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Highlights

• A thorough revision of the mass extinction science is provided.
• An overview of relevant models is provided with a brief outline of their use for modelling mass extinctions.
• It is argued that mass extinction develops through a cascade of processes of different origin.
• Several missing links and extinction pathways have been identified.
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Abstract

Extinction of species, and even clades, is a normal part of the macroevolutionary process.
However, several times in Earth history the rate of species and clade extinctions increased dra-
matically compared to the observed “background” extinction rate. Such episodes are global,
short-lived, and associated with substantial environmental changes, especially to the carbon
cycle. Consequently, these events are dubbed “mass extinctions” (MEs). Investigations sur-
rounding the circumstances causing and/or contributing to mass extinctions are on-going, but
consensus has not yet been reached, particularly as to common ME triggers or periodicities.
In part this reflects the incomplete nature of the fossil and geologic record, which – although
providing significant information about the taxa and paleoenvironmental context of MEs – is
spatiotemporally discontinuous and preserved at relatively low resolution. Mathematical models
provide an important opportunity to potentially compensate for missing linkages in data avail-
ability and resolution. Mathematical models may provide a means to connect ecosystem scale
processes (i.e., the extinction of individual organisms) to global scale processes (i.e., extinction
of whole species and clades). Such a view would substantially improve our understanding not
only of how MEs precipitate, but also how biological and paleobiological sciences may inform
each other. Here we provide suggestions for how to integrate mathematical models into ME
research, starting with a change of focus from ME triggers to organismal kill mechanisms since
these are much more standard across time and spatial scales. We conclude that the advan-
tage of integrating mathematical models with standard geological, geochemical, and ecological
methods is great and researchers should work towards better utilization of these methods in
ME investigations.
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1 Introduction

Mathematical models have long been successfully used to elucidate the processes behind pat-
terns in biological and ecological systems [58, 81, 115, 151, 173, 263]. However, rarely have
these methods been applied to broader scale phenomena such as major increases and decreases
in global taxonomic diversity over geologic timescales. As we argue below, understanding phe-
nomena of this ilk can strongly benefit from the new perspective provided by mathematical
models. Here we focus specifically on the record, patterns, processes, and substantial remaining
questions associated with Mass Extinction Events.

The phenomenon of Mass Extinctions (MEs) in Earth history has been a challenging and
fascinating topic for many generations of scientists [233]. Rigorous, quantitative research into
extinction mechanisms did not begin until the 1980s. This resulted from the landmark publi-
cation of Alvarez et al. [12], who hypothesized that an extraterrestrial impact was the cause
of the Cretaceous-Paleogene (K-Pg) ME event 66 million years ago. Following this, a surge of
scientific interest brought the topic to the attention of the wider scientific community and the
public, with the recognition of the “Big Five”: five MEs and a host of lesser biodiversity crises
during the last 541 Myrs of Earth history (the Phanerozoic Eon) when the majority of species
were wiped out over geologically short intervals of time [22, 244]; see Fig. 1. The recognition
that anthropogenic climate and environmental change is likely driving modern extinction rates
to levels well above background, and possibly approaching those of ancient mass extinctions has
added strong societal concern for this subject [25, 118].

Paleobiological research into MEs over the last forty years has made considerable progress in
understanding their causes and consequences. Yet, there are many aspects of these events that
remain poorly understood. For instance: what are the temporal scales of extinctions and associ-
ated phenomena? It has been convincingly shown that mass extinction of marine and terrestrial
biota is usually associated with a perturbation of the global carbon cycle [111, 288, 325]. How-
ever, the duration, magnitude, frequency, and even direction of this perturbation – seemingly
critical to determine whether the consequence is a mass extinction or part of the ‘background’
turnover of species – is not consistent across events [256]. This makes even distinguishing pe-

Figure 1: Phanerozoic biodiversity curves. (A) after Sepkoski [274] compilation based on raw data analysis
of marine animal genera. (B) after Alroy et al. [11] compilation based on sample standardized data anal-
ysis. Arrows indicate mass extinction events observable in the respective curves. Cm = Cambrian, O =
Ordovician, S = Silurian, D = Devonian, C = Carboniferous, P = Permian, Tr = Triassic, J = Jurassic, K
= Cretaceous, Pg = Paleogene, N = Neogene. Modified from [2].
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riods of elevated extinction from background levels challenging [326]. The response of global
ecosystems, populations and/or communities, and individual species to any environmental per-
turbation is often nonlinear and may have its own characteristic timescale, e.g., see [224, 305].
The temporal resolution of paleo-data is rarely better than a 100 Kyrs timescale, whereas extinc-
tion occurs within a population as the last individual (or mating pair) dies. Consequently, there
is a substantial gap in our understanding of the temporal scaling of MEs from the individuals
that die to the species and clades that go extinct.

In spite of the broad array of tools and high-precision methods that are currently utilized by
paleobiologists, geochemists and geologists, the standard approaches of empirical and statistical
techniques have not provided a way forward to link these scaled phenomena. Specific mechan-
sisms and scenarios of extinction often remain obscure. This is in part a matter of the geologic
record, which has lower spatial and temporal resolution with increasing age. The consequences
include more time-averaging and spatial discontinuities that both contribute to increased uncer-
tainty in the age and geographic structure of organisms/species and the environments they lived
in. The spatiotemporal incompleteness of the fossil archive may result from lack of deposition
of sediments in an area, subsequent erosion of deposited sediments, geochemical overprinting of
the rocks by geological processes leading to destruction of archived fossils, lack of exposure of
rock packages, or simply lack of adequate sampling of strata in a given area. While some of these
issues can be mitigated by study design, such as drilling cores to sample buried strata, others
– such as erosion – cannot. These challenges make precise estimation of the actual extinction
magnitude, selectivity, and duration difficult, as well as the Earth system conditions associated
with these events.

Mathematical modelling can help to bridge this gap in our understanding by creating a
‘virtual laboratory’ where specific hypotheses can be tested, and various scenarios investigated,
under controlled conditions [58]. Here we argue that some of the mathematical approaches
that are successfully used in ecology and population dynamics (e.g., networks and food webs,
metapopulation models, population dynamics models, etc.) can be used to address questions
in paleobiology, in particular improving our understanding of mass extinctions. This is not an
entirely new idea (e.g., see [62, 220, 285, 298]), however, very little progress has been made in
the past two decades linking the potential of mathematical models to the processes causing mass
extinction (but see [95, 254]). Here we revisit several relevant modelling techniques and consider
how their application may be instrumental in facilitating further progress in understanding MEs.

2 Mass Extinction: definitions, causes, mechanisms

2.1 Mass Extinction definitions and examples

Despite their recurrence and clear importance in the evolution of life on our planet, no precise
definition of what constitutes a Mass Extinction (ME) is agreed upon in the literature. One of
the most commonly used definitions by Earth scientists is that of Sepkoski [272]:

“A mass extinction is any substantial increase in the amount of extinction (i.e., lineage
termination) suffered by more than one geographically widespread higher taxon during a rela-
tively short interval of geologic time, resulting in an at least temporary decline in their standing
diversity”.

This purposefully vague definition was derived to be flexible in covering the variety of extinc-
tion events recorded in the Phanerozoic fossil record, each of which exhibits differing properties
in rate, magnitude, duration and, importantly, even in driving mechanism (e.g., see Table 1 in

3



[118]). However, because of its ambiguity, a few questions immediately arise: What increase in
mortality rate is “substantial”? What does “relatively short” mean? How should “geographically
widespread” be defined?

To make the above definition more quantitative, several of these parameters have been
generalized: MEs typically show over 70% species extinction occurring over 2 Myrs or less that
affects the global biota (both land and sea, although often with different intensities), and results
in a substantial – Myrs – period of biotic recovery [14, 79, 22, 24, 136, 137, 332]. Depending
on how extinction rates are calculated, this results in upwards of 14 [10] to 18 [22] periods of
“elevated” extinction, each associated with a unique suite of Earth system conditions that are the
basis for the ambiguity in the definition above. They reflect not only the pre-existing conditions
of the Earth system at the time (e.g., plate tectonic configuration, Icehouse vs. Greenhouse
climate regime, sea level), but also differences in extinction “triggers” (asteroids, volcanoes, etc.)
vs. “kill mechanisms” (temperature change , habitat loss, etc.) [158]. For instance, while the
large asteroid impact at the end of the Cretaceous Period in and of itself only killed organisms
in the blast zone, the impact likely triggered global climate change (e.g., changes in temperature
and/or precipitation), changes in incident solar radiation, ocean circulation, nutrient cycling,
etc. – kill mechanisms.

The distinction between extinction triggers and kill mechanisms is not semantic but an
important component of deriving a more rigorous understanding of MEs. Extinction triggers
are defined as factors that initiate the conditions eventually leading to elevated global extinction
[158]. Common hypothesized triggers in the Phanerozoic are events such as the emplacement of
Large Igneous Provinces (LIPs) [37] and large bolide impacts [12]. Mass Extinction triggers set
off a cascade of environmental and ecosystem changes – kill mechanisms – that directly impact
the survival of organisms, populations, species, and communities. Kill mechanisms are thus
defined as factors causing the deaths of organisms and lineages [158]. The Phanerozoic fossil
record suggests that four major kill mechanisms dominate during times of mass extinction:
(1) temperature change (especially associated with warming), (2) ocean acidificiation / acid
rain, (3) ocean anoxia, (4) habitat change. Habitat change is itself a complex kill mechanism
that may involve loss, fragmentation, and/or degradation (either abiotic or biotic, e.g., invasive
species) of habitat at local and regional scales, and plate tectonic configuration at global scales.
Collectively, these can be considered the “Four Horsemen of the Evolutionary Apocalypse.”
Importantly, different triggers may initiate the same or multiple kill mechanisms, e.g., LIPs
often cause temperature change, ocean acidification, acid rain, and ocean anoxia as described
below [37, 63].

From this perspective, we might consider, for example, that the trigger of the end-Permian
ME, which wiped out upwards of 96% of species on Earth (some recent studies estimated
it at a somewhat smaller value of upwards of 80%, cf. [289]), was the emplacement of the
Siberian Traps. Approximately 252 Ma, this LIP erupted over 3,000,000 km3 of lava across
7,000,000 km2 in northern Asia over >100 kyrs [52, 53]. Such massive volcanic outpourings
likely released over 30,000 Gt of carbon into the atmosphere (primarily as CO2 and CH4) as
well as many 1000s of giga-tons of other climate-influencing gases such as sulfates, chlorine and
fluorine compounds [89, 158]. The environmental consequences would have included acid rain,
large-spatial scale decreases in ocean water pH, anoxia, and atmospheric warming. Thus, despite
being triggered by volcanism, the kill mechanisms associated with this event in the marine realm
were temperature change (warming), ocean anoxia (via warming and excess atmospheric CO2),
ocean acidification and acid rain (resulting from increased dissolved CO2 in the ocean and
atmospheric reservoirs), as well as habitat change in the terrestrial realm [127, 147]. Each of
these mechanisms provides a prediction of extinction susceptibility which are well-supported by
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patterns of extinction selectivity in the marine and terrestrial fossil records. For instance, in
the ocean, LIP volcanism is associated with selective extinction of hypercalcifying organisms
and those more susceptible to hypoxia, such as corals, brachiopods, crinoids, and some mollusks
[158]. Many questions still remain, however, in particular about relative timing of extinction in
marine vs. terrestrial settings and the magnitude and relative contributions of warming, anoxia,
acidification and hypercapnia in causing the extinctions [323].

Alternatively, although the trigger of the end-Cretaceous ME, which wiped out 75% of
species2 and all of the non-avian dinosaurs, was most likely an asteroid impact, we have a much
less precise picture of the kill mechanisms involved (at least for those species not in the immediate
vicinity of the impact site). A favored kill mechanism, perhaps summarized as “the darkness”,
involves short-lived cooling (“impact winter”) and trophic collapse associated with the global
spread of impact ejecta, debris, and volatiles from impacted target rocks and consequent decrease
in solar radiation reaching the Earth’s surface [48, 61, 71, 110, 162, 300]. Although there exists
no direct evidence of impact winter or decreased incidence of solar radiation (but see [320]), this
kill mechanism is supported by discovery of impact debris and geochemical markers for volatile
release and biomass burning in deep ocean cores and land-based geological sections [184], as
well as climate modelling of the effects of extensive aerosol release from volatilized surface
rocks (e.g. [61]). It is also indirectly supported by patterns of extinction selectivity. That is,
photosynthesizing species, those that depend on them, and species without a resting stage were
disproportionately likely to go extinct [162, 320]. In spite of recent findings and the progress
made by integrating datasets, the specific kill mechaisms remains a focus of debate and some
controversy [5]. Thus, the end-Cretaceous ME is an example where application of mathematical
modeling may significantly push the field forward, in particular by identifying alternative and/or
most likely kill mechanism(s) resulting from various extinction triggers. This will also lead to
a more rigorous understanding of the ways in which kill mechanisms scale from organismal to
global ecosystem declines.

Notably, all of the “Four Horsemen” are in play in current and predicted future environmental
change [55]. Greenhouse gas inputs (especially those from CO2) have already contributed to
1.19◦C warming since pre-Industrial Revolution averages [138, 222]. This is already being
associated with areas of increasing ocean anoxia [21, 43], decreases in ocean pH [54, 104, 109],
drought, and weather intensification [159, 223]. Moreover, the very immediate, direct effects
of human activities on habitat loss, fragmentation, and degradation are strikingly apparent
in modern population- and species-level health: remarkably, the majority of recent species
extinctions are associated with this kill mechanism alone [44, 85, 91, 329]. Therefore, application
of well-estabished and new modeling approachces that are used to model the effect of habitat
loss in the contemporary ecological context to similar situations in the deep past can be both
useful and insightful.

2.2 Historical context

The phenomenon of Mass Extinction in Earth’s past was first considered by the French zoologist
Georges Cuvier in 1813, based on his studies of Cenozoic (66 million years ago to present) ma-
rine and terrestrial rocks in the Paris Basin, France. Cuvier noted apparent sudden changes in
the fossil record, with many species abruptly disappearing across particular rock layers. He pos-
tulated these were wiped out by sudden extinction events: episodic geological ‘calamities’ that
occurred rapidly following long periods of environmental stasis. In the early-mid 19th century,

2Stanley [289] estimated it as 67% of species and 40% of genera.

5



it was recognized that fossils could be used to correlate rock strata across great distances and
establish a relative geologic time scale [283]. This also led to the first attempts at estimating
past diversity using counts of species in the fossil record. Thus when John Phillips [233] defined
the three main subdivisions of the last 541 million years of Earth history (the Paleozoic, Meso-
zoic, and Cenozoic eras), the boundaries between these intervals were characterized by rapid
changes in the composition of the fossil record and the apparent sudden loss of many animal
groups.

Cuvier’s ‘catastrophist’ approach and the theory of rapid, periodic mass extinction events
fell out of favor in the latter part of the 19th century, following the influential work of the British
geologist Charles Lyell. Lyell advocated a more ‘gradualist’ reading of the rock and fossil record,
with slow natural processes such as erosion responsible for shaping both the Earth’s surface
and evolution of life over millions of years [183]. The gradualist approach also emphasized
‘imperfections’ or erosional breaks in the record of Earth history, whereby “rapid” extinction
events observed in the fossil record were instead interpreted as artifacts of missing time (rock
outcrop) due to erosion or nondeposition. Lyell’s thinking had a huge influence on Charles
Darwin during his formation of the theory of evolution by natural selection, as typified by the
oft-cited quote:

“I look at the geological record as a history of the world imperfectly kept and written in a
changing dialect. Of this history we possess the last volume alone, related only to two or three
countries. Of this volume, only here and there a short chapter has been preserved, and of each
page, only here and there a few lines.” [73].

Mass extinctions (if acknowledged at all) were thus seen as gradual, non-catastrophic, and
Earth-bound events well into the twentieth century. Renewed interest came in the 1960’s, when
researchers such as Norman Newell in the United States and Otto Schindewolf in Germany
used updated quantitative counts of biodiversity through time to argue that mass extinctions
were real events, and separate from a ‘constant’3 level of background extinction [214, 267].
Schindewolf invoked cosmic radiation as the kill mechanism of sudden mass extinctions, while
Newell suggested that sea level changes and habitat loss drove mass extinctions in both marine
and terrestrial realms.

This quantitative approach was expanded in the 1980’s, capitalizing on the interest generated
by Alvarez et al. [12], and resulting from the pioneering statistical work of David Raup and Jack
Sepkoski [242, 244, 245, 271, 272, 273, 276]. This work was based upon an exhaustive database
of the Phanerozoic fossil record of marine families and genera derived from the published litera-
ture (now compiled under the Paleobiology Database, PBDB, https://paleobiodb.org/). Large
dataset approaches clearly demonstrated, for the first time, five distinct periods of biodiver-
sity decline during the Phanerozoic, that were subsequently labeled “The Big 5”, and included
extinction events at the end-Ordovician, late Devonian, end-Permian, end-Triassic, and end-
Cretaceous Periods. Statistical analysis by Raup and Sepkoski [244] and Bambach [22] con-
firmed Newell’s earlier suggestion that these five events represented distinct mass extinctions
which form a quantitatively separate class of events to a lower rate of background extinction.
These data were all based on biodiversity compilations plotted against the geological timescale.
Consequently, they suffer from biases associated with differential sampling intensities for dif-
ferent fossil groups, for geographic localities, and for time periods, as well as biases associated
with differential preservation, variation in taxonomic practice, and varying lengths of geological

3Background extinction rates varied significantly over the Phanerozoic; instead of regarding them as ‘constant’,
Bambach (2006) in identifying mass extinctions looked at a ’relative’ increase in extinction rates as compared to the
specific background rate preceding the event.
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time periods analyzed. Since 2000, work by John Alroy and others (e.g. [11]) has focused on
developing models and sub-sampling techniques that take these issues into account to produce
more accurate global diversity curve estimates.

2.3 Consequences of Mass Extinctions on Macroevolution

Mass extinctions have substantial and observable impacts on macroevolution, although the link-
ages between pattern and process require further study. At the broadest level, mass extinctions
remove species and clades from the global biosphere and substantially sort the morphological
and genetic diversity that exists and may continue to evolve. Mass extinctions result in “win-
ners” and “losers” in the evolutionary game that may or may not be the same species and
clades that were successful during background (non-mass extinction) intervals. Consequently,
the clean slate of ecological and phylogenetic diversity remaining after a mass extinction has led
to substantial global ecological reorganizations, as well as modification of the global evolutionary
trajectory [99, 106, 141, 211].

The classic example of this, is the demise of non-avian dinosaurs at the end-Cretaceous (K-
Pg) mass extinction event. These taxa had dominated terrestrial environments for over 150 Myrs
prior to their extinction and demonstrated little sign of ecological or evolutionary decline prior
to the K-Pg bolide impact [50] (but see [66] for an alternative viewpoint). And yet, following
the K-Pg mass extinction, only small avian dinosaur clades remained to repopulate terrestrial
ecosystems, and thus today, the once majestic dinosaur clade is represented by chickens, doves,
and emus. Beyond this evolutionary change, ecological turnover associated with the K-Pg event
led to the famous replacement of dinosaurs by mammals as the dominant large-bodied terrestrial
clade on Earth today [9, 50, 86, 87, 136, 164].

Notably, there has been a long debate regarding whether mass extinctions are a component of
a ‘normal’ macroevolutionary process [242, 326], or whether they are singular events and with no
underlying universal components. While the paleontological literature tends to treat each mass
extinction events as unique, in particular because of the wide range of suggested triggers, a more
systematic view of extinctions (e.g., relating them to perturbations of the CO2 cycle) makes it
possible to reveal generalities among the phenomenon responsible [253, 256, 257]. This suggests
a movement away from mass extinction triggers and towards investigations into the nature of
mass extinction kill mechanisms. One can hypothesize that it is the kill mechanisms that are
universal, not the triggers, so that the broad variety of triggers lead to mass extinctions through
a smaller number of well-defined kill mechanisms. This is where linkages between population
and community models to regional biome and global environmental models may substantially
contribute to our understanding any general “rules” surrounding the biological consequences
of major Earth system perturbations. New and existing mathematical models can contribute
substantially to this investigation and to the identification of the degree to which mass extinction
occurrence, magnitude, and selectivity may be predictable in our modern world.

2.4 ME triggers, kill mechanisms, and pathways

While understanding of extinction triggers and kill mechanisms have substantially improved in
recent decades, there have been relatively few attempts to understand how these factors interact
to produce mass extinctions. Models will allow us to identify the specific ‘pathways of doom’
from the initiating triggers, to the kill mechanisms that exterminate individuals and populations,
to the accumulated effects of these losses ultimately resulting in substantial decrease in global
biodiversity [32, 37, 38, 55, 327]. Models may also provide insight into how mutually non-
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exclusive triggers and often correlated kill mechanisms may work in combination to produce the
highest levels of extinction [30, 37, 55, 118].

In light of this, here we focus on the four common kill mechanisms (temperature change,
ocean anoxia, acidification, habitat change) identified as drivers of MEs [90]. We attempt to ad-
dress these issues systematically by identifying specific pathways, i.e. linkages from population-
level phenomena to ecosystems to biomes to the global biota. As we believe that mathematical
modeling can be helpful in achieving this, a review of mathematical models that can be used to
simulate the corresponding process and dynamics is the first necessary step; see Section 4.

3 The state of Mass Extinction science

The study of mass extinctions begins with collection of global taxonomic ranges. These data
form the basis of all analyses that may explore topics such as extinction rates through time,
relation of extinction rates to origination rates, potential periodicity in large extinction events,
and what analytical tools are appropriate to test hypotheses using these data. As described
in Section 2.2, the initial collection of global taxon ranges was painstakingly compiled by Jack
Sepkoski in the 1980-90s via summary of existing published literature (the most recent Sepkoski
compendium increased taxonomic resolution from the family to the generic level [274]). Since
that time, paleontological taxonomic ranges have been accrued in large, international databases
(e.g., PBDB), however these are still primarily publication-based and therefore can neglect data
reposited in museum collections.

3.1 Mass Extinction data

Extinction Rates. – Sepkoski’s plot [271] exhibits simple Poissonian statistics that expresses
the probability of a given number of mass extinction events occurring in a fixed interval of
the geological stage. This assumes that these events occur with a known constant mean rate
(extinction rate) and independently of the time since the last event: however it also assumes
that extinctions within a single stage are not independent events [218, 219].

The probability that a certain fraction of the extant species will become extinct in a certain
time interval (or stage) is likely to be described by a power-law [284]. However, other forms
(e.g., exponential) cannot be ruled out, because the width of the error interval appears to be too
large, hence impeding the unique, unambiguous identification of the probability distribution.
A possible way to get around this difficulty is to use a rank/frequency plot for extinction that
is constructed by taking the stratigraphic stages and numbering them in decreasing order of
number of species becoming extinct.

Extinction Periodicity. – An insight into the issue of periodicity of extinction can be made by
calculating the power spectrum of extinction data. In case the spectrum exhibits clear peaks,
the peak corresponding to the lowest frequency defines the extinction period. Attempts to
reveal a periodicity in the timing of extinction events date back to mid-1980s [245, 276]. No
convincing evidence has been found so far and the issue remains open. Fossil data do exhibit
signs of periodicity (suggesting a period of 26 My, e.g. [245, 246]), but there are concerns that
this apparent periodicity may be artificial rather than real, e.g., resulting from the technical
bias in handling the data [295]. Although it does not seem likely that a simple periodic signal is
behind the mass extinction events throughout whole Phanerozoic (in particular, because mass
extinctions were associated with events of entirely different origin, such as LIPs and bolide
impact), fossil data indicate that some sort of ‘regularity’ as a mixture of two, or possibly
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more, signals with a different period may be present [200]. There is also certain evidence that
the timing of mass extinction events is well described by a combination of a periodic signal
with a random process [95]. The hypothetical periodicity (or, more generically, regularity) of
mass extinction events inspired a stream of theoretical research attributing the extinction to
the fluctuations of the Earth orbit [122] or to a generic macroevolution process (e.g., [133]);
however, results remain inconclusive.

The power spectrum of the fossil extinction record can also be used to explore the probability
density function of extinction. However, the accuracy of available data appears insufficient to
make an unambiguous decision about the type of the probability distribution. While such anal-
ysis originally suggested [285] that the spectrum has a 1/f form (i.e. a power-law with exponent
−1), later studies found that the 1/f is superficial rather than real. A better description of the
data is provided by a more complex distribution that is consistent with an exponential form at
low frequencies crossing over to a 1/f2 behavior at high frequencies [156, 219].

Extinction Magnitude. – An alternative approach attempts to reveal a pattern in mass ex-
tinctions disregarding their timing and basing only on their magnitude, e.g., see [333] (especially
Fig. 7) and further references there. When extinction rates are ranked according to their magni-
tude, it appears that all mass extinction events including the Big Five form a smooth, continuous
distribution without any clear transition or change in the distribution shape. The Big Five do
not stand out in any clear way but gradually grade into extinction crises of smaller magnitude.
This apparently contradicts the point of view that the Big Five differ from lesser extinctions, as
the difference seems to be quantitative rather than qualitative. However, the issue as a whole
remains debatable, in particular because of considerable uncertainties related to the analysis
and interepretation of the fossil record (see below).

Origination rates vs. extinction rates. – Origination rates of species are related to extinction
rates. Whereas there is an alternation of peaks of origination and that of extinction, the
correspondence between the two curves is by no means obvious. The distribution of the lifetimes
of taxa (frequency of occurrence vs lifetime) follows the power-law distribution, which can
be shown theoretically using a stochastic theory [215, 220]. Pseudo-extinction (the apparent
extinction of a group of organisms with the survival of modified descendant forms) and paraphyly
(a group of organisms including only some of the descendants of their last common ancestor)
may drastically change the statistics [243, 275], as power-law distribution of living and fossil
species would have different exponent.

Challenges associated with data and statistics. – The accuracy of the extinction dates as-
signed to a species depends on several factors (see Fig. 2), including the species’ preservation
potential, habitat type, and abundance and density of individuals. The latter describes the
Signor-Lipps effect wherein the chances of finding the ’true’ last appearance of a fossil within
a sequence of sedimentary rocks dated to coincide with an extinction/interval of environmental
change increases with how common/abundant that fossil is within that sequence of rocks [281].
While the chances of finding individuals at the last moment of a species’ extinction is very
rare, the probability of finding a fossil further decreases with increased species rarity. Conse-
quently, the last occurrence of a given species is likely to be an earlier date than the actual date
of extinction; this effect is worse for more rarer taxa, those with poor preservation potential,
and those that live in net erosive habitats (e.g., most terrestrial environments). This can be
mitigated to some degree by grouping species into higher taxa to decrease the above effects by
increasing the number of individuals that could be fossilized. Lazarus taxa [98, 140] represent
a different challenge where species have a fossil record prior to and after the extinction event,
but disappear during the event itself; likewise, Elvis taxa describe two very similar taxa, one of
which exists prior to the extinction and the other after the extinction, however, their similarities
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Figure 2: Schematic ‘information flow’ showing how the fossil record of an original life assemblage at a
given locality in space and time is affected (and can be distorted) by a broad variety of factors of different
origins, ranging from the properties of the assemblage itself to social factors that determine the amount of
sampling effort.

may make them difficult to distinguish [88].
A species’ extinction date often corresponds to a geological boundary (e.g., a boundary be-

tween geological Stages, Epochs, or Periods). This is because boundaries in the International
Chronostratigraphic Chart are relative and often defined by the taxa that go extinct at those
boundaries. As a result, the lengths of geological stages are variable. Numerical ages for geo-
logic boundaries, where they exist, are defined by geochronological analyses, usually radiometric
dating of ash beds in the vicinity of the boundary. Since not all boundaries are associated with
volcanic ash beds in all places, stratigraphic correlation techniques, based on taxa (biostratig-
raphy) or sedimentological/geochemical analyses, are required to link numerical ages globally.

Therefore, the computation of extinction rates is complex. Effectively what is needed is a
count of the number of species going extinct per unit time (usually estimated at per one Myrs).
Fossil counts, compiled from published data, field work, and/or international databases, are
conducted at some ranked taxonomic level (e.g., species or genera) for each geological interval
(typically the Stage level). Raw counts are often inaccurate due to the spatial and temporal
biases in fossil deposition and preservation (see Fig. 2 and also Section 3.2 below). Additionally,
thick, heavily mineralized skeletal taxa have higher preservation potential and are therefore over-
represented with respect to thin poorly mineralized or nonmineralized taxa. Large, easily seen
taxa are overrepresented relative to small easily overlooked taxa. Common species are overrepre-
sented with respect to rare species. Taxa that have been extensively studied are overrepresented
relative to those that are poorly studied (the so called monograph effect). Intervals containing
sites of exceptional preservation (known as ‘Lagerstätten’) tend to be overrepresented because
of intense study and the preservation of otherwise poorly preserved taxa. Furthermore, some
counted taxa do not represent biological groups because they are paraphyletic or polyphyletic.

Measuring extinction as a fraction of biodiversity may help to decrease uncertainty in these
data. However, this method does not provide an extinction rate. There are four extinction
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“metrics”: a total number of taxa becoming extinct per stage, percentage of taxa becoming
extinct per stage, number per unit time, and a percentage per unit time [220].

3.2 Limitations of the geologic record

Confounding the ambiguity of defining Mass Extinctions are the realities of a limited geologic
and fossil record. These limitations impact spatial and temporal resolution of the empirical
data, as well as the taxonomic and ecological extent of extinctions. Temporal resolution in
the fossil record is uneven and generally coarse (10s to 100s of thousands of years) [154, 161,
266]. Erosional surfaces and sediment bypass surfaces are time-rich, exaggerating the size and
rate of taxonomic loss, whereas areas of high sedimentation rate may have more complete
temporal archiving, but lower fossil abundances. Because of this, extinction events that are
nearly instantaneous, such as those associated with a bolide impact, may show the same relative
sharpness as events that occur over ecologic, or even geologic, time. Temporal correlation across
large areas can lack precision because correlations are based on fossils that are not globally
distributed and/or lateral change in environments that are temporally coeval are difficult to
track/recognize..

Similarly, the geographic range of extinction can be limited by lack of outcrop exposure
and/or lack of stratigraphic preservation because of erosion and other geological processes. It
is further biased by uneven sampling globally and differential sampling density from different
stratigraphic horizons (e.g., sampling correlated with distance to the nearest pub and car park in
[78]). While it is true that many mass extinction intervals are among the most densely sampled
horizons (especially for the Big 5), this is not true for all mass extinctions because of the limits
of preserved rock record and accessibility of outcrop areas preserving these rocks.

The ecological context of a ME is limited by the complex interplay of sediment accumulation
rate needing to exceed erosional rate, at least locally, to facilitate fossil burial. Consequently,
terrestrial ecosystems are difficult to preserve except in basinal settings where there is net
accumulation of sediment. In marine settings, most frequently sampled fossils were deposited
in shallow settings such as the continental shelf or epicratonic seas. Deeper environments are
less likely to be uplifted and, therefore, accessible for study upon continents. This results in
the vast majority of fossils occurrences recovered from a relatively narrow environmental (and
depositional) setting. Furthermore because of large scale changes in global sea level, some
intervals of extremely high sea level such as the Early Cretaceous (145 Ma) are more easily
sampled than the times of extremely low sea level such as the Early Silurian (445 Ma).

The challenges outlined here have the consequence that losses in biodiversity may result from
any number of underlying causes, some “real” and related to biology, and some that are purely
related to fossil preservation (i.e., taphonomy [84]) and researcher sampling. Since biodiversity
is essentially composed of the input of new taxa (via speciation) minus the effects of taxon losses
(via extinction), biological reasons for large decreases in diversity may reflect: decreases in the
speciation rate of new taxa, increases in the extinction rate of existing taxa, or most likely,
some combination of both. Attempts to tease apart the contributions of changing speciation
versus extinction rates have identified a few large extinctions that seem to primarily reflect
decreasing speciation [23]. Bambach et al. [23] point to two of the “Big Five” mass extinctions
(end-Devonian and end-Triassic) that fit in this category, which they call “Mass Depletions”
(also: Biodiversity Crises [292]) rather than MEs given that the driver of decreased global
biodiversity is lack of speciation, not increased extinction (although see [11] for re-analysis of
the end-Triassic as a true ME).

Taken together, mass extinctions are the result of a complex suite of environmental and
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evolutionary phenomena, overprinted by an equally complex set of taphonomic, sampling and
taxonomic biases. Only so much can be disentangled using raw data derived from the geo-
logic record. Consequently, researchers have relied on statistical modeling techniques to reduce
the complexity and attempt to derive both the direction and magnitude of the contribution of
particular “causal” factors (described in greater detail below). These models are primarily cor-
relational, and therefore could sorely use validation and increased rigor from more mechanistic
mathematical models.

4 Mathematical models, their power and limitations

In the literature on mass extinctions, a mathematical relationship between kill mechanisms and
rate of biodiversity decline is not well characterized. Whatever the specific origin of the distur-
bance that affects the dynamics of a given population, community, or the biosphere as a whole,
it is well known that the response is often highly nonlinear [7, 15, 74, 166, 172, 263] [3, 7, 36, 80,
81, 127]. Population dynamics can be resilient to a change in one factor but sensitive to others.
The sensitivity of the population or community response to an environmental perturbation, as
well as the time scales of the response, can depend on the rate and magnitude of the change in
non-trivial ways, e.g., [121, 202, 224]. The biotic response often shows a threshold-type behavior
where population dynamics is robust to changes of small or medium magnitude, but extremely
sensitive to larger ones. For example, perturbations that bring the population to a tipping point,
such that a small change in an environmental variable or factor can result in large changes in
the population or community, often lead to sudden extinctions. The threshold-type behavior is
widely recognized in ecology, but its relevance to MEs was largely overlooked. Mathematical
models provide an efficient research tool to test for and understand nonlinear effects [6, 83, 308].
In particular, nonlinear feedbacks resulting in cascading/accelerating extinctions and/or tipping
points have been observed in a variety of population dynamics models (e.g., [263, 264]). In this
section, we briefly overview several modeling approaches that have considerable potential to
evolve our understanding of mass extinctions.

4.1 Species-Area Relationship models

Habitat loss is recognized as an important kill mechanism (Horseman of the Evolutionary Apoc-
alypse #4) that can lead to mass extinction in the fossil record [37] and is a prime mechanism
behind extinctions of modern species [44, 91]. Although paleontological studies of geographic
range abound (e.g., [117, 140, 212, 237]), interpretation of the fossil data is difficult given
time-averaging and spatial limitations of geological record (cf. Section 3.2). A mathematical
framework that may help to account for the limited spatial resolution of this record are Species-
Area Relationship (SAR) models [45, 255, 265]: the number of species (say, K) living in a
habitat of area A is known to depend on A as a power-law:

K = bAα, (1)

where b and 0 < α < 1 are coefficients; numerous empirical studies indicated that usually (albeit
not always) 0.15 < α < 0.4 [334].

Relation (1) quantifies the general tendency that a larger habitat contains, on average, more
species than a smaller one, and, more specifically, states that the species increase occurs at a
decelerating rate (i.e. slower than linear). Note that the coefficients in (1) are not universal, in

12



the sense that they may depend on species traits [102] and also are sensitive to the sampling
design (e.g. [225, 265]).

Species-area relationship is one of the best documented models in ecology confirmed and/or
used in numerous empirical studies [46, 67, 185, 255]. Theoretical justifications of SAR are
predominantly based on either the assumption of an equilibrium between the processes of mi-
gration and extinction, cf. [185], or the assumption of random allocation following various
probability distributions [64]. A related stream of theoretical research placed SAR into the
macro-evolutionary context by linking it to speciation [82]. Interestingly, by considering speci-
ation in a heterogeneous, fluctuating environment, this approach, along with the justification of
SAR, also reproduced the power law of extinction times consistent with the fossil record [228].

We mention here that SAR models are often used in the context of island biodiversity,
apparently as a follow-up of the hugely influential study by R.H. MacArthur and E.O. Wilson
[185]. However, application of SAR is by no means restricted to islands or fragmented habitats
and there have been a large number of studies where they were successfully used to quantify
biodiversity of continues habitats at a broad range of spatial scales, e.g. [47, 225]; in particular,
SAR models were applied to fossil data on the continental scale [46, 180].

Now, consider the case where the area of available habitat shrank, as a result of an extinction
triggering event, from the pre-event value A to a new value Â. The corresponding fraction of
the species that went extinct is then estimated as

∆Kext =
K − K̂
K

= 1−

(
Â

A

)α
. (2)

Therefore, the effect of habitat shrinking on biodiversity loss occurs not proportionately
among taxa but, instead, in a nonlinear and self-accelerating way that is particularly evident
when habitat area becomes small. SAR models can provide more accurate estimates of the
magnitude of a mass extinction event, e.g. the number of species that became extinct [57].
Further, it has been shown that interpretation of paleodata can be misleading unless SARs are
taken into account [24].

Once the response of habitat to a given extinction trigger event is known, Eq. (2) links
the number of species extinctions to the magnitude of the environmental disturbance. As an
example, consider the change in the habitat size available to marine species caused by a decrease
in sea level. Because most of marine life is concentrated in coastal areas and continental shelves
(< 200 m water depth), sea level fall is likely to remove shallow marine habitat. It can be shown
that the decrease in habitat area is described by a generalized power-law:

Â

A
∼ Hχ(H), (3)

where H is the change (decrease) in sea level and exponent χ is scale-dependent exponent, its
value being estimated differently for small and large values of H; see Appendix 6.1 for details.
Having substituted Eq. (3) to (2), the fraction of extinct species (compared to the pre-change
number) is described by the inverse power-law of the height of the sea rise with the exponent
αχ.

The utility of SAR models can be tested with case studies in the fossil record with relative
ease, especially those investigating the effects of sea level changes on patterns of global biodi-
versity, e.g. [129, 229]. For example, the Cinncinatti Basin in North America (Late Ordovician
∼445-450 Ma) has a well-characterized geologic and fossil record that shows expansion and
contraction of marine environments over time in response to sea level oscillation. Decades of de-
tailed fossil collections (e.g. [42, 188]) have documented changes in species diversity in response
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to sea level, and the geologic record allows for an estimation of change in marine basin area.
These empirical data could then be compared to predicted species diversity from SAR models,
which could either confirm the quality of existing sampling, and/or support additional sampling
in this area.

4.2 Habitat fragmentation

Habitat loss is one likely consequence of unfavorable environmental changes but not the only
one. Environmental changes of sufficiently large magnitude and duration are also likely to
lead to habitat fragmentation. Importantly, the transformation of a continuous habitat into a
fragmented one is a threshold phenomenon that occurs when the effect of changes exceeds a
certain critical value [309]. During a ‘sudden’ fragmentation, a single large habitat breaks into
several (possibly, many) disconnected fragments or sites. The area of the sites is described by
a certain frequency distribution, typically by a power-law [309]):

g(A) = νA−r, (4)

where ν is a coefficient and the value of the exponent is usually 1 < r < 2. The power-law
distribution of fragments size was shown to work well for forests [260], semiarid vegetation
(shrublands) [206], and salt marshes [324].

As a result of habitat fragmentation, for a community dominated by species with limited
dispersal abilities, a single large community (or population) splits into a number of isolated or
only weakly connected subcommunities (subpopulations). Note that the area A0 of the largest
site that emerged from this fragmentation can be significantly smaller than the area of the
original habitat; their ratio can be estimated as

A0

Ā
∼ (2− r)δ, (5)

where Ā is the area of the habitat before fragmentation occurred and δ is a small factor, δ � 1,
determined by the geometry of specific system (see Appendix 6.2 for details).

Assuming that the number of species supported by each site is described by the same SAR
(1) (i.e., with the same exponent α), the fragmentation will inevitably lead to a corresponding
‘sudden’ sharp decrease in the biodiversity:

K̂

K
= [(2− r)δ]α � 1. (6)

This can also be directly tested with case studies in the fossil record. On a large scale, there is
a long-standing question regarding the influence of tectonic dispersion versus amalgamation on
extinction dynamics, where the former increases habitat fragmentation and the latter decreases
it on a global scale, e.g. [96, 241]. Paired with the geologic record of shallow shelf habitats, the
habitat fragmentation model could be applied to better constrain the contribution of this factor
to mass extinctions. On a smaller scale, the habitat fragmentation model could test the poten-
tial influence of localized habitat fragmentation associated with expansion of oxygen minimum
zones (OMZ). Many periods of elevated extinction in the Phanerozoic are associated with OMZ
expansion where anoxic waters move onto shallow continental shelves. This process causes both
extinctions in shallow water communities that are now anoxic, as well as habitat fragmentation
between shallow and deep water ecosystems, e.g. see [123] and references therein. Changes to
the OMZ have been shown to cause some bizarre patterns of extinction with water depth [287].
Application of habitat fragmentation models could help elucidate the degree to which these
patterns result from anoxia directly, versus the added effects of habitat fragmentation.

14



4.3 Metapopulation models

SAR models, although a reliable tool to describe a decrease in biodiversity resulting from habitat
fragmentation, do not provide any information about the time scale over which the decrease may
have happened. Insight into this issue can be made by combining the ’geometry’ of the discrete
(fragmented) habitat with some basic ideas of population dynamics of species that inhabit it.
That can be done using the metapopulation concept [112]. The metapopulation theory shows
that the number of species supported by a fragmented, ‘patchy’ habitat consisting of M separate
sites (or patches) of area A1, . . . , AM , is significantly less than the number of species in a single
habitat of the equivalent area A = A1 + . . .+ AM [115, 328, 305]. In addition to the approach
based on SAR (e.g., see Eq. (6) above), which is largely descriptive, the metapopulation theory
shows how the decay in biodiversity happens, i.e., what specific processes are responsible for
this. Below we briefly outline some relevant mathematical techniques and (some of) the main
findings.

In a fragmented habitat, sites are usually assumed to be sufficiently small, so that their inner
spatial structure can be neglected. The part (subpopulation) of the population that inhabits
the k-th site can then be described by a single variable - say, nk. The metapopulation dynamics
of a given species inhabiting the fragmented habitat consisting of M sites is fully described
by M variables, n1, . . . , nM . In the classical metapopulation approach, nk is a binary variable
accounting only for species presence-absence but not for their population size, so that either
nk = 1 (species present) or nk = 0 (species absent). This is a particularly convenient link to
paleontological data where the records may not often be of sufficient precision to estimate the
population size.

In the conceptual single species case, the mathematical framework of the metapopulation
dynamics is described as follows [114, 115]:

dpk
dt

= Ck(1− pk)− Ekpk, k = 1, . . . ,M, (7)

where pk is the probability of the nth site being occupied, t is time, and Ck and Ek are,
respectively, the colonization and extinction rates of site k that account for the geometry of the
patchy habitat structure such as the areas of the sites and the distances between them [115].

Alternatively, species abundance in a fragmented habitat can be described by a single ‘global’
variable such as the fraction of sites that are occupied by the species at time t. In that form,
the metapopulation model can be extended to include multiple species. In particular, Tilman et
al. [305] considered the following model to study the interplay between interspecific competition
and the effect of habitat destruction:

dqj
dt

= cjqj

(
1−D −

J∑
i=1

qi(t)

)
− qj

mj +

J∑
i=1 (i6=j)

ciqi

 , (8)

where 0 ≤ qj ≤ 1 is the fraction of sites occupied by species j, J is the total number of species
(j = 1, . . . , J), D is the proportion of sites being destroyed, and the bilinear (cross-product)
terms account for competition4.

A more advanced variant of the metapopulation approach considers nk as the size of the
kth subpopulation (e.g., [7, 120]). In this formulation, metapopulation models become similar
to lattice models, see Section 4.6 below.

4In Tilman’s model, the competing species were arranged in the hierarchical order and it was additionally assumed
that an inferior competitor always loses to a superior one.
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Subpopulations can interact with each other either directly, e.g. through dispersal/migration
between sub-habitats (as in models (7) and (8)), or indirectly through a common external factor.
As a result of such a coupling, fluctuation in the subpopulation sizes can become synchronized
[177]. In particular, spatially-correlated environmental noise (e.g., associated with weather fluc-
tuations) can make local populaiton dynamics synchronized [205, 238, 240]. Since the magnitude
of local population oscillations often increases as a result of unfavorable environmental changes
[193], for instance when approaching a tipping point [264], synchronized fluctuations can result
in a sudden extinction of the whole population as the population size may drop to a dangerously
small value simultaneously at all sites.

Another property that makes the metapopulation framework a relevant approach to extinc-
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Figure 3: Dependence of the equilibrium probability of site occupancy in a metapopulation model after a
disturbance for two different scenarios: (a) disturbance results in a random loss of sites and (b) disturbance
results in a loss of area from each site. Note the threshold-type behavior in the species response. From [115].
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 Figure 1. Time delay in metapopulation response to
 habitat loss plotted against the value of the equilibrium
 fraction of occupied habitat following habitat loss
 (PA*). The continuous line shows the time delay in the
 30-patch landscape, shown in Fig. 2 and predicted by
 the spatially realistic model. The broken line gives the
 Levins-model approximation with appropriately inter-
 preted parameters (see text). Values of pA* < 0 corre-
 spond to metapopulation extinction (pA* = 0), but the
 negative values (obtainedfrom pA* = 1 - /AM) are
 shown here to illustrate how far below the threshold
 the calculated metapopulation equilibrium is located.

 scribed below equation 2. The dynamics of the n-dimen-
 sional model are well approximated by the Levins model,
 with the following interpretation of the colonization and
 extinction parameters: c = cXm/w and e = e/w, where
 o = -ViAi (Ovaskainen & Hanski, unpublished data).
 Thus, the result in Figure 1 applies to the spatially realis-
 tic model when the parameters are interpreted in this
 manner. We illustrate this result with a numerical exam-

 ple based on the patch network shown in Fig. 2. Out of
 the original 30 habitat fragments, 9 were removed such
 that the remaining 21 fragments contained two-thirds of
 the metapopulation capacity of the original network.
 There is a close correspondence between the time delay
 in the numerical results for the spatially realistic model
 and in the approximation (Fig. 1). To reiterate, in the
 present context the key conclusion is that the time delay
 becomes increasingly long when the new equilibrium
 p*, which includes the consequences of habitat loss and
 fragmentation, approaches the extinction threshold. We
 next consider the implications of this result for the ex-
 tinction debt in a community of species.

 An Example of Extinction Debt

 Assume that 8, which is a species parameter, is normally
 distributed in a community of species (Fig. 3, upper
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 Figure 2. A hypothetical 30-patch network with patch
 areas log-normally distributed. Patch areas have been
 scaled to yield AM = 1. Habitat loss was brought about
 by randomly removing individualpatches (crossed)
 until two-thirds of the original metapopulation capac-
 ity remained. Parameters: a = 1 and w = 0.584 (in
 the reduced network).

 panel). Therefore the "commonness" of the species in the
 community, as measured byPx*, is also normally distrib-
 uted (Fig. 3, lower panel), with common species being
 characterized by small 8, and vice versa (recall thatpx* =
 1 - 8/X). We again use the example in Fig. 2, in which
 prior to habitat loss the value of XM is sufficiently large to
 allow all the species to persist (Fig. 3, continuous line).
 Habitat loss and fragmentation reduce XM to two-thirds of
 its original value, and the threshold condition given by
 equation 5 is no longer met for some of the species (Fig.
 3, broken line).

 Figure 4 shows the predicted change in the common-
 ness distribution in the course of time, both for the full
 model and for its approximation. What is apparent is an
 initial change in the shape of the distribution: the fre-
 quency of rare species (small p) greatly increases, while
 for some time only a few species go extinct. In the
 course of time, however, a large fraction of the newly
 rare species goes extinct. The initial accumulation of
 rare species is due to the long time delay in the response
 of species whose new equilibrium is close to the thresh-
 old for long-term persistence (Fig. 1). Once again, the
 Levins model with parameters appropriately interpreted
 gives an excellent approximation of the behavior of the
 full spatially realistic model. This correspondence de-
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Figure 4: Dependence of the delay in species response to a disturbance in a metapopulation model. From
[116].
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tion modeling is the existence of long-term transient dynamics [224, 305] (see also [121, 208]).
In the context of metapopulations, this is also known as “extinction debt” [305]. A perturba-
tion of the metapopulation’s spatial structure, for example, resulting from the destruction of
a sufficiently large, supercritical fraction of sites (i.e. exceeding a certain threshold [115]) may
lead to the extinction of the whole population. However, the extinction will not happen until
after a long period of apparent persistence, its duration being estimated as [224]:

T ∼ 1

|λM − δ|
, (9)

where λM is the largest eigenvalue of the matrix describing the strength of inter-site coupling
due to the geometry of the environment [115] and δ is the ratio of a site’s extinction and
colonization rates [115]. In cases where the degree of habitat fragmentation can be linked to
the magnitude of the corresponding environmental perturbation (e.g., perturbation of carbon
cycle as an extinction trigger [256]), this property provides a framework to investigate the time
scales on which extinctions occur.

By way of example, consider the situation where a decrease in the number of available sites
results from a change in a certain factor X (for instance, X is the height of decreasing sea level),
where X changes as a result of one or more extinction triggers. Let X0 be the initial, pre-change
value. In a rather general case, the fraction of habitat lost P is expected to follow a power-law
[216, 220]:

P = 1− a(X −X0)−γ , (10)

where a and γ are coefficients that may depend on the specific topography of the sea floor. Since
the time required for the population to go extinct, T , is a known function of P , an estimate of
the timescale to extinction can be determined from Eq. (10). Note that here we do not aim to
provide a detailed study but only outline the way in which the metapopulation framework can
be applied for analyzing extinctions.

4.4 Population dynamics and the Allee effect

In the population dynamics of a single species, where the density or size of an isolated population
is determined by birth and death events (i.e., neglecting migrations), the population growth
rate depends on population density. Mathematically, this can be expressed in a variety of ways
[83, 160, 250]; probably the most common is given by the following equation:

du

dt
= f(u)u, (11)

where t is time, u is the population density at a given location, e.g., in a given habitat, and
f(u) is the per capita growth rate. Eq. (11) does not explicitly account for possible stochastic
factors, instead explicitly, considering their effect ‘on average’ [6]. Depending on the species’
traits (e.g., whether it has overlapping or nonoverlapping generations), Eq. (11) can be replaced
by its time-discrete analog such as a difference equation or a map [160, 210]. In the context of
species extinction, a relevant property of Eq. (11) is the existence/nonexistence of a nontrivial
(u > 0) steady state; however such a steady state can disappear as a result of a bifurcation
[83, 160, 210] which, in turn, may reflect a change in the environmental conditions.

The single-species model (11) can be generalized to a multispecies case resulting in the
following system of equations:

duj
dt

= fj(u)uj , j = 1, . . . , J, (12)
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where u = (u1, . . . , uJ). The properties of this system (12) are usually much more complicated
compared to the baseline single-species model (11); in particular, its solutions can exhibit popu-
lation oscllations. Oscillations can be of a large magnitude, such that population densities may
periodically fall to very low values. This makes the corresponding species prone to extinction.
As one example, a model of type (12) containing only two species, one prey and the other its
predator, has been successfully applied to explain species extinction as a result of so called
“paradox of enrichment” [105, 192].

The properties of per capita growth rate are determined by species’ traits. There can be at
least two qualitatively different cases (see Fig. 5). In the first case, f(u) is a monotonously de-
creasing function (e.g., as a result on increasing intra-specific competition that tends to increase
with increasing population density) reaching its maximum at u = 0 and becoming negative for
large u. In the second case, f(u) is not monotonous: it increases at small u and decreasing for
large u, such that the maximum per capita growth rate is reached at some positive value of
the population density. The former case is often referred to as logistic growth (sometimes as
‘generalized logistic growth’) and the latter case as population dynamics with an Allee effect
[174, 210]. The Allee effect is increasingly identified as innate in many species [69, 70, 291]
which suggests that population growth with the Allee effect is more relevant for the general
model (11) than logistic growth.

Given the Allee effect, the growth rate at small population densities can be small and this
has important consequences for population survival. The so-called strong Allee effect, where the
growth rate becomes negative once the population density falls to a small value, is particularly
relevant (cf. curve 4 in Fig. 5). In this case, there exists a survival threshold (β) such that once
the population density falls below the threshold (u < β), an isolated population will inevitably
go extinct. In a multi-species community, the existence of the Allee effect can have more subtle
effects on population dynamics, with the same general trend of increasing extinction likeliness.
As one example, an increase in the predation strength in a predator-prey system may lead to the
disappearance of the positive (species coexistence) steady state; this invariably leads to species
extinction (Fig. 6).

Importantly, the Allee effect can arise from several biological mechanisms [69, 70, 291].
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Figure 5: Per capita growth rate in the baseline single-species model (11) for different strengths of the Allee
effect: curve 1: no Allee effect, curves 2 and 3: weak Allee effect, curve 4: strong Allee effect. From [174].
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Figure 6: Dynamics of a predator-prey system with the strong Allee effect for prey and with different
predation strengths: (a) intermediate predation, (b) strong predation. From [187].

Perhaps the most common is the difficulty in finding mates at low population densities [15];
this can be exacerbated by a bias in the sex ratio [69]. Another intuitive mechanism is the
positive effect of cooperation occurring at small population densities, which can manifest itself
in a variety of ways [69, 70, 291]. Many of those mechanisms can be affected by a change in
environmental conditions, where an unfavorable change (e.g., habitat degradation) may increase
the strength of the Allee effect, hence leading to an increase in the survival threshold and/or
to a decrease in the per capita growth rate at small population densities. This increases the
population’s extinction vulnerability. Placing it into a multi-species context, an increase in the
strength of the Allee effect globally is a factor that arguably may result in mass extinction;
two hypothetical mechanisms are discussed below. Therefore, models that link environmental
changes to an increase in the strength of the Allee effect has immediate application for mass
extinctions modeling. The Allee effect is assumed to be an important factor in metapopulation
dynamics as well [16].

To demonstrate how the Allee effect can create a ‘pathway of doom’, consider the effect
of global warming (Horseman of the Evolutionary Apocalypse #1, often a consequence of a
perturbed carbon cycle [256]). A biased sex ratio is a factor resulting in a strong Allee effect
[69]; however, for many species, the sex ratio is environmentally determined, and in particular
by temperature [68, 143]. As temperatures rise sex ratios change and strengthen the Allee effect,
thus potentially leading to the extinction of whole animal orders and even classes. Notably, this
mechanism has been suggested as a factor contributing to the non-avian dinosaur extinction at
the end of the Cretaceous [203]. This could be further investigated in the fossil record by testing
for correlations between mass extinction selectivity and clades with temperature-dependent sex
ratios in modern counterparts. To our knowledge, this type of extinction selectivity has not
been previously explored in the fossil record.

As another hypothetical situation, consider the mass extinction trigger of massive volcanic
eruptions. These eruptions emit a large volume of noxious gases and volatiles (CO2, but also
methane, mercury, sulfur dioxide and other aerosols, etc.) into the atmosphere [37, 63, 268]. As
some of these gases have a distinct smell, their presence may disrupt chemical signaling employed
by many species when searching for mating partners. This could then decrease reproductive
success and thus total fitness, which increases the strength of the Allee effect, making species
extinction more likely. In the case of a LIP-style event, volatile emissions are both high in
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volume and lengthy in timespan of eruption; gas emissions are spread globally, and could then
impact the longevity of large numbers of species. A considerable fraction of the emitted gases
end up in the ocean, in particular resulting in ocean acidification. In its turn, acidification
is known to impair olfactory discrimination and neurotransmitter function in fish [37], which
would have similar effect on the corresponding fish species by increasing the strength of Allee
effect in their population dynamics.

Note that, although not yet established at the scale of the global biota, interference with
pheromone transmission has been shown to produce a strong Allee effect, and consequent decline
in population size, in modern populations of agricultural pests [176]. For instance, gypsy moths,
known to be affected by the strong Allee effect [176, 321], have been regionally eradicated by the
introduction of artificial pheromone sources that disrupt males’ search for females [278, 331, 176].
This provides indirect evidence in favor of the above hypothetical mechanism of mass extinction.

A test of this in the fossil record would necessitate strong clade-level information about
the importance of pheromone signaling, for example the fishes described above. If pheromone
signaling is plausibly a clade-level trait, then testing for extinction selectivity in such clades
as associated with LIP deposition would confirm the contribution of this mechanism to mass
extinctions.

4.5 Competitive exclusion

Competition is a negative type of ecological interaction that shapes the structure of populations
in a community. While the resource-consumer and/or prey-predator interactions couple different
trophic levels, competition largely defines how multiple species coexist at the same trophic level,
particularly when the species are sufficiently ‘similar’ to share common resources (including not
only food and water but also environmental factors such as habitat space, sunlight, etc.).

In any real-world community, there are usually many species at each trophic level. The
number of species is dynamic as populations within the community respond to biotic and abiotic
perturbations, in particular to those changing competition strength. Therefore, revealing the
environmental conditions and/or their perturbations that lead to a decrease in species richness,
e.g. through increased competition, can potentially shed a light on mechanisms of extinction to
identify the ‘pathways of doom’, if these conditions are sufficiently widespread.

The dynamics of a population community consisting of J competing species can be described
by the following general system [128]:

dui(t)

dt
=

fi(ui)− J∑
j=1,j 6=i

βijuj

ui, i = 1. . . . , J. (13)

where the bilinear terms describe the interspecific competition and coefficients βij quantifies the
competition strength. The state of the population community at any given moment of time is
described by the vector ū = (u1, . . . , uJ).

The per capita growth of the ith species fi(ui) is determined by the species traits (i.e.,
logistic growth or affected by the Allee effect). In case the growth rate of each species is logistic,
Eqs. (13) take the following form:

dui(t)

dt
=

ri − αiui − J∑
j=1,j 6=i

βijuj

ui, i = 1. . . . , J, (14)
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where coefficients αii quantify the strength of intra-specific competition and ri is the difference
between the reproduction rate and the mortality rate [160, 210].

Obviously, system (14) always has one trivial, extinction steady state ūext = (0, . . . , 0), and
any non-trivial equilibrium of the system is a solution of the following linear algebraic system:

ri − αiui −
J∑

j=1,j 6=i
βijuj = 0, i = 1, . . . , J. (15)

Steady coexistence of all species corresponds to a stable positive equilibrium ūcoex = (ū1, . . . , ūJ)
where all components are positive, ūi 6= 0 for i = 1, . . . , J . The positive steady state, however,
only exists under certain restrictions on coefficients αi, βi and ri [280]. Along with the unique
positive steady state, there can be multiple states of ‘parital extinction’ where only some of
the species are present, e.g., ūs = (ū1, . . . , ūs, 0, . . . , 0). One simple condition necessary for
the stable persistence of the ith species is αi > βi, that is, the strength of the intra-specific
competition has to be larger than the strength of the interspecific competition. In a somewhat
broader context, this property is often referred to as competitive exclusion – in order to coex-
ist, species should avoid strong interspecific competition: a principle at the foundation of the
theory of ecological niches. This is straightforward to see for a system composed of only a few
species [160]; notably this result also holds for realistic systems composed of a large number of
species with a random competition strength [178]. For given values αi and βi (such as αi > βi)
the ith species can be driven to extinction by a decrease in ri [280], e.g., by a decrease in the
reproduction rate or an increase in the mortality rate.

This concept is relevant here because environmental perturbations triggering mass extinction
events often negatively influence species’ suitable habitat. As an example, one consequence of
increased pCO2 is ocean acidification and anoxia, both of which have geographic specificity (i.e.,
increased CO2 does not automatically produce acidification and anoxia globally, but expands
from specific regions). Habitat loss, fragmentation, and degradation associated with the spread
of ocean acidification and anoxia [59, 163] may locally result in increased interspecific competi-
tion as species become concentrated in less altered habitats; this phenomenon has already been
observed in modern ecosystems (e.g., [56, 59, 195]). Sufficient, global perturbation of this kind
could lead to higher extinction rates related to competitive exclusion worldwide. To the degree
that this process also leads to habitat homogenization (see [163]), additional biodiversity loss
would be expected (and has been observed in [307]).

4.6 Lattice models

For a species dwelling on a fragmented habitat, for modeling purposes, the individual sites can
be regarded as ‘nodes’ of a certain ‘lattice’. The modeling approach combining local population
dynamics (e.g., as given by Eq. (11)) with the metapopulation concept leads to lattice models
[7, 65, 259]. In a nutshell, lattice models consider local population dynamics coupled with either
dispersal/migration between sites or by common abiotic factors, such as weather fluctuations.
Note that lattice must not necessarily have a regular geometry. In the more advanced case of
irregular shape, lattice models are often called spatial network models [36, 311].

For a single species with overlapping generations, population dynamics on a lattice is defined
as:

duk,l(t)

dt
= F (uk,l) +

∑
k̂,l̂∈Vkl

(
µ

sV

)
F
(
uk̂,l̂

)
. (16)
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Here uk,l is the population density of a given species at site (k, l) at time t and F is the growth
rate. Coefficient µ quantifies the strength of dispersal coupling: it is the rate at which the
population leaves a given site (or node in the lattice) during the dispersal stage to migrate
to neighboring sites. Thus, the first term and the second term in the right-hand side of (16)
describe the migration out of and into a given node, respectively. The whole entity of nodes
V coupled by dispersal is called the dispersal stencil; sV is the number of nodes in the stencil.
Depending on species’ dispersal properties (e.g., short distance vs long-distance), V can include
only immediate neighbors or neighboring nodes as well as more distant nodes. Models similar
to (16) are often used to study biological invasions and pattern formation [145, 204, 252, 330].

The baseline model (16) can be extended in a variety of ways to make it more realistic,
for instance, to include more species (accounting for predation or intra-specific competition),
to include stochastic factors or “noise” (e.g., by adding terms or factors explicitly containing
random variables), to add time-delays, etc. Any of these extensions make the properties of
the model’s solutions more complicated, in particular, often resulting in population oscillations
that can be (in a certain parameter range) of considerable magnitude. Interestingly, there is
a large amount of empirical evidence that population oscillations at different locations are not
independent but are correlated or even synchronized [177]. Local oscillations can be brought to
synchrony by either the effect of migration between the sites (‘dispersal coupling’, as is quantified
by parameter µ in model (16)) [142, 145, 144] or by the effect of a common external spatially-
correlated stochastic factor [205, 240], e.g. weather conditions. Synchronization of population
dynamics across vast spatial areas due to a single large-scale climate system (such as the North
Atlantic Oscillation) has been observed in some terrestrial species [236].

Whichever is the specific factor (or combination of factors), synchronization may cause the
population density of some species to periodically fall to very low values across the whole array
of habitats. Because low density is commonly associated with extinction vulnerability [74, 166],
such synchronized population decline may lead to the extinction of entire metapopulations over
a large spatial scale and even ultimately species extinction.

Note that the spatial arrangement of habitat sites - the nodes in the lattice - do not have to
be regular. In the case where the synchronization occurs due to the Moran effect (i.e., the effect
of a common external factor), details of the spatial arrangement, such as the distances between
the sites and/or the number of links emanating from each site, do not make much difference as
long as the external factor(s) remains spatially correlated. In the case where the synchronization
results from inter-site migrations, instead of a lattice the fragmented habitat can be considered
as a dispersal network, which can have a broad variety of spatial geometries or ‘topologies’
(see Fig. 7). Network topology has been shown to determine the so-called “metapopulation
mean life time” (MLT) [101]. In a more general case where subpopulations are coupled by both
dispersal and a common spatially-correlated external factor, there is theoretical and empirical
evidence that the local fluctuations can become synchronized [131, 130]. However, the issue
remains controversial and may depend on details of the system geometry, density-dependence
of the reproduction rate, and the dispersal mechanism [239]. Synchronization of extinction
events (e.g., when the population abundance decreases substantially and simultaneously across
space) greatly reduces the metapopulation MLT [119]. Interestingly, the effect of environmental
correlation increases sharply when the means and variances of local extinction probabilities
become sufficiently high [119]. Since the probability of local extinctions may increase as a
result from local habitat degradation, this could be another ‘pathway of doom’ towards mass
extinction provided that local environmental perturbation has a global trigger (cf. Section 4.5).
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4.7 Directed networks and food webs

The general modeling framework, where a spatially structured population or community is de-
scribed by a collection of coupled nodes (sites), can be modified to account for the directionality
of the inter-nodes interactions, if/where such directionality occurs. In this case, the system of
nodes is called a directed network [221]. For a population in a fragmented habitat, where the
coupling normally occurs due to the migration/dispersal between different sites, the correspond-
ing network is called a dispersal network, cf. [36, 311]. Dispersal networks become directed if the
dispersal is asymmetric [311], i.e., individuals move from site A to site B more frequently than
from B to A. If dispersal is due to animal locomotion, the asymmetry (directionality) is rela-
tively rare, because it requires a specific behavioral response (e.g., olfactory, as in chemotaxis),
and/or it is limited to short timescales (e.g., periods of seasonal migration [196]). However, the
directionality becomes common in the cases where the dispersal is assisted by environmental
flows; one example being wind-assisted dispersal of airborne species [28].

The directionality of the flows in a network suggests the possibility of a new extinction
mechanism and hence can make the corresponding total (meta)population or the community
more vulnerable to extinction compared to the population dynamics on the corresponding non-
directed network or lattice. Namely, elimination of some nodes can severely limit population
dispersal (e.g., by eliminating the ‘stepping stones’ [27, 262]), and thus damage overall network
connectivity. In turn, substantial node loss may break global connectivity and destroy the global
cluster. To this end, the problem of population dispersal on a directed network is similar to
a percolation problem, cf. [217, 290, 303]; where global connectivity of the dispersal network
is essential for population survival (e.g., ensuring access to breeding grounds), disruptions to
network connectivity can lead to extinctions.

Geographical structure is only one possible ecological context where directed networks are
important. Food webs provide another and arguably more common network context where
the coupling between different species in a community is due to trophic interactions (that
may include not only resource-consumer and prey-predator interactions but also interspecific
competition) [235]. Similar to dispersal networks, elimination of a node – that is, extinction of
a certain species – can affect food web connectivity and result in energy flow bottlenecks [8],
which can lead to extinction of additional species. Extinction of ‘keystone species’ is an example
of how global food web connectivity can break down, potentially leading to extinction cascades
under certain restrictions on food web geometry [8, 100, 286]. Thus, the extinction of a single
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species may, in principle, lead to extinction of many other species and eventually even to the
total community collapse [81] – at least, on a regional spatial scale. The question remains as
to how this mechanism may be upscaled to the global level, as a species that is keystone in one
community may not necessarily play the same role in another community.

Interestingly, apart from the bottom-up driven cascades of secondary extinctions (e.g., dis-
ruption of primary production), there can be also top-down driven extinction cascades. For
instance, a top predator may attempt to compensate for the loss of its usual trophic resources
by increasing the intensity of alternative trophic interactions [254]. A more intense exploitation
of the alternatve resources then may lead to the extinction of the corresponding species.

Placing food web dynamics into broader ecological, environmental and evolutionary contexts,
the extinction of keystone species (that can lead to catastrophic changes in the food web and
potentially contribute to mass extinction) may occur for a variety of reasons. Apparently, it can
take place as a response to unfavorable environmental changes, e.g., because of an increase in the
strength of the Allee effect (Section 4.4) or as a result of competitive exclusion (Section 4.5). In
turn, unfavorable environmental changes are a typical consequence of an extinction trigger. The
corresponding food web alteration and trophic cascades may act as another ‘pathway of doom,’
a phenomenon investigated previously in the fossil record as a mechanism for mass extinction
[254]. These mechanisms, however, remain controversial in part because of insufficient data to
reconstruct ancient food webs, and due to theoretical debates regarding food web complexity
and its resilience to perturbation [80, 81, 100, 254, 302].

4.8 Coupled climate-population dynamics models

Climate forcing is widely accepted as a major factor that may lead to species extinctions, bio-
diversity loss and, ultimately, mass extinction. Climate forcing has multifarious downstream
effects including temperature change (Horseman of the Evolutionary Apocalypse #1), ocean
anoxia and acidification (Horseman #2 and #3, respectively), habitat loss and/or fragmen-
tation (Horseman #4), altering/disrupting food webs, etc. The biosphere is itself a complex
adaptive system [172] set within the broader context of the Earth System where changes in
atmospheric and oceanographic processes have strong effects on biology. Thus, interactions
within the biosphere and between the biosphere and other spheres of the Earth system are often
not independent of each other and must be considered in concert [151]. Complex dynamics of
food webs in a fragmented environment is one example [175]. For instance, a climate change
leading to a decrease in sea level can result in habitat loss for marine species living in coastal
waters. Predictions of SAR model would support eventual extinction of some species. In turn,
species removal may cause an extinction cascade due to the disruption of the corresponding food
web, which if substantially widespread, may facilitate mass extinction. The interplay between
different factors is nontrivial and often counter-intuitive: depending on complex interactions be-
tween life history, disturbance regime and species distribution pattern, species extinction may
be facilitated (as in the above example) or mediated under climate change [151].

As another example, there is frequent discussion regarding the production of widespread
oceanic anoxia (Horseman #2) with increased temperature resulting from the fact that warmer
water can hold less dissolved gases (e.g., [43, 277]). However, there is also empirical evidence
that an increase in water temperature can disrupt photosynthesis [251]. Since about 70% of
atmospheric oxygen is produced in the ocean, a substantial decrease of this ilk could have dire
consequences for both marine and terrestrial biota, potentially contributing to a marine mass
extinction. Although empirical evidence for this possible scenario remains meager (but see
[179]), it has been discovered and investigated in detail using mathematical models [269, 270],
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including realistic foodweb-type models [232].
The complexity of interactions between the climate and the biosphere is perhaps best cap-

tured by the Gaia concept [181, 182]. It states that not only the climate impacts species and
communities but also the biosphere may have a feedback on climate to alter it on the global
scale. Indeed, dynamic feedbacks are well recognized between the ocean-atmosphere system and
the biosphere. Clear examples of this exist in the geologic record as exemplified by the Great
Oxygenation Event (2.4 Ga) and evolution of terrestrial land flora. Both of these events signif-
icantly modified the Earth system: the former resulted in a three-fold increase in atmospheric
oxygen levels resulting from the evolution of photosynthesis; the latter resulting in a dramatic
increase in terrestrial weathering kickstarting more rapid biogeochemical cycling (especially of
carbon) and allowed for subsequent colonization of land by fauna.

Although the precise formulation of the concept and its implications remain debatable
[4, 41, 157, 170, 171], in a few cases the existence of such feedback has been proven unam-
biguously. In particular, plankton (and vegetation more generally), if present in sufficiently
high abundance, was shown to affect the average Earth average temperature by changing the
Earth surface albedo and hence shifting the balance between the amount of solar radiation kept
by the surface and its fraction that is reflected back to space [60]. Mathematical models have
been developed to demonstrate how the broken energy balance may push the global Earth sys-
tem to a different state (e.g., changing the ‘hot Earth’ to the ‘cold Earth’ or visa versa) [313],
with the changes in the average Earth temperature to potentially become an extinction trigger
through the mechanism discussed above.

Mass extinctions are often associated with significant perturbations to the global carbon
cycle as recorded in time-series of the carbon isotopic composition of marine and terrestrial
sedimentary rocks. Isotopic compositions are measured either via geochemical analyses of in-
organic carbon such as limestones, made up of the remains of carbonate skeletons, or organic
matter from plants and microorganisms. Whereas such carbon isotope excursions (CIEs) are
commonplace throughout Earth history, those associated with mass extinctions are often large,
and when constrained by geochronology, unusually rapid [256]. Although some have attempted
to link excursions qualitatively to extinction triggers (e.g., release of CO2 from a LIP with a
depleted isotopic composition [103], would be expected to produce a negative carbon isotope
excursion in sediments worldwide), mass balance calculations reveal that these excursions are
too large to be explained simplistically and likely represent a complex mixture of processes and
carbon fluxes/concentrations from various reservoirs. Consequently, the precise causes of large
CIEs remain controversial [3].

Carbon-cycle modeling has contributed significantly to understanding the shuttling of car-
bon between the atmosphere, biosphere and geosphere over geologic timescales [33] and thereby
Earth system dynamics across the Phanerozoic. Recent efforts have focused on applying dynam-
ical systems theory and mathematical modeling to carbon cycle perturbations from extinction
and ‘background’ intervals [257, 258]. These analyses, based around a dynamical-system model
of the marine carbon cycle, suggest that CIEs linked to most mass extinctions are quantita-
tively different to those that occur during background times, both in their rate and size. They
therefore identify a critical threshold, crossed when the rate of environmental change/CO2 flux
is sufficiently high, which pushes the system beyond steady state, resulting in a mass extinc-
tion event. Under this paradigm, large carbon isotope perturbations in the geological record
probably represent the nonlinear amplification of processes that operate within the global car-
bon cycle [257]. These theoretical studies are an innovative link between geological data and
mathematical modeling and have direct relevance to understanding the consequences of forcing
of the carbon cycle by present-day anthropogenic activities [132].
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4.9 Stochastic models

Stochastic models are used across a diverse set of fields, in particular, in ecology and environ-
mental sciences, often causing unexpected or counter-intuitive dynamics compared to that of
their deterministic counterparts [35, 39, 77, 165, 166]. In population dynamics the presence of
noise can change the survival or extinction of competing species [315], cause spatial correlation
or anticorrelation between populations [238, 240, 316], modify significatively the characteristics
of the Deep Chlorophyll Maximum in a marine ecosystem [317], or increase locally the biomass
of some species [168].

The frequency and magnitude of stochastic events are known to depend significantly on the
statistical properties of the noise [319]. This is often assumed to be a normal distribution,
but finer analysis on complex systems also involves the use of exponential distribution, gamma
distribution, Pareto or power law distributions, etc. Once the frequency distribution is identified,
these models can provides an insight into the system’s properties and dynamics, including
the limits of model predictability. In particular, the difference between distributions with a
‘thin’ tail (exponential decay or faster) and the scale-free distribution with a ‘thick’ tail (power
law, especially with the exponent smaller than three). For a random process described by a
thick-tailed probability distribution, the occurrence of rare events (such as mass extinctions)
is much more frequent than for a thin-tailed distribution. Perhaps even more important for
understanding mass extinctions, the existence of a power law distribution (e.g., 1/f -noise) may
indicate that the processes governing the dynamics of the biosphere are correlated through time.

Unsurprisingly, the properties of extinction frequency distributions attracts considerable
attention [220]. It has been shown that the distribution of extinctions in fossil data is well-
characterized by a power law [215, 285], although the impact of fossil record bias in data
interpolation has questioned this [156]. Recent work supports previous findings that fossil
record extinction frequencies follow a fat-tailed distribution within clades, but also exhibits
heterogeneity at the taxonomic level of orders, such that the data crossing taxonomic ranks are
not scale-free [253].

Simple statistical models are based on the definition of probability. One of the earliest and
fundamental models is the so-called ”Red Queen hypothesis” proposed by van Valen [318]. If
probability per unit time of a particular species becoming extinct is independent of time then
the model introduces ”stochastically constant” extinction. It means the probability of a species
surviving for a certain length of time t decays exponentially with time t:

p(t) = e−t/τ , (17)

where τ is in the inverse ratio of the apparently small constant probability per unit time of the
species becoming extinct. Based on this definition a survivorship curve can be plotted when
one takes a group of species and counts how many of them are still present in the fossil record
after time t.

Raup [248] shows that stochastically constant extinction will not allow the survivorship curve
for genera be exponential, because it depends not only on the extinction rate but also on the
speciation rate. Also, the model does not describe mass extinction events in the fossil record.
Raup [247, 249] generalized the model to the case in which extinction is not stochastically
constant, giving promising results.

More complex models are based on statistical mechanics, particularly spin glass theory. For
example, NKCS models are a class of models of random fitness landscapes called NK models
and originally proposed for genes [148, 150, 149] may offer possible connections between the
dynamics of evolution and extinction rate. These models are similar in spirit to the spin-glass
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models of statistical mechanics [97], particularly p-spin models [75] and random energy models
[76]. The NK model for species fitness maps the states of a model genome onto a scalar fitness
mimicking the biological process where the genotype is first mapped onto phenotype and only
then onto fitness. The NK model generates a fitness ”landscape” which is formed by genotype
with higher fitness than all of its nearest neighbors. The extended model [149] called the NKCS
model uses two additional quantities. The first is the number of neighboring species with which
species interacts and the second is the number of genes in each of those neighboring species
which affect the fitness contribution of each gene in species. Extinction appears in the model
when a species invades the niche occupied by another. The model discovers the Nash equilibria,
phase transitions, and self-organized criticality. Also, there is a connection of the original model
to the topology.

The Bak-Sneppen model [20] assumes that the average time taken to mutate across a fitness
barrier goes exponentially with the height of the barrier as stated in the Arrhenius law of statis-
tical mechanics. The model shows that a power-law distribution of coevolutionary avalanches
might give rise in turn to a power-law distribution of extinction events. Extinction takes place
when species have particularly high barriers to mutation.

Another statistical mechanics model [297] addresses quite general, schematic models for
several populations coupled to resource supplies, and subject to both systematic and random
external forcing. The authors employ stochastic large deviation theory to describe possible
extinction scenarios in this generic, albeit coarse-grained, mean-field setup, and illustrate the
hysteresis effect in species extinction. The manuscript also states the possible scenarios of
extinctions based on an intersection of the attraction of a dynamical system describing the
environment state and the boundary (niche) that is defined by the resource supply.

Nonequilibrium statistical mechanics allows for the study of fluctuations in species richness
found in fossil records using the method of superstatistics [29]. This approach is based on the
idea that nonequilibrium systems can be decomposed into weakly interacting subsystems. Each
of the subsystem (e.g., local communities) attains a unique dynamic equilibrium, while the
dynamics of the system as a whole may remain transient. Using this approach, Rominger et
al. [253] explained fluctuations in Phanerozoic biodiversity.

4.10 Statistical models

Statistical modeling is a powerful tool to analyze fossil data and to bridge, at least partially, the
gaps left by the common deficiencies of the geological record (see Sections 3.1-3.2), in particular
to obtain information about the spatial aspects of mass extinctions. One form of statistical
model that has been applied to studying MEs is Paleo-Ecological Niche Modeling (PaleoENM)
[213]. Modern ENM is a widely used technique for estimating abiotic niche attributes (i.e.,
Grinellian niche [108]) by correlating known species occurrences with spatially explicit environ-
mental characteristics; see Fig. 8. The multivariate statistical model creates an n-dimensional
cloud of environments (n is the number of environmental layers) that aims to predict a species’
fundamental niche (i.e., the realized niche + some extrapolation) within a “space” defined by
environmental variables (e-space). E-space predictions may be projected back onto geography
in the same time and place, or different times and/or places to test hypotheses such as the avail-
ability and migration of species’ predicted suitable habitat. Analysis of e-space predictions can
also be used to test hypotheses of niche stability during the lifetime of a species or phylogenetic
niche conservation within a clade [231].

Whereas modern ecologists have used ENM to investigate hypotheses surrounding species
abiotic niches for the last two decades (e.g., [146, 230, 304, 306, 336]), PaleoENM development
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Figure 8: Ecological niche modeling (ENM) processes. (A) Collection of fossil occurrences (yellow triangles)
which is then correlated with sedimentology-based environmental layers such as percentage of chalk (B) and
percentage of clay (C); ENM algorithms produce a multivariate correlation between the occurrences and
paleoenvironments in environmental space (D) where existing environmental space is denoted as dots and
the algorithm estimates which dots (gray) in this space are within a species’ niche; model output is a map
of habitat suitability in geographic space (E) where a value of 1 indicates highly suitable and a value of 0
indicates highly unsuitable habitat. Modified from [213].

is more recent [213, 293, 294]. One unique challenge is the compilation of paleoenvironmental
data at high spatial and temporal resolution. Modern ENMs collect these data from freely
downloadable global environmental databases (e.g., temperature or sea surface salinity gradi-
ents) directly measured and averaged over several decades (e.g., http://www.worldclim.org/).
In contrast, these data are not systematically collected or aggregated into an accessible database
in the fossil record, nor do they represent direct measurements. Thus, PaleoENM users must
construct their own spatially explicit environmental layers for the areas and time periods of in-
terest using geochemical and sedimentological proxies for paleoenvironmental conditions. Myers
et al. [213] provides a summary of current best practices in PaleoENM, including choice and
reconstruction of environmental layers, modeling algorithms and parameterization, model eval-
uation, and hypothesis testing.

Alternatively, global climate models (GCMs; e.g., the HadCM3 model from the Hadley Cen-
ter [314]), are increasingly available for specific times in the distant past (e.g., [92]). GCMs
represent coupled oceanographic and atmospheric models that predict different aspects of tem-
perature and precipitation (on land), and sea surface temperature and sea surface salinity (most
often) in the ocean. These models attempt to consider a complex array of Earth system con-
ditions, including factors such as: topography/bathymetry, tectonic position, stable isotope
records of paleotemperature, paleo-ocean and atmospheric circulation, among others. Some
climate models are now also taking explicit account of carbon cycle function and ecosystem
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structure and dynamics in deep time (e.g., application of the cGENIE model [132]).
Whereas GCMs may appear at first blush to provide a more robust record of environmental

conditions in deep time (as opposed to sedimentological data), this is not necessarily the case.
Dynamic topography (i.e., influence of subduction on the tectonic plate above) makes elevation
and bathymetric estimation difficult and accurate reconstruction of plate movements non-trivial.
Moreover, conditions describing atmospheric winds and clouds do not have a geologic record and
therefore must be inferred during the modeling process. The uncertainly in these factors can
have strong effects on the resulting GCM. The classic example of this is the persistent challenge
of modeling global latitudinal temperature gradients during the Cretaceous Period where it was
sufficiently warm for tropical plants and reptiles to live at the poles, but cool enough to support
vibrant ecosystems of flora and fauna at the equator [26, 299].

4.11 Astrophysical models

A number of studies have shown that major atmospheric ionizing radiation events including
gamma-ray bursts, supernovae, and extreme solar events [199] inevitably lead to significant
reductions in stratospheric ozone, permitting increases in solar UV-B irradiance at Earth’s
surface and in the top tens of meters of the ocean. It has been hypothesized (e.g., [197, 198])
that ionizing radiation events of sufficient intensity can cause a biological impact sufficient to
lead to a mass extinction. This hypothesis has also been used in studies aiming to define
environments hospitable to extraterrestrial life, including the concept of a Galactic Habitable
Zone [107, 207, 226]. The connection between O3 depletion and extinction is typically made
basing on the well-established damaging effects of UV-B on ocean phytoplankton – the base of
the marine food web, responsible for half the global primary production, as well as the main
contributor to Earth’s oxygen budget. The claim is that major damage to phytoplankton species
could cause a crash of the marine food web and lead to mass extinction (cf. Section 4.7), as well
as global anoxia. UV-B radiation with a terrestrial cause (e.g. warming and ozone depletion via
volatile release from LIP’s) has also been proposed as an extinction mechanism quite distinct
to the ‘extraterrestrial’ [34, 191].

Disruption of primary productivity is widely predicted to cause avalanches of secondary
extinctions at higher trophic levels, hence making mass extinction much more likely [31, 40,
194, 322]. Evidence supporting such a disruption is present at the end-Permian [31] and end-
Cretaceous [335] mass extinctions, and is also associated with extinctions in the Pliocene [301].
While difficult to directly detect, modeling of the response of paleocommunities to disruption
of primary productivity strongly supports the conclusion that increased disruption leads to
increased secondary extinction in several types of food webs, mainly through loss of primary
consumers who suffer from reduced food supplies [254].

In order to connect different factors to mass extinctions, an ecosystem modeling approach can
be employed. For example, recent studies [296, 312, 313] used population models of planktonic
biodiversity to study mass extinction in a population under varying sets of parameters. This
may allow exploration of the level of ionizing radiation sufficient to trigger widespread (mass)
extinction. The changing radiation field in this nonlinear system may cause a tipping point
in the dynamics of global biota through a variety of mechanisms. For instance, an increase in
species mortality resulting from increased radiation can make the Allee effects stronger (Section
4.4) or facilitate species extinction through the competitive exclusion (see Section 4.5).

Arguably, however, it is important to distinguish between extraterrestrial and terrestrial
sources of UV-B. There are also likely to be differences between marine and terrestrial realms
as to their relative importance. Correspondingly, application of mathematical models to a
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specific extinction event needs to be adapted accordingly in order to account for the type of the
environment.

The influence of different extraterrestrial phenomena need to be taken into account when
building models of kill mechanisms potentially leading to mass extinction. These phenomena
may include variations in Earth’s orbit [72, 209], solar variability [167], asteroid or comet impacts
[13, 19], cosmic rays [279, 282], supernovae and gamma-ray burst [18, 197, 201].

These recent publications show how extraterrestrial influences on Earth biodiversity can be
tested using statistical models. Distributions of astronomical characteristics (e.g., available as
time-series or frequency spectra) may be associated with the data on global-scale biodiversity
changes. For example, the Bayesian inference method can examine how time series of biodi-
versity change may be correlated with time series of astronomical characteristics reconstructed
from models of orbital motion [19]. As one example, Feng and Bailer-Jones [93] developed a
model of the orbital motion of the Sun around the Galaxy to explore the influence of the solar
orbit variation on biodiversity in the Phanerozoic eon.

5 Discussion and conclusions

Mass extinction is a phenomenon that, during the almost 550 My history of metazoan-dominated
life on Earth (the Phanerozoic Eon), has repeatedly altered the course of macroevolution by
wiping out a majority of existing biota. Identification of factors and processes (triggers) that
led to mass extinction and understanding the specific ways through which they acted (kill
mechanisms or ‘pathways of doom’) is important and has been a major focus of research in
paleontology and paleobiology.

Research on mass extinction is ultimately based on analysis of fossil data derived from the
geological record. This, however, has severe limitations (cf. Section 3), in particular, because
the temporal resolution of fossil data is rarely better than 100 Kyrs, whilst research suggests
that mass extinctions have a duration of < 100 Kyrs (e.g., [53]). Low temporal resolution,
amongst other biases, make linkages between population- and ecosystem-scale phenomena and
the global record of mass extinctions extremely challenging. It is rarely, if ever, possible to
estimate the actual duration of extinction for a given species or clade, i.e., the interval between
the time when the suggested extinction trigger emerged and the time when the last individual
went extinct. The fossil record provides an upper bound for this, but the actual interval may
be much shorter. Further, as the quality of fossil preservation depends on the preservation of
particular sedimentary environments, the data are inevitably patchy and discontinuous in space.
Spatial discontinuities in the geologic record work to blur the ecological processes resulting in
extinction patterns.

A model is a mathematical description of a specific process(es) in the context of a specific
system. By considering the model properties (or a change in the properties as a result of a
change in model’s prerequisites), one can investigate the effect of different factors. Mathematical
modeling, essentially virtual experimentation, can help to answer outstanding questions and
partially close the gaps in understanding mass extinctions. Using models, it appears possible
to reveal specific ways in which a given extinction trigger might have affected, through one or
more kill mechanisms, the well-being of populations and communities, ultimately driving them
to extinction. Since the amount of details included into a model is entirely in the hands of
the modeler, one can test different hypotheses and to distinguish between factors of major and
minor importance.

The goal of this paper is twofold. Firstly, we revisit factors and processes that have been
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recognized as likely causes of mass extinction. We observe that mass extinction is a complex,
multi-stage phenomenon that develops through time. Our main focus is on the sequence(s) of
simpler phenomena (kill mechanisms) and the corresponding processes (‘pathways of doom’)
initiated by an extinction trigger that eventually results in a mass extinction; see Fig. 9. Ex-
tinction pathways have a hierarchical structure where relevant processes can be grouped into a
few different levels or stages (shown as the dashed boxes in Fig. 9). We refer to the initiating
events (e.g., LIP or bolide impact) as Stage 1 processes. They do not kill species on a global
scale directly, but they have some immediate consequences - Stage 2 processes; e.g., LIP em-
placement is accompanied by the release of a large amount of volatiles and aerosols into the
atmosphere, either directly from the magma or via liberation and degassing of volatiles from
buried sedimentary rocks by contact metamorphism [49, 124]. By themselves, they may not
cause mass extinctions, but they cause significant changes in the environment globally (signified
by the large arrow in Fig. 9) that we combine into Stage 3 processes; e.g., release of aerosols
may lead to a decrease in the average global temperature by changing global albedo. Again,
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Figure 9: Extinction triggers and kill mechanisms, pathways of doom, and relation between different factors
and processes ultimately leading to mass extinction, as derived from the geological and fossil record as well
as studies of present-day environments. Dashed-line boxes combine the processes occurring at the same
stages of mass extinction development; see details in the text. Large arrows show the generic collective
effect of process occurring at a preceding stage to the processes at the following stage. Small arrows indicate
the succession of specific events/phenomena. Note that, for ease of visualization, not all processes, patterns,
and models discussed in the text are included.
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these environmental changes are unlikely to cause mass extinctions by themselves (e.g., although
sufficiently decreased temperature would cause organismal deaths by freezing, temperature de-
crease alone is unlikely to result in 70% or more global species extinction) but they may lead
to further environmental changes - Stage 4 processes; e.g., a sufficiently large decrease in tem-
perature would facilitate the growth of polar ice caps and hence a decrease in the sea level,
which, in turn, would result in loss and/or fragmentation of shallow water habitats (cf. Section
4.2). Environmental changes in Stage 4 would then affect the biological process combined here
in Stage 5, that have a direct effect on species fitness and survival; e.g., because a fragmented
habitat has less capacity, the fragmentation will lead to species extinction.

Secondly, we provide an overview of some of the modeling approaches that, we believe, can
be instrumental in facilitating further progress in understand mass extinctions, in particular
to reveal and clarify the effect of different links in extinction pathways. Note that processes
at different stages of mass extinction, as it develops through time and across spatial scales,
require models of different type. Processes occurring in Stages 1-4 are predominantly physical
or geophysical or perhaps even astrophysical; we do not consider their modeling much here.
Instead, we mostly focus on models describing (some of) the biological processes, i.e., those
occurring in Stage 5. In doing that, we revealed a few links that have previously been largely
ignored or completely overlooked. One such modeling link shows how mass extinction may occur
when a temperature rise increases the strength of the Allee effect for the whole clade (e.g., by
breaking species’ sex ratio). Another modeling link shows how mass extinction may occur when
plankton photosynthesis is disrupted, hence potentially leading to global anoxia, by an increase
in average water temperature. We have also provided examples of the types of fossil data that
may be collected to test the efficacy of these models on mass extinction science.

A combination of different modeling approaches can be particularly useful for understanding
mass extinction mechanisms and scales. For instance, habitat fragmentation leads to species
extinction, as described by SAR and fragmentation models (simply because the capacity of frag-
mented habitat is much lower compared to a continuous habitat of equivalent area, cf. Section
4.2), where the timescale of extinction is predicted by metapopulation models (see Section 4.3).
The corresponding decrease in biodiversity, albeit potentially significant, may not necessarily
result in mass extinction. However, some of the species that go extinct as a result of frag-
mentation, may be keystone species, and their elimination will break the connectivity of the
corresponding food webs (Section 4.7). That may result in cascading extinctions and, eventu-
ally, in mass extinction. The above example shows how application of mathematical modeling
can improve linkages between taxonomic scale (individual to population to ecosystem to global
biota) that are largely missing in the mass extinction literature.

We appreciate the fact that the full potential of modeling approaches outlined in Section 4
(i.e., to rigorously compare geological data with predictions of the models) requires a level of
temporal and spatial accuracy from the fossil record that has so far been rarely, if ever, available.
For instance, precise application of SAR and metapopulation models to a specific mass extinction
event would require sufficient knowledge about the spatial arrangement of habitats, and the
population dynamics models apparently need at least some knowledge about population size or
density. However, we mention here that, apart from models application aiming to quantitatively
describe the data in detail, which may be difficult to achieve at the current state of empirical
mass extinction science, mathematical models also and perhaps more importantly provide a
powerful qualitative description of the corresponding phenomena by revealing hidden and/or
counter-intuitive (and hence sometimes overlooked) links between various factors and processes
altogether resulting in mass extinction.

Mass extinctions are a complex phenomenon and their comprehensive investigation neces-
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sarily requires application of a very broad variety of approaches, methods and tools. We feel
that synthesizing patterns, processes, and modeling methods is a necessary step for a better
understanding of the science behind mass extinction events. Although decades of work in siloed
research fields have substantially improved our understanding of the component parts, disen-
tangling the great challenges of Earth system science requires an integrated approach [134, 172].
There remains a fundamental disconnect between how we know that organisms, populations,
ecosystems experience extinction and our knowledge and data of mass extinctions in the geo-
logic past. In order to understand mass extinctions we have to connect these different biological
levels; mathematical modeling provides an efficient and relatively easy way to perform ‘virtual
experiments’ exploring these linkages. We have attempted here to outline some of the models,
data, and questions that can be tackled. Consequently, we highlight in particular the need for
more mathematical modeling to be applied to mass extinction events and more conversation
between mathematical modelers and geoscientists working on mass extinctions.
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6 Appendices

6.1 Appendix A1. Response of the shallow sea habitat area to
a decrease in sea level

A drop in sea level is likely to result in a decrease in the area of the corresponding shallow water
habitat. In general, the dependence of lost area on the change in sea level is not simple as it may
also depend on the geometry of the shoreline, on the topography of sea bottom and, generally
speaking, on the pre-change sea level. It also depends on the spatial scale at which the effect of
receding sea is considered. For a shoreline with a simple geometry (e.g., a long straight beach),
which usually implies a relatively small size of the area, and in case the difference in sea level
(say, H) is not very large, the distance at which the sea moves back (say, R) is proportionate
to the sea level decrease [51]:

R =
H

tanφ
, (18)

(the Bruun rule) where φ is the average slope of the vertical profile. Depending on the slope
of the beach, Eq. (18) predicts that the shoreline will move by the distance 10 to 50 times
sea change level [169]. In its original form (18), the Bruun rule remains controversial [1, 126];
however, its generalized version using a power law instead of the linear dependence (taking into
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account deviations of the vertical profile from the linear function), that is

R = aHα, (19)

where exponent α describes the curvature of the vertical profile and a is a coefficient, was shown
to be in good agreement with data and works well for a broader range of sea level change [17].
Here, the curvature of vertical profile may depend on the type of sediment that the beach is
made of (e.g., rock or sand); in particular, for sandy beaches the exponent is estimated as
α = 3/2 [17].

Equation (19) readily implies that the relative decrease in the shallow water habitat area is
also a function of ∆H :

Â

A
= 1−

(
aL

A

)
Hα, (20)

where L is the linear size of the area along the shoreline, Â and A are the new and the pre-change
habitat area, respectively.

On a larger, regional or global scale, the shore line attain fractal properties [189, 190] and
its approximation with a straight line becomes irrelevant. In this case, the response of the
habitat to the receding sea becomes more complicated. Although the power-law description
in most cases remains valid, the exponent is determined by different factors and hence has a
different value [139]. Real-world reliefs were shown in many cases to be well approximated by
a Brownian surface or, more generally, a fractional Brownian surface [190, 234]. Considering
the sea bottom topography as a (fractional) Brownian surface, response of the shallow water
habitat to a decreasing sea level – i.e., the fraction of total area that remains under water after
sea recedes – can then be estimated using methods of percolation theory [139]. A sufficiently
large (exceeding a certain critical value Hc) decrease in sea level breaks a continuous habitat
to several disconnected fragments or clusters, including one large (in the mathematical sense
regarded as ’infinite’) that spans across the whole area. For a sub-critical change where H
approaches Hc but does not exceed it, H < Hc, the habitat area dependence on H can be
approximated as

Â

A
= const ·

(
Hc −H
ψ0

)β
, (21)

where ψ0 is the standard deviation of the sea bottom unevenness height. Once the statistical
properties of the height distribution are known, the exponent can be calculated using methods
of stochastic theory; for instance, under some additional conditions (that we do not discuss here
for the sake of brevity) β = 5/36, see [139] for details.

In case the effect of receding sea is considered on a sufficiently large spatial scale, and the
decrease the sea level is significant enough to bring the habitat close to the percolation threshold,
the response of the habitat area can be modeled generically as a crossover between Eqs. (19)
and (21), that is

Â

A
∼ Hχ, (22)

where the exponent is scale-dependent, χ = α for H � Hc and χ = β for H ∼ Hc (H < Hc).
A larger, ’overcritical’ decrease in the sea level, i.e. for H > Hc, can lead to habitat frag-

mentation through breaking of the largest ’infinite’ fragment. Such decrease would results in an
abrupt drop in the size of the largest available habitat, with implications for species diversity
accordingly; see section 4.2.
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6.2 Appendix A2. Effect of habitat fragmentation on available
space

The frequency distribution of sites with different area emerging as a result of fragmentation is
often described by a power-law [309]:

g(A) = νA−r, (23)

which is also known as Pareto distribution. Here r and κ are certain coefficients; usually,
1 < r < 2.

Note that, for a real-world system, possible values of A in relation (23) belong to a bounded
interval, A∗ < A < A0 < Ā, where Ā is the area of the original habitat before breaking, A0

is the area of the largest site in the hierarchy and A∗ is the area of the smallest site that is
still capabale to support at least one population (e.g., for forest-dwelling animals, the smallest
‘forest’ has to include at least one tree). For fragmented habitats like forest or marsh, the range
of site areas is known to span over at least two orders of magnitude [260, 324], so that A∗ � A0.

If the integral of g(A) is scaled to 1 (which is easily achieved by chosing coefficient κ accord-
ingly), then the average area is given as

< A > =

∫ A0

A∗

Ag(A)da = ν

∫ A0

A∗

A−r+1dA

=
ν

−r + 2
A−r+2

∣∣∣A0
A∗

=
ν

2− r
(
A2−r

0 −A2−r
∗
)
, (24)

and the total area of the fragmented habitat is

Atot = M < A >, (25)

where M is the total number of sites in the habitat.
We now recall that the fragmentation is a threshold phenomenon that occurs when a control-

ling factor (e.g. the magnitude of environmental change) exceeds a crtical value. We assume that
the transformation from a continuous habitat to a fragmented one occurs on a sufficiently fast
timescale, so that shrinking of individual sites can be nglected. The total area of the fragmented
habitat as gven by (25) then has to be equal to the habitat area before fragmentation:

Ā = Atot = Mν

∫ A0

A∗

A−r+1dA, (26)

from where M can be found.
In order to assess how the fragmentation affects the biodiversity of a given habitat, as

described by SAR, we need to assess the area of the larger sites, that is sites with the area
A0 < A < A0 −∆A. The fraction of the total area that is occupied by the lagest sites can be
readily obtained by calculating the corresponding fraction of the frequency distributon (23):

Alarge
Atot

=

∫ A0

A0−∆A
Ag(A)dA ·

(∫ A0

A∗

Ag(A)dA

)−1

=
[
A−r+2

0 − (A0 −∆A)−r+2
]
·
(
A−r+2

0 −A−r+2
∗

)−1

=
[
A2−r

0 − (A0 −∆A)2−r] · (A2−r
0 −A2−r

∗
)−1

=
[
1− (1− δ)2−r] · (1− ε2−r)−1

, (27)
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where δ = ∆A/A0 and ε = A∗/A0.
Assuming that ε and δ are small, the right-hand side on (27) can be simplified. Taking into

account (26) and assuming that the group of larger sites consists of a single site, i.e. the largest
one (hence chosing δ accordingly), Eq. (27) turns into the following:

A0

Ā
= (2− r)δ

(
1 + ε2−r

)
≈ (2− r)δ, (28)

where ε� 1 can ultimately be neglected.
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