
Journal of Functional Analysis 276 (2019) 1061–1096
Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Essential normality for quotient modules and 

complex dimensions

Yi Wang a,1, Jingbo Xia b,∗

a Department of Mathematics, Texas A&M University, College Station, TX 77843, 
USA
b Department of Mathematics, State University of New York at Buffalo, Buffalo, 
NY 14260, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 January 2018
Accepted 30 August 2018
Available online 5 September 2018
Communicated by K. Seip

Keywords:
Hilbert module
Essential normality
Geometric Arveson–Douglas 
Conjecture

For analytic sets M̃ introduced in [9], we show that the 
corresponding quotient module Q of the Bergman module 
is p-essentially normal for all p > dimCM̃ , which verifies 
the Geometric Arveson–Douglas Conjecture in this case. This 
result makes it possible to study the Helton–Howe trace 
invariants on both Q and the corresponding submodule R.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we continue the study of the Geometric Arveson–Douglas Conjecture 
that began in [9]. In Theorem 1.6 in [9], the quotient module Q was proved to be 
p-essentially normal for p > 2d, where d is the complex dimension of the analytic set in-
volved. But the Geometric Arveson–Douglas Conjecture predicts that Q is p-essentially 
normal for all p > d. Using different techniques, in this paper we will close that gap 
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between 2d and d. That is, we will show that Q is indeed p-essentially normal for all 
p > d as conjectured.

This not only improves what we can say about the quotient module, but also has impli-
cations for the corresponding submodule, as we will see. More specifically, this improved 
essential normality makes it possible for us to study the Helton–Howe trace invariants 
[16] for both the submodule and quotient module. This is significant because the ulti-
mate goal of the Arveson–Douglas Conjecture is the study of such invariants for module 
operators.

Let us turn to the technical details of the paper. As usual, we write Bn for the unit 
ball {z : |z| < 1} in Cn, and we will assume n ≥ 2 throughout the paper. Let L2

a(Bn)
denote the Bergman space of analytic functions on Bn. With the natural multiplication, 
L2
a(Bn) is a Hilbert module over the ring of analytic polynomials C[z1, . . . , zn]. A closed 

linear subspace S of L2
a(Bn) is said to be a submodule of the Bergman module if it is 

invariant under the multiplication by C[z1, . . . , zn]. If S is a submodule, then

S⊥ = {f ∈ L2
a(Bn) : f ⊥ S}

is a quotient Hilbert module over C[z1, . . . , zn]. This is because for all f ∈ S⊥ and g, h
∈ C[z1, . . . , zn], we have PS⊥ghf = PS⊥gPS⊥hf , where PS⊥ is the projection onto S⊥.

For any M that is either a submodule or a quotient module, we have the orthogonal 
projection PM : L2

a(Bn) → M. Of course, we can also view PM as the projection from 
L2(Bn) onto M, and this is the crucial point on which our techniques are based. In any 
case, we have the module operators

ZM,j = PMMzj |M, j = 1, . . . , n.

For any 1 ≤ p < ∞, the module M is said to be p-essentially normal if the commutators

[Z∗
M,i, ZM,j ], i, j ∈ {1, . . . , n},

all belong to the Schatten class Cp.
The study of essential normality began with [1], [4] and has become a very active 

research area (see, for example, [6], [8], [9], [20], [10], [11], [13], [15], [14], [17]). The 
famous Arveson Conjecture predicts that every graded submodule of the Drury–Arveson 
module is p-essentially normal for p > n. This was later refined by Douglas [5], who 
observed that in the case of the quotient module it should really be p > d, where d is 
the complex dimension of the variety involved. Simply stated, for the Bergman space we 
have

Geometric Arveson–Douglas Conjecture. For a variety V in Bn, the quotient module

L2
a(Bn) � {f ∈ L2

a(Bn) : f = 0 on V }

is p-essentially normal for all p > dimCV .
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The challenge here is to get to p > dimCV , which is more than just p > n. As we will 
show in this paper, reaching the lower limit p > dimCV leads to actual applications.

To tackle this conjecture, some mild conditions were imposed in [9]:

Assumption 1.1. Let M̃ be an analytic set in an open neighborhood of the closed ball 
Bn. Furthermore, M̃ satisfies the following conditions:

(1) M̃ intersects ∂Bn transversely.
(2) M̃ has no singular points on ∂Bn.
(3) dimCM̃ = d, where 1 ≤ d ≤ n − 1.

We emphasize that Assumption 1.1 will always be in force for the rest of the paper. 
Given such an M̃ , it will be convenient to fix certain notations:

Notation 1.2. (a) Let M = M̃ ∩ Bn.
(b) Denote R = {f ∈ L2

a(Bn) : f = 0 on M}.
(c) Let R be the orthogonal projection from L2(Bn) onto R.
(d) Denote Q = L2

a(Bn) �R.
(e) Let Q be the orthogonal projection from L2(Bn) onto Q.

As we have mentioned, our starting point is

Theorem 1.3. [9, Theorem 1.6] The quotient module Q is p-essentially normal for all 
p > 2d.

Here is our improvement:

Theorem 1.4. The quotient module Q is p-essentially normal for all p > d.

The improved essential normality in Theorem 1.4 has consequences. First of all, we 
know that the full Bergman module L2

a(Bn) is p-essentially normal for all p > n. Since 
d < n, by Douglas’s well-known matrix argument [4, page 119], we immediately have

Corollary 1.5. The submodule R is p-essentially normal for all p > n.

Second, once Theorem 1.4 brings p below n, it opens the door for the study of trace 
invariants. Suppose that A1, . . . , Ak are bounded operators on a Hilbert space H. In [16], 
Helton and Howe introduced the antisymmetric sum

[A1, . . . , Ak] =
∑
σ∈Sk

sgn(σ)Aσ(1) · · ·Aσ(k),

which naturally generalizes the notion of commutator. This and [7] provided some of 
the early examples of non-commutative geometry [3]. What particularly motivate us are 
antisymmetric sums of Toeplitz operators. Let P : L2(Bn) → L2

a(Bn) be the orthogonal 
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projection. For each ϕ ∈ L∞(Bn), we have the familiar Toeplitz operator Tϕ defined by 
the formula

Tϕh = P (ϕh), h ∈ L2
a(Bn).

Recall the following classic result:

Theorem 1.6. [16, Theorem 7.2] For f1, f2, . . . , f2n ∈ C[z1, ̄z1, . . . , zn, ̄zn], the antisym-
metric sum [Tf1 , Tf2 , . . . , Tf2n ] is in the trace class. Moreover,

tr[Tf1 , Tf2 , . . . , Tf2n ] = n!
(2πi)n

∫
Bn

df1 ∧ df2 ∧ · · · ∧ df2n.

Obviously, this motivates the question, what about operators on R and Q? Equally 
obviously, we can define “Toeplitz operators for modules”: for any ϕ ∈ L∞(Bn), we define

Rϕh = R(ϕh), h ∈ R,

and

Qϕh = Q(ϕh), h ∈ Q.

On the submodule, the improved essential normality allows us to prove

Theorem 1.7. For any f1, f2, . . . , f2n ∈ C[z1, ̄z1, . . . , zn, ̄zn], the antisymmetric sum

[Rf1 , Rf2 , . . . , Rf2n ]

is in the trace class.

On the quotient module, the improved essential normality leads to

Theorem 1.8. Let m > d. Then for any f1, f2, . . . , f2m ∈ C[z1, ̄z1, . . . , zn, ̄zn], the anti-
symmetric sum [Qf1 , Qf2 , . . . , Qf2m ] is in the trace class with zero trace.

One would naturally ask, what happens in the case m = d? In particular, is the 
antisymmetric sum [Qf1 , Qf2 , . . . , Qf2d ] in the trace class? As the reader will see in 
Section 5, our current techniques do not address this question. But this question sheds 
light on the quotient module, and is an interesting subject for future investigations.

Next let us explain the main ideas in this paper. As it turns out, the key to the 
improvement from Theorem 1.3 to Theorem 1.4 was in [9] itself:
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Theorem 1.9. [9, Theorem 4.3] There exist a measure μ on M and 0 < c ≤ C < ∞ such 
that

c‖f‖2 ≤
∫
M

|f(w)|2dμ(w) ≤ C‖f‖2

for every f ∈ Q.

On L2
a(Bn), such a μ defines a Toeplitz operator via the formula

(Tμf)(z) =
∫
M

f(w)
(1 − 〈z, w〉)n+1 dμ(w).

As noted in [9], the upper bound in Theorem 1.9 means that μ is a Carleson measure 
for the Bergman space, consequently Tμ is a bounded operator on L2

a(Bn). In fact the 
two bounds translate to the operator inequality

cQ ≤ Tμ ≤ CQ

on L2
a(Bn). This inequality turns Q into a function of Tμ: Q = h(Tμ) for some smooth 

function h. By the standard smooth functional calculus, the estimate of a commutator 
of the form [A, Q], which is the object of interest in the study of essential normality, is 
reduced to the estimate of [A, Tμ]. The point is that Tμ has an explicit integral formula. 
Thus, for the purpose of proving essential normality, Theorem 1.9 practically endows Q
with an explicit integral formula.

But to take p below n, one must avoid using the essential normality of the full Bergman 
module, because L2

a(Bn) is p-essentially normal only for p > n. Our idea is to use the big 
space L2(Bn), on which all multiplication operators and their adjoints freely commute. 
This requires extending Tμ to an operator on L2(Bn). But obviously, an arbitrary function 
in L2(Bn) cannot be integrated on M against μ. So how does one extend Tμ to L2(Bn)?

Observe that, using the reproducing kernel Kw(z) = (1 −〈z, w〉)−n−1 for the Bergman 
space, we can write the Toeplitz operator Tμ in the form

Tμ =
∫
M

Kw ⊗Kwdμ(w).

This automatically extends the Toeplitz operator Tμ to an operator on the big space 
L2(Bn), by exactly the same integral formula! The key part of the proof of Theorem 1.4
is to show that on the big space L2(Bn), the commutators [Mzi , Tμ], i = 1, . . . , n, are in 
the Schatten class Cp for p > 2d.

To accomplish that, we use the fact that μ can be approximated in the weak-* topology 
by point masses on M . This implies that Tμ is in the weak closure of the convex hull of 
operators of the form
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D =
∑

w∈Γ∩M

cwkw ⊗ kw,

where Γ is a discrete set in Bn with certain separation properties, cw are non-negative 
with an upper bound determined by μ, and kw is the normalized reproducing kernel 
for the Bergman space. Thus it suffices to consider the commutators [Mzi , D]. These 
commutators are further decomposed as follows. For each k ≥ 0, consider the “strip” 
Mk = {w ∈ M : 1 −2−2k ≤ |w| < 1 −2−2(k+1)} in M . Accordingly, we have the operators

Dk =
∑

w∈Γ∩Mk

cwkw ⊗ kw and Fk = [Mzi , Dk].

We will show that for any ε > 0, we have

‖Fk‖ ≤ C12−(1−ε)k and rank(Fk) ≤ C222dk,

k ≥ 0. As we will see, these two estimates are sufficient to imply the essential normality 
promised in Theorem 1.4.

These two estimates themselves deserve some explanation. The first estimate, ‖Fk‖ ≤
C12−(1−ε)k, is simply a reflection of the properties of the ball and the Bergman space. 
More revealing is the second estimate, rank(Fk) ≤ C222dk, which shows exactly how the 
dimension of the underlying variety enters into the essential normality of the quotient 
module. In fact, this is exactly the kind of structure that the Geometric Arveson–Douglas 
Conjecture is meant to uncover.

The rest of the paper is devoted to the proofs of our results. Specifically, Section 2
contains the technical preparations for the proofs. After that, we prove Theorem 1.4
in Section 3. Then the proofs of Theorems 1.7 and 1.8 are given in Sections 4 and 5
respectively.

Acknowledgment. We thank the referee for the careful reading of the manuscript, and 
for raising the question that follows Theorem 1.8.

2. Preliminaries

We begin with a lemma about commutators.

Lemma 2.1. Suppose that H is a Hilbert space. Let A, B be bounded operators on H, and 
let Q be an orthogonal projection on H. Define S = QAQ and T = QBQ. Then

[S, T ] = [Q,B](1 −Q)[A,Q] − [Q,A](1 −Q)[B,Q] + Q[A,B]Q.

As a consequence, if [A, B] = 0 and if [Q, A], [Q, B] ∈ C2p for some 1 ≤ p < ∞, then 
[S, T ] ∈ Cp.
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Proof. Since Q(1 −Q) = 0 and (1 −Q)Q = 0, simple algebra yields

[S, T ] = QAQBQ−QBQAQ

= QB(1 −Q)AQ−QA(1 −Q)BQ + Q[A,B]Q

= [Q,B](1 −Q)[A,Q] − [Q,A](1 −Q)[B,Q] + Q[A,B]Q.

This completes the proof. �
Consider the case where H = L2(Bn), Q is the quotient module in Notation 1.2, and 

Q : L2(Bn) → Q is the orthogonal projection. Let M̂zi be the operator of multiplication 
by the coordinate function zi on the big space L2(Bn), i = 1, . . . , n. For p > n, since 
L2
a(Bn) is p-essentially normal, if we know that every [Q, M̂zi ] is in the Schatten class C2p, 

then by Proposition 4.1 in [1] we can conclude that the quotient module Q is p-essentially 
normal. But since the essential normality of the Bergman module L2

a(Bn) is involved in 
this argument, it does not cover the case p ≤ n. That is where Lemma 2.1 comes in.

The advantage of Lemma 2.1 is that it allows us to bypass the Bergman mod-
ule L2

a(Bn). More to the point, it allows us to bypass Proposition 4.1 in [1]. For 
any 1 ≤ p < ∞, Lemma 2.1 tells us that if we know that [Q, M̂zi ] ∈ C2p for every 
i ∈ {1, . . . , n}, then we can conclude that the quotient module Q is p-essentially normal.

In general, we write C, C1, C2, etc, for constants, and they may represent different 
values in different context. The notation A ≈ B means that there exist 0 < c < C < ∞
such that cA ≤ B ≤ CA. Similarly, by A � B we mean that there exists a 0 < C < ∞
such that A ≤ CB.

2.1. Bergman metric and Carleson measure

For z ∈ Bn, write Pz for the orthogonal projection from Cn onto the subspace Cz and 
Qz = 1 − Pz. The Möbius transform

ϕz(w) = z − Pz(w) − (1 − |z|2)1/2Qz(w)
1 − 〈w, z〉

is the (unique) automorphism of Bn that satisfies ϕz ◦ ϕz = id and ϕz(0) = z.
Recall that the Bergman metric on the unit ball is given by the formula

β(z, w) = 1
2 log 1 + |ϕz(w)|

1 − |ϕz(w)| , z, w ∈ Bn.

It is well known that β is Möbius invariant, and so is the metric

ρ(w, z) = |ϕz(w)|.

For z ∈ Bn and r > 0, denote
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D(z, r) = {w ∈ Bn : β(w, z) < r} = {w ∈ Bn : ρ(w, z) < sr},

where sr = tanh r.

Lemma 2.2. [18, 2.2.7] For z ∈ Bn and r > 0, the Bergman-metric ball D(z, r) consists 
of all w that satisfy

|Pzw − c|2
s2
rρ

2 + |Qzw|2
s2
rρ

< 1,

where

c = (1 − s2
r)z

1 − s2
r|z|2

, ρ = 1 − |z|2
1 − s2

r|z|2
.

As a consequence, for a fixed r, v(D(z, r)) ≈ (1 − |z|2)n+1. One of the reasons that 
the Bergman metric is important is that it matches the analytic structure on the unit 
ball. From the properties of the Möbius transform ϕz (see [18, Section 2.2]) it is easy to 
deduce

Lemma 2.3. [22] Given any 0 < r < ∞, there exists a constant 0 < Cr < ∞ such that 
for any z, w ∈ Bn satisfying β(z, w) < r and any λ ∈ Bn,

(1) C−1
r ≤ 1−|z|2

1−|w|2 ≤ Cr,

(2) C−1
r ≤ |1−〈λ,z〉|

|1−〈λ,w〉| ≤ Cr.

Lemma 2.4. [19] Let ν be a positive, finite, regular, Borel measure on Bn and r > 0. The 
following quantities are equivalent (with constants depending on n and r).

(1) ‖ν‖∗ := supz∈Bn

∫
Bn

(1−|z|2)n+1

|1−〈w,z〉|2(n+1) dν(w),
(2) inf

{
C > 0 :

∫
|f |2dν ≤ C

∫
|f |2dv for f ∈ L2

a(Bn)
}
,

(3) supz∈Bn

ν(D(z,r))
v(D(z,r)) ,

(4) ‖Tν‖L2
a(Bn)→L2

a(Bn).

Here the operator Tν is defined by

(Tνf)(z) =
∫
Bn

f(w)
(1 − 〈z, w〉)n+1 dν(w).

A Carleson measure for the Bergman space L2
a(Bn) is a ν for which one of the above 

quantities is finite. In this paper, if we call a measure a Carleson measure, we mean it is 
one for the Bergman space L2

a(Bn), as defined above.
Let us recall the definitions of the technical terms in Assumption 1.1.
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Definition 2.5. [2] Let Ω be a complex manifold. A set A ⊂ Ω is called a complex analytic 
subset of Ω if for each point a ∈ Ω there are a neighborhood U � a and functions 
f1, · · · , fN holomorphic in this neighborhood such that

A ∩ U = {z ∈ U : f1(z) = · · · = fN (z) = 0}.

A point a ∈ A is called regular if there is a neighborhood U � a in Ω such that A ∩ U

is a complex submanifold of Ω. A point a ∈ A is called a singular point of A if it is not 
regular.

Definition 2.6. Let Y be a manifold and let X, Z be submanifolds of Y . We say that the 
submanifolds X and Z intersect transversely if for every x ∈ X ∩ Z, Tx(X) + Tx(Z) =
Tx(Y ).

The authors of [9] proved the following theorem.

Theorem 2.7. Suppose M̃ is a complex analytic subset of an open neighborhood of Bn

satisfying the following conditions:

(1) M̃ intersects ∂Bn transversely.
(2) M̃ has no singular point on ∂Bn.

Let M = M̃ ∩ Bn. Then there exists a Carleson measure μ on M such that the L2(μ)
norm defines an equivalent norm for functions

f ∈ Q = L2
a(Bn) � {h ∈ L2

a(Bn) : h = 0 on M} = span{Kλ : λ ∈ M}.

As a consequence, the projection operator Q onto Q is a C∞ functional calculus of the 
positive operator Tμ.

With additional effort, the quotient module Q was shown in [9] to be p-essentially nor-
mal for all p > 2d, where d = dimC M . As we explained in the Introduction, we will show 
that this is true for all p > d, fulfilling the prediction of the Geometric Arveson–Douglas 
Conjecture.

2.2. The class C+
p

Recall that, for each 1 ≤ p < ∞, the formula

‖A‖+
p = sup

k≥1

s1(A) + s2(A) + · · · + sk(A)
1−1/p + 2−1/p + · · · + k−1/p (2.1)

defines a symmetric norm for operators, where s1(A), . . . , sk(A), . . . are the s-numbers 
of A. On a Hilbert space H, the set
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C+
p = {A ∈ B(H) : ‖A‖+

p < ∞}

is a norm ideal. See Sections III.2 and III.14 in [12].
It is well known that C+

p contains the Schatten class Cp and that C+
p �= Cp. Moreover, 

we have C+
p ⊂ Cp′ for all 1 ≤ p < p′ < ∞. A property of C+

p that does not concern us in 
this paper, but is nonetheless interesting, it that this ideal is not separable with respect 
to the norm ‖ · ‖+

p .
The reason for introducing C+

p is that the norm ‖ · ‖+
p is particularly easy to handle 

in the essential normality problems for modules, as was demonstrated in [11]. Estimates 
in this paper will further show that the norm ‖ · ‖+

p is user-friendly indeed.

Lemma 2.8. Suppose T is in the weak operator closure of a set of operators {Tα}α∈I . 
Assume Tα ∈ C+

p and

sup
α∈I

‖Tα‖+
p ≤ C < ∞.

Then T ∈ C+
p and ‖T‖+

p ≤ C.

Proof. Let us denote σk(T ) = s1(T ) + · · · + sk(T ). It is well known that

σk(T ) = sup{|tr(TAk)| : ‖Ak‖ ≤ 1 and rank(Ak) = k}.

For each Ak, since its rank equals k < ∞, there is a sequence {αm} in I such that 
tr(Tαm

Ak) → tr(TAk) as m → ∞. Therefore

|tr(TAk)| = lim
m→∞

|tr(Tαm
Ak)| ≤ sup

α∈I
σk(Tα) ≤ C(1−1/p + 2−1/p + · · · + k−1/p).

Taking supremum over all such Ak, we obtain

σk(T ) ≤ C(1−1/p + 2−1/p + · · · + k−1/p).

By (2.1), we have

‖T‖+
p = sup

k

σk(T )
1−1/p + 2−1/p + · · · + k−1/p ≤ C.

This completes the proof. �
The following lemma provides a key estimate.

Lemma 2.9. Given any positive numbers 0 < a ≤ b < ∞, there is a constant 0 <
B(a, b) < ∞ such that the following holds true: Let H be a Hilbert space, and suppose 
that F0, F1, . . . , Fk, . . . are operators on H such that the following two conditions are 
satisfied for every k:
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(1) ‖Fk‖ ≤ 2−ak,
(2) rank(Fk) ≤ 2bk.

Then the operator F =
∑∞

k=0 Fk satisfies the estimate ‖F‖+
b/a ≤ B(a, b). In particular, 

F ∈ C+
b/a.

Proof. Recall from [12] that for any bounded operator A and any i ≥ 1,

si(A) = inf{‖A + K‖ : rank(K) ≤ i− 1}.

Obviously, condition (1) implies that F is a bounded linear operator on H. By condition 
(2),

rank

⎛
⎝ k∑

j=0
Fj

⎞
⎠ ≤

k∑
j=0

2bj ≤ C12bk, (2.2)

where C1 = (1 − 2−b)−1. For any integer m > C1, let k ≥ 0 be such that

C12bk < m ≤ C12b(k+1).

Then from (2.2) we obtain

sm(F ) ≤

∥∥∥∥∥∥
∞∑

j=k+1

Fj

∥∥∥∥∥∥ ≤
∞∑

j=k+1

2−aj ≤ C22−ak,

where C2 = (1 − 2−a)−1. Therefore

sm(F )ma/b ≤ C22−ak · (C12b(k+1))a/b = 2aC2C
a/b
1 .

Set B(a, b) = 2aC2C
a/b
1 . Then the above translates to

sm(F ) ≤ B(a, b)m−a/b

for every m > C1. On the other hand, since ‖F‖ ≤ C2, for m ≤ C1 we have

sm(F ) ≤ C2 = C2m
a/bm−a/b ≤ C2C

a/b
1 m−a/b ≤ B(a, b)m−a/b.

Combining these two estimates, we see that sm(F ) ≤ B(a, b)m−a/b for every m ≥ 1. By 
(2.1), this means ‖F‖+

b/a ≤ B(a, b). �
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2.3. Other tools

The following lemma can be found in Appendix C to [3, Chapter IV].

Lemma 2.10. Suppose p ≥ 1, S, T are bounded linear operators on a Hilbert space H and 
[S, T ] ∈ Cp. If S is self-adjoint and if f is a C∞ function on the spectrum of S, one has 
[f(S), T ] ∈ Cp.

We will also need the well-known Schur test for boundedness:

Lemma 2.11. Let (X, dμ) be a measure space and R(x, y) a non-negative, measurable 
function on X ×X. Suppose that there exist a positive, measurable function h function 
on X and positive numbers C1, C2 such that

∫
X

R(x, y)h(y)dμ(y) ≤ C1h(x) for μ-a.e. x

and
∫
X

R(x, y)h(x)dμ(x) ≤ C2h(y) for μ-a.e. y.

Then

(Tf)(x) =
∫
X

R(x, y)f(y)dμ(y)

defines a bounded operator on L2(X, dμ) with ‖T‖ ≤ (C1C2)1/2.

3. Proof of Theorem 1.4

Suppose μ is a Carleson measure supported on M . Let T̂μ denote the operator on 
L2(Bn) that sends L2

a(Bn)⊥ to {0} and coincides with Tμ on L2
a(Bn). Our first observation 

is that we have the integral representation

T̂μ =
∫

Kw ⊗Kwdμ(w).

This is verified by direct calculation: for f ∈ L2(Bn) and z ∈ Bn,

∫
〈f,Kw〉Kw(z)dμ(w) =

∫ (Pf)(w)
(1 − 〈z, w〉)n+1 dμ(w) = (T̂μf)(z),

where P : L2(Bn) → L2
a(Bn) is the orthogonal projection.
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For each ϕ ∈ L∞(Bn), let M̂ϕ denote the operator of multiplication by ϕ on L2(Bn). 
That is,

M̂ϕf = ϕf, f ∈ L2(Bn).

The following theorem is the main step in the proof of Theorem 1.4.

Theorem 3.1. Let μ be a Carleson measure supported on M . Then for every j ∈ {1, . . . , n}
and every p > 2d, we have [T̂μ, M̂zj ] ∈ C+

p . As a consequence, [T̂μ, M̂zj ] ∈ Cp for every 
j ∈ {1, . . . , n} and every p > 2d.

First, let us give the outline of our proof. The main idea is to approximate the operator 
T̂μ by a certain kind of discrete sums. Then we estimate the C+

p norms of commutators 
of these discrete sums with M̂zj . We break the commutators into parts and estimate the 
ranks and norms of these parts. Finally, an application of Lemma 2.9 will end the proof.

Now let us construct the discrete sums. Choose a subset L ⊂ M that is maximal with 
respect to the property that

D(z, 1) ∩D(w, 1) = ∅ for all z �= w in L. (3.1)

Obviously, such an L is countable, which allows us to write L = {zi}∞i=1. It follows from 
the maximality of L that

∞⋃
i=1

D(zi, 2) ⊃ M.

There exist Borel sets Δ1, Δ2, . . . , Δi, . . . in Bn satisfying the following three require-
ments:

(1) D(zi, 1) ⊂ Δi ⊂ D(zi, 2) for every i.
(2) Δi ∩ Δi′ = ∅ for i �= i′.
(3) ∪∞

i=1Δi = ∪∞
i=1D(zi, 2) ⊃ M .

The construction of these sets is standard. In fact, obviously there are pairwise disjoint 
Borel subsets E1, E2, . . . , Ei, . . . of {∪∞

i=1D(zi, 2)}\{∪∞
i=1D(zi, 1)} such that

E1 ∪ E2 ∪ · · · ∪Ei ∪ · · · = {∪∞
i=1D(zi, 2)}\{∪∞

i=1D(zi, 1)}

and Ei ⊂ D(zi, 2) for every i. Then the sets Δi = D(zi, 1) ∪ Ei, i = 1, 2, 3, . . . , satisfy 
requirements (1)–(3) above.

Let μ be a Carleson measure supported on M . By Lemma 2.3,

ci :=
∫
Δi

(1 − |w|2)−(n+1)dμ(w) � (1 − |zi|2)−(n+1)μ(Δi) � μ(D(zi, 2))
v(D(zi, 2)) .

By Lemma 2.4, there is a constant 0 < C < ∞ such that ci ≤ C for every i.
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Define N = {i ∈ N : μ(Δi) �= 0} = {i ∈ N : ci > 0}. For each i ∈ N , we define the 
measure dμi to be the restriction of the measure c−1

i (1 − |w|2)−(n+1)dμ to the set Δi. 
Obviously, μi(Δi) = 1. Observe that

T̂μ =
∫

Kw ⊗Kwdμ(w) =
∞∑
i=1

∫
Δi

Kw ⊗Kwdμ(w)

=
∑
i∈N

ci

∫
Δi

kw ⊗ kwc
−1
i (1 − |w|2)−(n+1)dμ(w) =

∑
i∈N

ci

∫
Δi

kw ⊗ kwdμi(w),

where kw = Kw/‖Kw‖ is the normalized reproducing kernel. Since μ is a Carleson 
measure, the positive operator T̂μ is bounded. By the monotone convergence theorem, 
the above sums converge in the strong operator topology.

Since μ is supported on M , each probability measure μi can be approximated in the 
weak-* topology by measures of the form 1

k

∑k
j=1 δwj

, where wj ∈ Δi ∩ M . Therefore 
each operator 

∫
Δi

kw ⊗ kwdμi(w) can be approximated in the weak operator topology 
by operators of the form

1
k

k∑
j=1

kwj
⊗ kwj

, wj ∈ Δi ∩M.

Hence T̂μ can be weakly approximated by operators of the form

∑
i∈F

ci
1
k

k∑
j=1

kwi,j
⊗ kwi,j

= 1
k

k∑
j=1

∑
i∈F

cikwi,j
⊗ kwi,j

,

where F is a finite subset of N , k ∈ N, and wi,j ∈ Δi ∩ M . We summarize the above 
arguments in the following lemma.

Lemma 3.2. The operator T̂μ is in the weak closure of the convex hull of operators of the 
form

∑
i∈F

cikwi
⊗ kwi

, (3.2)

where F is any finite subset of N , wi ∈ Δi ∩ M and 0 < ci ≤ C. Moreover, the finite 
bound C depends only on the Carleson measure μ on M .

It follows immediately that for every 1 ≤ m ≤ n, the commutator [T̂μ, M̂zm ] is in the 
weak closure of the convex hull of operators of the form

∑
ci[kwi

⊗ kwi
, M̂zm ].
i∈F
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Thus to estimate ‖[T̂μ, M̂zm ]‖+
p , it suffices to estimate the C+

p norms of operators of 
the above form. To estimate the latter, we use Lemma 2.9. Conditions (1) and (2) in 
Lemma 2.9 will be verified in the following steps.

Let vM denote the natural volume measure on the smooth part of M̃ .

Lemma 3.3. For 0 < s < t < 1, define

M t
s = {z ∈ M̃ : s < |z| ≤ t}.

Then for r sufficiently close to 1 and r < s < t < 1, we have vM (M t
s) � t − s.

Proof. Let r(z) = |z| be the radius function. By Assumption 1.1, M̃ intersects ∂Bn

transversely. Thus for each point ζ ∈ M̃ ∩ ∂Bn, M̃ has a real local coordinate system 
of the form Φ = (φ1, . . . , φ2d−1, r(z)) defined on a neighborhood Uζ ∩ M̃ , where Uζ is 
an open set containing ζ in Cn. Therefore the volume form locally can be expressed as 
dvM = gdφ1 ∧ . . . ∧ dφ2d−1 ∧ dr. If we shrink the neighborhood Uζ we can also assume 
that g is bounded and Φ maps Uζ ∩ M̃ to a bounded set in R2d. By the compactness of 
M̃ ∩ ∂Bn, it can be covered by finitely many such open sets Uζj , j = 1, . . . , m. Thus it 
suffices to show that

vM (M t
s ∩ Uζj ) � t− s

for each j and s < t sufficiently close to 1. By direct computation,

vM (M t
s ∩ Uζj ) �

t∫
s

1dr � t− s.

This completes the proof. �
Lemma 3.4. There exists a 0 < r < 1 such that vM (D(z, 1) ∩ M) � (1 − |z|2)d+1 for 
z ∈ M satisfying the condition r < |z| < 1.

Proof. There is a 0 < r < 1 such that for each z ∈ M , |z| > r, there is a smooth map

pz : M ∩D(z, 2) �→ TM |z

defined on page 1513 in [9]. Using the formula for pz given there and the property

sup
w∈D(z,2)

β(pz(w), w) → 0 as |z| → 1,

it is straightforward to verify that pz(D(z, 1) ∩M) ⊃ D(z, 1/2) ∩TM |z when |z| is close 
enough to 1. Therefore, writing vd for the volume measure on TM |z = C

d, we have
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vM (D(z, 1) ∩M) � vd(D(z, 1/2) ∩ TM |z) ≈ (1 − |z|2)d+1.

This completes the proof. �
Proposition 3.5. Given any 0 < ε < 1/2, there is a 0 < C ′ < ∞ such that the following 
estimate holds: Let F be any finite subset of N . Suppose that for every i ∈ F , wi ∈ Δi∩M
and 0 ≤ ci ≤ C, where C is the constant in Lemma 3.2. Define ν =

∑
i∈F ci(1 −

|wi|2)n+1δwi
and

T̂ν =
∑
i∈F

cikwi
⊗ kwi

.

Then we have ‖[T̂ν , M̂zm ]‖+
2d/(1−2ε) ≤ C ′ for every m ∈ {1, . . . , n}.

Proof. Let 0 < ε < 1/2 be given. For each k ≥ 0, define

Mk = {z ∈ M : 1 − 2−2k ≤ |z| < 1 − 2−2(k+1)} (3.3)

and

νk = ν|Mk
=

∑
i∈F,wi∈Mk

ci(1 − |wi|2)n+1δwi
.

Also, write

Fk = [T̂νk
, M̂zm ] =

∑
i∈F,wi∈Mk

ci[kwi
⊗ kwi

, M̂zm ]

for k ≥ 0. We will show that there are constants C1 and C2 such that

‖Fk‖ ≤ C12−(1−2ε)k (3.4)

and

rank(Fk) ≤ C222dk (3.5)

for every k ≥ 0. Since 
∑∞

k=0 Fk = [T̂ν , M̂zm ], it follows from these estimates and 
Lemma 2.9 that

‖[T̂ν , M̂zm ]‖+
2d/(1−2ε) ≤ C1(1 + C2)B(1 − 2ε, 2d).

That is, the proposition holds for C ′ = C1(1 + C2)B(1 − 2ε, 2d) provided that we find 
constants C1 and C2 such that (3.4) and (3.5) hold.
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To find C1, note that for any f ∈ L2(Bn),

([Kwi
⊗Kwi

, M̂zm ]f)(z)

=
∫
Bn

λmf(λ)Kλ(wi)dv(λ)Kwi
(z) − zm

∫
Bn

f(λ)Kλ(wi)dv(λ)Kwi
(z)

=
∫
Bn

(λm − wi,m)f(λ)Kλ(wi)dv(λ)Kwi
(z)

+
∫
Bn

(wi,m − zm)f(λ)Kλ(wi)dv(λ)Kwi
(z),

where wi,m denotes the m-th component of wi. Since

Fk =
∑

i∈F,wi∈Mk

ci(1 − |wi|2)n+1[Kwi
⊗Kwi

, M̂zm ],

we have

|(Fkf)(z)| ≤
∑

i∈F,wi∈Mk

ci(1 − |wi|2)n+1
∫
Bn

|λ− wi||f(λ)||Kλ(wi)|dv(λ)|Kwi
(z)|

+
∑

i∈F,wi∈Mk

ci(1 − |wi|2)n+1
∫
Bn

|wi − z||f(λ)||Kλ(wi)|dv(λ)|Kwi
(z)|.

Recalling the definition of ν, we have

|(Fkf)(z)| ≤
∫
Mk

∫
Bn

|λ− w||f(λ)||Kλ(w)||Kw(z)|dv(λ)dν(w)

+
∫
Mk

∫
Bn

|w − z||f(λ)||Kλ(w)||Kw(z)|dv(λ)dν(w)

=
∫
Bn

|f(λ)|
∫
Mk

|λ− w||Kλ(w)||Kw(z)|dν(w)dv(λ)

+
∫
Bn

|f(λ)|
∫
Mk

|w − z||Kλ(w)||Kw(z)|dν(w)dv(λ)

=
∫
Bn

|f(λ)|Gk(z, λ)dv(λ) +
∫
Bn

|f(λ)|Hk(z, λ)dv(λ).

Here,
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Gk(z, λ) =
∫
Mk

|λ− w||Kλ(w)||Kw(z)|dν(w) and

Hk(z, λ) =
∫
Mk

|w − z||Kλ(w)||Kw(z)|dν(w).

To estimate ‖Fk‖, we apply the Schur test. First, note that the special case of c = 0 and 
t = −1/2 in [18, Proposition 1.4.10] gives us

∫
Bn

(1 − |λ|2)−1/2

|1 − 〈w, λ〉|n+1/2 dv(λ) ≈ log 1
1 − |w|2 .

Let h(λ) = (1 − |λ|2)−1/2. Then

∫
Bn

Gk(z, λ)h(λ)dv(λ) =
∫
Mk

∫
Bn

|λ− w||Kλ(w)|h(λ)dv(λ)|Kw(z)|dν(w)

�
∫
Mk

∫
Bn

(1 − |λ|2)−1/2

|1 − 〈w, λ〉|n+1/2 dv(λ) 1
|1 − 〈z, w〉|n+1 dν(w)

≈
∫
Mk

(
log 1

1 − |w|2
)

1
|1 − 〈z, w〉|n+1 dν(w)

�
∫
Mk

(1 − |w|2)−ε

|1 − 〈z, w〉|n+1 dν(w) ≤ C
∑

i∈F,wi∈Mk

(1 − |wi|2)−ε

|1 − 〈z, wi〉|n+1 (1 − |wi|2)n+1,

where, as we recall, C is the constant in Lemma 3.2. By Lemma 2.3,

(1 − |w|2)−ε

|1 − 〈z, w〉|n+1 ≈ (1 − |wi|2)−ε

|1 − 〈z, wi〉|n+1

for any z ∈ Bn and w ∈ Δi ⊂ D(zi, 2) ⊂ D(wi, 4). Recall that Δi ⊃ D(zi, 1). Therefore 
the integral above is bounded, up to a constant, by

∑
i∈F,wi∈Mk

∫
Δi

(1 − |w|2)−ε

|1 − 〈z, w〉|n+1 dv(w) =
∫

⋃
i∈F,wi∈Mk

Δi

(1 − |w|2)−ε

|1 − 〈z, w〉|n+1 dv(w).

By Lemma 2.3, there is a constant 0 < A < ∞ such that 
⋃

i∈F,wi∈Mk
Δi ⊂ Wk, where

Wk = {w ∈ Bn : |w| ≥ 1 − 2−2(k−A)}.

By [18, Proposition 1.4.10], for each a > 0 we have
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∫
∂Bn

1
|1 − 〈w, ζ〉|n+a

dσ(ζ) ≈ (1 − |w|2)−a.

Therefore
∫
Bn

Gk(z, λ)h(λ)dv(λ) �
∫

⋃
i∈F,wi∈Mk

Δi

(1 − |w|2)−ε

|1 − 〈z, w〉|n+1 dv(w) ≤
∫
Wk

(1 − |w|2)−ε

|1 − 〈z, w〉|n+1 dv(w)

�
1∫

max{1−2−2(k−A),0}

(1 − r2)−ε

∫
∂Bn

1
|1 − 〈rz, ζ〉|n+1 dσ(ζ)dr

�
1∫

max{1−2−2(k−A),0}

(1 − r2)−ε(1 − |rz|2)−1dr

�
1∫

max{1−2−2(k−A),0}

(1 − r2)−ε−(1/2)(1 − |z|2)−1/2dr

� {1 − (1 − 2−2(k−A))}(1/2)−εh(z) � 2−(1−2ε)kh(z).

On the other hand, using the same method, we have
∫
Bn

Gk(z, λ)h(z)dv(z) �
∫
Bn

∫
Mk

1
|1 − 〈w, λ〉|n+1/2

1
|1 − 〈z, w〉|n+1 dν(w)(1 − |z|2)−1/2dv(z)

�
∫
Mk

∫
Bn

(1 − |z|2)−1/2

|1 − 〈z, w〉|n+1 dv(z)
1

|1 − 〈w, λ〉|n+1/2 dν(w)

�
∫
Mk

(1 − |w|2)−1/2

|1 − 〈w, λ〉|n+1/2 dν(w) �
∫
Wk

(1 − |w|2)−1/2

|1 − 〈w, λ〉|n+1/2 dv(w)

�
1∫

max{1−2−2(k−A),0}

(1 − r2)−1/2
∫

∂Bn

1
|1 − 〈ζ, rλ〉|n+1/2 dσ(ζ)dr

�
1∫

max{1−2−2(k−A),0}

(1 − r2)−1/2(1 − |rλ|2)−1/2dr

� 2−kh(λ) ≤ 2−(1−2ε)kh(λ).

Combining the last two estimates with Lemma 2.11, we conclude that Gk defines an 
integral operator on L2(Bn) whose norm is bounded by B2−(1−2ε)k, where the constant 
B depends only on ε, the complex dimension n and the bound ci ≤ C in Lemma 3.2. 
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Obviously, the same conclusion holds for Hk. Thus we have shown that there is a C1
such that (3.4) holds.

Next we estimate the rank of Fk. Notice that rank([kwi
⊗ kwi

, M̂zm ]) ≤ 2. Therefore

rank(Fk) ≤ 2card{wi : i ∈ F, wi ∈ Δi ∩Mk}.

Since Δi ⊃ D(zi, 1), by Lemma 3.4, vM (Δi ∩ M) � (1 − |zi|2)d+1. For wi ∈ Δi ∩ Mk, 
Lemma 2.3 gives us 1 − |zi|2 ≈ 1 − |wi|2 ≈ 2−2k. Consequently vM (Δi ∩M) � 2−2(d+1)k

if wi ∈ Δi ∩Mk. On the other hand, we saw in the above that if wi ∈ Mk, then

Δi ∩M ⊂ {w ∈ M : 1 − 2−2(k−A) ≤ |w| < 1}.

It follows from Lemma 3.3 that vM ({w ∈ M : 1 − 2−2(k−A) ≤ |w| < 1}) � 2−2k. Since 
Δi ∩ Δi′ = ∅ for i �= i′, we conclude that

card{wi : i ∈ F, wi ∈ Δi ∩Mk} � 2−2k

2−2(d+1)k = 22kd.

Thus we have shown that rank(Fk) � 22dk, i.e., (3.5) holds for some C2 that depends 
only on n and the analytic set M̃ . This completes the proof. �
Proof of Theorem 3.1. By Lemma 3.2, the commutator [T̂μ, M̂zm ] is in the weak operator 
closure of the convex hull of operators of the form [T̂ν , M̂zm ], where ν is a discrete measure 
as in Proposition 3.5. Given any p > 2d, let 0 < ε < 1/2 be such that 2d/(1 −2ε) < p. Now 
Proposition 3.5 provides the bound ‖[T̂ν , M̂zm ]‖+

2d/(1−2ε) ≤ C ′ for all such ν. From this we 

obtain ‖[T̂μ, M̂zm ]‖+
2d/(1−2ε) ≤ C ′ by applying Lemma 2.8. Thus [T̂μ, M̂zm ] ∈ C+

2d/(1−2ε)
⊂ Cp as promised. �
Theorem 3.6. We have [Q, M̂zj ] ∈ Cp for all p > 2d and j ∈ {1, . . . , n}.

Proof. By Theorem 1.9, there exist a Carleson measure μ supported on M and 0 < c ≤
C < ∞ such that

c‖f‖2 ≤
∫
M

|f(w)|2dμ(w) ≤ C‖f‖2

for every f ∈ Q. If w ∈ M , then Kw ∈ Q. Thus the above inequality implies

c‖Qg‖2 ≤
∫
M

|〈g,Kw〉|2dμ(w) ≤ C‖Qg‖2

for every g ∈ L2(Bn). This translates to the operator inequality cQ ≤ T̂μ ≤ CQ on 
L2(Bn). Thus, by the spectral theory of self-adjoint operators, there is a C∞ function 
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h such that Q = h(T̂μ). Now the membership [Q, M̂zj ] ∈ Cp, p > 2d, follows from 
Lemma 2.10 and Theorem 3.1. �
Proof of Theorem 1.4. The point is that on the big space L2(Bn), we have M̂∗

zi =
M̂z̄i , consequently [M̂∗

zi , M̂zj ] = 0. Applying Lemma 2.1 and Theorem 3.6, we have 
[Z∗

Q,i, ZQ,j ] ∈ Cp for p > d. �
The authors of [20] proved that for two varieties satisfying nice conditions, their union 

defines a essentially normal quotient module:

Theorem 3.7. Suppose M̃1 and M̃2 are two analytic subsets of an open neighborhood of 
Bn. Let M̃3 = M̃1 ∩ M̃2. Assume that

(i) M̃1 and M̃2 intersect transversely with ∂Bn and have no singular points on ∂Bn.
(ii) M̃3 also intersects transversely with ∂Bn and has no singular points on ∂Bn.
(iii) M̃1 and M̃2 intersect cleanly on ∂Bn.

Let Mi = M̃i ∩ Bn and Qi = span{Kλ : λ ∈ Mi} for i = 1, 2, 3, M = M1 ∪ M2, and 
Q = span{Kλ : λ ∈ M}. Then Q1 ∩ Q2/Q3 is finite dimensional and Q1 + Q2 is 
closed. As a consequence, Q is p-essentially normal for p > 2d, where d = dimC M =
max{dimC M1, dimC M2}.

As a consequence of the improved essential normality in Theorem 1.4, the essential 
normality in Theorem 3.7 can be improved accordingly.

Corollary 3.8. Under the same assumption as in Theorem 3.7, the quotient module Q is 
p-essentially normal for all p > d.

Once we know that Q1 +Q2 is closed from Theorem 3.7, we have Q = Q1 +Q2. Thus 
Corollary 3.8 follows from Theorem 3.6 and [17, Lemma 3.3].

4. Antisymmetric sums on the submodule

We now consider antisymmetric sums on the submodule R.

Lemma 4.1. Let f, g ∈ C[z1, ̄z1, . . . , zn, ̄zn]. Then for every p > d we have [Q, M̂f ] ∈ C2p

and [R, M̂f ]Q[R, M̂g] ∈ Cp.

Proof. For any A, B, we have [Q, AB] = [Q, A]B + A[Q, B]. Thus the first conclusion, 
[Q, M̂f ] ∈ C2p for p > d, is an obvious consequence of Theorem 3.6. Then note that since 
RQ = 0 = QR, we have
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[R, M̂f ]Q[R, M̂g] = −RM̂fQM̂gR = R[M̂f , Q]Q[M̂g, Q]R.

Hence the second conclusion follows from the first. �
Lemma 4.2. For f1, f2, . . . , f2n−1, f2n ∈ C[z1, ̄z1, . . . , zn, ̄zn], the operator

[Rf1 , Rf2 ] · · · [Rf2n−1 , Rf2n ] − [Tf1 , Tf2 ] · · · [Tf2n−1 , Tf2n ] (4.1)

is in the trace class.

Proof. Let T be the subgroup of the symmetric group S2n generated by the transposi-
tions of the pairs 2j − 1 and 2j, j = 1, . . . , n. Then

[Rf1 ,Rf2 ] · · · [Rf2n−1 , Rf2n ] = (−1)n(RM̂f1(1 −R)M̂f2R−RM̂f2(1 −R)M̂f1R) · · ·

= (−1)n([R, M̂f1 ](1 −R)[M̂f2 , R] − [R, M̂f2 ](1 −R)[M̂f1 , R]) · · ·

= ([R, M̂f1 ](1 −R)[R, M̂f2 ] − [R, M̂f2 ](1 −R)[R, M̂f1 ]) · · ·

=
∑
τ∈T

sgn(τ)[R, M̂fτ(1) ](1 −R)[R, M̂fτ(2) ][R, M̂fτ(3) ](1 −R)[R, M̂fτ(4) ] · · · .

Recall that P = R + Q is the projection onto the Bergman space L2
a(Bn). Consider any 

product of the form

[R, M̂fτ(1) ]X1[R, M̂fτ(2) ][R, M̂fτ(3) ]X2[R, M̂fτ(4) ] · · · [R, M̂fτ(2n−1) ]Xn[R, M̂fτ(2n) ], (4.2)

where X1, . . . , Xn are bounded operators. Since [P, M̂fj ] ∈ Cp for every p > 2n, by 
Lemma 4.1 we have [R, M̂fj ] ∈ Cp for every p > 2n. Also by Lemma 4.1, if Xi = Q for 
any i, then

[R, M̂fτ(2i−1) ]Xi[R, M̂fτ(2i) ] ∈ Cd+ε for every ε > 0.

Since d < n, if there is an i such that Xi = Q, then (4.2) is in the trace class. It is easy 
to see that the difference

D = [Rf1 , Rf2 ] · · · [Rf2n−1 , Rf2n ]−∑
τ∈T

sgn(τ)[R, M̂fτ(1) ](1 − P )[R, M̂fτ(2) ][R, M̂fτ(3) ](1 − P )[R, M̂fτ(4) ] · · ·

is a linear combination of operators of the form (4.2) for which at least one Xi equals Q. 
Hence we conclude that D is in the trace class C1. Now consider any product of the form

[Y1, M̂fτ(1) ](1 − P )[Y2, M̂fτ(2) ][Y3, M̂fτ(3) ](1 − P )[Y4, M̂fτ(4) ] · · · , (4.3)
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where Y1, Y2, . . . , Y2n−1, Y2n are R, Q or R + Q = P . Thus [Yj , M̂fk ] ∈ Cp for p > 2n. 
Since there are 2n such commutators in the product (4.3), if there is an i such that 
Yi = Q, then Lemma 4.1 guarantees that (4.3) is in the trace class. Since the D above is 
in the trace class, it follows that the difference

[Rf1 , Rf2 ] · · · [Rf2n−1 , Rf2n ]−∑
τ∈T

sgn(τ)[P, M̂fτ(1) ](1 − P )[P, M̂fτ(2) ][P, M̂fτ(3) ](1 − P )[P, M̂fτ(4) ] · · ·

is in the trace class. The same kind of algebra shows that
∑
τ∈T

sgn(τ)[P, M̂fτ(1) ](1 − P )[P, M̂fτ(2) ][P, M̂fτ(3) ](1 − P )[P, M̂fτ(4) ] · · ·

= [Tf1 , Tf2 ] · · · [Tf2n−1 , Tf2n ].

Therefore (4.1) is in the trace class. �
Proposition 4.3. For f1, f2, . . . , f2n ∈ C[z1, ̄z1, . . . , zn, ̄zn], the difference

[Rf1 , Rf2 , . . . , Rf2n ] − [Tf1 , Tf2 . . . , Tf2n ]

is in the trace class.

Proof. Let T be the same subgroup of the symmetric group S2n generated by the trans-
positions of the pairs 2j − 1 and 2j, j = 1, . . . , n, as in the previous proof. Then S2n is 
the disjoint union of T -cosets. Thus for antisymmetric sums, there is a subset C of S2n
such that

[Rf1 , Rf2 , . . . , Rf2n ] =
∑
σ∈C

sgn(σ)[Rfσ(1) , Rfσ(2) ] · · · [Rfσ(2n−1) , Rfσ(2n) ] and

[Tf1 , Tf2 , . . . , Tf2n ] =
∑
σ∈C

sgn(σ)[Tfσ(1) , Tfσ(2) ] · · · [Tfσ(2n−1) , Tfσ(2n) ].

Combining these identities with Lemma 4.2, the proposition follows. �
Proof of Theorem 1.7. Given Proposition 4.3, it suffices to recall from Theorem 1.6 that 
for f1, f2, . . . , f2n ∈ C[z1, ̄z1, . . . , zn, ̄zn], the antisymmetric sum [Tf1 , Tf2 , . . . , Tf2n ] is in 
the trace class. �
5. Antisymmetric sums on the quotient module

We now turn to the proof of Theorem 1.8. Since we have Theorem 3.6, for m > d

it is easy to show that the antisymmetric sum [Qf1 , Qf2 , . . . , Qf2m ] is in the trace class, 
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f1, f2, . . . , f2m ∈ C[z1, ̄z1, . . . , zn, ̄zn]. The difficult part is to show that the trace of such 
an antisymmetric sum is zero; in fact, a lot of additional work is required to accomplish 
this goal. First of all, our proof of zero trace relies on the following principle:

Lemma 5.1. [16, Lemma 1.3] Suppose that X is a self-adjoint operator and C is a compact 
operator. If [X, C] is in the trace class, then tr[X, C] = 0.

The proof of Theorem 1.8 will be based on Lemma 5.1, Theorem 3.1 and

Proposition 5.2. Let μ be any Carleson measure supported on M . Then for every pair of 
f, g ∈ C[z1, ̄z1, . . . , zn, ̄zn], the double commutator

[M̂f , [M̂g, T̂μ]]

belongs to the class C+
2d/(1+ε) for every 0 < ε < 1/n.

Most of the work in this section is taken up by the proof of Proposition 5.2, which 
requires quite a few steps. We begin with some basic estimates on Bn.

Lemma 5.3. (1) There is a constant C1 such that

∫
Bn

dv(ζ)
|1 − 〈w, ζ〉|n|1 − 〈z, ζ〉|n ≤ C1

|1 − 〈w, z〉|n−1

(
1 + log 1

1 − max{|w|, |z|}

)

for all w, z ∈ Bn.
(2) There is a constant C2 such that

∫
Bn

dv(ζ)
|1 − 〈w, ζ〉|n+(1/2)|1 − 〈z, ζ〉|n+(1/2) ≤ C2

|1 − 〈w, z〉|n
(

1 + log 1
1 − max{|w|, |z|}

)

for all w, z ∈ Bn.

Proof. Given any w, z ∈ Bn, define

A = {ζ ∈ Bn : |1 − 〈w, ζ〉| ≥ (1/4)|1 − 〈w, z〉|} and

B = {ζ ∈ Bn : |1 − 〈z, ζ〉| ≥ (1/4)|1 − 〈w, z〉|}.

By [18, Proposition 5.1.2], the triangle inequality

|1 − 〈a, b〉|1/2 ≤ |1 − 〈a, c〉|1/2 + |1 − 〈b, c〉|1/2

holds for all a, b, c ∈ Bn. Therefore A ∪B = Bn. Obviously,
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∫
A

dv(ζ)
|1 − 〈w, ζ〉|n|1 − 〈z, ζ〉|n ≤ 4n−1

|1 − 〈w, z〉|n−1

∫
A

dv(ζ)
|1 − 〈w, ζ〉||1 − 〈z, ζ〉|n .

By [18, Proposition 1.4.10] and Hölder’s inequality,

∫
dv(ζ)

|1 − 〈w, ζ〉||1 − 〈z, ζ〉|n ≤ C

(
1 + log 1

1 − |w|

) 1
n+1

(
1 + log 1

1 − |z|

) n
n+1

.

Combining these two estimates, we obtain
∫
A

dv(ζ)
|1 − 〈w, ζ〉|n|1 − 〈z, ζ〉|n ≤ 4n−1C

|1 − 〈w, z〉|n−1

(
1 + log 1

1 − max{|w|, |z|}

)
.

Obviously, this argument also works for the integral over B. Since A ∪ B = Bn, this 
proves (1). The proof of (2) is similar and will be omitted. �

Recall that Mk was defined by (3.3).

Lemma 5.4. There is a c ≥ 1 such that if D(z, 2) ∩Mk �= ∅ for some k ≥ 0, then

1 − 2−2(k−c) ≤ |z| ≤ 1 − 2−2(k+c).

Proof. This is a special case of Lemma 2.3(1). �
Lemma 5.5. Let c be the same as in Lemma 5.4. There is a 0 < β0 < ∞ such that for 
z, w ∈ Bn and k ≥ 0, if the conditions β(z, w) ≥ β0, |z| ≤ 1 − 2−2(k+c) and |w| ≤
1 − 2−2(k+c) are satisfied, then |1 − 〈z, w〉| ≥ 2−2k × 3 × 22c.

Proof. By the definition of the Bergman metric, these conditions imply

β0 ≤ 1
2 log 4

1 − |ϕz(w)|2 = 1
2 log 4|1 − 〈z, w〉|2

(1 − |z|2)(1 − |w|2) ≤ 1
2 log 4|1 − 〈z, w〉|2

(2−2(k+c))2
.

From this we obtain

(1/2)eβ02−2(k+c) ≤ |1 − 〈z, w〉|.

Thus it suffices to pick β0 such that (1/2)eβ02−2c ≥ 22c × 3. �
By what we saw in Section 3, it is obvious that to prove Proposition 5.2, we need to 

again consider the discrete sum given by (3.2). But here we need to further decompose 
that sum. First of all, by (3.1) and [21, Lemma 2.2.], the set L admits a finite partition

L = L1 ∪ · · · ∪ L�
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such that for each r ∈ {1, . . . , �}, the conditions w, z ∈ Lr and z �= w imply β(z, w) > β0, 
where β0 is the constant in Lemma 5.5.

Recall from Section 3 that L = {zi}∞i=1. In particular, recall that Δi ⊂ D(zi, 2). Let 
S denote the unit sphere {z ∈ C

n : |z| = 1}. For every i ∈ F , there is a ξi ∈ S such that

zi = |zi|ξi. (5.1)

Let F , wi ∈ Δi ∩ M , etc, be the same as in Lemma 3.2. For every pair of k ≥ 0 and 
r ∈ {1, . . . , �}, we define

Γk,r = {wi : i ∈ F, zi ∈ Lr, 1 − 2−2k ≤ |wi| < 1 − 2−2(k+1)}.

Lemma 5.6. There is a constant C5.6 such that for every pair of k ≥ 0 and r ∈ {1, . . . , �}, 
every w ∈ Γk,r, and every 0 ≤ j ≤ k + 1, we have

card{ζ ∈ Γk,r : |1 − 〈w, ζ〉| ≤ 22j · 2−2k} ≤ C5.6(22j)n.

Proof. Consider any w �= w′ in Γk,r. Then there are i, i′ ∈ F such that w ∈ Δi ⊂ D(zi, 2)
and w′ ∈ Δi′ ⊂ D(zi′ , 2). Recalling how the sum was defined in (3.2), the condition w �=
w′ implies i �= i′. Since zi, zi′ ∈ Lr, we have β(zi, zi′) > β0. Also, since w ∈ D(zi, 2) ∩Mk

and w′ ∈ D(zi′ , 2) ∩Mk, applying Lemma 5.4, we have

1 − 2−2(k−c) ≤ |zi| ≤ 1 − 2−2(k+c) and 1 − 2−2(k−c) ≤ |zi′ | ≤ 1 − 2−2(k+c).

Applying Lemma 5.5, we obtain

|1 − 〈zi, zi′〉| ≥ 2−2k × 3 × 22c = 2−2(k−c) × 3.

Recalling (5.1), we have

1 − |zi| + 1 − |zi′ | + |1 − 〈ξi, ξi′〉| ≥ |1 − 〈zi, zi′〉| ≥ 2−2(k−c) × 3.

Recapping the above, we obtain

|1 − 〈ξi, ξi′〉| ≥ 2−2k (5.2)

if w ∈ Δi ⊂ D(zi, 2), w′ ∈ Δi′ ⊂ D(zi′ , 2), w �= w′, and w, w′ ∈ Γk,r.
On the other hand, for ζ ∈ Δh ⊂ D(zh, 2), h ∈ F , we have

1
2 log 1

1 − |ϕzh(ζ)|2 ≤ β(ζ, zh) < 2,

which leads to
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|1 − 〈ζ, zh〉|2
(1 − |zh|2)(1 − |ζ|2) ≤ e4.

If we also have ζ ∈ Mk, then Lemma 5.4 gives us 1 − |zh|2 ≤ 2 × 2−2(k−c), consequently

|1 − 〈ζ, zh〉|2 ≤ 4e422c(2−2k)2.

It is easy to see that for 0 ≤ ρ ≤ 1 and complex number a with |a| ≤ 1, we have

|1 − a| ≤ 2|1 − ρa|.

We can write ζ = |ζ|ξ for some ξ ∈ S. Thus

|1 − 〈ξ, ξh〉| ≤ 2|1 − |ζ||zh|〈ξ, ξh〉| = 2|1 − 〈ζ, zh〉| ≤ C12−2k, (5.3)

where C1 = 4e22c. Now suppose that |1 − 〈w, ζ〉| ≤ 22j · 2−2k, where w is the same as in 
the first paragraph of the proof. Write w = |w|η, where η ∈ S. Then

|1 − 〈η, ξ〉| ≤ 2|1 − 〈w, ζ〉| ≤ 2 × 22j × 2−2k. (5.4)

Since w ∈ Δi ⊂ D(zi, 2), (5.3) implies

|1 − 〈η, ξi〉| ≤ C12−2k. (5.5)

Since d(x, y) = |1 − 〈x, y〉|1/2 is a metric on S, from (5.3), (5.4) and (5.5) we obtain

|1 − 〈ξi, ξh〉| ≤
(
C

1/2
1 + 2j+1 + C

1/2
1

)22−2k ≤ C222j2−2k.

Combining this with (5.2), by a standard estimate using the spherical measure on S [18, 
Proposition 5.1.4], the number of such ξh’s does not exceed C3(C222j)n = C5.6(22j)n. �

For every pair of k ≥ 0 and r ∈ {1, . . . , �}, define the operator

Tk,r =
∑

w∈Γk,r

cwkw ⊗ kw,

where cw = ci (see Lemma 3.2) if w = wi for some i ∈ F . Let f, g ∈ C[z1, ̄z1, . . . , zn, ̄zn]
be given. We will now estimate the operator norm ‖[M̂f , [M̂g, Tk,r]]‖, which is the main 
difficulty in the proof of Proposition 5.2. Obviously, we can decompose the double com-
mutator in the form

[M̂f , [M̂g, Tk,r]] = A1 −A2 −A3 + A4,

where
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A1 =
∑

w∈Γk,r

cw{(f − f(w))(g − g(w))kw} ⊗ kw,

A2 =
∑

w∈Γk,r

cw{(f − f(w))kw} ⊗ {(g − g(w))kw},

A3 =
∑

w∈Γk,r

cw{(g − g(w))kw} ⊗ {(f − f(w))kw} and

A4 =
∑

w∈Γk,r

cwkw ⊗ {(g − g(w))(f − f(w))kw}.

Since f, g are arbitrary in C[z1, ̄z1, . . . , zn, ̄zn], A∗
4 is just another A1, and A3 another A2. 

Thus it suffices to estimate ‖A1‖ and ‖A2‖.
To do that, pick an orthonormal set {ew : w ∈ Γk,r}. We then factor A1 and A2 in 

the form A1 = XY ∗ and A2 = Z1Z
∗
2 , where

X =
∑

w∈Γk,r

{(f − f(w))(g − g(w))kw} ⊗ ew,

Y =
∑

w∈Γk,r

cwkw ⊗ ew,

Z1 =
∑

w∈Γk,r

cw{(f − f(w))kw} ⊗ ew and

Z2 =
∑

w∈Γk,r

{(g − g(w))kw} ⊗ ew.

We have

X∗X =
∑

w,z∈Γk,r

h(z, w)ew ⊗ ez,

where

h(z, w) = 〈(f − f(z))(g − g(z))kz, (f − f(w))(g − g(w))kw〉.

Since {ew : w ∈ Γk,r} is an orthonormal set and |h(w, z)| = |h(z, w)|, by the simplest 
version of the Schur test, we have

‖X∗X‖ ≤ sup
w∈Γk,r

∑
z∈Γk,r

|h(z, w)|.

Lemma 5.7. For any 0 < ε < 1/n, there is a constant C that depends only on ε, n, M
and f, g ∈ C[z1, ̄z1, . . . , zn, ̄zn] such that
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sup
w∈Γk,r

∑
z∈Γk,r

|h(z, w)| ≤ C2−2(1+ε)k.

Consequently, ‖X‖ = ‖X∗X‖1/2 ≤ C1/22−(1+ε)k.

Proof. A key to this estimate is the following fact that we proved at the end of the proof 
of Proposition 3.5: There is a C such that card{wi : wi ∈ Mk} ≤ C22dk. Since d ≤ n − 1, 
this implies that

card(Γk,r) ≤ C22(n−1)k. (5.6)

Let f, g ∈ C[z1, ̄z1, . . . , zn, ̄zn]. Since f satisfies a Lipschitz condition on Bn, we have

|f(ζ) − f(w)| ≤ L|ζ − w| ≤
√

2L|1 − 〈ζ, w〉|1/2 (5.7)

for ζ, w ∈ Bn. A similar inequality holds for g. Thus for w ∈ Γk,r we have

|(f(ζ) − f(w))(g(ζ) − g(w))kw(ζ)| ≤ C1
(1 − |w|2)(n+1)/2

|1 − 〈ζ, w〉|n ≤ C22−(n+1)k

|1 − 〈ζ, w〉|n .

Therefore

|h(z, w)| ≤ C2
22−2(n+1)k

∫
dv(ζ)

|1 − 〈w, ζ〉|n|1 − 〈z, ζ〉|n

for w, z ∈ Γk,r. Applying Lemma 5.3(1), we obtain

|h(z, w)| ≤ C3(k + 1)2−2(n+1)k

|1 − 〈w, z〉|n−1 .

Hence for each w ∈ Γk,r,

∑
z∈Γk,r

|h(z, w)| ≤ C3(k + 1)2−2k
∑

z∈Γk,r

2−2nk

|1 − 〈w, z〉|n−1

= C3(k + 1)2−2k
k+1∑
j=0

∑
z∈Gj

2−2nk

|1 − 〈w, z〉|n−1 ,

where

G0 = {z ∈ Γk,r : |1 − 〈w, z〉| ≤ 2−2k} and

Gj = {z ∈ Γk,r : 22(j−1) · 2−2k < |1 − 〈w, z〉| ≤ 22j · 2−2k}, 1 ≤ j ≤ k + 1.

For z ∈ G0, |1 − 〈w, z〉| ≥ 1 − |z| ≥ 2−2(k+1). Thus 2−2k/|1 − 〈w, z〉| ≤ 22 if z ∈ G0. 
Hence for every 0 ≤ j ≤ k + 1 we have
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2−2k

|1 − 〈w, z〉| ≤ 2−2(j−1) if z ∈ Gj . (5.8)

Writing C4 = 22(n−1)C3, we now have

∑
z∈Γk,r

|h(z, w)| ≤ C4(k + 1)2−2k · 2−2k
k+1∑
j=0

2−2(n−1)jcard(Gj). (5.9)

We will show that

2−2k
k+1∑
j=0

2−2(n−1)jcard(Gj) ≤ C52−(2/n)k. (5.10)

Then, combining (5.9) and (5.10), we see that the lemma holds for any 0 < ε < 1/n.
To prove (5.10), let k0 be the largest integer satisfying the condition k0 ≤ (n − 1)k/n. 

Then

2−2k
k+1∑
j=0

2−2(n−1)jcard(Gj) = I + J,

where

I = 2−2k
k0∑
j=0

2−2(n−1)jcard(Gj) and J = 2−2k
k+1∑

j=k0+1

2−2(n−1)jcard(Gj).

For I, we apply Lemma 5.6, which tells us that card(Gj) ≤ C622nj . Thus

I ≤ C62−2k
k0∑
j=0

2−2(n−1)j22nj ≤ C72−2k22k0 ≤ C72−(2/n)k.

For J , we use (5.6), which implies that card(Gj) ≤ C22(n−1)k. Hence

J ≤ C2−2k22(n−1)k
∞∑

j=k0+1

2−2(n−1)j ≤ C82−2k22(n−1)k2−2(n−1)(k0+1).

By definition, k0 + 1 > (n − 1)k/n. Therefore

J ≤ C82−2k22(n−1)k2−2(n−1)(n−1)k/n = C82−(2/n)k.

Thus I + J ≤ (C7 + C8)2−(2/n)k, which proves (5.10) and completes the proof of the 
lemma. �
Lemma 5.8. The norm ‖Y ‖ is bounded by a constant that depends only on n, M and μ.
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Proof. Obviously,

Y ∗Y =
∑

w,z∈Γk,r

cwcz〈kz, kw〉ew ⊗ ez.

Recall from Lemma 3.2 that cw is bounded by a C determined by μ. Using the easy 
version of the Schur test mentioned earlier, we obtain

‖Y ∗Y ‖ ≤ C2 sup
w∈Γk,r

∑
z∈Γk,r

|〈kz, kw〉|.

For w, z ∈ Γk,r, we have

|〈kz, kw〉| ≤
2n+1 · 2−2(n+1)k

|1 − 〈w, z〉|n+1 . (5.11)

Given a w ∈ Γk,r, let Gj , 0 ≤ j ≤ k + 1, be the same as in the proof of Lemma 5.7. 
Combining (5.11) with (5.8), we have

∑
z∈Γk,r

|〈kz, kw〉| =
k+1∑
j=0

∑
z∈Gj

|〈kz, kw〉| ≤ 2n+1
k+1∑
j=0

2−2(n+1)(j−1)card(Gj).

By Lemma 5.6, we have card(Gj) ≤ C122nj for all 0 ≤ j ≤ k + 1. Thus

∑
z∈Γk,r

|〈kz, kw〉| ≤ C123(n+1)
k+1∑
j=0

2−2(n+1)j22nj ≤ 2C123(n+1).

This completes the proof. �
Lemma 5.9. For any δ > 0, there is a C that depends only on δ, n, M , μ and f such 
that ‖Z1‖ ≤ C2−(1−δ)k. A similar estimate holds for ‖Z2‖.

Proof. Writing ψ(z, w) = 〈(f − f(z))kz, (f − f(w))kw〉, we have

Z∗
1Z1 =

∑
w,z∈Γk,r

cwczψ(z, w)ew ⊗ ez. (5.12)

Let f ∈ C[z1, ̄z1, . . . , zn, ̄zn]. Recalling (5.7), for w ∈ Γk,r, we have

|(f(ζ) − f(w))kw(ζ)| ≤ C1
(1 − |w|2)(n+1)/2

|1 − 〈ζ, w〉|n+(1/2) ≤ C22−(n+1)k

|1 − 〈ζ, w〉|n+(1/2) .

Therefore
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|ψ(z, w)| ≤ C2
22−2(n+1)k

∫
dv(ζ)

|1 − 〈w, ζ〉|n+(1/2)|1 − 〈z, ζ〉|n+(1/2)

for w, z ∈ Γk,r. Applying Lemma 5.3(2), we obtain

|ψ(z, w)| ≤ C3(k + 1)2−2(n+1)k

|1 − 〈w, z〉|n .

Recalling (5.8) again, for each w ∈ Γk,r,

∑
z∈Γk,r

|ψ(z, w)| =
k+1∑
j=0

∑
z∈Gj

|ψ(z, w)| ≤ C3(k + 1)2−2k
k+1∑
j=0

2−2n(j−1)card(Gj).

Another application of Lemma 5.6 then leads to
∑

z∈Γk,r

|ψ(z, w)| ≤ C4(k + 1)22−2k,

w ∈ Γk,r. Again, |ψ(z, w)| = |ψ(w, z)|. Thus by (5.12) and the Schur test, we have 
‖Z∗

1Z1‖ ≤ C2C4(k + 1)22−2k, which implies the conclusion of the lemma. �
Corollary 5.10. For any 0 < ε < 1/n, there is a C that depends only on ε, n, M and f, g
∈ C[z1, ̄z1, . . . , zn, ̄zn] such that ‖[M̂f , [M̂g, Tk,r]]‖ ≤ C2−(1+ε)k.

Proof. By Lemmas 5.7 and 5.8, we have ‖A1‖ ≤ ‖X‖ · ‖Y ‖ ≤ C12−(1+ε)k · C2. Take 
δ > 0 small enough so that 2(1 − δ) ≥ 1 + ε. Then by Lemma 5.9 we have ‖A2‖ ≤
‖Z1‖‖Z2‖ ≤ (C32−(1−δ)k)2 ≤ C2

32−(1+ε)k. Similar estimates respectively hold for ‖A4‖
and ‖A3‖. Since A1 −A2 −A3 + A4 = [M̂f , [M̂g, Tk,r]], our conclusion follows. �
Proof of Proposition 5.2. For each k ≥ 0, denote

Γk = {wi : i ∈ F, 1 − 2−2k ≤ |wi| < 1 − 2−2(k+1)},

where F and wi are the same as in Lemma 3.2. Then define

Tk =
∑
w∈Γk

cwkw ⊗ kw.

Given 0 < ε < 1/n, Corollary 5.10 tells us that ‖[M̂f , [M̂g, Tk,r]]‖ ≤ C2−(1+ε)k for all 
k ≥ 0 and r ∈ {1, . . . , �}. Obviously, Tk = Tk,1 + · · · + Tk,�. Hence

‖[M̂f , [M̂g, Tk]]‖ ≤ �C2−(1+ε)k.

By the argument given at the end of the proof of Proposition 3.5, we have card(Γk) ≤
C122dk. Therefore
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rank([M̂f , [M̂g, Tk]]) ≤ 4card(Γk) ≤ 4C122dk.

Applying Lemma 2.9, we have

‖[M̂f , [M̂g, T ]]‖+
2d/(1+ε) ≤ �C(1 + 4C1)B(1 + ε, 2d), (5.13)

where

T =
∞∑
k=0

Tk =
∞∑
k=0

∑
w∈Γk

cwkw ⊗ kw =
∑
i∈F

cikwi
⊗ kwi

.

Lemma 3.2 tells us that T̂μ is in the weak closure of the convex hull of such T ’s. By 
Lemma 2.8, from (5.13) we deduce ‖[M̂f , [M̂g, T̂μ]]‖+

2d/(1+ε) ≤ �C(1 + 4C1)B(1 + ε, 2d). 
In particular, [M̂f , [M̂g, T̂μ]] ∈ C+

2d/(1+ε) as promised. �
Proposition 5.11. For f, g ∈ C[z1, ̄z1, . . . , zn, ̄zn], the double commutator

[M̂f , [M̂g, Q]]

belongs to the class C+
2d/(1+ε) for every 0 < ε < 1/n.

Proof. By Theorem 1.9, there exist a Carleson measure μ on M and 0 < c ≤ C < ∞
for which the operator inequality cQ ≤ T̂μ ≤ CQ holds on L2(Bn). This means that 
the spectrum of T̂μ is contained in {0} ∪ [c, C], and that the spectral projection of T̂μ

corresponding to the interval [c, C] equals Q.
Now let Γ be a simple Jordan curve in C\({0} ∪ [c, C]) whose winding number about 

every x ∈ [c, C] is one and whose winding number about 0 is zero. By the above paragraph 
and the Riesz functional calculus, we have

Q = 1
2πi

∫
Γ

(λ− T̂μ)−1dλ.

Therefore for any f, g ∈ C[z1, ̄z1, . . . , zn, ̄zn],

[M̂f , [M̂g, Q]] = 1
2πi

∫
Γ

[M̂f , [M̂g, (λ− T̂μ)−1]]dλ = I1 + I2 + I3,

where

I1 = 1
2πi

∫
Γ

(λ− T̂μ)−1[M̂f , T̂μ](λ− T̂μ)−1[M̂g, T̂μ](λ− T̂μ)−1dλ,

I2 = 1
2πi

∫
(λ− T̂μ)−1[M̂f , [M̂g, T̂μ]](λ− T̂μ)−1dλ and
Γ
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I3 = 1
2πi

∫
Γ

(λ− T̂μ)−1[M̂g, T̂μ](λ− T̂μ)−1[M̂f , T̂μ](λ− T̂μ)−1dλ.

For every 0 < ε < 1/n, Proposition 5.2 gives us I2 ∈ C+
2d/(1+ε). It follows from Theo-

rem 3.1 that I1, I3 ∈ Cp for every p > d. Hence [M̂f , [M̂g, Q]] ∈ C+
2d/(1+ε), 0 < ε < 1/n. �

Proposition 5.12. Let f, g, h ∈ C[z1, ̄z1, . . . , zn, ̄zn].
(1) If d ≥ 2, then the double commutator [Qf , [Qg, Qh]] belongs to the Schatten class Cp
for every p > 2nd/(2n + 1).
(2) If d = 1, then the double commutator [Qf , [Qg, Qh]] belongs to the trace class.

Proof. Consider any 1 < r < ∞ and 1 < s < ∞, and define t by the relation 1/t = (1/r)
+ (1/s). For A ∈ Cr and B ∈ Cs, we have AB ∈ Ct if t > 1 and AB ∈ C1 if t ≤ 1.

Now define p0 by the formula 1/p0 = (1/2d) +(1 +(1/n))/(2d). Then p0 = 2nd/(2n +1). 
We have p0 > 1 if d ≥ 2, and p0 < 1 if d = 1.

For any f, g, h ∈ C[z1, ̄z1, . . . , zn, ̄zn], simple algebra shows that

[Qf , [Qg, Qh]] = Q(M̂f [Qg, Qh] − [Qg, Qh]M̂f )Q = Q[M̂f , [Qg, Qh]]Q

= Q[M̂f , [Q, M̂h](1 −Q)[M̂g, Q] − [Q, M̂g](1 −Q)[M̂h, Q]]Q.

Then note that

[M̂f ,[Q, M̂h](1 −Q)[M̂g, Q]]

= [M̂f , [Q, M̂h]](1 −Q)[M̂g, Q] − [Q, M̂h][M̂f , Q][M̂g, Q]

+ [Q, M̂h](1 −Q)[M̂f , [M̂g, Q]]

= T1 − T2 + T3.

By Theorem 3.6 and Proposition 5.11, we have T1, T3 ∈ Cp for every p > p0 = 2nd/
(2n + 1) in the case d ≥ 2, and T1, T3 ∈ C1 in the case d = 1. Also, Theorem 3.6 tells 
us that T2 ∈ Cp for every p > 2d/3 if d ≥ 2 and T2 ∈ C1 if d = 1. This shows that the 
operator [M̂f , [Q, M̂h](1 −Q)[M̂g, Q]] belongs to Cp for every p > 2nd/(2n + 1) or to C1

depending on d ≥ 2 or d = 1. The same is true for [M̂f , [Q, M̂g](1 − Q)[M̂h, Q]]. This 
proves the proposition. �
Proposition 5.13. Let ν ≥ d. Then for any f, g, f1, f2, . . . , f2ν ∈ C[z1, ̄z1, . . . , zn, ̄zn], the 
operator

[Qf , Qg[Qf1 , Qf2 , . . . , Qf2ν ]]

is in the trace class with zero trace.
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Proof. First of all, it follows from Theorem 3.6 and Lemma 2.1 that if ϕ, ψ ∈
C[z1, ̄z1, . . . , zn, ̄zn], then the commutator [Qϕ, Qψ] belongs to Cp for every p > d.

Let f, g, f1, f2, . . . , f2ν ∈ C[z1, ̄z1, . . . , zn, ̄zn] be given. For convenience, denote

Y = [Qf1 , Qf2 , . . . , Qf2ν ].

As we mentioned in the proof of Proposition 4.3, there is a subset C of the symmetric 
group S2ν such that

Y =
∑
σ∈C

sgn(σ)[Qfσ(1) , Qfσ(2) ] · · · [Qfσ(2ν−1) , Qfσ(2ν) ].

Since ν ≥ d, we have Y ∈ Cp for every p > 1. Therefore [Qf , Qg]Y ∈ C1.
Next we show that [Qf , Y ] ∈ C1. If d = 1, then this is a direct consequence of 

Proposition 5.12(2). Suppose that d ≥ 2. In this case, Proposition 5.12(1) tells us that 
[Qf , [Qfσ(2i−1) , Qfσ(2i) ]] ∈ Cp for every p > 2nd/(2n + 1), where 1 ≤ i ≤ ν and σ ∈ C. 
Since 2nd/(2n + 1) < d, combining this with the Schatten-class membership of every 
[Qfσ(2j−1) , Qfσ(2j) ], j �= i, mentioned in the first paragraph, we see that [Qf , Y ] ∈ C1.

Combining the last two paragraphs, we conclude that

[Qf , QgY ] = [Qf , Qg]Y + Qg[Qf , Y ] ∈ C1.

Since f̄ also belongs to C[z1, ̄z1, . . . , zn, ̄zn], we similarly have [Q∗
f , QgY ] = [Qf̄ , QgY ] ∈

C1. Since Y is compact, it follows from Lemma 5.1 that

tr[Qf + Q∗
f , QgY ] = 0 = tr[Qf −Q∗

f , QgY ].

From this we obtain tr[Qf , QgY ] = 0 as promised. �
Proof of Theorem 1.8. Let m > d and f1, f2, . . . , f2m ∈ C[z1, ̄z1, . . . , zn, ̄zn]. Since 2m is 
even, Proposition 1.1 in [16] tells us that the antisymmetric sum [Qf1 , Qf2 , . . . , Qf2m ] is 
a linear combination of terms of the form

[Qfσ(1) , Qfσ(2) [Qfσ(3) , Qfσ(4) , · · · , Qfσ(2m) ]],

where σ runs over a certain subset D of the symmetric group S2m. Taking ν = m − 1, 
Theorem 1.8 is a direct consequence of Proposition 5.13. �
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