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MINIMALITY OF THE ACTION ON THE UNIVERSAL
CIRCLE OF UNIFORM FOLIATIONS

SERGIO R. FENLEY AND RAFAEL POTRIE

ABSTRACT. Given a uniform foliation by Gromov hyperbolic leaves on
a 3-manifold, we show that the action of the fundamental group on
the universal circle is minimal and transitive on pairs of different points.
We also prove two other results: we prove that general uniform Reebless
foliations are R-covered and we give a new description of the universal
circle of R-covered foliations with Gromov hyperbolic leaves in terms of
the JSJ decomposition of M.

1. INTRODUCTION

Consider a Reebless foliation F on a closed 3-manifold M without spheri-
cal or projective plane leaves. This implies that the universal cover M of M
is homeomorphic' to R? [Pal] and that every leaf of F is a properly embedded
plane [Nov]. We denote by F to the lift of F to M.

A specific class of foliations are those called uniform which means that in
the universal cover, any two leaves are at finite Hausdorff distance from each
other. See section 2.2 for the several variations of the definition of uniform
foliations. Fibrations over the circle are one obvious example. Much more
generally, slitherings, introduced by Thurston in [Th] (see also [Ca,]) are
examples of such foliations. In addition from any slithering example one can
construct other examples of uniform foliations by blowing up some leaves
into foliated interval bundles. All of these examples of uniform foliations
are what is called R-covered. Recall that a foliation is R-covered if the leaf
space Lg = M / y of Fis homeomorphic to R. We first prove:

Theorem 1.1. A uniform Reebless foliation in a closed 3-manifold M is
R-covered.

This result has no restriction on the intrinsic metric in the leaves.

Theorem 1.1 implies that all Reebless uniform foliations are obtained from
either slithering foliations or blow ups of slithering foliations as explained
in [Cay, Construction 9.14 and Theorem 9.15] using a result of Thurston
[Th, Theorem 2.7]. The proof implicitly uses the fact that the foliation is
R-covered. We provide a proof of the R-covered property here.

The requirement of Reebless in Theorem 1.1 is not superfluous: any foli-
ation in the 3-sphere S3 (or any closed M? with finite fundamental group)
is uniform, however none are R-covered, because they have Reeb compo-

nents. To prove Theorem 1.1 it is enough to show that the leaf space is

1We note that we will always work with M as a Riemannian manifold where the metric
is induced by lifting the metric of M to the universal cover. As such, the manifold M may
be very different from R® even if homeomorphic.
1
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Hausdorff (see e.g. [Ca,, CC], a quick account of the most relevant material
is presented in §2.1).

Some uniform foliations are quite special, for example linear foliations in
T2 or in nilmanifolds. These foliations have leaves that are parabolic. But
for most uniform foliations, one can apply a beautiful result of Candel [Can]
to see that there is a metric on M making each leaf negatively curved (see
e.g. [P, §5.1] for a specific statement).

For our next result we will consider the following setting: JF will be a
uniform foliation on a closed Riemannian 3-manifold M such that the metric
restricted to each leaf of F is Gromov hyperbolic (in particular, it has to be
Reebless since the torus does not admit a Gromov hyperbolic metric). We
will call such foliations uniform hyperbolic foliations.

For such foliations, one can consider, for each leaf L € F the circle at in-
finity S'(L) defined as the set of geodesic rays up to being a finite Hausdorff
distance apart (see §2.4). The fact that the foliation is R-covered is very
useful to define a universal circle S., , which is essentially a canonical way
to identify all the S'(L) as one varies L € F. The precise definition will be
given in §2.5. See also [T, , , , , | among other places
where universal circles are defined in even more general situations.

Our main result is the following:

Theorem 1.2. Let F be a uniform hyperbolic foliation on a 3-manifold M.
Then, the fundamental group 71 (M) acts minimally on the universal circle
Sl .- Moreover, the diagonal action on pairs of different points of S\
has dense orbits.

niv

This result extends a very well known result about actions of hyperbolic
groups on their Gromov boundary (see [Gr, §8.2]) and complements well with
[Ca;, Lemma 5.2.2] which is stated for non-uniform R-covered foliations.
Note that in the case where the foliation is a fibration this follows from
the corresponding result for fundamental group actions of surfaces in their
boundary. For Anosov foliations the result is also easily proved using the
following: the flow is R-covered and since the foliation is uniform, the flow
is skewed [ |. The structure of skewed Anosov flows is very rich and well
understood [ , Th]: the second statement of theorem 1.2 follows from
the existence of a dense orbit of the flow. The first statement follows from
the minimality of the Anosov foliation [ | and the structure of the flow.

Theorem 1.2 was motivated by some applications to partially hyperbolic
dynamics (it will be used in [I'P5]). We hope this result may have indepen-
dent interest or find other applications.

Some proofs of intermediate steps are simpler if one restricts to the case
of atoroidal 3-manifolds where one has transverse pseudo-Anosov flows that
helps understanding the action on the universal circle ([Th, , D).

When the manifold has a non-trivial JSJ decomposition, the proof in-
cludes a careful study of the intersection between leaves of the foliation and
the pieces of the JSJ decomposition. This results in a new way to look at the
universal circle that may be of independent interest and holds for general
(both uniform and non uniform) R-covered foliations. See Proposition 4.9.
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Because of our applications, at the end of the paper we explain how
the results hold also for branching foliations, which are a technical object
featuring often in partially hyperbolic dynamics.

2. PRELIMINARIES

2.1. Reebless foliations. We will be mainly concerned with Reebless foli-
ations in this article. See [Ca, §4] for a broad introduction.

A Reeb component is a foliation of the solid torus, such that the boundary
is a leaf. In addition all the leaves in the interior are planes and spiral or
limit towards the boundary. There is a circle worth of leaves in the interior.
By an abuse of terminology we also consider Reeb component a quotient
of this, which may be a foliation of a solid Klein bottle. If a foliation by
surfaces F in a closed 3-manifold M does not have Reeb components it follows
from a celebrated result of Novikov [Nov] that when lifted to the universal
cover, the foliation is made of simply connected leaves and the leaf space
Lg = M /5 is a simply connected (possibly non-Hausdorff) one-dimensional

manifold. If there is a leaf of F which is a sphere or a projective plane, it
follows that the foliation T is equivalent to the trivial foliation by spheres
in S? x R. If there are no projective space or spherical leaves of F then a
result of Palmeira [Pal] implies that M is homeomorphic to R®. We refer the
reader to [CC] | for a broad treatment, we will assume some familiarity
with the theory of foliations.

We will not be too precise about regularity of our foliations. Everything
works for foliations of class C10F as defined in [('(] (i.e. continuous with
C' leaves tangent to a continuous distribution). Thanks to [C2,] in view of
the nature of our result, this is a quite general assumption.

To show that a foliation is R-covered, it is enough to show that its leaf
space is Hausdorff (see e.g. | , Lemma 2.2]).

A taut foliation is a foliation such that every leaf intersects a closed
transversal. Notice that taut foliations must be Reebless?

Another relevant result about foliations in 3-manifolds is the following
(see [Gab] or [CC, Theorem I1.9.5.5)):

Theorem 2.1 (Roussarie-Gabai). Let F be a taut foliation in a 3-manifold
M and let T < M be an embedded incompressible torus or Klein bottle.
Then, T can be isotoped to be either a leaf of F or in general position with
respect to F. In particular in the second case the induced foliation by F in
T does not have singularities. If F is taut one can isotope T to be either a
leaf of F or transverse to F.

2.2. Uniform foliations. In this paper we will mainly concentrate in the
following class of foliations.

Definition 2.2. Let F be a foliation in a manifold M. We say that F is
uniform, if for any two leaves L, F' of the lifted foliation F to M then the
Hausdorff distance between L and F is finite.

2There is a subtlety in the definition of tautness for C1:°F foliations. Here we will keep
the definition we made which does not change our results. See | ].



4 S. FENLEY AND R. POTRIE

There have been several forms of the definition of uniform foliations, which
we review here. Our definition is the weakest or most general possible. In
his seminal article [Th, Definition 2.1], Thurston originally defined uniform
foliation as a codimension one foliation in any dimension satisfying Definition
2.2 and such that in addition any closed transversal is not null homotopic.
Calegari [('a;, Definition 2.1.5] or [Ca,, Definition 9.13], defined uniform for
codimension one foliations in 3-manifolds M satisfying Definition 2.2 and so
that the foliation is also taut. The first author | , Definition 2.4] defined
uniform for codimension foliations in 3-manifolds satisfying Definition 2.2.

Note that Definition 2.2 does not require M to be 3-dimensional or F
codimension one, but we will restrict to this case in this paper.

Thurston [T'h] remarks on the connection of the uniform property with
the Reebless condition for codimension one foliations in 3-manifolds. After
[Th, Definition 2.1] it is stated that if a foliation verifies that every closed
transversal is not-nullhomotopic then there are no Reeb components. This
is true if one additionally assumes that the foliation is uniform, and we prove
this in § 3.1.

2.3. JSJ decompositions. We refer the reader to [Hat] for a more com-
plete account on this.

What we will use is that every irreducible® 3-manifold M admits a can-
nonical collection (unique up to isotopy) of embedded incompressible tori
and Klein bottles 77, ...,T; such that if we cut M along the tori/Klein
bottles, each piece (i.e. connected component of the complement) is either
atoroidal or Seifert. We will exclude the case where M is a torus bundle up
to finite cover since in this case there can be a unique piece which is Seifert
but its fibration may not be not unique up to isotopy — for example in T3.
When k£ > 1 and M is not a torus bundle up to finite cover, we say that M
has a non-trivial JSJ decomposition.

Remark 2.3. We will abuse terminology use and refer to 711,...,7T; as the
JSJ tori, even though some components may be Klein bottles.

Let M be an irreducible 3-manifold with non-trivial JSJ decomposition
and let My,..., M, the pieces of its JSJ decomposition (i.e. the connected
components of M\{T1,...,T}, notice that it could be that n = 1 even if
k>=1). In M we consider all connected components of the lifts ZTJf of each
M;.

It turns out that the following holds:

Proposition 2.4. The graph consisting of vertices in each of the ]\/\4;] and
edges between vertices sharing a boundary is an infinite tree T. Moreover,
the fundamental group acts naturally on T and for every element v € m (M)
the set of fized points of v in T has diameter* at most 2.

Proof. The fact that it is a tree follows directly because the lift of a JSJ
torus to the universal cover is a properly embedded plane which separates

3Note that if there is a Reebless foliation in M , then M is homeomorphic to R3, hence
M is irreducible.

“We are using the standard metric on a graph making each edge have length equal to
1.
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M in exactly two connected components and this forbids the graph to have
closed loops. This also implies that each M; has infinitely many lifts; to see
this, notice that if a boundary torus of M; has mﬁmtely many lifts in some
M; M7 then clearly there must be infinitely many Mj because there should
be at least one lift of M; in each complementary region of the torus in M
not containing ]\/Z]0 If all boundary torus have finitely many lifts, then the
deck transformations that fix ]\7170 are a finite extension of Z @ Z so there

must be infinitely many deck transformations moving 1\7170 pairwise disjointly
(notice that finite extensions of Z@Z cannot be the fundamental group of a
closed, irreducible 3-manifold by homological reasons). Indeed, this implies
that each ]\75 has infinitely many boundary components (this uses the fact
that M; cannot be T? x (0,1) as our definition of having non-trivial JSJ
decomposition which expressly excludes the case of torus bundles).

The fact that the set of fixed points of a deck transformation has diameter
at most 2 in T follows the strategy the proof of | , Lemma A.1]. We
sketch the main points for completeness. As in | , Appendix A] we will
call the components of the lifts of tori in the JSJ collection walls.

We let v € m1(M) be a deck transformation. We first notice that if M;
is an atoroidal piece then if M M/ is fixed by ~ then at most one wall of M; VEd
can be invariant under . Otherw1se one gets a mi-injective annulus in M
with boundary in boundary of M; which is not homotopic rel boundary to
boundary of M;. Using this annulus and annuli in boundary components of
M; one can piece together a mi-injective torus or Klein bottle in M; which
is not homotopic to the boundary, contradicting that M; is atoroidal.

Now, if M; is a Seifert piece, then we claim that if ]Wf is fixed by =~
then by a similar argument we see that if more than one wall is fixed, then
+ must belong to the center of m1(M;) (i.e. the element generated by the
fibers of the Seifert fibering) in which case, v cannot belong to the center of
the Seifert pieces that are adjacent to M; . VEd

This shows that any connected component of the fixed point set of v has
diameter at most two. But since T is a tree and  acts by isometries, the
fixed point set is connected. This concludes. O

2.4. Boundaries at infinity. Let X be a negatively curved complete space
with curvature bounded from below and above. See [Gr, | for general
references.

For such a space we define a boundary at infinity 0, X defined as the
equivalence relation of geodesic rays up to being at a bounded distance (see
[Led, 81]). When X is a surface, the negative curvature implies that if X is
simply connected then it is homeomorphic to D? and one can identify the
boundary d., X with the circle of directions 7! X at any point z € X. So, for
simply connected surfaces of negative curvature, we denote the boundary at
infinity as S1(X) = 0, X.

The metric in S1(X) is only well defined up to Holder equivalence since
it is intended to be an invariant under quasi-isometries. For our purposes,
it will be convenient to choose a special metric on S*(X) called the wvisual
metric. For this, we fix a point x¢p € X and we measure the length of an
interval I < S'(X) by looking at the angle formed by the interval in 7} X
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of vectors whose geodesic ray starting at zg lands in a point of I. The
visual measure is the Lebesgue measure induced by this metric. This is
clearly dependent on the point, but we will always explicit the point we are
considering.

2.5. Universal circles. In this section we will review the construction of
the universal circle for an R-covered foliation ¥ on a closed 3-manifold M
so that it admits a metric which restricts in each leaf to a negatively curved
surface with cllrvature5 close to —1. N

Denote by F the lift of F to M, the universal cover of M. For each L € F
we define S1(L) to be the boundary at infinity of L, which is well defined
thanks to the fact that L is negatively curved. First therg is the cylinder
at infinity A which is the union of the S*(L) for L leaf in F. The topology
in A is given by: given z in M , let 7 be a small transversal to F through
x. For every point y of 7, y isin L € F. For every v in the unit tangent
bundle of L at y, let v, be the geodesic ray starting at y with direction v.
The ideal point 2, of v, is a point in S'(L). Tt is well known that since L
has negative curvature, the map v — z, is a homeomorphism. In the same
way one defines a map

n:T'Fr - B. = |J S'I)

Lnt=g
which is the map v — 2z, for any y in 7. Put a topology in B, so that
this map is a homeomorphism. Do this for a 71 (M) invariant collection of
transversals with union intersecting every L € F. In [ ] it is proved that
the topology in the intersection of subsets of A is well defined. This makes
A into an open annulus, and m (M) acts by homeomorphisms on this. In
addition there is a topology on MUA making it homeomorphic to D? x R
and so that each L U S'(L) corresponds to D? x {t} for some t. Again (M)
acts by homeomorphisms on this topology. We now describe the universal
circle of &F.

2.5.1. Case of F uniform. We denote, for L, F' € Fa map 77 : LUSY(L) —
F U SY(F) which has the following properties:

e 71 r|L is a quasi-isometry with constant ¢ > 1 depending only on
the Hausdorff distance between L and F,

71 r|s1(r) is @ homeomorphism,

® TFrG ©) TL,F‘Sl(L) = 7'&@’51([/).

See [Th, §5] or [Ca;, Corollary 5.3.16] or | , Proposition 3.4]. Roughly
the construction of such a collection of maps 77, r is as follows: Recall that a
quasi-isometry of constant ¢ > 1isamap ¢ : L — F so that ¢~ 'd(z,y)—c <
dr(¢(z),d(y)) < cdr(z,y) + c. Given L, F', the Hausdorff distance between
them is agp > 0. Given any z in F there is y in L with d(z,y) < ag + 1. Let

SFor foliations, [ | provides a metric of curvature exactly —1, but since we want to
apply this result in a slightly more general case (that is of branching foliations), we only
use that the curvature is uniformly close to —1. Notice also that the metric constructed
by [ ] may be only C° transversally to leaves, and since we are concerned only with
quasi-isometric properties of leaves, it is more than fine to have just negative curvature or
CAT(-1) leaves. See [ , §A.3] for a more complete account.
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71,7 (z) = y. This map is well defined up to an error a;, with a; depending
only on ag, see | , 83].

The map 77, r is a quasi-isometry, so it extends to L u S HL), and it is a
homemorphism into its image restricted to S*(L).

Recall that a quasigeodesic is a quasi-isometry from Z or R into M. Since
the map 77, p|r is a quasi-isometry it takes quasigeodesics in F' to quasi-
geodesics in L. It is easy to see that z € SY(L) ~ y € SY(F) if and only if a
quasigeodesic « in L with ideal point z is a finite Hausdorff distance from a
quasigeodesic in F' with ideal point y.

The universal circle of F is then defined as the circle S! . which is A/~
where z € S1(L) ~ y € SY(F) if y = 71 r(z). Notice that it is easy to see
that S! . can be identified with S'(L) for every L e g", so one can think of

univ
S}miv as a cannonical way to identify all boundaries at infinity of leaves.

The fundamental group m (M) acts on Sim»v by homeomorphisms. This
is because any v in 1 (M) sends pairs of quasigeodesics in leaves which are

a finite Hausdorff distance apart to like pairs in (L), v(F').

Remark 2.5. Let v in (M) and L a leaf of F. The action of v € 71(M) on
Sl .. can be represented by an action on S(L) identifying S'(L) ~ SL .
and so the action is obtained by the deck transformation composed with

71..- We denote the action of v on S(L) obtained as 7,1,z oy by p(7).

2.5.2. Case of F not uniform. We refer to [ | (see also [Ca;]). In this
case there are no compact leaves of F | , Lemma 2.5, and F has a unique
minimal set £ [ , Proposition 2.6]. Each complementary component of

L is a (0,1)-bundle and F can be collapsed to produce a minimal foliation
[ , Proposition 2.6]. Hence one can assume that F is minimal. There is
also a canonical collapsing between the cylinders at infinity.

So assume that F is minimal. In | , §3] it is proved that for any L, F’

in F there is a dense set of directions between them which is a contracting
direction between them. This means the following: Fix x in L. There is
a dense set of points B in S1(L) so that for any y in B if v is a geodesic
ray in L starting in L and with ideal point y, then v is asymptotic to F
(and hence to any leaf in between L, F'). Asymptotic means that distance
between v and F' goes to 0 as points escape in . For any F between L, F'
there is a geodesic ray in E asymptotic to . This defines an ideal point in
SY(E). The union of these ideal points over such E is a continuous curve
in A. The union of these for all ¥ in B is a dense set in the subset D of
A between S(L) and S'(L). This extends uniquely to a foliation in D by
intervals, each interval intersects a circle at infinity once and only once. One
iterates this procedure making L, F' escape compact sets of the leaf space
in opposite directions. This defines a foliation in A by vertical lines, each
intersecting a circle at infinity once and only once.

The universal circle of F is the quotient A/ ~ where is the equivalence
relation of being in the same leaf of the vertical foliation. The group of
deck transformations (M) acts by homeomorphisms preserving the ver-
tical foliation in A. This is because it sends the contracting directions as
above to contracting directions. Hence 71 (M) acts by homeomorphisms on

the universal circle S}miv. Both the vertical foliation and the universal circle
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pull back to the original foliation before collapsing complementary regions
of the minimal set L.

The existence of a the universal circle is much more general. It exists for
every foliation with Gromov hyperbolic leaves [C'D]. In addition in [CD] a
universal circle is constructed for every tight essential lamination. See [Ca.]
for more on this theory.

3. UNIFORM FOLIATIONS: PROOF OF THEOREM 1.1

In this section we prove Theorem 1.1. We first discuss in §3.1 the Reebless
assumption. This subsection is independent of the proof of Theorem 1.1 and
can be safely skipped. The results in §3.2 hold in more generality than the
case of uniform foliations and could be of independent interest.

As explained in §2.1, Theorem 1.1 is immediate if the foliation has spher-
ical or projective plane leaves by the Reeb stability theorem which implies
in that case that up to finite cover the foliation is the trivial foliation by
spheres in S? x S'. So in this section we will assume throughout that
leaves of J are not spheres or projective planes.

3.1. Some remarks on the Reebless assumption. It can certainly be
the case that a foliation with Reeb components is uniform yet not R-covered.
Indeed, if M has finite fundamental group, any foliation in M has Reeb com-
ponents by Novikov’s theorem [Nov] while the universal cover is compact, so
the foliation is uniform. Notice that a Reeb component has non-Hausdorff
leaf space: every neighborhood of the boundary leaf contains all the leaves
of the interior of the solid torus as these all accumulate the boundary. Foli-
ations of closed 3-manifolds with finite fundamental group are all examples
of uniform non-R-covered foliations:

Question 1. If F is uniform in M with infinite fundamental group, does it
follow that F is Reebless?

We don’t know how to prove this in all generality, however we can prove
the following intermediate fact.

Lemma 3.1. If F a foliation in M has a Reeb component and it is uniform
then every leaf in the universal cover has compact closure. In particular,
any non-torsion element v € w1 (M) acts freely on the leaf space Ly = M /5.

Proof. Let us first assume that the fundamental group of the boundary tori
of the Reeb component does not map to 0 in the fundamental group (M)
of M. This implies that the Reeb torus lifts to a Reeb cylinder where
leaves accumulate on one end of the cylinder. Let ~ represent the deck
transformation associated with the core of the Reeb component. Assume
that the basepoint p is in a lift 4. Then in ]\7, d(v"p,p) — 0. One can
see this in the Cayley graph of 71(M) with an edge metric. The Cayley
graph is quasi-isometric to the universal cover M. In the Cayley graph
there are finitely many elements in the ball of any radius and this implies
that d(7"p,p) — co. In particular this implies that the leaves inside of the
cylinder are not a bounded distance away from the cylinder, so the foliation
is not uniform.
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Now, assume that the Reeb component lifts to M , so there are compact
leaves of F. It follows that every leaf L € F is a finite Hausdorff distance
from a compact leaf. In particular L is bounded, therefore its closure is
compact. O

In particular this implies that if F is uniform and every closed transversal
is not null homotopic then F is Reebless, as announced in subsection 2.2.

3.2. Lifts of leaves at a bounded distance. In this section we prove
some general results about Reebless foliations. We will use them in the next
subsection to prove Theorem 1.1.

Recall that the leaf space L5 = M /§ in this case is a simply connected
1-dimensional manifold which is possibly non-Hausdorff. This is because for
every leaf L F if t is a transversal (i.e. a curve transverse to F homeomor-
phic to an open interval and intersecting L) it holds that ¢ intersects each
leaf of F at most once (cf. §2.1).

We note here that a natural idea would be to use the Hausdorff distance
between leaves in the universal cover to show that the leaf space is Haus-
dorff. For a Reebless, uniform foliation, leaves in M separate and hence the
Hausdorff distance between leaves induces a metric in the leaf space, which
we can call the Hausdorff metric. However in general this metric induces
a topology which is completely different from the quotient topology in the
leaf space due to lack of compactness. Consider for example an Anosov flow
which is R-covered but not topologically conjugate to a suspension. It fol-
lows that if F is the weak stable foliation of this flow, then JF is also uniform
[Th]. Transversely to this foliation there is a strong unstable foliation and
using that it is very easy to see that there is ag > 0 such that for any two
distinct leaves L, E of f;", then the Hausdorff distance between L and E is
finite but bigger than ag. In other words the Hausdorff metric induces the
discrete topology in the leaf space. This is completely different from the
quotient topology making it homeomorphic to the reals. Notice that it is
easy to see that the topology induced by the Hausdorff metric is always
bigger than the quotient topology.

As explalned in §2.1, when ¥ is not R-covered, there are non-separated
leaves of F: that is, leaves L, F' € F so that for every transversals tr,tp to
respectively L and F one has a leaf ' € F which intersects both ¢ L and tp.
Notice that if L, F' € F are distinct non-separated leaves, then they cannot
intersect a common foliation chart, so the distance between points in one
leaf to the other leaf is bounded from below.

We give some more definitions. We refer the reader to | , Section 3
and Appendix B] for a broader introduction with similar notation. We can
assume that the foliation is transversally oriented by going to a double cover
and this makes no problem in our results since we are working in M. Given
two leaves L, F' € f;'“, the region between L and F' is the intersection of the
connected component of M \L containing F' and the connected component

of M\F containing L.
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Remark 3.2. If L and F' are non-separated and distinct, then no transversal
to L can intersect F'. Otherwise any leaf intersecting the transversal between
L, F would separate F' from L.

The following general result holds.

Proposition 3.3. Let F be a Reebless foliation of a closed 3-manifold M.
Assume that there are distinct leaves L, F € F a finite Hausdorff distance
apart, and which are non separated from each other (i.e. there is a sequence
of leaves L, € F which converges to both in the leaf space). Then, both L
and F' project into compact leaves in M.

Proof. Let A and B be the projections of L and F respectively to M. Assume
that A is not compact. Hence there is a sequence of points p; in A such that
p; — p so that p; are not in the same plaques of a local chart around p.
Without loss of generality we can assume that the sequence p; is strictly
monotone in the plaques of the chart.

One can lift the points p; to points z; € L and consider 7; € w1(M) so
that v;z; — zg a lift of p. Let Ly be the leaf of F through xg. The fact
that the points p; converge to p in different local leaves implies that ;L are
pairwise distinct leaves of F — as transversals intersect a leaf only once in
M. Tt is exactly this property that we will show produces a contradiction.

Denote by R > 0 a bound of the Hausdorff distance between L and F.
One can choose points y; € F so that d(y;, z;) < R+ 1. Up to a subsequence,
we can assume that v, — yo € Fp € F. Notice that Lo # Fy for otherwise
one could fix a curve in Lg from x( to yo and that would lift to nearby leaves,
giving that «; L and +; F intersect the same transversal for large ¢ which is
impossible since L is non-separated from F and L = F (cf. Remark 3.2).

Now, pick transversals ¢, and t,, to the leaves Lo and Fp through x¢ and
Yo respectively. For large ¢ it follows that the plaques through ~;x; and ~;y;
intersect t;, and t,, respectively. and so t;, is a transversal to ;L and ty,
a transversal to v;F'. Since ;L and ~;F' are non-separated it follows that
there are leaves intersecting both t,, and t,, which implies that Lo and Fp
are non-separated from each other.

Assume first that ~;L does not belong to the region between Lo and Fjy.

In this case Ly separates ;L from ~y; F' which is a contradiction since they
are non-separated. In fact, if one considers a transversal ¢ to ;L which is
contained in the component of M \ Lo not containing Fy it follows that every
leaf intersecting ¢ must remain in this component while v; F' must intersect
a small transversal to Fy so belong to a different connected component of
M \ Lo showing that 7; L and ~; F' cannot be non-separated. The same works
for v, F.

Suppose now that both ~;L and +; F' belong to the region between Lg and
Fy. Recall that (y;L) converges to Ly and now ;L is in the complemen-
tary component of Ly containing Fy. In particular the sequence (v;L) also
converges to Fy. Hence for i big v;L intersects tg,. Since for ¢ big the leaf
viF' also intersects tp, this would show that ~;F,~;L intersect a common
transversal contradicting the fact that F, L not separated from each other.

In other words, what these arguments really show is that the assumption
that ;L are all distinct leads to a contradiction.
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This finishes the proof of the proposition. U

The following result also holds in great generality. Notice that even if
we assumed that F is uniform, the result is not immediate since a priori
we don’t know if the region between two leaves has to be contained in a
bounded neighborhood of one of the leaves. This is indeed what we show
here for leaves which project into compact surfaces. Given a leaf L of F, let
I'r be the subgroup of deck transformations fixing L, in other words, the
stabilizer of L in 71 (M). Notice that 7(L) = L/T'r.

Proposition 3.4. Let F be a transversely oriented, Reebless foliation of a
closed 3-manifold. Let L, F € F leaves at bounded Hausdorff distance whose
projection to M are compact surfaces. Let N be the region between L and
F. Then N projects to a compact [0,1]-bundle in M /T

Proof. Notice that vF' is at bounded Hausdorff distance from L for every
~ € I'g, since deck transformations are isometries and vL = L. As F projects
onto a compact surface, it follows that the orbit of F' by (M) is a closed
subset of M.

Let R > 0 be the Hausdorff distance between L and F' and consider a
closed ball B of radius R + 1 centred at a point xg € L. After covering
B with finitely many foliation charts, by compactness one sees that only
finitely many translates of F' can intersect B. Since every translate of F' by
some element of I';, must intersect B, this implies that the action of 'z, in
F has finitely many translates of F'. One deduces that the stabilizer of F in
I'z, is a finite index subgroup of I'y,.

The symmetric argument says that ' has a finite index subgroup fixing
L. We deduce that I' = Ffpvm I'; igﬁnite index in both ' and I'y,.

Consider the quotient M /1 of M by the group I'. It follows that both L
and F' project to compact leaves in M /r.

The region N between L, F projects to a compact 3-manifold with bound-
ary Nr in M /1, whose boundaries are the quotients A and B of L and F.
Since F is Reebless and transversely oriented then leaves of F are m; injec-
tive in w1 (M), so m1(A), m1(B) inject into 71 (Nr). Clearly m1(A), m1(B) also
surject into m (Nr). In addition Nt is irreducible.

It follows (see | , Theorem 10.2]) that Nt is homeomorphic to A x [0, 1]
and A x {1} corresponds to B. Projecting to M/FL one gets that N also
projects to an [0, 1]-bundle with a boundary a leaf homeomorphic to C' =
L/r,. This uses that J is transversely oriented. O

We need one additional result.

Proposition 3.5. Suppose that T is a Reebless foliation in N = T? x [0,1],
so that each boundary component is a leaf of F. Suppose that in ]V, the
boundary leaves E = T2 x {0} and G = T2 x {1} are not separated from each
other in the leaf space of F. Then F is not a uniform foliation.

Proof. Given a leaf L in the interior of N , we will show it cannot be a finite
Hausdorff distance from either one of the boundary leaves. Since N is a
product there is bg > 0 so that N is contained in the neighborhood of size
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by of F/, and likewise for G. We will show that E cannot be in a bounded
neighborhood of any such L as above.

Lifting to a double cover if necessary we can assume that F is transversely
orientable.

Since JF is Reebless the fundamental group of leaves injects in 71 (IV), so
the leaves are either planes, annuli or tori. If there is a compact leaf in the
interior of N, then its fundamental group injects in Z2 = 71 (N), so it is a
torus, and hence it is isotopic to T2 x {0}. It lifts to a leaf Z in N which
separates E from (G, contradiction. So the leaves in the interior of N are
only planes and annuli.

Let A= T2 x {0}, B =T? x {1}. We look at the holonomy of J along a
boundary leaf, say A. We want to find an element of 71 (A) with contracting
holonomy. Fix x a basepoint in A, let 7 be a small transversal to J at x.
Let « represent a simple closed curve in A not null homotopic. If either «
or a~! has contracting holonomy, that is the element we want. Otherwise
there are p; in 7 converging to x so that « holonomy fixes p;. Fix i, let C be
the leaf through p;. Then C'is an annulus. Let now [ another simple closed
curve which generates 71 (T2) together with . If holonomy of 3 fixes p; also
then C is in fact a compact leaf, but in the interior of N, which we showed
it is not possible. So replacing 5 by its inverse, the holonomy image of p;
under [ is closer to x. If the iterates converge to xz, then 3 is the desired
element. Otherwise the iterates converge to y not x, and the leaf through y
is compact, again a contradiction.

Let then «a be a simple closed curve in A with contracting holonomy. We
think of « also as a deck transformation. Then « fixes F.

Fix a point y in E and a transversal 7. Since holonomy of the foliation
F is contracting in the « direction this means that a~!(L) intersects 7 and
in a point closer to E. The contracting holonomy means that the sequence
(a™(L)) converges to E as n — —oo. In fact this is an if and only if property:
if there is L intersecting 7 so that (a™(L)) converges to E as n — —o0, then
a has contracting holonomy.

But « also preserves G. Since F,G non separated from each other, and
(a™(L)) converges to E, it follows that (a™(L)) also converges to G when
n converges to minus infinity. By the if and only if characterization above,
this implies the following: If £ is a simple closed curve in B freely homotopic
to a then the holonomy of F along § is contracting as well.

We proceed with the proof of the proposition. We consider a model of N as
T2 x [0,1] so that N is homeomorphic to R2 x [0, 1] with coordinates (a, b, ¢)
and any deck transformation acts as (#(a, b), c), where 6 is a translation of R2,
In that way we can choose coordinates so that a(a,b,c) = ((a,b) + (1,0),c).

Suppose now that F is in a neighborhood of size ag of L. For any n there
is a point p,, in L which is < ag distant from (—n(1,0),0).

Claim 3.6. Given € > 0, there is a1 > 0 so that any point in a leaf U of f;",
it 15 less than ay along U from a point € distant from E or G.

Proof. Suppose not. Project to IV, we get bigger and bigger sets in leaves
which avoid an € neighborhood of the boundary. Taking a limit we find a leaf
V of F avoiding an € neighborhood of the boundary. The closure of V is a
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lamination in N disjoint from the boundary. It is an essential lamination W.
Double N to get a Seifert fibered space, W is still an essential lamination.
By Brittenham’s result [Brit], W has a sublamination that is either vertical
or horizontal in the double of T? x I. If W is vertical it would have to
intersect a boundary component of N. This is a horizontal T? in the double
manifold. This is a contradiction. Suppose that W is horizontal. It is also
contained in T? x I, hence a “topmost” leaf would have to be compact, hence
a torus. This is contained in the interior of N, again a contradiction. This
proves the claim. O

We fix € > 0 so that the foliation J restricted to the € neighborhood of
the boundary of N is entirely described by the holonomy maps. Let a3 > 0
given by the claim. So given n, there is ¢, in L, which is less than a; along
L from p, and g, is € away from the boundary. Hence ¢, = ((—n,0)+ v, t,)
where v, is bounded under n and |t,| < ¢ or |t,| > 1 —&. Up to subsequence
we assume that all v,, are very close to vy (projection to N all in a fixed
foliated chart).

Now apply the holonomy of o™ to ¢,. Since g, is € close to the boundary
and the holonomy of « is contracting in the neighborhood of size € of both
A and B it follows that the holonomy image of ¢y, is (vn,,t,;) where t,,
is either arbitrarily close to 0 or to 1. None is either 0 or 1 as L is in the
interior of N. They are all points in L, and this contradicts that L cannot
intersect a transversal more than once.

This contradiction proves that the assumption that E is at a bounded
distance from L is impossible. Hence the foliation F is not uniform. O

3.3. Proof of Theorem 1.1. Now we are ready to prove Theorem 1.1.
Let & be a uniform Reebless foliation on M. We want to show that JF is
R-covered, so we assume by contradiction that there are leaves L and F' of
F which are non-separated in the leaf space L4 = M / 5 of F. Up to a double
cover we may assume that F is transversely oriented.

Proposition 3.3 implies that both L and F' project to compact surfaces in
M. Let I'z, be the stabilizer of L in 71 (M). Proposition 3.4 shows that the
region N between L and F projects to a compact [0, 1]-bundle W in M/FL,
with one boundary L/T'f.

Suppose that there is a deck translate 5(L) of L or F inside N. It projects
to a surface in M/T', contained in the [0,1]-bundle W. Since (L) is com-
pact in M, then H = B(L)/r, is also compact. Since H is m-injective in W
it follows that H is isotopic in W to a boundary component. Lifting to M
this implies that 5(L) separates F' from L, contradicting that they are non
separated.

Let A = w(L). Suppose that there is a closed transversal to F through
A. Lift to M , with the transversal intersecting L and entering N. It cannot
exit N as F , L do not intersect a closed transversal. Hence this produces a
deck translate of L inside N which we just proved cannot happen. Hence
there are no closed transversal through either A or B = 7(F).

On the other hand suppose there are E; converging to F' U L so that
m(E;) is compact. For i big enough 7(FE;) is isotopic to A, and hence FE;
separates F' from L, contradiction. Hence 7(E;) is non compact and there
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are transversals through 7 (E;) for i big enough. It follows that the region
between A and B is a dead end component, see [('ay, Definition 4.27]. By
[Ca,, Lemma 4.28], A, B are two sided tori or Klein bottles. Lifting to a
double cover we can assume that both A, B are tori.

It can be that A = B, but in any case N projects in M/FL to a compact
submanifold homeomorphic to T2 x [0, 1].

We can now apply Proposition 3.5. Let G be a leaf in N. By Proposition
3.5 it follows that L is not a bounded distance from G in N. Suppose
that this does not happen in M. Then there are points p; in L which are
> ¢ distant from G along path distance in N , but a bounded distance in
M from ¢, in G. Notice that ¢/ is a bounded distance in N from ¢; in
L — just follow along the lift of the I-bundle structure to N. If one uses
the parametrization (a,b,c) as in Proposition 3.5 one can assume up to
moving them boundedly in L, that p;,¢; have all coordinates integers and
the last coordinate 0. Consider a generating set of 71 (M) which includes
2 generators of the torus A. Then p;, q; are vertices of the Cayley graph.
Modulo deck transformations sending p; back to a base point, it follows that
g; is a bounded neighborhood of the origin. So only finitely many elements
of m (M) are allowed. It follows that ¢; is a bounded distance from p; along
L. This is a contradiction.

This completes the proof of Theorem 1.1.

4. UNIVERSAL CIRCLES AND JSJ TREES

In this section we will show that for R-covered foliations (uniform or
not) one can recover the universal circle from the JSJ decomposition of
the manifold (cf. Proposition 4.9), if the manifold has a non trivial JSJ
decomposition. This will allow us to prove Proposition 4.11 that we will
need in the proof of Theorem 1.2. Proposition 4.11 states that the action
of the fundamental group on the universal circle does not have fixed points
which is certainly a fact that needs to be established if one desires to obtain
minimality of the action.

Consider an R-covered foliation F by leaves with curvature uniformly close
to —1 on a closed 3-manifold M, so that M has non trivial JSJ decomposi-
tion. In particular the leaves are Gromov hyperbolic. If F is not taut, then
there are dead end components, see [Ca;, Definition 4.27]. In particular
there are either tori or Klein bottle leaves. This is disallowed by F having
Gromov hyperbolic leaves. Hence J is taut.

We will consider that M is orientable and J transversely orientable. The
only difference in the non-orientable case is that in the JSJ decomposition
we also have to consider Klein bottles. These Klein bottles lift to embedded
tori in some cover of M. Then all the results follow with the same proofs.

4.1. The trace of JSJ tori in the universal circle. Let M, ... M} be the
pieces of its JSJ decomposition. Let T be a torus of the JSJ decomposition.
In this section we show Proposition 4.4 which states that one can associate
to each lift of a torus of the JSJ decomposition some points in the universal
circle.
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We first need the following lemma that puts (after isotopy) the JSJ tori
in general position.

Lemma 4.1. Any lzft T to M intersects every leaf of F. In addition one
can isotope T so that T intersects every leaf of&" m a single component, and
so that the foliation induced by F in T has no Reeb components.

Proof. Let G = Z? be the isotropy group of T. The set of F leaves intersected
by T is connected. If this set is not the whole leaf space, it is a non trivial
interval in the leaf space. Let F' be an endpoint. Since the leaf space is
homeomorphic to R, it follows that G preserves F. So m(n(F)) has a Z>
subgroup and the projection 7(F) is therefore a torus or Klein bottle. This
contradicts that the leaves of I are Gromov hyperbolic.

Since JF is taut, by Theorem 2.1 we can isotope T to be either a leaf
of F or transverse to F. The first option is disallowed because of Gromov
hyperbolic leaves. Hence assume that T is transverse to F, let G be the
induced foliation in 7.

Claim 4.2. It is possible to isotope T so that G has no Reeb annuli.

Proof. A Reeb annulus is a foliation of the annulus so that boundaries are
leaves, all other leaves spiral toward the boundary leaves, and there is no
transversal arc intersecting both boundary leaves. Suppose that § has a
Reeb annulus A. The two boundary leaves of A lift to curves in M , contained
in leaves of F which are non separated from each other. This is because of
the Reeb annulus, so in A the boundary infinite lines are non separated from
each other. Since the foliation is R-covered, the two leaves of F containing
these infinite lines «, 5 are the same leaf L. Since 7(«a),7(5) are freely
homotopic in T, then «, 8 are a bounded distance from each other in M.
We now use a fact of R-covered foliations: for any ag > 0, there is a1 > 0,
so that if two points z,y in a leaf F' of F are less that ag in M , then they
are less than ay in L (see | , Proposition 2.1]).

This holds only for R-covered foliations. Hence «, 5 are a bounded dis-
tance from each other in L. It now follows that 7(«), 7(/3) are isotopic closed
curves in (L) and bound an annulus B in 7(L). The interior of B cannot
intersect A, because any interior leaf of G in A limits to the boundary of
A, and A, B are transverse to each other. Hence A U B is a torus. This
torus is not m; injective because one can produce an essential arc across A
together with one across B to yield a closed curve which is null homotopic.
One can easily see this as B is contained in the fixed leaf L, and A has both
boundaries in L. Hence A U B is compressible and there is a compressing
disk D intersecting A U B only in the boundary. Cutting A U B along D,
produces a sphere. Since M is irreducible, this sphere bounds a ball. Gluing
back together one sees that A U B bounds a solid torus.

What we proved is that B is isotopic to A in M. So then one can isotope A
across the solid torus to the other side of B and eliminate this Reeb annulus
in §. Doing this finitely many times eliminates all Reeb annuli in §. This
proves the claim. See also [(a;, Theorem 5.3.13] for a similar statement. [
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Since there are no Reeb annuli in G, it follows that F intersects T in a
foliation uniformly equivalent® to a linear foliation of the two dimensional
torus. In particular any two leaves of § are connected by a tranversal to §,
hence a transversal to J as well. It follows that any leaf F' of F intersects T'
in a single component.

This finishes the proof of the lemma. O

Remark 4.3. The reason we choose the definition of non-trivial JSJ de-
composition is to exclude Sol and Nil geometries for which some of the
arguments do not work. These cases are not problematic to us and can be
dealt with separately, and in a different way. A good thing about manifolds
with non-trivial JSJ decomposition under our definition is that the tori of
the decompositons are quasi-isometrically embedded: the map between the

universal covers is a quasi-isometric embedding. This follows from [I<]., The-
orem 1.1] (see also [Ng, Section 3.1]). In particular when lifted to M, every

quasigeodesic in the lift of the torus lifts maps to a quasigeodesic in M.

Let T' be a torus of the JSJ decomposition, put in good position as in
Lemma 4.1. Let G be the induced foliation by F in T". Given L leaf of EF and
alift T of T, then by Remark 4.3, the curve LmT is a quasigeodesic of M. It
is also a leaf of §. Since it is a quasigeodesic i in M then it is necessarily also
a quasigeodesic in L, with ideal points ar,(T'),br(T) in S*(L). Orient the
foliation G so that by, (T ) corresponds to the forward direction in §. Varying
the leaf, produces corresponding ideal points ap(T'), bp(T) in S*(F) for any
F leaf of 7.

Proposition 4.4. The collection {bp(T)} as F varies over leaves of F is a
leaf of the vertical foliation in the cylinder at infinity A. Equivalently, the
point {bp(T)} is well defined in S . and independent of the leaf F.

univ

Proof. We will fix a lift T of some torus T of the JSJ decomposition. So, we
will not include the reference to 7' in the notation.

Suppose first that J is uniform. Let af be_the intersection of L and
T that is a leaf of 9 For any L, F leaves of 9: the curves ay,ap are a
bounded distance from each other in 7' — since there are no Reeb annuli in
G. It follows that ar,ar are a bounded distance from each other in M. By
the remark above, ay is a quasigeodesic in L, hence, the ray S, defining by,
is a bounded distance in L from a geodesic ray in L. Since F is uniform, this
ray in L is a bounded distance from a geodesic ray in F' defining 77, (by,).
But (1 is a bounded distance from a corresponding ray Sr of ap (same
direction given by the foliation §). This is bounded distance in M. Hence
BF is a bounded distance in M from the geodesic ray defining 77, p(br).
Since F is R-covered, this again implies that Sz is a bounded distance from
this geodesic ray in F. In particular the ideal point of Sr is 77, r(br). But
by definition the ideal point of 8 is bp. Hence bp = 77, p(br). This proves
the proposition in this case.

6By this we mean that in the universal cover each leaf is bounded Hausdorff distance
from a leaf of the linear foliation. See [T'h, Definition 2.1] for a general definition of being
uniformly equivalent.
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Suppose now that F is not uniform. By the description in §2.5.2 we can
assume that F is minimal. Hence for any L, F' in F there is a dense set of
directions in S1(L) which are asymptotic to F.

Fix a transversal 7 to G in 7. Lift this to a transversal 7 in 7. For any
L intersecting T, let 21, = 7 n L. Let 7, be the geodesic ray in L starting
at xy and with ideal point by,. As L Varles the correspondmg rays B, in 9
are boundedly close to each other in T and hence in M. Hence the same
happens for the geodesic rays ry, as L varies. It follows that the ideal points
of Br vary continuously with L. Hence the functions ar, by from the leaf
space into A are continuous.

Suppose that for some L, F', then 77, p(br,) = bp. Since the set of contract-
ing directions between L and F is dense in S*(L) and bg varies continuously
with F, it follows that there is some E between L, F' so that bg corresponds
to a direction in £ which is contracting with both L and F'. Hence the ray
B in En T is asymptotic to a curve in L. This implies that in T the curve
B is asymptotic to a curve in T~ L. But this can only be B;, — as TALisa
single curve and has a ray [ corresponding to that direction. In particular
this implies that bp = 77, g(br,). The same holds for the pair E, F. By the
composition property of the maps 77, , it now follows that 77, p(br) = bp.

This finishes the proof of the proposition. O

4.2. JSJ universal circles. Our setup has an R-covered foliation F by
leaves with curvature very close to —1 in M with non trivial JSJ decom-
position. If T is a torus in the JSJ decomposition we use Lemma 4.1 and
isotope T to be transverse to ¥ and so that the induced foliation in 7" does
not have any Reeb annuli.

Recall that in Proposition 2.4 we introduced the JSJ tree T of M. Let
T1, ..., T} be the tori in the JSJ decomposition. The fundamental group of
M naturally acts on the tree T. The tree T is infinite and in general not
locally compact: there are infinitely many edges adjoining any given vertex.
We observe that if M has a trivial JSJ decomposition, that is, M is either
Seifert or atoroidal, then the object constructed above would be a single
point. We now consider the case that M has an R-covered foliation.

Let W = 7= 1(Ty U ... U Tg). In other words a component of W is an
arbitrary lift T of one of the JSJ tori.

Lemma 4.5. Suppose that M has a non-trivial JSJ decomposition and F is
an R-covered foliation by leaves with curvature very close to —1.

Then the JSJ tree T has an embedding into the plane well defined up
to isotopy. This determines a well defined circular ordering on the set of
ends of T. A deck transformation either preserves the circular ordering, or
reverses the circular ordering on the set of ends.

Proof. The curvature condition implies that J is Reebless.

Hence the leaves of F are properly embedded planes in M.

First fix a leaf F of . Lemma 4.1 shows that any lift T of a JSJ torus
intersects F' in a single component. This component is a quasigeodesic in
F'. For each vertex y of T, associated to a component V of M — W, it has
at least two edges adjoining it, let T be one of them. Since T intersects F
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transversely, then V' also intersects F'. In addition since any lift T’ of a JSJ
torus separates M , and each such lift intersects F' in a single component, it
also follows that V also intersects F' in a single component. Choose a point
py in V N F representing the vertex y of J. It T is an edge of T adjoining
components V', Z of M — W, choose an embedded arc in F' connecting py
to pz, and intersecting Tina single point. This represents an embedding of
the edge T of T into F. In this way we construct an embedding of T into F'.
The choices of the points py are well defined up to isotopy in V n F. The
choices of the embedded arcs are also well defined up to isotopy. Therefore
the embedding of T into F' is well defined up to isotopy. Fix one such
embedding and call T the image tree in F.

Now if L is another leaf of 9’ then the same reasonlng applies. Notice
that if V., Z components of M — W define and edge T then VL, ZnL are
adjoining in L along TAL just as in F. In addition the circular ordering
around a vertex is also the same whether considering it wrt to F' or to L. It
follows that the embeddings of T in F' and L are isomorphic, preserving the
circular ordering at the corresponding vertices.

It follows that the embedding in the plane is well defined up to isotopy.
This induces a circular ordering in the set of ends of 7.

If v is a deck transformation, and F' a leaf of f;"’ then v also induces
a homeomorphism of the embedding of T in F: given V components of
M — W, then (V) also intersects F' in a single component, and likewise
for T' component of W. This produces the required homeomorphism of the
tree J. In addition this homeomorphism is induced by a homeomorphism
between F' and ~y(F'), which can be either orientation preserving or reversing.
It follows that this homeomorphism either preserves the circular ordering of
the ends of T or reverses it. U

Remark 4.6. We emphasize some facts proved in this lemma: if V is a
component, of M — W, and F is a leaf of 3" then V' intersects F' and in a
single component (cf. Lemma 4.1). Similarly if T is a component of W then
T intersects F in a single component. Therefore the trees T and Tp are
canonically isomorphic. In particular if F, L are leaves of F , then Tp, T, are
canonically isomorphic, with the circular order of the edges at any vertex
preserved by the isomorphism (see also Proposition 4.4).

We produced a set with a circular order and a group action so that each
group element either preserves the circular order or reverses it. Given these
properties, a circle with an induced action can be created. This procedure
from set with circular order and group action to action on a circle was
developed by Calegari and Dunfield in [C'D]. We refer to [C'D, Theorem 3.2]
for specific details. Here we will only briefly describe the construction of the
circle with the induced action.

Since the set of ends is cyclically ordered there is an embedding of the
set of ends into a circle preserving the circular order. First take the closure
of the image of the set of ends. If the tree were locally finite (finitely many
edges at any vertex), then the set of ends would be order complete, and the
image is a closed subset of the circle.. The fundamental group still acts on
the closure. There may be gaps in the image. Now collapse every closure of
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a complementary interval (that is a gap) to a point, producing a circle S}S 7>
called the JSJ universal circle of F. Deck transformations either preserve or
reverse the circular ordering so induce homeomorphisms of the circle that
either preverse or reverse orientation.

Remark 4.7. The JSJ universal circle depends on the foliation F: given a
different R-covered foliation Fp, it may induce a different circular ordering
of the edges at a given vertex of the tree T. This will produce a different
circular order on the set of ends of T and hence a different JSJ universal
circle. The tree T is the same and so are its ends. But the the set of edges
around a vertex in T does not come with a natural circular order. This is
the information that the R-covered foliation is providing, because it gives
an embedding of the tree into the plane. Different R-covered foliations may
give different such circular orders.

Let T be a m-injective torus in M, put in good position as in Lemma
4.1. Given F leaf of 5", we define the lamination G whose leaves are the
intersections of lifts T of T with F. In fact Gp also depends on T, but for
notational simplicity we omit this dependence.

Lemma 4.8. For each m-injective torus T of M and for each F' leaf of 5’,
then the set of ideal points of leaves of G is dense in S*(F). In addition
for any non degenerate interval J of S*(F) there are leaves of G with both
ideal points in J.

Proof. Suppose the first property is not true, let 7" be a m-injective torus
and F' a leaf of F so that the set of ideal points of leaves of G is not dense
in S1(F).

Then there is a non trivial interval I in S*(F) which is disjoint from the
ideal points of of Gp. Since the curves in Gp are uniform quasigeodesics
in F they are a uniform bounded distance from geodesics in F. Hence
up to considering a subinterval, it follows that I bounds a half plane P
in F' which is disjoint from Gp. Therefore there are disks D; with radius
converging to infinity disjoint from Gr. Up to taking subsequences and deck
transformations g;, then g;(D;) converges to a full leaf L which is disjoint
from Gr. But this is impossible since any lift T of T intersects every leaf of
F. This proves the first property of the lemma.

Now suppose that J is a non degenerate interval so that no leaf of Gy has
both ideal points in J. Let x be an interior point of J. Let x; a sequence
of distinct points in J converging monotonically to x. There are leaves c;
of G with an ideal point arbitrarily close to x;. Since the x; are distinct
in J we can choose the ¢; to be distinct as well. The other endpoints of
¢; are not J, hence at least a; > 0 from the first endpoint of ¢; which is
arbitrarily close to x. Since the ¢; are uniform quasigeodesics, then up to
subsequence we may assume that c¢; converges to a quasigeodesic c. But
then different ¢;, ¢; have points that are arbitrarily close to each other. This
is a contradiction: different tori in the JSJ decomposition are compact and
disjoint. This implies that there is a constant as > 0, so that if C,C" are
different lifts of JSJ tori, then points p € C,p’ € C’ satisfy that distance
from p to p’ is at least as.

This finishes the proof of the lemma. U
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We can now prove the following proposition that gives a different way to
think about the universal circle of a foliation in terms of the JSJ universal
circle.

Proposition 4.9. Suppose that M has a non-trivial JSJ decomposition and
F is an R-covered foliation with Gromov hyperbolic leaves. Then there is a
canonical homeomorphism between the universal circle S}miv of F and the
JSJ universal circle S}SJ of F. This homeomorphisms is equivariant under
deck transformations.

Proof. For simplicity fix a leaf F' of F. The universal circle of F is canonically
identified with S*(F). The JSJ universal circle can be obtained from the
intersections with F. What we will prove is that considering F, both of
these are canonically homeomorphic.

Let Tr be the embedded tree in F' which is the homeomorphic image of
T. Fix a basepoint p in Tp. Let B be the set of ends of Tp. Since Tr is a
tree it is easy to see that each end is uniquely associated to an embedded
ray in Jr starting at p. Let e be an end in B associated to a ray « in T,
which is also an embedded ray in F'. Then « keeps intersecting lifts C; of
one of the JSJ tori, let ¢; = C; n F. Recall that ¢; is a quasigeodesic with
uniform constants, so globally ag distant from a geodesic in F. Any two
lifts C, C" of JSJ tori have a minimum separation between them. Hence the
corresponding points C'n F, C' n F also have a minimum separation between
them. Therefore the geodesics associated to ¢; also escape in F' and they
define a unique ideal point in S*(F) which we call f(e). This defines a map
f from the set of ends B to S(F).

Given appropriate orientations on S'(F) and the circular order on the
set of ends of T, it follows that the map f preserves this circular order.
In particular as one goes around once in the circular order of the ends of
Tr, then one also goes around once in S'(F). By Lemma 4.8, for each non
degenerate interval J in S'(F) there is a leaf ¢ of £ with both ideal points
in J. Hence any end e of Tr which is associated with a path in the tree Tp
which crosses ¢ will have f(e) in J. It follows that the image of f is dense
in SY(F).

Recall the construction of the JSJ universal circle S}S ; of F: we map the
set of ends B to a circle S' preserving the circular order, take the closure
and then collapse the gaps.

By the first step we can think of B as a subset of S'. Let H be the closure
in S! of the image of f. Since f preserves circular order it induces a map
fi from H into S*(F). This map is weakly monotone. Since the image of B
under f is dense in S'(F) it follows that given the endpoints of a gap of H
they have the same image in S*(F) under f;. This implies that f; induces
a map fyx from the JSJ universal circle Stg; of F to SY(F).

Finally by the same reasoning if two points have the same image under
f1 then they have to be boundary points of a gap of H in S'. This implies
that f. is a homeomorphism.

Any deck transformation v permutes the lifts of JSJ tori and components
of M — W. Tt sends infinite embedded paths in the tree Tp to infinite paths
in the tree T, (). The tree T, ) is canonically homeomorphic to the tree
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Tr and this identification is compatible with the identifications of S*(v(F))
and S(F). It follows that the homeomorphisms fyx are equivariant. This
finishes the proof of the proposition. O

Remark 4.10. Notice that in the case of a non trivial JSJ decomposition, the
construction of the JSJ universal circle comes with an invariant lamination.
For definition and properties of invariant laminations associated to universal
circles see [Cay, Section 8.2]. The invariant lamination is obtained from the
tori in the JSJ decomposition, their lifts to M and their ideal points in the
ideal circles.

4.3. Moving points in the universal circle. The following property will
be important for the proof of Theorem 1.2.

Proposition 4.11. If F is a uniform R-covered foliation by hyperbolic leaves
and £ € Sk . then there is v € m (M) such that y(§) # &.

nw
Proof. We first treat the case where the JSJ decomposition of M is trivial.
If M is Seifert with hyperbolic base, the universal circle is identified with the
boundary of the universal cover of the base. The base is a hyperbolic surface
S, maybe with finitely many orbifold singular points. If § is a generator of
the center of 71(M) then m(M)/ < 6 > is isomorphic to a closed surface
group m1(S) where S may have finitely many orbifold (or cone) points and
acts on the boundary 8. The stabilizer of each point in 08 is at most infinite
cyclic. The deck transformation § acts by the identity on the universal circle
of the foliation. It now follows that the stabilizer of a point of the universal
circle is at most a Z @ Z subgroup. By homological reasons Z @ Z cannot
be the fundamental group of an irreducible closed 3-manifold | |. This
finishes the proof in the Seifert case.

If M is atoroidal then it is hyperbolic” and we then assume M =H3. In
this case we show that the stabilizer of £ is at most infinite cyclic. Suppose
that «+ is in the stabilizer of £. Let F be a leaf of F and &r be the ideal
point of S1(F) associated to £&. Thurston [1h] proved that the embedding
F — M extends to a continuous map F U ST (F) — M u S2 where SZ is
the boundary dnM = 0, H? (cf. § 2.4). Let p be the image of {r under
this extended map. Let 8 be a geodesic ray in F' with ideal point . Then
~v(B) is a geodesic ray in v(F'). Since v(§) = &, and F is uniform, it follows
that v(8) has a subray which is a bounded distance from (. In Mu S2 the
image of § limits to p. Since v(3) has a subray a bounded distance from a
ray of 3, it follows that (p) is equal to p. Hence 7 is in the stabilizer of p.
But it is well known that the stabilizer of a point in S2 is at most cyclic.
This finishes the proof in the atoroidal case.

Foliations in manifolds with (virtually) solvable fundamental group are
classified and cannot be uniform R-covered with hyperbolic leaves (see [I’14]
or [HP, Appendix B] for the C%case). In fact the result does not work for
manifolds with (virtually) solvable fundamental group. So the remaining

"This follows from Perelmans’ geometrization theorem. We do not need the full force
of geometrization here, it is enough to know that atoroidal manifolds have fundamental
group which is Gromov hyperbolic [ ], see also [Ca., Corollary 9.32].
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case to be analyzed in the proof is is when M has a non-trivial JSJ decom-
position in our sense (which excludes being a torus bundle up to a finite
cover).

Now we consider the case that the JSJ decomposition of M is not trivial.

Let T be the tree of lifts of the pieces of the JSJ decomposition as in
Proposition 2.4. Fix F a leaf of F. Recall from the proof of Lemma 4.8 that
the following holds: for any lift ]\/\jf(? of a piece M;, of the JSJ decomposition
of M, it intersects F' in a single component. Let & be the point of S(F)
corresponding to £&. We consider 2 distinct lifts ]\73 as follows. First take an
arbitrary ]\fz] so that &g is not an ideal point of A = ]\75 N F. Now take

a second lift ]\’fo so that Ay separates As = ]\72-’€ N F from £ — this means
that the closure of A; in F'u S!(F) separates {r from the closure of As in

F U SY(F). We also choose ]\7{‘7 so that distance in the JSJ tree from ]\NﬂC to
M is greater than 3. Let now v be a non trivial deck transformation that
fixes Mf. By Proposition 2.4 the diameter of the fixed point set of v acting

on the JSJ tree is less than or equal to 2. In particular 7(]\,\4;7) = ]\/\4;] Since
A separates Ag from &p, it now follows that v(£) is not equal to &.
This concludes the proof of the proposition. O

Remark 4.12. One can give a different proof of Proposition 4.11 using dif-
ferent machinery that we chose not to present in detail. Indeed, if there is
a global fixed point £ in the universal circle of a uniform R-covered foliation
by hyperbolic leaves, then the one-dimensional foliation by geodesics in each
leaf landing as a geodesic fan on ¢ is equivariant and therefore descends to
a one-dimensional foliation (which if chosen to be tangent to a unit vector
field defines a flow) in M. By an argument in [Cas] (see the proof of [Cas,
Theorem 5.5.8]) this flow is (topologically) Anosov® for which F is the weak
stable foliation. This is impossible since the flow would be R-covered and
not a suspension (because the center stable foliation is uniform). This flow
also does not have periodic orbits freely homotopic to their inverses, because
the orbits always point in the direction of £&. This contradicts what is proved
in [ , Bar].

5. PROOF OF THEOREM 1.2

We fix in 71 (M) a finite symmetric set of generators 8§ and denote by ||
the word length of v with respect to §. We will be concerned with sequences
going to infinity, so the choice of § is irrelevant.

Theorem 1.2 concerns the action of m1(M) on the universal circle S! . .
The universal circle is canonically homeomorphic to S!(L) for any L leaf
of 7. By Remark 2.5, in order to prove Theorem 1.2, it is equivalent to

consider the action of 7 (M) on S(L). So fix a leaf L € F and denote by

p(v): LuSHL) — LuSYL), p()(z) =TrLoy
This induces an action of 71 (M) on S*(L) (but in general does not induce

an action on L). Again via the identification with the universal circle S}, .

80r at least semiconjugate to it.
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this is exactly the action defined on S! . in Remark 2.5. In this way p is a
group homomorphism from (M) into Homeo (S*(L)).

Fix a point xg € L. The point z( allows us to define a visual measure (cf.
§2.4) in SY(L) that we will also fix.

The first important property is the following:

Lemma 5.1. Given a compact interval J ¢ Lg = ]\7/5} containing L we
have that if v, € m1 (M) satisfies v, L € I and |y,| — 0, then for every x € L
we have

dr(x, p(yn)z) — 0.

In particular, given C < L compact, there is K > 0 such that if |y| > K
and YL € J then p(y)C n C = &.

Proof. Fix a compact fundamental domain Y of M in M. For a given R > 0
there is a bounded set G = M which consists of the points z in leaves F' € J
such that 7 1(2) € Br(z) where Br(z) denotes the ball of radius R in L.
The set G is bounded because the quasi-isometry constants of 7 1|1, depend
only on the Hausdorff distance between F' and L. Since F' € J the Hausdorff
distance is bounded. Now, one can cover G by finitely many fundamental
domains, implying that if ~ verifies that vL € J and || is sufficiently large,
then p(v)x cannot be in Br(z). This completes the first part of the Lemma.

For the second statement, notice that estimates are uniform, so by com-
pactness one gets the statement. U

This allows us to show the following;:

Lemma 5.2. For every finite interval I < Lg containing L and € > 0
there is K > 0 such that if |y| > K and yL € J we have that there are
(not necessarily disjoint) intervals I, Jy of length (for the visual distance in
SY(L)) smaller than ¢ and such that

p(N(SNL) < T,y

Proof. Given the finite interval J there exists a uniform constant ¢ > 1 so
that for every F' € J the map 77, : F' — L is a quasi-isometry with constant
c. It follows that the image by p(y) of a geodesic in L is a c-quasigeodesic
in L whenever vL € J. Notice that 7x 1| is not necessarily continuous,
so Tpr|r(c) not necessarily a continuous curve. But the quasi-isometry
inequalities still hold.

Fix z¢ in L. Let C < L be a compact set containing xy with the property
that every quasigeodesic in L with constants bounded by ¢ which does not
intersect C' verifies that its visual measure is smaller than £/2.

Now, we can apply Lemma 5.1 to find K such that if v verifies that yL € J
and |y| > K then one has that p(y~1)CnC = &. By choosing K a bit larger,
one can assume that there is a geodesic £ in L which separates p(y~!)C from
C (see figure 1). This uses that the diameter of p(y~!)C n C is uniformly
bounded. This allows us to define I, as the (shortest) interval determined
by the endpoints of ¢ (i.e. the one so that I, Ul < L u S*(L) leaves C on
the outside) and J, to the (shortest) interval joining the endpoints of the
quasigeodesic p(y)(¢).

O
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N

FIGURE 1. Depiction of the ingredients of the proof of Lemma
5.2. Here 4 := p(y).

Now we are in condition to prove minimality of the action:

Proposition 5.3. The action of 71 (M) on S. . is minimal. In particular,
given & € SY(L) and an open interval U < S*(L) there exists v € m (M)

such that p(y)§ € U.

Proof. We first fix an open set U < SY(L).

Fix T a compact fundamental domain of M in M. Every other fun-
damental domain will be a translate of T' by a deck transformation. Let
D = diam(7'), which is also the diameter of any translate of 7. Let J < Ly
be a compact interval around L such that the union |Jp.q F' contains the
neighborhood of size 2D of the leaf L. Notice that this interval can be chosen
thanks to the fact that F is R-covered and uniform.

Choose points &1 # & in the interior of U and take fundamental domains

1,15 of M in M such that they intersect L in points very close to & and &9
respectively, more precisely, such that the intersection 7;* n L is non empty
and T " L — & in L U SY(L). See figure 2.

Now, we can choose v, so that v, (77") = T3'. Since the diameter of T} is

fixed, T n L — & and & = & then as n — o0,

for any oy € T7", yy € T3,  d(y7,y3) — 0.

It follows that |vy,| — 0. Also 7, L € I so that Lemma 5.2 applies. This also
uses that J is R-covered. Let I,,,J,, be the intervals provided by Lemma
5.2. We choose € > 0 small so that the 2e-neighborhood of both & and &
in S*(L) is contained in U.
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By contradiction, we assume that there are arbitrarily large n so that
neither I, nor J,, are contained in U. Take U the subinterval of U obtained
by removing from U the € neighborhoods of the endpoints (i.e. if U = (a, b)
we consider U = (a + &,b — ¢)). Notice that &,& are in U. The choice
of I,, and J,, implies that they are both disjoint from U and therefore
%ﬁ ~ U = . This will be a contradiction as follows: take ¢, a geodesic
in L intersecting 77" n L whose endpoints are close to &; and contained in
U. Then the image by p(7v,) of ¢, is a uniform quasigeodesic, because =, L
is in a compact interval J in the leaf space. This uniform quasigeodesic
intersects 73" and therefore has at least one endpoint in a neighborhood of
& if n is large enough (note that we cannot ensure that both endpoints of
p(7)(¢y) are contained in U). This implies that v, n U # & which is a
contradiction.

Therefore up to a subsquence and replacing U by a slightly smaller open
set, it follows that either I, or J,, is contained in U. Up to taking v, ! we
can assume that J, < U.

FIGURE 2. Depiction of the ingredients of the proof of Proposi-
tion 5.3. Here 4, = p(7,,) and T)* = T)* n L.

We now choose an arbitrary point ¢ in S'(L). Pick n € 71(M) so that
p(n)& # & (cf. Proposition 4.11). If necessary choose ¢ smaller so that the
distance in S*(L) from & to p(n)¢ is bigger than 10e.

Assume first that £ ¢ I, for arbitrarily large n. In this case, one concludes
since p(yn)€ € Jy, < U as desired. If € € I, for all large n, then by the
choice of ¢ it follows that p(n)¢ ¢ I,, for large enough n. This implies that
p(ymn)€ € J,, < U completing the proof of the proposition. O
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We devote the rest of the section to the proof of transitivity of the ac-
tion on pairs of points. First, we show that we can find attractor/repeller
configurations in any pair of open sets.

Lemma 5.4. For every U,V open intervals in S'(L) there is v € m (M)
such that p(v)(SYL)\U) < V.

Proof. Consider a sufficiently large compact interval J ¢ L4 as in the proof
of Proposition 5.3 so that the union of its leaves contains a neighborhood of
size larger than the diameter of a fundamental domain around L.

As in the proof of Proposition 5.3, it is possible to construct a sequence
Y € m1(M) such that |y,| — o and such that the neighborhoods I, and
J., verify (up to taking a subsequence) that I,, — & and J,, — & where
it could be that & = &». This is just taking very large elements that move
a fundamental domain intersecting L into other fundamental domain inter-
secting L and applying Lemma 5.2.

Now, using Proposition 5.3 we choose 71 and 7y in (M) satisfying
p(m)(&1) € U and p(na)(&2) € V. It follows that for sufficiently large n
the deck transformation 3, = 19 0y, on; * verifies that p(8,)(S"\U) < V.

To see this, notice that p(n;')(U) contains I,, for suficiently large n
because p(n1)(&1) € U. Similarly, if n is large enough, then p(n2)(J,,) is
contained in V. Since p(v,,)(S*(L)\L5,) < J,,, this completes the proof. [

To complete the proof of Theorem 1.2 it is enough to show:

Proposition 5.5. Given open intervals Uy, Vi < SY(L) and Us, Vo = S'(L)
there exists 4 € w1 (M) such that p(y)Ur n Uz # & and p(y)Vi n Vo # .
In particular, there exists a pair &1 # &2 € S&mv whose w1 (M)-orbit is dense
in SL .. x SL . \{diagonaly.

unLv u

Proof. By reducing the intervals we can assume without loss of generality
that the four intervals Uy, Us, V1, V5 are disjoint.

Apply Lemma 5.4 to find deck transformations v and n which verify that
p(V)(SYL)\U1) € Vo and p(n)(S*(L)\p(7)V1) < Us.

Now, the transformation 4 = 7y is the desired one. Indeed,

p(NUL A p(NVi =@, or p(MUr < SHL)\p(7)V1,
which implies that p(ny)U; < Us. In addition

p(m)Vi = p(mp(1)Vi = SY(L)\Uz > Va.

The existence of dense orbits is now standard. Indeed, pick a countable
basis {U,} of intervals generating the topology of S'(L). The set A, ,, of
pairs of different points &1,&2 such that there exists v € 71 (M) such that
p(7)&1 € Uy, and p(7)&s € Uy, is clearly open and it is dense because of what
we just proved. Then, the intersection ﬂnm Ap,m is a residual subset by
Baire’s category theorem and the orbit of points in A,,,, is always dense in
S'leniv X Szanw g

6. BRANCHING FOLIATIONS

In this section we just point out that all our results work in the setting
of branching foliations as they appear in the study of partially hyperbolic



MINIMALITY IN THE UNIVERSAL CIRCLE 27

dynamics. These objects were introduced by Burago-Ivanov [BI]. We give
here a definition that excludes a priori the existence of Reeb component like
objects.

A branching foliation Fppqpn in a 3-manifold M is a collection of immersed
surfaces (tangent to a continuous distribution) called leaves with the follow-

ing properties. If C:"bmn is the lift of the collection to M then:

e Each leaf L of f;”bmn is a properly embedded plane in M and separates
M in two open regions L® and L°. Denote Lt = L u L® and
L~ =LulLP.

e Every point in M belongs to at least one leaf L € §bran-

e The leaves do not topologically cross. That is, given two leaves L
and F of Fpyan we have that F < Lt or F < L.

e Given a sequence of points x,, — = € M and leaves L, with x,, € L,
it follows that through x there is a leaf L € f;"bmn which is the uniform
limit in compact parts of L,,.

In | , §3] (see also [ , §3]) a careful study of the properties of
these objects is performed, including a study of the leaf space associated
to such a branching foliation. In particular, it makes perfect sense to talk
about uniform branching foliations and R-covered ones. Moreover, in the
partially hyperbolic setting there exists foliations in M that approach the
center stable and center unstable branching foliations. In this setting this
can be used to have in general situations a metric in M which gives curvature
arbitrarily close to —1 to all leaves of F. In this setting, one can define a
universal circle as one does for general foliations.

All arguments performed in this note thus hold for branching foliations.
We state the result in this context for future use and explain how it can be
deduced from the results proved in this paper. (Note that we could have
performed our arguments directly in the branching foliation setting, but we
decided to work out the foliation case first since we believe that many people
may only be interested by the true foliation case.)

Theorem 6.1. Let F be a uniform branching foliation. Then, it is R-
covered. Moreover, if M admits a metric making every leaf negatively curved,

then the action of w1 (M) is minimal in the universal circle SL . and more-
over it acts transitively in pairs of points of SL,.. .
Proof. Note that [BI, Theorem 7.2] (see also [ , Theorem 3.3]) shows

that a transversely oriented branching foliation F can be approximated by
a true foliation F. together with a continuous and surjective map h. : M —
M, which is € close to the identity, and is a local diffeomorphism from
L € F. to he(L) € F. In particular the e-close property shows that the
approximating foliation is also uniform. Moreover, the map h. lifted to
M induces a homeomorphism between the leaf spaces (see | , Theorem
3.3 (ii)]). In this way, we can associate to a uniform branching foliation F
another uniform (non branching) foliation ¥, and thus apply Theorem 1.1
to &, to obtain the same statement for F.

To show the minimality, we can either use the same arguments as in the
previous section (which work without modifications), or alternatively, we



28 S. FENLEY AND R. POTRIE

can also use F. and note that h. induces a conjugacy between the actions
in the universal circle.

There is always a double cover of M so that JF lifts to a transversely
oriented branching foliation, so the result follows. O
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