2w 〈kz, kw〉ew ⊗ ez,

where ��,p is a subset of the set

{(w, z) ∈ 
 × 
 : β(w, z) < R�,p and w �= z}. (7.20)

Since 
 is a-separated and R�,p < ∞, Lemma 2.1 provides an M�,p ∈ N such that
card{w : (w, z) ∈ ��,p} ≤ M�,p for every z and card{z : (w, z) ∈ ��,p} ≤ M�,p for
every w. By Lemma 2.7, we have a partition

��,p = �
(1)
�,p ∪ · · · ∪ �

(2M�,p)

�,p

such that for each i ∈ {1, . . . , 2M�,p}, the conditions (w, z), (w′, z′) ∈ �
(i)
�,p and

(w, z) �= (w′, z′) imply both w �= w′ and z �= z′. Accordingly, we have

Y (p)
� = Y (1)

�;p + · · · + Y
(2M�,p)

�;p , (7.21)

where

Y (i)
�;p =

∑
(w,z)∈�

(i)
�,p

c1/2z c1/2w 〈kz, kw〉ew ⊗ ez

for each i ∈ {1, . . . , 2M�,p}. Obviously, we have Y (i)
�;p ∈ C+

1 .

Fix an i ∈ {1, . . . , 2M�,p} for the moment. The property of �
(i)
�,p ensures that the

membership (w, z) ∈ �
(i)
�,p defines z as a function ofw, and vice versa. Thus there is a

subset E of
 and an injectivemap h : E → 
 such that�(i)
�,p = {(w, h(w)) : w ∈ E}.

Hence

Y (i)
�;p =

∑
w∈E

c1/2h(w)c
1/2
w 〈kh(w), kw〉ew ⊗ eh(w).

By (7.20) we have h(w) �= w for every w ∈ E . Applying Lemma 7.3, we obtain a
partition E = E1 ∪ E2 ∪ E3 such that h(Eν) ∩ Eν = ∅ for ν = 1, 2, 3. For each
ν ∈ {1, 2, 3}, define the orthogonal projection

Pν =
∑

w∈Eν

ew ⊗ ew.
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The property h(Eν) ∩ Eν = ∅ obviously translates to PνY
(i)
�;p Pν = 0. Hence

Trω(PνY
(i)
�;p) = Trω(PνY

(i)
�;p Pν) = 0. Since Y (i)

�;p = (P1 + P2 + P3)Y
(i)
�;p, we con-

clude that Trω(Y (i)
�;p) = 0.

Combining the last conclusion with (7.21), we now have Trω(Y (p)
� ) = 0 for all

� ≥ 0 and p ≥ 0. As we explained earlier, this completes the proof of Theorem 7.5. ��

8 Dixmier Trace: The General Case

Having computed the Dixmier trace for the discrete sum T in Theorem 7.5, we will
now use that result to compute the Dixmier trace for a general Toeplitz operator Tμ

defined by (1.1). The gap between T and Tμ concerns “small perturbations of 
”,
which is handled by the same techniques that proved the upper bound in Theorem 1.4.

Proposition 8.1 Let � be a symmetric gauge function satisfying condition (DQK).
Then there is a constant 0 < C8.1 < ∞ such that the following holds: Let 0 < a < 1.
If 
 is any 1-separated set in B and if we have a set {w(z) : z ∈ 
} ⊂ B satisfying the
condition β(z, w(z)) ≤ a for every z ∈ 
, then

∥∥∥∥
∑
z∈


czkz ⊗ kz −
∑
z∈


czkw(z) ⊗ kw(z)

∥∥∥∥
�

≤ C8.1a�({cz}z∈
)

for every set of non-negative coefficients {cz}z∈
 .

Proof By Lemma 2.6, we may assume that 
 satisfies the additional condition

card(
 ∩ Tk, j ) ≤ 1 for every (k, j) ∈ I . (8.1)

Let us write

D =
∑
z∈


czkz ⊗ kz −
∑
z∈


czkw(z) ⊗ kw(z).

Then D = D1 + D2, where

D1 =
∑
z∈


cz(kz − kw(z)) ⊗ kz and D2 =
∑
z∈


czkw(z) ⊗ (kz − kw(z)).

Since the estimates of ‖D1‖� and ‖D2‖� are similar, wewill only consider the former.
To estimate ‖D1‖�, we pick an orthonormal set {ẽz : z ∈ 
} and factor D1 in the

form D1 = WL , where

W =
∑
z∈


c1/2z (kz − kw(z)) ⊗ ẽz and L =
∑
z∈


c1/2z ẽz ⊗ kz .
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By Lemma 4.4, ‖D1‖� ≤ ‖W ∗W‖1/2� ‖L∗L‖1/2� . Note that

L∗L =
∑
z∈


czkz ⊗ kz,

the Toeplitz operator associated with the discrete measure ν = ∑
z∈
 cz(1− |z|2)nδz .

Applying Proposition 5.1 to ν, we obtain

‖L∗L‖� ≤ C�({cz}z∈
). (8.2)

To complete the proof, we need to estimate ‖W ∗W‖1/2� .
For the given �, we again have the symmetric gauge function � = �(2) defined

in Sect. 4. Furthermore, ‖W ∗W‖1/2� = ‖W‖� as before. Thus it suffices to estimate
‖W‖� . We again take advantage of the fact that the operator A given by (5.7) is
invertible on H2(S). By Propositions 3.8 and 3.2, it suffices to estimate ‖B∗W‖� ,
where

B =
∑
γ∈G

ψγ,t ⊗ eγ ,

t > n, G is a 1-separated set in B and {eγ : γ ∈ G} is an orthonormal set. By
Lemma 2.6, we can further assume that the 1-separated set G has the property that

card(G ∩ Tk, j ) ≤ 1 for every (k, j) ∈ I ,

which, along with (8.1), allows us to repeat the counting argument in Sect. 5. But now

B∗W =
∑
γ∈G

∑
z∈


c1/2z eγ ⊗ fz;γ , (8.3)

where

fz;γ = 〈ψγ,t , kz − kw(z)〉ẽz
for γ ∈ G and z ∈ 
. Since β(z, w(z)) ≤ a, Lemma 3.6 gives us

‖ fz;γ ‖ ≤ C ′
3.6a(1 − |z|2)n/2|ψγ,t (z)|, (8.4)

γ ∈ G and z ∈ 
. Obviously, the main difference between this and (5.12) is the factor
a.

Following Sect. 5, for each integer k ≥ 0 we define Hk = {w ∈ B : 1 − 2−2k ≤
|w| < 1 − 2−2(k+1)}, Gk = G ∩ Hk and Fk = 
 ∩ Hk . By (8.3), we have

B∗W =
∞∑

�=0

Y� +
∞∑

�=1

Z�, (8.5)
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where

Y� =
∞∑
k=0

∑
(γ,z)∈Gk×Fk+�

c1/2z eγ ⊗ fz;γ and

Z� =
∞∑
k=0

∑
(γ,z)∈Gk+�×Fk

c1/2z eγ ⊗ fz;γ .

We then decompose Y� and Z� as in Sect. 5, using the same sets {Sk, j : (k, j) ∈ I },
Qk,p and Qk,�;p introduced there. Taking s = 1, the argument that precedes (5.25)
gives us

∥∥∥∥
∞∑

�=0

Y�

∥∥∥∥
�

≤ C8a{�({cz}z∈F )}1/2, (8.6)

where the factor a comes from the fact that here we use (8.4) in place of (5.12).
Similarly, the proof of (5.30) now gives us

∥∥∥∥
∞∑

�=1

Z�

∥∥∥∥
�

≤ C11a{�({cz}z∈F )}1/2, (8.7)

where a appears for the same reason. Combining (8.5), (8.6) and (8.7), we have
‖B∗W‖� ≤ C12a{�({cz}z∈
)}1/2. As we explained in the third paragraph of the
proof, we can remove the B∗ from ‖B∗W‖� by applying Propositions 3.8 and 3.2.
Hence

‖W‖� ≤ C13a{�({cz}z∈
)}1/2.

Recall that ‖W‖� = ‖W ∗W‖1/2� and that ‖D1‖� ≤ ‖W ∗W‖1/2� ‖L∗L‖1/2� . Thus the
desired bound on ‖D1‖� follows from the above inequality and (8.2). ��

Finally, we will show that for a general Toeplitz operator Tμ defined by (1.1) on the
Hardy space H2(S), we also have a formula for its Dixmier trace in the style of (7.1).

Theorem 8.2 Let μ be a regular Borel measure on B such that Tμ ∈ C+
1 . Let 
 be an

a, b-lattice in B, where 0 < a < b < ∞ and b ≥ 2a. (Since b ≥ 2a, such a 
 always
exists.) By Theorem 1.4, we have

�+
1

({
μ(D(z, b))

(1 − |z|2)n
}
z∈


)
< ∞. (8.8)

Since 
 is an a, b-lattice in B, there is a partition B = ∪z∈
Ez such that for every
z ∈ 
, we have Ez ⊂ D(z, b). For each z ∈ 
, define

cz =
∫
Ez

dμ(w)

(1 − |w|2)n . (8.9)
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By (8.8) and Lemma 2.4, we have�+
1 ({cz}z∈
) < ∞. TheDixmier trace of the Toeplitz

operator Tμ is given by the formula

Trω(Tμ) = Trω

( ∑
z∈


czez ⊗ ez

)
, (8.10)

where {ez : z ∈ 
} is any orthonormal set.
Proof Let 
′ = {z ∈ 
 : cz �= 0}. Given a partition 
′ = 
′(1) ∪ 
′(2), for i = 1, 2
we can define E (i) = ∪z∈
′(i)Ez . Accordingly, μ = μ(1) + μ(2), where μ(i)(�) =
μ(�∩E (i)) for Borel sets� ⊂B, i = 1, 2. Obviously, both sides of (8.10) are additive
with respect to such a decomposition. Therefore, by Lemma 2.1, it suffices to prove
(8.10) under the additional assumption that 
′ is 2b + 2-separated. This implies that
if we pick an arbitrary ζ(z) ∈ D(z, b) for each z ∈ 
′, then the set {ζ(z) : z ∈ 
′} is
1-separated.

We will prove (8.10) by using Theorem 7.5 and approximation in the ideal C+
1 . This

scheme proceeds as follows. Let an ε > 0 be given. Then by the above-mentioned
property of 
′ and Proposition 8.1, there is a δ > 0 such that if ζ(z) ∈ D(z, b) for
every z ∈ 
′, and if a set {w(z) : z ∈ 
′} has the property that β(ζ(z), w(z)) ≤ δ for
every z ∈ 
′, then

∥∥∥∥
∑
z∈G

czkζ(z) ⊗ kζ(z) −
∑
z∈G

czkw(z) ⊗ kw(z)

∥∥∥∥
+

1
≤ ε�+

1 ({cz}z∈
) (8.11)

for every G ⊂ 
′. For each z ∈ 
′, we define the measure νz by the formula νz(�) =
c−1
z μ̃(� ∩ Ez), where � is any Borel set in B and the relation between μ̃ and μ was
given by (5.1). By (8.9), each νz is a probability measure on B. Furthermore,

Tμ =
∑
z∈
′

cz

∫
Ez

kw ⊗ kwdνz(w).

ByLemma2.1(1), for the δ chosen above, there is an N ∈N that has the following prop-
erty: For each z ∈ 
′, there are ξz,1, . . . , ξz,N ∈ D(z, b) such that ∪N

i=1D(ξz,i , δ/2) ⊃
D(z, b). Thus for each z ∈ 
′, Ez admits a partition Ez = Ez,1 ∪· · ·∪ Ez,N such that

sup
u,v∈Ez,i

β(u, v) ≤ δ, (8.12)

1 ≤ i ≤ N . Accordingly, we rewrite the Toeplitz operator Tμ in the form

Tμ =
∑
z∈
′

N∑
i=1

cz

∫
Ez,i

kw ⊗ kwdνz(w). (8.13)

With this N so fixed, we pick a k ∈ N such that N/k ≤ ε.
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For each z ∈ 
′, denote Jz = {i ∈ {1, . . . , N } : νz(Ez,i ) �= 0}. Then for every pair
of z ∈ 
′ and i ∈ Jz , define the probability measure dνz,i = {νz(Ez,i )}−1χEz,i dνz .
This allows us to rewrite (8.13) in the form

Tμ =
∑
z∈
′

∑
i∈Jz

czν(Ez,i )

∫
Ez,i

kw ⊗ kwdνz,i (w).

For every pair of z ∈ 
′ and i ∈ Jz , there is an m(z, i) ∈ Z+ such that m(z, i)/k ≤
νz(Ez,i ) < (m(z, i) + 1)/k. Thus for every such pair of z, i we have

νz(Ez,i ) = m(z, i)

k
+ a(z, i), where 0 ≤ a(z, i) ≤ 1/k. (8.14)

Accordingly, we have Tμ = T1 + T2, where

T1 = 1

k

∑
z∈
′

∑
i∈Jz

czm(z, i)
∫
Ez,i

kw ⊗ kwdνz,i (w) and

T2 =
∑
z∈
′

∑
i∈Jz

cza(z, i)
∫
Ez,i

kw ⊗ kwdνz,i (w).

(8.15)

We will show that Trω(T1) is close to the right-hand side of (8.10) and that ‖T2‖+
1 is

small.
To estimate Trω(T1), observe that for every z ∈ 
′, we have

∑
i∈Jz

m(z, i) = k
∑
i∈Jz

m(z, i)

k
≤ k

∑
i∈Jz

νz(Ez,i ) = kνz(∪i∈Jz Ez,i ) = kνz(Ez) = k.

That is, there is a natural number k′ ≤ k such that

∑
i∈Jz

m(z, i) ≤ k′ for every z ∈ 
′.

We can think ofm(z, i) as the “multiplicity”withwhich Ez,i appears in the sum (8.15).
Once this is clear, we see that there are subsets 
1 ⊃ · · · ⊃ 
k′ of 
′ such that

T1 = (1/k)(S1 + · · · + Sk′), (8.16)

where, for each 1 ≤ j ≤ k′,

S j =
∑
z∈
 j

cz

∫
Ez,ι( j,z)

kw ⊗ kwdνz,ι( j,z)(w)
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with ι( j, z) ∈ Jz for every z ∈ 
 j . Furthermore, to match multiplicities, for every
pair of z ∈ 
′ and i ∈ Jz we have

card{ j ∈ {1, . . . , k′} : z ∈ 
 j and ι( j, z) = i} = m(z, i). (8.17)

For each pair of 1 ≤ j ≤ k′ and z ∈ 
 j , we pick a ζ(z, j) ∈ Ez,ι( j,z). Accordingly,
we define the operators

Dj =
∑
z∈
 j

czkζ(z, j) ⊗ kζ(z, j),

1 ≤ j ≤ k′. We need to estimate ‖S j − Dj‖+
1 .

Fix a j ∈ {1, . . . , k′} for the moment. For each z ∈ 
 j , νz,ι( j,z) is a probability
measure concentrated on Ez,ι( j,z). It is, therefore, in the weak-* closure of convex
combinations of unit point masses on Ez,ι( j,z). Consequently, S j is the weak limit of
operators of the form

Hj = 1

d

d∑
r=1

∑
z∈
 j

czkw(z,r) ⊗ kw(z,r),

where d ∈ N and w(z, r) ∈ Ez,ι( j,z) for every pair of z ∈ 
 j and r ∈ {1, . . . , d}. For
a given r ∈ {1, . . . , d}, since w(z, r) ∈ Ez,ι( j,z) and ζ(z, j) ∈ Ez,ι( j,z), by (8.12) we
have β(ζ(z, j), w(z, r)) ≤ δ for every z ∈ 
 j . Applying (8.11), we find that

‖Hj − Dj‖+
1 ≤ 1

d

d∑
r=1

∥∥∥∥
∑
z∈
 j

czkw(z,r) ⊗ kw(z,r)

−
∑
z∈
 j

czkζ(z, j) ⊗ kζ(z, j)

∥∥∥∥
+

1
≤ ε�+

1 ({cz}z∈
).

Since S j −Dj is in the weak closure of operators of the form Hj −Dj , combining the
above estimate with Lemma 4.3, we obtain ‖S j − Dj‖+

1 ≤ ε�+
1 ({cz}z∈
). Recalling

(8.16) and the fact that k′ ≤ k, we now have ‖T1 − (1/k)(D1 + · · · + Dk′)‖+
1 ≤

ε�+
1 ({cz}z∈
). Thus

|Trω(T1) − Trω((1/k)(D1 + · · · + Dk′))| ≤ ε�+
1 ({cz}z∈
). (8.18)

Recall that for each pair of 1 ≤ j ≤ k′ and z ∈ 
 j , we have ζ(z, j) ∈ Ez,ι( j,z). Thus,
by the assumption on 
′, every {ζ(z, j) : z ∈ 
 j } is a 1-separated set, 1 ≤ j ≤ k′.
Hence Theorem 7.5 can be applied to every Dj . Pick an orthonormal set {ez : z ∈ 
}.
By Theorem 7.5, we have

Trω

(
1

k
(D1 + · · · + Dk′)

)
= Trω

(
1

k

k′∑
j=1

∑
z∈
 j

czez ⊗ ez

)
.
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Applying (8.17) on the right-hand side, we obtain

Trω

(
1

k
(D1 + · · · + Dk′)

)
= Trω

( ∑
z∈
′

∑
i∈Jz

cz
m(z, i)

k
ez ⊗ ez

)
.

Combining the above with (8.14) and with the fact that
∑

i∈Jz νz(Ez,i ) = νz(Ez) = 1
for every z ∈ 
′, we have

Trω

(
1

k
(D1 + · · · + Dk′)

)
= Trω

( ∑
z∈
′

czez ⊗ ez

)
− E, (8.19)

where

E = Trω

( ∑
z∈
′

∑
i∈Jz

cza(z, i)ez ⊗ ez

)
.

We have 0 ≤ a(z, i) ≤ 1/k for every pair of z ∈ 
′ and i ∈ Jz . Since card(Jz) ≤ N
for every z ∈ 
′, it is easy to see that E ≤ (N/k)�+

1 ({cz}z∈
). Recall that k was
chosen so that N/k ≤ ε. Combining these facts with (8.18) and (8.19), we conclude
that

∣∣∣∣Trω(T1) − Trω

( ∑
z∈
′

czez ⊗ ez

)∣∣∣∣ ≤ 2ε�+
1 ({cz}z∈
). (8.20)

Next we estimate ‖T2‖+
1 .

A retrace of the definitions of the measures νz and νz,i gives us T2 = Tα , where

dα =
∑
z∈
′

∑
i∈Jz

a(z, i)

νz(Ez,i )
χEz,i dμ.

Recall that 
′ is 2b + 2-separated. This guarantees that D(z, b) ∩ D(z′, b) = ∅ for
z �= z′ in 
′. Therefore it follows from Proposition 5.1 that

‖T2‖+
1 = ‖Tα‖+

1 ≤ C5.1�
+
1

({
α(D(z, b))

(1 − |z|2)n
}
z∈
′

)
. (8.21)

Furthermore, for each z ∈ 
′ we have

α(D(z, b)) = α(Ez) =
∑
i∈Jz

a(z, i)
μ(Ez,i )

νz(Ez,i )
= cz

∑
i∈Jz

a(z, i)
μ(Ez,i )

μ̃(Ez,i )
.
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Since Ez,i ⊂ Ez ⊂ D(z, b), Lemma 2.4 tells us thatμ(Ez,i ) ≤ C1(1−|z|2)nμ̃(Ez,i ).
Thus

α(D(z, b)) ≤ C1(1 − |z|2)ncz
∑
i∈Jz

a(z, i) ≤ C1(1 − |z|2)ncz(N/k)

≤ C1(1 − |z|2)nczε

for every z ∈ 
′, where the second ≤ follows from the facts that 0 ≤ a(z, i) ≤ 1/k
and that Jz ⊂ {1, . . . , N }. Substituting this in (8.21), we obtain

‖T2‖+
1 ≤ C1C5.1ε�

+
1 ({cz}z∈
′). (8.22)

Since Tμ = T1 + T2 and since ε > 0 is arbitrary, (8.10) follows from (8.20) and
(8.22). ��

9 Modified Berezin Transforms and an Equivalent Condition

Recall that for an operator A on the Hardy space H2(S), the function

Â(z) = 〈Akz, kz〉, z ∈ B,

is called the Berezin transform of A. Thus for t > 0, the scalar quantity 〈Aψz,t , ψz,t 〉
can be regarded as a modified Berezin transform of A. If μ is a Borel measure on B,
then for the Toeplitz operator Tμ defined by (1.1) we have

〈Tμψz,t , ψz,t 〉 =
∫

(1 − |z|2)n+2t

|1 − 〈w, z〉|2n+2t dμ(w).

With this quantity we can state a condition that is equivalent to the condition in
Theorem 1.4. More precisely, let 0 < s ≤ 1 be given. Then pick a t > 0 such that
s(n + 2t) > n. Let 0 < a < b < ∞ also be given such that b ≥ 2a. Suppose that �
is a symmetric gauge function satisfying condition (DQK). It can be shown that

c�({〈Tμψz,t , ψz,t 〉s}z∈
) ≤ �

({(
μ(D(z, b))

(1 − |z|2)n
)s}

z∈


)

≤ C�({〈Tμψz,t , ψz,t 〉s}z∈
)

for every regular Borel measure μ on B and every a, b-lattice 
 ⊂ B. But since this
paper is already quite long as is, we will omit the proof of this result.
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