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DYNAMICAL INCOHERENCE FOR A LARGE CLASS OF
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ABSTRACT. We show that if a partially hyperbolic diffeomorphism of
a Seifert manifold induces a map in the base which has a pseudo-
Anosov component then it cannot be dynamically coherent. This ex-
tends | ] to the whole isotopy class. We relate the techniques with
the study of certain partially hyperbolic diffeomorphisms in hyperbolic
3-manifolds performed in | ]. The appendix reviews some con-
sequences of the Nielsen-Thurston classification of surface homeomor-
phisms to the dynamics of lifts of such maps to the universal cover.

1. INTRODUCTION

A diffeomorphism f : M — M of a closed manifold is said to be partially
hyperbolic if there is a continuous D f-invariant splitting TTM = E°*@E‘@E"
into non-trivial bundles and a constant ¢ > 0 such that for every unit vectors
v? € E?(z) (0 = s,c,u) one has that:

IDff%| < min{1, |Df°|} and |Df%| > max{1,|Df‘°|}.

These diffeomorphisms arise naturally in the study of robust dynamical
properties (because it is a C''-open property). In addition, they capture quite
well the properties of important examples, since, e.g. most homogeneous
dynamics and several geometrically defined dynamical systems verify these
properties. We refer the reader to [I1P, | for examples and motivation
for their study.

An important feature of the study of the dynamics of partially hyperbolic
diffeomorphisms is the possibility of dimension reduction. In a nutshell, one
considers the strong bundles E® and E" as well understood (see e.g. [HP5]
for the unique integrability of the bundles and their dynamics) and tries to
understand the dynamics along the center direction. For this purpose, it
is very useful when one can integrate the center bundle into an f-invariant
foliation.

There are several possible ways for the center bundle to be integrable
which are discussed in detail in | ]. There it is also explained why
the following definition arises as the natural integrability condition to ask
a partially hyperbolic diffeomorphism: We say that a partially hyperbolic
diffeomorphism f is dynamically coherent if there exist f-invariant foliations
W and W tangent to £ = E* @ E° and E* = E°@ E" respectively.
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There are also many ways a partially hyperbolic diffeomorphism may fail
to be dynamically coherent. The first one was observed by Wilkinson (see
[ ]) and reference therein) and has to do with the potential failure of
the Frobenius bracket condition on the center direction.

However, the question of dynamical coherence for partially hyperbolic dif-
feomorphisms with one dimensional center remained open for quite a while.
One needs to notice here that what may fail in this case is the unique
integrability due to the lack of smoothness of the bundles. The first non-
dynamically coherent examples where presented in | ]. In 3-dimensional
manifolds with sufficiently small fundamental group we have now a quite
good understanding of dynamical coherence (see [HP] for a full account).

More recently, in [ | new examples of (robustly) non-dynamically
coherent partially hyperbolic diffeomorphisms where constructed. These
present several new features, since they can be made transitive and even
absolutely partially hyperbolic (a concept we shall not define here, but for
which we refer the reader to | |). Even if the constructions in [ ]
are rather flexible, the proof of non-dynamical coherence in that paper de-
pends on some very specific choices of the example and a quite precise control
on the bundles. In this paper we provide a new proof of the non-dynamical
coherence of these examples which extends to every partially hyperbolic
diffeomorphism in the same isotopy class of those constructed in | .

The main result is the following:

Theorem A. Let f: M — M be a partially hyperbolic diffeomorphism in
a Seifert 3-manifold with hyperbolic base. Assume that the induced action
of f in the base has a pseudo-Anosov component, then f is not dynamically
coherent.

We will say that a 3-manifold is Seifert with hyperbolic base, if it admits
a finite cover which is a circle bundle over a surface of genus g > 2. This
is not the standard definition, but since to show Theorem A we are allowed
to take a finite cover this is a convenient definition. (We refer the reader
to [ ] and references therein for other definitions and equivalences of a
3-manifold being Seifert with hyperbolic base.)

The fact that every map on such a circle bundle is homotopic to a fiber
preserving one is standard (see eg. [He]), and this explains what we mean
by the induced action on the base (in this case, up to finite cover, on the
surface). We will not define having a pseudo-Anosov component here, but
we will state a result which is what we need to use about this in Theorem
2.4. We will give a more detailed treatment with the important references
in Appendix A.

Notice that in [ ] (see also | |) we have shown that if f is a par-
tially hyperbolic diffeomorphism in a Seifert manifold M which is homotopic
to the identity, then f must be dynamically coherent (and we even give a
full classification of such maps). In | ] it is shown that if f in a Seifert
manifold induces the identity in the base, then it has to be homotopic to
the identity. This leaves open the case of the examples which first appeared
in | | where the action in the base is a Dehn-twist. It will become clear
from the techniques (and the results in the appendix) why this case cannot
be treated with the ideas we use to prove Theorem A.



INCOHERENCE IN SEIFERT MANIFOLDS 3

We end the introduction by saying that even if independent of [ ],
this paper shares several ideas with one case which is treated in that paper,
which we call double translation in hyperbolic manifolds (see in particular
[ , Sections 7 and 8]). In section 6 we give some positive results in
the direction of understanding these partially hyperbolic maps along the

lines of what is done in | , Section 12]. The link between these two
situations is given by the following fact: in hyperbolic 3-manifolds there is a
well developed theory (see [T, , ]) of dynamics transverse to certain

foliations which contains several features of the pseudo-Anosov dynamics
that we use here in the setting of Seifert manifolds to induce dynamics from
the ideal boundary to the universal cover of the manifold.
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2. SOME PRELIMINARIES

The proof of Theorem A will be by contradiction. So we will assume that
f: M — M is a dynamically coherent partially hyperbolic diffeomorphism
of a closed Seifert 3-manifold with hyperbolic base and with f acting on the
base with a pseudo-Anosov piece (see Appendix A). Since a finite cover of
M makes it a circle bundle over a orientable surface, and iterates and lifts to
finite covers of dynamically coherent partially hyperbolic diffeomorphisms
are dynamically coherent we can make the following standing assumptions
that will hold in sections 3, 4 and 5:

e M is a circle bundle over a closed orientable surface S of genus g > 2.

e f is a dynamically coherent partially hyperbolic diffeomorphism of
M with orientable bundles and such that Df preserves their orien-
tation. We denote by W and W the center stable and center
unstable foliations respectively.

e f induces an automorphism p : m(S) — m1(S) which has a pseudo-
Anosov component.

The last condition can be understood just because the homotopy class
of fibers are in the center of m(M) and therefore f. : m (M) — m (M)
preserves the fiber and so induces an automorphism p of 71(S). Having a
pseudo-Anosov component can be read by this automorphism (see [Th, Gi]).
We refer to the appendix A for more information on this; below, in Theorem
2.4 we state what we need from this information.

First, we need a very classical property of partially hyperbolic diffeomor-
phisms (see [HPS]). For a foliation F we denote by F(z) the leaf through
the point z.
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Theorem 2.1 (Stable manifold Theorem). Let f : M — M be a partially
hyperbolic diffeomorphism of a closed manifold M. Then, the bundles E*®
and E" are uniquely integrable into foliations W* and WY such that if y €
We(x) (resp. y € W¥(x)) one has that d(f™(x), f"(y)) — 0 exponentially
fast as n — +o0 (resp. n — —0).

We state a result from [ ] which allows to reduce to the case where
the foliations are horizontal

Theorem 2.2 (][ ). Let f be a dynamically coherent partially hyperbolic
diffeomorphism of a circle bundle over a surface. Then, the foliations W€
and W are horizontal.

This means that one can modify the fibration in order that every fiber is
transverse to the leaves of W and W¢". In particular, one can lift a hyper-
bolic metric on the base surface to the leaves to have a leafwise hyperbolic
metric on the leaves. (We notice however that one can not in principle as-
sume that the same fibration is transverse to both foliations simultaneously.
For this reason, from now on we will work only with the center stable folia-
tion W of course, symmetric statements also hold for W after changing
the fibration.)

Let M be the universal cover of M. Let & € m1(M) be a deck transfor-

mation of M associated to the center of m1(M) which corresponds to the
homotopy class of a fiber with a given orientation. Since (up to iterate) f
preserves ¢ it follows that f lifts to the intermediate cover M =M /<§>-
Clearly, there are several lifts of f.

By putting a hyperbolic metric in S, and lifting the metric to the leaves
of W we can identify M =~ H? x S. The foliation W lifts to a foliation
Wes for which the canonical projection p : H? x S' — H? into the first
coordinate is a isometry. Notice that in this lift, given a point € H? and a
leaf L € We one has that p~(z) n L is a unique point. We denote by dyy2
to the hyperbolic distance in H? and for L € Wes as dy, the induced distance
in the leaf.

In particular, one gets that the leaf space of this foliation (i.e. the quotient
space L = M /voes) 18 a topological circle. The strategy of the proof of

Theorem A by contradiction is to show that the action of a nice lift f of fin
L is everywhere expanding by using the fact that transversally to Wes we
have the unstable foliation, this will give that there must be periodic points
in £% and all of them should be expanding, a contradiction. However, to
be able to perform the argument, we need to show that there are points in
every leaf of W of M which do not escape to infinity by application of f
since otherwise the expansion could be produced by the holonomy of the
foliation'. To get such compact invariant sets in M we will choose specific
lifts of f to M which have some specific actions in the boundary at infinity
that will allow us to control the dynamics in the interior of each leaf.

L A nice example to understand this is the time one map of the geodesic flow in negative
curvature, for which there is a lift where every leaf of the center foliation is fixed, but this
does not contradict partial hyperbolicity.
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Notice if one takes any lift f : M — M, since f is isotopic to a fiber
preserving map, one can define a projection F : H? — H? which is the lift
of a homeomorphism A of S induced by the fiber preserving map homotopic
to f (notice that h is not canonically defined, but it is well defined up to
homotopy which is what we care about). Since the projection p restricted

to each leaf of We is a isometry we deduce that:

Fact 2.3. There is a uniform Ko > 0 so that for every z € M, if L =

fOWe(x)) one has that:
ez (p(2), F(p(2))) = di(f(2),p~" (p(2)) n L)] < Ko.

Said otherwise, one can compare the action that a given lift of the mapping
class of f induces on H? with the action of the corresponding lift f on the
leaves of Wes. Notice that if f preserves a center stable leaf L then the
second distance becomes dr(f(z),z).

What we need to know about maps of surfaces having a pseudo-Anosov

component is the following:

Theorem 2.4. Leth : S — S be a surface homeomorphism having a pseudo-
Anosov component where S is a hyperbolic closed surface. Then, there exist
a lift h : H?> — H? to the universal cover S ~ H? such that:

(i) The lift h extends to E = 0,H? as a circle homeomorphism which
has exactly four fixed points, two attracting and two repelling.

(ii) If we denote by D = H? U E the Gromov compactification of H? one
gets a a homeomorphism (also called) h:D — D of the closed disk
so that:

(a) The attracting points in E verify that they have a basis of neigh-
borhoods U, in D such that dyz(0U,, h(U,)) — . The sym-
metric statement holds for repelling points looking at h1.

(b) For every K > 0 there is a compact set D < H? such that for

every y ¢ D one has that dy2(y, h(y)) > K.

See the appendix A for a proof as well as further information about surface
homeomorphisms that may be helpful in understanding further properties
of partially hyperbolic diffeomorphisms on Seifert manifolds. The notion in
item (i)(a) has to do with the notion of super attracting/repelling points
we introduce there (cf. Definition A.1).This statement can also be found
implicit in [Mil, Section 9] or in [H'T]. The difference with the case where the
pseudo-Anosov component is the whole surface is that in that case one knows
that every lift looks more or less as the one given by the previous theorem
(with possibly a different number of attracting and repelling points).

3. CONSTRUCTING AN INVARIANT COMPACT SET IN A NICE COVER

Consider f : M — M as in the standing assumptions of section 2. In
particular, we can assume that the circle bundle M over the surface S verifies
that fibers are transverse to W. As explained in the previous section, f is
homotopic to a homeomorphism preserving the fibers of the fibration and
this induces a homeomorphism A : S — S. By hypothesis, we know that h
has a pseudo-Anosov component, so that Theorem 2.4 applies.
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We will therefore choose once and for all a lift f of f to M such that
the induced map F in H? (as in Fact 2.3) verifies the conditions ensured by
Theorem 2.4.

The main result of this section is the following (compare with | ,
Proposition 8.1]).

Proposition 3.1. There is a compact f—invariant set Tf < M which inter-

sects every L € wes.

Proof. Notice first that if we prove the result for an iterate f* of f then the
result will still hold for f since the union of the first k£ — 1-iterates of the
compact set one finds will give the desired set.

Consider the map F acting on H?. As explained in Theorem 2.4 the map
F extends to D = H? U E continuously. The action of F on E has four
fixed points, two attracting and two repelling which are alternating. Denote
by ¢, to the geodesic in H? joining the points /= in E which are attracting
by F and ¢, to the geodesic joining the respective repelling points which
we denote by /F. Since the points are alternating, it follows that ¢, and ¢,
intersect transversally in a point zg € HZ.

Now, fix Kq given by Fact 2.3 and let K7 » 10K).

Let D; < H? be a compact set given by Theorem 2.4 for F and the
constant K. The set D; verifies the following properties (see figure 1):

e For every y ¢ D; one has that dy2(y, F'(y)) > K;.

e There are open neighborhoods Ut and U~ of £} and ¢, in D respec-
tively such that F(U*) < UT so that dy(0UE n H?2, F(UY)) » K,
and such that UT n Dy is a connected non-empty set.

e Symmetrically, there are open neighborhoods V* and V'~ of £} and
- in D respectively such that F~1(VE) ¢ VT so that dye(0VE
H?, F(V*) » K; and such that V* n D; is a connected non-empty
set.

Once D and the neighborhoods U% and V* have been chosen, one can
consider k > 0 large enough so that we know that F* acting on the boundary
verifies that the end points of F*(V*) are contained in the closure of U~ uU*
in D. Once k has been fixed with this property, one can consider new
constants K}, by Fact 2.3 applied to f* and K| » 10K}, and choose D a
larger disk (containing D7) so that:

e For every y ¢ D one has that dy (y, F*(y)) > KJ.

e DuU~ uUT contains the K{ neighborhood of F(0V*) with respect
to the hyperbolic distance.

Now, let D = p~}(D\(V* U V™)). We will show that the compact f*-
invariant set

Th = () /(D).
neZ
is non-empty and intersects every L € Wes. This will complete the proof
of the proposition as explained above. Let us denote as Dy to D~ L for
every L € We. Similarly, we denote by U to p ' (U A H?) n L and
Vi =p {(VEAH?*) AL
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FIGURE 1. Depiction of the dynamics of F*.

The key point is the following. For notational simplicity we will assume
from now on that £ = 1 which makes no changes in the argument.

Claim. For every R c Dy which is compact connected and intersects both
U and U; , one has that f(R) N Df(L) contains a compact connected set

which intersects Uf(L) and Uf(L) and is disjoint from Vf(L)'
Proof. This is quite direct from the choice of D and Fact 2.3. O
Now, let R} = ?:0 fi (15 i L)). The previous claim shows that R}

contains a compact connected set intersecting both Ug and U, for every
L. We will prove inductively that the same is true for R}. So, assume that
Rz_l contains a compact connected set intersecting both UZ and U, for

every L € We. Then, the same will be true for R? = f(R;jll(L)) n Dy, by
using the induction hypothesis for f~(L) and the claim .

If RY is (),=o R}, we deduce that it contains a compact connectAeAd §et join-
ing U and U; . Similarly?, one can construct a set Y;° = Mn<o f? (Df*j(L))
and show it contains a compact connected set joining VLJr to V. These sets
must intersect, and their intersection in L is exactly Tf N L. This completes

the proof.
O

QClearly, the choice of k& could be different for future and backward iterates, but e.g.
one can take the minimum common multiple of both as k and continue.
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There are some simplifications with respect to [ , Section 8] because
on the one hand we do not treat the p-prong case (with p > 3) and because
the coordinates given by the Seifert fibration allow to obtain some estimates
in a more straightforward fashion. The reader should be able prove the
analogous result for the p-prong case exactly as in | | once the analogy
exposed in this section is clear. We note that a similar statement follows
from [I'a] but cannot be applied directly since we need that the invariant set

intersects every leaf of Wes.

4. FINDING PERIODIC CENTER-STABLE LEAVES

Using the set T’ 7 and the transversal expansion along W we will show
that (compare with | , Proposition 9.1]):

Proposition 4.1. There is at least one L € We and n > 0 such that

ML) =L.

Proof. Consider a point € T such that fmi(z) — x for some n; — 00.
This exists by compactness of Ty (indeed there exists a minimal subset X
of T so that every point z € X has a dense orbit in X ).

Now, fix a local product structure box B around x where the foliation
Wes is of the form B =~ Dgy x (0,1) by a chart ¢ : B — Dgy x (0,1) where
center stable plaques are sent into horizontals. One can choose B so that a
small unstable arc I centered at x maps by ¢ to a transversal intersecting
every plaque Dy x {t}. For large n; one has that there is also an unstable arc
J through y = f”ﬂ' () which projects by ¢ to a transversal intersecting every
plaque. Since f*"f contracts exponentially the length of unstable arcs, it
follows that for large n; we can assume that fmi(J) < I. Tt follows that
there is a plaque ¢~ '(Dg x {to}) whose image by fni intersects itself. This
gives a periodic center stable leaf of period n;. U

Remark 4.2. Notice that this proof has used the fact that f is dynami-
cally coherent. However, it can be adapted to more general situations, see
[ , Section 11.8].

5. PROOF OF THEOREM A

As a consequence of the proof in the previous section we can extend to
show the following (compare with | , Section 9]):

Proposition 5.1. For every L € W such that there is k > 0 with f*(L) =
L it follows that there is a neighborhood I of L in L% = M /.. such that
for every L' € T one has that f*"(L') — L as n — —o.

Proof. By a Lefschetz index argument (see eg. [ , Appendix I]) one
can see that there must be a fixed point x € Tf n L by f*. Now, the result
follows as in the proof of Proposition 4.1 by considering a foliated chart

around x and using that f’“ is expanding in the local unstable manifold of
x. U
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Remark 5.2. This proof does use dynamical coherence crucially, as collapsing
of center stable leaves can make the transverse behaviour change, e.g. if there
is an interval of leaves collapsing at the fixed point x € L. See section 6 for
more details.

This allows to complete the proof of Theorem A.

Proof of Theorem A. The proof is by contradiction. We have assumed that
f was dynamically coherent and constructed f acting on £ as a circle
homeomorphism. In Proposition 4.1 we showed that f acting in £ has
periodic points. Proposition 5.1 shows that every periodic point of f in £
is expanding. This is impossible, and gives a contradiction that completes
the proof. O

6. FURTHER PROPERTIES AND DISCUSSIONS

The classification of partially hyperbolic diffeomorphisms in dimension
3 was started in the seminal paper of Bonatti and Wilkinson [BW]. The
fundamental results of Brin, Burago and Ivanov (see [B1]) provided the main
tool for the study of these systems by showing that even when a partially
hyperbolic diffeomorphism is not dynamically coherent, it nevertheless (up
to a finite lift and iterate) preserves a pair of invariant geometric structures
tangent to £ and E°“ which can be sometimes treated as foliations. These
objects are called branching foliations and we decided not to introduce them
in this short paper. We refer the reader to [BI] or [HP] for an overview.

In the same way as in [ , Part 2] one can obtain many of the results
that we stated without the assumption of dynamical coherence. The main
difference is that one will not be able to get a contradiction (which is good,
since there are examples!). One important consequence is that one can
obtain an analog of Proposition 3.1. Its proof follows the same scheme using
branching foliations instead of foliations. We will state it without proof
trusting that the interested reader can deduce it by looking at | ,
Part 2]:

Proposition 6.1. Let f: M — M be a partially hyperbolic diffeomorphism
of a closed circle bundle over a higher genus surface and with f acting on
the base with a pseudo-Anosov piece. Consider a lift f to M associated to a
lift of the associated map h : S — S having = 4 pemodzc points alternatingly
contracting and expanding at infinity. Denote by p : M — S the projection
along the fibers. Then, there is a large dzsk D in S such that sz p (D)
then we have that the set Ty = [,z f”( ) is non emply and essential in

the sense that every non homotopically trivial curve in oD is homotopically
non-trivial in M\T,.

We comment also on some properties that can be obtained if one finds
some surfaces periodic by f and tangent to £°°. A more detailed treatment
in a similar situation appears in | , Sections 14].

To state a result in this direction, we must change slightly the context
we have been working with. Let f : M — M be a partially hyperbolic
diffeomorphism of a circle bundle over a surface S. As before, f induces
amap h : S — S which we assume has a pseudo-Anosov component. We
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consider a lift f to M induced by a lift & of h as given by Theorem 2.4. We
will say that a ray 5 : [0,00) — M is contracting fized ray if f(Im(n)) =
Im(n), the unique fixed point of f in Im(n) is n(0) and every other point
y € Im(n) verifies that f(y) — 1(0).

Proposition 6.2. Assume that f preserves a complete surface 8 uniformly
transverse® to the fibers of p : M =~ H? x S* - H? and contains a contracting
fized ray. Then, the projection of n to H? can be extended continuously to
a closed arc 7 : [0,00] — H? U E and 7(0) is one of the repelling points at
nfinity.

Proof. Let J be the closure of p(n([0,0)) in H* U E and I = J n E which is
a connected subset of I. Clearly, h(I) = I because 7 is f invariant.

We claim that I cannot contain an attracting point a of h acting on E. If
that were the case, one can consider an open set U of ¢ in H? U E such that
iL(U) c U. Because of the properties in Theorem 2.4 one can choose U so
that points of U nH? are mapped by h with distance larger than Ky which
is much larger than the distance between h and the induced dynamics of f
on H? via the projection of its dynamics on 8 (see Fact 2.3). This implies
that p(n([0,0)) cannot intersect U because of its contracting behaviour by
f-

It follows that I must be a connected subset of £ avoiding neighborhoods

of each attracting point. This implies that I is a repelling point of h in
E. O

Notice that this proof uses crucially that one can extend the dynamics
in the boundary to some information in the interior of H?. This is not the
case in general, in particular when f has no pseudo-Anosov components, or
when one chooses lifts of maps which are not pseudo-Anosov (see appendix
A for more details on this). Notice that on the other hand, in [ | the
case of maps homotopic to the identity was successfully treated in Seifert
manifolds.

APPENDIX A. LIFTS OF SURFACE MAPS

In this appendix we study the dynamics of lifts of surface maps to the
universal cover. Most of these results follow directly from the Nielsen-
Thurston classification theory and are implicit in the standard references
[Th, , , , ]. Since we were not able to find the precise state-
ments we will give an indication of the proofs assuming some familiarity
with the theory of geodesic laminations. See also [GGi, Mil] for more details
on the approach by Nielsen which is more or less what we follow here, based
on [HT]. For completeness, we have also treated the Dehn twist case which
is not used in this paper.

Similar results in a strictly more general setting of flows transverse and
regulating to R-covered foliations were obtained in [Th, , |, but only

3To be precise, what we need is that the metric induced by restricting the metric of M
to 8 is quasi-isometric to the metric pulled back by the projection to H?. Moreover, by
inspection of the proof it is only needed that the surface is transverse to the fibers in a
neighborhood of the ray.
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fully developed in the case of atoroidal manifolds which correspond to the
pseudo-Anosov case.

A.1l. Preliminaries. Let S be a closed orientable surface of genus g > 2
and let f: 5 — S a homeomorphism. We fix a hyperbolic metric on S and
identify the universal cover S of S with H2. The deck transformation group
I' = m1(S) acts by isometries of H2.

We denote by E = 05 = 0,H? = 05T the circle at infinity (or Gromov
boundary) of S, and D = S U E with the topology given by the Gromov
compactification.

A lift g of f to the universal cover S of S has a unique continuous extension
to D (see e.g. [HT, Corollary 1.2]), still denoted by g : D — D . This
restricts to a homeomorphism § = g|g : F — E of the boundary circle.
Two lifts of f to the universal cover differ by a deck transformation and the
dynamics of different lifts may vary. However, the action at infinity only
depends on the homotopy class of the lift.

Fact A.1 (see e.g. Corollary 1.4 in [[I'T]). If two homeomorphisms f, f' in
a surface have lifts g, g’ so that g = g|lg = ¢'|g = §' then f is homotopic to
1. Conversely, if two maps are homotopic and one considers a lift of the
homotopy, then the action in E is constant along the homotopy.

For an element v € I we denote by A(y) the azis of 7, that is, the unique
geodesic in H? fixed by v oriented from the repelling fixed point vy~ in E to
the attracting fixed point v* in E. In general, if s is an oriented geodesic
in H?, we denote by s~ and s* the forward and backward endpoints of the
geodesic in E. By a geodesic in D we mean the closure of a geodesic in H?
which we denote by § =su s~ Us™T.

Given § an oriented geodesic in D we denote by g¢.$ to the (oriented)
geodesic joining the extreme points of §(s~) with g(s™).

For v € T we denote by C(7) the geodesic in S which is the projection of
A(7). Notice that the lift of C'(+y) to the universal cover consists on all the
geodesics A(n) where 7 is in the conjugacy class of 7. For a closed geodesic
¢ in S, we denote as fx(c) the unique closed geodesic homotopic to f(c),
or equivalently, to the projection of g.(¢) where ¢ is any geodesic which
projects onto c.

It follows from the Nielsen-Thurston classification that every surface home-
omorphism is either periodic, reducible or pseudo-Anosov. This means f is
homotopic to a map fy that preserves a collection of simple closed geodesics
{c1,...,cq}. Note that there is a power k > 0 such that f¥(c;) = ¢; for all
i. After cutting S along the curves in the collection one has a collection
S1,...,5¢ of subsurfaces fixed by fé“ . Up to considering a larger k there are
two possibilites for f¥ acting on each S; (c.f. [I'T, Section 2]):

° f(lf induces the identity in the fundamental group of S; or,
° f(]f does not fix any simple closed geodesic in the interior of .5;.

We will say that f has a pseudo-Anosov piece if f§ acts as in the second
possibility in some subsurface S; of the decomposition. In this second case,
we call S; a pseudo-Anosov piece or component of f. The results in the
Nielsen-Thurston classification theorem provide specific representatives for
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f in the pseudo-Anosov pieces but we will not need this here. We refer the
reader to the cited references above for proofs and more detailed statements.

In this appendix we will only be concerned with properties of the lifts
of f that are true up to homotopy and we want information of lifts of f
up to iterate. For this reason we will assume throughout that f fixes all
the surfaces of the decomposition {S;} of S and such that in each surface it
either induces identity or does not fix any simple closed curve of the interior.

(Compare with [HT, Section 2].)
This easily implies that we can assume that § has a non-empty set of fixed
points in F.

We want to understand the structure of fixed points of g on £ and how
this affects the dynamics in the interior of the disk (i.e. on S). For this, it
is useful to classify fixed points of g.

Remark A.2. Notice that if a point is not fixed by § on E then it already
forces the dynamics in the interior of D. The crucial point is that there is
a uniform constant C' > 0 such that the image g(c) of a geodesic ¢ by ¢ is
in a C-neighborhood? of the geodesic g«(c). So, if a point z € E verifies
that g(z) # x then it follows that it has a neighborhood U in D such that
g(U) nU = ¢F. This motivates the study of fixed points of g.

We say that x € E is an attracting fixed point of ¢ in E' if there is an open

neighborhood U of « such that §(U) c U and such that {z} = (", ¢"(U). A
1

fixed point is repelling if it is attracting for g—".
Remark A.3. It is important to consider a stronger version of attraction
as attracting behavior on E does not imply attracting behaviour on D. A
simple example can be made by choosing a map homotopic to the identity
via a homotopy f; with fo =id, fi(z¢) = xo and such that the closed curve
¢ = {fi(z0)}se[o,1] is homotopically non-trivial. Then, if one considers the
lift g of f1 obtained by lifting the homotopy from the lift of fy consisting on
a deck transformation v associated to ¢, it follows that g acts in E as the
deck transformation v (i.e. with an attracting and a repelling fixed point)
but there is a sequence of lifts of g which accumulates both fixed points of
¢ and which are fixed by g¢.

Definition A.1 (Strongly attracting/repelling fixed points). We say that
a fixed point = € E is a strongly attracting point if for every K > 0 and
open interval x € I there is an open interval U containing x in its interior
such that §(U) < U and such that the hyperbolic distance from the geodesic
joining the endpoints of U and of §(U) is larger than K. A strongly repelling

point is a strongly attracting point for g.

Notice that the definition only depends on the knowledge of § and not of

g.
An important (simple) consequence is the following:

AT0 see this, one can assume that f is a diffeomorphism (by approximation) and so the
derivative of f is uniformly bounded. Then, the image of a geodesic by ¢ is a quasigeodesic
with constants that only depend on f. So, by the Morse Lemma it follows that it is a
uniform distance appart of the geodesic joining the endpoints.
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Lemma A.4. If x is a strongly attracting fixed point for §, then x is an
attractor for g acting on D, that is, there is a neighborhood U of x in D

such that g(W) < W and such that {x} = (7,5, 9" (U).

The proof is immediate from the fact that g maps a geodesic ¢ to curve a
curve g(c) which is at (uniformly) bounded distance from the geodesic g«(c)
as remarked above.

A.2. Statement of results. The first relevant result is implicit in [HT,
Lemma 1.3]:

Theorem A.5. IfFix(§)nFix(v) # & for some~y € I'\{id} then g commutes
with v and Fix(vy) < Fix(g). In this case there are two possibilities:

e cither Fix(g) = Fix(y) and the fixed points of § are not strongly
attracting nor repelling,

e or Fix(g) # Fix(v) in which case, for every n € I' such that Fix(n) N
Fix(g) # & it follows that Fix(n) is contained in the set of accumu-
lation points of Fix(g).

Moreover, if f is not homotopic to the identity then Fix(g) has empty inte-
rior.

To get more precise information, we want to separate between the cases
where f contains a pseudo-Anosov part or not. In the case where it does
not have pseudo-Anosov components, what we obtain is the following:

Theorem A.6. Let f be a surface homeomorphism which is not homo-
topic to the identity and such that it has no pseudo-Anosov piece. Assume
moreover that g : D — D is a lift of f which has fixed points in E. If
there are more than two fixed points of G, then there exists v € I' such that
Fix(y) < Fix(g); moreover, the set of fized points of g is a Cantor set and
there is a dense set of Fix(g) consisting of fized points of n € I'. Otherwise
g has ezxactly two fized points which can be either strongly attracting and
repelling or g commutes with some deck transformation.

When there is a pseudo-Anosov piece, one gets a different behaviour.

Theorem A.7. Let f be a surface homeomorphism with a pseudo-Anosov
piece and let g : D — D be a lift of f. Then, up to taking an iterate, one of
the following mutually exclusive possibilities holds:

e cither Fix(§) consists of an even number of points which are alter-
natingly strongly attracting and repelling, or,
e Fix(g) n Fix(y) # & for some v € I'\{id}.
Moreover, up to taking iterates of f there are always lifts which belong to
the first class and have exactly four fixed points in E.

Notice that when f is pseudo-Anosov in the whole surface S (equivalently,
if no simple closed curve is mapped to the same free homotopy class by some
iterate of f) only the first possibility can occur. One can say more in each of
the possibilities (e.g. in the first case one can characterize which lifts have
four or more fixed points in £ and also show that some have exactly two
fixed points). We state some further properties in the second case (which
can only happen if f is reducible):
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Addendum A.8. In the setting of Theorem A.7 the lifts corresponding to
the second possibility have the following options:

e there is a strongly attracting fixed point (in which case there is y € T’
whose fixed points are also fized by § accumulated from both sides by
alternating strongly attracting and strongly repelling fixzed points of
),

e #Fix(g) = 2 one attracting but not strongly attracting and one re-
pelling but not strongly repelling,

e the set of fized points Fix(g) is a cantor set, in particular, no fized
point is either attracting or repelling.

Moreover, there are always lifts with the first and second options and there
are lifts with the third option only if f has a periodic piece.

A.3. Outline of the proof. Let us first quickly explain how to prove The-
orem A.5.

Outiline of the proof of Theorem A.5. The key points follow from [H'T, Lemma
1.3]. Let v be primitive. If one considers n = g~ 'vg one gets a deck transfor-
mation that shares a fixed point with ~ and therefore n = 4* for some k > 0
but since ~ is primitive one must have k = 1. It follows that g commutes
with ~ which implies that v preserves the fixed point set of g and therefore
this set being closed forces Fix(y) < Fix(§). Moreover, if there are fixed
points of § which are not fixed by «, then these must accumulate on both
~T and vy~

The fact that if ¢ commutes with a deck transformation + then the end-
points vT cannot be strongly attracting or repelling is quite direct.

Finally, it is easy to see that if the set of fixed points of § has non-empty
interior, then f has to be the identity as it induces identity in a sufficiently
large set of closed geodesics in S. (]

To prove the rest of the results, one important property is implicit in the
proof of [HT, Lemma 3.1]. Compare with Remark A.2.

Lemma A.9. Let g : D — D be a lift of a surface homeomorphism f.
Assume that there erxists x € Fix(g) such that for some K > 0 and every
neighborhood U of z in D there isy € SAU such that dg(y,9(y)) < K. Then,
for every neighborhood U of x there is v € w1(S) such that g commutes with
v and A(y) intersects U and has v* € U n E.

Proof. Take a sequence y,, € S such that y, — 2 in D so that dg(Yn, 9(yn)) <
K.

Since a fundamental domain of S and its image by g have bounded di-
ameter in S we can assume that, up to changing K, one has that all y,
are lifts of the same point yg. That is we assume that ¥y, = v,yo for some
Yn € m1(S). It is no loss of generality to assume that all v, are pairwise
distinct. It follows that:

dg(vp ' gmyo. o) < K 5 Vn.
And therefore for all € > 0 there are n # m so that

dg(V L 9Y0s Y 9Imy0) < €
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and since 7, 1g7y, are lifts of f it follows that for small € one has that
Y tg¥n = ¥mlgym. This implies that g commutes with the deck transfor-
mation y,7,,!.

Since one can choose m — n arbitrarily large, one gets that A(v,7,,!) has
an endpoint close to x. This completes the proof. O

As a consequence, we obtain:

Lemma A.10. Let g : D — D be a lift of a surface homeomorphism f.
Assume that g does not commute with any deck transformation. Then every
fized point of § is strongly attracting or strongly repelling.

Proof. Let x be a fixed point of g in E and let r : [0,00] — D be a geodesic
ray landing on z.

By Lemma A.9 we know that there is a basis of neighborhoods {Ugk} of
z in D such that for every y € Ux n S the distance dg(y,9(y)) > K.

Consider a basis of neighborhoods {Vy} of = obtained by taking the
geodesics orthogonal to r at the point r(N). It follows that there is a
function K : Z~g — Z-¢ such that Vy < Ug(y) and K(N) — oo with N.

Using the fact that the image by g of a geodesic is a uniform quasi-
geodesic, one can then see that the image of the boundary of Vi is a quasi-
geodesic more or less orthogonal to the quasigeodesic g(r) ending in x (one
can compute the precise bounds for the angle using the constants of the
quasigeodesics and some hyperbolic trigonometry). Since the distance be-
tween g(r(N)) and r(N) is larger than K(N) we get that the point has to
be either super attracting or super repelling. O

Let us now explain the proof of Theorem A.6:

Outline of the proof of Theorem A.6. By assumption (which amounts to take
f up to homotopy and iterate), f fixes all the curves in a collection {cy, ..., ¢}
decomposing S in a finite family S, ..., Sy of closed surfaces such that are
fixed by f and such that f induces the identity on the fundamental group
each subsurface. We assume that the decomposition is minimal in the sense
that one cannot glue two surfaces and have the same property. Since f is
not homotopic to the identity then k& > 1 (but note that ¢ still could be 1 if
the collection ¢1, ..., is not separating).

The lift g of f acts on a graph defined by putting vertices in each connected
component of the lifts of the surfaces {S;} and an edge joining the vertices
associated to subsurfaces which intersect in S. It is easy to see that this
graph is a tree.

Assume that g fixes some connected component S’j of the lift of some
subsurface S;. Then, restricted to Sj, the map g must be a bounded distance
away from some deck transformation v fixing Sj because f induces the
identity on S; and moreover g commutes with v. If v is the identity, it
follows that the fixed point set of g is exactly the boundary at infinity of the
subsurface S'j which is a Cantor set. Since none of the fixed points can be
strongly attracting or repelling Lemma A.9 then implies that the situation
claimed in the statement is verified. If 7 is not peripheral in S; this implies
that the action of g resembles that of the dynamics of v at infinity in that it
has exactly the same fixed points which are attracting and repelling (but not
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strongly attracting/repelling). If + is peripheral, one looks at the adjacent
surface which is also fixed by g and the same analysis gives the statement
of Theorem A.6.

If g does not fix any such connected component, one gets an axis which
must be represented by a geodesic in D whose endpoints are the unique fixed
points of §. Notice that g cannot commute with any deck transformation
because it would correspond to a closed geodesic intersecting some of the
the curves ¢; where f acts as a Dehn-twist. Now, Lemma A.10 implies these
fixed points must be strongly attracting and repelling. O

We end with an outline of Theorem A.7 and its Addendum A.S.

Outline of the proof of Theorem A.7 and Addendum A.S. Up to homotopy
and iterate, we will assume that f preserves each of the subsurfaces {S;}
(compare with [HT, Section 2]) defined above and is such that in each
pseudo-Anosov piece preserves a pair of transverse geodesic laminations (see
[H'T, Sectiona 3 and 4]). We refer the reader also to [Mil, Section 9] for an-
other treatment of this case.

Let S; a surface where f is pseudo-Anosov and let A and A" be the
geodesic laminations invariant by f (see [T, Section 3]). For S; a lift of
J we can take g a lift fixing S; but which does not preserve any boundary
component of S; in S. One can see that g corresponds to a non-peripheral
Nielsen class of fl|g, (c.f. [HT, page 183]) and therefore has at least two
attracting fixed points and two repelling fixed points at infinity and all fixed
points at infinity are limit points of invariant curves of the lifted laminations
A® and A*. By Theorem A.5 the map g cannot commute with any deck
transformation. Then, the action at those points is alternatingly strongly
attracting and repelling by Lemma A.10. It can be seen that it is impossible
that all non-peripheral Nielsen classes have more than four boundary points
as more than four points force some open polygonal region inside the lift
of A® or A" and each such component occupies some hyperbolic area (see
e.g. [HT, Lemma 4.1]) so at least one must have four fixed endpoints. This
establishes the existence of a lift with the desired properties (and therefore
a proof of Theorem 2.4).

Now, we must show that if Fix(g) n Fix(y) = & for all v € I' then we
must be in the first situation. If g does not fix any S;, the same argument as
in Theorem A.6 implies that there are exactly one super attracting and one
supper repelling fixed point. If ¢ fixes some S;, the hypothesis implies that
in the projected surface S; the map f is pseudo-Anosov. By assumption g
cannot preserve any boundary component of S;. Then, one must consider
two cases, either ¢ fixes some leaf of the lifted lamination A of A%. In this
case, g must have a fixed point in each of the fixed leaves, and therefore
must preserve transverse leaves of the transverse lamination A% lifted of
A¥. This gives an even number greater or equal to four fixed points in the
boundary which are alternatingly strongly attracting or repelling (due to
Lemma A.10).

If g does not preserve any leaf of A® then it follows that it acts freely on the
leaf space of the lamination which is a tree. Therefore, there is an invariant
axis, and it follows that this defines one attracting and one repelling point
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at infinity in E for the action of g. By Lemma A.10 these points must be
strongly attracting and repelling. (We remark here that it is always possible
to choose lifts with this property.)

Finally, to get the addendum, let v € 71(S) such that Fix(v) < Fix(g),
then, by Theorem A.5 we get that if the sets coincide the points cannot
be strongly attracting or repelling. Otherwise, case one is obtained if
corresponds to the boundary of a surface where f is pseudo-Anosov and g
corresponds to a lift fixing the peripheral Nielsen class (c.f [H'T, page 184]).
The last case is treated similar to Theorem A.6. U
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