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1. Introduction

In this paper we continue the study of the Geometric Arveson—Douglas Conjecture
that began in [9]. In Theorem 1.6 in [9], the quotient module @ was proved to be
p-essentially normal for p > 2d, where d is the complex dimension of the analytic set in-
volved. But the Geometric Arveson—Douglas Conjecture predicts that @ is p-essentially
normal for all p > d. Using different techniques, in this paper we will close that gap
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between 2d and d. That is, we will show that @ is indeed p-essentially normal for all
p > d as conjectured.

This not only improves what we can say about the quotient module, but also has impli-
cations for the corresponding submodule, as we will see. More specifically, this improved
essential normality makes it possible for us to study the Helton—Howe trace invariants
[16] for both the submodule and quotient module. This is significant because the ulti-
mate goal of the Arveson-Douglas Conjecture is the study of such invariants for module
operators.

Let us turn to the technical details of the paper. As usual, we write B,, for the unit
ball {z : |z| < 1} in C", and we will assume n > 2 throughout the paper. Let L2(B,,)
denote the Bergman space of analytic functions on B,,. With the natural multiplication,
L?(B,,) is a Hilbert module over the ring of analytic polynomials C[z1, ..., 2,]. A closed
linear subspace S of L2(B,,) is said to be a submodule of the Bergman module if it is
invariant under the multiplication by Cl[z1, ..., 2z,]. If S is a submodule, then

St={feli(B,):fLS}

is a quotient Hilbert module over C[z1,...,z,]. This is because for all f € S* and g, h
€ Clz1,- .-, 2n), we have Psighf = PsigPs. hf, where Pg. is the projection onto S+.

For any M that is either a submodule or a quotient module, we have the orthogonal
projection Ppq : L2(B,) — M. Of course, we can also view Ppq as the projection from
L?(B,,) onto M, and this is the crucial point on which our techniques are based. In any
case, we have the module operators

Zpm,j = PuM. M, j=1,...,n.
For any 1 < p < 00, the module M is said to be p-essentially normal if the commutators

(Z3is Zmls id €{1,...,n},

all belong to the Schatten class Cp,.

The study of essential normality began with [1], [4] and has become a very active
research area (see, for example, [6], [8], [9], [20], [10], [11], [13], [15], [14], [17]). The
famous Arveson Conjecture predicts that every graded submodule of the Drury—Arveson
module is p-essentially normal for p > n. This was later refined by Douglas [5], who
observed that in the case of the quotient module it should really be p > d, where d is
the complex dimension of the variety involved. Simply stated, for the Bergman space we
have

Geometric Arveson-Douglas Conjecture. For a variety V in B,,, the quotient module
L:B,)c{feliB,):f=00onV}

is p-essentially normal for all p > dim¢V'.
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The challenge here is to get to p > dimc V', which is more than just p > n. As we will
show in this paper, reaching the lower limit p > dim¢V leads to actual applications.
To tackle this conjecture, some mild conditions were imposed in [9]:

Assumption 1.1. Let M be an analytic set in an open neighborhood of the closed ball
B,,. Furthermore, M satisfies the following conditions:

(1) M intersects OB,, transversely.

(2) M has no singular points on 9B,,.

(3) dimeM = d, where 1 < d <n — 1.

We emphasize that Assumption 1.1 will always be in force for the rest of the paper.
Given such an M, it will be convenient to fix certain notations:

Notation 1.2. (a) Let M = M NB,,.
(b) Denote R = {f € L2(B,,) : f =0 on M}.
(c) Let R be the orthogonal projection from L?(B,,) onto R.
(d) Denote Q = L2(B,,) © R.
(e) Let @ be the orthogonal projection from L?(B,) onto Q.

As we have mentioned, our starting point is

Theorem 1.3. [9, Theorem 1.6] The quotient module Q is p-essentially normal for all
p > 2d.

Here is our improvement:
Theorem 1.4. The quotient module Q is p-essentially normal for all p > d.

The improved essential normality in Theorem 1.4 has consequences. First of all, we
know that the full Bergman module LZ(B,,) is p-essentially normal for all p > n. Since
d < n, by Douglas’s well-known matrix argument [4, page 119], we immediately have

Corollary 1.5. The submodule R is p-essentially normal for all p > n.

Second, once Theorem 1.4 brings p below n, it opens the door for the study of trace
invariants. Suppose that Ay, ..., Ay are bounded operators on a Hilbert space H. In [16],
Helton and Howe introduced the antisymmetric sum

[Ala ey Ak] = Z Sgl’l(O’)Ag—(l) e Ag(k)’

o€Sk

which naturally generalizes the notion of commutator. This and [7] provided some of
the early examples of non-commutative geometry [3]. What particularly motivate us are
antisymmetric sums of Toeplitz operators. Let P : L?(B, ) — L2(B,,) be the orthogonal
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projection. For each ¢ € L>°(B,,), we have the familiar Toeplitz operator T,, defined by
the formula

T,h = P(ph), he Li(B,).
Recall the following classic result:

Theorem 1.6. [16, Theorem 7.2] For fi, fa,..., fon € Clz1,21,...,2n, Zn], the antisym-
metric sum [Ty, Ty,,...,Ty,,] is in the trace class. Moreover,

n!
tr[Tfl,sz, R 7szn] = W /df1 Adfa A+ Ndfay,.
B,

Obviously, this motivates the question, what about operators on R and Q7 Equally
obviously, we can define “Toeplitz operators for modules”: for any ¢ € L*°(B,,), we define

R@h = R((Ph)7 heR,

and

On the submodule, the improved essential normality allows us to prove

Theorem 1.7. For any f1, fa,..., fan € Cl21, 21, ..., 2n, Zn], the antisymmetric sum
[Rf17Rf2’ s ’Rf2n]
is in the trace class.
On the quotient module, the improved essential normality leads to

Theorem 1.8. Let m > d. Then for any f1, f2,..., fom € Clz1,21,..., 2n, Zn], the anti-
symmetric sum [Qy,, Qt,, ..., Qy,,.] is in the trace class with zero trace.

One would naturally ask, what happens in the case m = d? In particular, is the
antisymmetric sum [Qy,,Qy,,...,Q,,] in the trace class? As the reader will see in
Section 5, our current techniques do not address this question. But this question sheds
light on the quotient module, and is an interesting subject for future investigations.

Next let us explain the main ideas in this paper. As it turns out, the key to the
improvement from Theorem 1.3 to Theorem 1.4 was in [9] itself:
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Theorem 1.9. [9, Theorem 4.3] There exist a measure p on M and 0 < ¢ < C < 0o such
that

clfI? < / | () Pdpu(uw) < C| |
M

for every f € Q.

On L2(B,,), such a p defines a Toeplitz operator via the formula

@D = [ s duto)
M

As noted in [9], the upper bound in Theorem 1.9 means that p is a Carleson measure
for the Bergman space, consequently T}, is a bounded operator on L2(B,,). In fact the
two bounds translate to the operator inequality

cQ<T,<CQ

on L2(B,,). This inequality turns @ into a function of 7,: Q@ = h(T},) for some smooth
function h. By the standard smooth functional calculus, the estimate of a commutator
of the form [A, @], which is the object of interest in the study of essential normality, is
reduced to the estimate of [A,T),]. The point is that T}, has an explicit integral formula.
Thus, for the purpose of proving essential normality, Theorem 1.9 practically endows @
with an explicit integral formula.

But to take p below n, one must avoid using the essential normality of the full Bergman
module, because L2(B,,) is p-essentially normal only for p > n. Our idea is to use the big
space L?(B,), on which all multiplication operators and their adjoints freely commute.
This requires extending 7}, to an operator on L?(B,,). But obviously, an arbitrary function
in L?(B,,) cannot be integrated on M against p. So how does one extend 7}, to L?(B,,)?

Observe that, using the reproducing kernel K,,(z) = (1— {2z, w)) ™! for the Bergman
space, we can write the Toeplitz operator T}, in the form

T, = /Kw ® Kypdp(w).
M

This automatically extends the Toeplitz operator T}, to an operator on the big space
L?(B,,), by exactly the same integral formula! The key part of the proof of Theorem 1.4
is to show that on the big space L?(B,,), the commutators [M,,,T,], i =1,...,n, are in
the Schatten class C, for p > 2d.

To accomplish that, we use the fact that x can be approximated in the weak-* topology
by point masses on M. This implies that 7}, is in the weak closure of the convex hull of
operators of the form
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D= Y cuky®ku,
wel'nM

where I is a discrete set in B,, with certain separation properties, c,, are non-negative
with an upper bound determined by u, and k,, is the normalized reproducing kernel
for the Bergman space. Thus it suffices to consider the commutators [M.,, D]. These
commutators are further decomposed as follows. For each k > 0, consider the “strip”
My, ={we M:1-27%F < |Jw| < 1-272¢+DY in M. Accordingly, we have the operators

Dp= Y cukw®k, and F=[M., Dy].
wel'MMy

We will show that for any € > 0, we have
[Fll < C127079% and  rank(Fy) < C52%F,

k > 0. As we will see, these two estimates are sufficient to imply the essential normality
promised in Theorem 1.4.

These two estimates themselves deserve some explanation. The first estimate, || Fy|| <
C12-(1=9F is simply a reflection of the properties of the ball and the Bergman space.
More revealing is the second estimate, rank(F})) < C922%  which shows exactly how the
dimension of the underlying variety enters into the essential normality of the quotient
module. In fact, this is exactly the kind of structure that the Geometric Arveson—Douglas
Conjecture is meant to uncover.

The rest of the paper is devoted to the proofs of our results. Specifically, Section 2
contains the technical preparations for the proofs. After that, we prove Theorem 1.4
in Section 3. Then the proofs of Theorems 1.7 and 1.8 are given in Sections 4 and 5
respectively.

Acknowledgment. We thank the referee for the careful reading of the manuscript, and
for raising the question that follows Theorem 1.8.

2. Preliminaries
We begin with a lemma about commutators.

Lemma 2.1. Suppose that H is a Hilbert space. Let A, B be bounded operators on H, and
let @ be an orthogonal projection on H. Define S = QAQ and T = QBQ. Then

[5,T] = (@, B](1 - Q)[4,Q] - [Q, A](1 - Q)[B, Q] + Q[4, B]Q.

As a consequence, if [A,B] = 0 and if [Q, 4], [Q,B] € Cap for some 1 < p < o0, then
[S,T] € Cp.
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Proof. Since Q(1 — Q) =0 and (1 — Q)Q = 0, simple algebra yields

[5,T] = QAQBQ — QBQAQ
= QB(1-Q)AQ - QA(1 - Q)BQ + Q[A, B|Q
=@, B](1-Q)[4,Q] - [Q,A](1 - Q)[B,Q] + Q[A, BQ.

This completes the proof. 0O

Consider the case where H = L%(B,,), Q is the quotient module in Notation 1.2, and
Q : L?*(B,) — Q is the orthogonal projection. Let J\Zfz be the operator of multiplication
by the coordinate function z; on the big space L?(B,,), i = 1,...,n. For p > n, since
L2(B,,) is p-essentially normal, if we know that every [Q, M,,] is in the Schatten class Ca,,
then by Proposition 4.1 in [1] we can conclude that the quotient module Q is p-essentially
normal. But since the essential normality of the Bergman module L2(B,,) is involved in
this argument, it does not cover the case p < n. That is where Lemma 2.1 comes in.

The advantage of Lemma 2.1 is that it allows us to bypass the Bergman mod-
ule L2(B,). More to the point, it allows us to bypass Proposition 4.1 in [1]. For
any 1< p < oo, Lemma 2.1 tells us that if we know that [Q, M, ] € Csp for every
i € {1,...,n}, then we can conclude that the quotient module Q is p-essentially normal.

In general, we write C', C, Cs, etc, for constants, and they may represent different
values in different context. The notation A ~ B means that there exist 0 < ¢ < C < oo
such that cA < B < C'A. Similarly, by A < B we mean that there exists a 0 < C' < c©
such that A < CB.

2.1. Bergman metric and Carleson measure

For z € B,,, write P, for the orthogonal projection from C™ onto the subspace Cz and
Q. =1— P,. The Mébius transform

2= Po(w) — (1= |2])!?Q:(w)
1—(w,z)

P (w) =

is the (unique) automorphism of B,, that satisfies ¢, o ¢, = id and ¢,(0) = 2.
Recall that the Bergman metric on the unit ball is given by the formula

—, z,w€EB,.
2 71— |ps(w)]

It is well known that 8 is Mobius invariant, and so is the metric

p(w, z) = |z (w)].

For z € B,, and r > 0, denote
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D(z,r)={w eB, : B(w,z) <r} ={weB, : p(w,2) < s}
where s, = tanh r.

Lemma 2.2. [18, 2.2.7] For z € B,, and r > 0, the Bergman-metric ball D(z,r) consists
of all w that satisfy

Pav—cP | Quf _ |

s7p° SHY
where
(1-s2)z 1—|z)?
c=—F-" =
1 — s2[z|*’ 1 —s?|z[?

As a consequence, for a fixed r, v(D(z,7)) ~ (1 — |z|>)"*1. One of the reasons that
the Bergman metric is important is that it matches the analytic structure on the unit
ball. From the properties of the Mdbius transform ¢, (see [18, Section 2.2]) it is easy to
deduce

Lemma 2.3. [22] Given any 0 < r < oo, there exists a constant 0 < C, < oo such that
for any z,w € B, satisfying B(z,w) <r and any X\ € B,,,

() ot <=L <,
_ —(\,z
@ O < =g < O

Lemma 2.4. [19] Let v be a positive, finite, reqular, Borel measure on B, and r > 0. The
following quantities are equivalent (with constants depending on n and r).
_|5|2)n+1

(1) vl = sup.cp, fo, s dv(w),
(2) inf {C >0: [|fPdv < C [|f|*dv for f € L(B,)},

. v(D(z,r))
(3) sup.ep, v(D(z,1))’
@) 1T le2®,)—r2(30)-

Here the operator T, is defined by

T = [ G D dv(o)

n

A Carleson measure for the Bergman space L2(B,,) is a v for which one of the above
quantities is finite. In this paper, if we call a measure a Carleson measure, we mean it is
one for the Bergman space L2(B,,), as defined above.

Let us recall the definitions of the technical terms in Assumption 1.1.
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Definition 2.5. /2] Let 2 be a complex manifold. A set A C Q is called a complex analytic
subset of  if for each point a € €2 there are a neighborhood U > a and functions
f1,+-+, fn holomorphic in this neighborhood such that

ANU={z€U: fi(z)=---= fn(2) =0}.

A point a € A is called regular if there is a neighborhood U 3 a in Q such that ANU
is a complex submanifold of Q. A point a € A is called a singular point of A if it is not
regular.

Definition 2.6. Let Y be a manifold and let X, Z be submanifolds of Y. We say that the
submanifolds X and Z intersect transversely if for every x € X N Z, T,.(X) + T,(Z) =
T.(Y).

The authors of [9] proved the following theorem.

Theorem 2.7. Suppose M is a complex analytic subset of an open neighborhood of B,,
satisfying the following conditions:

(1) M intersects OB, transversely.
(2) M has no singular point on OB,,.

Let M = M NB,,. Then there exists a Carleson measure . on M such that the L?(y)
norm defines an equivalent norm for functions

feQ=102B,)o{hecL’B,):h=0o0n M}=5pan{Ky,: A€ M}.

As a consequence, the projection operator QQ onto Q is a C*° functional calculus of the
positive operator T),.

With additional effort, the quotient module Q was shown in [9] to be p-essentially nor-
mal for all p > 2d, where d = dim¢ M. As we explained in the Introduction, we will show
that this is true for all p > d, fulfilling the prediction of the Geometric Arveson—Douglas
Conjecture.

2.2. The class C;f

Recall that, for each 1 < p < oo, the formula

Sl(A) + SQ(A) + -+ Sk(A)

+
14l = 2;11) 1-/p 4 2-1/p 4 ...y k-1/p (2.1)
defines a symmetric norm for operators, where s1(A),..., sg(A),... are the s-numbers

of A. On a Hilbert space H, the set
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CH={AeBH): |A|} < oo}

is a norm ideal. See Sections III.2 and II1.14 in [12].

It is well known that C,/ contains the Schatten class C, and that Cf # C),. Moreover,
we have CZ‘,Ir CCp forall1 <p<p < oo. A property of CZ;" that does not concern us in
this paper, but is nonetheless interesting, it that this ideal is not separable with respect
to the norm || - ||,

The reason for introducing C;f" is that the norm || - ||} is particularly easy to handle
in the essential normality problems for modules, as was demonstrated in [11]. Estimates
in this paper will further show that the norm || - || is user-friendly indeed.

Lemma 2.8. Suppose T is in the weak operator closure of a set of operators {Ty}tacr-
Assume T, € C and

sup | To | < C < oo,
acl

Then T € Cf and ||T||;f < C.
Proof. Let us denote o1 (T) = $1(T) + - - + sx(T). It is well known that
oi(T) = sup{|tr(T Ax)| : ||Ak]| <1 and rank(Ay) = k}.

For each Ay, since its rank equals k < oo, there is a sequence {«,,} in I such that
tr(Ty,, Ak) — tr(T Ag) as m — oo. Therefore

tr(TA)| = Tim_[tr(To,, Ag)| < supoy(To) < 177 4277 oo = p).
m—00 a€el

Taking supremum over all such Ay, we obtain
on(T) < CA™YP 4 271/P oy 7 U/P),

By (2.1), we have

4 oi(T)
HTH;D - Sl}ip 1-1/p +9-1/p 4 ... 4 k—1/p =C

This completes the proof. O
The following lemma provides a key estimate.

Lemma 2.9. Given any positive numbers 0 < a < b < oo, there is a constant 0 <
B(a,b) < oo such that the following holds true: Let H be a Hilbert space, and suppose
that Fy, F1, ..., Fy,... are operators on H such that the following two conditions are
satisfied for every k:
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@) [IFll <27,
(2) rank(Fy) < 2°*.

Then the operator F = 3" F}, satisfies the estimate ||F\|Zr/a < B(a,b). In particular,
Fecy,

Proof. Recall from [12] that for any bounded operator A and any ¢ > 1,
si(A) = inf{]|A + K| : rank(K) < i —1}.
Obviously, condition (1) implies that F is a bounded linear operator on H. By condition

(2),

k k
rank | Y F; | <> 2% < 2t (2.2)
j=0 j=0

where C; = (1 —27%)~L. For any integer m > C1, let k > 0 be such that
012bk <m< 012b(k+1).

Then from (2.2) we obtain

Sm(F) < i F| < i 274 < 0277,

Jj=k+1 Jj=k+1

where Cy = (1 —27%)~!. Therefore
Sm(F)ym®/® < Cy279% . (Cy20(k+1))a/b = 9o, 00/?,

Set B(a,b) = 2“Cng/b. Then the above translates to

$m(F) < B(a,bym=/*
for every m > C7. On the other hand, since ||F|| < Cy, for m < C; we have

Sm(F) < Cq = Com®bm~a/b < Cng/bmfa/b < B(a, b)mfa/b.

Combining these two estimates, we see that s,,,(F) < B(a,b)m~%" for every m > 1. By
(2.1), this means |\F||;r/a < B(a,b). O
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2.3. Other tools

The following lemma can be found in Appendix C to [3, Chapter IV].
Lemma 2.10. Suppose p > 1, S, T are bounded linear operators on a Hilbert space H and
[S,T) € Cp. If S is self-adjoint and if f is a C* function on the spectrum of S, one has
[£(S),T] € Cp.

We will also need the well-known Schur test for boundedness:
Lemma 2.11. Let (X,du) be a measure space and R(x,y) a non-negative, measurable

function on X x X. Suppose that there exist a positive, measurable function h function
on X and positive numbers Cy, Cy such that

/R(%y)h(y)du(y) < Cih(z)  for p-a.e. x

and

/R(w,y)h(:c)du(x) < Coh(y) for p-a.e. y.
X

Then

(Tf)(x) = / R(z, ) f (4)du(y)

X
defines a bounded operator on L*(X,du) with |T|| < (C1Cq)*/2.
3. Proof of Theorem 1.4
Suppose p is a Carleson measure supported on M. Let T, » denote the operator on

L*(B,,) that sends LZ(B,,)* to {0} and coincides with T}, on LZ(B,,). Our first observation
is that we have the integral representation

T, = /Kw @ Kydp(w).
This is verified by direct calculation: for f € L?(B,,) and z € B,,,

[t K Kuduto) = [ S ) = (),

where P : L?(B,) — L2(B,,) is the orthogonal projection.
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For each ¢ € L>(B,,), let ]\Zﬂp denote the operator of multiplication by ¢ on L?(B,,).
That is,

Myf =of, [e€L’B,).
The following theorem is the main step in the proof of Theorem 1.4.

Theorem 3.1. Let p be a Carleson measure supported on M. Then for every j € {1,...,n}
and every p > 2d, we have [T#,sz] € C;, As a consequence, [T#,sz] € Cp for every
j€{l,...,n} and every p > 2d.

First, let us give the outline of our proof. The main idea is to approximate the operator
Tu by a certain kind of discr?te sums. Then we estimate the C;‘ norms of commutators
of these discrete sums with M. We break the commutators into parts and estimate the
ranks and norms of these parts. Finally, an application of Lemma 2.9 will end the proof.

Now let us construct the discrete sums. Choose a subset £ C M that is maximal with
respect to the property that

D(z,1)ND(w,1) =0 forall z#w in L. (3.1)

Obviously, such an £ is countable, which allows us to write £ = {z;}32,. It follows from
the maximality of £ that

| D(zi.2) > M.
=1

There exist Borel sets Ay, Ag, ..., A, ... in B, satisfying the following three require-
ments:

(1) D(z;,1) C A; C D(2;,2) for every i.

(2) AinAy =0 for i # ¢

(3) U2 A, = U2 D(2;,2) D M.

The construction of these sets is standard. In fact, obviously there are pairwise disjoint
Borel subsets E1, Ea, ..., E;, ... of {UX;D(z,2)\{U2;D(z;, 1)} such that

EyUBE,U---UE;U--- = {UZ D(2;,2)}\{U2, D(z;, 1)}

and E; C D(z;,2) for every i. Then the sets A; = D(z;,1) U E;, i = 1,2,3,..., satisfy
requirements (1)—(3) above.
Let p be a Carleson measure supported on M. By Lemma 2.3,

o 2\ —(n+1 12\ —(n+1 ) p(D(2i,2))
i = A/ (1= )~ V() < (1= )+ < BEE.

By Lemma 2.4, there is a constant 0 < C' < oo such that ¢; < C' for every 1.
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Define N = {i € N: u(A;) # 0} = {i € N: ¢; > 0}. For each i € N, we define the
measure du,; to be the restriction of the measure c{l(l — |w|?)~ ™ Ddy to the set A;.
Obviously, u;(A;) = 1. Observe that

T_/K®Kdu Z/K@Kdu)

—ch/k @ kwe (1 = [w]?)~ D dpu(w) = cl/k & b dps(w),

i€EN . i€EN

where k,, = K, /||Kuw| is the normalized reproducing kernel. Since p is a Carleson
measure, the positive operator Tu is bounded. By the monotone convergence theorem,
the above sums converge in the strong operator topology.

Since p is supported on M, each probability measure p; can be approximated in the
weak-* topology by measures of the form %25:1 dw;, where w; € A; N M. Therefore
each operator [ A, kw ® kydp;(w) can be approximated in the weak operator topology
by operators of the form

k
kaj®kwj7 ijAiﬁM.

Eol
<

Hence Tu can be weakly approximated by operators of the form

k k
Z Ci% Z k’u)i,j & kwi,j = % Z Z Cikw,;ﬁj ® k“’w"

icF j=1 j=1icF

where F'is a finite subset of N, k € N, and w; ; € A; N M. We summarize the above
arguments in the following lemma.

Lemma 3.2. The operator Tu is in the weak closure of the conver hull of operators of the
form

Z Cikwqy oy kwm (32)

i€l

where F' is any finite subset of N, w; € A; N M and 0 < ¢; < C. Moreover, the finite
bound C' depends only on the Carleson measure p on M.

It follows immediately that for every 1 < m < n, the commutator [T M., ]is in the
weak closure of the convex hull of operators of the form

> cilkuw, ® ku,, M., ).

icF
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Thus to estimate H[TmMzm]”;a it suffices to estimate the C;f norms of operators of

the above form. To estimate the latter, we use Lemma 2.9. Conditions (1) and (2) in
Lemma 2.9 will be verified in the following steps.
Let vy denote the natural volume measure on the smooth part of M.

Lemma 3.3. For 0 < s <t <1, define
M!={ze M:s<|z| <t}.
Then for r sufficiently close to 1 and r < s <t < 1, we have vp (ML) <t — s.

Proof. Let 7(z) = |z| be the radius function. By Assumption 1.1, M intersects 9B,
transversely. Thus for each point ¢ € M N dB,,, M has a real local coordinate system
of the form ® = (¢1,..., P2q—1,7(%)) defined on a neighborhood Us N M, where Ue is
an open set containing ¢ in C". Therefore the volume form locally can be expressed as
dvpy = gdgy A ... Adpag—1 A dr. If we shrink the neighborhood Us we can also assume
that g is bounded and ® maps U N M to a bounded set in R2?. By the compactness of
M N OB, it can be covered by finitely many such open sets Ue;, j=1,...,m. Thus it
suffices to show that

UM(]\/[;s ﬂUCj) St—s

for each j and s < ¢ sufficiently close to 1. By direct computation,

t
o (MiNUe,) S /ldr <t-—s.

S

This completes the proof. O

Lemma 3.4. There exists a 0 < r < 1 such that vp(D(2,1) N M) 2 (1 — |2|*)%*! for
z € M satisfying the condition r < |z| < 1.

Proof. There is a 0 < r < 1 such that for each z € M, |z| > r, there is a smooth map
D MND(2,2)—TM|,
defined on page 1513 in [9]. Using the formula for p, given there and the property

sup  B(p.(w),w) =0 as |z| =1,
weD(z,2)

it is straightforward to verify that p,(D(z,1)N M) D D(2z,1/2)NTM]|, when |z| is close
enough to 1. Therefore, writing vy for the volume measure on TM|, = C¢, we have
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v (D(z,1) N M) > vg(D(2,1/2) NTM|,) =~ (1 — |z|?)¢L.
This completes the proof. 0O

Proposition 3.5. Given any 0 < € < 1/2, there is a 0 < C' < 0o such that the following
estimate holds: Let F' be any finite subset of N. Suppose that for everyi € F, w; € A;NM
and 0 < ¢; < C, where C is the constant in Lemma 5.2. Define v = ZieF ci(l —
|w;|?)" 16, and

T, = ciku, @ ku,.
i€F

Then we have ||[TuaMzm]H2+d/(1725) < ' for everym € {1,...,n}.

Proof. Let 0 < € < 1/2 be given. For each k > 0, define

My={zeM:1-27"% <|z] <1—-2720+1} (3.3)
and
Vi =V M, = Z Ci(l — \wi|2)”+16wi.
i€ F,w; €My
Also, write
Fy = [Tyk7Mzm] = Z cilkw, ® kwwMzm]
i€ Fiw; €My,

for k > 0. We will show that there are constants Cq; and C5 such that

| Fyll < Cy2(1729k (3.4)
and

rank(Fy) < 05229 (3.5)
for every k > 0. Since Y.p°, Fr = [T), M., ], it follows from these estimates and

Lemma 2.9 that
1 N1, 110y < C1(1+ Co)B(L — 2€,24).

That is, the proposition holds for C' = C1(1 + C3)B(1 — 2¢,2d) provided that we find
constants C7 and Cj such that (3.4) and (3.5) hold.
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To find Cj, note that for any f € L*(B,),
([Kuw, ® Ku,, Mzm]f)(z)
= [ A FOVEA ) o) Ko (2) = 2 [ FOVEN (000K (2
IB'VL ]B’n

- / o — Wi F OV (w00 do(N) K (2)

Bn

+ / (Wi — 2) fN)E (w3)do(N) K (2),

Bn

where w; ,, denotes the m-th component of w;. Since

F, = Z ci(1 — Jwi>)" T [Ky, ® Ky, M., ],
i€ Fow; € My,

we have

i€ Fow; € My,

[GERICIESY Cz’(l—Iwi\z)"“/lh—wil\f(/\)\IKA(wi)Idv(/\)lei(Z)l

+ > Cz'(l—Iwz’IQ)"“/Iwi—ZIIf(/\)IIKA(wi)Idv(A)IKwi(2)|~
Br

1€EF,w; € My

Recalling the definition of v, we have

ENGI< [ [ IN=wll FOE ]| o))

My, B,
s [ [ o= ORI ) o))
My B,
- / £ / A — 0] [ ()] | K (2) (1) do ()
B, M,
+ / £V / w — 2| (1) [ K (2) o (u0) o (A)

/|f )Gr(z, N)dv(A /|f ) Hg (2, \)dv(N).

Here,
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Gk(z,/\):/|)\—w|\K,\(w)||Kw(z)|d1/(w) and

My,

Hy(20) = / o — 2| () | o (2)] i (u0).

My,

To estimate || Fy||, we apply the Schur test. First, note that the special case of ¢ = 0 and
t = —1/2 in [18, Proposition 1.4.10] gives us

Lopp 1
dv(A) = 1
|1 _ 'LU by ‘n-‘rl/Q U( ) 0g —5 1 _| |

Let h()\) = (1 — [A]>)~/2. Then

[ 6rnmdo) = [ [ 13— wlla(w) e o 2) dr(w)

M B,

|/\‘ —1/2 1 p
|1— w, e P Ty )

~ / (log i 1|w| ) T

— ‘w| SRS ol VA S (w) <C Z (1 - |wi|2)_E (1 _ |wi|2)n—|-17

|1 —{(z,w |’“rl (e F we M, 11— (2, wy)|*H

where, as we recall, C' is the constant in Lemma 3.2. By Lemma 2.3,

A= fw*)™ (= fwif)~

11— (2 w)[" LT L= (2, wy [+

for any z € B, and w € A; C D(z;,2) C D(w;,4). Recall that A; D D(z;,1). Therefore
the integral above is bounded, up to a constant, by

— [w]?) (1—|w[*)~
p> / @ = [ g )
i€F,w; €My, A

By Lemma 2.3, there is a constant 0 < A < oo such that |J A; C Wy, where

1€F,w; € My
Wi ={weB, : |w >1-272k-A}

By [18, Proposition 1.4.10], for each a > 0 we have
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1 2\—a
/ WC&T(C) ~ (1= |wl)

8]371
Therefore
(= wP) — |w[?)
<
/Gk(z,)\)h(x\)dv(/\) < / = (z w>‘n+1 |1 iy |n+1 — = —dv(w)
B, . Ay
1E€EF,w; €My T

/ 2\—€ 1
Al e

max{1—2-2(k—=4) 0} OB,
1
< (1= )7 (1 fraf)
max{1—2-2(k—4) 0}
1
< (1= r2)= 01— |22) "1 2ay
max{1-2-2(k=4) 0}

{1 - (1— 2720 W)} /2= () < 9= (120K (),

On the other hand, using the same method, we have

[ Gute mexnte) s | | s e =t
By My

Bn,
(1 —|2]?)~1/2 1
/ / T (et O T, ayperie ()

(1 wf?)~Y/2 (1 wf?)~V/2
S [ f e 5 [ {

My, k

<

—

1
(1—r2)"1/2 / TESTaSTETE do(¢)dr
OB,

max{1-2-2(k=4) 0}

< (1—r?)~ Y21 — PP~ 2dr

—

max{1—-2-2(k=4) 0}
< 27FR(N) < 271729k p 0.
Combining the last two estimates with Lemma 2.11, we conclude that Gy defines an

integral operator on L?(B,,) whose norm is bounded by B2~(1=29% where the constant
B depends only on €, the complex dimension n and the bound ¢; < C' in Lemma 3.2.
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Obviously, the same conclusion holds for Hg. Thus we have shown that there is a C4
such that (3.4) holds.
Next we estimate the rank of Fj,. Notice that rank([ky, ® kuw,, M. ]) < 2. Therefore

rank(Fy) < 2card{w; : i € F, w; € A; N My}

Since A; D D(z;,1), by Lemma 3.4, var(A; N M) 2 (1 — |2]?)?*L. For w; € A; N My,
Lemma 2.3 gives us 1 — |2]? ~ 1 — |w;|? ~ 272, Consequently vy, (A; N M) > 27 2(d+1Dk

if w; € A; N My. On the other hand, we saw in the above that if w; € My, then
ANMc{weM:1—-2720"4 < jy| < 1}.

It follows from Lemma 3.3 that vy ({w € M : 1 —272:=4) < jw| < 1}) < 272%. Since
A; N Ay =0 for i # 4/, we conclude that

2—2k
card{w; : i € F, w; € A; N M} < 2@k 92kd

(d+1)k
Thus we have shown that rank(F},) < 229% ie., (3.5) holds for some Cy that depends
only on n and the analytic set M. This completes the proof. O

Proof of Theorem 3.1. By Lemma 3.2, the commutator [T}, M., ] is in the weak operator
closure of the convex hull of operators of the form [T}, M., ], where v is a discrete measure
as in Proposition 3.5. Given any p > 2d, let 0 < € < 1/2 be such that 2d/(1—2¢) < p. Now
Proposition 3.5 provides the bound ||[T},, M., ]||& < (' for all such v. From this we

2d/(1—2¢)
obtain ||[T},, M., ] ;rd/(lf%) < C’ by applying Lemma 2.8. Thus [1},,M,, ] € C
C Cp as promised. O

2d/(1—2¢)

Theorem 3.6. We have [Q,sz] €C, forallp>2dand j € {1,...,n}.

Proof. By Theorem 1.9, there exist a Carleson measure u supported on M and 0 < ¢ <
C < oo such that

AP < [ 15w Pdutw) < O
M
for every f € Q. If w € M, then K,, € Q. Thus the above inequality implies

clQgll? < / (g, ) [Pdps(w) < C|Qg]?
M

for every g € L?(B,,). This translates to the operator inequality cQ < Tu < CQ on
L?(B,,). Thus, by the spectral theory of self-adjoint operators, there is a C°° function
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h such that Q = h(Tu). Now the membership [Q,MZ].] € Cp, p > 2d, follows from
Lemma 2.10 and Theorem 3.1. O

Proof of Theorem 1.4. The point is that on the big space L?*(B,), we have M: =
Mg“ consequently [M;L_,sz] = 0. Applying Lemma 2.1 and Theorem 3.6, we have
(25.:Z0,4] €Cp forp>d. O

The authors of [20] proved that for two varieties satisfying nice conditions, their union
defines a essentially normal quotient module:

Theorem 3.7. Suppose M and M, are two analytic subsets of an open neighborhood of
B,,. Let My = M, N M. Assume that

(i) M1 and ]\ng intersect transversely with 0B, and have no singular points on 0B,,.
(ii) Mj also intersects transversely with 0B,, and has no singular points on B, .
(iii) M, and M, intersect cleanly on 0B,,.

Let M; = M; N B, and Q; = span{Ky : A\ € M;} fori =1,2,3, M = M, U My, and
Q =span{Ky : A € M}. Then Q1 N Q2/Q3 is finite dimensional and Q1 + Qo is
closed. As a consequence, Q is p-essentially normal for p > 2d, where d = dim¢ M =
max{dim¢ M7, dim¢ Ms}.

As a consequence of the improved essential normality in Theorem 1.4, the essential
normality in Theorem 3.7 can be improved accordingly.

Corollary 3.8. Under the same assumption as in Theorem 3.7, the quotient module Q is
p-essentially normal for all p > d.

Once we know that Qq + Q5 is closed from Theorem 3.7, we have @ = Q1 + Q. Thus
Corollary 3.8 follows from Theorem 3.6 and [17, Lemma 3.3].

4. Antisymmetric sums on the submodule

We now consider antisymmetric sums on the submodule R.

Lemma 4.1. Let f,g € C[z1, 21, ..., 2n, Zn]. Then for every p > d we have [Q,Mf] € Cyp
and [R, M{|Q[R, M,] € C,.

Proof. For any A, B, we have [Q, AB] = [Q, A]B + A[Q, B]. Thus the first conclusion,
@, M ¢] € Cyp, for p > d, is an obvious consequence of Theorem 3.6. Then note that since
RQ = 0= QR, we have
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[R, My|Q[R, M,] = —RNM;QM,R = R[M;, QIQ[M,, Q]R.
Hence the second conclusion follows from the first. O

Lemma 4.2. For f1, fa,..., fon—1, fon € Clz1, 21, ..., 2n, Zs], the operator

[Rf17Rf2] e [Rf2n717Rf2n] - [Tfl’TfQ] e [Tf2n—17Tf2n] (41)
18 in the trace class.

Proof. Let T be the subgroup of the symmetric group S5, generated by the transposi-
tions of the pairs 2j — 1 and 2j, j = 1,...,n. Then
[Rpi Rp) - [Rps s Ry = (1) (RMy, (1 — R)Mp, R — RMy,(1 = R)Mp, R) - -
= (=1)"([R, Mp](1 = R)[Mj,, R] — [R, M},)(1 — R)[M},, R]) -~
= ([Ra Mfl](l - R)[R’ Mfz] - [Rv Mf2](1 - R)[Rv Mfl]) T

- Z Sgn(T)[Ra Mf7(1)](1 - R) [Ra M}‘}(z)”Ra M}‘}(m](l - R)[Ra Mff(zl)} T
TeT

Recall that P = R + Q is the projection onto the Bergman space L2(B,,). Consider any
product of the form

[R7 Mfr(l)]Xl [R7 Mfr(?)] [Rv MfT(S)]XQ [Rv Mfﬂ@] T [R7 Mfr(2n71)]Xn[R7 Mfﬂzm]» (4'2)

where Xi,...,X,, are bounded operators. Since [P, ij] € Cp for every p > 2n, by
Lemma 4.1 we have [R, ij] € C, for every p > 2n. Also by Lemma 4.1, if X; = @ for
any 7, then

(R, ]\fof(z,Fl)]Xi[R, Mf7(277)] € Cgye for every e > 0.

Since d < n, if there is an ¢ such that X; = @, then (4.2) is in the trace class. It is easy
to see that the difference

D = [Rf17Rf2] T [RfZ'n.717Rf2n]_

Z Sgn(T)[Rv qu—(l)](l - P)[Rv Mf7(2)][R7 Mf-r(m](l - P) [Ra Mff(@} e
TeT

is a linear combination of operators of the form (4.2) for which at least one X; equals Q.
Hence we conclude that D is in the trace class C;. Now consider any product of the form

[Yl’ Mfr(l)](l - P)[Y% Mf-r(Q)]D/3) MfT(S)}(l - P) [Y;;, My, (4'3)

(4)]...7
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where Y7,Y5,...,Y5,_1,Ys, are R,Q or R+ @Q = P. Thus [Yj,]\;[ﬁ] € C, for p > 2n.
Since there are 2n such commutators in the product (4.3), if there is an 4 such that
Y; = @, then Lemma 4.1 guarantees that (4.3) is in the trace class. Since the D above is
in the trace class, it follows that the difference

[Rfl?RfJ T [Rf2n—1’Rf2n]_

ngn PMf (1)}( P)[Pvar(z)][PvaT(s)](l_P)[PvaT(4)]"'
TeT

is in the trace class. The same kind of algebra shows that

Z sgu(7)[ P, Mffu)](l - P)[P, MJ"T(z)HP7 M}‘}(g)}(l - P)[P, M}‘}(z;)] T
TeT

= [Tf1 ) sz] T [Tf2n71 ) szn]'
Therefore (4.1) is in the trace class. O
Proposition 4.3. For f1, fa,..., fon € Cl21, 21, ..., 2n, Zn], the difference
[Rfl’Rf27 BERE) Ran] - [Tfl’TfQ s ’Tan}
is in the trace class.

Proof. Let T be the same subgroup of the symmetric group So, generated by the trans-
positions of the pairs 25 — 1 and 2j, j = 1,...,n, as in the previous proof. Then Sy, is
the disjoint union of T-cosets. Thus for antisymmetric sums, there is a subset C' of Ss,,
such that

[Rf17Rf27"'7Rf2n ngn Rfau)’Rfa(z)] [Rfﬂ(Qn—l)7Rfﬂ(2n)] and
oeC

[Tfl ) sz? s ’Tfm Z Sgn Tfa(l) ) Tf0(2)] [TfU(Qn—l) ) Tfﬂ(2n)]'
oeC

Combining these identities with Lemma 4.2, the proposition follows. O

Proof of Theorem 1.7. Given Proposition 4.3, it suffices to recall from Theorem 1.6 that
for f1, fo,..., fon € Clz1,21,. .., 2Zn, Zn), the antisymmetric sum [Ty,,Ty,,...,Ty,,] is in
the trace class. O

5. Antisymmetric sums on the quotient module

We now turn to the proof of Theorem 1.8. Since we have Theorem 3.6, for m > d
it is easy to show that the antisymmetric sum [Qr,, Qy,, - .-, @y, ] is in the trace class,
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fisfo, oo, fam € Clz1, 21, - -+, Zn, Zn). The difficult part is to show that the trace of such
an antisymmetric sum is zero; in fact, a lot of additional work is required to accomplish
this goal. First of all, our proof of zero trace relies on the following principle:

Lemma 5.1. [16, Lemma 1.3] Suppose that X is a self-adjoint operator and C' is a compact
operator. If [X, C] is in the trace class, then tr{X,C] = 0.

The proof of Theorem 1.8 will be based on Lemma 5.1, Theorem 3.1 and

Proposition 5.2. Let p be any Carleson measure supported on M. Then for every pair of
fyg€Clz1,21,. .., 2n, Zn], the double commutator

[Mfa [Mg, T#H

belongs to the class Cf for every 0 < e < 1/n.

2d/(1+¢)

Most of the work in this section is taken up by the proof of Proposition 5.2, which
requires quite a few steps. We begin with some basic estimates on B,,.

Lemma 5.3. (1) There is a constant Cy such that

v(() Ch o 1
/Il— (w, C | |1—< NI = 1= {w, z)|[*~* (1+1 g1—ma><{w|a|2|})

for all w, z € B,,.
(2) There is a constant Co such that

/ dv(¢) Cs 1+log !
1= (w0, Q21— (5, QP07 = [T (w, )" 1 = max{[w], |2]}

for all w,z € B,,.
Proof. Given any w, z € B,,, define

A={CEB,: |1 - {w, ) = (1/H]1 - (w,2)} and
B={CeB,: - (50| > (1/4)1 - (w,2)[}.

By [18, Proposition 5.1.2], the triangle inequality
1= (@, )" < |1 = (a, )"/ + |1 = (b, ¢)|"/?

holds for all a,b, ¢ € B,,. Therefore AU B = B,,. Obviously,
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dv(¢) gn—t dv(Q)
A/I1—<w,é>|"1—<z,6>l" = |1—<w7Z>"‘1A/I1—<w’C>|1—<Z,<>|”'

By [18, Proposition 1.4.10] and Hélder’s inequality,

i (1erom ) (e )
<Cll+1o 1+1o .
\1—w<||1—<z<>| 51wl 5117

Combining these two estimates, we obtain

v(¢) g1 (1+lo 1 )
|1— w, C\ 11— (z, >\" T 1= {w, 2! &1 max{fwl,[2[} )

Obviously, this argument also works for the integral over B. Since A U B = B,,, this
proves (1). The proof of (2) is similar and will be omitted. O

Recall that M}, was defined by (3.3).
Lemma 5.4. There is a ¢ > 1 such that if D(z,2) N My # 0 for some k > 0, then
1 _ 272(197(;) S |Z| S 1 _ 272(k+c).
Proof. This is a special case of Lemma 2.3(1). O
Lemma 5.5. Let ¢ be the same as in Lemma 5.4. There is a 0 < By < oo such that for
z,w € B, and k > 0, if the conditions B(z,w) > Bo, |2| < 1 — 272+ gnd |w| <
1 —27204) gre satisfied, then |1 — (z,w)| > 272F x 3 x 22¢,
Proof. By the definition of the Bergman metric, these conditions imply

4 1 401 — (z,w)|?
g———5 =5 log
1= lp=(w))* 2

From this we obtain

<1 A1 = (z,w)?
1= )1 [wP) = 2 8 (2-20+e))2

1
50§§10

(1/2)efo272k+e) < |1 — (2, w)|.
Thus it suffices to pick g such that (1/2)ef0272¢ > 22¢ x 3. O
By what we saw in Section 3, it is obvious that to prove Proposition 5.2, we need to
again consider the discrete sum given by (3.2). But here we need to further decompose

that sum. First of all, by (3.1) and [21, Lemma 2.2.], the set £ admits a finite partition

L=LU---ULy
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such that for each r € {1, ..., ¢}, the conditions w, z € L, and z # w imply B(z,w) > Py,
where 3y is the constant in Lemma 5.5.

Recall from Section 3 that £ = {z;}22;. In particular, recall that A; C D(z;,2). Let
S denote the unit sphere {z € C" : |z| = 1}. For every i € F, there is a & € S such that

Let F', w; € A; N M, ete, be the same as in Lemma 3.2. For every pair of k& > 0 and
re{l,..., £}, we define

Lyr= {’U)l i€l ze L, 1— 92k < \wi| <1l-— 2_2(k+1)}.

Lemma 5.6. There is a constant Cs ¢ such that for every pair of k > 0 and r € {1,..., 4},
every w € I'y, ., and every 0 < j < k 4+ 1, we have

card{¢ €Ty, : |1 — (w, )| < 2% . 2_%} < C5,6(22j)".

Proof. Consider any w # w’ in 'y, .. Then there are ¢,i" € F such that w € A; C D(z;,2)
and w’ € Ay C D(zy,2). Recalling how the sum was defined in (3.2), the condition w #
w’ implies 7 # i'. Since z;, zi» € L., we have B(z;, z¢) > Bo. Also, since w € D(z;,2) N My,
and w’ € D(z,2) N My, applying Lemma 5.4, we have
1— 272(1{,‘7(;) S |Zz| S 1— 272(k+C) and 1— 272(/{7(;) S |Zi’| S 1— 272(k+c).
Applying Lemma 5.5, we obtain
11— (25, 200)| > 272F x 3 x 22¢ = 272(k=0) 5 3,
Recalling (5.1), we have
1=z + 1= |zor] + |1 = (&, &) > |1 = (24, 20)] > 2729 x 3

Recapping the above, we obtain

|1 — (&, &) > 272 (5.2)

ifweA; CD(z,2), w €Ay CD(zy,2), w#w, and w,w' € T .
On the other hand, for ¢ € Ay, C D(zp,2), h € F, we have

1

5 2 Sﬂ(Cazh)<2a

R S
5110 (O]

which leads to
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L
A= =P - B =

If we also have ¢ € My, then Lemma 5.4 gives us 1 — |z,]? < 2 x 2-2(k=¢) " consequently
1= (C,2n) 2 < deba2e(272K)2,
It is easy to see that for 0 < p <1 and complex number a with |a| < 1, we have
|1 —al <2[1—pal.
We can write ¢ = |¢|¢ for some & € S. Thus

11— (&,&)] < 21— [¢ll2nl{€, &) = 21 — (¢, 21)] < C1272F, (5.3)

where C; = 4e%2°. Now suppose that |1 — (w, ()| < 2% -272% where w is the same as in
the first paragraph of the proof. Write w = |w|n, where n € S. Then

11— (n,&)] <21 - (w,¢)] <2x2% x 272k, (5.4)
Since w € A; C D(z;,2), (5.3) implies
11— (n,&)] < Cr27%k. (5.5)

Since d(z,y) = |1 — (z,y)["/?

is a metric on S, from (5.3), (5.4) and (5.5) we obtain
11— (&, &) < (011/2 + it 4 011/2)22—% < (2%~ 2k,

Combining this with (5.2), by a standard estimate using the spherical measure on S [18,
Proposition 5.1.4], the number of such &,’s does not exceed C5(C22%)" = C56(2%)". O

For every pair of £ > 0 and r € {1,...,¢}, define the operator

Tk,r = Z kaw & kw;

wel'y

where ¢, = ¢; (see Lemma 3.2) if w = w; for some i € F. Let f,g € Clz1,21, ..., 2n, Zn)
be given. We will now estimate the operator norm ||[M, [M,, Ty ]]||, which is the main
difficulty in the proof of Proposition 5.2. Obviously, we can decompose the double com-
mutator in the form

(M, [My, Ty ]l = A1 — Ay — A3 + Ay,

where
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A=Y cod(f = F))(g - g(w)ky} © ku,

werr,
Ay = ; ol (f = fw)ku} @ {(g — g(w))ku},
Ay = zr: co{(g — g(w))kw} @ {(f — f(w))ky} and
wey,
Ay = ; cwkw ® {(g = g(w))(f — F(w))kuw}-
wey,
Since f, g are arbitrary in C[z1, Z1, . . ., Zn, Zn], A} is just another A;, and A3 another A,.

Thus it suffices to estimate || A1]| and || Az]|.
To do that, pick an orthonormal set {e,, : w € 'y, }. We then factor A; and A, in
the form A; = XY™ and Ay = Z,1Z5, where

X= Y {(f-f)(g—gw)ku} @ ew,

welg

Y = Z Cwkw @ €y,

wely »
Zy = Z cwl(f — f(w))ky} ® e, and
wel'y »
Zy = Z {(g— g(w))ku} @ ew.
wel'y
We have
X*X = Z h(z,w)e, ® ey,
w,z€0 -
where
h(z,w) = ((f = f(2))(g — 9(2) k=, (f = f(w))(g — g(w))kw)-
Since {ey : w € 'k, } is an orthonormal set and |h(w, z)| = |h(z,w)|, by the simplest

version of the Schur test, we have

IX*X[| < sup Y |h(z,w)].

wely , 2€T},

Lemma 5.7. For any 0 < € < 1/n, there is a constant C that depends only on €, n, M
and f,g € Clz1,21,...,2n, 2n| such that
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sup Z |h(z,w)| < C272(0+k,

wEL, z€lk,r

Consequently, | X || = || X*X||'/? < ¢1/22-(+ek,

Proof. A key to this estimate is the following fact that we proved at the end of the proof
of Proposition 3.5: There is a C such that card{w; : w; € My} < C2%% Sinced <n—1,
this implies that

card(Ty,,) < C22(n—Dk, (5.6)
Let f,g € Clz1,21,- .., 2n, Zn). Since f satisfies a Lipschitz condition on B,,, we have
£(¢) = fw)] < LI¢ = w| < V2L|L = (¢, w)[/? (5.7)

for (,w € B,,. A similar inequality holds for g. Thus for w € Iy, we have

(1 _ |w|2)(n+1)/2 0227(n+1)k

[(F(Q) = f(w))(9(C) — g(w))kuw(C)] < C

Therefore

dv(C)
O = (20l

h < (29—2(n+1)k
| (va)| — Y2 |1—<U),
for w,z € T'y . Applying Lemma 5.3(1), we obtain

Cg(k‘ + 1)2—2(n+1)k

h <
el = T
Hence for each w € I'y, -,
2—2nk
< 1 —2k
Z [h(z, w)| < Cs(k +1)2 Z 11— (w, 2)[" 1
z2€lk, r 2€T,r
k41 2—2nk
=Cs(k+1)27%F —
s(k+1) ZZ 1— (w,z)n 1’
j=0 z€G}

where

Go={z€Th,: |1 —(w,z2)| <27%%} and
Gj={2€T), 22070 . 272 < |1 —(w,2)| <2%.272%} 1<j<k+1

For z € Go, |1 — (w,z)| > 1 —|z| > 272+ Thus 272% /|1 — (w, 2)| < 22 if 2 € Gy.
Hence for every 0 < 7 < k + 1 we have
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272]@

<2720 g G;. 5.8
= (o] = zed 58)
Writing C = 22"~ (5, we now have
k+1 .
> |z w)] < Ca(k+1)272F 272 Y " 2720 Dicard (@), (5.9)
2€lg j=0
We will show that
k1
272y " 272 Dicard(Gy) < G527 /mF, (5.10)
j=0

Then, combining (5.9) and (5.10), we see that the lemma holds for any 0 < e < 1/n.
To prove (5.10), let ko be the largest integer satisfying the condition ko < (n—1)k/n.
Then

k+1
272y "9 2 Dicard(G) = T+ J,
§=0
where
k+1
I= 2_2kz2 “Dicard(G;) and J=2"% Z 272 =Dicard(G,).
j=ko+1

For I, we apply Lemma 5.6, which tells us that card(G;) < C2?". Thus
ko

I S 06272]6 Z272(ﬂ71)j22nj S 07272]622]60 S 0727(2/77,)]@.
7=0

For J, we use (5.6), which implies that card(G;) < 022"~ 1k Hence

J S C2—2k22(n—1)k Z 2—2(n—1)j S 082—2k22(n—1)k2—2(n—1)(k0+1).
j=ko+1

By definition, kg + 1 > (n — 1)k/n. Therefore

J < C 9= 2k22(n 1)k2 2(n—1)(n—1)k/n _ O 9= Q/n)k.

Thus I + J < (C7 + Cg)2~3/™* which proves (5.10) and completes the proof of the
lemma. O

Lemma 5.8. The norm ||Y|| is bounded by a constant that depends only on n, M and p.
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Proof. Obviously,

Y'Y = Z CwCs{ky, ky)ew ® e,.

w,z€0 -

Recall from Lemma 3.2 that ¢, is bounded by a C determined by p. Using the easy
version of the Schur test mentioned earlier, we obtain

Y*Y[|<C? sup Y [(ke, K-

wel'y » 2€04.,

For w,z € I'y, ., we have

2n+1 72(n+1)k

(k= o)l < = et

(5.11)

Given a w € 'y, let G4, 0 < j < k4 1, be the same as in the proof of Lemma 5.7.
Combining (5.11) with (5.8), we have

k+1 k+1
ST Mk k) =D [k b \<2“+122 (DU card(G5).
1S3 j=02€G;

By Lemma 5.6, we have card(G;) < C12%™ for all 0 < j < k+ 1. Thus

k+1
Z |<kz7 kw>‘ < 0123(n+1) Z 2—2(n+1)j22nj < 20123(7%{-1).
2€l j=0

This completes the proof. O

Lemma 5.9. For any § > 0, there is a C' that depends only on 6, n, M, u and f such
that || Z,|| < C2=O=9% A similar estimate holds for || Zs]|.

Proof. Writing ¢(z,w) = ((f — f(2))k., (f — f(w))ky), we have

AVARS Z CwC(z,W)ey Q e, (5.12)

w,2€
Let f € Clz1,21,--.,2n, Zn). Recalling (5.7), for w € 'y, ., we have

(1 _ |w|2)(n+1)/2 Cy2™ (n+1)k
1= (G w)["+ (72 = 1 = (¢ w) [t (/2

[(F(Q) = f(w))kw ()] < C

Therefore
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—a(n dv(C)
(2, w)| < CF27% “)k/ 11— (w, O D1 — (, Q)72

for w, z € T'y, . Applying Lemma 5.3(2), we obtain

Cs(k + 1)272(n Dk

¥ (z,w)]| <

1= (w,z)["
Recalling (5.8) again, for each w € Ty, -,
k+1 k+1 ‘
Do =30 > [z w)| < Calk+1)27% Y 270 Deard(G)).
z€ly j=0 z€Gj 7=0

Another application of Lemma 5.6 then leads to

> bz w)| < Calk+1)27F,

Zerk,r

w € I'yr. Again, |¢(z,w)| = |¢(w,2)|. Thus by (5.12) and the Schur test, we have
| Z; Z1|| < C%Cy(k +1)2272 which implies the conclusion of the lemma. 0O

Corollary 5.10. For any 0 < € < 1/n, there is a C that depends only on €, n, M and f, g
€ Clz1, 21, -, 2n, Zn] such that ||[My, [My,, Ty, ]| < C2-0+ek,

Proof. By Lemmas 5.7 and 5.8, we have [|4;| < || X| - [|Y] < C127(F9k . Oy, Take
d > 0 small enough so that 2(1 — ) > 1+ €. Then by Lemma 5.9 we have ||Az|| <
1 Z1][]| Z2|| < (C32~(=90F)2 < C22-(14+9k Similar estimates respectively hold for || Ay]|
and || Az|. Since A, — Ay — Az + Ay = [My, [M,, Tk )], our conclusion follows. O

Proof of Proposition 5.2. For each k > 0, denote
Tp={w;:icF, 1-27%<|u| <1272kt
where F' and w; are the same as in Lemma 3.2. Then define

Tk - Z kaw ®kw~

wely

Given 0 < € < 1/n, Corollary 5.10 tells us that |[[My, [My, Ty ]]|| < C2-0F9* for all
k>0andre{l,...,¢}. Obviously, T = Ty1 + --- + Tk ¢. Hence

I[0Zy, [My, Tu]]|| < 02~ (+*,

By the argument given at the end of the proof of Proposition 3.5, we have card(T'y) <
C122%%  Therefore
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rank([My, [M,, Ty]]) < 4card(Ty) < 4C,22%.

Applying Lemma 2.9, we have

1M, (Mg, T3 146y <LCA+4C1)B(1 + €, 24), (5.13)
where
T=>Th=Y > cokw®ky=Yciky, @k,
k=0 k=0 wely i€F

Lemma 3.2 tells us that Tu is in the weak closure of the convex hull of such 7”s. By

Lemma 2.8, from (5.13) we deduce [|[My, [Mg, T]lll3,/(14e) < €C(1+4C1)B(1 + €,2d).

In particular, [Mf, [Mg, T#]] € CQd/ 14+¢) s promised. O

Proposition 5.11. For f,g € Clz1, 21, ..., Zn, Zn], the double commutator
[Mf’ [Mg’ QH

belongs to the class CQd/ 14e) for every 0 < e < 1/n.

Proof. By Theorem 1.9, there exist a Carleson measure g on M and 0 < ¢ < C <
for which the operator inequality cQ < Tu < CQ holds on L%*(B,). This means that
the spectrum of T}, is contained in {0} U [¢, C], and that the spectral projection of T},
corresponding to the interval [¢, C] equals Q.

Now let T be a simple Jordan curve in C\({0} U [¢, C]) whose winding number about
every z € [c, C] is one and whose winding number about 0 is zero. By the above paragraph
and the Riesz functional calculus, we have

_ 1 =1
Qf%i/(AfT#) dA.
T

Therefore for any f,g € C[z1, 21, ..., Zn, Zn),

(317, 313, Q) = o [0y, 31y, (= T, A =y + T+
r

where
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1 [ )~ Y 3 ™o\ — 9 2 &\ —
13:% ()\—TM) 1[MQ’TH}(A_TN) I[Mf’TU]()\_TM) 1dA
r

It follows from Theo-
0<e<l1l/n. O

For every 0 < ¢ < 1/n, Proposition 5.2 gives us Iy € C;d/(1+e)'

rem 3.1 that I1, I3 € C, for every p > d. Hence [My, [M,, Q)] € C;rd/(pre)’

Proposition 5.12. Let f,g,h € Clz1,21,. .., 2n, Zn]-

(1) If d > 2, then the double commutator [Q¢, [Qg4, Qn]] belongs to the Schatten class Cp
for every p > 2nd/(2n + 1).

(2) If d =1, then the double commutator [Qy,[Qg4, Qn]] belongs to the trace class.

Proof. Consider any 1 < r < oo and 1 < s < 0o, and define ¢ by the relation 1/t = (1/r)
+ (1/s). For A€ C,. and B € C,, we have AB € C;ift >1and AB € Cy if t <1.

Now define pg by the formula 1/py = (1/2d)+(14+(1/n))/(2d). Then py = 2nd/(2n+1).
We have pg > 1if d > 2, and pg < 1if d=1.

For any f,g,h € C[z1, 21, ..., Zn, Zn], simple algebra shows that

Q1. Q. Qnl] = QUM¢[Qg, Qn] — [Qg. QulM;)Q = Q[My, [Qy, Q1])Q
= QN [Q, Mp](1 — Q)[M,, Q] — [Q, M,](1 — Q)[My, Q1]Q-

Then note that

[Mfa[Q7 Mh](l - Q)[Mg, Q]]
= [My, [Q, My))(1 — Q)[My, Q) — [Q, Mp][My, Q)[M,, Q]
+[Q, My (1 — Q)[My, [M,, Q]

=T — T +Ts.
By Theorem 3.6 and Proposition 5.11, we have T1,T5 € C, for every p > py = 2nd/
(2n 4+ 1) in the case d > 2, and T1,T5 € C; in the case d = 1. Also, Theorem 3.6 tells
us that Ty € C, for every p > 2d/3 if d > 2 and T € C; if d = 1. This shows that the
operator [My, [Q, Mp](1 — Q)[M,, Q]] belongs to C, for every p > 2nd/(2n 4 1) or to C;

depending on d > 2 or d = 1. The same is true for [My, [Q, M,](1 — Q)[My,Q]]. This
proves the proposition. 0O

Proposition 5.13. Let v > d. Then for any f,g, f1, f2,- -, for € Cl21, 21, ..., 2n, Zn], the
operator

[Qfa Qg[Qfvafgv L) an]]

is in the trace class with zero trace.
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Proof. First of all, it follows from Theorem 3.6 and Lemma 2.1 that if p,¢p €
Clz1, 21, .., Zn, Zn], then the commutator [Q,, Q] belongs to C, for every p > d.
Let f,g, f1,f2,- - for € Clz1, 21, .- ., Zn, Zn] be given. For convenience, denote

Y = [Qfvaf'z?""Qf?l']'

As we mentioned in the proof of Proposition 4.3, there is a subset C' of the symmetric
group Ss, such that

Y = Z Sgn(g)[Qfﬁ(l)’Qfa(Z)] T [Qfa(Qu—l) ) chr(ZV)]'

oeC

Since v > d, we have Y € C, for every p > 1. Therefore [Qf, Q4]Y € Cy.

Next we show that [Q,Y] € Ci. If d = 1, then this is a direct consequence of
Proposition 5.12(2). Suppose that d > 2. In this case, Proposition 5.12(1) tells us that
Q1 [Qf, i 1)s Qfo]] € Cp for every p > 2nd/(2n + 1), where 1 < i < v and o € C.
Since 2nd/(2n 4+ 1) < d, combining this with the Schatten-class membership of every
(Qf,02;—1ys @foasy)s J # i, mentioned in the first paragraph, we see that [Q,Y] € Cy.

Combining the last two paragraphs, we conclude that

[Qr QeY] = [Qf, Qg]Y + QylQys, Y] € .

Since f also belongs to C[z1, Z1, . .., 2n, Z4], we similarly have (@7, QY] = [Qf, QsY] €
C;. Since Y is compact, it follows from Lemma 5.1 that

tr[Qr + QF, QY] =0 = tr[Qf — QF, QyY].
From this we obtain tr[Qs, Q,Y] = 0 as promised. O

Proof of Theorem 1.8. Let m > d and f1, fa, ..., fom € Clz1, 21, ..., 2n, Zn]. Since 2m is
even, Proposition 1.1 in [16] tells us that the antisymmetric sum [Q¢,, Qy,,...,Qy,,.] is
a linear combination of terms of the form

[Qfo‘(l) ) Qfa(Z) [Qfo‘(?:) ) Qfo‘(4) » T Qfmm”,

where o runs over a certain subset D of the symmetric group Ss,,. Taking v = m — 1,
Theorem 1.8 is a direct consequence of Proposition 5.13. O
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