
1.  Introduction
Since the launch of the Harvard Water Program in 1955, the field of water resources management has been 
dedicated to providing practical solutions for complex water systems (Reuss, 2003). However, these efforts 
are hindered by the uncertainty and nonstationarity rooted in both the human (demand) and natural (sup-
ply) systems (Brown et al., 2015; Cosgrove & Loucks, 2015; Herman et al., 2020). Several planning approach-
es have emerged to address this issue, which can be grouped into three categories: dynamic planning, risk-
based planning, and robust planning. The first category, dynamic planning, seeks a set of decision rules that 
yields the optimal outcomes (Castelletti et al., 2010; Harrison, 2007; Higgins et al., 2008). Risk-based plan-
ning aims at generating solutions under different risk levels and explores tradeoffs between risks and man-
agement objectives (Borgomeo et al., 2018; Hall et al., 2020; Lund, 2002), whereas robust planning looks for 
strategies that are robust (acceptable) across a variety of future conditions (Lempert & Collins, 2007). These 
categories are not mutually exclusive as several hybrid methods have been proposed. For instance, Dynamic 
Adaptive Policy Pathways incorporates robust decision-making into dynamic planning to determine the 
timing and actions for adaptation (Haasnoot et al., 2013; Kwakkel et al., 2015, 2016). Many-objective Robust 
Decision Making explores robust planning alternatives, plans that perform well in a set of future condi-
tions, and the tradeoffs among management objectives (including risks) (Kasprzyk et al., 2013; Watson & 
Kasprzyk, 2017; Yan et al., 2017). Another example is risk-based stochastic programming which enhances 
dynamic planning by considering risk-aversion to avoid undesirable outcomes (Piantadosi et al., 2008) and 
learning by doing to improve decision-making adaptively (Hung & Hobbs, 2019). Nevertheless, the meth-
ods adopted in these studies often do not acknowledge the active interactions among human water users 
(stakeholders) and natural water supply. Water systems are inherently complex human-nature systems as 
stakeholders can interact with each other and the environment. Neglecting or simplifying the dynamics 
among stakeholders and stakeholders' adaptive behaviors may lead to biased conclusions.

Studies have indicated that incorporation of stakeholders objectives (Gold et  al.,  2019; Hadjimichael 
et  al.,  2020; Quinn et  al.,  2017) and consideration of stakeholders' cognitive beliefs and values (Glynn 
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et  al.,  2018; Moallemi et  al.,  2020), are critical for managing complex human-nature systems. Originat-
ing from the Artificial Intelligence community, agent-based modeling (ABM) was introduced to the water 
resources field in the late 2000s (Berglund, 2015). Since then, ABMs have emerged for assessing human 
systems dynamics and impacts on water systems (e.g., Al-Amin et al., 2018; Berglund, 2015; Ng et al., 2011; 
Yang et al., 2009). ABM is a distributed, bottom-up planning approach for understanding human impacts 
on system performance. An agent in an ABM is an object that interacts with other agents and the system of 
interest (a virtual environment, e.g., water resources models).

Berglund (2015) summarized earlier ABM development and developed case studies of two distinct agent 
types for water resources planning: the reactive agents respond to environmental signals based on behavio-
ral rules, and the active agents pursue strategies to optimize their objectives. The former is also known as a 
descriptive model, and the latter a normative model (Smith, 1991). Recently, several ABM frameworks have 
been proposed to address the natural uncertainties and nonstationarity of complex human-natural systems. 
Giuliani et al. (2016) proposed a normative ABM framework to investigate the coevolution of agricultural 
water systems under climate change. Hyun et al. (2019) and Yang et al. (2020) applied psychological the-
ories to simulate farmers’ irrigation decision-making under uncertainty. Al-Amin et al. (2018) coupled a 
descriptive ABM with a groundwater model to evaluate water restriction programs in a watershed with mul-
tiple cities under future climate scenarios. Castilla-Rho et al. (2015) developed a similar ABM-groundwater 
model framework with a focus on participatory modeling. Generally, normative ABMs assume rationality 
and disregard human cognitive activities (e.g., learning and risk attitude), while descriptive ABMs only 
simulate encoded behavior rules that may misrepresent human response when the environment changes. 
We believe this research gap can be addressed, at least partially, by reinforcement learning (RL) algorithms.

RL is an area of machine learning where an intelligent agent can learn and improve its decision-making to 
optimize the long-term reward (Sutton & Barto, 1998). Depending on the context of the problems, RL meth-
ods can be either learning algorithms for searching optimal policy (a set of rules that guides an agent's ac-
tions in RL's terms) or decision-making models for simulating human adaptive behaviors (Seo & Lee, 2017; 
Sutton & Barto, 1998). The former is termed as learning methods, and the latter termed planning methods 
in the RL community (Sutton, 1992). RL has two essential characteristics: trial-and-error search and delayed 
reward, which enable agents to adapt their strategies by interacting with the environment. Since the intro-
duction of RL to the water resources field, it has been extensively applied for optimal reservoir operations 
(Castelletti et al., 2010; Dariane & Moradi, 2016; Lee & Labadie, 2007; Madani & Hooshyar, 2014; Rieker & 
Labadie, 2012), with a few exceptions in dam sizing (Bertoni et al., 2020) and water and natural resource 
allocations (Bone & Dragićević, 2009; Ni et al., 2014). However, despite its increasing popularity, these appli-
cations only focus on RL's learning aspect for finding optimal policies in a stationary environment.

Focusing on the RL's planning aspect, this paper proposes an RL-ABM framework that equips agents (i.e., 
the agriculture water users in the case study) with the ability to adapt to a changing water system. The 
agents' decisions are the water quantity requests submitted to the water resources administration, and the 
water system is assumed under the impacts of climate change and growing water consumption. Rooted 
in psychology and cognitive science, the RL algorithm is advantageous, compared to the aforementioned 
methods, in simulating the constant changes in human beliefs and strategies through interactions with 
the environment. This feature is critical for the simulation of human reactions in nonstationary systems. 
Moreover, RL's parameters are relevant to human cognitive activities and can be used to characterize agents’ 
behaviors (i.e., water diversion patterns in response to signals of environmental changes from the water 
system).

The RL-ABM framework is applied to the Colorado River Basin (CRB), United States (US), as an illustrative 
case study. The CRB is one of the most critical water sources in the Western US and Mexico and is facing 
increasing water stress due to recent droughts and the warming climate (US Bureau of Reclamation, 2012). 
The Colorado River Simulation System (CRSS), a water resources management model for CRB developed by 
the US Bureau of Reclamation (USBR) for reservoir operations and policy evaluations (US Bureau of Rec-
lamation, 2007a; Zagona et al., 2001), is adopted in the case study as the virtual environment to be coupled 
with the RL-ABM for the assessment of water system response to dynamic agriculture water demands. The 
RL-ABM agents (agriculture water users in the CRSS) can be a single farm, an irrigation ditch, an irrigation 
district, American tribal water users, or a group of farming entities. Therefore, an agent represents only 
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the collective behavior of the water users in that group, but it may not represent the individual water users' 
decision-making.

In summary, this paper's contribution includes: (a) a modeling approach for studying human adaptation 
impacts on nonstationary water resources systems with a focus on the human cognitive aspect, and (b) an 
RL algorithm for simulating agriculture water users’ adaptive water consumption decisions that incorpo-
rate additional water availability information. Moreover, RL-ABM parameters can better characterize an 
agent's cognitive processes comparing to Hyun et al. (2019), which can provide information about agents’ 
reactions to environmental changes.

The remainder of this paper is organized as follows. Section 2 describes the modeling framework for agri-
culture water users’ adaptive policy and the ABM-CRSS coupling. Section 3 introduces the case study. The 
results are shown in Section 4, followed by the discussion in Section 5. Finally, we present our conclusions 
and final remarks in Section 6.

2.  RL-ABM Framework
The proposed RL-ABM framework builds on the widely applied Q-learning algorithm (C. Watkins, 1989; 
Watkins & Dayan, 1992). Q-learning is an algorithm that maximizes the expected long-term reward in a 
finite Markov Decision Process (MDP) environment by learning to improve the policy (a set of rules for 
selecting an action). Our method focuses on simulating an agriculture water user's decision-making and as-
sumes that water users view the water system as a finite MDP. However, water users cannot directly observe 
the state of the environment (i.e., the maximum available water supply at the time and location where a 
decision is made) but simply accept their observations (i.e., water received) as the state of the environment. 
That is, the water users are facing a Partial Observable MDP (POMDP) problem (Kaelbling et al., 1998; 
Monahan, 1982).

This section introduces a variant of the Q-learning algorithm for a POMDP water system in which agricul-
ture water users are modeled as agents. Specifically, our method incorporates realistic considerations of 
agents’ diversion decisions: the inclusion of agents’ perception about future water availability, the update of 
that perception in the form of prior transition probabilities, agents' decision uncertainty, the rate of learn-
ing, and parameters related to risk-perception and discounting.

2.1.  Q-Learning Algorithm

The Q-learning algorithm simulates learning processes similar to the temporal differences method (Sut-
ton, 1988), in which an agent takes an action E a following a policy E  based on the state s, evaluates the im-
mediate reward R s a( , ) received by taking the action, and then updates the policy. In Q-learning, a policy E  
is in the form of a value function (called Q-function), which returns the expected value given a state-action 
pair. The definition of a generic Q-function is:

Q s a R s a P s s Q s as S a( , ) ( , ) ( , ) ( , )       max� (1)

where Q s a( , ) is the Q-function, E  is a discounting factor, P(s, s’) is the transition probability from current 
state s to the next state s’, S is the set of states, and A is the set of actions. The discounting factor    0,1E  is 
a parameter that represents how the agent values future rewards. Therefore, the second term in Equation 1 
is the expected future rewards discounted.

In a dynamic setting (i.e., multiple time steps involved in a decision process), the optimal action E a  is de-
termined by the Q-function Q s at ( , ) at that time t given the state s and the expected long-term rewards (i.e., 
the agent will choose an action that yields the highest Q value throughout the process). The Q-function 
is actively adjusted through an iterative process known as the Bellman equation, which is the optimality 
condition for a dynamic system:

Q s a R s a P s s Q s at t s S t a t( ) ( ) (, , ) )
 

       ( , max ,1� (2)
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Building on the Bellman equation, Q-learning adapts a learning rate parameter E  to control how quickly an 
agent responds to new information, as Equation 3 shows. A time index t  is also added to the state and action 
variables ( tE s  and tE a ) to distinguish their values at different times. The value of E  is between 0 and 1.   0E  
means the agent refuses to learn and rejects the new information, while   1E  means the agent fully accepts 
the new information and discards its prior belief.

Q s a Q s a R a P s st t t t t t t t s S t t( ) ( ) ( ), ( ) , ( , , )       1 1  s max(t aa tQ s a   1( , )� (3)

Equation 3 is the update of the Q-function that accounts for the learning rate and delayed (future) rewards. 
Q-learning aims to balance exploration (actions for learning) and exploitation (actions for immediate re-
wards). Equation 3 alone only allows agents to take exploitation actions, except for radical changes in the 
environment, which would likely result in suboptimal solutions. Consequently, Q-learning introduces a 
trial-and-error mechanism to ensure sufficient exploration actions are taken. Among the exploration strate-
gies, E  -greedy algorithm is the most widely applied for ease of use and tuning (Tijsma et al., 2017) and, thus, 
is applied in this study.

a
a

a

Q s a

a
t

t t t
 











argmax ,with probability(

with a tota

( , ) )

,

1 

ll probability 






� (4)

where E   is the exploration rate. Essentially, E  -greedy agents adopt a randomized strategy: they take the opti-
mal action with probability ( 1E  ) or other actions with probability E   (Equation 4). Therefore, a higher value 
of E   means that the agent is more likely to take exploration actions. Whereas  0E   means agents always take 
actions to maximize the expected rewards and never risk learning new information.

2.2.  Farmer's Q-Learning (FQL) Algorithm

To apply the Q-learning algorithm for agriculture water users’ irrigation simulation, we first define a POM-
DP water system as a tuple (S, A, T, R, O, ΩE ). The POMDP components are explained below.

1.	 �S is a finite set representing the states of the water system perceived by an agent. We defined the state 
of the water system (denoted tE s ) the maximum available water for an agent at the location and time of a 
diversion decision (denoted st∈S; each agent has its own E S)

2.	 �A is a finite set of actions. The actions can be deterministic or stochastic. In this paper, we adopted a 
stochastic model to improve the representation of the variability in agents’ diversions. The variability 
represents variables not included in this study and random errors. For simplicity, we consider only two 
actions in the case study: to request an increase (a+) or a decrease (a−) in the diversion. The actions (a+ 
and a−) indicate the direction of diversion change, and the amount of the change (ΔE Div) is assumed 
following a half-normal distribution ( Δ ,E Div X X is a normal random variable). Thus, the decision 
includes two steps: (a) select a direction (a+ and a−) and (b) determine the requested increase or decrease 
quantity by drawing a random number from the half-normal distribution

3.	 �T is the state-transition model that determines the agents’ perceived state of the water system
4.	 �E R is the immediate reward function representing an agriculture water user's utility. In Equation 5, the 

E Reward is the crop production as a function of water consumption (Divt), the E Penalty is the cost induced 
by prediction errors (e.g., the sunk costs of sowing and fertilizers), and the E regret (a scaler) is a normal-
izing factor to combine reward and penalty into one utility function

      requestedReward Penalty regrett tR Div Div Div� (5)

where Divt is the diversion received at time t, Divrequested is the diversion received (Divt−1) plus the change 
requested (ΔDiv) in the previous time step. Details about the reward function derivation are presented in 
the supporting information (Text S2).

1.	 �O is the observation function, which generates observations for each action and state combination. An 
observation consists of two signals, the water availability information Of and the diversion water re-
ceived Divt. The water availability information Of is a reference for future water availability and external 
information that affects agents' decisions (e.g., precipitation forecasts and dam water levels)

2.	 �ΩE  is a finite set of observations that may reveal to an agent
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While an agent interacts with the POMDP, it makes observations, generates actions, and keeps updating an inter-
nal belief that summarizes its experience. From the human cognitive perspective, the state of the system st∈S is 
an agent's perception about the available water quantity in the POMDP environment. Depending on the agents’ 
locations in the river system and its interpretation of the observation, agents can have their own perceived state 

E s and set E S. Furthermore, since an agent cannot know the true (maximum) quantity of the available water, we 
need a function, called a state estimator (SE), to translate the observation E Ointo the perceived state E s. We assume 
that agents believe the water received (i.e., Divt ) are the maximum quantity available, so we can construct an 
SE that maps the diversion received (a continuous variable Divt) to the state of the system (a discrete variable E s).

The water quantity delivered to an agent (Divt) and the maximum water quantify available (not directly ob-
servable) for the agent are simulated by a water resources management model (i.e., the CRSS in the case 
study) according to the agent's diversion request (Divrequested), the water budget at the agent's location, and the 
water allocation rules of the model. Thus, the water resources management model serves as the state-tran-
sition model E T  and the observation function E O. More details of the CRSS are presented in the next section.

The transition probability E P is an agent's prior belief, which is constructed based on the agent's experience. We 
assumed that agents do not fully understand the water allocation rules nor do they have the perfect information 
about future flows, so they view the state-transition process as a stochastic process. An agent's belief updating 
requires another SE to translate the water availability information Of into water availability index ft ∈ {0,1} 
where tE f  = 1 indicates an expectation of more water (e.g., a higher dam water level than the previous year) and 
ft = 0 means the opposite. Upon received the observations ft and Divt, we can calculate the reward Rt, and update 
the E Q-functions Qt and transition probabilities tE P. The updating of Qt and Pt can only happen at the start of each 
time step until the reward of a decision is known. Therefore, the update of the Q-function is revised as follows.

                      
      
 

1 1 1 1 1 1 1 1 1 1 1 1, , 1 , , , , , Max , ,t t t t t t t t t t t t t a t ts SQ f a s Q f a s R P f a s s Q f s a� (6)

Since the system is Markovian, updating a prior transition probability over the states requires only the 
knowledge of the previous time step and the current observation. The updating method here is similar to 
the replacing eligibility trace method in which the probability decays linearly every time a state is visited 
(Sutton & Singh, 1996). The idea is to generate a short-term memory process that reinforces the state visited 
and gradually decays the others over time. This belief update is computed using Equation 7.

P f a s

P f a s s s s

t t t t

t t t t

s

t

  

   

  
     

1 1 1

1 1 1 1

1 1

, ,

, , , ,

 

s

s




s

s

    









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1

1 1 1 1P f a s s s st t t t t, , , ,
� (7)

where  sE  is the normalizing factor and 

 1s

s
E  is the memory decay rate of state E s. This formulation ena-

bles us to assign different memory decay rates 

 1( s

s
E ) to different states based on frequency so that the 

memory of rare events is stronger than frequent events. For example, a prior belief from state 1 to state 2 
is 0.1 ( 1, 2 0.1)E P ,  1 2E  will result in a posterior belief 1, 2 0.55E P  whereas,  1 10E  will yield a posterior 
belief 1, 2 0.19E P . The underlying assumption is that people respond to rare extreme events (e.g., extreme 
and long-lasting droughts) more swiftly than frequent low-intensity events (e.g., small and frequent water 
deficits). This view is supported by human and organizational learning studies, but it is just one of the com-
peting views of rare event learning (Lampel et al., 2009; Starbuck, 2009). For example, studies also indicate 
that people may not learn if they attribute rare events to unforeseeable external circumstances, or they have 
a strong prior belief and the impact of the event is insignificant.

We named this version of Q-learning the FQL algorithm. Figure 1 shows the flowchart of the FQL algo-
rithm. At time t, an agent will receive a diversion tE Div  and information about future water availability ,f tE O . 
Then we convert the observations ( ,andt f tE Div O ) to discrete index ( tE s , tE f ), calculate the reward Rt, and update 
the transition probability tE P and the Q-function Qt. The agent will decide whether to increase or decrease 
diversion ( tE a ) based on the updated Q-function and the E  -greedy algorithm: if a random number E x is greater 
than or equal to the user-specified probability E  , the optimal action a* is taken; otherwise, the alternative 
action a is chosen. The new ΔE Div is randomly generated based on the chosen action. Finally, the requested 
diversion requestedE Div , which is the diversion at t ( tE Div ) plus the requested change in diversion (ΔE Div), is sent 
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to the POMDP environment. A summary of the FQL parameters is presented in Table S1. The development 
of this FQL follows the standard ODD + D protocol for ABM (Müller et al., 2013), and more details of the 
model description are presented in Table S2

3.  Colorado River Basin Case Study
3.1.  Colorado River Basin (CRB) and the Colorado River Simulation System (CRSS)

The CRB generates approximately 20.23 billion m3 (16.4 million acre-feet, MAF) of freshwater annually to 
support 40 million people and irrigate 2.2 million hectares of land in the Western US. However, due to the 
increasing water demand and the warming climate, water scarcity in CRB has become a pressing issue (Cas-
tle et al., 2014; Garrick et al., 2008). The water allocation in CRB is based on numerous compacts, federal 
laws, court decisions and decrees, contracts, and regulatory guidelines, collectively known as the “Law of 
the River” (Stern & Sheikh, 2019). USBR regulates the CRB water distribution in the US through operations 
of reservoirs, such as Glen Canyon Dam (Lake Powell) and Hoover Dam (Lake Mead). The management in 
CRB is divided into two areas: the Upper and Lower Basins (denoted UB and LB, respectively) bordered at 
Lee Ferry, Arizona, set by the 1922 Colorado River Compact. The 1922 Compact states that the UB States 
(comprising Colorado, New Mexico, Utah, Wyoming, and the upper part of Arizona) will not cause the flow 
to be depleted below an aggregate of 9.25 billion m3 (7.5 MAF) in any period of 10 consecutive years for the 
consumptive uses of the LB States (Arizona, California, and Nevada).

The USBR develops the CRSS as a planning tool for analyses and discussions of water issues in the CRB, 
which comprises a set of water allocation rules and a river network with 12 reservoirs, 29 headwater trib-
utaries, and 520 water users. For the future water supply of the basin, the CRSS provides multiple options, 
including resampling the historical flow or tree-ring records and simulation outputs from climate and hy-
drologic models. As for the future demands, the CRSS uses the values estimated by the USBR in coordina-
tion with Mexico and the Basin States. In addition, the CRSS has a set of rules that are designed to simulate 
the water allocation and dam operation based on “the Law of the River.” For additional details of the CRSS, 
please refer to the USBR's website (https://www.usbr.gov/lc/region/g4000/riverops/model-info-APR2018.
html) and the newly published whitepaper (Wheeler et al., 2019).

Coupling RL-ABM with CRSS enables agents to interact with the environment and adjust their policies 
based on the feedback from the CRSS. From the POMDP perspective, CRSS serves as both the state-transition 

Figure 1.  The computation flowchart of the Farmer's Q-Learning algorithm. Green parallelograms represent data, and blue rectangles are computation 
processes.

https://www.usbr.gov/lc/region/g4000/riverops/model-info-APR2018.html
https://www.usbr.gov/lc/region/g4000/riverops/model-info-APR2018.html
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function T and the observation function E O. CRSS determines the water quantity available for each agent 
through water balance at the agent's location in the river network and the allocation rules. Since flows in the 
UB are from precipitation and in the LB are mainly regulated by reservoirs, we define the water information 
( fE O ) in the UB and LB, the winter precipitation and the Lake Mead water elevation, respectively. Moreover, 
we used the CRSS's historical resampling method to generate future flow in the case study so that we can 
compile winter precipitation data using PRISM monthly precipitation products (Oregon State Universi-
ty, 2020) for ABM accordingly.

3.2.  ABM Setup for the UB and LB

Figure 2 shows the map of the CRB, the major reservoirs, and the agriculture water groups in CRSS (49 
groups; one group can have multiple agents). Among the water user groups, we identified 56 agents in 34 

Figure 2.  The map of the Colorado River Basin boundary (brown line; divided into Upper (UB) and Lower Basins at 
Glen Canyon Dam), the state boundary, the agent groups (points with numbers), the major reservoirs (triangles), and 
the sub-basins in the UB (orange circles).
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groups in the UB and another 22 agents in 15 groups in the LB. The locations of the water user groups show 
where the diversions happen but not where the water is consumed. The numbers in Figure 2 are the water 
user group IDs; the group and agent names are presented in Tables S3 and S4. Moreover, the orange circles 
in Figure 2 indicate the sub-basins in the UB, which will be applied for training UB agents and explained in 
the following section. Agents' state variables are discretized into 21 discrete states with the median (11th) 
state being the 2018 diversion rounded, so the increment of the state levels is approximately 10% of the 2018 
diversion.

3.3.  Agent Training and Testing

Before coupling ABM with CRSS, we need to estimate agents' initial transition probabilities (P) and Q-func-
tions (Q). The initial E P and E Q are obtained by training agents in an environment constructed from historical 
data. Then the trained ABM is applied to simulate historical diversion, and the results are compared with 
the observations to assess ABM model performance.

Historically, the maximum available water ( maxE Div ) for an agriculture water user was jointly determined 
by the water regulations, dam operations, and the streamflow at the location and time of the diversion. 
We assumed the maximum available water for diversion is equal to or higher than the diversion record-
ed. Thus, we can apply a linear function to approximate the historical maxE Div :    max 1E Div Div. The 
number    0,1E  is a fraction and a threshold for penalty.   0.2E  is chosen for training in the case study 
based on trial-and-error. Then, we constructed a joint cumulative probability density function (CDF) of the 
maximum available water for diversion and water information ( fE O ) using the historical data. With the CDF, 
we applied Monte Carlo (MC) methods to generate, for that agent, the system's state and water informa-
tion  max, fE Div O  as the training data set. Alternatively, historical streamflow data combined with statistical 
methods may provide more accurate maxE Div  estimation, which could be a future research direction.

In training, each agent is an independent sub-model trained alone in a training environment (i.e., the MC 
training data). Figure 3 shows the schematic of the training processes for one agent. The initial transition 
probabilities are uninformative (equal probability for each state), and the initial Q-functions are zero func-
tions (a constant function that always generates zero). The agent training loops through all the training 
data, and each data point  max, fE Div O  represents an episode (in machine learning term; a simulation). In 
each episode, an agent is provided with the water diversion  E Div , the state (s), the Q-function (Q), and the 
water information  fE O . Based on the information received, the agent then takes an action E a, determines the 
quantity of change ΔE Div, and submits a new diversion request ( requestedE Div ). If the request does not exceed the 
maximum diversion ( maxE Div ) of this episode, the diversion ( )E Div is set to the requested quantity; otherwise, 

Figure 3.  The schematic of the Farmer's Q-Learning training processes.
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the diversion is set to the maximum value. Then, the state (s), transition probability P, and Q-function Q are 
updated as well before entering the next episode.

The individual diversion data of LB agents are available. However, in the UB, complete (all UB States) and 
consistent (same temporal and spatial scales) agriculture depletion data can only be found at sub-basin 
scale (as indicated by the orange circles in Figure 2, US Bureau of Reclamation, 2015). To address the dis-
crepancy between modeling structure and data, we modified the training procedure to enable UB agents in 
one sub-basin to be trained together, and the shortage is also shared based on the agent's diversion requests 
at the time. An alternative is to estimate agent historical diversions based on their current usage, but that 
could introduce errors to the model since, diversion partition in a sub-basin may not be stationary. The 
training can be improved if agent-level diversion information and shortage allocation rules become availa-
ble. The water depletion data is converted to diversion by multiplying a scaler of two (assuming 50% of the 
diversion is depleted, which is the method used in CRSS). Figure 4 shows the training schematics for both 
UB and LB agents. Some states (such as Colorado) have detailed diversion data that is publicly available but 
is not included in this paper for data consistency.

Furthermore, the winter precipitation information is retrieved from PRISM at the US NOAA weather sta-
tions in that sub-basin. The historical dam water level, diversion, and depletion data applied in training are 
retrieved from the USBR website (https://www.usbr.gov/). Only data from 1971 to 2018 are applied for two 
reasons: (a) data availability and (b) no new treaty and major infrastructure installed after 1971. A summary 
of the training data used in the case study is provided in Table S5.

3.4.  ABM Parameterization and Coupling With CRSS

The parameter values of the FQL algorithm are critical in modeling agents' behaviors and required calibra-
tion and validation before coupling with CRSS. Since the RL-ABM is a stochastic model, our parameteriza-
tion focuses on reproducing the historical diversion trend and the variability. The Kling-Gupta efficiency 
(KGE) (Gupta et al., 2009) captures the similarity in probability distribution (mean and variance) and the 
Pearson correlation of two data series; thus, it is chosen as the performance criterion for training.

Figure 4.  The training schematics for the Upper and Lower Basins agents and the differences.
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The parameters are associated with an agent's characteristics: the ability to learn ( , ),E   the risk attitude  
( , ,E regret), and the discounting of future rewards (E ). In the FQL algorithm, the parameter E   dictates 
how often an agent's decision would deviate from the optimal action; E  and E  are the mean and standard 
deviation of an agent's requested changes in diversion; the parameter E regret is the unit penalty of an agent's 
unsatisfied demand.

The parameterization of ABM consists of five steps: (a) generate parameter sets as candidate ABMs, (b) use 
the training data set to train candidate ABMs and generate initial Q-functions and transition probabilities, 
(c) test the candidate ABMs in historical condition and calculate their KGE performance by comparing the 
results with historical data, and (d) repeat the testing multiple times, and (e) select a candidate ABM with 
the highest mean KGE value for each agent.

The training data is generated using the method described in Section 3.3. The size of the training data set is 
2,000 so that agents have sufficient opportunities to explore and improve their Q-functions. For each agent 
(or sub-basin), we generated 100 candidate ABMs with parameters randomly sampled from the ranges list-
ed below. UB agents in one sub-basin are assigned with the same parameter values, but they have their own 
Q-functions and transition probabilities. The parameter ranges are suggested in the literature ( , ,E  ) and by 
preliminary simulation results ( , ,E regret).

1.	 �Mean diversion alteration   : 0, 0.5E
2.	 �Standard deviation of diversion alteration   : 0.5,1.5E
3.	 �Learning rate   : 0.5, 0.95E
4.	 �Discount rate   : 0.5, 0.95E
5.	 �Exploration rate  : 0.05, 0.3E 

6.	 �Regret  : 0.5, 3E regret

After training, the candidate ABMs are tested by simulating the diversion from 1971 to 2018 (48 years). This 
testing is repeated 30 times to minimize the influence of the stochasticity of the ABMs. The selected ABM 
for an agent consists of the best parameter set and the associated initial (trained) Q-function and transition 
probability. The choice of statistical metrics (e.g., mean and median of the KGE distribution) is context-de-
pendent and can affect the parameters' selection. For example, if the focus of the study is the risk of low 
model performance, the infimum of the KGEs could be used.

Finally, the coupling of ABM (consists of the best models of all agents) and CRSS is accomplished by build-
ing communication between the two models, similar to the two-way coupling methods developed by Khan 
et al. (2017). When the CRSS finished flow simulation and water allocation, it outputs the results to ABM. 
Upon received the information from CRSS, ABM updates the Q-functions and transition probabilities and 
generates agents' diversion requests sent to the CRSS for the following year. Because the time scale in CRSS 
is monthly and ABM is running annually, agents' diversion requests generated from ABM are allocated to 
each month of a year based on individual agents' historical diversion patterns. For simplicity, we assume 
fixed monthly diversion distribution (based on the 2018's values in CRSS) and allocate the annual diversion 
requests accordingly.

4.  Results
4.1.  Agent Training Results

Figure 5 shows the results of the 30 test simulations (the gray lines), the historical diversion (the blue line) 
of the UB sub-basins, and the mean KGE values. Since UB agents in a sub-basin are trained collectively, the 
results are presented at sub-basin level. The mean KGE values of the UB sub-basins range from 0.28 (UT2) 
to 0.9 (AZ). Generally, the simulation results (Figure 5) can capture the historical diversion trends and tran-
sitional patterns except in the periods of high variability, for example, the peaks of the historical diversion in 
UT2 and UT3. Because the requested diversion change (ΔE Div) follows a half-normal distribution that tends 
to suggest a mild change (the higher values, the lower probability), it would take more time for the diversion 
to ramp up than the historical data. However, when a water shortage happens, the ABM will set an agent's 
diversion to the available diversion at the time (a much lower amount than their current diversion) so that 
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the simulation results will always follow the diversion drops. This phenomenon is particularly evident in 
AZ's results in Figure 5 (bottom row, middle column). Additionally, UT2 has the lowest KGE value for the 
high variability in its historical diversion (diversion spans from 10,000 to 65,000 m3). The variability may be 
caused by mechanisms absent in current RL-ABM, such as drought contingency plans and water conser-
vation programs or large-scale new developments. Interestingly, the UT3's diversion increase in 2005–2011 
can be partly explained by the dramatic changes in precipitation before and after that period. Utah had a 
four-year drought from 2001 to 2004 and another four-year drought after 2011 (National Integrated Drought 
Information System, 2021).

Among the agriculture water users in the LB, PVID, CRIR AZ, Wellton Mohawk IDD, Yuma County WUA, 
and Yuma Mesa IDD are the largest five in volume, which accounts for about 70% of the LB agriculture di-
version. Therefore, we focus our discussion on these five agricultural water users here. In Figure 6, we can 
see that the mean KGE values of the five agents vary from 0.27 (PVID) to 0.67 (Wellton Mohawk IDD), and 
the results generally follow the patterns of the historical diversions. PVID has a low KGE value for a lower 
correlation ( E r 0.38) between the simulation and the historical data. One explanation of this result is that 
water information (the Lake Mead water level) is not the only consideration in PVID's diversion decisions. 
Other factors, such as crop selection and irrigation technology improvement, may be important but are 

Figure 5.  Training results of the Upper Basin agents grouped in sub-basins. The blue line is the historical diversion, and the gray lines are the 30 testing results.
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absent in our current model. Additionally, the results of CRIR AZ are constantly higher than the historical 
diversion due to the diversion prediction errors in the first 5  years (1971–1975), likely caused by factors 
absent in the current model. The prediction error then persists throughout the simulation.

The highest KGE values and the breakdown of KGE components (Pearson correlation “r”, mean “a”, and 
standard deviation “b” ratios) of the ABM testing are presented in Tables S6 (UB agents) and S8 (LB agents). 
The mean absolute error and root mean squared error of the best models are also presented in Tables S7 (UB 
agents) and S9 (LB agents) for reference.

4.2.  Agent Characteristics and Clustering Analysis Under Historical Condition

The parameters of an agent determine how it reacts to environmental changes. By clustering parameter 
values, we can categorize agents into different types. The clustering method applied here is the K-means 
clustering. K-means clustering partitions the agents into k clusters in which each agent belongs to the clus-
ter with the nearest mean (or centroid). Principal component analysis (PCA) can extract information from a 
high-dimensional space by projecting it into a lower-dimensional subspace. It is commonly combined with 
clustering methods, such as K-means, to help visualization and interpretation (Aubert et al., 2013).

Following the convention, we applied PCA to transform the parameters into uncorrelated principal compo-
nents and reduce dimensions to 2D. Then we implemented K-means clustering on the agents with cluster 
numbers (k) set to 3. Table 1 shows the average parameter values of the three clusters. The three clusters are 
named by their characteristics: “Aggressive,” “Forward-looking Conservative,” and “Myopic Conservative.” 
Agents in the Aggressive cluster have the highest distribution mean E  and standard deviation E  values of 
the action E a and the lowest E regret, which means the Aggressive agents tend to take more swift actions and 
do not regret much for the low penalty if a shortage happens. Conversely, agents in the Forward-looking 
Conservative cluster have the highest E regret, learning rate E , and epsilon E  , which implies the agents are 
cautious in changing diversion but inclined to explore and accept new information. Agents in the Myopic 
Conservative cluster are also cautious in changing diversion (low E  and E ), but, unlike the Forward-looking 

Figure 6.  Training results of the largest five agents in the Lower Basins. The blue line is the historical diversion and the gray lines are the 30 testing results.
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Conservative agents, they have the lowest learning rate E , discount rate E , and epsilon E  . This implies that 
the Myopic Conservative agents tend to make decisions with existing knowledge and are reluctant to accept 
new information or even take exploration actions.

Figure 7 shows agents in the 2D principal component space. In the x-axis direction, the higher the x val-
ue, the more cautious the agent is toward changes. Whereas in the y-direction, the higher the y value, the 
less likely the agent is to take exploration actions and accept new information. Consequently, the Myop-
ic Conservative agents are all located above the x-axis in Figure 7 except NorthBajaLLC, the Aggressive 
agents are all located on the left side of the y-axis, and the Forward-looking Conservative agents are only 
found on the right side of the y-axis. Geographically, UB agents and tribal agents in the LB are mostly 
Aggressive because of their increasing diversion patterns historically and underutilized water rights. The 
Forward-looking Conservative agents are all located below Parker Dam and close to the basin outlet. Being 
at the most downstream agents in the CRB under recent prolonged drought may have made farmers in the 
Forward-looking Conservative cluster more vigilant and willing to adapt to the system's changes. However, 
the analysis also shows that other LB agents in the Myopic Conservative cluster think the state of the system 
would not change much; therefore, they can continue relying on their prior knowledge for future diversion 
decision-making.

One caveat is that the cluster analysis results can only represent the agents' characteristics but not the actu-
al water users (humans). The historical diversion records could be the results of local flow conditions and 
water regulation. One supporting evidence is the LB agents are all classified as conservative except three 
tribal water users (Fort Mohave Ind Res AZ, FtYumaReservation, and Chemehuevi Ind Res) due to the fully 

Mean: E μ Standard deviation: E σ Learning rate: E α Discount rate: E γ Epsilon: E  regret

Aggressive 0.36 1.22 0.62 0.77 0.16 0.78

Forward-looking 
Conservative

0.20 0.60 0.85 0.78 0.19 2.22

Myopic Conservative 0.16 0.87 0.67 0.64 0.09 1.54

Note. The highest values of the parameters are highlighted in bold.

Table 1 
The Average Parameter Values of the Three Clusters

Figure 7.  The clusters of agents in the principal component space. The x-component is an agent's attitude toward changes, and the y-component is the 
willingness to adapt. UB agents share the parameter values and, therefore, are labeled by sub-basins with “_UB.” The Aggressive, Forward-looking Conservative, 
and Myopic Conservative clusters are marked by blue diamond, orange squares, and gray triangles, respectively.
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utilized water allocation (9.25 billion m3 or 7.5 MAF). Supposing that the conditions have changed (e.g., 
more natural flows), the conservative agents may become more aggressive or vice versa. This means an 
agent's learning model (parameters values and model structure) should also be updated. This perspective 
will be a future direction.

4.3.  Results of the Coupled ABM-CRSS Under a Drier-Than-Normal Future Condition

We investigate how agents affect the CRB's water resource management by comparing the results of the 
ABM-CRSS with the original CRSS and the ABM-CRSS with the learning disabled (denoted “ABM-No RL” 
in Figures 8a and 8b). In the ABM-No RL simulation, agents do not update their transition probability E P 
and the E Q-function and, thus, will take the optimal actions based on past experiences (i.e., the initial E Q). The 
simulation period is set to 2019–2060. The future inflow condition can be described as drier-than-normal. 

Figure 8.  Comparison of the results from the agent-based modeling-Colorado River Simulation System (ABM-CRSS), the ABM-CRSS without learning (ABM-
No RL), and the original CRSS. (a) The pool elevation of the Navajo Reservoir in which the red circles highlight the periods ABM-CRSS predicting a lower pool 
elevation. (b) The pool elevation in Lakes Powell and Mead. (c) The annual water consumption in the Upper Basin and Lower Basin, and the annual water 
delivery to Mexico. Circle A highlights the period ABM-CRSS predicting a lower pool elevation in both lakes, whereas Circle B indicates the period ABM-CRSS 
showing the opposite trend comparing to the original CRSS.
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The inflow time series is constructed by using historical data of the periods 1988–2015 and 1934–1947 
(Figure S1), which is the default setting of the original CRSS. Although the future flow shows an increasing 
trend, it remains lower than the historical average until the end of the simulation.

Figures 8a and 8b show the water level time series of the three reservoirs generated from the three sim-
ulations. The water levels of Lakes Powell and Mead are indicators of water curtailment for UB and LB 
water uses, respectively (US Bureau of Reclamation, 2007b). The Navajo Reservoir, located upstream of 
the San Juan River, is used as an example to illustrate human adaptation impacts on water resources in the 
upstream regions. In Figure 8a, the ABM-CRSS indicates that Navajo Reservoir could experience low water 
levels more frequently comparing to the CRSS (highlighted with red circles). This is because New Mexico 
agents are classified as Aggressive, who are slow learners (lower learning rate E ) and able to tolerate short-
term shortages (lower regret). Moreover, since the agents in the ABM-No RL do not learn, by comparing to 
the ABM-CRSS results, we can see that agents' learning capability can reduce water consumption in most 
years of significant water level decrease in Navajo Reservoir in Figure 8a.

The ABM-No RL and ABM-CRSS also predict significantly lower water levels in Lakes Mead and Powell 
than the CRSS prediction in the 2020–2040 period (period A in Figure 8b) because the agents are greedy in 
water uses by design. The agent's learning serves as a controller to prevent depleting reservoirs. Thus, when 
disabled, agents would continue withdrawing water despite the low water levels in the major dams, as the 
gray lines in Figure 8b show. Moreover, the ABM-CRSS shows that both reservoirs are depleted in 2034 but, 
during the 2054–2059 period, they show the opposite pattern: an increasing trend in Lake Mead and a de-
creasing trend in Lake Powell (period B in Figure 8b). By comparing the results of ABM-CRSS to ABM- No 
RL, we can see that the UB agents learned to request more water, while the LB agents learned to conserve 
water due to the persisting shortage conditions. In fact, LB agents may have learned to conserve water in 
period A, but we cannot see how that learning affects the system performance until the wet period arrives.

Figure 8c shows the UB and LB's total annual depletions and the annual water delivery to Mexico generat-
ed by the ABM-CRSS and the CRSS. The ABM-CRSS presents a higher depletion in the LB (the light blue 
line) from 2019 to 2033 and a significantly lower depletion afterward compared to the original CRSS (the 
dark blue line). The difference in the depletion pattern signals learning and adaptation behaviors of the 
LB agents in ABM-CRSS: the agents learn water scarcity in the drought period and reduce their water uses 
subsequently. For the UB annual depletion, the ABM-CRSS (the light green line) and the original CRSS (the 
dark green line) have similar patterns until 2051; after 2051, the ABM-CRSS shows a significantly higher 
depletion in the UB than the original CRSS. This is because the agents in Colorado and Utah continue to in-
crease their diversions as the flow conditions return to normal. The annual depletion of all states generated 
from the original CRSS and ABM-CRSS are presented in Figures S2 and S3. The annual water consumption 
in the UB and LB, and the annual water delivery to Mexico of the ABM-No RL are also presented in the 
supporting information (Figure S4).

The 1944 Mexican Water Treaty committed to delivering 1.8 billion m3 (1.5 MAF) freshwater from the US to 
Mexico on an annual basis. The original CRSS predicts a decade-long shortage in water delivered to Mexico 
from 2044 to 2055 and another mild shortage in 2059 (Figure 8c). However, the ABM-CRSS indicates that 
the shortage could happen as early as 2033 for significant storage declines in the major reservoirs due to 
the LB's excessive water uses from 2019 to 2033 (Figures 8b and 8c). In reality, it is unlikely for the Mexican 
delivery to be significantly dropped below 1.8 billion m3. However, the model does not consider politics; the 
results merely show what could happen if the CRB's water storage is depleted.

4.4.  Uncertainty and Nonstationarity of Agent Diversion Behavior and Basin Response

The previous section discusses the result of only one simulation to illustrate how the inclusion of human 
adaptive behaviors can affect the basin response. This section further investigates the uncertainty of sys-
tem responses due to the dynamic agriculture water uses. The randomness in the RL-ABM represents the 
water use uncertainty in the coupled ABM-CRSS model, which can affect system response at different spa-
tial scales (agent, State, sub-basin, and basin scales). To investigate agents' adaptation impacts on basin 
response, we repeated the coupled model simulation 100 times and summarized the results in Figures 9 
and 10.
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As an example of agents' adaptation, Figure 9a shows the predicted diversion ranges and two distinct diver-
sion paths (Sim1 and Sim2) of the agent NIIP (the Navajo Indian Irrigation Project, the largest agriculture 
water user in New Mexico). Both the maximum and minimum diversion lines (maximum and minimum 
diversion in each year of the 100 simulations; gray lines in Figure  9a) indicate a severe water shortage 
from 2033 to 2035. However, this does not mean that the shortage is inevitable. For instance, the Sim1 line 
(blue dashed line in Figure 9a) shows a path that does not cause a water shortage. In Sim1 and Sim2, the 
NIIP agent experienced two very different environments, which significantly affect its diversion decisions 
later in the simulations. The NIIP agent in Sim2 suffered a multi-year water shortage (from 2033 to 2038) 
and changed its diversion policy at a high diversion level (0.8 billion m3) after 2048 (green dashed line in 
Figure 9a). Contrarily, the NIIP agent in Sim1 survived the drought period without water curtailment and 
increased its diversion steadily throughout the simulation for the belief in water abundance.

Figure 9.  The New Mexico results of 100 agent-based modeling-Colorado River Simulation System simulations. (a) The annual diversion uncertainty range 
and two distinct diversion paths of agent the Navajo Indian Irrigation Project (NIIP) and (b) the New Mexico agriculture diversion uncertainty contributed from 
NIIP and other water users.
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3m / yrE  (15 million acre-ft; the annual water consumption allowance to CRB in the 1922 Colorado River Compact).
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As an example of uncertainty aggregation to the state level, we combined the uncertainty ranges of all New 
Mexico agents in Figure 9b, in which the contribution from NIIP is highlighted in orange for visualization. 
The lower bound of the uncertainty range (Figure 9b) is New Mexico's minimum diversion of each year of 
all simulations, and the contribution from the agents is the difference of their maximum and minimum an-
nual diversions, as the gray lines show in Figure 9a. The New Mexico agriculture diversion shows a similar 
pattern as NIIP because agents in New Mexico are all categorized as aggressive agents.

Figure 10a shows the total inflow in the CRB, in which two severe drought periods are indicated by the red 
boxes (2031–2035 and 2043–2050). The droughts would deplete the storage in Lakes Powell and Mead (Fig-
ure 10c) first and then cause a shortage in CRB water consumption (Figure 10b). Interestingly, Figure 10b 
also indicates that the uncertainty range would shrink after a prolonged drought and gradually increase 
afterward. This is because agents learn to respond to the drought differently, and the diverse responses can 
reduce the uncertainty at basin scale. Another observation is that Lakes Powell and Mead are vulnerable to 
multi-year droughts, as all the simulations indicate extremely low storage in the two reservoirs during or 
after the drought events.

5.  Discussion
5.1.  Explore “Soft” Policy With Scenario Analysis

The RL-ABM framework simulates human adaptive behaviors based on their risk perception and willing-
ness to learn. This feature enables us to assess and explore “soft” policies that affect people's decision-mak-
ing, such as public education and stakeholder engagement programs, which have been highlighted as a 
broader impact at several funding agencies in the US. Here, we tested two scenarios solely for demonstra-
tion purposes. Future studies can include the most up-to-date management programs and insights drawn 
from social studies to generate more realistic results.

The first scenario (S1) assumes that a public education program is undergoing for LB agents, which deep-
ens those agents' awareness of water scarcity. Consequently, these agents become more cautious, which 
means their actions follow a tight distribution and perceive a higher water shortage penalty. In terms of 
modeling, this means the LB agents' parameters  , , andE regret are changed to 0.1, 0.7, and 3, respectively. 
The second scenario (S2) assumes that the same program is extended to the whole CRB to alleviate water 
scarcity pressure further. Figure 11 shows the original CRSS results as the baseline and the results of these 
two scenarios. The S1 results in Figure 11 show a similar trend comparing to the results in Figure 8c until 
2050. After 2050, the LB agents use significantly less water than the CRSS results, which helps restore the 
Mexico delivery to the 1.8 billion m3. However, scenario S2 also predicts a prolonged shortage from 2032 to 

Figure 11.  The annual depletions in the Upper and Lower Basins (UB and LB) and the water delivery to Mexico were 
generated from the original CRSS (in dark colors) and scenarios S1 and S2 from the agent-based modeling-Colorado 
River Simulation System (in light colors). Scenario S1 assumes the LB agents become more cautious in actions due to 
an education program that is extended to the whole CRB in Scenario S2.
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2050 because the excessive water uses in the UB and LB continue to deplete water storage in the reservoirs, 
and no feedback mechanism is in place before 2032 to help maintain CRB storage in a health condition. In 
other words, agents would have a false perception of no water scarcity until a water shortage event occurs. 
The S2 scenario results can only delay the water shortage in Mexico delivery by one year, which suggests 
that soft policy alone may not be the solution for the water shortage problem in the CRB. However, the 
education program may help maintain Mexico delivery after the prolonged shortage after 2050, as the S2 
scenario shows in Figure 11.

Both scenarios suggest that lacking a feedback mechanism before 2032 would deplete the CRB water stor-
age and cause a water shortage for decades. This is evidence supporting the need for the 2019 Drought 
Contingency Plan (Stern & Sheikh, 2019), which is not yet in the CRSS model we applied in this paper, and 
other regulations to coordinate agriculture diversion.

5.2.  Human System Modeling Improvement With ABM Parameterization and Limitations

The FQL algorithm can be generalized by including other physical and social-economic factors related to 
water resources management, such as temperature and crop prices, as state variables in the Q-function 
(Equation 5). In a more sophisticated application, agents could have different decision mechanisms, as the 
UB and LB agents do in our case study. Moreover, FQL's six parameters characterize an intelligent agent in 
terms of its risk attitude and willingness to adapt its policy. This feature improves the connection of mode-
ling study to social science studies to interpret and communicate the parameters' meanings. For example, 
researchers can ask questions in an interview or survey like: “how much more/less diversion in percentage 
would you like to request for next year, and how sure are you about your request (a question to inform the 
action distribution parameters E  and E )?” and “how likely would you consider taking the other actions under 
given forecast (a question help to quantify exploration rate E  )?”

Although the ABM-CRSS provides a bottom-up perspective for decision-making under uncertainty, the 
simulation results reflect only our current understanding of the human-nature system dynamics and as-
sumptions and are subject to several limitations. The main limitations of this study lie in data availability 
and scarcity, as well as agriculture water users' decision mechanisms. We rely on historical observation 
data to train the intelligent agents, but consistent and complete data for the UB agents are only available at 
sub-basin level. Some agents in the LB only have a short period of record, which leads to low performance 
in training. The uncertainty in agent parameterization can significantly influence agent classification and 
coupled model results. Moreover, climate input and model structure uncertainty should also be included in 
the uncertainty analysis to provide a holistic view of system response uncertainty.

For agents' decision mechanisms, we assume that their decisions mainly depend on the current diversion 
level and the relevant water information, which could be an over-simplification. Other factors, such as 
production costs, crop demands, and water-saving technologies, may also be part of considerations. Also, 
the agent characterization should consider agents' physical and social-economic factors, as suggested in 
Pouladi et al. (2019), and the inconsistency in decision preference between a group and its members, known 
as the Arrow's Paradox (Franssen, 2005; Kasprzyk et al., 2016).

6.  Summary and Conclusions
To address the uncertainty and nonstationarity issues in water resources management, we proposed a mod-
eling framework with multiple intelligent agents capable of learning and adapting to environmental chang-
es for the assessment of human impacts on regional water resources systems. The modeling framework 
consists of agents driven by the Farmer's Q-learning (FQL) developed in this paper and a water resources 
planning model (e.g., CRSS in our case study). The FQL algorithm, adapted from the Q-learning algorithm, 
incorporates agriculture water users' risk-perception, willingness to learn, and the prediction for future 
water availability to simulate human cognitive and decision processes that can be linked to social science 
studies to improve interpretation of dynamic human behaviors. The framework is applied to the CRB as an 
illustrative case study. Although the model coupling is explicitly tailored to the CRB, the proposed frame-
work and algorithm are generalizable. They can be applied to other basins by modifying the definitions of 
the state variables, water information, and actions.
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Through the clustering analysis of agents' parameters, we identified three types of intelligent agents based 
on the FQL parameters: the Aggressive, the Forward-looking Conservative, and the Myopic Conservative. 
In the case study, our analysis shows that the UB agents are all categorized in the Aggressive group because 
their water consumptions are still well below the 9.25 billion m3 allocation stated in the Colorado River 
compact of 1922 (US Bureau of Reclamation, 2015). In contrast, the LB agents are either categorized as 
Forward-looking Conservative or Myopic Conservative because they rely on water release from upstream 
reservoirs and have fully utilized their water allocations.

The ABM-CRSS simulation results show that the CRB may experience more frequent shortages, and that 
the water levels in Lakes Powell and Mead may decline significantly due to the increasing water demands. 
The results also indicate that the LB agents may learn to reduce diversion from the persisting shortage 
condition, but the UB agents may not due to their underutilized water allocations. Moreover, the stochastic 
ABM-CRSS can be applied to assess system response uncertainties. Future research should also include 
other sources of uncertainty, such as climate inputs, parameters, and model structure uncertainties. Ad-
ditionally, our ABM-CRSS framework can help water managers develop soft policies, such as public edu-
cation programs and stakeholder engagement. The results shown in Section 5.1 support the 2019 Drought 
Contingency Plan and suggest that such programs are necessary to ensure sufficient water storage in CRB.

We acknowledge that our framework only represents the learning aspect of human behaviors. The model 
designs of other ABM studies that investigated human response to water conservation in stationary environ-
ments can enrich future RL-ABM research and applications by incorporating first-hand data from surveys 
for management program development. For example, Al-Amin et al. (2018) assessed the effectiveness of 
water conservation programs using an ABM with two types of agents, the municipals and households, to 
simulate the dynamic interactions between the agents. Our future work will consider incorporating multi-
ple agent types, such as municipal and industrial water users. The immediate extension of this framework 
includes improving the FQL algorithm by accounting for crops' economic values and production functions. 
For the CRB, future research includes coupling RL-ABM with the latest version of CRSS to discuss the 
newly implemented 2019 Drought Contingency Plan, soft policy development, and uncertainty analysis.

Data Availability Statement
No new data are presented. The Upper Basin depletion data were retrieved from Colorado River Systems 
Consumptive Uses and Loses Reports downloaded from https://www.usbr.gov/uc/envdocs/plans.html#C-
CULR and the Lower Basin diversion data are retrieved from Colorado River Systems Consumptive Uses 
and Loses Reports available at https://www.usbr.gov/lc/region/g4000/wtracct.html. Precipitation data are 
retrieved from Parameter-Elevation Regressions on Independent Slopes Model (PRISM) Data set (https://
catalog.data.gov/dataset/parameter-elevation-regressions-on-independent-slopes-model-prism-dataset). 
Lake Mead water level data are retrieved from https://www.usbr.gov/lc/region/g4000/hourly/mead-elv.
html. The scripts of the ABM in Python 3.6 are published in the GitHub repository: https://github.com/
hfengwe1/RL-ABM-CRSS.
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