Complex Analysis and Operator Theory (2020) 14:30 Complex Analysis
https://doi.org/10.1007/s11785-020-00988-2 and Operator Theory

®

Check for
updates

Toeplitz Operators Associated with Measures and the
Dixmier Trace on the Hardy Space

Liangying Jiang' - Yi Wang? - Jingbo Xia?

Received: 3 November 2019 / Accepted: 9 February 2020 / Published online: 20 February 2020
© Springer Nature Switzerland AG 2020

Abstract

Let 1 be a regular Borel measure on the open unit ball B in C". By a natural formula,
it gives rise to a Toeplitz operator 7}, on the Hardy space H 2(S). We characterize the
membership of 7}, 0 < s < 1, in any norm ideal C¢ that satisfies condition (DQK).

The same techniques allow us to compute the Dixmier trace of 7, when T}, € C;'.
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1 Introduction

Toeplitz operators are usually associated with symbols that are functions. But in this
paper we only consider Toeplitz operators whose symbols are measures. Moreover,
the underlying space will be the Hardy space on the sphere.
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Let S denote the unit sphere {z € C" : |z| = 1} in C". Write do for the standard
spherical measure on S with the normalization o (S) = 1. Recall that the Hardy
space H 2(8) is simply the norm closure of the analytic polynomials C[z1, ..., z,] in
L%(S,do). Denote B = {z € C" : |z| < 1}, the open unit ball in C”".

Suppose that u is a regular Borel measure on B. Recall that by the Cauchy integral
formula [18, Section 3.2] and the so-called K-limit, each h € H 2(S) is uniquely
identified with an analytic function on B [18, Theorem 5.6.8]. This fact enables us to
define the Toeplitz operator T, on the Hardy space H 2(S) by the formula

_ f(w) 2
(TuNH@) = | —————du(w), feH(S). (L1
B (1 —(z, w)"

It is well known that the Toeplitz operator T}, is bounded on H 2(S) if and only
if p is a Carleson measure for the Hardy space. In the case where n = 1, Luecking
characterized the membership of 7, in the Schatten class C,, forall0 < p < oo [16].
Recently in [17], Pau and Perild generalized this Schatten-class characterization to
coveralln > 1.

There are, however, many more important operator ideals other than the Schatten
classes. For example, if one is interested in the Dixmier trace [2,9,10,20], one considers
the ideal C I”, which is strictly larger than the trace class C; but contained in every Cj e,
€ > 0. In this paper we will take up the task of determining the membership of 7}, in
some of these other operator ideals. But, as the reader will see, the techniques required
to handle these other ideals are completely different from those employed in [16,17].

Let us now introduce the ideals that will be considered in this paper. First of all,
we only consider ideals defined in terms of symmetric gauge functions in the manner
prescribed in [15]. Thus [15] is our standard reference for symmetric norms and
ideals. Let ¢ denote the linear space of sequences {a} jen, where a; € R and for every
sequence the set {j € N : a; # 0} is finite. A symmetric gauge function is a map

®:¢— [0,00)

that has the following properties:

(a) ®isanormon C.
(b) ©({1,0,...,0,...H =1.
(©) ©({a;}jen) = @({laz(jl}jen) for every bijection 7 : N — N.

See [15, page 71]. Given a symmetric gauge function ®, we define the symmetric
norm

|Alle = sup @({s1(A),...,s;(A),0,...,0,...}

izl

for bounded operators, where s1(A), ..., s;(A), ... are the singular numbers of A.
On any separable Hilbert space H, the set of operators

Co ={A € B(H): [Alle < oo} (1.2)
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is a norm ideal [15, page 68]. That is, Ce has the following properties:

Forany B, C € B(H) and A € Cgy, BAC € Cg and |BAC || < ||B|l||Allo|IC].
If Ae€Cqp,then A* € Cp and ||A*||lo = |Allp-

For any A € Co, ||A]| < ||All®, and the equality holds when rank(A) = 1.

Co is complete with respect to ||. |-

Now an obvious question is, how do we characterize the membership
T, €Co (1.3)

for the Toeplitz operator defined by (1.1)? Before we discuss this membership problem,
let us first look at some classes of examples of Co.

There are many familiar examples of symmetric gauge functions. For each 1 <
p < oo, the formula ®,({a;}jeN) = (Z;?Ozl |aj|P)1/1’ defines a symmetric gauge
function on ¢, and the corresponding ideal Ce, defined by (1.2) is just the Schatten
class Cp.

The next set of examples that come to mind are the Lorentz ideals [3, Section 4.2],
which can also be defined using symmetric gauge functions, as follows.

For each 1 < p < oo, we have the symmetric gauge function CI>[+, defined by the
formula

laz (| + laz@)| + -+ + laz (]
1=V 2-Up ... j-lUp

@, ({aj}jen) = sup . fajljen €6,
JZ

where 7 : N — N is any bijection such that |a; ()| > |az@)| = -+ > laz(hHl = -+ -,
which exists because each {a;};eN € ¢ only has a finite number of nonzero terms.
Thus we obtain the ideal Cq); by (1.2). For simplicity, we will write C;‘ for Cq); and

I - ||;,’ for || - || o In particular, Ci" is the ideal on which Dixmier trace is defined.
Similarly, for each 1 < p < oo we have the symmetric gauge function

o0
_ laz )l R
(Dp ({aj}jen) = Z W’ {aj}jen € ¢,

Jj=1

where, again, 7 : N — N is any bijection such that |az ()| > |ar(j+1)| for every j €
N. In this case, the ideal Cq,; defined by (1.2) is often simply denoted by the symbol
C,.

Note that the Lorentz ideals C; and C,, fit nicely in the context of Sects. I1I.14 and
II1.15 in [15]. The notation C[‘f and C,,; simply reflects the fact that C,, C C) C C;‘.

Because of the structure of the Hardy space H2(S), it does not appear easy to
answer the membership question (1.3) for all symmetric gauge functions ®. We need
to impose a condition on ®. But this condition is satisfied by @, @; and <I>;§. Thus we
will characterize the memberships 7, € C,; and T}, € C;,r, and we will do even more.
Note that 7}, is a positive operator, so we can consider its powers. Thus, in addition to
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the membership problem (1.3), we can more generally consider the problem 7}; € Co
forO <s < 1.

The reader will see that our techniques are so general that if we consider the analogue
of the membership problem 7; € Co on the Bergman space Lg (B, dv), then no
condition needs to be imposed on ®. In other words, in the Bergman space case our
techniques can handle all symmetric gauge functions &. This is due to the structural
difference between Lg(B, dv) and H?(S), which will be further explained later. But
first let us discuss the condition that we do need to impose in the Hardy-space case.

For any a = {a;}jen and N € N, define the sequence alNl = {a;\/}jeN by the
formula

al =a if (—1)N+1<j<iN,ieN. (1.4)
In other words, a!V! is obtained from a by repeating each term N times. Alternately,
we can think of ™ asa @ - - - @ a, the “direct sum” of N copies of a.

Definition 1.1 [22, Definition 2.2] A symmetric gauge function ® is said to satisfy
condition (DQK) if there exist constants 0 < 6 < 1 and 0 < @ < oo such that

& @) > aN®(a)

for every a € ¢ and every N € N.

Obviously, the symmetric gauge functions ®,, 1 < p < oo, satisfy condition
(DQK). In fact, one can think of (DQK) as an inherent property of the Schatten
classes. But this is one property that is shared by many other classes:

Proposition 1.2 [22, Proposition 5.1] For each 1 < p < 0o, both symmetric gauge
functions @, and CD;‘ satisfy condition (DQK).

Also see [13, Sect. 6]

The case of Cr and Dixmier trace will be considered separately in Sects. 7 and 8.

We will determine the membership 7,; € Co for ® satisfying condition (DQK).
Next we discuss the membership criterion, which involves the Bergman-metric struc-
ture of B.

Throughout the paper, § denotes the Bergman metric on B. That is,

1 + |pw(2)]

, Z,w € B,
1 — |ow(2)|

Bz, w) = %log

where ¢, is the Mobius transform of B [18, Section 2.2]. For each z € B and each
a > 0, we define the corresponding S-ball D(z,a) = {w € B: B(z, w) < a}.

Definition 1.3 (i) Leta be a positive number. A subset I" of B is said to be a-separated
if D(z,a) N D(w, a) = @ for all distinct elements z, w in I".
(i) Let 0 < a < b < o00. A subset I of B is said to be an a, b-lattice if it is
a-separated and has the property U, D(z, b) = B.
(iii) A subset I" of B is simply said to be separated if it is a-separated for some a > 0.
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To describe the membership criterion for le € Ce, we also need to extend the domain
of symmetric gauge functions beyond the space ¢. Let @ : ¢ — [0, 00) be a symmetric
gauge function. Suppose that {b;}jeN is an arbitrary sequence of real numbers, i.e.,
the set {j € N : b; # 0} is not necessarily finite. Following [15, page 80], we define

®({bj}jen) = sup ®({by..... bt 0,....0,...}).
k>1

If W is a countable, infinite set, then we define

D ({bataew) = ©({br(j)}jeN),

where 7 : N — W is any bijection. The properties of symmetric gauge functions
guarantee that the value of ® ({b,}qew) is independent of the choice of the bijection
m [15, page 71].

Our investigation fits nicely in the following broader context. Given an operator A,
particularly an operator on a reproducing-kernel Hilbert space, one is always interested
in formulas for its set of singular numbers. But as a practical matter, a formula that is
both explicit and exact, is usually not available. Thus one is frequently forced to search
for alternatives: are there quantities given by simple formulas that are equivalent to
{s1(A), 52(A), ..., s;(A), ...} in some clearly-defined sense?

Intuitively, for the Toeplitz operator T}, defined by (1.1), if I' is an a, b-lattice in B,
then the set of scalar quantities

n(D(z, b)) }
————:z€el 1.5
{ (1 —z[>)" (-
should be equivalent to the set of singular numbers {s1(7},), s2(Ty.), ..., s;(Ty), ... }.

The main results of the paper confirm our intuition in two different ways. First, we
have

Theorem 1.4 Suppose that © is a symmetric gauge function satisfying condition
(DOK). Let 0 < s < l,and let 0 < a < b < 00 be given such that b > 2a.
Then there exist constants 0 < ¢ < C < oo which depend only on ®, s, a, b and the
complex dimension n such that

w(D(z, b)) \* s w(D(z, b)Y\
C(b({((l - IZIZ)") }zer‘> = Mulle = C(D({((l - IZI2)”) Lr)

for every regular Borel measure (1 on B and every a, b-lattice T' C B.

Second, the connection between (1.5) and {s1(7},), s2(Ty,), ..., s;j(Ty), ...} can
be seen through Dixmier trace. As it turns out, the techniques that allow us to prove
Theorem 1.4, also allow us to compute the Dixmier trace of 7, when T, € C1+.
In fact, to compute the Dixmier trace of 7),, we just need a more refined version
of (1.5), which is understandable because computation is more precise than general
estimates. Suppose that I' is an a, b-lattice in B with b > 2a. Then B admits a partition
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B = U er E; such that E; C D(z, b) for every z € I'. We will show that T}, has the
same Dixmier trace as the diagonal operator

E ce; Q ey,

zel

where {e; : z € I'} is any orthonormal set and

_ du(w)
“= fE 1= [wPr’ (10

z € I'. In other words, Dixmier trace cannot distinguish between the singular numbers
{s;j(T,) : j € N} and the scalar quantities {c; : z € I'} explicitly given by (1.6). This
fits nicely in our broader context mentioned earlier.

Let us explain a little more of the underlying intuition for both Theorem 1.4 and
the computation of Dixmier trace mentioned above. The determining factor here is
the behavior of the normalized reproducing kernel k. for the Hardy space H>(S). We
have

(kza kw) =

a2 L/201 123128\ 1
((1 [z]9) /= (1 — Jw]9) > 1.7

1—(w,z)

z, w € B. The most important thing in the above is the power n, which is what distin-
guishes the Hardy space from other reproducing-kernel Hilbert spaces on B. To prove
a result such as Theorem 1.4, one needs control in both radial and spherical directions
of a certain decomposition. Of the two, the radial direction is more problematic. If we
had a power n + € in (1.7) for some € > 0, then it would give us enough control in the
radial direction to handle all norm ideals Cg. But n itself just misses being enough of
a power, if we consider ® unconditionally. Then came the realization that in the case
where @ satisfies condition (DQK), we can “manufacture” an additional power € for
control in the necessary estimates. That is why we are able to prove what we prove in
this paper.

In the Bergman-space analogue of (1.7), the corresponding power is n 4 1. That, as
we explained above, makes the Bergman-space case a much easier case. More to the
point, condition (DQK) is not needed for the analogue of Theorem 1.4 on Lg (B, dv).
Moreover, the Bergman space version would include the ordinary kind of Toeplitz
operators.

Having explained the motivation for our results, let us also discuss their applications.
These concern certain naturally-occurring examples of 7, defined by (1.1). Although
these examples of T, are well known and can be readily found in the literature (see,
e.g., [16,17]), we list them here along with our own perspectives.

For the first class of examples, we start with a regular Borel measure p© on B.
Since H?(S) consists of analytic functions on B, we have the restriction operator
R : H*(S) — L?(B, du). By definition,

(R*Rf,8) = (Rf, Rg) 12B.ap) = /Bf(w)g(_w)dﬂ(w)-
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It is well known that this identity implies R* R = T},. The study of such R has a long
history and is closely related to the problem of extensions of analytic functions [1]. In
recent years, the study of operators of the form R and 7,, = R*R has taken on added
urgency because of their connections with the Arveson-Douglas conjecture and with
non-commutative geometry. See [6-8,21]. For this class of operators, Theorem 1.4
tells us exactly when |R|* = T,i/ % is in the ideal Co if @ satisfies condition (DQK)
and0) < s < 1.

For the second class of examples, consider an analytic map ¢ : B — B. It gives
rise to the composition operator Cy, f = fog@, f € H 2(S). Since ¢ is bounded, there
isan X C S with o (§\X) = 0 such that the radial limit ¢* (&) exists when § € X. We
have

(CoCof.8) = / F@*ENglp*E)do(§) = / fw)gwydu(w),  (1.8)

where p is the pullback of o by ¢*. Thatis, u(E) = o ({§ € X : ¢*(§) € E}) for
every measurable set E in the closed ball B. Suppose that

lp*(€)] <1 foro-ae. & €S. (1.9)

Then the measure u is concentrated on the open ball B, and (1.8) implies C ; Co =Ty,

Again, becauce |Cy| = T,i/ ? Theorem 1.4 characterizes the membership Cy, € Co in
terms of the measure ;& when & satisfies condition (DQK). Moreover, Theorem 8.2
below gives us the Dixmier trace of C;;Cy, when C3Cy, € cf.

It should be emphasized that (1.9) is essential for obtaining C ; Cy = T, with a
measure p concentrated on B. If, for example, we consider the identity map id : B —
B, then CjiCiq = 1, which cannot be realized as an operator of the form (1.1) on
H%(S).

To conclude the Introduction, let us briefly describe the rest of the paper. Section 2
contains a number of preliminaries concerning the Bergman metric and related esti-
mates. In Sect. 3, we state an operator form of the atomic decomposition on H>(S).
Since we need a more precise statement than what can be found in standard references,
we work out the details in Sect. 3.

In Sect. 4 we present a number of properties of symmetric gauge functions and
symmetric norms. We would like to call particular attention to Proposition 4.6, which
is how condition (DQK) enters our estimates.

With the above preparations, the upper bound in Theorem 1.4 is proved in Sect. 5,
and the lower bound is proved in Sect. 6. The proofs of these two bounds are based
on various decompositions in terms of radial and spherical coordinates, and judicious
regrouping of the terms, which ultimately produce “small factors”. The best way to
explain this is to take a look at (5.24), where we see two small factors on the right-hand
side,

2—2(s(n+t)—n)p and 2—25n€ )
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The factor 2~ 26 +D=P which represents decay in the spherical direction, is obtained
through the use of the modified kernel v, ;, whereas the factor 272¢nt which represents
decay in the radial direction, is obtained through condition (DQK). But it takes the
long, tedious work up to (5.24) to actually produce these small factors.

Sections 7 and 8 contain calculations of the Dixmier trace of 7, when T}, € C1+ .
More specifically, in Sect. 7 we deal with the case where T}, is a discrete sum. As
it turns out, this discrete case embodies most of the difficulties and is more tedious
than the estimates in Sect. 5. For example, it requires not one, but two applications
of Proposition 4.6, which take quite a bit of work to set up. The reason for the added
difficulty is that computation of Dixmier trace does not allow the use of the modified
kernel v, ;. Then in Sect. 8, we deduce the Dixmier trace of a general T, € C 1+ from
the discrete case in Sect. 7, which also takes some work.

Finally, Sect. 9 is a very brief discussion of the equivalence of the membership
criterion in Theorem 1.4 with a condition that is given in terms of modified Berezin
transform.

2 Preliminaries

The work in this paper relies heavily on the Bergman-metric structure of the ball. Let
d ) denote the standard Mobius invariant measure on B. That is,

dv(g)
A i) = ————.
©= Tk
Lemma 2.1 (1) For any pair of 0 < a < coand 0 < R < oo, there is a natural
number N = N (a, R) such that for every a-separated set " in B and every z € B,
we have

cardfu e T : B(u,z) < R} < N.

(2) For any pair of 0 < a < R < 0o, there is a natural number m = m(a, R) such
that every a-separated set I in B admits a partitionT" =T'1 U --- U 'y, with the
property that each T'j is R-separated, j =1, ..., m.

Proof (1) is a simple consequence of the fact that, for any 0 < r < oo, the value of
A(D(w, r)) is independent of w € B. Then, by (1), for any 0 < a < R < 00, there
is an m € N such that if " is any a-separated set in B, then card{u € I" : B(u, v) <
2R} < m for every v € T'. By a standard maximality argument, I" admits a partition
I'=T7U..-UTly, such that for every j € {1, ..., m}, the conditions u, v € I'; and
u # v imply B(u, v) > 2R. Thus each I'; is R-separated, proving (2). O

Lemma 2.2 Given any pair of 0 < R < coand 0 < Ry < oo, there is an m €
N which has the following property: Suppose that U is a 1-separated set in B. Then
for each z € D(0, Ry), there is a partition I’ = 't U --- U 'y, such that for every

Jell,....,m} ifu,vel;andifu # v, then B(¢u(2), pv(z)) > Ra.
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Proof 1t suffices to note that for all z, u, v € B we have

Blu,v) < Bu, pu(2)) + Blou(2), pv(2) + B@v(2), v) = 2B(0, 2) + B(@u(2), v (2)).

Then the desired conclusion follows from Lemma 2.1(2). O

Lemma 2.3 [25, Lemma 2.3] For all u, v, x, y € B we have

(1= lpu DA = lpe WA si04p0.0 = D20 = )12
11— (u(x), u()] - 11— (u, v)|

Lemma 2.4 [14, Lemma 3.9] The inequality 1 — |z|* < 4e*P@W) (1 — |w|?) holds for
all z, w € B.

Lemma 2.5 Foreacht > 0, there is a constant Cy 5 = Co 5(t) such that the inequality

_ 2\1/2¢1 _ 19,127 1/2\ *H!
Z <(1 |E||1)_ ((El U)||v| ) ) - |v|2)n/2 < Czisé’_tR/z(l _ |E|2)n/2

vell
B(.§)=R

holds for every 1-separated set I in B, every & € B and every R > 0.

Proof This is similar to [25, Lemma 2.4], but we include the details here for the
convenience of the reader. If w € D(v, 1), then v € D(w, 1) = ¢, (D(0, 1)). Thus
ifw e D(v, 1), then v = ¢, (y) forsome y € D(0, 1). Let § € B. Since § = ¢:(0),
from Lemma 2.3 we obtain

(- gD -2 A —IgR20 —[w?)”?
1= (& )l - 11— (& w)

for every w € D(v, 1). Similarly, for w € D(v, 1), Lemma 2.4 gives us
1—[v]* <4e’(1—w]?).
Set C; = (2¢)"!(4¢%)"/2. Then the above two inequalities lead to

eV 1/201 (231728 ntH
((1 1€19) /=1 = v[) ) (1 — [Py

11— (&, v)| @
<C <(1 —[EP2(1 - |w|2)]/2>n+’ (1 — |w|?)"/?
- 11— (& w)l

for every w € D(v, 1). Suppose that I' is a 1-separated set in B. Then by definition
D, )N D@, 1) =@ forv # v in . Hence for all £ € B and R > 0 we have

1 1E12)12(1 — [p2)1/2\ 2+
Z (( l$:1)_((g U>||v|) ) (1 — )2

vell
B(w.§)=R
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CEIV/201 gy 2y1/2 N
-y _© i l)((l £ = [wP?) ) (1 — w2 w)

= MD@, D) [1— (& w)
B,E)=R
CEIV/201 124 1/2 N it
< Cy ((1 [E19)7=(1 = [w]?) ) (a- |w|2)"/2dk(w).
MDO, 1) Jpw,e)=r-1 [1— (&, w)l

(2.2)

To estimate the last integral, note that

A= DA o@D _ o
11— (€. 0e(0))] - ‘

Thus, making the substitution w = ¢¢ (¢) and using the Mobius invariance of di, we
obtain

_1E12)1/2(1 — [4p)2)1/2\
/ﬁx s)R1<(1 e ) (1 — [w»"?dn(w)

1 — (&, w)|
-/ (1= [P 02(1 — [ge(©) Py /2 c)
B0,0)=R-1
dv(¢)
= -y [ = (8).
80.0)=R—1 |1 — (£, )" (1 — [¢|H)1 =/
It follows from [18, Proposition 1.4.10] that there is a C» = C»(¢) such that
d
o(x) i 2.3)

1= (z, 0" = (1= [z

forevery z € B. The condition (0, ¢) > R—1implies 1 —|¢| < Qe 2R+2 Combining
(2.3) with the decomposition dv = 2nr2"~drdo of the volume measure, we have

/ dv(?) - /1 Co2nr?dr
B0.0=R—111 = &, A = [Z)=D 7 Jraxi—2e-2842 ) (1 — r2)1=0/%

1

d 4

< nCz/ < DnCy2e R,
max{1—2e-2k+2,0) (1 — y)1=W/H ~ ¢

Therefore
4
(+%) < ;<2e2>'/4nc2e—f’”2(1 — &P

Substituting this in (2.2), we conclude that the lemma holds for the constant

4n2eH4C Cs
Crs=———"—
tA(D(0, 1))

This completes the proof. O
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The proofs in Sects. 5-8 rely on a standard radial-spherical decomposition of the
ball introduced in [24], which we now review. First of all, the formula

dw, &) =1—w§'"? utes, 2.4)
defines a metric on the unit sphere S [18]. Denote
Bu,r)=1{teS:|l—u&"*<r)
for u € S and r > 0. There is a constant Ay € (27", 00) such that
min{27", 7" < o (B(u, r)) < Agr™" (2.5)
forallu € Sand 0 < r < /2 [18, Proposition 5.1.4].
For each integer k > 0, let {uy 1, ..., Ui, mk)} be a subset of § which is maximal
with respect to the property
Buk,;, 27N Bug jr, 275 =9 forall 1 <j < j <mk). (2.6
The maximality of {uy 1, ..., Uk mk } implies that
Urh) Blug, 27 = 8. @.7)
For each pair of k > 0 and 1 < j < m(k), define the subset
Tpj={ru:1-2"% <r <1 -2720D 4 € B(uy ;,27%)) (2.8)
of B. Let us also introduce the index set
I'={k, j):k=0,1=<j=<m(k)} (2.9)

However cumbersome the above system is, it is essential for the proofs in Sects. 5-8.

Lemma 2.6 [24, Lemma 2.4] Given any 0 < a < 0o, there exists a natural number K
such that every a-separated set T in B admits a partition ' = T'y U --- U 'k which
has the property that card(I'; N Ty ;) < 1 foralli € {1,...,K}and (k, j) € I.

Last but not least, we remind the reader of the following counting lemma:

Lemma 2.7 [23, Lemma 4.1] Let X be a set and let E be a subset of X x X. Suppose
that m is a natural number such that

cardly e X : (x,y) € E}<m and cardly e X :(y,x) € E}<m

for every x € X. Then there exist pairwise disjoint subsets E1, Ea, ..., Eay of E such
that

E=EUEyU..UE,
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and such that for each 1 < j < 2m, the conditions (x, y), (x', y") € Ej and (x, y) #
(x', y') imply both x # x" and y # y'.

3 Discrete Sums on the Hardy Space

The proof of Theorem 1.4 requires a class of operators on the Hardy space H?(S)
that are constructed from separated sequences and modified kernel functions. One can
view this section as an operator form of atomic decomposition [26].

First, recall that the formula

(1 — w2

e (§) =
=Ty

gives us the normalized reproducing kernel for the Hardy space H2(S). With that in
mind, for each pair of 0 < ¢ < oo and w € B, we define

(1 _ |w|2)(n/2)+t

w, = NP 3.1
Vo) = (3.1)
¢ € B. In terms of the multiplier
My (C) = 1——|w|2 (3.2)
ST = w)’ '

and the normalized reproducing kernel k,,, we have the relation
ww,t = mivkw

In particular, v, 0 = ky. For ¢ > 0, we think of v, ; as a modified version of ky,.
This modification improves the “decaying rate” of the kernel, as can be seen below:

Proposition 3.1 [12, Proposition 3.1] Given anyt > 0, there is a constant 0 < C3.1 <
oo that depends only on t and the complex dimension n such that

(1 _ |Z|2)1/2(1 _ |w|2)1/2>n+t

Ve, i)l < Caa ( 1 — (w,2)]

forall z, w € B.

Suppose that | and H; are Hilbert spaces. Given any pair of vectors &1 € H; and
hy € H»>, we define the operator i1 ® hy : Ho — Hj by the formula

hy @ haf = (f, ha)hy,

f € H>. The main idea of the paper is to reduce everything to the analysis of such
operators. Consequently operators of the form /| ® h, will be ubiquitous in the paper.
The main purpose of the section is to establish Propositions 3.2 and 3.8 below.
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Proposition 3.2 Given any t > 0, there is a constant 0 < Cz < oo that depends
only on t and the complex dimension n such that

Z Y.t @ ey

wel’

< C32

for every 1-separated set " in B, where {e,, : w € '} is any orthonormal set.

Proof Given a 1-separated set I' and an orthonormal set {e,, : w € '}, let us write

B = wa,t X ey.

wel’

Then

B*B = Z (ww,t, Wu,;)eu R eyw.

u,wel’

Consider any vector h = Y Cweyw. We have

wel’

B*Bh = Zyueu, (3.3)

uel

where

Yu = Z(Kﬁw,t, Vu,t)Cw,

well

u € I'. Applying Proposition 3.1, the Cauchy—Schwarz inequality and the case R = 0
in Lemma 2.5, we have

2 (1 — a2 - |w|2>1/2>”“ )2
[Vul §C3,1<Z< 1= (w. )] lcw]

wel’
+t
(1—|u|2>1/2(1—|w|2)1/2>” 202
<2 ( (1 —wH"
3‘1,1; 11— (w,u)]
(A= u)'21 = w72\ e,
<2 11— (w, u)| (1 — [wP)yn2
wel ’
+
= C5iCas ((1—|u|2>‘/2<1—|w|2>1/2>" ’(1—|u|2)"/2|c 2
T e 11— (w, u)l L—w?) "

for every u € I'. Applying Lemma 2.5 again with R = 0, we have
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1— |L{|2)1/2(1 _ |w|2)1/2 n+t 1— |M|2 n/2
E 22 ¢ 2 2 ( e bl 2
lyul” = C5,Cas ( 1 — (w. )] 1= [wp? [cw]

uel’ wel uel’
< C31C3s5 ) lewl®.
wel
By (3.3), this means || B*Bh|*> < C32~1C§_5||h||2. Since the vector h = )~ - cyey is
arbitrary, it follows that | B|| < (C3.1Ca.5)1/2. This completes the proof. O

Proposition 3.3 Given any t > 0, consider the positive operator

R; = / Yot @ YUz rdA(2)

on the Hardy space H?(S). There are constants 0 < a < b < 0o such that a||h||* <
(R/h, h) < bl|h|? for every h € H?(S).

Proof The upper bound was explicitly stated in [11, Proposition 3.1]. The lower bound
was not explicitly stated there, because it was not need in [11]. But the proof of [11,
Proposition 3.1] clearly contains the lower bound. Indeed identity (3.6) in [11] gives
us

/ Ve (W) (w)dA(z) = Zbk,C" o w, w) Zbk, > ea(w)eq(w),

k=0 loe| =k

_ {(n—1+k)!}l/2

where ey (W) = FICES) * acZ, and

, n(ﬂ'};é(n+t+j))2 n—1+k)!
k,t — —
t k!C,’; 1+k 1—[n 1+k(2t+1)

when k > 1. By standard asymptotic expansion (see, e.g., (3.3) in [11]), there is an
a > 0 such that b ; > a for every k > 0. Recall that {e, : @ € Z'} is the standard
orthonormal basis in H2(S). Therefore the lower bound R; > a holds. m]

Let £ be a subset of B that is maximal with respect to the property of being 1-
separated. This £ will be fixed for the rest of the section. Define the function

F = Z XD(u,2)

uel

on B. By Lemma 2.1, there is a natural number A/ € N such that
cardfv € £L: Du,2)ND(W,2) =¥} <N
forevery u € L. The maximality of £ implies U, D(u, 2) = B. Hence the inequality

I1<F <N (3.4)
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holds on the unit ball B. For each t > 0, define the operator

R = / FWw) Y, @ YudM(w).
By Proposition 3.3 and (3.4), the operator inequality
a <R, <bN 3.5)

holds on H2(S). By the definition of F and the Mobius invariance of d,

Ri = Z/ Vw,i @ Yuwdi(w) = Z /D(O ) Vou).t @ Vi, (2).1dA(2).

uel D(u.2) uel

Now, for each z € B, define

YZ)’ = Z w‘ﬂu(Z)’t ® w‘ﬂu(z)vt'
uel

Thus we have
R, = / Y, d\(2). (3.6)
D(0,2)

Definition 3.4 For any r > 0 and any separated set I" in B, we denote

Er, = Z Yu,t @ Vs

wel’

Lemma3.5 (1) Given any 0 < R < oo, there is an N = N(R) € N which has the
following property: For every pair oft > 0and& € D(0, R), there are 1-separated
sets I'y, ..., 'y in B such that

Ye,=Er, +- -+ Ery,-

(2) Forevery O <r < 1, we have SUpP|| <, I1YZ.]l < oo.

Proof For (1), it suffices to take the m provided by Lemma 2.2 for the case where
Ry = R and Ry = 2 to be the N(R). Then (2) follows from (1) and Proposition 3.2. O

Lemma 3.6 Lett > 0 be given. Then there is a constant C3 ¢ = C3.¢(t) such that

¥z — Ywill < C36B(z, w) 3.7

for all z, w € B. Similarly, there is a constant Cj , = C% ((t) such that

Wty ke — k)| < Ch Bz w)(1 — |21 2|y 4 (2)] (3.8)

foreveryy € Band all z, w € B satisfying the condition f(z, w) < 1.
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Proof First of all, by elementary analysis, there is a C = C(n, t) such that

1— |u|2 (n/2)+t 1= (z,u) n-+t
1 - — =7
‘ <|1—<u,z>|2> (1—<y,u)>
forallu € D(0,1),z € Band y € B.
We have ||m;|lcc = 1+ |z] < 2, consequently ||y, || < 2', z € B. Thus, to prove

(3.7), it suffices to consider z, w € B satisfying the condition B(z, w) < 1. For such
a pair of z, w, we can write w = ¢, (&) with (0, §) = B(z, w) < 1. Then

< Clu| (3.9

1 - |wz<s)|2>(”/2>“< 1—(¢,2) )”*f
Rl 24\ P roe)

Vi (€) = Vo). (&) = Wz»t(f)( 1— 2] 1— (¢, 0(6)

By [18, Theorem 2.2.2], if we write x = ¢,({), then { = ¢,(x) and

1- 2 _ 1= (@) _1-(28 _ 1-(8)
T= € e®)  T= (e, 0®)  T—x8& 11— (@08

Similarly,

L—le: @ _ 1 gP
L=z =&

Thus we can represent v, ; as the following “multiplicative perturbation” of . ;:

1— |§|2 )(n/2)+l< 1— (Z, E) >n+t
o C1—g? _——%s )y @0
Y, (8) sz,t(g)<|1_<§’z>|2 1 —{p.(¢), &) ( )

Since ||, ;|| < 2', combining this identity with (3.9), we find that

1¥zs — Yusll < 2°CIE|
We have

I—1gl =2 ~ 115

1
p0.§) = 7 log

From this it is elementary to derive that |§| < 1 — e 208 < 28(0, £). Hence

W2 — Yl < 2'C-2B(0,8) = 2" CB(z, w),

which proves (3.7).
To prove (3.8), note that

(Wyis ke — k) = (1 — |29, 1(2) — (1 — w2, (w).
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Writing w = ¢, (§) as in the proof of (3.10), we have

22 w2 1—|¢z(s>|2>"/2< 1—(z,7) )"*’
(A ="y (w) = (1 = [z wmz)( P e

—ER A\ 1—g ) T
(1 L2y ( 1- 18] ) < ’ ) :
( 1z|7) stT(Z) I1— (&, Z>|2 1 — (&, 0:(y))

Combining these identities with an obvious variant of (3.9), (3.8) follows. O

Proposition 3.7 For any given value t > 0, the map z +— Y, ; from B into B(H?(S))
is continuous with respect to the operator norm.

Proof Let z € B and consider w € U = D(z,1). By Lemma 3.5(2), we have
sup. ey 1Yz ¢l < 0o. Toestimate || Yz,; — Yy ||, we pick an orthonormal set { f,, : u € L}
and define

X{vt = Z qu(E)J Y fu

uel

foreach ¢ € U. Since Y;; = X;,,X;,, we have sup, ¢y | X¢ ¢ || < oo. Thus it suffices

to estimate | Xz, — Xu. % = 1(Xz — Xu.)* (Xer — Xu )

To do this, we write p = B(z,0). Since w € D(z, 1), we have w € D(0, p + 1).
Then by Lemma 2.2, there is an m € N determined by p + 1 such that || X, ; — Xy, ; Ik
is less than or equal to the sum of at most 2m terms of the form ||A(X;; — Xy ),
where

A= Zev 02y wv,t,

vel’

I is a 1-separated set in B, and {e, : v € I'} is an orthonormal set. Note that

AXei=Xu) = Y Wi — Voo Yo)en ® fu.

(vu)el'x L
Thus for each R > 0, we can write
AXzr — Xwi) = Szwr + T w:R, (3.11)
where

Sz,w;R = Z (1//<pu(z),t - 1,Zqu(w),z, 1ﬂv,t}ev ® fu and
(v,u)el'x L
Bv,u)<R

T:wr = Z (Vou@.t — Vouw),is Yoidev ® fu.

(v,u)el'x L
B(v,u)>R
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Let € > 0 be given. We first show that there is an R > 0 such that
T, w:rll <€/2 forevery we U = D(z,1). (3.12)

To prove this, note that since f(w, 0) < p + 1, Lemma 2.3 gives us

(U=l A =2 Ly (=20 = )2
11— (@u(w). v)| - 1= (. v)]

forv € " and u € L. A similar inequality holds with ¢, (z) in place of ¢, (w).
Combining these facts with Proposition 3.1, we obtain

|(¢<pu(z),t - 1!’(pu(w),ta 1ﬂv,t” < |<1//(ﬂu(z),ta 1ﬁv,t” + |(¢<p,,(w),ta wv,t”

a2 1/201 (2172
<c ((l )/ =(1 = |v]%) ) ’
11— (u, v)|

where C| = 2(2¢+1)"+C3 ;. Consider an arbitrary vector h = Y, ¢ fu- Then

T; w;rh = Zyvem (3.13)

vell
where each y, satisfies the estimate

+t

(L= u»)'2(1 = )2\

< C .

wl<c Y ( TpmyY el
uel

B(v,u)>R

Applying Lemma 2.5 and the Schur-test as in the proof of Proposition 3.2, we obtain

Yl =CiCse ™Y el

vel uel

By (3.13), this means || T, ,; gh||> < C3C3 se'R||h||°. Since the vector 7 is arbitrary,
we conclude that || 7, . rll < C1Csse'R/2 Hence there is an R > 0 such that (3.12)
holds.

Fix such an R. Next we show that for this fixed R, thereisa 0 < § < 1 such that if
B(z, w) < §,then ||S; . rll < €/2.By (3.11) and (3.12), this will complete our proof.
Since I" and L are 1-separated, by Lemma 2.1, there is an N € N such that

cardfveI' : B(v,x) <R} <N and cardfu € L: B(u,x) <R} <N
for every x € B. By a standard maximality argument similar to Lemma 2.7, the set

E={(v,u) el x L:B(v,u) <R}
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admits a partition £ = E;U- - -UE,y with the property thatforevery j € {1, ...,2N},
the conditions (v, u), (v, u’) € E;and (v, u) # (v', u’)implybothv # v'andu # u’.
Accordingly, we have the decomposition

Szw;R =81+ + S, (3.14)

where

Si= Y. W= Vo, Vode ® fu

(v,u)eE;

for each j € {1, ...,2N}. The property of E; ensures that

ISill =" sup (V)0 = Vouwy.r> Yol (3.15)

(v,u)ekE;
On the other hand, it follows from Lemma 3.6 that

Yot = You )t Yol < 1Wg, 0.0 = Vo). Yol
< 2'C3.6B(pu(2), pu(w)) = 2'C36B(z, w).

Combining this with (3.14) and (3.15), we find that ||S; .zl < 2N2'C36B(z, w).
Thus if we choose 0 < § < 1 such that 2N2/C368 < €/2, then for every w satisfying
the condition B(z, w) < 8, we have ||S; . r|l < €/2. This completes the proof. O

Proposition 3.8 Given anyt > 0, there exists a constant § > 0 and a finite number of
1-separated sets 'y, ..., 'y, in B such that

(Eryaf. f)+ 4 (Er,if. ) =8Il fI
forevery f € H?(S).
Proof The closure of D(0, 2) is, of course, a compact subset of B. Recall that we have
the integral formula (3.6) for R;. It follows from the norm-continuity provided by
Proposition 3.7 that the integral on the right-hand side of (3.6) is the limit in operator

norm of Riemann sums. In particular, for the a > 0 that appears in (3.5), there is a
Riemann sum S such that ||R; — S|| < a/2. Then, by (3.5), the operator inequality

S>a/2 (3.16)

holds on H?(S). Since S is a Riemann sum for the integral in (3.6), there are pairwise
disjoint Borel subsets G1, ..., Gy, in D(0,2) and z; € G, j = 1,..., v, such that

S=MG)Y i+ +MGYY, ;. (3.17)

If we set 6 = a/{2A(D(0, 2))}, then from (3.16) and (3.17) we obtain
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Yo+ +Y, =46

Now an application of Lemma 3.5(1) completes the proof. O

4 Norm Ideals and Condition (DQK)

We need a number of basic facts about || - || .

Lemma 4.1 [24, Lemma 3.1] Suppose that A1, . .., Ay, are finite-rank operators on a
Hilbert space H and let A = A1 + - - - + Ay,. Then for each symmetric gauge function
® and each 0 < s < 1,

Ao <2 A1 lo + -+ + [1An] o).

Lemma4.2 [14,Lemma3.3] Let A and B be two bounded operators. Then the inequal-
ities

HABF o < IBIIIIAI lo and [[IBA o < IIBI*IIAI o

hold for every symmetric gauge function ® and every 0 < s < 1.

Lemma4.3 [24, Lemma 5.1] Let {Ay} be a sequence of bounded operators on a
separable Hilbert space H. If {Ax} weakly converges to an operator A, then the
inequality

[Alle < sup [|Axllo
k

holds for each symmetric gauge function .

Recall from [15, page 125] that given a symmetric gauge function ®, the formula

o0
> ajb;

O*({b)}jeN) = sup {
j=1

faj}jen €, ®({aj}jen) < 1}, {bj}jen € ¢,

defines the symmetric gauge function that is dual to ®. Moreover, we have the relation
&** = & [15, page 125]. This relation implies that for every {a;};en € ¢, we have

o
> ajb;
j=1

®({aj}jeN) = sup {

H{bj)jen € & D*({b)}jeN) < 1}. @.1)

Lemma 4.4 Let ® be a symmetric gauge function. Suppose that A and B are operators
such that A*A € Co and B*B € Co. Then AB € Co. Moreover,

1/2
IABllo < {IA*Allol B*Bllo} .
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Proof Let ®* be the symmetric gauge function that is dual to ®. Consider any finite-
rank operator . We have the polar decomposition F' = U|F|, where U is a partial
isometry and |F| = (F*F)l/z. We can factor F in the form F = F|F,, where
Fi = U|F|"? and F, = |F|'/2. Note that | Fi F} ||+ = || F|lo* = || F} F2|l¢+. Write
I |2 for the Hilbert-Schmidt norm. By (7.9) on page 63 in [15] and the duality between
® and d*, we have

[r(ABF)| = [tr(ABF| )| = |[t(F2 ABF1)| < [|F2All21| BFll2

= [tr(A* F F Ayer(Ff B* B} /% = {tr(F3 FyAA*)uwe(B*BF| F}"))

1/2
< {IFS F2llo+AA™ |0 | B* Bllo |l F1 F{ ll o+ | 2 = {IAA™ o] B*Bllo }

1/2

1/2
2\ F .

Since this holds for every finite-rank operator F', the lemma now follows from (4.1).
O

Suppose that ® is a symmetric gauge function. For each 1 < p < oo, we define
1
® P ({a;}jen) = {®({la;1"}jen)} "
for {a;}jen € ¢. Using the duality mentioned above, it is easy to verify that o)

satisfies the triangle inequality and is, therefore, a symmetric gauge function.

Lemma 4.5 Let @ be a symmetric gauge function that satisfies condition (DQK). Then
forevery 1 < p < oo, the ®P) defined above also satisfies condition (DQK).

Proof By Definition 1.1, there are  and 6 such that & (h!N1) > a N9 ® (h) forall h € ¢
and N e N.Let 1 < p < oo. Given ana = {a;}jeN € ¢, denote b = {|a;|"}eN.
Then

P @V = (@ BININ/P > (a NP D(b)}/P = /P NP D) ()
for every N € N. Thus ®(?) satisfies condition (DQK) with constants r'/? and 6/ p.

O

An obvious question is, how do we actually use condition (DQK) in the proof of
Theorem 1.4 and in calculation of Dixmier trace? It will be used in the following way:

Proposition 4.6 Suppose that ® is a symmetric gauge function satisfying condition
(DQK), and let O < s < 1. Then there exist constants 0 < € < land1 < C < 00
which depend only on ® and s such that the following estimate holds: Let N € N.
Suppose that

A, Ag AL

are pairwise disjoint subsets of N satisfying the condition card(Aj) < N for every
Jj = 1. Given a sequence a = {a;}ieN of complex numbers, define

| 12
bj = <ﬁ Z |al~|2)

IEA_,'
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for every j € N. Then we have
P({b}}jen) = N CO({la;]"}ien)-
Proof By definition, there are 0 < 6 < 1 and 0 < C < oo such that
®(a) < Cm @ @"™) forall a € ¢ and m € N. (4.2)
Givenany N € N, let M € N be such that N'/> < M < N'/241. Given any sequence

a = {a;}ieN of complex numbers, define b; as above, j e N.Let E = {j e N: b; #
0}. Obviously, Cb({b‘;}jeN) = Cb({b‘;}jeE). For each j € E, define

Bj={i € Aj:|a;]* = b7/2}.
Finally, define
Ji={jeE:card(Bj) > M} and J, ={j e E:card(B;) < M}.
Write 8 = {b;}jejl. Since bj. < 25/2|q;|* for every i € Bj and since B; N Bj: =
when j # j/, we have ®(BIM]) < 25/2® ({|a;|*}ien). Combining this with (4.2), we

find that

®(B) < CMo(BMY < 22CM P d{la;*Yien) < 22CN 2D ({|a; I }ieN)-
“4.3)

On the other hand, if i € A;\Bj, then |a;|* < b7/2. Since card(A;) < N, we have

) 2
5 2 <<
iEAj\Bj

Consequently, for each j € E,
2
1 M 1 b3
2yl =5 el =

iEBj iEBj

For each j € Jp, since card(B;) < M, the above implies that there is an i(j) € B;
such that (M/N)|a;(j)> > b?/z. Obviously, for j # j"in Jo we have i (j) # i(j’).
Hence '

Db} jen) < 2P (MINYPO{aij')jen) < 2N 0({lail’}ien), (44)

where for the second < we use the fact that M < N'/2 4 1. Since E = J; U Jo, the
proposition follows from (4.3) and (4.4). O
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We conclude the section with two basic lemmas.

Lemma4.7 [24, Lemma 6.2] If Ay, ..., Ay, ... are trace-class operators, then the
inequality

A1 @ @A @ - llo < PEIALIL ..., IAmll1, ... D)

holds for every symmetric gauge function ®, where || - ||1 is the norm of the trace class.

Lemma 4.8 [24, Lemma 2.2] Suppose that X and Y are countable sets and that N
is a natural number. Suppose that T : X — Y is a map that is at most N-to-1.
That is, for every y € Y, card{x € X : T(x) = y} < N. Then for every set of real
numbers {by}ycy and every symmetric gauge function ®, we have ® ({br(x)}xex) <
Nq)({by}er)~

5 Proof of Theorem 1.4: The Upper Bound

To prove the upper bound in Theorem 1.4, consider a regular Borel measure p« on B.
Given such a p, we define the measure /& on B by the formula

du(w)

It is easy to see that we have the integral representation

T, = /kw ® kud fi(w)

for the Toeplitz operator T}, defined by (1.1). This formula is verified by applying both
sides to 4 € H?(S) and then taking inner product with g € H2(S).Let0 <a <b <
oo. Suppose that I" is an a, b-lattice in B. We define

Tr = / Ky ® kydi(w).
Z D(Zyb) w w

zel

Since Uzer D(z, b) = B, the operator inequality 7;, < Tt holds on H 2(S). It follows
from this operator inequality that for every 0 < s < 1 and every symmetric gauge
function P,

1T < IT¢ -
Thus it suffices to estimate || 77| ¢. But this estimate can be further reduced.

Consider any finite subset F of I" that has the property i(D(z, b)) # O for every
z € F. For such an F, we define

Tr = Z/ ky ® kydit(w).
D
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Lemma 4.3 implies that || 72| ¢ is the supremum of || T};||¢ over all such possible F’s.
Thus it suffices to consider an individual TF.

To estimate [|7} ||, by Lemmas 2.6 and 4.1, partitioning F by a fixed number of
subsets if necessary, we may assume that F has the additional property that

card(F N1y ;) <1 forevery (k,j)€l, 5.2)

where Ty ; and I are given by (2.8) and (2.9) respectively. For convenience, let us
write ¢, = 1(D(z, b)) for each z € F. Define the measure

- . XD(z.b) (W)
d =71 d = L2 4
v (w) = ¢, XD (.b) (w)dp(w) (= |wl) p(w)
for each z € F. Then
Tr = E cZ/kw ® kydv;(w). (5.3)

zeF

Obviously, dv; is a probability measure concentrated on D(z, b). Therefore each dv; is
in the weak-* closure of the convex hull of unit point masses on D(z, b). Consequently,
TF is in the closure in strong operator topology of operators of the form

d
1
T= d Zcz ka<z:i> ® ku(z:i)» (5.4)
zeF  i=1
where d € N and for each z € F, we have w(z; i) € D(z, b) foreveryi € {1, ...,d}.

Thus, for any given 0 < s < 1, it suffices to estimate ||7°||¢.
Now we factor T. Pick an orthonormal set {€(z;i) : z € F, 1 <i < d} and define

d
1 12 .
W=—2>"c"" Y knei ®ei). (5.5)
ﬁ zeF i=1
Obviously, we have T = WW™*. Denote ¥ = ®@  Then

IT o = I(WWH o = (W W) o = IIW[Fllo = [IWI 50 = IIWFI.
(5.6)

This reduces the problem to the estimate of |||W|* || .

To estimate |||W|*||w, pick a ¢ such that st > n. By Proposition 3.8, there are
1-separated sets I'y, ..., [';, in B such that the operator

A=Er:+-+En,.: (5.7)
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satisfies the inequality A > & on H2(S) for some § > 0. By Lemma 4.2, we have
WPl = 1A AW P g <87 [IAW] |lw.

For each 1 <r < m, we pick an orthonormal set {e(r; w) : w € I',} and factor ET, ;
in the form Er, ; = B, B}, where

Br=Y " Y ®elr;w).

wel,

Since A is given by (5.7), applying Lemmas 4.1, 4.2 and Proposition 3.2, we obtain

HIWFllw < 2m87°C5, max [IBIWI|lo. (5:8)

To summarize, we have now reduced the proof of the upper bound in Theorem 1.4 to
the estimate of |||B*W |*||y, where

B = Zw}/,t®6ya

yeG

Gisal-separatedsetinBand {e, : y € G}isanorthonormal set. Invoking Lemma 2.6
again, we may further assume that G has the additional property

card(G N Ty ;) <1 forevery (k, j) €I, 5.9)

which, along with (5.2), will be needed for our counting argument below.
Recalling (5.5) and using the reproducing property of k,,, we have

d
Bw =3 %"c" ! > (= w2 (i D)ey ® ez i)

M
yeG zeF \/E i=1 (5.10)
1/2
= Z Zcz/ ey ® fry,
yeG zeF
where
1 d
fay = —= > (U= w(@ D)D" 2P (w(z: i)e i) (5.11)
Vd i=1
fory € Gandz € F.Foreachpairof z € Fandi € {l,...,d}, we have w(z; i) €

D(z, b). Thus there is an x(z;i) € D(0, b) such that w(z;i) = ¢,(x(z;i)). By
Lemmas 2.3 and 2.4, there is a constant C; such that

(1 — Jw(z; DIy (w(z; )] < C1(1 = 21?9y 4 (2)]
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forally € G,z € Fandi € {1,...,k}. Hence

I fop Il < C1(1 = 1212194 (2] (5.12)
forally e Gandz € F.
At this point, we need to organize the pairs (y, z) € G x F using the decomposition
scheme in Sect. 2. First of all, for each integer k > 0 we define
Hi={weB:1-2"% <|w| <1—272¢FDy
The point is that Hy, = U';l:(kl) T}, ;- Then, for each k > 0, define

Gyr=GNH, and Fy = F N Hy.

By (5.10), we have

oo o0
B*W =) "Yi+ ) Z, (5.13)
£=0 (=1
where
o0 o0
1/2 1/2
Y, = Z Z cz/ ey, ® f;y and Z; = Z Z cz/ ey ® fry.
k=0 (v,2)€Gr x Fi+¢ k=0 (v,2)€Gr4ex Fi.

Next, from (2.7) we see that there exist Borel sets {Sk ; : (k, j) € I} in the sphere S
that satisfy the following three conditions:

(1) Forevery (k, j) € I, we have S¢ ; C B(uy,;, 27K,
(2) Foreveryk > Oandevery pairof j # j'in{l, ..., m(k)},wehave Sx ;NS ;7 = 0.

(3) Forevery k > 0, we have U';.ik]) Sk.j=S.

We will use these sets to further decompose Y.
We write each z € F in the form z = |z|§; with &, € S. For each pair of £ > 0 and
£ > 0, we have a partition

Fere = Frea U U Frem (5.14)
where

Frej =1z € Frye 1 & € Sk}, (5.15)
1 < j < m(k). By (5.9), for each k > 0 there is a Jy C {1, ..., m(k)} such that

Gk = {y,j : J € Ji} and such that for each j € Ji, yx,j € Ty j. Fork > 0, £ > 0,
j € Jrand j € {1,...,m(k)}, we now define

¢ 1/2
fk(;;yj’z Z CZ/ Jom - (5.16)
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Then

m(k)
S DI INEY
k=0 jelJy j'=

We further decompose Y, according to spherical separation. For each k > 0, define

ko =10, i) i€ 1 <j <m),duj u ;) <2752} and

Okp =1{G,J) i j € I 1 < =m@k), 27 <duy ju ) < 277742, p= 1
Accordingly, we define
W= Y e fl,
k=0 (j,j")€Qk.p
for p =0, 1,2,.... Then, of course,
Yo=YP+vP+v@+ v+ (5.17)

By (2.6), the definition of Q,, and (2.5), there is a constant M € N such that for each
pair of k > 0, p > 0 and each j € Ji, we have

card{j": (j, j') € Ok.p} < M2*". (5.18)
Similarly, fork > 0, p > 0and j' € {1, ..., m(k)}, we have

card{j : (j, j') € O.p} < M2*". (5.19)
By Lemma 2.7, each Oy, admits a partition

1 2M2%1P
Okp = Q( ) U U Q( )

such that for every 1 < i < 2M2%"P | the conditions (G, jD, (h, ) € Q(l)

(j,j) # (h, k) imply both j # h and j' # h'. Accordingly, for every p > 0 we
have

Y(p,ZMZZ”P)

v =yPY 4y (5.20)

where

Y(Pl) Z Z ey}(/@fk(ej)/”

k=0(j.ineay,
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i=1,...,2M2%P If k, # kj, then obviously €y it 1 €.y for all j; € Ji, and

J2 € Ji,. Similarly, when k1 # k», achase of definitions shows that f (Z) fk(f)/z i
2

for all ji € Ji,, j2 e iy _]1 e {1,...,m(k;)} and jﬁ e {1,. .,m(kz)}. Now the

property of each Qk guarantees that if (] jN, (h,h) € Q(') and (j, j') # (h, K),
then we have both

0) )
ey.; L ey, and fkj j’ L Senw

Because of all this orthogonality, for each pairof p > 0and 1 <i < 2M 22np we
have

14
Y Pl = WAL 1) g e o) (5.21)
where
L“)—G kej.ih:Ghh e 0,
p = RN -
k=0

Our next task is to estimate the vector norm || fk i J A, k, j, j) € L(l)

By (5.11), for z # zin F, we have (f..,,, f..,7) = O0forall y, y’ € G. Therefore
it follows from (5.16) and (5.12) that

4
T ) SN A e or S S € I 1 o [T e

ZEFk,é,_/’ zeFM,_//

For z € Fy ¢, jr, we have (1 — |y j )" ¥y ;.0 ()17 = Imy, (27" (cf. 3.1), (3.2))

and
a2 \" _ n —2k+0)\ "
& <o & <on 2— — C22_2"E.
1— |y j? 1 — vk, jl 272k+1)

Writing C3 = C%Cz, this gives us

£ P <c27 3 ccdmy, @ (5.22)

ZeFk./z,_/

Since yx,; € Tk, j, there is a & ; € B(uy,j, 2_1‘) such that yi ; = |y, jlk, ;. For
Z € Fy g, jr, we have &; € S jv, consequently d(&;, uy j) < 2-k . Hence

21—z, e PN = 11— (&, )V =d &, &)
> d(ug,jr, ug,j) — d&z ug,jr) — d(Ck j, uk, ;)
> d(ug,jr, ug,j) — 27k
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Thus if (k, j, j) € Lg) for some p > 1 and z € F g j/, then
201 = (z, yi ) /? = 27kFpHl gkt 5 pktp,

Since 1 — |y j1* < 2-27%, we have |my, ;(z)| < 4-272F for z € Fyy j» and
(k,j,j) e Lg), p > 0. Substitute this in (5.22), we find that

© 2 —4(n+1)pH—2nt
1) 17 < Ca27 30t orp=2nt 37 e, (5.23)
ZEFk,Lj’

for (k, j, j) e LY, p > 0.

Recall that Fy ¢ j» C Fir¢ C Hyqe. Thusif z € Fy ¢ v, then by (2.8) there is an h
e{l,...,m(k+0)} such that & € B(uyrep, 2757%). We have S¢ j» C Buy jr, 275)
by choice. Combining these facts with (5.2) and (5.15), we find that

card(Fy ¢, ;1) < card{h : B(uqen. 27579 N Bug ;. 27%) # 0} < €52,

where the second < is justified by (2.6) and (2.5). Also, the definition of Lg) ensures

that Fy, ¢ ;1 N Fy, ¢, ;5 = @ for any pair of (k1. ji. j{) # (k2. ja, j3) in LY.

Suppose that our symmetric gauge function @ satisfies condition (DQK). By
Lemma 4.5, ¥ = ®®@ also satisfies condition (DQK). We now continue with (5.21)
and (5.23). An application of Proposition 4.6 (for which the necessary verification of
conditions was carried out in the preceding paragraph) to W and s gives us

. s/2
|||YZ(P,Z)|S||\D < CZ/ZZ—ZS(H-FZ)[)\IJ({(Z_L’ZZ Z Cz) }

ZEFk‘(,j’
= €272 (1 + sy (€22 T W (e P eer)
— C62_2S(n+t)p2_26ne{CD({ci}zGF)}l/zo

o <'>>
(k.j.j"eLy

Recalling (5.20) and applying Lemma 4.1, we obtain

2M2%
Y Ple <2 Y 1YV F e < 4MCe2 200 0-mrp=2ent g (8}, p)) /2
i=1
— C72_2(S(n+t)_n)p2_2€”l{@({C;}ZEF)}I/Z. (524)

Proposition 4.6 guarantees that € > 0. Also, we have s(n 4 t) —n > 0 by the choice
of 7. Recalling (5.17) and applying Lemma 4.1 again, we now have

oo

D

=0

s

o0 o0 o0 o0
<2 3PPl <260 )Y 2*2“‘"*”*"“’2*2“‘{@({cg}zep)%

1/2
v =0 p=0 £=0 p=0 5.25)

= Cg{®({c)er)} /2.
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Next we turn to the operators Zy, which are much easier to handle because condition
(DQK) will not be needed.

First of all, recall that Gy4¢ = {Vkten : h € Jkre}, where Yiqren € Tiyen for
every h € Ji4¢. By (5.2), foreach k > O there is an Iy C {1, ..., m(k)} such that Fj
= {zk,j : j € Ix} and such that for each j € I, zx,j € T, ;. For convenience, let us
write

) 0 _
€n = €y, and Creh,j = S jiviren

(cf. (5.11)). With this new notation we have
o
— 1/2 () (Z)
ZZ—Z Z CzijCn © Pin,j-
k=0 (h,j)€Jxrex Ik
Now define

Or.0:0 = (B, J) € Jie X I = d(ugj, ugren) <272} and

Ottip = {(h. )) € Jege x I : 2757 < d(up j o) <2772} p> 1.
Accordingly, we define
(p) 1/2 (0) )
Z, Z Z €2k i€ @ Prp, i
k=0 (h,j)€Qk.e:p
for p =0, 1,2,.... Then, of course,
Ze=704+z" +72P + .z 4. (5.26)
As in (5.18) and (5.19), from (2.6) and (2.5) we deduce

card{h € Jyq¢ 2 (h, j) € Qke;p} < M22 D) for every j € Iy and
card{j € Iy : (h, j) € Qke.p} < M2%"" forevery h € Jiye.

Thus, as in Lemma 2.7, a standard maximality argument gives us a partition

1) (2M22n(l+p))
Qkﬁp—ngp 'UQk,g;p

such that for every i € {1, ...,2M22"¢+P)} the conditions (h, j), (h', j) € Q,(j’)[;p
and (h, j) # (W', j') imply both h # h’ and j # j’. Accordingly,

2n(l+p)
Z(P) Z(P 1) 4+t ZéPsZMz t )’ (527)
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where
o0
(p.i) 1/2 (0) (0)
zPU =3 Y edan ® v
k=0 (h'j)te(:,)z;p

i=1,...,2M22"¢+D) Define

o
LZL _ U {(k, h,j):(h,j)e Q/(cl)ep}
k=0

The property of Q,({i)lj,p ensures that for (k, h, j) # (K, h/, j') in Q,(c")[p, we have both
(p,izz j 1 (plg,z)h, i and e,(f;l 1 el(f)h" Moreover, the projection (k, i, j) +— (k, j) is

injective on Lg)p. Therefore

i) s s/2, (¢
HZ7F e = A 0001 g per)
¢ 5/2
< sup g 1PV de P her)
(k.h. el (5.28)
14 : .
= sup g 10Ut hem
(k,h, j)eLy)
Obviously, we need to estimate ||<p,££;l f I. By (5.12), for each (k, h, j) € ij; we have
¢
e i1 = 1 e jimrenll < Crl= 12k I Wyt G )
_ (n/2)+t
< Co 1 |yk+€,h|

1 — (2k,js Vi+e,n)
Since Yien € Tiyen, We Wwrite Yiyen = |Vk+l,h|§)/k+z,h with Cypven €

B(ugte.n 27k=t) as before. Similarly, zx,j = |z«,j|éz; ;, where &, ; € B(ug,j, 2Ky,
We have

211 = 2k Viren) = 11— o Cpen)) = Aoy o Sppen)

and

A Cpnen) = durj ueren) — 275 = 27574

Thus in the case p > 1, we have

1 < < 4. 22(k—P)_
11— (zk,js Viren)) — 75FP)2 =
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Since zg,j € T, j, the conclusion also holds in the case p = 0. Therefore

14 — _ _
o i1l < Clol22® P (A = |yipeaD}PH < Cro(22k- P . 272k 0y /D
= Cpp2- 2P+

for every (k, h, j) € L Substituting this in (5.28), we obtain
y [’p g

NZ" P lle < €27 P00 (@ ((cf) cep)) 2.
Applying Lemma 4.1 to (5.27), we have

2M22n(p+5)
NZPPle <2 > NZP Pl < 4MCj2 PO (cd)er)} 2, (5.29)
i=1

where k = s(n + 2t) — 2n. The choice st > n ensures that ¥ > 0. Recalling (5.26),
another application of Lemma 4.1 leads to

Recalling (5.25) and applying Lemma 4.1 to (5.13), we find that

o0

D Z

=1

s

o o0 o o
<233 Nzl < 8MCi Yy 2—K(P+‘>{<1><{c§}zem(}

172
v =1 p=0 ¢=1 p=0 5.30)

= Cr{®({cS)eer)}?

IB*W o < Cia{®@({el)eer)}'/?,

where C1p = 2(Cs + C11). This and (5.8) together give us

Wy < Cia{® (e eer)} /2.
Substituting the above in (5.6), we obtain

IT°llo = WP IG < CH(ci)zer).
Since T approximates Tr (cf. (5.3) and (5.4)), Lemma 4.3 allows us to conclude that
ITE e < CHP(c eer)-

As we recall, F is an arbitrary finite subset of I satisfying (5.2) and the condition that

c; = (i(D(z, b)) # 0 for every z € F. Thus it follows from Lemmas 2.6, 4.1 and 4.3
that

ITElle < 2K CHO i (D(z, b))}zer).



Toeplitz Operators Associated with Measures... Page330f58 30

We know that [i(D(z, b)) < Ci4(1 — |z/) " u(D(z, b)) from Lemma 2.4. Since
I7;llo < [IT7 e, this proves the upper bound for [|7}; ||¢ in Theorem 1.4. O

Denote K, (¢) = (1 — (¢, w))~". Having proved the upper bound in Theorem 1.4,
next we state a consequence of it, which will be convenient for application in Sect. 8.

Proposition5.1 Let0 < a < 00 and0 < b < o0 be positive numbers. Suppose that

® is a symmetric gauge function satisfying condition (DQK). Then for any regular
Borel measure (v on B and any a- separated set T in B, we have

M(D(z,b))} >
Cs51D _— ,
o= <{<1—|z|2>n o

where Cs1 is a constant that depends only on a, b, ® and the complex dimension n.

> Ku® Kuduw)
— /D)

Proof Obviously,

Z/ Ky ® Kudp(w) = Ty,
D(z,b)

zel

where v is the measure defined by the formula

dv =Y xpendp.

zel
Since T is a-separated, there is a I'” containing I' that is maximal with respect to the

property of being a-separated. Thus I' is an a, 2a-lattice in B. By the upper bound in
Theorem 1.4, the proposition will follow if we can find a constant C such that

@({ V(D(w,Za))} ) < ccp({'u(D(Z’b))} ) (531)
(1= lwH" | e (1 =1z ) er

Since I' is a-separated, by Lemma 2.1, there is an N € N determined by a, b such that
forany w € I, card{z € T : D(w,2a) N D(z,b) # #} < N.LetT"" = {w e '’ :
v(D(w, 2a)) # 0}. Then for each w € I'”, there is a z(w) € T such that

v(D(w, 2a)) < Nu(D(z(w), b)) and B(w,z(w)) < b+ 2a.

Combining these two conditions with Lemma 2.4, we see that

q)({v(D(w,Za))} )§c1N¢<{“(D(Z(w“’”} ) (5.32)
(= lwn | yern (I =lzw)»)" ) yerr

Ifw, & € I are such that z(w) = z(&), then B(w, §) < 2b+4a. Thus, by Lemma 2.1,
there is an M € N such that the map w — z(w) from I'” to T is at most M-to-1.
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Applying Lemma 4.8, we have

cp({“(D(Z(w)’b))} > - Mq;({“(D(Z’b))} >
(1= lz)H" | yerr (1 =1z ) er

Combining this inequality with (5.32), (5.31) follows. O

6 Proof of Theorem 1.4: The Lower Bound

The main part of the proof of the lower bound consists of estimates similar to those in
Sect. 5. Therefore many of the notations below are the same as in Sect. 5. But some
modifications and new ideas are necessary for the lower bound.

To prove the lower bound in Theorem 1.4, we again define &t by (5.1) when a
measure p is given. Let 0 < a < b < oo. In contrast to Sect. 5, we now need the
inequality

u(D(z, b)) 2b\1 ~
——— < (4e D(z, b)),
TEEDL (4e”)" (D (z, b))
z € B, which also follows from Lemma 2.4. Suppose that I" is an a, b-lattice in B. As
in Sect. 5, we again write ¢, = t(D(z, b)) forz € I.
Consider any finite subset F of I" satisfying the following three conditions:

(@) ¢; #0foreveryz € F.
(b) F is R-separated for a sufficiently large R > max{1, 2b}, to be determined later.
(c) F satisfies (5.2).

With such an F, we again define the operator Tr by (5.3). Let 0 < s < 1 be given.
Pick ar > 0 such that st > n. But instead of the operator B in Sect. 5, here we need

E = Zl//z,t ®627

zeF

where {e; : z € F} is an orthonormal set. Then ||E| < C32 by Proposition 3.2. For
any symmetric gauge function &, it follows from Lemma 4.2 that

IE*TFE) o < CHITH o < C25ITS o,

where the second < holds because Tr < T}, which is guaranteed by the condition
R > 2b.

Recall from Sect. 5 that operators T given by (5.4) strongly approximate Tr. Con-
sider H = span{e; : z € F}, which is a finite-dimensional Hilbert space. We can
regard E*Tp E as an operator on H. Since dim(H) < oo, all operator topologies on
‘H are equivalent. Therefore there is a 7 given by (5.4) such that

I(E*TE)*|lo < 2I(E*TFE) o < 2C35I T} o
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Once we have this 7', we again factor it in the form 7 = WW*, where W is given by
(5.5). Writing ¥ = @@ asin Sect. 5, we have

ICE*TE) o = I{E*W(E*W)*¥llo = I|E*W ¥l = IIE*W[ |3
Writing C1 = {2C32.32}1/2, the above gives us

1/2
NE*WPlle < CHIT Y ©6.1)

Similar to (5.10), we have

1/2
E*W = Z cz/ ey ® fry,
y.zeF

where f;., is given by (5.11). Thus E*W = D + X, where

1/2 1/2

D= Zcz €;® fz; and X = Z c;'"ey @ [y
zeF y,zeF
Y#2

Since D = E*W — X, it follows from Lemma 4.1 and (6.1) that
s s 1/2 s
Dl = 2CiIT, 1l + 21X [lw. (6.2)
First, let us look at the operator D.

Because {e; : z € F}and {e(z;i) : z € F,1 <i < d} are orthonormal sets, we
have
5/2 ‘
DI e = Wl forzleer).

We need a lower bound for || f7..||. By (5.11), we have
I fzszll = min (1 Jw(z: D))"y (w(z D).
I<i<d

Recall that w(z; i) € D(z, b) for every 1 <i < d. Thus it follows from Lemmas 2.3
and 2.4 that there is a § > 0 which is determined by b, n and ¢ such that

(1= lw(z DY (w(z )] = 81— 121" Y, ()] = 8

forevery 1 <i <d and every z € F. Hence
s/2
55\1’({62/ }zer) < 1D |lw. (6.3)

Next we consider X, which will be handled in a way similar to the B*W in Sect. 5.
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Similar to (5.13), we have the decomposition

o0 o0
X = Y0+2Ye+zze,
=1 =1
where
oo o0
1/2 1/2
- Z Z et/ ey ® fzy and Z; = Z Z e/ e ® fuy
k=0 (y,2)€Fx X Fry¢ k=0 (v,2)€Ftex Fi
for £ > 1, and where
o0
1/2
Z z/ ey ® fuy-
k=0 (y,2)€Fix
y#z

As in Sect. 5, we first consider Y.
By (5.2), for each k > O there is a Jy C {1,...,m(k)} such that Fy = {yx ; :
J € Ji} and such that for each j € Ji, yx,; € Tk, ;. Recall (5.15) for the definition of

Fiej. Fork = 0,£> 0, € Jyand j' € {1,...,m(k)}, we now define £, ., by the
formula

¢ 12
fk(J)]_ > & fany 64)

ZGFkLJ
ZFEVk,j

which is a necessary modification of (5.16). (Here, we would like to remind the reader
of the common convention that a summation over the empty index set means 0.) Then

m (k) o)
© ()
ZZZ%@ Fejp =2V
k=0 jeJ; j'=1 p=0
as in Sect. 5, where
(p) (£)
Y, Z > en, ® fe s (6.5)
k= 0(] J )Ele,p

for p=0,1,2,..., where Oy, is the same as in Sect. 5.

Lemma6.1 Let L € N. If R > 3L + 13, then Yl(p) = 0 whenever we have both
£<L andp < L.
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Proof Consider any pair of yx j € Fy andz € Fy ¢ j1, 2 # v, j. Furthermore, suppose
that (j, j') € Qk, p, which, as we recall from Sect. 5, implies

d(uk,j, uk’j/) < 27k+p+2‘

We have z = |z[¢; and yk,j = |k, jl§y, ;- The membership z € Fj j means
272D < 1 — |z] < 27200 and &, € Sy, ie., d(&;, ux 1) < 27%. Similarly,
since yk,; € Tk, j, we have 2720+ <1 — e, jl < 272 and d(éy,{vj, ug,j) < 27k,
Hence

11— (&2, &y ) = dP (&2, &y ) < QTFFPT2 427k 07k < =228,

This leads to

1=z, v, ) =11 = &y )+ 1=zl + 1= |l = 22k +2p 10,
Therefore

2 2 2k 20k
1= lo: (e, ) = (1= 29d = ) > p72rtrD . o2 — - Ql+4p+24).
o 11— (z, v ;)12 (2-2k+2p+10)2

Consequently

<0+2p+13.

1
Bzyi,) <~log— <
= i

Thusif we haveboth£ < Land p < L,then B(z, y,;) < 3L-+13.Butif R > 3L+13,
then there is no such a pair of z # ¥ ; in F, because F' is supposed to be R-separated.
By (6.4) and (6.5), this means that Yz(p) = O under the conditions R > 3L +13,¢ < L
and p < L. This completes the proof. O

Now let L € N, whose value will be determined momentarily. We choose R such
that R > max{3L + 13, 2b}. By (5.24), forall £ > O and p > 0,

YDl < Ca-20rn=mpy=2enty (32) )

where, as we recall, the ¢ > 0 resulted from the (DQK) condition for W. Taking
Lemma 6.1 into account and applying Lemma 4.1, we obtain

o
‘Zn <2 > 1 Ple
£=0

,pely
max{{,p}>L

<20, Z 2—2(s(n+t)—n)p2—2€nl\Ij({ci/z}zeF)

s

v

U, pely
max{¢, p}>L

< C27lw (S Y ep),
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where w = 2min{s(n + t) — n, en}.

For Z,, we similarly retrace the second half of Sect. 5. In particular, (5.29) still
holds. Then, similar to Lemma 6.1, we find that Zép ) — 0 if we have both £ < L and
p < L,because R > 3L + 13 and F is R-separated. Thus

where k = s(n + 2t) — 2n. Then another application of Lemma 4.1 gives us
o
>z
=1

Combining this with (6.2) and (6.3), we obtain

o]

>

=1

S
< Co2 W ({(c})er),
W

o0

>

=0

N N

NXFlle < 2‘ <2(Cs27F + Co2 Dy W (e e ).

+2
w

v

S W er) < 2C1ITE Y + 4(Cs27°F + Co2 ¥ D)W (e} ?)ep).

We pick L large enough so that 4(Cg2~“L 4+ C927L) < §%/2,and set R > max{3L +
13, 2b} accordingly. Then the obvious cancellation and simplification in the above
leads to

V(s ) er) < 487 CUITS Y.
Since ¥ = ®@, this implies that
({ciheer) < (48 CLYITS o
Recall that F is any finite subset of I" satisfying conditions (a), (b), (c). Combining

this inequality with Lemmas 2.1 and 2.6, the desired lower bound in Theorem 1.4
follows. O

7 Dixmier Trace: The Case of Discrete Sums
In addition to Proposition 1.2, <I>i|r is another example of symmetric gauge function

that satisfies condition (DQXK). To see this, consider an a = {a;}jen € €. It suffices to
consider the case where a; > 0 for every j and we have the descending arrangement

Since aj = 0 for all but a finite number of j’s, there is a k € N such that

a1+...+ak
dtag)= ———
A
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On the other hand, by (1.4), for any N € N we have

all +---+ay,  Nai+---+ Na
WO T (N

@ (@™ > 1

Obviously, forany 0 < € < I, 17V 4+ ... 4+ (Nk)™! < C.N (17 + - + k7).
Therefore

a1+...+ak

o+ gV > o1 yie Gt tar
@)= C (R

=C'N'" o] (a).

This shows that CIJT satisfies condition (DQK), and we can take any value less than 1 to
be its “6”. In particular, Theorem 1.4 determines the membership Tli eC ?‘, 0<s<l.

This enables us to consider the Dixmier trace of 7. But before we do that, let
us briefly review the definition of Dixmier trace for the benefit of the reader. First
of all, we cite [3,5,19] as general references. To define the Dixmier trace, one starts
with a Banach limit w on £°°(N). But in addition to the properties that Banach limits
[4, Section II1.7] possess in general, w is required to have the following “doubling”
property:

(D) Foreach {ay }ren € £°(N), o ({ar}lreN) = w({a1, a1, a2, az, ..., a, ai, ... }).

Such an w can be easily constructed. For example, one can start with the doubling
operator D : £°°(N) — ¢°°(N). That is,

D{ay,ay,...,ax,...} ={a,a1,az,aa,...,ax, ag, ...}

for {ay}xen € €°°(N). Take any Banach limits L] and Lo, distinct or identical. Then
an elementary exercise shows that the formula

k
1 .
w(a) = Lz({% > L1<Dfa>} )
j=l keN

a € £°(N), defines a Banach limit that has the doubling property (D).
With such an w, for any positive operator A € Cl+ , its Dixmier trace is defined to
be

k

1
Tro(A) = a)({ log(k + 1) jX::Sj(A)}kEN).

1

The doubling property of w ensures the additivity Tr,(A + B) = Try(A) + Tr,(B)
for positive operators A, B € Cr. Thus Tr,, naturally extends to a linear functional on
Cf‘. This definition guarantees unitary invariance: Tr,(U*TU) = Tr,(T) for every
T e Cf’ and every unitary operator U. Since UT is unitarily equivalent to TU, we
have Tr,(UT) = Tr,(T U). From this it follows that Tr,,(XT) = Tr, (T X) for every
TecC 1+ and every bounded operator X, which is what one expects of a trace.
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Previous calculations of Dixmier trace (see, e.g., [2,9,10,20]) relied heavily on the
principle that if A is in the trace class, then Tr, (A) = 0. In this paper, our calculation
of Dixmier trace will be based on two different vanishing principles.

Lemma7.1 Let A € C?‘. If the kernel of A contains its range, then Try,(A) = 0.

Proof Let P be the orthogonal projection onto the range of A. If the kernel of A
contains the range of A, then Tr,,(A) = Tr,(PA) = Tr,(AP) = Tr,(0) = 0. O

Even though our next lemma is trivial, we would like to state it for the record
anyway. We remind the reader that we write || - ||fr for || - ”‘DT'

Lemma7.2 Let Yy,...,Y;,... be operators in Cf‘ such that ZC;OZI ||Yj||f' < oQ.
Define Y = Zj’il Y; If Tr,(Y;) = O for every j € N, then Tr,(Y) = 0.

Lemmas 7.1 and 7.2 will guide our calculation of Dixmier trace. Our task is to
extract non-trivial results from these seemingly trivial principles.

Lemma 7.3 Suppose that B is a set and that A is a subset of B. Leth : A — B be an
injective map which has the property that h(a) # a for every a € A. Then there is a
partition A = E1U Eo U E3 such that for everyi € {1, 2, 3}, we have h(E;) N E; = (.

Proof By Zorn’s lemma, there is a subset E; of A that is maximal with respect to
the property h(E1) N E; = (. If E1 # A, then there is a subset E> of A\E| that is
maximal with respect to the property h(E>) N Ey = (. Similarly, if E; U E> # A,
then there is a subset E3 of A\{E| U E;} that is maximal with respect to the property
h(E3) N E3 = .

To complete the proof, it suffices to show that £y U E» U E3 = A. Suppose that
there were some x € A\{E| U E; U E3}. It follows from the maximality of E;, E>
and E3 that for each i € {1, 2, 3}, if we define F; = E; U {x}, then h(F;) N F; # (.
Since h(x) # x, this means that we have either x € h(E;) or h(x) € E; for each
i € {1,2,3}. Our construction ensures that E; N E; = ) when i # j. Therefore
there is at most one i € {1, 2, 3} such that h(x) € E;. This leaves a pair of j # k in
{1,2,3} such that x € h(E;) and x € h(Ey). Since E; N E; = ¥, this contradicts the
injectivity of 4. Hence no such x exists. O

The computation of Dixmier trace is trivial when the operator in question is explicitly
given as a diagonal operator with respect to an orthonormal set. Even though it s trivial,
we state the case as a proposition below, which will serve as a convenient reference:

Proposition 7.4 Let E be a countable index set and consider an operator of the form

D= ZczeZ ® ey,

zeE

where {c;},cg are non-negative numbers such that @f({cz}zeE) < 00, and, most
important, {e, : z € E} is an orthonormal set. Let E' = {z € E : ¢; # 0}. If
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card(E") = oo, then

k
oty = ”({1 e ) 2 }keN)’

Jj=1

where 21,22, ..., 2k, ... are an enumeration of the elements in E' such that Cz; =
Cz;y, Jor every j € N ( the condition @T({cz}zeE) < o0 ensures that such an
enumeration is possible). If card(E") < oo, then, of course, Tr,(D) = 0.

We first consider T,, where u is discrete. Our computation shows that for any sep-
arated set I' in B, Dixmier trace cannot distinguish {k; : z € I'} from an orthonormal
set.

Theorem 7.5 Suppose that I is an a- separated set in B for some a > 0. Let {c;};cr
be non-negative numbers such that @T({cz}zer) < 00. Then the operator

T=Y ck ®k

zel

is in the ideal Cl+ . Moreover, its Dixmier trace is explicitly given by the formula

Tr(T) = Trw(ZczeZ ®ez), (7.1)

zel

where {e; : z € I'} is any orthonormal set.

Proof Obviously, the membership 7' € Cf’ follows from Proposition 5.1 by applying
it to the symmetric gauge function <I>fr and the discrete measure v = ) _ ¢ (1 —
|z|>)"8,, where 8, denotes the unit point mass at z. Next we compute the Dixmier trace
Tre(T).

Since this calculation is quite long, let us first explain the main idea involved.
Consider an arbitrary positive operator A in Cf. Let {u; : j € N} be an orthonormal
basis for the underlying Hilbert space, and define the operator

o0
ZAu,, uju;.

It follows from [15, Lemma II1.3.1] that |A||]{ < |A[l]. Hence A’ € C;". Note that
A—A'is an operator whose diagonal with respect to the orthonormal basis {u ; : j € N}
vanishes. Therefore one’s first instinct is to say

Tr,, (A — A) = 0, (7.2)

and consequently Tr,(A) = Tr,(A’). But unfortunately, in such generality this is a
wrong argument for the Dixmier trace [19, Section 7.5]. The main effort below amounts
to proving (7.2) for our particular A and A’, using the specifics of the operators.
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Let {Sk,j : (k, j) € I} be the Borel sets introduced in Sect. 5, satisfying conditions
(1), (2), (3) there. Again, we write each z € I in the form z = |z|&; with &, € S.
Define

Ti={zel:1 -2k <|z] <1272+ (7.3)

for each k > 0. Since the Dixmier trace is linear, decomposing I" by a finite partition
if necessary, Lemma 2.6 allows us to assume that

card{z € T’y : &, € ;1 <1 (7.4)

for every (k, j) € I. We pick an orthonormal set {e, : z € I'} and define

B=Y P g

zel

Obviously, T = BB*. Define A = B*B. Since B*B and B B* have identical singular
numbers, we have Tr,,(T) = Tr,(A). Thus our task becomes the computation of
Tr,, (A). Then note that

A=A +7Y,
where

A= chzeZ ®e, and Y = Z czl/zcllu/z(kz, kyey ® e;.
zel w,zel
w#z

Obviously, A’ € Cr and Tr,,(A’) is the right-hand side of (7.1). Thus, as we explained
earlier, our main task is to show that Tr,,(Y) = 0.
The proof of Tr,,(Y) = 0 requires two applications of Proposition 4.6 to the sym-

metric gauge function ¥ = @T(z), which produce two “small factors”, which in turn
allow Lemma 7.2 to be applied. This involves a decomposition scheme similar to the
one in Sect. 5, but only more complicated. To begin, we have

o0
Y =Yo+ Y (Ye+Y)) (7.5)
=1

where

YO_Z Z 1/2 1/2 (kz, ky)ew ® e; and
k=0 w,zely

w7 (7.6)
o0
=3 3 AP ke ®e. €21

k=0 (w,z) €l xTx1e
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For each pair of k > 0 and £ > 0, we have a partition

TCire =Tre1 U~ Uk em@)s
where

Crej =1{z € Tkye : & € Sk}
1 < j < m(k). By (7.4), for each k > 0 there is a J;y C {I,

I'x = {yx,j : j € Jx} and such that g)/k,j € S, foreach j € Ji.
Fork>0,£>0,j € Jyand j/ € {1,...,m(k)}, define

{4 1/2
figp= 2 el ke

zel"k,z,j/
Then
00 m (k)
_ 1/2 )
Ye=2 2 D olieni® fijy
k=0 jeJr j'=1

for £ > 1. By (7.4), (7.7) and (7.8), we have

(1.7)

...,m(k)} such that

(7.8)

o0
_ 1/2 0)
Yo = Z Z Cyk/,jeyk,.f ® frj.jr-

k=0 (j,j")elx{L,....mK)}
J#J

Now we further decompose Y, according to spherical separation. For each k > O,

define

Oro=1G,j):jed1<j <mk),duj uy) <273} and

Qk,p = {(.]9.]/) : J (S Jk, 1 < j/ < m(k),z_k+]1+2

2—k+[7+3}’

< d(ug,j, ug,jr) < p> 1

Accordingly, we define

o0
(p) _ 1/2 (0)
=3 ) qlen, ®fL
k=0 (j.j")eQk,p

(7.9)

ifeither p > 1 or £ > 1.Inthecase p = 0 and £ = 0, we define Yéo) by the above sum
with the extra constraint that the inner sum be taken over all (j, j') € Q.o satisfying

the condition j # j’. Then, of course,

Yo=Y +r" +vP +. v+,

(7.10)
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£ > 0. So far, this resembles a portion of Sect. 5. Next we will decompose each Yz(p ),
Because we no longer have the benefit of the modified kernel v, ;, the decomposition

of Ye(p ) here is much more complicated than the corresponding part in Sect. 5.
For each pair of k > 0 and p > 0, let Fy;, be a subset of S that is maximal with
respect to the property

B, 27 PyNBE, 27FP) = ¢ forall € £& in Fy ). (7.11)
From this we obtain Borel sets {E,i I & € Fy;p} with the following three properties:

@ Uger,, B, =S
(b) E,f,p C B, 27+ for every £ € Fi. ).
(©) Ef, NEL =pforalls & in Fy,p.

Now we define the operator

gE 1/2 ()
Ziep = Z s @ Jrjjr (7.12)
ukijE;ip,uk_j/GEf;p
(j.J)€EOk.p

if either p > 1 or £ > 1. Also, in the case where we have both £ = 0 and p = 0,
define

£ _ Z 1/2 (0)
Zio0 = e ® fk;j,j"
!
”kJEEf;o”"k,j’EElio
(V€O 0, j#)

Furthermore, define the set

Gi.p ={(§,&) € F.p x Fi;p :thereis atleast one (j, j') € Q. such that

!’
Uk, j € Ei;p and U, jr € Ei;p}.

This allows us to rewrite (7.9) as

oo

Yﬁ(p) = Z Z Z;f:i,f

k=0 (E»“:"/)EGk;p

/

Now suppose that the conditions (£, §") € Fi., X Fi, p, uk,j € Elf_p, uy,j € Ek_p and
(j, j) € Qk,p are simultaneously satisfied. Then

d(£,&") <d(E, uk,j) +dur,j, ug, ;) +dug j, )
S 2—k+p+1 + 2—k+]7+3 + 2—k+p+l < 2—k+p+4.
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Combining this with (7.11) and (2.5), we see that there is a constant N € N such that
Card{%_/ : (f,f;'/) € Gk;p} <N and Card{%—/ : (é/s &) e Gk;p} <N

forallk > 0, p > Oand & € Fy. . Thus for each Gy ,, Lemma 2.7 provides a partition
1 2N
Grp = G U UGEY

such that for every i € {l,...,2N}, the conditions (&, &), (n,n") € G,(j.)p and
(£,8") # (n,n") imply both & # n and &’ # n’. Accordingly, we have

(p) (p.1) (p,2N)
v P =y oy, (7.13)
where
o0
(p,i) _ £
Y, _Z Z Zih (7.14)
k=0 ¢.enecy)

foreachi € {1,...,2N}.
Now define

£& ©)
Wiy = Y. e ®fh (7.15)
uk,_,-eE,f:p,ukvj/eEf;p
(J,7)€EQk.p

if either p > 1 or £ > 1, and impose the extra condition j # j’ in the sum when
£ = 0 = p (the same will be assumed below). It is clear from (7.12) that Yép’l) =

VWe(p’i), where

oo oo
_ 1/2 (p.i) _ £,&'
V=)D epsens @en, and WU=) )L Wi,
k=0 jedk k=0 (575/)661(;;)p

Applying Lemma 4.4, we have

17" < Qv vt iwe O w Ot

i i (7.16)
= {Q)T({Cz}zel")” Wép’l)Wép”)* ”-1%-}1/2'

Thus we need to estimate || Wg(p’l)WZ(p”)*Hf.

For any given k > 0 and (&, &), the range of Wf ’f,/p is contained in the linear span

of {ey, ; tukj € E,i 1> Whereas the range of Wff; is contained in the linear span of
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{e;:z€Tgejyanduy j € E;i/p}. Thus for each i € {1, ..., 2N}, by the property of

G,‘j)p, the conditions (£, &'), (1, 1) € G,ffp and (&, £') # (n, ') imply both

range(Wg’s,, )L range(W""?/ ) and range(Ws’g,/*) 1 range(W”’”,/*).
k.6p kp k.6 p k.6 p

If k # k, then, of course, we have

range(WkE,’f;/p) 1 range(WI:’”Z/p) and range(Wf’f;/;) 1 range(W,Z’Z/;)

for all (§,&) € G,(f,)p and (n, ) € G,({i‘)p. From the above orthogonality it follows
that

o
(p.i) yyy (D)% _ £.8 yEE
W W, _Z Z Wk,f:ka,Z;P’
=0 ¢ eneay),

and that the right-hand side is an orthogonal sum. Thus Lemma 4.7 gives us

(Po1) 7 (Ps0)% 4+ + £8 y6.8'% )
On the other hand, it follows from (7.15), (7.7) and (7.8) that
£.8 yEE'x _ () ()
WeepWiep = Z Z <fk;h,.i” fk;./’//>ew‘vf ® -
“k-./eEi;p’”k,j’EEE;/p Uk.h EElf:p’uk,j,EE/i/p
(J.J)€EQk.p (h,j)€Qk.p
Consequently
£.8 ybE ) _ £.8" yb.E'xy _ © 2
IWele:p Wi pllt =t Wi, Wil p) = ) I

u ~EEs u -eEs/
kS Bk po e j' Sk p
(./aj/)EQk,])

Similar to the proof of (5.22), in the current situation we have

n
¢ 1—|z|?
A= D e =1k, P = Y cz<2 Iy 1"

1 — .
Zerkl,j/ Zerkl,]’/ |yk’-/|

= C02—2nl Z Cz Im)/k,j (Z)|2n-
z€ly g

Forany (j, j') € Qk,pand z € I'y ¢ j7, we have |myk1j(z)| < C1272P as the argument
following (5.22) shows. (We emphasize that this includes the case where p = 0.)
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Define

172
d,ﬁf}:(zz”‘ > cz> (7.18)

zel“u_/-/

for (k, j') € I. Then the above estimates tell us that

! I 2
£& EE % —4 (0
IWEs, Wi il < Co27%7 > (dk,j/) -

et
Uk, j eEk;p

(jvj/)er,p

%./
’uk,.i/EEk;p

By (b), (2.6) and (2.5), we have card{; : ux, ; € Ei;p} < C32%"P. Thus

’ ’ 2 2
, , — 14 — 14
IWeE Wl s 2 3T (4h) =car 3 (40)

14 2 14
uk.jIEEk:p (k,] )GAk;p

where Ai:p ={(k, j") tup,j € Ef:p}. This suggests that we should define
g8 2 ©\*)"?
Pibp = (2 " Z (dkﬁj’) )
k.jheAL,

for (§,&) € G](f;)p. The above now becomes

’ ’ 7 N2
£& £,&" £,&
IWe e pWeepllt = Ca (¢k,l;P) :

Denote W = <I>1+(2). Since CDT satisfies condition (DQK), Lemma 4.5 says that ¥ also
satisfies condition (DQK), which enables us to apply Proposition 4.6 here.

For (£,&') # (,1') in G,(ci;)p, since £’ # n’, we have Ai.p N AZTP = . Also,

card(A,if p) < (322" as we explained above. Applying Proposition 4.6 to W, we have

! ’ ! 2
<I>+<{||W“ W e enecd ) < c4<1>+({ (vif) } )
1 k.l k.e; / — 1 k,e; .
p pU(EENEG,, k=0 p (E,E’)EGLI:)p,kZO
2

2
£ -2 ®
:C4(\P({“’k,e;p}@,5/)602’}2.@0)) SC4<C52 an({d"’j’}(k’j/)d)> '

(7.19)

From (7.7) and the properties of {Sy ; : (k, j) € I} stated in Sect. 5 we see that
ke j Ny =0if j # j.Fork # «, we have T'y ¢ ; N Ty = ¢ for all
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possible j and h. Furthermore, from (7.7), (7.3), (7.4), (2.6) and (2.5) we obtain
card(T'g ¢ ;1) < C62%"* . Recalling (7.18) and applying Proposition 4.6 again, we have

4 — 1/2
W((dD ) nen) < €122 W (el cer).

Substituting this in (7.19) and recalling the relation ¥ = @T(z), we find that

¢T<{||W“’ wis

—denpn—dent g+
ke k,e;p||‘}<s,5’>ecy?p,kzo> < G272 (ezer)

Combining this with (7.17) and (7.16), we obtain
i 1/24—
1P < 62 0 (e er).

Recalling (7.13), we now have

1/2~—
”Ye(p)”-lf— SZNcg/ 2 2€n(p+z)q>T({cz}z€F)

forall £ > 0 and p > 0. Thus
oo o0 oo 00
SOSTPIE S PH < .
£=0 p=0 (=1 p=0

Combining this fact with (7.5), (7.10) and with Lemma 7.2, the conclusion Tr, (Y) = 0
will follow if we can show that Tr,, (Y, e(p )) = 0 for every pairof £ > O and p > 0.

To prove that Trw(Ye(p)) = 0, leta pairof £ > 0 and p > 0 be given. By (7.9), (7.8)
and (7.7), we need to consider yx j = |yk,jl§y, ; € Tk and z = [z|&; € Tx4¢, where
§n.; € Sk,j» 6z € Sk jr and (J, J") € Ok, p. For such a pair of y;_; and z, we have

d(";:yk,jv &) < d(‘i:)/k,y ”k,j) + d(”k,jv uk,j’) + d(”k,j’s &)
< 2—k + 2—k+[7+3 + 2—/{ S 2—k+17+4.

Therefore

1= (2 v ) < 1= (€ By M+ 1=zl + 1= |y j| <3274,

Consequently
(1= Iy ;1D =1z
1oy, @ = '
T 11— (z, v )1
2—2(k+1) | 9—2(k+Ll+1) 1

-~ (3. 2-2k+2p+8)2 ~ 32.020  2i+p
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This implies that there is a constant 0 < Ry , < 0o such that for y ;j = |k, 1§y, ; €
Iy and z = [z|§; € Tk satisfying the conditions &), ; € Sk, j, §&z € Sk ;7 and
(j,j) e Ok, p» we have B(y,j, z2) < Ry, p. Thus another look at (7.9) and (7.8) gives
us the new representation

1/2
v = Y PP ke @,

(w,2)€82, p
where 2 ), is a subset of the set
{(w,2) e ' xI': B(w,2) < Rep and w # z}. (7.20)
Since I' is a-separated and R, , < 0o, Lemma 2.1 provides an M, , € N such that

card{w : (w, z) € Q¢,,} < My, for every z and card{z : (w, z) € Q¢ p} < My ) for
every w. By Lemma 2.7, we have a partition

(1) My, p)
Q=2 u-ual
such that for each i € {1,...,2M, ,}, the conditions (w, z), (w’,z) € Q}gl)p and

(w, z) # (w', Z') imply both w # w’ and z # 7’. Accordingly, we have

v =y 4y, (7.21)
where
i 2
vl = Y el ke klew ® e
(w,z)eQi")p
foreachi € {1,...,2M, ,}. Obviously, we have Yé_i; € Cf.
Fixani € {1,...,2M, ,} for the moment. The property of Qg)p ensures that the

membership (w, z) € Q(') defines z as a function of w, and vice versa. Thus there is a

subset E of I" and an injective map & : E — T such that Qg)p = {(w, h(w)) : w € E}.
Hence

Y(l) Zch(w) cy kh(w) ky)ew ® epw)-

weFE

By (7.20) we have h(w) # w for every w € E. Applying Lemma 7.3, we obtain a
partition E = E; U Ep U E3 such that h(E,) N E, = @ for v = 1, 2, 3. For each
v € {1, 2, 3}, define the orthogonal projection

P, = Z ey Q ey.

wekE,
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The property h(E,) N E, = @ obviously translates to P, Yz(' ; P, = 0. Hence
Trw(PVYgf;,) - Trw(PUYZ(.";PV) — 0. Since Y;f;, — (P + P, + P3)Yz(f;, we con-
clude that Tr,,(Y;.)) = 0.

Combining the last conclusion with (7.21), we now have Tr,, (Y, Z(p )) = 0 for all
£ > 0and p > 0. As we explained earlier, this completes the proof of Theorem 7.5. O

8 Dixmier Trace: The General Case

Having computed the Dixmier trace for the discrete sum 7' in Theorem 7.5, we will
now use that result to compute the Dixmier trace for a general Toeplitz operator 7},
defined by (1.1). The gap between T and T}, concerns “small perturbations of I"”,
which is handled by the same techniques that proved the upper bound in Theorem 1.4.

Proposition 8.1 Let ® be a symmetric gauge function satisfying condition (DQK).
Then there is a constant 0 < Cg.1 < 00 such that the following holds: Let0 < a < 1.
If T is any 1-separated set in B and if we have a set {w(z) : z € I'} C B satisfying the
condition B(z, w(z)) < a for every z € I', then

< Cg1a®({cz)zer)

Z ek @k, — Z Czku () ® ku ()

zel zel @
for every set of non-negative coefficients {c;};cr.

Proof By Lemma 2.6, we may assume that I" satisfies the additional condition
card(I" N7y ;) <1 forevery (k,j) € 1. (8.1)

Let us write

D = Zczkz ®k; — Zczkw(z) ® ku(z)-

zel zel

Then D = D; + D;, where

D = ZCZ(kZ - kw(z)) ® k, and D, = Zczkw(z) Q (k, — kw(z))~

zel zel

Since the estimates of || D1||¢ and || D2 || ¢ are similar, we will only consider the former.
To estimate || D ||¢, we pick an orthonormal set {e, : z € I'} and factor D in the
form Dy = WL, where

W=t —ku)®e and L= '’ @k

zel zel
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By Lemma 4.4, | Di|le < [[W*W | *|L*L||}/*. Note that

L*L=Y ck ®k,

zel

the Toeplitz operator associated with the discrete measure v = ) c;(1 — 1z|%)"8,.
Applying Proposition 5.1 to v, we obtain

IL*Lllo < CP({cc)zer). (8.2)
To complete the proof, we need to estimate | W*W|| <11>/ 2,

For the given ®, we again have the symmetric gauge function ¥ = ®® defined

in Sect. 4. Furthermore, || W*W||é>/ 2 |W|lw as before. Thus it suffices to estimate

IW]w. We again take advantage of the fact that the operator A given by (5.7) is
invertible on H>(S). By Propositions 3.8 and 3.2, it suffices to estimate || B*W |y,
where

B = Zw}/,t®eya

yeG

t > n, G is a l-separated set in B and {e, : y € G} is an orthonormal set. By
Lemma 2.6, we can further assume that the 1-separated set G has the property that

card(GN Ty j) <1 forevery (k,j)el,

which, along with (8.1), allows us to repeat the counting argument in Sect. 5. But now

BW=Y > ", ® f. (8.3)

yeG zel’

where

fz;y = ny,h kz - kw(z)>éz

fory € G and z € T'. Since f(z, w(z)) < a, Lemma 3.6 gives us

I foy |l < Ch a1 — 2" 219, 4 (2)], (8.4)

y € G and z € I'. Obviously, the main difference between this and (5.12) is the factor
a.

Following Sect. 5, for each integer k > 0 we define Hy = {fw € B: 1 — 272 <
lw| < 1 —272*+D) G, = G N Hy and F;, = I' N Hy. By (8.3), we have

o0 o0
B*W =YY+ Z. (8.5)
=0 =1



30 Page52of58 L.Jiang et al.

where

Y= i Z c;/zey ® fz;y and

k=0 ()’,Z)GGkXFk+/é

o
Zy = Z Z c;/zey ® fry-

k=0 (y,2)€Gryex Fy

We then decompose Y, and Z; as in Sect. 5, using the same sets {S¢, ; : (k, j) € I},
Ok, p and Qy ¢, introduced there. Taking s = 1, the argument that precedes (5.25)
gives us

o0

>

£=0

< Csa{®({cz)er)}'?, (8.6)

v
where the factor a comes from the fact that here we use (8.4) in place of (5.12).
Similarly, the proof of (5.30) now gives us

o]

2. Z

=1

< Cia{®(fes)er)}/?, (8.7)
7

where a appears for the same reason. Combining (8.5), (8.6) and (8.7), we have
IB*W|g < Cra{®({c:}.cr)}/?. As we explained in the third paragraph of the
proof, we can remove the B* from || B*W |y by applying Propositions 3.8 and 3.2.
Hence

IWllw < Crza{®({c;)zer)} /2.

Recall that |W |y = [W*W/|/* and that || Di[le < [W*W| /> IL*L|y*. Thus the
desired bound on || D1 ||¢ follows from the above inequality and (8.2). m]

Finally, we will show that for a general Toeplitz operator 7, defined by (1.1) on the
Hardy space H 2(8), we also have a formula for its Dixmier trace in the style of (7.1).

Theorem 8.2 Let ju be a regular Borel measure on B such that T,, € Cf. Let T be an
a, b-lattice in B, where 0 < a < b < coand b > 2a. (Since b > 2a, such a " always
exists.) By Theorem 1.4, we have

([ (DG b))
i <{ ISEDE }r> =% ®8)

Since T is an a, b-lattice in B, there is a partition B = U cr E,; such that for every
z € T', we have E, C D(z,b). For each z € T, define

¢ = / _dutw) (8.9)
E

(L= JwHm
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By (8.8) and Lemma 2.4, we have CIJT({CZ}ZEr) < 00. The Dixmier trace of the Toeplitz
operator T, is given by the formula

Tro(Ty) = Trw< Y e ® ez), (8.10)

zel
where {e; : 7 € I'} is any orthonormal set.

Proof LetT" = {7z € T : ¢; # 0}. Given a partition I'" = rYur® fori =1,2
we can define E© = U,_,o E;. Accordingly, u = uV + 1@, where p(A) =
w(ANE®) for Borelsets A CB,i = 1, 2. Obviously, both sides of (8.10) are additive
with respect to such a decomposition. Therefore, by Lemma 2.1, it suffices to prove
(8.10) under the additional assumption that I'" is 2b + 2-separated. This implies that
if we pick an arbitrary £ (z) € D(z, b) for each z € T/, then the set {¢(z) : z € T} is
1-separated.

We will prove (8.10) by using Theorem 7.5 and approximation in the ideal C f’ This
scheme proceeds as follows. Let an € > 0 be given. Then by the above-mentioned
property of I'” and Proposition 8.1, there is a § > 0 such that if ¢(z) € D(z, b) for
every z € I/, and if a set {w(z) : z € "'} has the property that 8(¢(z), w(z)) < 8 for
every z € [/, then

+

Z Czk;“(z) ® k;(z) - Z Czkw(z) 02y kw(z) =< GCDIF({CZ}ZEF) (8.11)

zeG zeG

1

for every G C I'". For each z € T/, we define the measure v, by the formula v, (A) =

c'i(A N E,), where A is any Borel set in B and the relation between /i and  was
z z y

given by (5.1). By (8.9), each v, is a probability measure on B. Furthermore,

T,=>Y_ cZ/ Kk @ kydv, (w).
zel” E;

ByLemma2.1(1), for the § chosen above, thereisan N € N that has the following prop-
erty: Foreachz € I/, there are &; 1, ..., &,y € D(z, b) such that UfVZID(éz,i, 8/2) D
D(z, b). Thus for each z € I/, E; admits a partition E; = E; 1 U---U E, y such that

sup  B(u,v) <4, (8.12)

u,UEEZV,'
1 <i < N. Accordingly, we rewrite the Toeplitz operator 7}, in the form
N
T,=Y_ Zczf Ky @ kuydv, (w). (8.13)
ceri=1  UEai

With this N so fixed, we pick a k € N such that N /k < €.
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Foreachz € IV, denote J, = {i € {1, ..., N} : v;(E; ;) # 0}. Then for every pair
of z € I and i € J;, define the probability measure dv,; = {vZ(EZ,,-)}’leZ,ide.
This allows us to rewrite (8.13) in the form

T,=Y. Zczu(Ez,i)/ ku ® kudv. ;i (w).
E;

zelliel;

For every pairof z € I and i € J,, there is an m(z, i) € Z, such that m(z,i)/k <
v;(E; ;) < (m(z,i) 4+ 1)/k. Thus for every such pair of z, i we have

m(z, i)

V(E.;) = +a(z,i), where 0<a(z,i) < 1/k. (8.14)

Accordingly, we have T;, = T1 + T, where

1
T= g X Y emed | k@ kudvey ) and

zelliel;

T= YY) [ ke ®kudes o)

zelliel;

(8.15)

We will show that Tr,,(77) is close to the right-hand side of (8.10) and that || 7> ||iIr is
small.
To estimate Tr,,(7}), observe that for every z € I'’, we have

Somie iy =k 3 D kY ) = kUi B = k(B = .

iel; iel; iel;
That is, there is a natural number k' < k such that

Zm(z,i) <k’ forevery z eI

iel;

We can think of m(z, i) as the “multiplicity” with which E, ; appears in the sum (8.15).
Once this is clear, we see that there are subsets 'y D - .- D 'y of I'” such that

Ty = /k)(S1+ -+ Sp), (8.16)

where, foreach 1 < j < &/,

Sj = Z Cz/;g ky ® kwd‘)z,t(j,z)(w)

zel; 2,0(j,2)
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with «(j, z) € J, for every z € I';. Furthermore, to match multiplicities, for every
pairof z € " and i € J, we have

card{j e {l,...,k'}:z € [jand(j,2) =i} =m(z, ). (8.17)

For each pairof 1 < j < k" andz € I';, we pick a ¢(z, j) € E_ (j ;). Accordingly,
we define the operators

Dj= )" ckeejy ® ke,

zeFj

1 < j <k’. We need to estimate ||S; — D.,'||T.

Fix a j € {1,...,k’} for the moment. For each z € T'j, v, ,(j ;) is a probability
measure concentrated on E; ,(; ;). It is, therefore, in the weak-* closure of convex
combinations of unit point masses on E (; ). Consequently, S; is the weak limit of
operators of the form

d
1
Hj = g Z Z Czkw(z,r) ® kw(z,r),
FZIZGFj
where d € Nand w(z,7) € E; ,(j ;) forevery pairof z € I'; and r € {1, ..., d}. For

agivenr € {1,...,d},since w(z,r) € E; (j,;) and ¢(z, j) € E; (j.2), by (8.12) we
have B(¢(z, j), w(z,r)) < é forevery z € I';. Applying (8.11), we find that

d

1
IH; = DjIIf <=3

r=1

— > ke ®kece)

zel;

Z Ckwzr) @ kw(zr

zel
+
= G(DT({CZ}ZEF)'

1

Since S; — D; is in the weak closure of operators of the form H; — D, combining the
above estimate with Lemma 4.3, we obtain ||S; — D; It < e@f({cz}zer). Recalling
(8.16) and the fact that ¥’ < k, we now have |} — (1/k)(Dy + --- + Dk/)||T <
€®] ({c;}zer). Thus

| Tro,(T1) = Troy ((1/k)(D1 + -+ + D) < €@ ({ez)zer). (8.18)

Recall that for each pairof 1 < j < k"and z € I'j, we have {(z, j) € E; (j ;). Thus,
by the assumption on I'’, every {¢(z, j) : z € I';} is a 1-separated set, 1 < j < k.
Hence Theorem 7.5 can be applied to every D ;. Pick an orthonormal set {e; : z € T'}.
By Theorem 7.5, we have

k/
1 1
Tr“(E(D] 4+t Dk/)) = Trw(% Z Z cze; ®ez).

j=1z€l;
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Applying (8.17) on the right-hand side, we obtain
Tro( L(D1+ -+ D) ) =T ZZcMe ®e
) k 1 k = Ho b4 k z z

zelViel;

Combining the above with (8.14) and with the fact that ) ;. ; v.(E.;) = v, (E;) =1
for every z € I/, we have

1
Trw(;(D1 +"'+Dk’)) :Trw<§czez®ez> -¢, (8.19)
z

where

&= Trw< Z Zcza(z, e, ® ez>.

zelViel,

We have 0 < a(z,i) < 1/k for every pair of z € I'" and i € J. Since card(J;) < N
for every z € T, it is easy to see that £ < (N/k)CDT({cZ}ZGr). Recall that £ was
chosen so that N /k < €. Combining these facts with (8.18) and (8.19), we conclude
that

< 2e®7 (fe }eer). (8.20)

Try, (Th) — Trw( Z cze; ® ez)

zel”

Next we estimate ||7>]| T
A retrace of the definitions of the measures v, and v, ; gives us 7o = T, where

Recall that I'" is 2b + 2-separated. This guarantees that D(z, b) N D(z', b) = @ for
z # 7' in I'’. Therefore it follows from Proposition 5.1 that

T, < Csy®F M} ) 521
IT20l7 = ITally = Cs. 1({(1—|z|2)" zel o

Furthermore, for each z € I we have

Ezi R Ezi
a(D(z,b)) = a(E;) = Za(z, i)% =c. Za(z, ,)%.
R icl, 2.1

iel;
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Since E; ; C E; C D(z,b),Lemma?2.4tellsusthat u(E; ;) < C1(1—|z|2)”,41(EZ,i).
Thus

a(D(z,b)) < Ci(1 = |z1)'e; Y a(z, i) < Ci(1 = 2*)" e (N /k)

iel;

< C1(1 — |21 "c e

for every z € I/, where the second < follows from the facts that 0 < a(z,i) < 1/k
and that J, C {1, ..., N}. Substituting this in (8.21), we obtain

IT21l] < CiCs.1e®] ({ez)zer)- (8.22)

Since T), = T + T and since € > 0 is arbitrary, (8.10) follows from (8.20) and
(8.22). O

9 Modified Berezin Transforms and an Equivalent Condition
Recall that for an operator A on the Hardy space H?(S), the function
A(z) = (Ak., k;), z € B,

is called the Berezin transform of A. Thus for ¢ > 0, the scalar quantity (Av; /, ¥ ;)
can be regarded as a modified Berezin transform of A. If u is a Borel measure on B,
then for the Toeplitz operator T}, defined by (1.1) we have

(1 _ |Z|2)n+21

22 dp(w).

Tuten Vo) = | 5Ty e

With this quantity we can state a condition that is equivalent to the condition in
Theorem 1.4. More precisely, let 0 < s < 1 be given. Then pick a ¢t > 0 such that
s(n+2t) > n.Let0 < a < b < oo also be given such that b > 2a. Suppose that ®
is a symmetric gauge function satisfying condition (DQK). It can be shown that

; w(D(z, b)) \*
c@(({Tyuers Yet) Jeer) < ¢<{<m) }Zer>

= Cq)({<T/ﬂpz,t, 1/fz,t>s}zel“)
for every regular Borel measure « on B and every a, b-lattice I' C B. But since this
paper is already quite long as is, we will omit the proof of this result.
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