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ENDPERIODIC AUTOMORPHISMS OF SURFACES AND
FOLIATIONS

JOHN CANTWELL, LAWRENCE CONLON, AND SERGIO R. FENLEY

ABSTRACT. We extend the unpublished work of M. Handel and R. Miller on
the classification, up to isotopy, of endperiodic automorphisms of surfaces.
We give the Handel-Miller construction of the geodesic laminations, give an
axiomatic theory for pseudo-geodesic laminations, show the geodesic lamina-
tions satisfy the axioms, and prove that pseudo-geodesic laminations satisfying
our axioms are ambiently isotopic to the geodesic laminations. The axiomatic
approach allows us to show that the given endperiodic automorphism is iso-
topic to a smooth endperiodic automorphism preserving smooth laminations
ambiently isotopic to the original ones. Using the axioms, we also prove the
“transfer theorem” for foliations of 3-manifolds, namely that, if two depth one
foliations ¥ and J’ are transverse to a common one-dimensional foliation £
whose monodromy on the noncompact leaves of F exhibits the nice dynamics
of Handel-Miller theory, then £ also induces monodromy on the noncompact
leaves of JF’ exhibiting the same nice dynamics. Our theory also applies to
surfaces with infinitely many ends.

1. INTRODUCTION

The Nielsen-Thurston theory of automorphisms of compact surfaces [19, 43, 29,
33] classifies the isotopy class of an automorphism f of a compact, hyperbolic
surface. For endperiodic automorphisms of noncompact surfaces, M. Handel and
R. Miller outlined an analogous theory (unpublished).

Both theories produce a pair of transverse geodesic laminations and a map h
(endperiodic in the Handel-Miller case), isotopic to f and preserving the lamina-
tions.

In the compact case, there are h-invariant reducing circles which decompose the
surface into periodic pieces and pseudo-Anosov pieces. Similarly, in the endperi-
odic case, there are reducing circles and reducing lines. These reduce the surface
into finitely many (finite or infinite) h-orbits of compact subsurfaces, finitely many
noncompact pieces on which a power of h is a translation, and finitely many non-
compact “pseudo-anosov” pieces. (The lower case “a” indicates that the analogy
with pseudo-Anosov automorphisms of compact surfaces is weak.) In our exposi-
tion, reduction arises late in the game when an analysis of the laminations yields
the reducing curves in a very natural way.

The first nine sections of this paper treat the basics, defining endperiodicity,
presenting the Handel-Miller construction of the geodesic laminations arising from
an endperiodic automorphism, giving a detailed analysis of their structure, con-
structing the endperiodic automorphism preserving the laminations, and analyzing
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its dynamics. These sections fill in roughly a thirty year gap in the literature, the
first goal of this paper.

Our second goal is to prove two important new theorems, Theorem 11.1 and
Theorem 12.7 (see below), which are critical for applications to foliation theory. For
this, it becomes necessary to relax the condition that the laminations be geodesic.
We do this in Section 10 where we state four axioms for the “pseudo-geodesic”
laminations and show that these laminations are ambiently isotopic to the geodesic
laminations of the Handel-Miller theory. We note that the geodesic laminations
satisfy our axioms, so we are not axiomatizing the empty set, and the isotopy
theorem then shows that our axioms are complete. The entire theory developed in
the geodesic case becomes immediately available in the pseudo-geodesic case.

As in the Nielsen-Thurston theory, smoothness is a problem. Thurston’s tech-
nique of “blowing down” the laminations to produce a pair of transverse foliations
with finitely many p-pronged singularities made it possible to smooth h and the
foliations except at the singularities. This used a pair of projectively invariant mea-
sures to produce the smooth coordinate atlas on the complement of the singular set.
In our case, the blow-down does not yield foliations and the projectively invariant
measures may not have full support. In our “Smoothing Theorem” (Theorem 11.1),
having relaxed the geodesic condition on the laminations, we directly construct a
pair of transverse smooth laminations preserved by an endperiodic diffeomorphism
h and verify the axioms.

Handel-Miller theory has applications to foliations analogous to the applications
of Nielsen-Thurston theory to fibrations (cf. [25]). In smooth foliations of depth one,
the monodromy f of the noncompact leaves is endperiodic and there is a smooth
representative h of the isotopy class of f preserving the laminations. We will prove
the fundamental “Transfer Theorem” (Theorem 12.7). By this theorem, if F and F’
are depth one foliations on M, both transverse to a 1-dimensional foliation £, and if
the first return map (monodromy) induced by £ on a depth one leaf L of F preserves
a pair of pseudo-geodesic laminations satisfying the axioms, then the monodromy
it induces on a depth one leaf L’ of F' also preserves such a pair of laminations.
For this, the laminations on the leaf of ¥’ cannot be assumed to be geodesic, even
if those on the leaf of F are, necessitating our axiomatic characterization. The
proof of the theorem proceeds by showing that the the truth of our axioms for the
monodromy of & implies their truth for the monodromy of F'.

2. ENDPERIODIC AUTOMORPHISMS
We fix a temporary hypothesis,

Temporary Hypothesis. Until Section 2.1, we assume that L is a non-
compact, connected n-manifold with finitely or infinitely many ends and
possibly with boundary.

Let f: L — L be a homeomorphism. We do not assume that L is orientable nor,
if it is, that f is orientation preserving.

Suppose LDV D ...DV, D Vypy1 D Vigr D ... with the Vj, open, connected,
Mo~y Vi =0, and V,, \'V,, compact. Then the nested sequence of sets {V,,} defines
an end of L.

If {V,,} and {U,,} define ends of L, then {V,,} is said to be equivalent to {U,} if

for every n there exists an m such that V,, D U,, and for every m there exists an n
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such that U,, D V,,. The equivalence classes, e = [{V,,}], are called the ends of L
and the set €(L) of equivalence classes is called the endset of L.

Often one gives an “exhaustion” Ko C K; C --- C K, C --- C L where the K,,
are compact and ;- , K, = L. Then for any e € (L), e = [{U, }] where U, is an
unbounded component of the complement of K.

Let T be the topology on L, that is T is the set of open sets in L. For V' € T let,

V=VU{e=[{V,}] € &L) | there exists an n with V > V,}.

Then it is well known that B = TU {V | V € T} is a base for a compact, separable
metrizable topology on L U &(L) which restricts to a totally disconnected topology
on the closed set E(L).

If e € &(L), we will say that U C L is a neighborhood of the end e if U is a
neighborhood of e in the space (L U (L), %)

Notice that f induces an automorphism on the space of ends of L which, by

abuse, we will also denote by f.

Definition 2.1 (p.). An end e of L is periodic of period p. > 0 if fP<(e) = e and
Pe is the least positive integer with this property.

Remark. If there are finitely many ends, every end is periodic.

Definition 2.2 (positive and negative ends, €4 (L)). An end e of period p. is a
positive end if there is a closed, connected neighborhood U, of e such that L \ U,
is connected and

(1> fpe (Ue) C Ue;

(2) Mazo [P (Ue) = 0;

(3) FrU, is compact.
The end e is a negative end if the parallel assertions hold with p. replaced by —pe.

We denote the set of positive (respectively negative) ends by €4 (L) (respectively
E_(L)).

Remark. We will write M for the boundary of a manifold M and the symbol
Fr A for the topological boundary (frontier) of the subset A of a topological space.

Remark. The positive ends are the attracting ends and the negative ends are the
repelling ends.

Ends may fail to be positive or negative. For instance, on a four times punctured
sphere, one easily produces a homeomorphism f that cyclically permutes three
punctures, fixes the fourth and satisfies f2 = id. These ends are neither positive
nor negative. Similar examples can be produced in which the ends are nonplanar.

Definition 2.3 (f-neighborhood of an end). A set U, as in Definition 2.2 will be
called an f-neighborhood of e.

Definition 2.4 (endperiodic automorphism). The homeomorphism f : L — L is
called an endperiodic automorphism of L if all periodic ends are positive or negative.

Example 2.5. A simple example of an endperiodic automorphism is depicted in
Figure 1. Here, the ends e; and es are periodic of period 2 and negative, with
De;, = Pe; = 2. The end e is periodic of period 1, positive, with p. = 1. The
circle f-junctures (Definition 2.9) separate the neighborhoods of the ends into f-
domains (Definition 2.24) having negative Euler characteristic. The arrows indicate
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FIGURE 1. An example with two negative ends

the action of f. Notice that all of the “interesting” dynamics of f occurs in the
compact region complementary to neighborhoods of the three ends. This is called
the “core” and it is only there that fixed points, periodic points, other invariant sets
can occur. Actually, this example can be constructed so that the only interesting
dynamics is a single fixed point. The two boldface curves will be explained later.

Remark. In this paper, we study surfaces with finitely many ends but the definition
of endperiodic automorphism also makes sense for surfaces with infinitely many
ends and for n-manifolds with n > 2. In Section 13.4 we show how the theory of
endperiodic automorphisms of surfaces L with infinitely many ends reduces to the
case of a surface L with finitely many ends.

Remark. In [8, Section 4], we give an infinite family of examples of endperiodic
automorphisms of 1-ended 3-manifolds in which the end is negative. Included are
Whitehead’s example of a contractible open three manifold which is not R3 [37, 44]
and 3-manifolds with nontrivial fundamental group.

Lemma 2.6. If e and €' are distinct positive or distinct negative ends of L and U,
and Uy are f-neighborhoods of e and €' respectively, then U, N Uy = 0.

Proof. Suppose e and e’ are both positive ends. Let V and V' be disjoint neighbor-
hoods of e and €’ respectively. If there exists x € U, N U, then for k sufficiently
large, f*P<Pe’ () lies in both V and V' which is a contradiction. The case where e
and €’ are negative ends is parallel. O

Lemma 2.7. Let f : L — L be a homeomorphism. Then f is endperiodic if and
only if fP is endperiodic, for some integer p > 0.

Proof. The “only if” direction is trivial. Assume that fP is endperiodic and let e
be an end with period p.. Then, fPP<(e) = e. Since fP is endperiodic, it follows
that e is either a positive or negative end under the homeomorphism fP. Without
loss, assume that e is positive. Thus, there is a closed neighborhood U, of e such
that L \ U, is nonempty and connected, fPP<(U,) C U, and

o0

ﬂ frere(U,) = 0.

n=1
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Set
Vo = U N fPe(Ue) N f2(Ue) N --- 0 fO7DPe(U).
Then,

LNVe=(LNU)U (L~ fP(Ue)) U---U (L~ fP=IP(0,))

is connected as the union of connected sets with intersection
p—1
(L~ f7(U.))
i=0
which is nonempty as the finite intersection of open neighborhoods of each negative
end and
fPe (Vo) = fPe(Ue) N f2<(Ue) N -+ N fPPe(Ue) C Ve
Since V. is a neighborhood of e, it has exactly one noncompact component V which
is a neighborhood of the end e. Hence fP<(V/) C V! and we can replace V, with
V!. Finally, L \ V is connected and,
o0 o0 o0
() Fr7=(V) C () £ (Ue) € [ £777<(Ue) = 0.
n=1 n=1 n=1
Thus e is a positive end. A similar argument works for negative ends, proving that
f is endperiodic. O

Lemma 2.8. Ife is a positive (respectively negative) end and U, is an f-neighbor-
hood of e, then there is an integer p > 0, divisible by p., such that fP(U,) C int U,
(respectively f~P(U.) C int Ue).

Proof. Recall from Definition 2.2 that U, has compact frontier. If fPe(U,) meets
Fr U, for all n > 0 then, by the compactness of Fr U, there exists

o

ve (ﬂ f"”ﬁ(Ue)) NFU,
n=0
contradicting ()~ f™¢(U.) = 0. Thus there exists an n > 0 such that f™?(U.) C
int Us. O

Definition 2.9 (f-junctures). For each f-neighborhood U, (Definition 2.3) of a
positive or negative end e, the set J = FrU, is called an f-juncture for e. The f-
juncture is positive (respectively negative) if U, is an f-neighborhood of a positive
(respectively negative) end.

Remark. A given f-juncture J for a positive or negative end e gives rise to a whole
bi-infinite sequence {J,, = f™(J)}nez of f-junctures for the ends in the f-cycle of
e.

Remark. Given an end e, there are uncountably many choices of f-neighborhood
U, and f-juncture J = FrU,.. In Section 4.3.1, we will pick and fix a countable set
of f-junctures.

Example 2.10. We give an example to show how the images of f-junctures behave
under iteration of f. Let L be the surface depicted in Figure 2, two strips connected
by an infinite sequence of tubes. The endperiodic automorphism is f = 70g, where
g is the translation from the negative end to the positive end moving each handle to
the next handle as indicated by the arrow and 7 is a Dehn twist in the oval C. The



6 J. CANTWELL, L. CONLON, AND S. FENLEY

FIGURE 2. f is not a translation but some components of f-
junctures escape

f-junctures are each the pair of properly embedded arcs as pictured in boldface.
Under forward iteration of f, the left component of an f-juncture in the negative end
gets caught by the Dehn twist and starts stretching unboundedly into the positive
end. Note that the right component of the f-juncture escapes without distortion
to the positive end. A similar description holds for f-junctures in the positive end
and their images under backward iteration of f. This distortion of f-junctures
(and of the geodesic and pseudo-geodesic junctures defined in Sections 4 and 10)
is typical behavior and is what will create the stable and unstable laminations of
Handel-Miller theory.

We replace our temporary hypothesis by the hypothesis,

Hypothesis 1. Hereafter, unless we explicitly state otherwise, L is a non-
compact surface with finite endset.

2.1. Asymptotic construction of f-junctures. We are going to give a method
of constructing f-junctures which, being closely related to the way that they arise in
foliations, will be called an asymptotic construction. The f-junctures constructed in
this way will intersect only in common components. We will see this in Example 2.29
which, in fact, is a thinly disguised example of the asymptotic construction.

The junctures in the following definition are either f-junctures or sets of geodesic
or pseudo-geodesic junctures as defined in Sections 4 or 10.

Definition 2.11 (juncture intersection property). A juncture J has the juncture
intersection property if any two junctures in the set {J,, = f™(J) | n € Z} of junc-
tures intersect, if at all, in common components. A set of junctures has the juncture
intersection property if every juncture in the set has the juncture intersection prop-
erty.

Assume that f : L — L is endperiodic and e is a positive or negative end of
period pe.
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Proposition 2.12. The choice of f-neighborhood U, can be made so that the
f-juncture J = FrU, is a compact, properly embedded, transversely oriented 1-
manifold satisfying the juncture intersection property.

Proposition 2.12 will be proven in a series of lemmas. Let e be a positive end of
L and set

¢ = {60 =€,€61 = f(6)7 €2 = f2(6)7 sy Cp—1 = fpeil(e)}a
the complete f-cycle of ends containing e. The reader can adapt the following
discussion for the case that e is a negative end.
For ¢’ an end in the cycle ¢, set Uer =, f~"P<' (Uer), where por = p. and U/
is any f-neighborhood of ¢’. Set

Ue= |J "(Ue) =Ue, U, U---UU

n=—oo

Cpe—1"

Remark that U, is an open, f-invariant set with no periodic points. The connected
components U,, of U, are permuted cyclically by f.

The action of f partitions U, into orbits @ = {x;, } nez, where x, = f™(z¢). Let
F be the space of orbits with the quotient topology, and remark that the quotient
map ¢ : U, — F' is a regular covering map. The group of deck transformations is
infinite cyclic generated by f. In particular I is a surface.

Remark. Let e be a positive (respectively negative) end of L and U, be any f-
neighborhood of e. Since L has a finite endset, the set X = U, ~\ int fP<(U,)
(respectively X = U, N\ int f~P<(U,)) is compact. Since the compact set X and the
connected set U, both surject onto F', it follows that F' is compact and connected.

Notation. Fix a basepoint x € F, * = {xy, }necz, where 2,11 = f(z,), —co <n <
o0, and zg € Ue.

If o is a directed (oriented) loop in F' based at *, o lifts to a directed path 7
in U, starting at z,, and ending at a point x,.(,). Here, one sees that x(c) € Z
is independent of the choice of n. Simply apply powers of f to 7. Furthermore, a
basepoint-preserving homotopy of o lifts to an endpoint preserving homotopy of all
lifts 7. This construction defines a group homomorphism

k:m (F,x) = Z,

which can be viewed as a cohomology class k € H'(F;Z). The period of such a
class k is the least positive value taken by k, evidently the greatest common divisor
of the set of values of k. The class is divisible if its period is greater than 1.

Lemma 2.13. The class k is divisible if and only if p. > 1, in which case the
period of Kk is the period p. of e.

Indeed, for n € Z, there is a path in U, from z,, to =, which projects by ¢ to
a loop o in F. Thus k(o) = p.. Evidently, p. is the smallest positive value of k.

Lemma 2.14. There is a compact, transversely oriented, properly embedded 1-
manifold J; in F such that k(o) = o - J,;, the algebraic intersection number.

Proof. As is well known, there is a map f, : F — S', unique up to homotopy, such
that f:[S'] = &, [S?] € H(S') being the fundamental class. We may take f,; to be
smooth. By Sard’s theorem, there is a regular value p both for f, and for f.|0F.



8 J. CANTWELL, L. CONLON, AND S. FENLEY

Then, J, = f.(p) is a properly embedded, compact 1-manifold, transversely ori-
ented by the orientation of S'. Let o : S — F be in general position relative to
J.. Then f, o0 : S' — S! has p as a regular value and has degree equal to the
number of times (counted with sign) that it crosses p. Clearly, this degree is equal
to o - J,, and is the value of k on o. O

Remark. If F is oriented, the transverse orientation of J, induces an orienta-
tion, allowing us to view J,; as a l-cycle. In this case, Lemma 2.14 is really just
Poincaré duality. But we do not require orientability and the transversely oriented
1-manifold J, can only be thought of as a 1-cocycle, evaluating on 1-cycles via the
algebraic intersection product. Throughout this discussion, cocycles typically will
be transversely oriented, properly embedded 1-manifolds.

Definition 2.15 (k-juncture). We call J,; a k-juncture.

Remark. Note that a x-juncture is a compact submanifold of the compact surface
F and is not a juncture in the sense that we usually use the term juncture in this

paper.

Remark. The x in the symbol J,; for a x-juncture refers to the fact that the
geometric object J,; represents the specific cohomology class k € H'(F;Z).

One sometimes calls the cohomology class k € HY(F;Z) a “juncture”, but we
prefer to reserve this term for a geometric object representing x.

Notice that two components of J,, might be “parallel” circles if they cobound an
annulus A C int F. They will be parallel, properly embedded arcs if, together with
two arcs in JF, they bound a rectangle A with int A C int F. In either case, their
transverse orientations are said to be coherent if one is oriented out of A and the
other into A.

We want to modify a k-juncture J, to be weakly groomed in the following sense.

Definition 2.16 (weakly groomed). A compact, properly embedded, transversely
oriented 1-manifold J C L is weakly groomed if every pair of parallel circle (respec-
tively arc) components have coherent transverse orientations.

Remark. The term “groomed” is already in use by 3-manifold topologists, having
been introduced by D. Gabai in [28]. It places stronger conditions on J than we
require, but includes our condition of “weakly groomed”. It also assumes that F’
is orientable, which we do not. The metaphor, of course, has to do with a nicely
combed head of hair.

Lemma 2.17. Every k-juncture J, is cohomologous to a weakly groomed x-juncture.

Proof. If J,; is not weakly groomed, let 71 and 75 be parallel components with non-
coherent transverse orientation. It is clear that the algebraic intersection number
of any closed, oriented curve ¢ with 7 U 7 is zero, hence these components can
be removed. Repeating this procedure finitely often produces the desired weakly
groomed k-juncture. ([l

Thus, one can assume that the properly embedded arc components of J, fall into
“packets” of parallel, coherently transversely oriented arcs and that no two parallel
components of J,; have opposing transverse orientation. Similarly, the components
that are essential, embedded, transversely oriented circles fall into packets of par-
allel, coherently transversely oriented circles with no oppositely oriented parallel
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packets. Each of these packets can be represented by one of its elements together
with a positive integer weight (the number of components of the packet). That is,
the cohomology class k can be represented as a union of disjoint, transversely ori-
ented arcs and circles s, no two of which are parallel, each with an attached integer
weight ws > 0. The union of these arcs and circles, neglecting the weights and
transverse orientations, is called the support of the k-juncture and will be denoted
by |Jk|.

Remark. Note that the term support and notation | - | for support has a different
meaning for laminations in the rest of the paper.

Lemma 2.18. If |J,| separates F, there is a weakly groomed k-juncture J: such
that | J%| does not separate F and the set of its components is a subset of the set of
components of | J|.

Proof. Let s1, sa, ..., s, be oriented components of |J,;| that separate off a connected
subsurface S of F'. Let w; be the weight associated to s; and let w; be the minimum,
1 <5 <r. Let sg be the same arc or circle as s;, but with transverse orientation
inward to S. Then the coboundary >_._, w;s} can either be added to or subtracted
from J,, reducing the number of components of |J,|. Finite repetition of this
process produces the desired weakly groomed x-juncture J;:. d

We fix a choice of J, satisfying the conclusions of Lemma 2.18. In particular,
through each component of |J,| there is a transverse loop that does not intersect
any other component of |J,|. The following is a consequence of Lemma 2.18 and
Lemma 2.13.

Corollary 2.19. Fach weight wg is divisible by pe.

We can assume that our basepoint * is disjoint from |J,;|. Let F’ denote the com-
pact, connected surface with boundary (and possibly corners) obtained by cutting
F apart along the components of |J.|. Then each component s of |J,| determines
two copies s4 of itself in OF’, s, being the copy along which the transverse ori-
entation points out of F’ and s_ the one along which the transverse orientation is
inward.

Loops in F based at * which do not properly intersect |J,;| remain loops in F”
based at *. The following is an easy consequence.

Lemma 2.20. For each n € Z, there is a unique copy F,, of F' embedded in U,
and containing x,,.

The projection q : F,, — F induces a homeomorphism ¢’ : F,, — F’. The curve
(an arc or circle) s’ C 9F, is the one carried by ¢’ onto si C OF’.

Lemma 2.21. For each n € Z and each component s of |J.|, Fy is attached to
n+wg

Fryw, by an identification s} = s™
Proof. By Lemma 2.18, there is a loop o in F', based at *, which intersects s once
and has algebraic intersection number +1 at that point. Thus, o lifts to a path
joining @, t0 T4, , exiting F, through s7 and entering Fj, 4., through s"**. O

List the conponents of |J,| as s1,82,...,8p. Write ws, = w;. The juncture
components s, 1 < ¢ < p, are inwardly oriented components of Fr F), and the
juncture components s, , 1 < ¢ < p, are outwardly oriented ones.
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Let
VWw=FUF, UFy, U---UFy, U---

Lemma 2.22. For each integer 1 < i < p, the number of inwardly oriented com-
ponents of Fr Vi of the form s_ is w;/pe.

e

with sifcpe+wi,

Proof. Fix s;. Since Fj,_ is attached to Fjp_ 4., by identifying sf_f
it is clear that exactly the w;/p,. inwardly oriented components s!_ of Fj,

J=0,pe,2pc, ..., W5 — Pe,
are in Fr V. O

Thus, the union of the components s{_ in Fr Vj is a compact, properly embedded,
transversely oriented 1-manifold. We take U, = V; as f-neighborhood of e in
Proposition 2.12 and J = Fr V4.

Corollary 2.23. The image of J under the covering projection q : U, — F is
exactly |J:|, each component s of |J;| being the image of exactly ws/p. components
of J.

Since f is a deck transformation, this remains true for all f™(J), all n € Z, and
it is clear that any two of these positive f-junctures intersect, if at all, only in
common components.

The proof of Proposition 2.12 is now complete.

Hypothesis 2. Hereafter, we will require that any f-juncture J is a com-
pact 1-manifold and has the juncture intersection property.

That is, hereafter we are modifying the definition of f-juncture (Definition 2.9)
to require that any f-juncture J be a compact 1-manifold and have the juncture
intersection property.

Remark. Note that ¢ : Vo — F is a semi-covering with covering semi-group Z*
generated by f. It mirrors perfectly the way that an end e of a depth one leaf of a
foliation semi-covers the compact leaf F' to which it is asymptotic. (One commonly
says that e “spirals” on F.)

2.2. Behavior of an endperiodic automorphism near the ends of L. An
endperiodic automorphism is well behaved near the ends of L. In this subsection
we give some lemmas that show the behavior can be more complex than expected.
Example 2.29 shows how complicated the structure of a positive or negative end
can be.

Remark. The notation and terminology defined in the next paragraph is used only
in Section 2.

It is sometimes necessary to work with a positive multiple kp. of p. as power of
f. If e is a positive (respectively negative) end, choose an f-neighborhood U,. Let
p be a positive multiple of p. and define U! = f*(U,) (respectively U! = f=(U.,)),
Ji=FrU! and B! = Ui\ U i€ Z.

Remark. This notation depends on the choice of positive multiple p of pe.
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Remark. The notation is such that all the sets U, B}, JI' C U, and tend to e in
the topology of L U E(L) as n — +oo whether e is a positive or negative end. We
will also use the notation introduced above, J,, = f(J), for J an f-juncture. For
J a positive f-juncture, J, will approach a cycle of positive ends as n — 400 and
for J a negative f-juncture, J, will approach a cycle of negative ends as n — —oo

Definition 2.24 (f-domain). The set B!, i € Z, is the f-domain for e correspond-
ing to p.

Lemma 2.25. If f be an endperiodic automorphism, then the following are equiv-
alent,
(1) If e is a positive end, fP(U,) = U} C int U,.

If e is a negative end, f~P(U,) = U} C int U..
) Ut Ccint UL, i € Z.
) JENJL =0, i€ Z.
) FrBi = JiU J*L, i € Z.
) B! separates L, i € Z.
Proof. Clearly (2) < (1). In fact (1) is a special case of (2) with ¢ = 0 and (2)
follows from (1) since f is a homeomorphism. We will show that (2) = (5) =
4) = (3) = (2).
(2) = (5). Since Ut C int UZ, it follows that J! = Ul \int U} C Ui \ Uit C Bl
Since J!, separates L, B! separates L.
(5) = (4). First remark that since U*! is a connected subset of a surface with
FrU?! a compact 1-manifold, int Ui*! is connected. Further it follows from the
definition of f-neighborhood that L \ U¢ is connected. By (5), L ~ B! is not
connected so L . B! is the union of nonempty disjoint open sets U,V. Since

int U and L\ U¢ are connected, only one of U,V can meet each of int U and
L~ UL Tt follows that U = L \ U! and V = int UL, Therefore

LB =UUV = (L\U)Uint U = L~ (U < int UI)

so B = Ul \intU* > JL U JitL. Further, if # € J! (respectively z € Jit1)
then x has a neighborhood meeting L \. U! (respectively int U:*1). Thus, every
x € JEUJH! has aneighborhood meeting both BY and its complement so JIUJH! C
Fr BE. The reverse containment is clear so (4) follows.

(4) = (3). If JEN JiHL #£ (), then by assumption J¢ and Ji*! have a component
o in common. If x € into, then the point x has a neighborhood V disjoint from
Ui\ UL Thus, x ¢ B! so x ¢ Fr B! contradicting (4).

(3) = (2). If JINJH! =, then Ji*! C int U! so U C int U, O

Lemma 2.26. The integer p > 0 of Lemma 2.8 can be chosen so that the B! are
connected.

Proof. Without loss assume that e is a positive end. Suppose that

BY =U, ~ fr(U.)
has more than one connected component. By Definition 2.3, Fr BY is a compact
l-manifold, hence has finitely many components. Since U, is connected, we find

finitely many paths si,...,s, in U, that connect the components of BY. That
is ij Usy U---Us, is connected. For a minimal integer m > 1, these paths
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all lie in B = BOU B! U---U B™ and we claim that B is connected. Indeed,
each component of B} attaches to BY along at least one component of J!, and so
BYUB!UsyU---Us, C B is connected. Repeating this reasoning finitely often,
we obtain that B is connected. If we replace the integer p of Lemma 2.8 with
q=p(m+1), then B =U, \ f4(U,) can be taken as a new connected B. O

We introduce the following nonstandard term which will come up frequently
throughout this paper.

Definition 2.27 (simple end). An end of L is simple if it has a neighborhood
homeomorphic to St x [0, 00) or [0, 1] x [0, c0).

The next lemma follows from the fact that L has no simple ends.

Lemma 2.28. If L has no simple ends and p > 0 is large enough, then the B!
have negative Euler characteristic.

Example 2.29. This example is meant to illustrate how complex the structure of
a positive or negative end might be.

FIGURE 3. A pair of pants P;

We describe a family of two-ended surfaces and an endperiodic automorphism
on each which is a translation (this term will be carefully defined in Section 2.5).
The surface L = (J;¢,, P/ will be formed by cutting pairs of pants P; along certain
essential, properly embedded subarcs and then pasting the resulting disks P/ to one
another along these subarcs. The endperiodic automorphism f : L — L will take
P{ to P{,,.

In Figure 3, we depict the typical pair of pants and the essential arcs with
transverse orientation. After cutting, P; becomes a disk P/, with A; and D; split
and indexed as indicated in Figure 4. Here ¢ varies over the integers. Let m and n
be fixed, relatively prime integers, positive and/or negative. The index ¢ on A;", Dj'
indicates that these arcs are identified with the original A; and D;, while the index
on A7, indicates that it is to be attached to A}, , forming a single arc to be
labeled A;,, and the index on D;,, indicates that it is to be attached to D,
forming a single arc to be labeled D;,,. It will be convenient to represent P/ and
its boundary arcs symbolically as X; and its vertices as in Figure 5.

The case m = 2 and n = 3 is indicated symbolically by the graph in Figure 6.
The endperiodic automorphism carries X; to X;11. An f-neighborhood of the
positive end e is given by U, = PjU P/ U--- and is represented symbolically as
XoUX; U--- in Figure 6. Thus, p. = 1. The f-juncture J? = FrU, consists of
the five properly embedded arcs represented by the points Ag, A1, Do, D1, D2 in
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FIGURE 4. Arcs A*, D* with indices

FIGURE 6. Symbolic picture of the surface with m =2,n=3

Figure 6. As usual, let U! = f?(U,), J! = f7(J%) = Fr U, and B! = Ui \ US,
1 > 0 where p is a positive integer multiple of p. = 1.

If p=1or 2, the U}, Ji, and B! do not satisfy the conditions of Lemma 2.25.
In particular, JO N J! # 0 and BY does not separate L.

If p = 3, then BY is symbolically represented by XoU X; U X5 in Figure 6 where
it is drawn with solid lines, B! is represented by X3 U X4 U X5 in Figure 6 where it
is drawn with dotted lines and B? is represented by XU X7 U Xy in Figure 6 where
it is drawn with solid lines. In this case, BY does separate L, so the U!, J!, and B!
do satisfy the conditions of Lemma 2.25. However, BY has two components.

If p >4, the U!, J, and B! do satisfy the conditions of Lemma 2.25 and B? is
connected. If p = 4, B is symbolically represented by XoUX; UX,U X3 in Figure 6
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and is a disk. If p = 5, BY is symbolically represented by XoUX; U X2 UX3U X, in
Figure 6 and is an annulus. If p > 6, B has negative Euler charateristic, separates
L, and is connected and Fr B = J? U J! with JONJl =0 .

2.3. Properties of endperiodic automorphisms. We prove some elementary
facts about endperiodic automorphisms.

Proposition 2.30. If L has at least one nonsimple end, then the endperiodic au-
tomorphism f : L — L has both positive and negative ends.

Proof. Assume that L has no negative ends. Let e be a positive end and let U,
be an f-neighborhood of e. Let B!, i € Z, be the f-domains (Definition 2.24)
for e corresponding to a choice of p, a large enough multiple of p. that it can
serve as a choice of p in Lemmas 2.8, 2.26 and 2.28. Thus, B:*! = fP(B!). By
Lemma 2.28, the f-domains B! for the end e have negative Euler characteristics.
Then the sequence { B!} is a sequence of compact surfaces with disjoint interiors,
each of negative Euler characteristic, which does not accumulate at any end. This
gives the contradiction that some compact subsurface S C L has infinite Euler
characteristic. O

Remark. In particular, L must have at least two ends. The argument of this
proof obviously fails if all ends are simple. For example, it is easy to produce an
endperiodic automorphism on R? with one negative end and one on I x R with two
negative ends.

Remark. Each end of every noncompact boundary component of a surface L limits
on some end of L.

Remark. One might think that at most finitely many noncompact boundary com-
ponents can have an end limiting on a given end of L. But see [4, Figure 12.5.11]
for a surface with one end e and infinitely many noncompact boundary components
with both ends limiting on e. Of course, this surface does not admit an endperiodic
automorphism.

Lemma 2.31. If f : L — L is endperiodic, then, only finitely many noncompact
boundary components can limit on a given end e of L.

Proof. Since L has finitely many ends, e is a periodic end. Let U, be an f-
neighborhood of e. Consider the f-junctures {J!}°°;, a sequence of mutually home-
omorphic I-manifolds. If J¢ is a collection of simple closed curves, no noncompact
boundary component limits on e. In general, J¢ contains finitely many arc compo-
nents and the finite number of endpoints of these components is independent of 1.
Each noncompact boundary component ¢ of L with an end limiting on e contains
an endpoint of an arc component of J! for some i and if o contains an endpoint
of an arc component of J!, it contains an endpoint of an arc component of Ji*",
r > 0. Thus, if infinitely many boundary components of L have an end limiting
on e, the number of endpoints of arc components of J! is unbounded which is a
contradiction. |

Remark. It should be noted that it is possible that a component of JL might
be a line ¢ joining a positive end to a positive end (possibly the same end) with
the parallel possibility for negative ends. In that event, f will have at least one
periodic point on ¢. It will turn out that ¢ will then be a leaf of one of the two
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transverse laminations to be constructed in Section 4, while a ray issuing from the
periodic point will be a leaf of the other. This causes some difficulties for us, but
the problem can be eliminated without loss of generality by doubling along all such
components ¢ (and only along such components). Denote the partially doubled
surface by L’ and the corresponding partial double of f by f’. The original surface
remains as an f’-invariant subsurface in L’. The remaining noncompact boundary
components which issue from periodic ends will join negative ends to positive ones
and it is easy to modify the endperiodic automorphism near these boundary lines
so that there are no periodic points on them. Accordingly, we make the following
assumption.

Hypothesis 3. Each noncompact component of JL, joins a negative end
to a positive end and contains no periodic point.

2.4. Tunneling. A certain special class of geometric modifications of junctures
that leave them unchanged homologically is a process which we call “tunneling”.
In Figure 7 we represent tunneling between components 7, and 75 of J,;, along an arc
« issuing from 7 and ending at 75 and not otherwise meeting J,; so that, whatever
orientation is given to «, it agrees with the transverse orientation of 71 U 7o at one
end and opposes it at the other. In this paper we only need this in the proof of the
transfer theorem (Theorem 12.7).

A A Y RNy

FIGURE 7. A tunneling cohomology

Let 0 C int F' be an embedded, oriented circle. Suppose that o intersects J
transversely and in finitely many points. Let o-J,, denote the algebraic intersection
number. Let the transversely oriented components of |J;| be 7; with respective
weights w;, 1 <j <.

By tunneling we will prove the following.

Proposition 2.32. For any o C int F', an embedded, oriented circle that intersects
a k-juncture J, transversely and in finitely many points, there is a new choice of
K-juncture J., also intersecting o transversely and in finitely many points, such
that

() fo- Jul = X, wj card(o 117,),
(2) Jy is weakly groomed,
(3) |Jx| does not separate F.

Proof. Realize J,; not as a union of weighted, transversely oriented arcs and circles,
but of packets of parallel, coherently transversely oriented arcs and circles. If the
asserted equality fails, there is a subarc « of ¢ with endpoints z1, z2 on respective
component(s) 71,72 of J., not intersecting J,, in any other points, such that the
orientation of « at, say, 1 disagrees with the transverse orientation of 71 at that
point and, at xo, the orientation of o and the transverse orientation of 7, agree.
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Let A be a rectangle with a pair of opposite sides 8; C 7; containing the points
x; in their interiors, ¢ = 1,2, and a pair of opposite sides a; parallel to o with
int a C int A. Clearly A can be chosen to be disjoint from o~ «. Transversely orient
the circle A so that the orientation points outward from A if o meets 7, and 75 on
the positive sides and, in the alternative case, let A be transversely oriented into
A. Let 7 denote the cocycle which is the transversely oriented dA. This cocycle
is clearly a coboundary and so the cocycle J,; + 7 is cohomologous to J,. The
overlap of 7 and 7; is two copies of [3; with opposite transverse orientation, hence
can be “erased”, i = 1,2. The resulting transversely oriented, properly embedded
1-manifold J} is as in Figure 7 and the intersection points x1, x2 which introduced
cancelling intersection numbers +1 have been eliminated without changing the other
intersections of o} with J, 1 < k < n. Finite repetition produces J; such that the
algebraic intersection numbers at each point of o; N J;; all have the same sign.

Finally, the modifications in Lemma 2.17 and Lemma 2.18 only involve throwing
away components of k-juncture, hence do not affect the intersection properties
already established. O

As an example of tunneling, the reader might try proving the following result
which is not consequential for this paper but might be useful in studying examples.

Lemma 2.33. The k-juncture, chosen with all the above properties, can be assumed
to be represented entirely by weighted, transversely oriented, properly embedded arcs,
or one weighted, transversely oriented circle.

2.5. Translations. The simplest endperiodic automorphisms are the translations,
although even these can be surprisingly complicated (check out Example 2.29).

Definition 2.34 (translation). The endperiodic automorphism is a translation if
(in the notation of Section 2.1) L has an end e such that U, = L.

Remark. In the case of a translation, L has one positive end and one negative
end.

Suppose that f is a translation. It is evident that L has two ends, an attracting
end e and a repelling end ¢’ and p, = 1. Lemma 2.20 gives a sequence {F}, } of copies
of F’ embedded in U, = L with f(F,) = F,,41 forn€Zand L=J,____F,. Itis
natural to think of the F},’s as “fundamental domains” for the homeomorphism f.
Example 2.29 shows that, in general, F;, does not separate L and can be attached
to more than two of the F}’s along common boundary components.

We make the following definition only for use in the next two lemmas

Definition 2.35. If the F),’s can be chosen to separate L and to be attached
to exactly two of the Fj’s along common boundary components, we say that the
translation f is a simple translation.

An immediate consequence of Lemmas 2.25 and 2.8 is the following.

Lemma 2.36. If f is a translation and k is sufficiently large, then f* is a simple
translation.

In case OL = ), hence OF = (), and f is a translation, the s-juncture can always
be chosen to be a simple closed curve s (Lemma 2.33). As a consequence, we note
the following.

Lemma 2.37. If 0L = 0 and f : L — L is a translation, then f is a simple
translation.
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2.6. Avoiding the juncture intersection property. It was pointed out to us
by the anonymous referee of [16] that, by a small isotopy of the f-junctures in U,
it can be assumed that every two f-junctures are disjoint. This has the effect of
allowing part (1) of Definition 2.2 to be strengthened to read:

fPe(Ue) C int Ue.

While this may seem desirable, Example 2.29 suggests that it is a bit contrived and
in the context of depth one foliations it is decidedly unnatural. Our asymptotic
construction of f-junctures is entirely motivated by depth one foliations. We record
the fact for its possible usefulness, but continue to stick with Definition 2.2 as stated
and the juncture intersection property.

3. PRELIMINARIES TO THE HANDEL-MILLER THEORY
We present here some material that will be appealed to repeatedly.

Temporary Hypothesis. In Section 3, we assume that L is a noncompact,
connected surface with finitely or infinitely many ends and possibly with
boundary.

3.1. Some remarks on isotopies. In constructing isotopies in this paper, we
will frequently use the Epstein-Baer theorems [20, Theorem 2.1 and 3.1] about
homotopies and isotopies of curves. For convenient reference we state them here
and refer the reader to [20] for the proofs. In what follows, L is a connected surface,
compact or noncompact, with or without boundary and orientable or nonorientable.
Recall that an ambient isotopy on M is a continuous map ® : M x I — M, written
®(x,t) = ®!(x), where ®° = id, with &' : M — M a homeomorphism, 0 < ¢ < 1.

Remark. Whether we say so or not, all of our isotopies will be ambient.

Theorem 3.1 (Epstein-Baer). Let a, 3 : S — int L be freely homotopic, embedded,
2-sided, essential circles. Then there is an ambient isotopy ® : LxI — L, compactly
supported in (int L) x I, such that ®' o 8 = a.

Theorem 3.2 (Epstein). Let o, : [0,1] — L be properly embedded arcs with
the same endpoints which are homotopic modulo the endpoints. Then there is an
ambient isotopy ® : L x I — L, compactly supported in L x I with ®(x,t) = x for
(x,t) € OL x I, such that ® o f = a.

Epstein proves these first in the PL category, then extends them to the category
TOP by an approximation argument. The PL argument adapts very well to the
smooth category DIFF, giving the following.

Theorem 3.3. In the above theorems, if the curves in question are smooth embed-
dings, then the isotopies can be chosen to be smooth.

Remark. One will frequently want to perform these isotopies sequentially on a
possibly infinite sequence of disjoint curves. In order to make sure that already
completed isotopies are not undone by a subsequent one, one resorts to the following
inductive trick. If o1,09,...,0, are the resulting curves from isotopies already
performed and 7 is a curve to be isotoped to o,41, both of these curves being
disjoint from S = o1 Uoy U --- U gy, then cut L apart temporarily along S and
perform the Epstein-Baer isotopies in the resulting surface L'. Of course, we are
assuming that 7 and 0,41 lie in a common component of L’.
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3.2. Standard hyperbolic metrics. In order to construct and analyze the Handel-
Miller laminations, it is necessary to introduce a hyperbolic metric on L. Here we
give necessary definitions and prove a key result (Theorem 3.11). In [15] we gener-
alized to arbitrary noncompact surfaces, with suitable hyperbolic metric, theorems
we need that are well-known for hyperbolic surfaces of finite area.

Let L be a connected surface, compact or not, with or without boundary and
orientable or not. If L has boundary and a complete hyperbolic metric making all
components of JL geodesics, it is well known that the double 2L has a canonical
hyperbolic metric which is complete and agrees with the given one on L C 2L.

If L has empty boundary, the open unit disk A, with its canonical 1l hyperbolic
metric, is the universal cover L. If 8L # 0, view L C 2L, identify 2L = A and
choose a lift L C A of L. The projection 7 : A — 2L restricts to give the universal
cover ™ : L — L. The lifts L are permuted transitively by the group of deck
transformations of 2L, giving all the choices of embeddings of the universal cover
of L in A. Those deck transformations leaving a given L invariant restrict to define
the group of deck transformations for 7 : L — L.

Let D? = AUSL , the closed unit disk with boundary S, the unit circle, known
as the “circle at mﬁnity”. If A C D?, let A denote the closure of A in D2. In
particular, if 0 C A is a geodesic, o will be the compact, properly embedded arc in
D? obtained by adjoining to ¢ its endpoints in S. . This is called the completion
of . We also let L denote the closure of L in D2. This is called the completion of
L.

Definition 3.4 (ideal boundary E). The set E = LNSL is called the ideal boundary
of L or of L.

Either L = () and E = S, or 9L # () and E is a compact subset of S . Note
that the completions 4 of the components v of L have endpoints in E.

Definition 3.5 (standard metric, standard surface). A Riemannian metric p on
L is standard if it is a complete hyperbolic metric making all components of 9L
geodesics and admitting no isometrically embedded, hyperbolic half-planes (for
short, no half-planes). The pair (L, u) is called a standard hyperbolic surface. If L
is a surface admitting a standard metric u, we say that L is a standard surface.

This is nonstandard terminology.

By a hyperbolic half-plane, we mean, of course, the union in the Poincaré disk A
of a geodesic v and one of the components of A \ v. In [15, Theorem 8], we prove
that, up to homeomorphism, there are exactly 13 nonstandard surfaces. None of
these are interesting from the point of view of endperiodic theory.

In [15, Lemma 1] we show that the hyperbolic metric on 2L is standard if and
only if the hyperbolic metric on L is standard.

Hypothesis 4. In this paper, all hyperbolic metrics are standard, save
mention to the contrary.

3.3. Escaping curves. It is well known that if ¢ C L is an essential closed curve
which does not bound a cusp, then it is freely homotopic to a unique closed geodesic
o8, Similarly, if ¢ is a boundary incompressible, properly embedded arc, it is
homotopic to a unique, properly embedded geodesic arc ¢®, where the homotopy
keeps the endpoints fixed.
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Definition 3.6 (geodesic tightening). In either of the above cases, we say that o8
is the geodesic tightening of o.

Definition 3.7 (escapes). Let {Ay}, be a sequence of subsets of L, indexed either
by the nonnegative integers £ > 0, the nonpositive integers £ < 0, or all integers
k € Z. We say that {Ar} escapes if, for every compact subset K C L, A, N K =)
for all but finitely many values of k.

Example 3.8. If e is a positive end and J is an f-juncture corresponding to e,
then {f*(J)}x>0 escapes, but, except in trivial cases, {f*(.J)}x<o does not escape.
A similar remark, with opposite signs, applies to negative ends.

Note that, by Hypothesis 3, if an f-juncture J is an arc, then the countable set
of endpoints of arc components of the set of f-junctures {f*(.J)}rez escapes.

Definition 3.9 (virtually escapes). Let {0} be a sequence of essential simple loops
not bounding a cusp or a sequence of properly embedded, boundary incompressible
arcs, indexed either by the nonnegative integers &k > 0, the nonpositive integers
k <0, or all integers k € Z. We say that {oy} virtually escapes if the sequence of
geodesic tightenings {o%} escapes.

Example 3.10. A hyperbolic half-plane causes behavior we need to exclude. In
Figure 8, suppose f is a translation as indicated. The sequence of positive iterates
under f of an f-juncture escapes but does not virtually escape. Their geodesic
tightenings (see Definition 3.6), which cannot intersect the hyperbolic half-plane
H, accumulate on 0H. The f-junctures are depicted by dashed circles and the
geodesic tightening of one of them is depicted by the boldfaced dashed circle.

FIGURE 8. A half-plane H prevents the escaping sequence
{f*(J)}r>0 of f-junctures from virtually escaping

Theorem 3.11. In a standard hyperbolic surface L, if {o}} is a sequence of essen-
tial simple loops not bounding a cusp or a sequence of properly embedded, boundary
incompressible arcs and {o} escapes, then {oy} virtually escapes.
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Remark. The converse is obviously false.

Evidently, it will be enough to carry out the proof for the case of a sequence
{ok}r>o0-

Theorem 3.11 will be proven in a series of lemmas. We will suppose that the
assertion fails and show that L then contains an isometrically embedded hyperbolic
half-plane. This will contradict our assumption that (L, ) is a standard hyperbolic
surface. _

Fix a realization of the universal cover L C A.

Suppose that the sequence {0, } escapes but does not virtually escape. Let o8
be the geodesic tightening of ¢,,. Then there is a compact set K such that infinitely
many of the 02’s meet K. Passing to a subsequence, assume that they all do.

If only finitely many of the o2 are distinct, then there exists a subsequence of
the sequence {0, } consisting of freely homotopic loops. It follows that L has an
end e with a neighborhood homeomorphic to an open annulus. Then e is either a
cusp bounded by all the o, in the subsequence contrary to the hypotheses of the
theorem or a flaring end contrary to Hypothesis 4. Thus, infinitely many of the o2
are distinct and, by passing to a subsequence, we assume they all are. Since the
sequence {o,} escapes and each o, is compact, by passing to a subsequence, we
can further assume that the o, are pairwise disjoint.

Pick y, € 02 N K. Then {y,} has a subsequence that converges to © € K
and we reindex so that this subsequence is indexed by n € Z*. Let D be a disk
neighborhood of z.

Let s be a geodesic arc through x in D which meets every o8 transversely. On
at least one side of x in s, infinitely many o8 intersect s in a closest point z,, to
z and, again passing to a subsequence if necessary, we can assume that z,, — x
monotonically as n — oco. Fix a lift = € L of x. This fixes lifts D, s, z,, and o&. If
OL = 0, then 0L = S1 ., and if OL # (), then OL is a fractal curve homeomorphic
to a circle.

Definition 3.12 (S ). Whether or not 9L = (), the circle OL will be denoted by
Soo-

Each &8 cuts off two regions in L, one of which contains Z and will be denoted
by }NLL. The o,, were chosen above to be disjoint. It follows that the ¢& are disjoint
and have no common endpoints on S. If the of are arcs this is clear and if the o8
are closed loops this follows since distinct closed geodesics in hyperbolic geometry
can not share ideal points at infinity. Therefore, E[n+1 - ﬁn, a proper inclusion
for all n > 0. The following, then, is evident.

Lemma 3.13. The endpoints a,,b, of 08 lie in OL and are the endpoints of a
nested sequence of arcs,

Soo D [ao,bo] D [al,bl] IDREED) [an,bn] Do,

where each [an, by] C (@n—1,bn—1). Consequently, the sequences {an}, {bn} converge
strictly monotonically to points a,b € OL.

Lemma 3.14. The points a,b are in E and distinct.

Proof. The o8 are geodesics in L passing through an arbitrarily small neighborhood
of T. By elementary properties of the Poincaré model, the endpoints cannot be
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converging to the same point on S. If all 0% are closed, all a,,b, € E, hence
a,b € E. If they are properly embedded arcs, the sequences of iterates of their
endpoints escape, and so neither a,, nor b, can be approaching a point on 0L. [

The points a,b € E are endpoints of a geodesic ¥ C L which projects to a
geodesic v C L containing the point x.

Lemma 3.15. The geodesic «y is simple.

Proof. If v is not simple, another lift 7 properly intersects 7. Then the sequence of
lifts {7,,} converging on ¥ and corresponding sequence of lifts {7, } converging on
7 will force proper intersections o,, N7,. This forces o, to self intersect for n large
enough. ([l

Lemma 3.16. The geodesic v is not closed.

Proof. If «y is closed, then 7 is the axis of a deck transformation T'. Passing to T2,
if necessary, assume that T is orientation preserving. Recall that the endpoints of
y are a,b € SL. Assume that b attracts and a repels. Let o8 be the lift of the
geodesic tightening of o, with endpoints a,,, b, € S. The sequence {78} converges
uniformly to ¥ in the Euclidean metric on A. The point T'(a,) is further from a
on the circle So, and the point T'(b,,) is closer to b on the circle S,. Thus, for
n sufficiently large, & N T(c8) # 0. This implies that o8 is not a simple curve
contrary to assumption. (I

Let H C A be the half-plane with boundary 7 that is disjoint from every &%.
The intersection H N S, is a compact, nondegenerate subarc A C S1. We will

denote this subarc A by [a,b]eo to distinguish it from the arc [a,b] C L which are
different if L # ().

Lemma 3.17. H C L

Proof. The lemma is trivial if 9L = @) so we assume that L # . Let 7 be the
geodesic in A which contains the geodesic o5 C L. Let H* be the half-plane in A
with boundary 7 containing the half-plane H. We will work entirely in H*. Since
the sequence {0, } escapes and o§ is compact, for n sufficiently large, o, N 0§ =0
so o, N &g = 0. Since the endpoints a,, b, of 7, lie in H* it follows that &, lies in
H* for n sufficiently large. We restrict ourselves to such sufficiently large n.

Let S. C A be the Euclidean circle, concentric with S! ; of Euclidean radius 1—e,
0 < & < 1. This circle and S., cobound an annulus V. in D?. Let D. C A denote
the closed disk of radius 1 — & so dD. = S.. For a fixed € > 0, if infinitely many
o,’s intersect the disk D., then projecting down into L produces infinitely many
on’s meeting the compact set p(D:) N L, contradicting the fact that the sequence
{on} escapes. Thus, for n sufficiently large, o, N D. = 0 so &, C V..

Recall that [a,b]o, denotes the interval H N SL in S. with endpoints a,b. We
are required to show that no boundary component of L can lift to an arc « issuing
transversely from (a,b)oo. If such an arc « exists then there is an € > 0 such that
S: N H N« # (). By the previous paragraph there is a 7,, (in fact infinitely many)
meeting « which is a contradiction. Since no lift of a boundary component of L
can have endpoint in (a,b)s it follows that H C L. O

Lemma 3.18. The projection w : L — L embeds int H isometrically in L. Thus,
L contains an embedded half-plane.
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Proof. If an endpoint of an axis of a deck transformation lies in [a, b]~, then, as in
the proof of Lemma 3.17, that axis meets infinitely many &,,. This is a contradiction
since the sequence {o,} escapes and the axis projects to a compact subset of L.
Thus the axis of every deck transformation 1 has both endpoints outside of [a, b] .
If (a,b)o properly overlaps its t-image for some deck transformation ¢, then + has
two distinct lifts that intersect. Thus ~ intersect itself contradicitng Lemma 3.15.
If there is a deck transformation that takes (a,b)s to itself then 7 is that axis.
Lemma 3.16 rules out that possibility. Thus, the images of (a,b)s under the
deck transformations are disjoint and the projection 7 : L — L embeds int H
isometrically in L so L contains a half-planes. (I

Theorem 3.11 is proven.

Our definition of virtually escaping is metric dependent. We show that, for
standard hyperbolic metrics, the notion of virtually escaping is independent of
choice of metric.

Corollary 3.19. If u; are standard hyperbolic metrics on L, i = 1,2, then the
sequence {0k} virtually escapes relative to py if and only if it virtually escapes
relative to .

Proof. Let of be the tightening of o, to a ju;-geodesic, O'g* its po-tightening. Then
of" is the po-tightening of o} which, in turn, is the pi-tightening of of*. By
Theorem 3.11, the sequence {o}} escapes if and only if the sequence {of "} escapes.

O

Remark. Theorem 3.11 is used in the proof of Theorem 4.24 whose most important
application is to ensure there are no spurious leaves in the geodesic laminations,
constructed in Section 4.3, that are associated to the endperiodic automorphism f.

4. THE LAMINATIONS AND ENDPERIODIC AUTOMORPHISM PRESERVING THEM

In the Handel-Miller theory, given an endperiodic automorphism f : L — L, one
tightens the f-junctures to geodesic junctures, and uses these to construct a pair
of transverse geodesic laminations and an endperiodic automorphism h : L — L,
preserving the geodesic laminations and the geodesic junctures. This is reminiscent
of the Nielsen-Thurston theory for automorphisms of compact surfaces.

4.1. Laminations. Roughly speaking, a p-dimensional lamination of an n-manifold
M is a foliated subset of leaf dimension p. The codimension is ¢ = n—p. The leaves
are one-one immersed p-dimensional submanifolds, but transverse g-disks intersect
the lamination in relatively closed subsets which may be quite messy and typically
are totally disconnected.

In this paper we are interested in laminations of surfaces by curves. We give
careful definitions here in that setting, but everything works for laminations of ar-
bitrary dimension p in manifolds of arbitrary dimension n > p. (cf. [34, pp. 404-405]
for codimension 1 laminations of n-manifolds. This easily adapts to codimension
n — p.) We are interested in surfaces with boundary and in laminations with some
leaves transverse to the boundary. We will use “laminated charts” in analogy with
“foliated charts” in foliation theory. Since we allow boundary, these charts will
either be homeomorphic to (a,b) x (¢,d) C R? or to (a,0] x (¢,d) C R%, where
R? = (—00,0] x R is the Euclidean half plane. We let F? denote either R? or R%
and we denote by I either (a,b) or (a,0] and J = (¢,d). There is no reason to
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require I and J to be finite intervals but there is also no good reason not to, so we
assume a, b, c,d € R.

Definition 4.1 (laminated chart). A laminated chart in a surface L (possibly with
boundary) is a triple (U,Y, ¢), where U C L is open, ¢ is a homeomorphism of U
ontoI x JCF2andY CJisa relatively closed subset.

Let N C L be a subset which is the union of a disjoint set A = {Ag}gen of
one-one immersed, connected 1-manifolds in L.

Definition 4.2 (lamination). We say that A is a lamination of L by curves if there
is a set {(Ua, Ya, Pa)acu of laminated charts such that {Ua}aea covers N and,
for each a € 2, the path connected components of A N U,, where A\ ranges over
A, called plaques of the laminated chart (U,,Ya, ¢q), are carried by ¢, exactly
onto the sets I x {y}, y € Y,. The support of the lamination is |[A| = N and each
A € A is called a leaf of the lamination. If |A] is closed in L we will say that the
lamination is closed.

Definition 4.3 (laminated (partial) atlas). The set Ay = {(Ua,Ya, Pa)}acu
is called a laminated partial atlas. If {Uy}aeu covers L, we say that Ay =
{(Uss Yo, 0a) }aca is a laminated atlas.

Remark. A, is a partial atlas because it may not cover L. If, A is a closed
lamination, one can produce a laminated atlas. For each point = ¢ |A|, choose a
trivially laminated chart (U, 0, ¢) about = such that U N |A| = @. In this paper, we
work mainly with closed laminations and associated laminated atlases.

Remark. If a plaque P of U, meets a plaque @ of U,/, then it is clear that PN Q
is an open subset of P and of Q). Without being given N and A, one can define an
abstract “laminated atlas”, by this property. Then, as in the case of foliations, one
can recover the leaves via chains of overlapping plaques. A lamination can then
be defined to be an (abstract) laminated atlas. Note that, in our definition, two
laminated atlases for the same lamination have union a laminated atlas for that
lamination.

Two (abstract) laminated atlases are said to be coherent if their union is a
laminated atlas. This is an equivalence relation, hence a lamination can be defined
as a coherence class of laminated atlases. The union of all atlases in the coherence
class is the maximal element of the class and can also be identified as the lamination.

All of this is closely analogous to foliations and foliated atlases, a very detailed
treatment of which will be found in [4, pp. 19-31].

Remark. Note that, for a laminated chart (U,Y, ), ¢ restricts to a homeomor-
phism ¢ : NNU — I x Y. Thus N, equipped with an “atlas” {N N Uy, ¥4 }ae,
satisfies the standard definition of a “foliated space” [4, Chapter 11]. A lamination,
therefore, is a topological embedding of a foliated space, but a very special embed-
ding admitting continuous sets of local transversals. The lamination community is
typically vague on this point, commonly defining a lamination as a foliated space
embedded in a manifold as a closed subset, each leaf of which is complete in its
path metric (cf. [2, Definition 6.9]), but for some delicate arguments in this paper
that definition seems to be inadequate. Note also that laminations in our sense
locally extend to foliations.
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In this paper we study a special class of 1-dimensional laminations of surfaces L.
The transverse sets Y, C R! will be totally disconnected. As a result, the support
|A| determines the lamination and it is fairly customary to make no distinction
between the lamination and its support. We prefer to maintain the distinction
throughout this paper.

Definition 4.4 (transversely totally disconnected). A lamination A is transversely
totally disconnected if, for each of its laminated charts (Uy, Yo, pa), the space Y,
is totally disconnected.

All the laminations we study will be transversely totally disconnected.

Remark. By abuse of notation, we may denote a laminated chart containing a
plaque P by P x (—1,1). We can then denote by P x (—4, ) subcharts with —§ < 0
and 0 < e, identifying P x {0} with P. The idea is that by making 0 and &
sufficiently “small”, we get arbitrarily thin normal neighborhoods of P. By passing
to the maximal laminated partial atlas, the plaque P may be as “long” as desired,
generally requiring that J, ¢ be sufficiently small.

If x € A € A and if X is not isolated on at least one side, then points of |A]
accumulate on x from a non-isolated side of A\. The leaves containing these points
accumulate locally uniformly on A in the following sense.

Definition 4.5 (locally uniform accumulation). Let A € A. We say that {\, }aca C
A accumulates locally uniformly on A if, for every bounded subarc P C A, there is
a lamination chart Vp 2 P x (—4,¢), having P = P x {0}}, such that the set of
plaques of Vp N Ao = {P x {tg}} is a set of plaques accumulating uniformly
on P.

acA

Remark that 20 might be a singleton, but the single leaf A, might accumulate
locally uniformly on A. Indeed, A might accumulate locally uniformly on itself. The
laminations that we study in this paper typically exhibit such behavior.

4.1.1. Bilaminations. We will be studying a pair of mutally transverse laminations.
In the theory of foliations of n-manifolds, a pair of mutually transverse foliations F
and F', of respective leaf dimensions p and ¢, p + g = n, gives rise to a “bifoliated
atlas”, but for C° laminations, a proof of this eludes the authors. We will need
such a “bilaminated (partial) atlas”, so we will define the term “bilamination”
accordingly. This will not get us into trouble since we are generalizing the Handel-
Miller theory where the pair of mutually transverse geodesic laminations will be
shown to define a bilamination.

In what follows, I may be of the form (a,b) or (a,0] and J may be of the form
(¢,d) or [0,d). Thus L might have boundary and corners.

Definition 4.6 (bilaminated chart). A bilaminated chart (U, X,Y,¢) is an open
subset U of L together with a homeomorphism ¢ : U — I x J, where X C I and
Y C J are relatively closed subsets.

Let A, A’ be a pair of mutually transverse sets of disjoint, connected, one-one
immersed 1-manifolds. Denote by |A, A’| the union |A| U |A/|.

Definition 4.7 (bilamination). The pair (A, A’) is a bilamination if there is given
a set Aaay = {(Ua» Xa» Ya,@a)aca of bilaminated charts such that {Us}aca
covers |A,A’| and, for each o € A, (Uy, X4, o) is a laminated chart for A’ and
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(Uq, Yo, vq) is a laminated chart for A. We call A a bilaminated partial atlas. If it
covers L, we call it a bilaminated atlas. The support of the bilamination is |A, A'].

Remark. In particular, the bilaminated partial atlas can serve as a laminated
partial atlas for each of A and A’, hence these are laminations. The laminations
that make up a bilamination are mutually transverse and extend locally to a pair
of transverse foliations. If A and A’ are each closed we say that the bilamination is
closed. In this case, the support |A, A’| is closed and the bilaminated partial atlas
can be extended to a bilaminated atlas by assigning bilaminated charts of the form
(U,0,0,¢) as neighborhoods of = € C|A, A’| (here € denotes “complement”) where
UnN|A AN =0.

It is sometimes useful to use closed bilaminated charts. For these, one takes
I = [a,b] and J = [¢,d]. It is obvious that, for every z € |A,A’| and every
bilaminated chart containing x, there is a closed bilaminated subchart containing
z. The proof of the following is elementary.

Lemma 4.8. Let (A, ') be a bilamination and R C L a compact, simply connected
“rectangle” with top and bottom edges subarcs of leaves of A and right and left edges
subarcs of leaves of N'. Then R has a natural structure of a closed, bilaminated chart

for (A, A).

Example 4.9. Important examples of bilaminations are given by a pair of mutually
transverse, closed geodesic laminations on a complete hyperbolic surface L. Such an
example is given by a pair (A%, A*) of stable and unstable geodesic laminations in
the Neilsen-Thurston theory (see Casson and Bleiler [19]). Another example is given
by the geodesic bilamination (A4, A_) associated to an endperiodic automorphism
f constructed in Section 4.3.

4.1.2. Smoothness. The material in this subsection is technical and not immediately
important to our development and can be skipped on first reading. The authors are
not aware of a generally agreed upon definition of “smoothness” for laminations.
We propose a definition which generalizes the standard definition for foliations.

The surface L has a C" structure, 1 < r < 0o or 7 = w (a real analytic structure),
namely a maximal C" atlas A,.

Definition 4.10 (smooth lamination, smooth bilamination). The lamination A
(respectively bilamination (A, A")) is smooth of class C" if it admits a laminated
partial atlas Ay C A, (respectively a bilaminated partial atlas Axar C A,). If
r = 00, the lamination is just said to be smooth.

As usual, if the lamination or bilamination is closed, a partial laminated atlas of
class C" extends to a laminated atlas on L of class C”.

Remark. It would not be equivalent to require only that the leaves be C" im-
mersed curves. This is well known for foliations, but is also true for transversely
totally disconnected laminations. The problem is that gaps in a lamination may
accumulate on a leaf, but because the lengths of the gaps at one end of a laminated
chart may not compare uniformly to the lengths at the other, the mean value the-
orem can make it impossible to extend the lamination over the gaps to a foliation
smooth on the whole chart. It is not obvious whether the geodesic bilaminations
(A4, A_) associated to an endperiodic automorphism f constructed in Section 4.3
are smooth, but in general we think not. As the following example shows, a geodesic
lamination of a hyperbolic surface need not be smooth of class C?.
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Example 4.11. Consider the Denjoy exceptional minimal set A in 72, a trans-
versely totally disconnected lamination. It is constructed by suspending a C! dif-
feomorphism of the circle which has a minimal invariant Cantor set [40, Appendix].
While A is C', it is not even homeomorphic to a C? lamination. This is classically
known. To get this lamination on a hyperbolic surface, proceed as follows. In the
open subset of T2 complementary to |A[, attach a handle, making the surface a
2-holed torus X5 and leaving A intact. One can then put a hyperbolic metric g on
Y5. Relative to this metric, each leaf A € A is a pseudo-geodesic (Definition 4.18).
This is seen by noting that an essential circle o in T2 which the oriented leaves of
the Denjoy lamination periodically cross, always in the same direction, survives as
such a circle o C ¥5. We can even take o to be a closed geodesic. For each lift A of
a leaf A € A, suitable lifts of o crossed by X form a nested family of geodesic arcs
defining a unique point on S! , This gives one ideal endpoint of X and the other
endpoint is found similarly by reversing the orientation of A.

Thus A € A is homotopic to a unique geodesic A\8. The collection of these
geodesics is readily shown to be a lamination A% of 5. It is highly doubtful that
A8 is still C', but we claim that it certainly cannot be C2. Indeed, if it were C?, the
positively directed unit velocity field tangent to A% extends locally to a C? vector
field of unit length and these local extensions can be assembled by a C? partition
of unity to get a nowhere zero vector field v defined on an open set U containing
|A8| and agreeing with the unit velocity field along the leaves of A8. This defines a
C? foliation F on U which incorporates |A8| as a compact F-saturated subset. The
holonomy pseudogroup of F is a (possibly infinitely generated) C? pseudogroup on
R defined by a foliated atlas Ag for F (e.g., see [4, Section 2.2] for details). A
finitely generated sub-pseudogroup I' is obtained from a finite subcover of |Ag| by
charts of Ay and |A8| defines a T'-invariant Cantor set X C R. A deep result of
R. Sacksteder [38, Theorem 1] provides a point € X and an element v € T" such
that y(z) = = and 0 < 7/(z) < 1. But the leaves of A® are simply connected,
implying the germinal holonomy group at x (cf. [4, Section 2.3]) is trivial. Thus
7/(z) = 1 and this contradiction proves the claim that A® is not C2.

Without smoothness, it is not clear that a pair of transverse laminations is a
bilamination. However, we have the following.

Lemma 4.12. If A and A’ are closed, mutually transverse, C' laminations, then
(A, ) is a bilamination.

Proof. If z € L ~ (|A] U|A’]), then there is a C! coordinate chart (U, ¢) about z
such that U N (JA|U|A|) = 0. We can view (U, 0,0, ¢) as a bilaminated chart for
(A,A)). If @ € |A] ~ |A/], there is a C! laminated chart (U,Y,¢) for A about x
such that U N |A’| = (), hence we can view (U,Y, 0, ¢) as a bilaminated chart for
(A,A). We argue similarly for = € |A’| ~ |A|. For the case that € |A| N|A|,
the C! hypothesis becomes important. There are two C' foliations defined in a
rectangular neighborhood R of z, F having plaques of A among its leaves, and F’
incorporating the plaques of A’. They may not be transverse throughout R. Let v
be a continuous, nowhere vanishing vector field tangent to F, v such a field tangent
to F'. At x, the vectors v, and v/, are linearly independent, hence the fields, being
continuous, are linearly independent at every point of a small enough neighborhood
of x. Thus, the foliations are transverse in a smaller rectangular neighborhood of
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x. These foliations can be taken as a smooth coordinate grid about z defining a
bilaminated chart. ([

4.2. A heuristic example. Before presenting the formal construction of the ge-
odesic laminations associated to an endperiodic automorphism, we present an ex-
ample at an intuitive level.

olofold)olo
o0&y o o
O 0 CroN0) O

FIGURE 9. Juncture J and geodesic tightenings of f(J), f2(J)

Example 4.13. Let L be a two-ended strip with disks removed approaching both
ends, g a translation of the strip from left to right which is an isometry relative
to a standard hyperbolic metric quasi-isometric to the Euclidean metric implicit
in Figure 9. Let 7 be a Dehn twist in the dashed curve as indicated in Figure 9
(top). Let the endperiodic automorphism f = 7o0g. A geodesic juncture J is
drawn on the left in Figure 9 (top). The Handel-Miller theory studies endperiodic
automorphisms by studying the limit laminations of the geodesic tightenings of the
distorted f-junctures f(J), f2(.J),.... We call them “distorted” because under iter-
ated applications of f they become longer and longer without a finite upper bound,
“looking” less and less like junctures and more and more (to a myopic observer)
like noncompact leaves of a lamination. The first two distorted geodesic junctures
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are drawn in Figure 9 (middle and bottom). The sequence of geodesic tightenings
of distorted f-junctures accumulates on the positive geodesic limit lamination A
carried by the traintrack in Figure 10 (top) and disjoint from every f-neighborhood
of the negative end. By using f ! instead of f, an analogous negative geodesic lam-
ination A_, transverse to A4, is constructed, disjoint from every f-neighborhood
of the positive end.

A rigorous presentation of the Handel-Miller construction is given in Section 4.3.

We will replace the endperiodic automorphism f with an isotopic one h which
preserves the laminations. Figure 10 (top) represents a traintrack 7" which carries
the positive geodesic lamination A for this endperiodic automorphism. Figure 10
(bottom) represents h(T) C T. We leave it as an exercise for the reader to verify
that these figures are correct. Note that h(T") is obtained from T by blowing air from
Ato A. Similarly h?(T) C h(T) C T is obtained by blowing air from B to B. Once
one sees h(T), it is much easier to see h?(T), h3(T),.... The positive lamination
itself is Ay = (),—, h"(T). This example exhibits behavior that is typical and will
be visited again in Example 4.35.

O

A B

O

O O

FIGURE 10. The traintracks T, h(T) C T, etc.
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4.3. The Handel-Miller construction. Here we give the simple, classical and
unpublished construction of Handel and Miller of the geodesic laminations associ-
ated to a given endperiodic automorphism f: L — L.

Definition 4.14 (admissible). An admissible surface is a standard hyperbolic sur-
face with finitely many ends, none of which are simple (Definition 2.27).

For an admissible surface L, relative to an endperiodic automorphism, &(L) =
E_(L)UEL(L).
Lemma 4.15. If L is an admissible surface and e € E, then the orbit of e under
the group of covering transformations is dense in E.

Indeed, it is standard that a covering transformation 1 induces a homeomor-
phism ¢ : E — E. Admissible surfaces satisfy the hypotheses of [15, Corollary 1],
proving the lemma.
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Hypothesis 5. Hereafter, L is an admissible surface.

Remark that an admissible surface has no cusps, hence there are no parabolic
deck transformations of the universal cover. All deck transformations are either
hyperbolic or are orientation reversing and have square a hyperbolic transformation.
In any case, they have a unique geodesic axis in L.

Definition 4.16 (geodesic lamination). A lamination of a hyperbolic surface in
which all the leaves are geodesics is a geodesic lamination.

4.3.1. Choosing and fizing the f-junctures. We first choose and fix a countable set
of f-junctures in the uncountable set of all f-junctures as follows. Let e be an end
of L and set

c={eg=e,e; = f(e),es = f2(e),...,epe,1 = fPel(e)},

the f-cycle of ends containing e. Let N, = J = FrU, be the f-juncture associated
to the end e defined in Proposition 2.12 (where U, = V; is defined in the proof of
Proposition 2.12 in the paragraph before Corollary 2.23) and consider the set of
f-junctures {f"(N;) | n € Z}. Choose and fix such an N, for each of the finitely
many f-cycles ¢ of ends and fix as our countable set of f-junctures the union of the
sets {f™(N.)|n € Z} as ¢ ranges over the set of f-cycles of ends.

Remark. From now on we will use the symbol N to denote one of these countably
many f-junctures and use the symbol J to denote a juncture which we define below.

Definition 4.17 (fixed set of f-junctures, N, Ny, N_). Fix the set of f-junctures
constructed above. The set of all components of the fixed set of f-junctures will be
denoted by N. The subset of N consisting of components of positive (respectively
negative) f-junctures will be denoted by N (respectively N_).

We extend the definition of pseudo-geodesic given in [15, Definition 5] to include
properly embedded, boundary incompressible compact arc.

Definition 4.18 (pseudo-geodesic). A curve v C L is a pseudo-geodesic if either
some (hence every) lift 5 has two distinct, well defined endpoints on S% or v is a
properly embedded, boundary incompressible compact arc.

Remark that essential embedded circles in L that do not bound cusps and
geodesics are pseudo-geodesics. Note that since the surface is admissible, every
essential closed curve is a pseudo-geodesic.

In Definition 3.6, we defined the geodesic tightening of an essential closed curve or
a boundary incompressible, properly embedded arc. Here we extend the definition
to an arbitrary pseudo-geodesic.

Definition 4.19 (geodesic tightening, v&). If v is a pseudo-geodesic, then the geo-
desic tightening of y is the unique geodesic v& whose lifts have the same endpoints
on S as the lifts of ~.

Definition 4.20 (geodesic tightening map, ¢). We will call the map that sends a
pseudo-geodesic to its geodesic tightening the geodesic tightening map and denote
it by ¢. Thus, if 74 is a pseudo-geodesic, then ¢(7) is the geodesic whose lifts have
the same endpoints on S, as 7.
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Definition 4.21 (juncture, J, J+, J—). The set J of juncture components consists
of the geodesic tightenings of the f-juncture components in the set N. Let ¢ : N — J
be the geodesic tightening map. Then J4 = ¢(Ny) is the set of positive juncture
components and J_ = +(N_) is the set of negative juncture components. Further
the map ¢ extends in a natural way to the fixed set of f-junctures to define a fixed
set of junctures of the form J = +(N) where N is one of the fixed f-junctures.

Remark. It is important to keep clear the distinction between f-junctures and
junctures. The set of f-junctures is f-invariant, but generally not geodesic. The
set of junctures is geodesic but generally not f-invariant.

We assume the set of f-junctures, the set of junctures, the set N of f-juncture
components, and the set J of juncture components has been constructed as above
and fixed.

Definition 4.22 (J,). Given a juncture J = ((N), let J, denote the geodesic
tightening of f™(J) which is the same as the geodesic tightening of f*(N), n € Z.

Since the positive (respectively negative) f-junctures are constructed only to
intersect in common components, the same is true after tightening. We state this
formally for future reference.

Proposition 4.23. The set of junctures has the juncture intersection property.
By Theorem 3.11, the junctures have the following critically important property.

Theorem 4.24. If J = «(N) where the f-juncture N cuts off a neighborhood of
the positive end e of period p, then {J,}n>0 escapes. If the end e is negative, then
{J_n}n>0 escapes.

Definition 4.25 (juncture escapes). A component o of a juncture J escapes if
{i(f™(0))}nez escapes. The juncture J escapes if each of its components escapes
or, equivalenly, if {J,, }necz escapes.

Remark. We will see that a juncture escapes if and only if f is isotopic to a
translation (Proposition 4.76). But escaping components of junctures can easily
arise, as illustrated in Example 2.10. They do not accumulate anywhere. We will
mainly be interested in the nonescaping components.

Definition 4.26 (Xy). We denote by X the set of nonescaping components of
positive junctures and by X_ the corresponding set of nonescaping components of
negative junctures.

Remark. X, C Jy and X_ C J_.

4.3.2. The Handel-Miller bilaminations. Define &1 = |X+| and set £4 = &1 \
|X+|. The goal of this section is to show that &4 and £4 are the supports of closed
geodesic laminations I'y. and Ay, respectively.

Lemma 4.27. The space &1 consists of the disjoint union of one-one immersed,
complete geodesics lines or compact geodesic arcs or circles which are the path
components of &.

Proof. We consider & . The proof for &_ is analogous. We have already seen that
the union of the positive junctures is a disjoint union of isolated geodesic circles
and/or properly embedded geodesic arcs. Therefore it remains to show that £
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is a disjoint union of geodesics which are the path components of |£1|. It will be
enough to prove this for the lift £+ cL.

Choose = € £+ and z, € |f)C,| such that x, — x as n — oco. Let o, be the
unique element of X_ containing =,. Let v, be a vector tangent to o, at z, of
hyperbolic length 1. Passing to a subsequence, if necessary, we can assume that
v, — U as n — 0o, where v is a vector at x of hyperbolic length 1. Then, there is
a unique geodesic o through z tangent to v such that the sequence {7, } converges
uniformly to & in the Euclidean metric on D?. In particular, the endpoints (finite
or ideal) on SOO of the o, converge to the endpomts of o on SL.

Since x € £+ is arbitrary, we see that £‘,+ is a union of such geodesics and
X_ accumulates on each point of £+ Thus, £+ has empty interior. In fact, if
T € £+ and U is a neighborhood of x, X_ meets U and each point of X_ has a
neighborhood disjoint from £~3+. If any two of these geodesics in §+ intersect and
are not identical, they intersect transversely, implying that two geodesics in X_
also intersect transversely. We know this is false, so it follows that E+ is a disjoint
union of geodesics with endpoints on S. and has empty interior. These geodesics,
then, are path components of )54_.

Projecting to L, we see that £ has no interior and is also a union of nonintersect-
ing geodesics. None of these geodesics can self intersect since this would imply that
two geodesics in X_ intersect transversely. Thus, the path components of £, are

one-one immersed geodesics which are complete since the endpoints of their lifts
are on SL . O

From now on we will write the set of geodesics forming the path components
of £. as Ay and the set of geodesics forming the path components of & as I'y.
Thus, £4 = |A4] and &1 = |T'y|. These path components will be called “leaves”
of A4 and TI'y, respectively, even before the proof of the following proposition is
completed.

Proposition 4.28. The pairs (T'+,T_) and (A, A_) are bilaminations.

Proof. For p an arbitrary point of L we construct a bilaminated chart (U, X,Y, ¢)
for (I'y,I'_) with p € U. Since p is arbitrary, we obtain a bilaminated atlas for
(T'+,T'_). By ignoring X4, we see that this is also a bilaminated atlas for (A4, A_).

Since |I'_|U|T'4] is a closed set, points in its complement have coordinate charts
that do not meet it. These are trivially bifoliated charts for (I'y,T'_).

The case in which p € |X4| \ |Af| is also easy. The point p will only lie on
the intersection of a positive and negative juncture or on one juncture. Thus, the
bifoliated chart (U, X,Y, ) will have X or Y both singletons, or one a singleton
and the other empty.

Suppose p € |Ay| ~|A_|. Then p € A € A, with A\ approached on one or
both sides by geodesics in I'y. Thus, there is a convex geodesic quadrilateral @
containing p in its interior and having as one pair of opposite sides geodesic arcs
A and B chosen as follows. If both sides of A are appoached by geodesics in I'y,
choose A and B to be a subarc of I'y. Otherwise, choose A on the side of A not
approached by elements of I'y in a small neighborhood of p so that no points of
IT'4| lie between A and A and choose B to be a subarc of I';.. Take the other pair
of opposite sides of @ to be geodesic arcs o and 7 joining the endpoints of A to
the corresponding endpoints of B. Choosing the arcs A and B suitably guarantees
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that QNT_|=0if p ¢ |Xy| or QN |T_] is one geodesic arc in a positive juncture
if pe|Xi]. Let Y = 7N (|JT'+] U A) (note that the A in this definition of Y’
is redundant in the case that 'y approaches A on both sides). Remark that the
compact set Y’ projects continuously and one-one onto o N ([T';| U A) along arcs
in leaves of ' (and the arc A if necessary). The continuity is a consequence of
the fact that the geodesic arcs which are path components of @ N |T'y| depend
continuously on their endpoints. This map extends linearly over the gaps in Y’
to produce a homeomorphism f : 7 — o. The geodesics with endpoints y, f(y),
y € 7, foliate @ and the foliation contains among its leaves the path components of
Q N |T4|. (These leaves cannot intersect since this would produce geodesic digons
in @Q.) It is then easy to use a linear map (or in the case that p is in a positive
juncture a piecewise linear map) from A to B to produce another geodesic foliation
of @ transverse to the first. Coordinatizing A with a coordinate x and 7 with a
coordinate y and using these transverse geodesic foliations as a coordinate grid,
we obtain a closed coordinate chart (Q,z,y) with p in its interior which, together
with Y = 7 N |T'4|, defines a closed laminated chart for T'y. The chart is trivially
bilaminated by taking X = @ if p ¢ |X4| or one point if p € |X,|. Similarly, if
p € |A_| ~ |A4], we obtain a bilaminated chart with p in its interior.

Finally, if p € [A+|N|A_|, the reader can adapt the above construction to obtain
a pair of transverse geodesic foliations of @ where, as above, A, B will be arcs in
leaves of Ty or disjoint from |I'y| and similarly o, 7 will be arcs in leaves of T'_
or disjoint from |T'_|. One of these foliations incorporates the path components of
T4 | N @ among its leaves, the other the path components of |[I'_| N Q. This gives
a closed bilaminated chart about p, completing our construction of a bilaminated
atlas for (I'y.,T'_). O

Corollary 4.29. The laminations AL are transversely totally disconnected (Defi-
nition 4.4).

Proof. This follows since the leaves of I'1 are the path components of |T'y|. (Il

Definition 4.30 (Handel-Miller bilamination). The bilamination (A4, A_) is called
the Handel-Miller (geodesic) bilamination associated to the endperiodic automor-
phism f. The individual laminations A1 will be called the Handel-Miller (geodesic)
laminations associated to f.

The bilamination (I'y,I'_) is an extended Handel-Miller bilamination associated

to f.

Remark. The use of the definite article “the” for the Handel-Miller bilamination
and the indefinite article “an” for an extended one is important. In Corollary 4.72
we will show that the bilamination (A4, A_) depends only on f (and, of course,
on the choice of standard hyperbolic metric). On the other hand (I'y,I'_) also
depends on the choice of f-junctures, hence of their geodesic tightenings.

Remark. The analogy of the construction of the geodesic laminations in the
Handel-Miller theory and in the Nielsen-Thurston theory is evident, but there are
some very significant differences. The sequence of closed geodesics limiting on a
geodesic lamination A in the Nielsen-Thurston case is not pairwise disjoint nor
disjoint from A. The endperiodic case allows us to choose the connected geodesic
1-manifolds in X4 to be pairwise disjoint and disjoint from the lamination A+ on
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which they limit. This is a major simplification and also introduces new lamina-
tions I't+ which will be very useful in developing the theory and for which there are
no analogues in the Nielsen-Thurston theory.

Remark. The pair (A; UJ_,A_ UJ;) may not be a bilamination. In fact, an
escaping component of a positive juncture may coincide with an escaping component
of a negative juncture. However, it is obvious that Ay UJ_ and A_ U J; are each
laminations.

4.3.3. The strongly closed property.

Definition 4.31 (pseudo-geodesic lamination). A lamination of the surface L in
which all the leaves are pseudo-geodesics is a pseudo-geodesic lamination.

Definition 4.32 (converges strongly). If A is a pseudo-geodesic lamination and
{An} is a sequence of leaves of A, then {\,} converges strongly to A € A if,

(1) For every bounded subarc P C X there is a laminated chart Vp =2 Px(—¢,¢),
with P = P x {0}, such that the sequence of plaques Vp N A, = P x {t,,}
converge to P as n — o0;

(2) The endpoints of the A, in S converge to the endpoints of A in SL in the
Euclidean metric of D? as n — co.

Definition 4.33 (strongly closed property). A lamination A has the strongly closed
property if,
(1) Whenever a sequence of points x,, € £,, € A converges to x € L and ¢ is the
leaf, of A through x, the sequence {¢,,} converges strongly to ¢;
(2) Whenever the endpoints in S. of a sequence {£,} C A converge in the
Euclidean metric to a pair of distinct points a,a’ € S.,, then these are the
endpoints of a leaf £ of A4 and the sequence {¢,} converges strongly to ¢.

The next lemma is obvious from the construction of the laminations fi and /NXi.
Lemma 4.34. The laminations I'y and Ay are strongly closed.

Remark. In Section 10 we give an axiomatic treatment of the Handel-Miller theory.
However, the corresponding pseudo-geodesic laminations satisfying the axioms are
not obviously strongly closed, but, by the isotopy theorem (Theorem 10.15), the
strongly closed property will follow from the geodesic case. In turn, this property
will be needed at a key point of the proof of the transfer theorem (Theorem 12.7).

4.3.4. Ezxamples.

Example 4.35. We continue Example 4.13. The vertical lines in Figure 11 are
junctures, the ones to the left of the core K being negative junctures and those to
the right of the core being positive junctures. The juncture immediately to the left
of the core is the juncture J of Figure 9. The traintracks representing both A
and A_ (dashed) have been drawn. Along the segments of the traintrack joining
two consecutive switches, the lamination looks like an uncountable, but totally
disconnected packet of parallel arcs. At the switches, the packet splits along a
gap, “half” of the curves veering to the left and half to the right. The intersection
K =|AL|N|A_| C K is a totally disconnected set, homeomorphic to the Cantor
set and living in the regions indicated by the two small circles in the figure. After
f is isotoped to a homeomorphism h preserving the laminations, the set K will be
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invariant and the dynamics of h|X will be isomorphic to that of a 2-ended Markov
chain (cf. Section 9).

¢
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K

FIGURE 11. A simple example

One easily proves that A4 has a single leaf A\ that is isolated on one side. A ray
¢ of A} (the “top” ray on the right hand side of the core) makes a “beeline” for e,
never veering back, but the complementary ray repeatedly delves arbitrarily deeply
into the neighborhood of e and then turns around to revisit the core before going
even more deeply into the neighborhood of e;. Every other leaf of A, behaves like
this in both directions, always returning to the core. The lamination A_ behaves
similarly.

This illustrates typical behavior that will be proven as theorems in this paper.
However not everything in this example is typical. Generally, the laminations may
not be transversely Cantor as they are here. The laminations may also have iso-
lated leaves as well as limit leaves, be transversely countable, or even finite. In
Example 2.5, each lamination has a single leaf indicated in Figure 1 in boldface.

O) \O

FIGURE 12. A doubled example

Example 4.36. One might think that, if L # 0, the Handel-Miller laminations for
the double 2f : 2L — 2L would just be two copies of the Handel-Miller laminations
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on L. But doubling Example 4.35 shows this to be false. In Figure 12 we draw the
train tracks for the laminations A4 for the double, where the dashed tracks carry
A_ and the solid carry Ay. In this figure, the top and bottom boundary lines are
to be identified and each boundary circle in the top row should be identified with
the corresponding boundary circle in the bottom row. In each lamination, there
is an isolated leaf AL (not labeled, but easy to spot) that crosses the line ¢ which
was the top boundary line in Figure 11. This leaf is dense in AL. The bold part
of the traintracks carries uncountably many leaves, the lighter segments each only
carry a segment of Ay. The reason that this new isolated leaf appears is that a
component o of (distorted) juncture which is a properly embedded geodesic arc has
double 20 which is not generally a geodesic circle. Tightening it to one distorts
20 enormously, pulling it back to a closed geodesic which crosses ¢ in a point in
the compact core 2K. This sequence of crossings accumulates monotonically on a
point x4, the junctures accumulating locally uniformly near z4 on the segment of
the isolated leaf Ay through z 1. In the figure we have drawn circles where the two
laminations intersect. Remark that AL is equal to the double of its counterpart
in Figure 11 together with the isolated leaf Ay. Here we have narrowed the gap
between ¢ and the two copies of ¢ to the point of invisibility.

4.4. Distinguished neighborhoods. Suppose e € (L) and the juncture J =
t(N) where N is the frontier of a closed f-neighborhood V of e. Applications of
Theorem 3.1 and/or 3.2 to the components of N, provide an isotopy ® such that
®L(N) = J. Thus, ®1(V) is a closed neighborhood U, of ¢ and J = Fr Uk.

Definition 4.37 (distinguished neighborhood, U.). The set U, as above is called
a distinguished neighborhood of the end e. The set of distinguished neighborhoods is
the set of all such sets U, with Fr U, a juncture.

Remark. The fixed countable set of f-junctures (Definition 4.17) is in one-one
correspondence with the set of junctures (Definition 4.21) which is in one-one cor-
respondence with the set of distinguished neighborhoods.

Lemma 4.38. If e # €' are any two positive (respectively negative) ends and U,
and Uy are distinguished neighborhoods of e and €', then U, N Uy = (.

Proof. Consider the junctures J = FrU, and J' = FrU,.. Let N and N’ be the f-
junctures such that ((N) = J and «(N') = J'. Let V. and Vs be f-neighborhoods
of e and ¢’ respectively such that N = FrV, and N’ = FrV,,. By Lemma 2.6,
V.N V. =0. It follows that U. N U, = 0. O

Recall the notation, J,, equals the geodesic tightening of f™(J) if J is a juncture,
n € 2.
Definition 4.39 (U). Suppose e € &, (L) (respectively e € E_(L)), U, is a
distinguished neighborhood of e, and J = FrU,. For n € Z, define U to be the
distinguished neighborhood such that J,,, = FrU (respectively J_,, = FrUZ).
Theorem 4.24 immediately implies,

Lemma 4.40. For an end e, {Ui}2, is a fundamental neighborhood system of e.

Remark. By reindexing, we can choose the distinguished neighborhoods U, so
that, as e ranges over all ends, positive and negative, the distinguished neighbor-
hoods U, will be pairwise disjoint. We fix such a choice.
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4.5. The cores K, K; and the sets Wi,Wii.

Definition 4.41 (core and ‘" core, K, Ki,Wi,Wii). For each i > 0, denote by
W' the union of the Ul’s as e ranges over the positive ends. Similarly define W,
for each ¢ > 0. These choices of the distinguished neighborhoods U, have been
made so that W;“ NW,” =0, i > 0. The compact submanifold K; complementary
to int(W," U W,7) is called the i*" core of L. We will write K = K, and call it
simply the core. We will also write W™ for WJ and W~ for W .

Remark. We will often change the indexing and relabel K; by Ky, thus choosing
a larger core K = K.

Remark. Note that Fr K is a finite union of positive and negative junctures. Ac-
cordingly, we will write Fr K = Fry K UFr_ K.

The surface L has decomposition L = W~ U K UWT where,

W~ = U U, and Wt = U U.,.
ce€_(L) €€y (L)

Definition 4.42 (W, Jw). Let W =W~ UWT. Let Jw be the set consisting of all
components of negative junctures in W~ and all components of positive junctures
in W+.

Lemma 4.43. There exists an endperiodic automorphism g isotopic to f such that
g(@) is a geodesic for every a € Jw .

Proof. Enumerate the elements of Jy as {77}%°, in such a way that those meeting
K; are listed before those not meeting K;, i > 0. Let ¥y = id. Using Theorem 3.1,
Theorem 3.2 and the remark after Theorem 3.3, inductively find sequences {®;}
of isotopies and {1;} of homeomorphisms with 1; = ®! o 9;_y, i > 1, fixing L
pointwise and with ®; fixing (f(77))8, 1 < j <i — 1, pointwise and moving ;1 o
f(7%) to its geodesic tightening. That is, v;(f(7%)) = (f(%))8. By the remark after
Theorem 3.3, the supports of at most finitely many ®; meet any compact set. Thus,
1; — 1, a well defined homeomorphism isotopic to the identity by an isotopy ®
and g = ¢ o f is such that g(«) is a geodesic for every « € Jw . O

Lemma 4.44. For each i > 0 and each choice J of negative juncture, all but finitely
many components of UnZO Jn, meet W, and, similarly, if J is a positive juncture,
all but finitely many components of J,,~ J—n meet W, .

Proof. If a component of the negative juncture J is a properly embedded geodesic
arc, the assertion is immediate since the positive iterates of its endpoints escape. If
the component is a simple closed geodesic o, denote the corresponding component
of J, by o,. Suppose, by contradiction, that o, C K;, for infinitely many values
of n > 0. Since K; is a compact surface, there exists a positive integer k such that
if there exist more than k disjoint, simple closed curves in K; two of them must
bound an annulus. If o,, and o, cobound an annulus, then, as homotopic geodesics,
they must coincide. It follows that infinitely many of the o, coincide which is a
contradiction. (]

Lemma 4.45. (1) The arcs of J+|K; with endpoints on Fry K; are boundary
incompressible and fall into finitely many isotopy classes in (K;, Fry K;);
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(2) For every such isotopy class A, there exists a rectangle R C K; with a pair
of opposite edges each intervals in not necessarily distinct components «
and B of Fro K; such that for every pair of arcs o,7 € A, the track of the
1sotopy between o and T lies in R..

Proof. Ttem (1) is an elementary topological consequence of the fact that K; is
a compact surface. Let A be such an isotopy class. There exist not necessarily
distinct components «, 8 of Fro. K; such that the endpoints of each arc in A lie in «
and B. If o, 7 € A, then there exists a rectangle R, with one pair of opposite edges
o and 7 and the other pair of opposite edges subintervals of a and 3 respectively
such that the track of the isotopy between o and 7 lies in R, ;.

If A has one element, then (2) is obviously true. If A has two elements o, T,
then R = R, is the desired rectangle. Therefore we can assume A has at least 3
elements 7_, 7o, 74 such that 7o € R, ., . Let R_ (respectively Ry ) be the closure
of {Rr7 | T € A, Rryr_ C Ryy7} (vespectively J{Rrr | T € A, Rryr, C Ryy7}).
If either R_ or Ry is not a rectangle, then we have the contradiction that K = R_
or K = R, is an annulus with boundary « and 8. Similarly if R = R_ U R is not
a rectangle, we have the contradiction that K = R is an annulus with boundary
a U B. Thus, R is the desired rectangle. O

Lemma 4.46. FEvery neighborhood of each end of a leaf of AL meets Wii, 1> 0.

Proof. For definiteness, assume A € A,. Choose K = Kj large enough that A
meets int K, choose x € ANint K and let {o;}72, be a sequence of negative
juncture components with xj € oy such that z, — = as k — oco. Fix ¢ > 0. Using
Lemma 4.44 and passing to a subsequence, we can assume that a subarc 7, C oxNK;
contains xj and has endpoints ay, b, € Fry K;. By passing to a subsequence and
using Lemma 4.45, assume that the arcs 7 are all isotopic. Thus the points ay
belong to the same component « of Fri K; and converge to a € o and the points
by belong to the same component S of Fry K; and converge to b € 5. Without loss
we can assume aj — a and by — b monotonically. By Lemma 4.45 there exists a
rectangle R with a pair of opposite edges in o and 8 and containing the sequence
of arcs {7 }x>0.

Choosing a lift R of R, where R is a rectangle with a pair of opposite edges in
« a lift of o and B a lift of 8, determines lifts 73 of 75 for all £k > 0 such that 7
has endpoints d; € [@,d9] C & and by € [b,bg] C B where @ is a lift of a, b is a
lift of b, a, is a lift of ay, and bk is a lift of by. The geodeslc arcs T nest in A on
the geodesic arc [a, b] cle A+ and ap — a, and bk — b. Since the lift 7, € 7,
converges to a lift T € [a, b] of z € A, it follows that ¢ = A. The arc [a, b] projects
to a subarc [a,b] =7; C A containing the point z.

Then A exits K; at a and b and, varying i, t € 9 Cy; C --- C 7; C -+ forms
an exhaustion of A\. The lemma follows. O

Corollary 4.47. No leaf of A+ is contained in a bounded region of L.
Corollary 4.48. FEvery leaf of A+ is a one-one immersed copy of R.

Proof. By Corollary 4.47, a leaf of AL can not be homeomorphic to a circle. Hy-
pothesis 3 assures that no leaf of AL has an endpoint on OL. O
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Definition 4.49 (passes arbitrarily near). An end e of a curve s in L passes
arbitrarily near an end e of L if every neighborhood of e meets every neighborhood
of €. In this case we also say that s passes arbitrarily near e.

Notice that a curve can pass arbitrarily near e and still return repeatedly to
some compact subset X C L. A careful analysis of Example 4.13 shows that only
one end of only one leaf of AL escapes (cf. Definition 6.19) to the positive end. All
other ends of all leaves repeatedly return to the same compact “core”. We will see
that this second behavior is the typical behavior of the leaves of A4.

The following corollary follows immediately from Lemma 4.46 since L has finitely
many ends.

Corollary 4.50. Both ends of every leaf of Ay (respectively A_) pass arbitrarily
near at least one positive (respectively negative) end of L.

Lemma 4.51. No escaping component of a juncture meets |Ay| U |A_].

Proof. For definiteness, suppose that o is a negative escaping juncture component.
Since each point of ¢ has a neighborhood that meets no other negative juncture
component, it follows that o N [Ay| = 0. It remains to show that o N|A_| = 0.
Suppose the contrary that there exists A € A_ meeting . Consider lifts o of o
with endpoints (finite or ideal) a,b € Sy and X of A with endpoints z,y € E C Sy
such that the pair {a,b} separates the pair {x,y} in S.. The extension of a
lift f to a homeomorphism f i Seo = Soo [15, Theorem 2] either preserves or
reverses cyclic order, hence {f*(a), f¥(b)} separates {f*(z), f*(y)}, k > 0. Thus,
o, = f¥(o) meets a leaf of A_, k > 0. For k sufficiently large, oy, is disjoint from
W~. Since no leaf of A_ meets W, it follows that, for all k is sufficiently large,
o meets the compact set K, contradicting the hypothesis that ¢ is an escaping
juncture component. An analogous proof shows that a positive escaping juncture
component is disjoint from [A4| U |A_]. O

Define laminations Ay |K by taking as leaves the path components of |Ay| N K.

Lemma 4.52. (1) The leaves of AL|K are boundary incompressible arcs which
have endpoints on Fro K and which fall into finitely many isotopy classes
in (K,Fry K);

(2) For every such isotopy class A, there exists a rectangle R C K; with a pair
of opposite edges each intervals in not necessarily distinct components «
and B of Fro K; such that for every pair of arcs o,7 € A, the track of the
isotopy between o and T lies in R.

Proof. The leaves of A;|K have endpoints on Fry K by Lemma 4.46. The other
assertions of the lemma are proven exactly as in the proof of Lemma 4.46. (]

Lemma 4.53. An isotopy class of leaves of AL|K either contains one arc or else
contains two extreme arcs Ty, Te which, together with two arcs in Fro K, form a
quadrilateral bounding a simply connected region in K containing all arcs in the
isotopy class. The extreme arcs do not cut off another simply connected quadrilat-
eral.

Proof. Consider an isotopy class A of leaves of A_|K containing more than one arc.
The case of Ay|K is similar. Let o and 8 be the components of Fr_ K containing
the endpoints of leaves in the isotopy class A. By Lemma 4.52 (2), there exists a
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rectangle R which contains every arc in A and has a pair of opposite edges in «
and . Choosing a lift R of R, where Risa rectangle with a pair of opposite edges
in a a lift of o and E a lift of 3, determines lifts 7 lifts of 7 for every 7 € A such
that 7 has endpoints in o and E N

Because the set /~&+ is closed, the set of arcs A = {7 | 7 € A} in R contains two
arcs o1, 09 which are extreme arcs of A and are thus lifts of arcs 71, Ty € A which
are extreme arcs of A.

If the extreme arcs cut off another simply connected quadrilateral the union of
the two quadrilateral would form an annulus bounded by « and 8 which would
equal K contradicting the fact that K is not an annulus. 0

4.6. An endperiodic automorphism h preserving the laminations. In this
subsection we prove the following theorem.

Theorem 4.54. If f : L — L is an endperiodic automorphism, then there exists
an endperiodic automorphism h : L — L, isotopic to f permuting the elements of
each of the sets Ay, A_, J+, and J_.

Remark. Since h is isotopic to f and permutes the elements of each of the sets A,
A, J, and J_, it follows that h(y) = (f(7))8 = (h(y))8if y € AL UA_UJL UJ_.
In particular J,, = h™(J) if J is a juncture.

Remark. This homeomorphism A is not uniquely determined, but
hoo Ay N AL = Ay N A

is unique. This will be called the core dynamical system and will be analyzed in
Section 9.

We prove Theorems 4.54 in Section 4.6.3 after some preliminaries in Sections 4.6.1
and 4.6.2.

4.6.1. Sliding isotopies and other isotopies. Recall from page 17 that all isotopies
are ambient isotopies. By Definition 4.19, the geodesic tightening 78 of a pseudo-
geodesic 7 is the geodesic whose lifts are the geodesics in L sharing endpoints on
So with the lifts of 7.

Suppose o is a complete geodesic with ordered lift o and 1, ..., are pseudo-
geodesics which are either disjoint or coincide, form no digons with o, and meet o
at the points x1, ...,z with lifts 71, ..., meeting o at the points 71 < --- < T
so that the interval [¥1,7)] C o meets no other lift of the ;. Let 7% be the lift of
the geodesic tightening of v; sharing endpoints on S, with ;, 1 < i < k.

Lemma 4.55. Under the above conditions, there exists an isotopy supported in
a small neighborhod of o with lift sliding T; along & to the point T% = o N 7%,
1<i<k.

Definition 4.56 (sliding isotopy). We will refer to an isotopy as in Lemma 4.55
as a sliding isotopy.

Suppose 0;, i = 1,2, are complete geodesics which are either disjoint or coincide
and have disjoint lifts 7;, v is a pseudo-geodesics forming no digons with the oy,
and « = [x1, 23] C vy is an arc meeting the o; only at the points 21 € o1 and a2 € 09
with lift & = [T1, Z2] C § meeting & at the point Z; and 5 at the point Zo. Let
~& be the lift of the geodesic tightening of + sharing endpoints on S, with 5. The
next lemma follows from Lemma 4.55 and Theorem 3.1.
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Lemma 4.57. Under the above conditions, there is an isotopy, firing each o;, i =
1,2, with lift moving the arc & = [T1,T2] C 7 to the geodesic arc a8 = [7%,75] C 7%,
z; sliding along o; to 2%, i = 1,2, as in Lemma 4.55.

4.6.2. The tilings used in inductive proofs. Cutting L apart along the juncture com-
ponents in Jy (Definition 4.42) decomposes L into a set T8 of compact surfaces.
Similarly, cutting L apart along the juncture components in {g(7) | v € dw } decom-

poses L into a set T% of compact surfaces where g is the endperiodic automorphism
of Lemma 4.43.

Definition 4.58 (T8, T%, tile, tiling). The sets T8 and T% will be called tilings of
L. The surfaces in T8 and T% will be called tiles.

Remark. The superscript g on the symbols T8, T¢ emphasizes that the juncture
components which are frontiers of the tiles are geodesics.

Remark. The tilings T8, %% will be used in the proofs of Theorems 4.54 and 8.1.
The tiling %% will be used in the proof of Theorem 10.15.

The following is immediate.

Lemma 4.59. The tiles of T8 and of T% have boundary consisting of arcs and
circles in OL and juncture components.

The next lemma is an immediate consequence of Lemma 4.43.

Lemma 4.60. For P € T8, g(P) € T% where g is the endperiodic automorphism
of Lemma 4.43.

4.6.3. The construction of h. Let g be the endperiodic automorphism of Lemma 4.43.

Strategy. We first define h on U, where U is any component of L~ (JA,|U[A_|U
|d+] U |d—]) which is not a rectangle, in such a way that h(OU) is contained in
the union of |g(Jw)| and the circles and extreme arcs of Lemma 4.61. To define
h on all such U, we modify g by isotopies (Proposition 4.62 and Lemma 4.63) so
that if we define h = g on U for all such components U, then the procedure of

Casson-Bleiler [19, pp. 89-90] can be used to extend h over the rest of L.
The following lemma is proven like Lemmas 4.52 and 4.53.

Lemma 4.61. If P € 3%, then there are finitely many isotopy classes of leaves of
each of the laminations (AL U (J— ~ g(dw))|P and (A_ U (J+ ~ g(dw))|P. Each
isotopy class either contains one circle in J+, one arc, or two extreme arcs oy, Qo
which, together with two arcs in OP, form a quadrilateral bounding a simply con-
nected region in P containing all arcs in the isotopy class.

Remark. If an isotopy class contains only one arc we will also refer to that arc as
an extreme arc.

Notation. For P ¢ T% denote by
S4(P) = g(Ay U@ ~dw)IP
S (P) = g(A_ U@~ dw)IP

the laminations consisting of the arcs and circles which are the path components
of [g(A+ U (d- ~dw))| NP and |g(A_ U (J+ ~ Jw))| N P and by

S8E(P) = (AyU(@-~g(@w)|P
GE(P) = (A_U(dy~g(@w))|P,
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the laminations consisting of the geodesic arcs and circles which are the path com-
ponents of [Ay U (J- ~g(dw))| NP and |A_ U (J+ ~ g(dw))| N P.

Choose lifts L of L and f: L— Lof f. This determines a lift ¢ : L— L.

A leaf o € G4 (P) is either a circle in g(J4) or an arc. If o = [x1.22] € G4 (P) is
an arc, then « is contained in a leaf 7, € g(A; UJ_ UA_UJ,) and has endpoints
x; in the geodesics o; which are either juncture components in Fr P or components
of OL, i =1,2. Let & = [Z1, Ta] C Yo be lifts of o = [z1, 23] C v, with Z; in the lift
o; of o;, i = 1,2. The geodesic tightening & of v, has lift 7§ sharing endpoints
on Sy, with 7, and is a leaf of the lamination Ay U J+. There is a unique arc
§.28] C & with 2% € 0;, i =1,2.

The projection of the arc a® is in & (P) and will be denoted a8 = [2%, z8]. If a
is a circle, let a® be the geodesic tightening of «.

&E:[x

Remark. The correspondence « <> a® induces a one-one correspondence between
G+ (P) and G5 (P).
Remark. Suppose P € T§.
(1) If P C g(W_), then G, (P) = 0 and G5 (P) = 0;
(2) If P C g(W,), then G_(P) =0 and G& (P) = 0;
(3) If P=g(K), 5-(P) #0, 2(P) # 0, 54.(P) # 0, §5.(P) # 0.
It follows that an element of G_ (P) can meet an element of G (P) only if P = g(K).

We will call @ € G4 (P) an extreme arc of G4 (P) if the corresponding arc a8 €
G& (P)) is an extreme arc of G§ (P)).

Proposition 4.62. There exists an isotopy ® preserving each P € T% and such
that ®1(a) = a8 for each circle or extreme arc o € G4 (P), all P € T§.

Proof. We define ® inductively. Enumerate the circles and extreme arcs of 4 (P),
P € %%, in asequence {a, }5°, in such a way that every such arc or circle lying in the
itP-core K; is listed before every such arc or circle meeting L~ K;, i > 0. Let 1o = id
and inductively find sequences {®,,} of isotopies and {#,,} of homeomorphisms such
that ¢, = ®L 01,1, ®,, preserves each P € %, ®,, fixes ¥, _1(a;) for 1 <i <n—1,
and wn(an) = a%'

In defining ®,, there are three cases to consider. If a,, € J_ Ud is a circle in P
not meeting oy U--- U ay,—1, define @, using Theorem 3.1.

If a, € G1(P), P € %%, is an extreme arc not meeting a; U --- U v, _1, then
o, = [z1, 22) has endpoints x1, 25 in geodesics 01, 09 which are juncture components
in Fr P or components of 9L and «,, C 7y, € g(ALrUJ_UA_UF,). By Lemma 4.57,
there is an isotopy, fixing each oi, = 1 , with lift moving the arc a & = [T1,%2] Cn

g

to the geodesic arc ag = [;vl,xz] C v, 7; sliding along ; to z%, i = 1,2, as in

Lemma 4.55. Here 74 is the lift of 78 sharing endpoints on S, with 7,,.

If oy, is a circle in J_ UJy or extreme arc meeting oy U---Uay,—1 (which, by the
Remark after the introduction of the notation G4 (P), §% (P), can happen only when
P = g(K) where K is the core), then use Lemma 4.57 on each of the subarcs «,, is
divided into by aq, ..., a,_1. In all three cases apply the remark after Theorem 3.3
to the surface P.

Thus, ¥; — 1, a well defined homeomorphism isotopic to the identity by an
isotopy ® and ®!(a) = a® for each a € G (P). O
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Redefine g as ®! o g.

Since there are finitely many extreme arcs from Lemma 4.61 in each tile that can
be edges of OU for some component U of K\ (JA+|U|J_|U|A_|U|d+]|) which is not
a rectangle, these extreme arcs do not accumulate. The following is elementary.

Lemma 4.63. After a further isotopy of g, we can assume that g is linear in
the hyperbolic metric on each arc that is an edge of OU for each component U of
L~ (JAL|U|I-|U|A_|U|d+|) which is not a rectangle.

At this stage we define h|U = g|U if U is a component of L ~ (|[A,|U|J_|U
|A_| U |d+|) which is not a rectangle.

To finish the proof of Theorem 4.54, we must extend h over the rest of L.
To do this, we mimic the proof of Lemma 6.1 of Casson-Bleiler [19, pp. 89-90].
Since Casson-Bleiler deal with an irreducible endperiodic automorphism of a closed
surface they do not have to handle regions that are not simply connected.

Choose lifts L of L and g : L — L of g. This determines an extension g : L— L.
Let

= (UAsula-hna-tulash) u ((a-1ulashnor)
and X the set of lifts of the points of X to L. Define h: X — X by,
(1) h(@) = G(71))#N(G(72)) if & = 5109 with 51 € AL UJ_ and 73 € A_UJ;

(2) h(@) =§(@) if ¥ € (13- U|1]) N L.

The fact that g : L — L is continuous implies that the map h :~)Z' - Xisa
homeomorphism. As in Casson-Bleiler [19, pp. 89-90], we extend h linearly and
equivariantly over any lift of an arc of [A;|U|J_|U|A_|U|J| with both endpoints
in X and interior disjoint from X and equivariantly over the lifts of rectangular
components of LN (|[A1|U|J_|UJA_|U|J+]) using the technique of Casson-Bleiler [19,
pp. 90]. We have already defined h on the nonrectangular components of L~ (|A4|U
[J-|U[A_[U[d+]) to match the extensions over the rectangular components on
shared boundary edgeb These extensions lift to give h:L— L.

Both f h:L — L are defined and agree on So.. Thus, Corollary 5 of [15] implies
that the maps h and f are isotopic on L.

Theorem 4.54 is proven.

4.7. The escaping sets. From now on, h : L — L is an endperiodic automor-
phism, isotopic to f, and permuting the elements of each of the sets Ay, A_, 4,
and J_.

Definition 4.64 (positive/negative escaping set, U., Uy). For e € E(L), set U, =
U,—_ . UZ. The union of the sets U, as e ranges over the negative (respectively

positive) ends will be denoted by U_ (respectively Uy ). We will call U_ the negative
escaping set and U, the positive escaping set.

Lemma 4.65. The set Uy (respectively U_) consists of the set of points x € L such
that the sequence {h™(x)}n>0 (respectively {h™(x)}n<o0) escapes (Definition 3.7).

Lemma 4.66. The positive escaping set Uy and the negative escaping set U_ are
each independent of the choice of the set of f-junctures.

Proof. By the definition of the sets UL and the remark after Definition 4.37, it
suffices to prove that the set U, = (J°___ U is independent of the choice of

n=-—oo
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distinguished neighborhood U, for every end e € &(L). Let V. be another choice of
distinguished neighborhood of ¢ and V. = |J;—___ V*. By Lemma 4.40, {U}32,
is a fundamental system of neighborhoods of e. Therefore, there exists i > 0 such
that Ul C V.. It follows that U, C V.. The reverse inequality is proven in the same

way. Thus, U, =V, as desired. O

Remark. The set U, is clearly open and connected. By Lemma 4.38, if ¢ # €
are both positive ends or both negative ends, U, N U = @, hence the U.’s are the
connected components of U_, as e ranges over the negative ends, and the connected
components of Uy, as e ranges over the positive ends. Evidently, every negative
juncture lies in U_ and every positive one in U;..

Remark. U_ NUy # 0.
Definition 4.67 (escaping set, U). The escaping set is U = U_ N U..

Lemma 4.68. The set U consists of the set of points x € L such that the sequence
{h™(x)}nez escapes.

Lemma 4.69. The leaves of A+ do not meet Ux.
Proof. If z € U_ then, by Definition 4.64, x € U, = |J* Ul for some negative

n=—oo

end e. Thus, x has a neighborhood that meets at most one negative juncture
component. Thus, x ¢ |A;|. A parallel argument shows Uy N|A_| = 0. O

Corollary 4.70. AL NA_ Cint K.

Proof. Since W~ c U_, WT C U, and int K is the complement of W~ UW T, the
corollary follows immediately from Lemma 4.69. (]

Lemma 4.71. The frontier of Us is |A4|.

Proof. Let x € |Ax|. By construction, there is a sequence {z,}n>0 C |X| which
converges to . This sequence lies in U5 and, by Lemma 4.69, v ¢ U, hence
x € FrlUs. For the reverse inclusion, let € FrU+. Then x ¢ U+ but every con-
nected neighborhood of x meets U, hence by Definition 4.64 meets a distinguished
neighborhood, hence meets a juncture. It follows that = € |[AL|. O

Lemma 4.71 and Corollary 4.66 imply,

Corollary 4.72. The laminations Ay are independent of the choice of the set of
f-junctures.

Proposition 4.73. Leaves A €A and XJF € /~\+ cannot have a common ideal
endpoint.

Proof. Suppose a € F is a common ideal endpoint of A€ A_ and X+ € /~\+. Let
the end ¢ of A} have a neighborhood [z, &) C Ay, whose lift approaches a. By Corol-
lary 4.50 [z,€) C Ay must pass arbitrarily near some positive end e. Let {U*}22,
be a fundamental system of distinguished neighborhoods of e (Lemma 4.40). Thus,
the neighborhood [z,€) of € must cross J = FrU} for all n > 0. Let o, be a
component of J? crossed by [z, ) and &, be a lift of o, that meets X+. By Theo-
rem 4.24, the &, have endpoints on S, which nest on a. Since A_ has ideal endpoint
a, it follows that A_ meets a positive juncture which violates Lemma 4.69. O

Proposition 4.74. Every leaf of Ay meets at least one leaf of A+.
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Proof. Let A be a leaf of A_. The proof is parallel for A € A;. By Lemma 4.46, A
meets some negative juncture component ¢ € X_. Choose a point x € o N A. Let
An = h"(A) and 0, = h"(0). Let ,, = A\, Noy,. The sequence {z,} accumulates at
a point y € int K. The point y lies in |A_| since the sequence {x,,} lie in the closed
set |A_|. Since x,, € h" (o), the sequence {x,} C |X_|. Thus, by the construction
of A, the point y lies in a leaf Ay € Ay.

Let (V,X,Y,¢) be a bilamination chart for the bilamination (A4, A_) where
V' is an open neighborhood of y. Choose N so that zxy € V. Then the plaque
P C Ay NV containing zy meets Ay. Thus, A = A~ (Ay) meets A~ (A} ) which
is a leaf of A;. The proposition is proven. O

Corollary 4.75. FEach leaf of AL meets int K.

Proof. The corollary follows since, by Corollary 4.70, |[A_| N |A4] C int K. O

4.8. Translations. We next consider the possibility, not yet excluded, that the
laminations A4+ and 'y might be empty.

Proposition 4.76. The following are equivalent,
(1) Ay =0=A_.
2) All junctures J escape.

(2)
(3) Some juncture J escapes.
(4) f is isotopic to a translation g (Definition 2.34).

Proof. Clearly, (1) = (2) = (3). We prove (3) = (4) = (1).

(3) = (4). Suppose that J = FrU,_ is a juncture that escapes where U._ is a
distinguished neighborhood (Definition 4.37) of a negative end e_. The proof in the
other case is analogous. By Definition 4.25, the juncture J escapes if the set {J,, }nez
escapes. Exactly as in the proof of Lemma 4.43, f is isotopic to an endperiodic
automorphism ¢ such that ¢"(J) = J,,, n € Z. Then there exists an integer N > 0
such that Jy C W,y. Since L ~ g™V (U._) is connected (by Definition 2.2) and
Iy =FrgN(U._) C W4, it follows that L ~ g (U,_) is contained in a component
of Wy. That is, L\ g™ (U._) C U., where U,, is a distinguished neighborhood of
a positive end €/, . It follows that L has just two ends e_,e;.

Let V' be an arbitrarily small neighborhood of e} such that FrV separates L.
Since .J escapes, there exists an integer n > 0 such that J,, C V. Since L~ g™ (U,_)
is connected and FrV separates L, it follows that L ~\ ¢g"(U._) C V. Since V was
an arbitrarily small neighborhood of e, it follows that |J;~ 9" (Ue_) = L. Since
{Jn}n<o escapes and ¢"(J) = J,, n <0, it follows that U._ is g-neighborhood of
e_ and that g is a translation.

(4) = (1). Let g be a translation isotopic to f. By a preliminary isotopy of g, we
can assume that f|0L = g|0L. Since f|E = §|E for suitable choices of completed
lifts [15, Corollary 5], we see that ﬂSOO = §|So. Suppose o € J_. Since g is a
translation, {g"(o)}n>0 escapes. Denote by o, the geodesic tightening of ¢" (o),
n > 0. By Theorem 3.11, since {¢"(0)}n>0 escapes, then {o,},>0 escapes. Since
ﬂSoo = §|Sw, op is also the geodesic tightening of f"(c), n > 0. Therefore, an
arbitrary negative juncture component o escapes under f. It follows that Ay = ().
Similarly A_ = 0. O
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Corollary 4.77. If f is not isotopic to a translation and e is a positive (respectively
negative) end of L, then every neighborhood of e meets |A1| (respectively |A_]).

Proof. For definiteness, let e be a positive end of L and consider a juncture J which
is the frontier of a distinguished neighborhood of e. The sequence {h*(J)}1>0 es-
capes, but by Proposition 4.76, for some component o of .J, the sequence {h* (o) }r<o
does not escape and therefore accumulates locally uniformly on at least one leaf
A_ € A_. By Proposition 4.74, A_ meets at least one leaf A, € A4 and does so
transversely. Thus, A\, meets h*(.J), for some k < 0. Applying suitable arbitrarily
large positive powers of h produces leaves of A} meeting h™P<(J) for arbitrarily
large values of n and the assertion follows. O

Corollary 4.78. A, =0 if and only if f is isotopic to a translation if and only if
A_=0.

Proof. If either lamination is empty, some juncture escapes. Since (3) implies (4)
in Lemma 4.76, f is isotopic to a translation. If f is isotopic to a translation, the
implication (4) = (1) implies Ay =0 =A_. O

Thus, endperiodic automorphisms that are isotopic to translations are uninter-
esting from the point of view of Handel-Miller theory.

Hypothesis 6. Hereafter, we assume that f is not isotopic to a transla-
tion.

5. THE COMPLEMENTARY REGIONS TO THE LAMINATIONS

We identify the components of L \ |Ax|. They fall into two essentially different
types: the positive and negative escaping sets (Definition 4.64) and the principal re-
gions. First we need some technicalities about open sets, their internal completions
and borders.

5.1. Internal completion and the border of open sets. Let U C L be an
open, connected subset and define the “path metric” d as follows. Given two points
x,y in this open, connected set, there are piecewise geodesic paths connecting these
points. Each such path has a well-defined length and we define d(x,y) to be the
greatest lower bound of these lengths. It is standard that this defines a topological
metric on U compatible with the topology of this open set. Notice that two points
can be very far apart in the metric d and very close together in the hyperbolic
metric of L.

Definition 5.1 (internal completion, U, 7). Define the internal completion U to
be the completion of U in the metric d and define the boundary of U to be

oU = (U~ U)U(UNIL).

As is standard, the metric d extends to a metric on U which we will again denote
by d.

While U and 8U are not generally subsets of L, the inclusion map ¢ : U < L is
a topological embedding. It extends canonically to a continuous map ¢ : U — L.
This map may be very pathological on U ~ U, but in the cases occurring in this
paper, it will be an immersion on this set.
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Definition 5.2 (border component). The image under i of a component of I/ ~ U
will be called a border component of U. The set dU of border components of U will
be called the border of U. The support |6U| C L of the border is the union of the
elements of U as subsets of L.

Remark. Distinct components of U can intersect as subsets of L.

Remark. We must be careful to distinguish |6U| from the set-theoretic frontier
FrU. Clearly, |6U| C FrU.

Example 5.3. Quite often a component U of the escaping set U (Definition 4.67)
has |0U| = FrU, but not always. In Example 4.35, if U is the component of U
containing the bottom boundary component of L, then Fr U properly contains |6U]|

and U properly contains i(U). That is, i(U) is not closed in L. For all other

components U of U in this example, |6U| = FrU and U = i(U).

Remark. For the open sets U encountered in this paper, dU is a set of lines and
circles, often pieced together from arcs in leaves of I'y and I'_.

These notions extend to open sets that are not connected. If U is such, U denotes
the disjoint union of the internal completions of each component. Correspondingly,
AU is defined separately for each component, i : U — L is defined componentwise,
and U is the set of images under i of components of U ~ U.

Lemma 5.4. For each point x € 8U, there exists a continuous map s :[0,1] = U
such that s(1) =z and s(t) e U, 0 <t < 1.

Proof. If = € dU, there is a Cauchy sequence (relative to the metric d) {z, }52, C U
that converges to x. Let &, > d(xy, Tn+1) such that lim, . £, = 0. Then there is
a piecewise geodesic path s, C U joining z,, to x,41 of length < ¢,,. Every point
in this path is within ¢, of x,41. Joining these paths sequentially and suitably
parametrizing produces a continuous map s : [0,1) — U such that lim; ;1 s(¢t) = z.
Thus, s is extended continuously to [0, 1] so that s(1) = «. O

Applying 7 to the above picture gives the following.

Corollary 5.5. If x is a point of an element £ € dU, there exists a continuous map
$:[0,1] = L such that s(1) =z and s(t) e U, 0 <t < 1.

A leaf A1 of Ay will either be isolated in Ay (i.e. approached by points of |A|
on neither side) or approached by points of |AL| on one or both sides.

Definition 5.6 (semi-isolated). If a leaf Ay € AL is approached by points of [A|
on at most one side, we say A1 is semi-isolated.

Remark. Note that our definition of semi-isolated includes all isolated leaves.
Recall that U denotes the escaping set (Definition 4.64).

Corollary 5.7. An element of 6U is a subset of the union of the semi-isolated
leaves in Ay UA_.

Proof. If x € |6U|, then = ¢ U, but z is the limit of a sequence {z,} of points of
U. Thus, either z & Uy or x ¢ U_. In either case, the sequence {z,} C UL NU_
and so either z € FrU,; or z € FrU_. By Lemma 4.71, x € |[A;|U|A_|. Then, by
Corollary 5.5, the points of |§U| must lie on semi-isolated leaves of AL. O
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The sets U that we will be considering have |§U| made up piecewise of subarcs
of T'4|U|T'_|. Since each such subarc of |§U| has two sides, the following lemma is
obvious.

Lemma 5.8. If the set U is such that |6U| is made up piecewise of subarcs of
IT+| U |T_|, then each such subarc is the image of at most two such subarcs in

U~\U.

Remark. Thus a point « € [6U| may be viewed as (one of possibly two preimages)
living in U \U.

5.2. The positive and negative escaping sets. Recall that [A4| = FrlUs
(Lemma 4.71).

Lemma 5.9. An element of §Uy is a semi-isolated leaf in A+.

Proof. We prove the lemma for JU. The proof for JU_ is analogous. If v € U,
then v C [0U4+] € FrUy = |A_|. Since the components of |A_| are the leaves of
A_ and v is connected, it follows that 7 is a subset of a leaf A € A_. Let U, be
the component of Uy such that v € §U,. By Corollary 5.5 applied to x € v C A,
it follows that A borders U, and is semi-isolated on the side bordering U,. Thus,
=M |

Lemma 5.10. If e is a negative (respectively, positive) end, then U, (Defini-
tion 4.64) is a component of L ~\ |Ay| (respectively, of L ~ |A_]).

Proof. Indeed, U, is connected and lies in the complement of |Ay|. But FrU, C
Friu_ = ‘A+| [l

Proposition 5.11. If A € A, (respectively A € A_) is a border leaf of a compo-
nent U, of U_ (respectively of U,), then the set of negative junctures (respectively
positive junctures) accumulates locally uniformly on A on any side that borders U,.

Proof. Suppose A € Ay is a border leaf of U, where U, is a component of U_. The
proof in the alternate case is analogous. If z € A, then there exists a sequence
{Zn}n>0 C Ue N |X_| which converges to z. The proposition then follows since 'y
is strongly closed. O

Proposition 5.12. |6Ux| is dense in |A4|.

Proof. We show that |dU_]| is dense in |A4|. The proof that [6U, | is dense in [A_]
is analogous. Let = be a point of a leaf of A, and « a transverse arc containing x
in its interior. Since |X_| accumulates on every point of |A|, there exists a point
y € a lying on a negative juncture and thus in U, for some negative end e. Thus

a meets a border component of U_. Since a was arbitrary it follows that [6U=| is
dense in |Ay]. O

5.3. Principal regions. In the Nielsen-Thurston theory, the connected compo-
nents of the complements of the laminations are called principal regions. In the
Handel-Miller theory, there are escaping regions which should not be thought of
as principal regions. In fact, the appropriate analogues of principal regions in our
situation do not even exist in many cases. When they do, they have a nucleus and
finitely many arms, analogous to the principal regions of Nielsen-Thurston.
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Definition 5.13 (positive/negative principal regions). The set P is the union of
the components of the complement of |[Ai| that contain no points in [X_|. We
define a positive principal region to be a component of P, . Similarly, the set P_ is
the union of the components of the complement of |A_| that contain no points in
|X+| and we define a negative principal region to be a component of P_.

Lemma 5.14. L=U_U|AL|UP; and L = Uy U|A_|UP_ where the unions are
disjoint.

Proof. Suppose V is a component of L\ |A| that contains a point = € |X_|. Since
some component U, of L \ |Ay| contains z, V = U,. O

Lemma 5.15. The escaping set U =L~ (JA_|UP_U|AL|UP,).
Proof.

U = U-_NUs
(L~ (A UP) A (L~ (A UP))
LN (JAZ|UP_UJAL|UP,).

Definition 5.16 (invariant set). The invariant set is I = L~ (U_ UU4).

Of course, J will be the set of points x such that niether the positive nor negative
iterates under h of x escape.

Lemma 5.17. I= (JAL|N[A_DU (AL NP U (A NP U(PLNDP_)
Proof.
J = L~U_-uUUy)
= (LNU-)N(LNUy)
(141 UP) N (A |UP)
(Al NAN U (AL NP ) U (A NP U (PLNDP-)

O

Remark. If there is a finite set of compact components of JL which is permuted
by h, then each of these components lies in Py NP_.

Lemma 5.18. P, CJUU; and P_ CITUU_.

Proof. If x € P4 and « ¢ Uy, then z € L~ (U-UUy) =J. Thus P, C JUU,.
Similarly, P_ c JUU_. (]

5.4. Action of h on semi-isolated leaves of A, and components of U,.

Lemma 5.19. The map h : Ay — A4 carries semi-isolated leaves to semi-isolated
leaves.

This is a consequence of the fact that h: L — L is a homeomorphism.

Since Uy U P consists of all complementary regions of [A|, the semi-isolated
leaves of Ay are exactly the border leaves of these regions. In the case of border
leaves of U, it is possible that both sides of the leaf borders this set, in which case
the semi-isolated leaf is actually isolated and the natural map ¢ : Uy — L will not
be one-one, but rather will identify some boundary components pairwise. In the
case of 0P, this cannot happen.
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Lemma 5.20. Each leaf { of 6P borders P+ on only one side. Thus, i : 0Py — L
18 one-ome.

Proof. Indeed, in the case of P, negative h-junctures cluster on ¢ on one side. An
analogous argument holds for P_. O

Lemma 5.21. The sets of border leaves Uy and dP4 are h-invariant.

Proof. An isolated side of a leaf A borders Uy if and only if a sequence of leaves of
X+ accumulates on A from that side. The lemma then follows since h: L — L is a
homeomorphism. ([l

Corollary 5.22. The set dU is h-invariant.
Lemma 5.23. h(Uc) = Up()-

Proof. Recall that U, = U, U where U = h"P<(U,) for U, a distinguished
neighborhood of e and that Uy = U,~_., U, where Us) = h(Ue) is a dis-
tinguished neighborhood of f(e) and Ufe) = h""Pe(Ugey) = h"P<(h(Ue)) = h(UY)
(clearly pe = pg(e)). Thus,

hu) =n( |J v = J mul= U Ui =

O

Remark. We will show in Section 6.4 that there are finitely many principal regions
and that the map h permutes the principal regions.

6. SEMI-ISOLATED LEAVES

It will turn out that there are only finitely many semi-isolated leaves and that
each contains an h-periodic point. Our analysis will cast more light on Uy and P.

6.1. Counting the semi-isolated leaves. Recall that the core K is the comple-
ment of the union of the interiors of the disjoint distinguished neighborhoods U, as
e ranges over the set (L) of ends of L, and that the choice of core is not unique.
If J. =FrU,, then Fry K = Ueeai(L) Jo.

Definition 6.1 (rectangle, rectangular). A rectangle is a four sided, simply con-
nected set R C L with one pair of opposite edges in |I';| and the other pair of
opposite edges in [I'_|. The set R will also be described as “rectangular”.

Note that a rectangle can be open, closed, or neither.

Remark. We are not using “rectangle” in the geometric sense that the edges meet
in right angles. In hyperbolic geometry, there are no such rectangles. Here, we are
following Casson and Bleiler [19, p. 99] where rectangles had opposite edges in a
pair of transverse foliations. Our rectangles are convex geodesic quadrilaterals.

Consider an arc a of [A1L|NK with endpoints on components of Fr K and consider
the isotopy classes of such arcs where the isotopy is to be through arcs with endpoints
on components of Fr K. By Lemma 4.53, this isotopy class contains two extreme
arcs. These two extreme arcs together with a pair of arcs in Fr K bound a rectangle
R, containing all the arcs in the isotopy class. Remark that the rectangle R, may
degenerate into a single arc.
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Definition 6.2 (extreme rectangle, R,). We will call R, the extreme rectangle
associated to the arc a.

Lemma 6.3. Let o be an arc of |[AL| N K (respectively |A_| N K). The extreme
rectangle R, meets |Ay| (respectively |[A_|) only in arcs isotopic to a.

Proof. We consider the case o an arc of [AL| N K. The case @ an arc of [A_|NK
is analogous. The leaves of A cannot properly intersect one another, so any arc
of [A+] N K that meets R, must be contained in that extreme rectangle. The ends
of B cannot lie in the same edge of R, because then g would form a digon with
a component of Fry K. But there are no geodesic digons in hyperbolic geometry.
Thus 3 is isotopic to a. O

The following lemma follows immediately from Lemmas 4.52 and 4.53.

Lemma 6.4. The arcs o of |[AL|NK (respectively |A_|NK) fall into finitely many
isotopy classes, determining finitely many disjoint extreme rectangles Ry .

Theorem 6.5. There are only finitely many semi-isolated leaves. FEvery semi-
isolated leaf is h-periodic.

Proof. We will prove the theorem for semi-isolated leaves in A_. The proof in the
other case is analogous. Let A be the set of semi-isolated leaves A € A_ such that
there exists a component o of AN K which is an edge of a component U of U, N K
which is not a rectangle. Since U is not a rectangle, it follows that « is an edge of
the extreme rectangle R,. Thus, by Lemma 6.4, the set A is finite.

Note that if A € A, then h()\) € A. In fact, if A € A, there exists a component «
of AN K which is the edge of a component U of U, N K which is not a rectangle.
If h(N\) ¢ A, then any component of Uy N K that has h(a) on its boundary is a
rectangular component R of Uy N K. If A is an isolated leaf, there would be two
such R. Otherwise R is unique. In either case it follows that the component U of
Uy N K with a an edge of U is a component of h~1(R) N K and thus a rectangle.
This contradiction implies h(\) € A.

Let A be a semi-isolated leaf of A_. We will prove that there are finitely many
semi-isolated leaves by showing that A lies in the finite set A, proving that each
semi-isolated leaf is h-periodic along the way. Let A,, = h™(\), n € Z. We first show
that Ay € A for some N > 0 and therefore by the previous paragraph that A\, € A
for all n > N. Assume on the contrary that Ay ¢ A for any N > 0. Since the leaf
A ¢ A and meets the core K, it follows that A contains an edge of a rectangular
component R of Uy N K. Again since A\ ¢ A, the component of U, meeting h(R)
contains a rectangular component R; of Uy N K so that h(R) C R;. By iterating
this argument, we obtain an infinite increasing nest

Rch ™Y (R)Cch?(R)C---Ch"(R,)C--,

where each R, is a rectangular component of U, N K. Since R, is rectangular
with two edges segments of negative junctures, h™"(R,.) is rectangular with two
edges segments of negative junctures that lie arbitrarily deep in neighborhoods of
negative ends as r — oo. The increasing union of this nest of rectangles gives an
infinite rectangle whose sides are leaves of A_. By Theorem 4.24, a lift of this
infinite rectangle has sides with the same ideal endpoints. But geodesics with lifts
having the same endpoints coincide, so our rectangles all degenerate to arcs in A, a
contradiction.
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Thus, A\, € A for n > N. Since the set A is finite, so there exists integers n > N
and p > 0 such that A, = A\, 1,. Therefore,

A= (A) = B Nip) = Mgy, all k€ Z

Thus A is h-periodic. It follows that A = A\;, € A if i € Z is chosen so that
ip > N. ([

Corollary 6.6. For every negative (respectively, positive) end e of L, there is
a leaf of A_ (respectively, of Ay) with an end that passes arbitrarily near e (see
Definition 4.49).

Proof. Consider the case that e is a negative end, the other case is analogous. By
Corollary 4.77, every neighborhood of e meets |A_ |, hence meets semi-isolated leaves
of A_. Since there are only finitely many of these leaves, the assertion follows. [

Remark. Of course, every end of every leaf of the laminations passes arbitrarily
near an end of L. The above corollary only points out that no end of L is left out.

6.2. Periodic leaves. We consider leaves A1 € Ay which are periodic under h.
For definiteness, assume that A_ € A_ is h-periodic of period p. If hP reverses
orientation of A_, replace p by 2p. Thus, we assume hP(A_) = A_ and preserves
the orientation of A_.

Notation. Set g = hP.

We will study this situation in the universal cover L C A. Recall that the ideal
boundary of Lis E=1LnN Sk (Definition 3.4). In the universal cover L, we fix a lift
A_ and choose the lift §: I'y — I'y so that g(/\ )= A_. Set § = 1P and remark
that g fixes each endpoint ¢ and d of \_in E.

We get three possibilities by taking the completion & of a lift & of a component o
of X_ which meets A_ and iterating using g. Remark that o cannot be an escaping
component since it meets a leaf of A_. Thus, depending on where we start, the
strongly closed property (Definition 4.33) implies that the sequence {g"(7)}>2,
either strongly converges to (1) the completion Xl of a leaf \; of /N\Jr from the left

ERF AT AT

|/ 7 I/

a a ai

(4) (i2) (id)

FIGURE 13. Three cases
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r (2) the completion X of a leaf Ay € 1~\+ from the right. (See Figure 13. It is
drawn explicitly for the case that L= A, but works just as well when Lisa proper
subset of the unit disk and E = L N SL is a Cantor set. In the latter case, the
circles in the figure represent S.)

Lemma 6.7. The sequence {g~"(5)}52, converges to ¢ in case (1) and to d in
case (2), hence the endpoints of A_ are repelling under g : Soo — Soo

Indeed, {h*(0)}r<o escapes (cf. Theorem 4.24). By abuse, we will often say that
g fixes the endpoints ¢ and d. Following the endpoints (ideal or finite) of g~"(5),
we see that the action of § on S, is as indicated by the arrows in Figure 13.

The leaf A_ € A_ must be approached on at least one side by lifts of components
of X1. Without loss, we may assume there exists a component 7 of X so that the
sequence {¢"(7)}n<o strongly converges to A_ from below (in Figure 13 as drawn).

Lemma 6.8. Case (ii7) in Figure 13 cannot occur.

Again, since {h*(7)} >0 escapes, Theorem 4.24 implies that the sequence {g" ()},
must converge to a point a € F as in Figure 13 (i) or (i¢). This proves the impos-
sibility of Figure 13 (ii7). We now analyze Figure 13 (i) and (7).

Proposition 6.9. Let \_ and its ends be fized by g. Then,

(i) If Xl = Xg, the endpoints a,b of Xl i E are attracting fized points of g
and the endpoints c,d of \_ in E are repelling ﬁxed points and no point of
E~A{a,b,c,d} is fived by g. The point T = A N AL is fized by §.

(id) If M #* )\2, the endpoints c,d of A_ are repelling fixed points of g, there
is a common endpoint a of )\1,)\2 which is is an attracting fived point,
and the other endpoints by, by of )\1,)\2 are attracting on the sides facing
the endpoints of A_. No point in the intervals (c,by), (c,a), (d,bs), (d,a) is
fized by g. The points T = M NA_ and y= X2 N A_ are each fized by g.

Parallel assertions hold when A_ is replaced by a leaf X+ of Ay

Proof If )\1 = )\2, we let ¥ = \_ le If Xl #+ Xg, we let ¥ = A_ le and
Y= AN )\2 If )\1 = /\2 we have case (7). If Xl #* Xz but Xl, Xz share the endpoint
a € E, then we have case (ii).

Parallel considerations hold when A_ is replaced by a leaf X+ of A O

Corollary 6.10. Every semi-isolated leaf has an h-periodic point.

Proof. By Theorem 6.5 every semi-isolated leaf is h-periodic and so Proposition 6.9
implies that every semi-isolated leaf has an h-periodic point. [l

The set Py (and a corresponding set P_ when A_ is replaced by L.) in Fig-
ure 13 (24) are lifts of principal regions and will be explained shortly.

Corollary 6.11. In case (i), T is an attracting (in A_) -fized point on both sides
and )\1 can not border the lift of a principal region on either side. In case (ii), T
and y y are attracting in A_ on the sides not meeting (Z,y). If A_ s replaced by
)\+ € A+, these points are repelling in )\+

Interchanging the roles of A_ and \; in the previous corollary one sees,
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Corollary 6.12. In case (i), A_ can not border the lift of a principal region on
either side.

The proof of the following corollary is similar to the proof of Lemma 6.8.

Corollary 6.13. In case (ii), X_ is semi-isolated and A_ is bordered above by the
lift of a megative principal region P_.

Proof. In case (it) of Figure 13, if there exists a sequence {x,} of lifts of points of
|X 4| converging to a point of A_ from above, then, by the strongly closed property,
there exists a juncture component 7 € X with lift 7 above A_ with endpoints on
Sso separated by both b; and by. Since {hk(T)}kZ() escapes, Theorem 4.24 implies
that the sequence {g™(7)},>0 must converge to one point in E implying by = by
and contradicitng that we are in case (i¢). The corollary follows. ]

Corollary 6.14. If \_ € A_ and p are as in the second paragraph of Section 6.2,
then A_ contains a periodic point of period p or p/2.

Further, since the segment [Z,%] is contained in the invariant set, no lifts of
components of positive junctures can meet the segment [z, y|. It follows that,

Corollary 6.15. In case (ii), Xl,XQ € 1~\+ are semi-isolated and lifts of border
leaves of a positive principal region P .

Lemma 6.16. The leaf A_ can either be approached j:7:0m below by leanes of A
or be bordered from below by a lift of Uy. Similarly, A\ (respectively A\3) can be

approached from the left (respectively from the right) by leaves of KJF or be the
border from the left (respectively from the right) of a lift of U_.

Let A be the portion of the cusp in case (ii) of Figure 13 bordered by the half-
infinite segments [Z,a) C A and [y, a) C Ay and the segment [z, 7.

Definition 6.17 (arm). The projection A C L of A under the covering map is
called an arm of the principal region P, .

Lemma 6.18. The projection of A onto A is one—one. Thus any arm A of a
principal region is simply connected.

Proof. We must show that if 7" is any nontrivial covering transformation, then
T(A)NA = 0. If T(a) # a and if T(A)N A # 0 then one of T(\;), T(X2) must meet
one of Xl, X2 which is a contradiction. Thus we can assume T(a) = a but in that
case, if T(A) N A # 0, we must have T(X\;) = A1, T(A2) = Ag. This is not possible
since T" must have exactly two fixed points on FE. O

6.3. Escaping ends. Let A be a leaf of AL and ¢ an end of .

Definition 6.19 (escaping end of leaf). A ray [z,e) C \ represents an escaping
end ¢ of A if there is an end e of L such that, for every neighborhood U of e in L,
there is z € (z,¢) such that (z,¢) C U.

Remark. By abuse of language, we often call the ray [z, ¢) itself an escaping end.
Note that this is a much stronger property than passing arbitrarily near an end e
of L. The latter allows return to the core infinitely often which the above definition
does not. By Proposition 4.74, we can and do require that € [A4|N|A_|.



54 J. CANTWELL, L. CONLON, AND S. FENLEY

Let e be a positive end of L and consider the component U, of the positive
escaping set. Since L has only finitely many ends and, since there are only finitely
many border leaves of U, (Theorem 6.5), we can assume that there is p > 1 such
that h? takes each such border leaf to itself, preserving its ends.

Remark. As before, the use of the terms “below” and “above” in this subsection
always refers to Figure 13.

Fix a connected lift IN(E of U. The lift g of AP that we consider can be chosen to
take ﬁe, hence 5&6, to itself. In additon, we can assume that g fixes a lift A C 51~Le
of a specific border leaf A_ of U,. View A_ as in Figure 13, () or (ii). In case (z)
interchange the roles of a and b, if necessary, to assume that U, lies below A_
case (i), U, also borders A_ from below (Corollary 6.13). Thus every point z € )\
has the property that a small enough transverse arc [z,7) issuing from z into the
region below A_ in Figure 13 has (z,1) C Ue. Thus,

Lemma 6.20. Under the above assumptions, leaves of A_ cannot accumulate on
A_ from below.

Lemma 6.21. The ray(s) (%,a) (and (7,q)) lie in Ue.

Proof. Indeed, no lift of a leaf of A_ can have one endpoint in the arc of S
between a and ¢ and the other in the arc between a and d. Otherwise leaves of A_
would accumulate on A_ from below, contradicting Lemma 6.20. Since the rays in
question start out in ﬁe, they can never exit. O

By Proposition 5.11 and the strongly closed property, we conclude the following.

Lemma 6.22. Completions of components of 3~C+ accumulate on A_ from below,
becoming uniformly close in the Euclidean metric on L C D?.

By this lemma, let a component ¢ of 3~C+ meet (Z,a) in the single point u. In
case (i1), o also meets (¥, a) in a singleton u'. Set v,v" = g(u), g(u').

Lemma 6.23. Only finitely many components of 3~C+ meet the arc [u,v] (and
[u',v']).

Proof. Otherwise the intersections of these curves with [u, v] or [u', v'] cluster there,
implying that (%,a) N [A_| # 0. This contradicts (Z,a) C Ue. O

Corollary 6.24. There exist an integer k > 0 so that exactly k components of 9~C+
meet h”p([u7 v]) (and, if pertinent, h"p([u’, v’])), n > 0.

Corollary 6.25. If A_ is a border leaf of UL, then one of the following holds:

(1) There is a unique h-periodic point x € A_ and the ray [x,e) C |AL| issuing
from x into U, represents an escaping end € of a leaf A € Ay ;

(2) There is a unique maximal, compact, h-periodic interval I C A_, with x
either endpoint of I, and the ray [x,e) C |Ay| issuing from x into U,
represents an escaping end £ of a leaf A € Ay.

In case (2), the rays issuing from the endpoints of I determine an escaping cusp.
The corresponding assertions hold for a border leaf A1 of U_.
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Proof. Let U. = J,2.___ U be the component of Uy bordered by A_ where U, is
any distinguished neighborhood of e (Definition 4.64). As usual set g = h? where
p = kp.. By Corollary 4.50, the ray [x,€) meets infinitely many positive junctures,
necessarily in nonescaping components. Choose a point s € [z,e) N |X| and let
t = g(s). Only finitely many components of positive junctures meet the interval
[s,t]. Let N be the least integer such that a component of the juncture J~ = Fr UM
meets the interval [s,¢). Since [t,e) = U,—; ¢"([s,t)), the interval [t,e) does not
meet the juncture JV and thus lies in UY. Since the interval [¢,e) does not meet
the juncture JV, it follows that the interval g¢([t,e)) does not meet the juncture

JNFE = FrUN** and thus lies in UNT%. Thus, [z,e) ultimately enters and
remains in any neighborhood of e in L. (]

This corollary has the following converse.

Lemma 6.26. If the end € of { € Ay is escaping, it has a neighborhood [x,¢)
satisfying either (1) or (2) in Corollary 6.25. The analogous assertion holds for
escaping cusps and the corresponding assertions hold for negative escaping ends
and cusps.

Proof. Let A_ € §U, be the leaf such that there is a point z € A_ N |A;| with the
open ray (z,e) C U.. The leaf A_ is semi-isolated and thus has a periodic point.
If z is the unique AP-fixed point x € A_ or an endpoint of the unique maximal
hP-invariant interval [z,y] C A_, we are done. If not, assume that, in the lifted
picture in Figure 13, Case (i), z € (¥,d) and deduce a contradiction. (A similar
contradiction occurs if Z € (¢, ¥) in Figure 13, Case (i) orif Z € (¢, Z) or Z € (y,d) in
Figure 13, Case (ii).) Note that by Corollary 6.15, in the case of an escaping cusp,
(Z,9) is contained in a principal region. Then the points z,, = Ffvf"p(z) converge to
d as n — oo and the lift of a positive escaping ray issues from each z,. Projecting
down to L by the covering map, we obtain escaping rays [z,,&,) issuing into U,
from the points z, € A_. These points do not converge in the intrinsic real line
topology of A_. But, as points of intersection z, € |Ay|N |A_]|, these are points
of the compact invariant set and cluster in L at a point z, of that set. Fix a
neighborhood V of z, in L which is a product neighborhood for both laminations.
A subsequence z,, consists of points that lie on distinct components (plaques) Qx
of VN A_ and converge to z,. Clearly, for all but at most one Qy, the ray [z, ,en,)
must cross at least one other i/, contrary to hypothesis. O

We have completely characterized the escaping ends and escaping cusps.

Theorem 6.27. The escaping ends of leaves A € Ay are exactly those represented
by rays (z,¢e) lying in Uy where z is either the unique periodic point on a leaf of
0U4 or an endpoint of the unique mazximal periodic compact interval on such a leaf.
The escaping cusps are similarly characterized where the unique periodic point is
replaced by the unique mazimal compact periodic interval.

Remark. There are only finitely many escaping ends and escaping cusps. Some
ends and cusps may escape and some may not.

Corollary 6.28. If a leaf A of A+ has an escaping end, it is a periodic leaf.

The converse, of course, is false as there are generally infinitely many periodic
leaves.
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6.4. The structure of principal regions and their crown sets. We consider
P, and its components Py, but all arguments and results have parallels for P_ and
P_. These components are the principal regions and, by Theorem 6.5, there are
only finitely many of them.

Fix a choice of P C P,. The components of PN K will be rectangles or regions
with frontier finitely many simple closed curves

E1U51U€2U'~'UETUBT,

where the 3; C ¢; € A, are extreme arcs of |A;| N K, alternating with proper
subarcs €; of positive junctures in Fr K. There is a least integer p > 0 such that
h™P(B;) C B;. Then h™P(g;) is a segment of positive juncture with endpoints in
Bi—1 and (3;, respectively. Infinite iteration gives a sequence of segments of positive
junctures converging to a segment «; of a leaf ¢, of A_ having endpoints z; and y;
on ;1 and [;, respectively. Shorten the arcs f; to have endpoints y; and z;41,
defining a simple closed curve

Y=o UB UasU---Uq,.UPpL,.

Note that the indices are taken mod r. The lifts of each of the curves ¢; (resp. ¢})
can play the role of A_ in case (ii) of Proposition 6.9 with lifts of the arcs 8; (resp.
«;) playing the role of the segments [Z,%] in that proposition. Thus, the f; lie in
the invariant set and cut off r > 1 arms A; of the principal region P. Similarly, the
a; lie in the invariant set and cut off r arms A} of the principal region P’ C P_.

Definition 6.29 (dual principal regions). The principal regions P and P’ are called
dual principal regions.

Definition 6.30 (nucleus). The closure of the intersection P N P’ is the nucleus
of the principal region P and of its dual P’

Thus a principal region is the union of the interior of its nucleus and arms. This
nucleus may be bounded by several polygonal curves ~; as above and to each is
attached a set of arms for P and a set of arms for P’.

Lemma 6.31. The nucleus N of a principal region is compact.

Proof. Indeed, ON ~\ OL is the union of all the curves ~ associated to the principal
region P and the dual P’ and N lies in both P and P’. If N were noncompact then,
since its boundary is compact, it would be a neighborhood of at least one end of
L, hence would contain positive and/or negative junctures, contradicting the fact
that N =PnP. |

Remark. There are four cases to consider:

(1) N has negative Euler characteristic. In this case, v can be tightened in
its homotopy class to a unique simple closed geodesic p, C int N and the
correspondence y <+ p, is one-one.

(2) N is an annulus. If there are two piecewise geodesic boundary curves 7,
and 7z, both will be homotopic to the same geodesic p,, = py, Cint N. It
may happen that one boundary curve § of the annulus is a component of
OL. In this case, denote the other component of ON by v and note that

Py =19.
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(3) N is a Mobius strip with one boundary curve v and center circle a geodesic
o Cint N. The curve 7 is homotopic to an immersed geodesic p, that is a
two-to-one cover of o.

(4) N is a disk. There is one boundary curve 7, but it is not homotopic to a
closed geodesic. In this case, we set p, = 0.

In any event, the arcs making up  are isolated on the side facing the nucleus of
the principal region P.

Definition 6.32 (dual crown sets). The crown set C, is the closure of the compo-
nent of P \ p, that contains the curve v. The crown set C? is the closure of the
component of P’ \ p, that contains the curve v. The crown sets C, and C’f/ are
called dual crown sets.

Thus, in all cases except (4) in the above remark, the crown sets are annuli with
finitely many cusps. In case (4), the crown sets are disks with finitely many cusps.

Definition 6.33 (rim). The closed curve p, C P that cuts off a crown set is called
the rim of the crown set. The closed curves v and p., will be said to be associated.

Since h permutes the borders of the principal regions, there is a corresponding
permutation of the crown sets themselves. Thus, we get cycles C = Cy,(C, =
h(C),...,C, = h™(C) = Cy, and a corresponding cycle p = pg, p1,...pn = po of
rims. If n is the minimal period, then A™ induces a permutation in the arms of each
crown set.

6.5. The set & of reducing curves. As in Nielsen-Thurston theory [19], we split
L into simpler pieces using reducing curves [24, page 5]. The reducing curves will
be geodesics, either homeomorphic to S or R and will lie in int L. They will be
constructed as we develop our theory. The reducing curves will be nonperipheral
in the sense that none cobounds an annulus or infinite strip with a component of
0L and they will be disjoint from A..

Definition 6.34 (&). We will let & denote the set of reducing curves.

The first set of reducing curves we construct are the geodesic rims p, of crown
sets for the case of nuclei which are neither discs nor Mdobius strips. (The rim
p~ for the M&bius strip case could be counted as a reducing curve, but we choose
not to because doing so would make some statements awkward.) If the nucleus
is peripheral, p, is a component of L and is not taken as a reducing curve. If
the nucleus N is an annulus with boundary «y; U 72, the two rims p,, and p,, are
identical and this will be a reducing curve. Otherwise, the rims p,, correspond one-
one with ~, are disjoint from each other and disjoint from the geodesic laminations
A4 and OL.

Every ~ associated to a reducing curve in & will be the union of segments of
semi-isolated leaves (Definition 5.6) of AL. As usual, we will distinguish & from
the support (i.e., union) |&].

In Section 8, we will construct an endperiodic automorphism g which is isotopic
to f and permutes both the sets A; and A_ and the set & of reducing curves.

6.6. Examples of principal regions. Principal regions occur for an endperiodic
automorphism when there is some topology that remains in the core or when there
are more than two repelling or attracting ends. There can not be simply connected
principal regions with one or two arms.
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Example 6.35. In this example, the principal regions have only one arm. Let L
be a surface with two nonplanar ends and one disk removed as in Figure 14. Then
L has one circle boundary component C'. If g is the endperiodic automorphism that
moves each handle to the right one unit near both ends but leaves C' invariant, then
the laminations A4 each contain one leaf as in Figure 14. Both the positive and
negative principal regions have one arm. If one composes g with Dehn twists in the
three dotted curves in Figure 14 to get an endperiodic automorphism f, the new
laminations A+ both have uncountably many leaves. The one arm of the positive
principal region is bordered by an isolated leaf A, and no longer is escaping but
returns infinitely often to the core. The negative principal region is bordered by a
semi-isolated but not isolated leaf A\_ and has one escaping arm.

.
1
|
1
1
1
1
1
r
!

FIGURE 14. An example whose principal regions have one arm

Example 6.36. The double of the surface L of Example 6.35 along the circle
boundary component C' of L has dual positive and negative principal regions whose
nucleus is an annulus. Each principal region has two crown sets.

Example 6.37. Let S be a pair of pants with boundary Cy, C7, C5. Attach three
copies of L along C to each of Cy, C7, C5. This example has dual positive and
negative principal region whose nucleus is a pair of pants. The rims of the three
pairs of dual crown sets are Cy, C1, Cs.

Example 6.38. We give examples in which the principal regions have r > 3 arms.
Let L be a surface similar to the surface in Figure 1 but with » > 3 negative ends
and one positive end and let f be an endperiodic automorphism that permutes
the negative ends and moves the handles along in a way similar to the example
illustrated in Figure 1. The laminations Ayt each contain r leaves and there are
positive and negative principal regions, each with r arms. By composing f with
suitable Dehn twists the laminations can be made more complicated. The principal
regions are simply connected but topology can be added to them as in Example 6.39.

Example 6.39. Let L be the surface in Figure 1 but with a disk centered at the
saddle point removed. Thus, L has one circle boundary component C. Let f be the
map indicated in Figure 1 modified to send C to itself. The laminations Ay each
contain two leaves. There are positive and negative principal regions each with two
arms. By composing f with suitable Dehn twists one can obtain similar examples
with more complicated laminations.

6.7. The induced laminations on the compact surface F'. Let ¢ be an end
of L and denote its full h-cycle by ¢ = {e =e1,e2,...,€,,}. Recall that,

U= |J »"(U) =Ue, UU, U--- VU, ,

n—=—oo
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where U, is any h-neighborhood (Definition 2.3) of e. Remark that U, is an open,
h-invariant set with no periodic points. The connected components U, of U, are
permuted cyclically by h. As in Section 2.1, one has an infinite cyclic covering

q:U. — F.

The group of deck transformations for ¢ is generated by h|U..

For definiteness, we consider the case that c is an h-cycle of negative ends of L.
Since U, and A_ are h-invariant, it follows that the induced lamination A_|U,. is
invariant under the group of deck transformations of ¢ : U, — F'. Similarly, the set
J— of negative juncture components is h-invariant and transverse to A_. Thus,

Lemma 6.40 (Ap,J.). The lamination A_|U,. descends to a well defined closed
lamination Ap of F' and the set of negative juncture components in U, descends to a
compact, transversely oriented, properly embedded 1-manifold J,; that is transverse
to AF

Remark. The 1-manifold J, is the 1-manifold J, of Definition 2.15.

We analyze the structure of Ap using the properties of A_|U,.

The border dU_ consists of semi-isolated leaves in Ay and is invariant under h.
Thus, 6U_ and 6U. each consist of h-cycles of semi-isolated leaves of A;. Recall
that there are only finitely many semi-isolated leaves of Ay (Theorem 6.5) and
that each contains either a unique h-periodic point or a unique maximal, compact,
nondegenerate h-periodic interval. For the semi-isolated leaves of AL, the isolated
periodic point is repelling under applications of h and the endpoints of the periodic
interval are each repelling on the side not meeting the interval (Corollary 6.11).
For A_, these points are attracting.

Evidently, if [a, 00) is the neighborhood of an escaping end issuing from a periodic
point a on the isolated side of a leaf A of Ay in 6U,, the leaf (a, o0) of A_|U. descends
to a circle leaf C, C F of Ap. Either a € X is an isolated, repelling, h-periodic
point, or it is an endpoint of a compact, nondegenerate h-periodic arc [a,a’] C A.
In this case there are two escaping ends [a, o0) and [a’,00) and, by the structure
theory of principal regions, these cobound an arm A of a principal region. Since A
is simply connected (Lemma 6.18), (a,00) and (a’, 00) descend to a pair of circle
leaves C, and C,/ of Ap, cobounding an annulus in F' which meets no other leaves
of Ap. The points a,a’ are both repelling on the sides opposite to [a,a’]. In all
cases, the natural orientation of the escaping ends toward oo induces an orientation
on these circle leaves of Ap.

Lemma 6.41. Every leaf of A_|U,. issues from either one or two points of |6U_].

Proof. We need to show that no leaf of A_ lies entirely in U.. Otherwise, by
Lemma 4.69, that leaf would meet no leaf of A, contrary to Proposition 4.74. O

Lemma 6.42. The only leaves of A_|U. which do not complete to compact arcs
with endpoints in 60U, are the escaping ends with completion [a, 00)

Proof. Suppose there is a leaf ¢ = (b,00) of A_|U. with completion 7= [b, 00),
b € |6U,|, which is not an escaping end. Then £ either crosses some fixed juncture
J infinitely often or eventually remains in some compact part of U.. In either case,
since A_ is closed, there is a leaf ¢ € A_ in the asymptote of the end of ¢ = (b, c0).
Since ¢ C U., Lemma 4.69 implies that £ N |A;| = 0. Therefore, ' N |[AL| = 0
contradicting Proposition 4.74. (]
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Definition 6.43 (parallel packets). The compact completions 2\1 and Zg of two
bounded leaves of A_|U, are parallel if they are a pair of opposite sides of a rectangle
in ﬂc, the other two sides being compact arcs in |dU.|. This is an equivalence
relation on the set of compact completions of leaves of A_|U. and the equivalence
classes will be called parallel packets. Each parallel packet contains two extreme
leaves.

Evidently, the parallel packets are permuted by h.
Lemma 6.44. There are only finitely many h-orbits of parallel packets.

Proof. Since 6U, has only finitely many elements, there is a least integer p > 0 such
that h™P carries each onto itself, preserving orientation. It is enough to show that
there are only finitely many h~P-orbits of parallel packets. If not, there is a leaf
A of §U. and a compact subarc [z, h"P(z)] C A containing no periodic point, and
infinitely many points z,, € [x,h™P(x)] out of which issue completions pertaining
to distinct packets. Let y € [z, h~P(x)] be a cluster point of {z,}. Since A_ is a
closed lamination, there exists a leaf of A_ issuing from y. Since y € [z, h7P(x)], y
is not a periodic point. Thus, by Theorem 6.27 and Lemma 6.42, the completion
of the leaf of A_|U,. issuing from y is a compact arc . Let ¢, be the completion
of the leaf of A_|U, issuing from a,. Then the ?,’s cluster locally uniformly on
the compact arc l, proving that infinitely many of them are parallel to (. This is
contrary to hypothesis, completing the proof. ([

Remark (Properties of the lamination Ap). Putting these lemmas together, we
see that the escaping rays descend under the covering projection ¢ : U. — F' to
finitely many circle leaves of Ar and the parallel packets descend under the covering
projection to finitely many packets, homeomorphic to X xR, of parallel noncompact
leaves of Ap. Here X is compact and totally disconnected. One end of such a packet
spirals in on a circle leaf, as does the other end. Indeed, if an end of a leaf of A_|U,.
issues from a point zy € dU,, then the image of the that end under ~A"? issues from
a point z, € JU., the sequence {x,},>0 converges to a periodic point x € JU,,
and the leaf of A_|U,. issuing from x is an escaping ray. The leaves (and packets)
upstairs accumulate locally uniformly on two (not necessarily distinct) h-orbits of
escaping rays which descend to (one or two) circle leaves in F.

Remark (continued). The circle leaves of Ap have a preferred orientation obtained
from orienting the escaping ends towards the end. The noncompact leaves of Ap
can not be oriented.

Remark (continued). By Lemma 6.18 and Theorem 6.27, an arm of a principal
region is an infinite strip bounded by escaping rays (a, o0) and (a’, 00), where [a, a']
is an h-periodic interval and thus descends under the covering projection ¢ : U, — F
to an annulus bounded by two circle leaves of Ar. This is the only way two parallel
circles leaves can occur in Ap. As a subset of a principal region, an arm contains
no leaves of A|U.. Thus, it is not possible to have three mutually parallel circle
leaves in A nor is it possible that Ap contains a “Reeb” annuli.

The above development can be used to define a traintrack T carrying the lami-
nation Ap. We have,

Proposition 6.45 (T). The traintrack T in F carrying the lamination Ap consists
of finitely many oriented circles, one for each single oriented circle in Ap or pair
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of oriented circles in Ap bounding an annulus, and finitely many compact arcs, one
for each packets of parallel noncompact leaves of Ap. Each end of each arc meets
a circle in a point called a switch so that the arc makes an acute angle with the
outgoing arc of the circle.

Remark. Arcs can not have a preferred orientation. Either choice of orientation
will be coherent with that of the circle at the one switch and will be opposed at
the other.

We view T as a branched 1-manifold. As a graph T is 3-valent.

FIGURE 15. Traintrack T for negative end of Example 4.35

Example 6.46. Figure 15 gives the traintrack T, juncture J,, and surface F for
the negative end of Example 4.35.

Remark. In [24], the third author induces a hyperbolic structure and geodesic
laminations on F with only finitely many leaves. The laminations in [24] are the
“geodesic tightening” of ours and are carried by the same traintrack. Our packets
X X R of leaves winding in on the circle leaves generally contain infinitely many
leaves, but each packet lifts to the universal cover F' to curves having the same ideal
endpoints. Hence, tightening our circle leaves to geodesics and each of our finitely
many packets to a single geodesic, each end of which winds in on one of the circles,
gives the geodesic lamination of F' produced in [24].

7. THE EscAPING SET U

The main purpose of this section is to construct reducing curves associated to
certain border components of U. This involves a detailed, technical study of éU.
The reader should review in Section 5.1 the definition of the metric completion U
of a component U of U, the metric completion of the set U (which is not generally
connected), the map i : U — L, and the definiton of the set §U of border components
of U.

Recall (Lemma 5.15) that the escaping set satisfies,

U=UyrNU_ =L~ ([A_|UP_U|AL|UPY)
and that U is thus disjoint from the principal regions. Further, the set |X4 | will meet

each component U of U but will cluster in U only on points of [6U| (Definition 5.2).
An element of X+ can not meet P+ but will meet P+ in the arms.
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Lemma 7.1. If U is a component of U, then 6U # 0.

Proof. By our assumption that f is not isotopic to a translation (Hypothesis 6) and
Proposition 4.76, U is a proper subset of L. Choose z ¢ U and y € U and denote
by [z,y] a closed geodesic arc with endpoints z and y. There is a point z € [z,y)
such that (z,y] C U and z ¢ U. Then clearly z € |6U] so U # 0. O

Remark. The components U of U that are rectangles play a special role. If a
component U of U is a rectangle, the sequence of iterates under h of a point of U
escapes. The sequence of iterates under h of a vertex of U remains in the core and
cannot escape while only the sequence of positive (respectively negative) iterates of
an interior point of the two edges in |A| (respectively |A_|) escape.

7.1. The border of the escaping set. The next lemma is an immediate conse-
quence of Proposition 4.74.

Lemma 7.2. An entire leaf A € AL cannot be an element of SU.

The following lemma formally defines what we mean by vertices and edges and
is clear by Lemma 5.7.

Lemma 7.3 (vertex/edge). If x € v € 0U, then x lies in some semi-isolated leaf A
of one of the laminations and either,

(1) z € |[Af| N |A_| and z also lies in a semi-isolated leaf N of the other
lamination and there are mazimal, nondegenerate subarcs [z,y) and [z, z)
of X and X', respectively, that meet no other points of |A|N|A_|. Ify is an
end of A, then [z,y) C 7 and otherwise [x,y] C v and y € |[AL|N|A_|. In
either case, the resulting arc is called an edge of v and x is called a vertex
of . Similar considerations hold for [z, z).

(2) x & |AL|N|A_]| and there is a mazimal open subarc (y,z) C A containing ©
and not meeting |Ay| N |A_|. By Lemma 7.2, one or both of y, z is finite,
lies in |Ay| N |A—]|, and is again called a vertex of vy, the resulting closed
subarc or infinite ray in \ being an edge of .

Lemma 7.4. Fach v € 6U is either an immersed copy of the real line or an
immersed circle with an even number of edges.

Proof. The lemma follows since the components of U ~ U are homeomorphic to a
line or circle for every component U of U and every v € U is the image under i of
a component of U, \ U, for some component U, of U. O

Remark. We will show in Corollary 7.11 that every border component of U is
embedded.

Lemma 7.5. If v € 0U is an immersed line then, either its sequence of vertices
ey Ty Tia1, - .. 48 bi-infinite or v has only one vertex xg connecting two unbounded
edges a1 and B1. In the latter case, xq is the unique h-periodic point on the semi-
isolated leaves of Ay passing through it.

Proof. Suppose, for definiteness, that the sequence is not infinite to the left and
denote its initial vertex by xg. Thus, its initial edge a; must be a ray in a semi-
isolated leaf A\ of one of the laminations. By Theorem 6.5, we know that, for some
integer k > 1, h¥(\) = A. Without loss of generality, we can suppose that h* fixes
the ends of A\. Thus, orienting A so that its initial end is the end of a1, we see that
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either h*(zo) < 2o, h%(20) < o, or h*(x¢) = zo. The first two cases imply that
int oy meets the other lamination, hence contains a vertex. Hence the third case
holds. Now suppose that the edge 81 = [zo, 1] is bounded. It must be fixed by
h% and so by (2) of Corollary 6.15, (g, ;) lies in a principal region P which then
meets U which is a contradiction. The final assertion is clear. O

Definition 7.6 (first/second kind). A real line border component « of U with just
one vertex is said to be of the first kind. Otherwise, the border component is of the
second kind.

Notation. The border components v of U of the first kind are of the form v =
ap U Py with ap C A_ and By C Ay and with one vertex yo = ap N Fy. Otherwise
a border v of U is of the form v = (J;o___a; U B; with a; C [A_|, B; C |A4],
Bi—1 Na; =z, and o; N G; = y;, © € Z. If v is of the second kind, then the «y, f5;
form a bi-infinite sequence. If v is compact, then there exists an integer » > 0 such

that a4, = o; and B4, = B;, all i € Z.
The next lemma follows immediately from the definitions of U and JU.

Lemma 7.7. If v € U, then there exist a component U, of U, e € E_(L) and
et € E4(L) such that v € 06Uy and Uy C Ue_ NUe, .

From now on, we focus on the end e_ € £_(L). The discussion for ey € (L)
is analogous. Let ¢ = {e_ = ej,e2,...,€,,} be the full h-cycle containing e_.
Recall the projection ¢ : U, — F, the lamination Ag, and the traintrack T for Ap
(Section 6.7). Note that the surface F' depends on the h-cycle of ends containing
e_.

Lemma 7.8. If v € 0U is not of the first kind and is not the border component of
a rectangle and o C |A_| is an edge of v, then « is an extreme leaf of a parallel
packet of leaves of A_|U,_.

Proof. If « is an interior leaf of a parallel packet of leaves, then ~ is the border
component of a rectangle contrary to assumption. ([

Notation. Denote by T* the compact surface obtained by fattening up 7" in F'.
oT*

C

oT* oT*

E
FIGURE 16. Inserting vertices into O T* at a switch

A switch (Proposition 6.45) on the train track T' comes from the end of a parallel
packet of leaves winding in on a circle leaf. If one considers T as a 3-valent graph,
a switch is a vertex of degree three. Two of the edges coming out of a switch are
subsets of the circle leaf. The third edge represents the parallel packet of leaves
and is thus distinguished from the other two edges. In a natural way, the structure
of T as a 3-valent graph divides certain components of O T* into vertices and edges
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by inserting two vertices into & T* at each switch as indicated in Figure 16. In
Figure 16, the two horizontal edges at the switch belong to a circle leaf C' while the
third edge E represents an end of a parallel packet of leaves winding in on C.

Remark. Some components of @ T* may contain no vertices. In Theorem 7.9,

we show that these components correspond to border components of U of the first
kind.

Remark. The surface T* may be non-orientable.

Theorem 7.9. (1) There is a t*/p._-to-one correspondence between the set of
border components v of U of the first kind that meet U._ and the set of
components C* of O T* not containing a vertex where v* is the intersection
number of C* and Jy;

(2) There is a one-one correspondence between the set of infinite families of
compact border components v of U that meet U._ and are not rectangles and
the set of components C* of T containing a vertex with zero intersection
number with the juncture J,.

(3) There is a */pe_-to-one correspondence between the set of border compo-
nents v of U of the second kind that meet U._ and the set of components C*
of OT* containing a vertex such that C* has non-zero intersection number
L* with the juncture Jy;

Proof. First, suppose v = ag U By with ap C A_ and Sy C A4 and with one vertex
Yo = ag N By is a border component of U of the first kind that meets U._, then
C, = q(int o) is a circle leaf of A such that there are no edges of the traintrack on
one side of the circle C,. In T*, C\, gives rise to a component C7 of OT”* containing
no vertices. Thus, every border component v of the first kind that meets U, _
corresponds to a unique component C7j of 9 T".

Conversely, if C* is a component of  T* containing no vertices, then there exists
a corresponding circle leaf C' of Ap such that there are no edges of the traintrack on
one side of the circle C. It is then easy to see that C' = ¢(int cg) where v = ag U Sy
is a border leaf of U of the first kind that meets U._. Thus, every component
C* C OT" containing no vertices corresponds to to at least one border componet
of U of the first kind that meets U, _.

Let «* be the intersection number of C* and J,.. Since h* () = v and the curves
h7(7), 0 < j < v*, are distinct and there are p._ ends in the cycle of ends containing
e_, it follows that there are ¢*/p._ border components of U of the first kind that
meet U,_ corresponding to the component C*.

Next, suppose v = [J;o__ ; U B; (in the notation of page 63) is a border
component of a component U, of U such that U, C U._ is not a rectangle and
v is not a border component of U of the first kind. The leaf «;, ¢ € Z, of A_|1"L
is extreme in a parallel packet of leaves (Lemma 7.8) and, since ¢(cy) C ¢q(U,),
determines an edge of a component C7 of OT* which we denote by af. The edge
o inherits an orientation from a; and we denote the initial vertex of o by x} and
the terminal vertex by ;.

The terminal vertex y; ; of aj_; and the initial vertex =} of a] determine a
unique interval (y;_;,x;) C CJ which contains no vertices. This follows since
there exists an edge §; C |A4| such that o;—1 N B; = vy, Bi Ny = x41, and
a;—1 U B; Uay C 6U, for some component U, of U.
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We denote the interval [y;_;,z}] by 8;. Then ;= afUB; where af_;NB3; =y}
and ] Naj = x7;; equals C7. The union is, in fact, a finite union Uf;ol of U S
with af = oy, for a least integer p > 0, since each component of OT* has finitely
many edges. Thus ~ corresponds to C C 9T".

If v is compact, it follows that o, = ag and o # g for 0 < j < p. Thus
the intersection number of C7 and the juncture Jj; is zero. Similarly, if v is of the
second kind, then o # a,. In this case h* (o) = a;, where ¢* is the intersection
number of C;" and J,.

Conversely, if C* is a component of 9 T* containing vertices, choose an edge
of = [x§, ys] corresponding to an extreme leaf o of a parallel packet of leaves of
A_ H"Le_. Then oy C v where v is a border component of U that meets U._ which
is not a rectangle or a border component of U of the first kind. Exactly as above,
~ corresponds to C*. Thus for each C* C 9 T* containing a vertex there is at least
one y not a rectangle and not of the first kind that corresponds to it.

If 7 is compact, {h"P*-(y) | n € Z} is a bi-infinite family of disjoint compact
border components that meet U._. Thus, in this case, there is one bi-infinite family
of border components corresponding to C7.

If v is not compact, then v must be of the second kind. Let :* be the intersec-
tion number of C* and J,.. Since h* (y) = v and the curves h’(v), 0 < j < 1*,
are distinct and there are p._ ends in the cycle of ends containing e_, it follows
that there are t*/p._ border components of U of the second kind that meet U, _
corresponding to the component C*. g

In the case that v is not a rectangle, the next two corollaries follow because a
component of d T* is a simple curve. They are clear if « is a rectangle.

Corollary 7.10. If v € dU, then «y is embedded in L.

Corollary 7.11. If v € 6U is compact, then h™(7) is disjoint from h™(y) for all
m#mn € 7.

The next corollary follows because & T* has finitely many components and L has
finitely many ends.

Corollary 7.12. (1) There are finitely many infinite families {h™(y) | n € Z}
of disjoint compact border components of U that are not rectangles where -y
s a compact border component;
(2) There are finitely many noncompact border components of U.

The next corollary follows because there are finitely many noncompact border
components of U.

Corollary 7.13. If v € dU is noncompact, then there exists a least integer r > 0
such that h"(y) = 7.

Remark. The integer r is necessarily a multiple of both p._ and p., .

Remark. If v € U is of the first kind, then A" has one fixed point on ~v. If v € JU
is of the second kind, then A" is fixed point free on 7.

Denote by £_ the negative end of . That is, if v = ag U fp is of the first kind
then g = (e_,yo] and if 7 is of the second kind and x € ~, then h"" () — e_ as
n — —oo.
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Lemma 7.14. If v € 0U is noncompact and (e_,x0] C v is a neighborhood of €_,
then there exists a neighborhood of e4 (see Lemma 7.7) disjoint from (e_, ).

Proof. The lemma is clear if v is of the first kind. Suppose v is of the second
kind. Choose z € v and let 2z, = h™(z), n € Z. Since [z_1, 20| C 7 is compact,
there exists a distinguished neighborhood Ue, of e, disjoint from [2_;,2]. Since
Ue, D U(’f+ = WP+ (U, ), all k > 0, it follows that Ue]’l is disjoint from [z_1, 2], all

k>0. Thus U, = h*kr(UZ/pw) is disjoint from h=*"([2_1, 20]) = [2— (kg1 2—k)-

Thus, Ue, is disjoint from |- [z— k41, 2—&] = (6=, 20]. O

Corollary 7.15. If v € U is noncompact, then any lift v of v has two endpoints
a#beSL.

Proof. Let o be a positive juncture component meeting v at a point z. Let o, =
h™ (o) and z, = h""(z). Let ¥ be a lift of v, z, € 7 lifts of z,, and &, lifts of
on, containing Z,. Then the geodesics 7, nest on a point b € SL asn — co. An
analogous argument shows that the negative end of 7 limits on a well defined point

aeSL.

If a = b then every neighborhood of the negative end of 7 meets o, for n
sufficiently large. Since the sequence {o,}n>0 escapes to e, this contradicts
Lemma 7.14. (I

Example 7.16. In Example 4.35, there is one semi-isolated leaf A_ € A_ and one
semi-isolated leaf Ay € Ay. This example has one real line border component of
the first kind and one real line border component of the second kind, both clearly
visible in Figure 11.

Example 7.17. Example 4.35 has one bi-infinite sequence C of compact border
components of U that are not borders of rectangles. Each v, € € has one edge in
the semi-isolated leaf A\_ € A_ and one edge in the semi-isolated leaf A, € A, . The
component U,, C U with this ~,, as border is a (stretched out) annulus and has one
of the boundary circles of L in its boundary. In this example (and most examples)
there are infinitely many bi-infinite sequences of compact border components of U
that are the borders of rectangles. Example 2.10 is similar, each ~, again having
two edges and two vertices and all belonging to the same bi-infinite sequence €, but
now they are the elements of §U, where U is a single unbounded component of U.

Definition 7.18 (peripheral border component). A border component 7 of U is
peripheral if there is a component C' C U of JL such that v and C' cobound a
component U, of U homeomorphic either to an open annulus or an open infinite
strip R x (0,1).

7.2. Reducing circles. Let v € U, be a circle border component of U, where
U, is a component of U that is not an open disk nor an open Moébius strip. Then
there is a unique simple closed geodesic o, in the free homotopy class of 7. By
the convexity of U,, o, C U,. This geodesic o is 2-sided and cobounds an open
annulus A C U, with «y. If v is peripheral, then o, is a component of L and is not
taken as a reducing curve. Otherwise o will be included in the set & of reducing
curves. If the set U, is an open annulus with boundary the two curves y; and vz,
then 0., = 0,,. Otherwise, the various o,’s will be disjoint and disjoint from A,
0L, and the previously constructed reducing curves.
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Lemma 7.19. The sequence of reducing circles {opn () }nez escapes.

Proof. Note that opn(y) = (h"(04))8. Since the circle o, is compact and contained
in Ue_ N U, it follows that o, C U._ N U, for a distinguished neighborhood
Ue_ of e_ and distinguished neighborhood U, of e;. We will use the fact that
0y C Ue, to show that {ojn(y)}n>0 escapes. In an analogous way the fact that
0y C Uc_ shows that {ojn()}n<o escapes.

Let J = FrU,, . By the construction of h in Section 4.6, .J,, = h"(J), n € Z. Thus
Jn = Frh"(U,, ) and h™(U., ) is the distinguished neighborhood of a positive end
in the cycle of ends containg the end e.. Since Fr h"™(U,, ) consists of the geodesics
forming J,, and h™(o,) C h"(Ue, ), it follows that opn(y) = (h"(04))® C R"(Ue, ),
n € Z. Since only finitely many of the distinguished neighborhoods h™ (U, ), n > 0,
meet any compact set, it follows that {ojn(4)}n>0 escapes. O

Remark. As one forwardly iterates applications of h to ~, the vertices remain in
K and the edges 3; C |A | stretch without bound. Similarly, under iterates of A1,
the edges o; C |A_| become unbounded. The open annulus cobounded by o., and
~ also stretches without bound. A simple modification of Example 4.35 illustrates
this behavior. Alter L by gluing a punctured torus to each boundary circle. Those
circles now become reducing curves o, and one easily sees v and the annulus that
it cobounds with o.

FIGURE 17. The lifts ¢., and 7 (boldface) for v € éU of second kind

7.3. Reducing lines. Let v € 6U, be a border component of U homeomorphic to
the reals. The associated curve o, is the geodesic whose lift has endpoints a # b
of Corollary 7.15. Figure 17 (respectively Figure 18) illustrates ¥ and 7., when 7
is of the second kind (respectively first kind). Here 7 is given in boldface and the
bottom line represents a subarc of Sy, (Definition 3.12).

Lemma 7.20. The curve o is simple, homeomorphic to R, and disjoint from ~y.

Proof. If 0, is not simple, then some lift of o, intersects the lift 7., with endpoints
a,b. It follows that some lift of + intersects the lift 7 with endpoints a,b which
contradicts the fact that « is simple. Thus, o, is simple.

As in the proof of Corollary 7.15, there exists lifts o, of positive juncture com-
ponents that lie in arbitrarily small neighborhoods of the end e, for n sufficiently
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FI1GURE 18. The lifts ¢, and 7 (boldface) for v € 6U of first kind

large such that the o, nest on b. Since o has a lift with endpoint b, this implies
that 0., is unbounded. If o, is homeomorphic to a circle then it is compact and
thus bounded. This contradiction implies that o, is homeomorphic to the reals.

If o, meets v, then some lift 57, of ., with endpoints a’,b" € S meets the lift
7 of v with endpoints a,b. If 7 is a border component of U of the first kind, then
Efy meets one of the rays &g or By (see Figure 18). If  is a border component of U
of the second kind, then 5’7 meets one of the compact arcs a; or EZ-, —00 <1< 00

(see Figure 17). Let a with lift a be such a ray or compact arc that o/, meets a

and let A € AL be such that A D « has lift X O & Then the endpoints of X on
Sl separate a’ and b’ so A intersects the lift 5’ of v with endpoints a’,b on S,
transversely contradicting the fact that v € 6U. Thus, o and v are disjoint. (]

Corollary 7.21. The curves v and o~ cobound a region O, C L homeomorphic to
(0,1) x R and contained in the component U., of U.

Proof. Let O, be the projection of the open region 57 C A bounded by the curves
7 and and &,. We must show that if 7" is any nontrivial covering transformation,
then T((iy) N 57 = (). Suppose to the contrary that T(@W) N 5,y £0. U T(a) #a
and/or T'(b) # b, then one of T'(7),T(c,) must meet one of 5,5, which either
contradicts the fact that v and o, are each simple or contradicts the fact that ~
and o are disjoint. Thus we can assume T'(a) = a and T'(b) = b but in that case,
we must have T(é.y) = 67 and T'(¥) = 7. Since v is homeomorphic to the reals,
T must be the identity transformation.

By the convexity of 67, any geodesic in Ki that meets 6W must also meet 5. It
follows that 5,y is disjoint from /N\i and that O, C U,. O

Corollary 7.22. One end of the curve o., approaches the positive end ey while the
other end of 0., approaches the negative end e_.

If ~ is peripheral, then o, C OL and is not taken as a reducing curve. If the
set U, is a doubly infinite open strip with boundary two curves 7, and <z, then
0+, = 0~,. In this case, both of the v; may be of the second kind or one of the ~;
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may be of the first kind and the other of the second kind. It can not happen that
both of the v; are of the first kind.

Indeed, exactly as in Example 4.36, if the set U, is a doubly infinite open strip
with boundary two curves v; and 7 both of the first kind, then there would exist
a leaf of A, and a leaf of A_ each meeting U, contradicting the fact that U, is
contained in the escaping set.

Otherwise, the various o, ’s, associated to real line border components v of U,
will be disjoint and disjoint from A4, OL. The curves o, will be included in the set
G of reducing curves.

Remark. If v is of the second kind, the edges 8; C |A4| of 7 stretch unboundedly
as ¢ — oo and the edges a; C |A_| stretch unboundedly as ¢ — —oco. The vertices
of v remain in the core. Thus, these border components of the second kind appear
quite bizarre in L and do not directly connect a negative end of L to a positive one
but rather return infinitely often to the core. By Corollary 7.22, o, does directly
connect a negative end to a positive end.

The set G of reducing curves is now complete.

Remark. The reducing curves in & are of following kinds,

(1) The rims of crown sets defined in Section 6.5.

(2) The infinite families of reducing circles defined in Section 7.2.

(3) The reducing lines corresponding to border components of U of the first
and second kind defined in Section 7.3.

Remark. A reducing curve is always a geodesic.

8. REDUCTION

By a reduced piece, we mean the internal completion @ = Uofa component U
of L\ |&|. Recall that i : Q@ — U is not necessarily one-one but possibly identifies
border components of @ (Section 5.1). As we define g on U, in abuse of notation,
we will also consider g to be defined on Q. If A C L we will abuse notation and
denote i71(A) by AN Q and say A meets Q if ANQ # 0.

Theorem 8.1. If f : L — L is an endperiodic automorphsm, then there exists an
endperiodic automorphism g : L — L, isotopic to f such that,
(1) g‘|A+| = h‘|A+| and g’|A_| = h||A_| where h is the endperiodic automor-

phism of Theorem 4.54;

(2) g permutes the elements of the set & of reducing curves;
(3) There are at least one and at most finitely many components U of L \ |&]
with U noncompact. For such U, if ¢™(Q) = Q, then either,

(a) g™ :Q — g™(Q) is isotopic to a translation;

(b) g™ : Q — g™ (Q) is a pseudo-anosov automorphism (Definition 8.13).
Remark. The dynamics of g on the compact reduced pieces is described in Propo-
sitions 8.9 and 8.10. Briefly, if @) is a compact reduced piece in a principal region,
the dynamics of g on @ is given by Nielsen-Thurston theory. If @ is a compact
reduced piece contained in the escaping set U, then the dynamics of g on @ is
trivial.

Remark. If 0 is a reducing curve associated to the border component v € JU then
9(0y) = op(y)- If py is a reducing curve which is a rim of a crown set associated to
a boundary component 7 of the nucleus of a principal region, then g(p,) = pn(4)-
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8.1. Proof of first part of Theorem 8.1. Let h be the endperiodic automor-
phism of Theorem 4.54. Note that the isotopies in Lemma 8.2 will move some junc-
ture components but leave invariant the juncture components in {h(c) | o € Jw }
(Jw is defined in Definition 4.42).

Lemma 8.2. There exists an endperiodicautomorphism g isotopic to h by an iso-
topy with support disjoint from Ay UA_ UJIL such that g(&) = &.

Sketch of proof. Enumerate the elements of h(&) as {v;}2; (or {7;}¥, if there are
finitely many reducing curves). Let ¢y = id. We inductively find sequences {®;} of
isotopies and {1;} of homeopmorphisms with v; = ®} o1;_1, i > 1, with support
disjoint from AL U A_ UJL, and with ®; fixing ’y}g pointwise, 1 < j <¢—1, and
moving t;_1 0 ; to its geodesic tightening. That is, 1;(7;) = 5.

Suppose @;,1;, 1 <i <n—1, have been defined satisfying these properties and
let ¥, be a lift of 7,, and 7% be the lift of 4 sharing endpoints on S with 7,.

If o is a juncture component in h(Jw) and = € o N~; has lift Z € o N7; where
o is a lift of o, then by Lemma 4.55 there is a sliding isotopy supported in a small
neighborhood of o with lift sliding = along & to the point of intersection of ¢ and
7%. After a sequence of such sliding isotopies , we can assume that o N7y, = o N3¢
for every juncture component o € h(Jw ) amd lift & meeting ;.

Consider the set of all points of intersection of o N~,, all ¢ € h(dw). If a,b € v,
are two such points of intersection so that the interval [a,b] C 7, contains no
other such point of intersection, then, by Theorem 3.2, there is an isotopy moving
the interval [a,b] C =, to the corresponding interval in & with endpoints a,b.
After a sequence of such isotopues we can assume v, has been moved to v&. Let
®,, be the composition of the isotopies of this and the previous paragraph and
Y = ®L 0, 1. By the remark after Theorem 3.3, we can assume ®,, fixes 'yf
pointwise, 1 <j <n —1.

The supports of the ®,, do not accumulate. Thus, ¥, — ¥, a well defined
homeomorphism isotopic to the identity by an isotopy ® and g = % o h is such
that g(a) is a geodesic for every o € Jy . Since 7, and & both lie in the same
component of L~ (JA|U|A_]) for each ¢ > 1, the isotopy ® can be defined to have
support disjoint from Ay U A_. The lemma follows. ([l

This g is the required endperiodic automorphism of Theorem 8.1.

Corollary 8.3. The endperiodic automorphism g permutes the components U of
L~ |G|

The endperiodic automorphism g of Theorem 8.1 permutes the elements of each
of the sets Ay, A_, and & . It is not possible to construct g isotopic to f so that
g also permutes the elements of each of the sets J; and J_ without additional
restriction on the choice of f-junctures. The problem one encounters in trying to
do this is illustrated in the following example.

Example 8.4. If three pseudo-geodesics in A are such that any two of them inter-
sect, then there might not exist an ambient isotopy of A that moves each of them
to a geodesic. Figure 19 illustrates such a bad triple of pseudo-geodesics. In Fig-
ure 19, a and 3 are geodesics and o is a pseudo-geodesic with geodesic tightening
o&. There clearly does not exist an ambient isotopy that moves each of «, 3, and
o to geodesics.
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AN

FIGURE 19. A bad configuration of three pseudo-geodesics in A

It is possible to construct an endperiodic automorphism f of a surface L with
positive juncture component 71, negative juncture component 7, and reducing
curve v such that the lifts of the pseudo-geodesics f(71), f(77), f(~) are configured
as «, 3,0 in Figure 19. For such an example it would be impossible to find an
ambient isotopy of L permutting each of the sets g4, J—, and &.

8.2. The reduced pieces. By areduced piece (), we mean the internal completion
Q = U of a component U of L \ |&].

Lemma 8.5. Suppose U is a component of L N\ G.

(1) If U does not meet |[Ay|U|A_|, theni:Q — U is a homeomorphism;
(2) If U does meets [A|U|A_|, then either i : Q — U is a homeomorphism or
Q@ is homeomorphic to U cut apart along some reducing curves.

Proof. If 0 is a reducing curve, then on one or both sides of o, there is a curve
v C |A4|UJA_] such that v and o, cobound an annulus or doubly infinite strip with
interior disjoint from |&|. Thus, one or both sides of o, borders a component of
L~ |&| which meets |[A|U|A_]| and (1) follows. In case (2), it is easy to construct
examples in which i : Q — U is not a homeomorphism to U but rather identifies
pairs of components of 4@ to form reducing curves. O

8.2.1. The noncompact reduced pieces.

Lemma 8.6. A noncompact reduced piece Q is standard in the hyperbolic metric
induced by the metric of L.

Proof. If Q = U, then @ is a standard hyperbolic surface as a subsurface with
geodesic boundary of the standard hyperbolic surface L. Otherwise, @ is U cut
apart along embedded geodesics and so is a standard hyperbolic surface. [
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Since there are finitely many reducing curves of the first and second kind, there
are finitely many noncompact reduced pieces. Therefore, for any noncompact re-
duced piece @, there exists an integer m > 0 such that ¢"(Q) = Q.

Proposition 8.7. Suppose Q is a noncompact reduced piece. Then,
(1) The immersion i : Q % L induces a map tq : E(Q) — E(L) and E(Q) is
finite;
(2) If m > 0 is an integer such that g™ (Q) = Q, then g™ : Q — Q is endperi-
odic.

Proof. Fix an integer k > 0 which is a multiple of m and of p. for every end e of
L. Also fix an exhaustion K = Ky C K3 C --- K,, C --- of L by larger and larger
choices of cores. Then {K, N Q},>o is an exhaustion of Q. Let e € £(Q) and
let U,, be the connected component of the complement in @ of K,, N Q) which is a
neighborhood of e. Then e = [{U,}] (see the definition of “end” on page 3). Let
V., be the component of L\ K,, which contains U,,. Thus, ¢’ = [{V,,}] is a uniquely
defined end in (L) and the map tg : £(Q) — (L) defined by tg(e) = € is well
defined, proving the first assertion of (1).

Next we prove that €(Q) is finite. Since k is divisible by p, for every ¢’ € E(L),
g~ : L — L fixes &(L) pointwise. The ends e € &(Q) can arise in one of two ways.
Let tg(e) = €. In the first case, U C @ and e is naturally identified to €’ as
an attracting or repelling end of @ relative to ¢*. There can be at most finitely
many ends of £(Q) obtained in this way. All ends of £(Q) obtained in this way are
attracting or repelling ends for ¢* : Q — Q.

Otherwise, U, meets and therefore contains a reducing curve 7 of the first or
second kind or an infinite family of compact reducing curves which can be thought
of as boundary component(s) of (. Since there are only finitely many reducing
curves of the first or second kind or inifinite familes of compact reducing curves, at
most finitely many ends of ) can be obtained in this way.

Let e € £(Q) be of either of these types, ¢’ = ig(e), and let U C L be a g-
neighborhood of the end €’ as in Definition 2.3. Suppose U, C Q is the component X
of (U NQ) which is a neighborhood of the end e in @ with any contiguous compact
components of @ \ X added on. Then U, satisfies the conditions of Definition 2.2
so e is an attracting or repelling end for g* : Q — Q. Since all ends in &(Q) are
attracting or repelling, it follows that ¢* is endperiodic on Q. By Lemma 2.7, it
follows that g is endperiodic on Q. ([

Recall that the leaves of the laminations A1 do not intersect the reducing curves
in 6.
Lemma 8.8. Suppose @ is a noncompact reduced piece and g™(Q) = Q.

(1) UL NQ are the positive/negative escaping sets for the endperiodic automor-

phism g™ : Q — Q.
(2) (A- NQ,A+ N Q) is the Handel-Miller bilamination for the endperiodic
automorphism g™ : Q — Q.

Proof. For z € @, the sequence {¢g"(z)},>0 escapes in L if and only if the sequence
{(91Q)*™(x)} k>0 escapes in Q and (1) follows. By Lemma 4.71, |Ay| = FrlUx.
Let Ag denote the positive/negative Handel-Miller laminations for the endperiodic
automorphism ¢™ : @ — Q. By Lemma 4.71 and (1),

IAY| =Fr(QNUs) =QNFrls = QN AL
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and (2) follows. O
8.3. Description of the action of g on the reduced pieces.

8.3.1. The Nielsen-Thurston case. Suppose U is a component of L \ |G| in the
nucleus of a principal region. Then U is compact and (JAL|U|A_|)NU = (. By
Lemma 8.5, i : Q — U is a homeomorphism so Q can be identified with U. By
Corollary 8.3, g permutes the components U of L\ |S|. Since there are only finitely
many such U, there exists a least integer m so that ¢™(Q) = Q. We have,

Proposition 8.9. Suppose Q is a compact reduced piece lying in a principal region
and ¢™(Q) = Q. Then the dynamics of the homeomorphism g™ : Q — h™(Q) is
giwen by Nielsen-Thurston theory.

8.3.2. The trivial case. Sugpose U C U is a component of L\ |&| with U compact.
By Lemma 8.5, i : ) — U is a homeomorphism so () can be identified with U.

By Corollary 8.3, g permutes the components U of L \ |&|. Since the sets g™ (U),
n € 7, are disjoint, the dynamics of g on @ is trivial in this case.

Proposition 8.10. Suppose @ is a compact reduced piece lying in U. Then for all
nonzero n € Z the map g" : Q — ¢™(Q) is is a homeomorphism between disjoint
compact sets.

8.3.3. The translation case. Suppose U is a component of L \ |&| with U not
compact that does not meet |A;|U|A_|. Then U C U.

By Lemma 8.5, i : Q — U is a homeomorphism so @ can be identified with
U. By Corollary 8.3, g permutes the components U of L \. |&|. Since the number
of noncompact reduced pieces is finite, it follows that there exists a least integer
m > 0 so that ¢"(Q) = Q. By Lemma 8.8 (2), AL N Q are the Handel-Miller
laminations for the endperiodic automorphism ¢g™ : Q@ — Q. Since AL NQ = 0, by
Lemma 4.76, g™ is isotopic to a translation. We have,

Proposition 8.11. If Q is a noncompact reduced piece which does not meet |Ay|U
[A_| and g™(Q) = Q, then g™ : Q — Q is isotopic to a translation.

8.3.4. The pseudo-anosov case. Suppose U is a components of L \ |&| with non-
compact closure meeting |A | U|A_|. In this case the map i : Q — U is not always
one-one but rather sometimes identifies border components of @) = U. In addition,
U may share border components in & with other components of L \ |&].

Since the leaves of the laminations A+ do not intersect the reducing curves in &
we have,

Lemma 8.12. For a component U of L ~ |&|, the following two statments are
equivalent,

(1) U meets [A4|U|A_];

(2) U meets both [Ay| and |A_|. Ifz €U andx e A€ Ay UA_, then A C U.

Definition 8.13 (pseudo-anosov). An endperiodic automorphism h : L — L is a
pseudo-anosov automorphism if,

(1) h is not a translation;

(2) L contains no reducing curves;

(3) h preserves the Handel-Miller bilamination (A_, A} ).
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Remark. Recall that by Lemma 4.76, an endperiodic automorphsm is a translation
ifand only if A_ =0 = A,.

F1GURE 20. A pseudo-anosov component that is not admissible

Remark. We use the lower case “a” because the analogy with the pseudo-Anosov
components for automorphisms of compact surfaces is weak. Also, some of these
reduced pieces might not even be admissible, although they will be standard. A
pseudo-anosov reduced piece as in Figure 20 occurs, for instance, in Figure 1.
Here, because it inherits a complete hyperbolic metric from L, the simple ends
are cusps. The laminations are still the locally uniform limits of the geodesic junc-
tures. This endperiodic automorphism occurs as the monodromy of the depth one
leaf in Gabai’s “stack of chairs” foliation of a sutured solid torus ([27], but also
cf. [5, Section 11.1]).

By Corollary 8.3, g permutes the components U of L \ |&|. Since the number
of noncompact reduced pieces is finite, it follows that if there exists a least integer
m > 0 so that ¢"(Q) = Q. We have,

Proposition 8.14. If Q is a noncompact reduced piece which meets |A;| U |A_|
and g™(Q) = Q, then g™ : Q@ — Q is a pseudo-anosov automorphism.

9. DYNAMICS IN THE CORE

In the Nielsen-Thurston theory, the pseudo-Anosov homeomorphism is semi-
conjugate to a two-ended Markov shift of finite type. The analogous result here
concerns the core dynamical system.

Definition 9.1 (core dynamical system). Let f : L — L be an endperiodic au-
tomorphism and h an endperiodic automorphism isotopic to f and preserving the
bilamination (Ay,A_). Then the restriction of h to X = |A;| N |A_| defines the
core dynamical system h : X — K.

The main theorem of this section is,

Theorem 9.2. The core dynamical system h : K — K is topologically conjugate to
a two-ended Markov shift of finite type.
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We allow 0L # () and we do not reduce. Theorem 9.2 will follow immediately
from Proposition 9.12.

We fix a core K. The pre-Markov and Markov rectangles R C K we consider
below will have a pair of opposite edges ag, Sr that are subarcs of Ay (called the
positive or vertical edges) and a pair of opposite edges dg,vr that are subarcs of
A_ (called the negative or horizontal edges). As remarked earlier (on page 49), we
are using the term “rectangle” as it is used in the literature on Markov partitions.
Our rectangles will be convex geodesic quadrilaterals, not geometric rectangles, as
the latter are impossible in hyperbolic geometry.

Remark. We allow degenerate rectangles. If agp = SR, then R = ai degenerates
to an arc in Ay and, if g = yr, R = dr degenerates to an arc in A_. These
degenerate possibilities should be kept in mind in what follows.

Definition 9.3 (QF). Let QT C K be the extreme rectangle (Definition 6.2) with
two edges agt,Bg+ that are extreme arcs of Ay N K in their isotopy class. The
other two edges dg+, 7ot of Q' are arcs in positive junctures in 9, K. Let Q C QFf
be the largest rectangular subset of Q' with two edges subsets of agt, Bor C |A4]

and the other two edges subsets of leaves of A_. The finite set of all such rectangles
will be denoted by Q7.

Remark. The rectangle Q C Q' has as positive edges subarcs of the positive edges
of Qf. Tts negative edges are arcs of A_ N Qf. These arcs may be identical, in
which case @ degenerates to an arc in A_. Conceivably, A_ NQ" = 0, hence Q = (.
In this case Q' lies in the positive escaping set U, and contributes nothing to the
dynamical system h : K — K.

i
\ /5

|

FIGURE 21. R completely crosses R’ twice

Definition 9.4 (completely crosses). Let R and R’ be nondegenerate rectangles
with geodesic sides. Then R completely crosses R’ in the positive direction if each
component (if any) of RN R’ is a nondegenerate rectangle with horizontal boundary
components subarcs of [A_| N R’ and vertical boundary components subarcs of
[Ay|NR. If R and/or R’ degenerates, the definition is modified in the obvious
way. We say that R completely crosses R’ in the negative direction precisely if R’
completely crosses R in the positive direction.

This definition allows R to cross R’ multiple times (see Figure 21) or never. It
also allows the situation pictured in Figure 22.



76 J. CANTWELL, L. CONLON, AND S. FENLEY

Rl

FIGURE 22. R completely crosses R’ with overlapping edges

Proposition 9.5. If Q € QT then h(Q) completely crosses (in the positive direc-
tion) any rectangle Q' € QF that it meets.

Proof. Let Q C Qf and Q' C (Q')" as in Definition 9.3. Suppose h(Q) meets Q’.
Since the vertical edges of (Q') are extremals of their isotopy class in A, N K
and the horizontal edges of A(QT) lie in positive junctures disjoint from K, we see
that h(Q1) completely crosses (Q)f, hence completely crosses Q'. If h(Q) does not
completely cross Q' then, since it meets @', at least one horizontal edge of h(Q),
say Op(0) = h(0g), lies in Q' \ 8. By applying h™!, we see that this contradicts
the fact that Q is the largest rectangular subset of QT with pairs of opposite edges
in Ay and A_ respectively. ]

Definition 9.6 (Markov family, pre-Markov family). A finite family {Ry,..., R,}
of disjoint rectangles is called a Markov family (in the literature frequently called
a Markov partition) if it satisfies Properties I — IV below,

I. One pair of opposite edges of each R; is contained in |A1| and the other
pair of opposite edges of each R; is contained in |[A_|.

II. RNR; =0if i # j.

III. h(R;) completely crosses each R;.

IV. h(R;) N R; has at most one component.

V. For each bi-infinite sequence,

(oo iy e ey io1,d0y 00, iy ... ) €{1,2,...,n}F
the intersection, (Np— hF (R;,), is either empty or exactly one point.

If the family of rectangles satisfies Properties I — III, we call it a pre-Markov family
(or partition).

Example 9.7. We will show that the family
M* = {components of h(Q) N Q" | Q,Q' € 9"} ={Rf,..., R}

is a Markov family. We refer to M+ as the family of positive Markov rectangles.
The family QF satisfying Proposition 9.5 is a pre-Markov family.

Remark. In the literature, a pre-Markov partition is sometimes called a Markov
partition.

Remark. There are infinitely many different possible choices for the family of
Markov rectangles. The family M™ satisfies Property V if and only if there are
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no principal regions. Property V is required of a family used to prove Proposi-
tion 9.12 and Theorem 9.2. Below we will give a Markov family M that does satisfy
Property V.

Remark. Often a Markov family is allowed to have contiguous elements as in
Figure 23. Our families do not have contiguous elements. This is because the
rectangles Q' that we started with could not be contiguous.

Remark. It is not standard to allow degenerate rectangles in Markov families,
but there is no real problem in doing so. In our situation, Markov rectangles
that degenerate to arcs are forced, for example, if there are principal regions with
isolated border leaves. It is possible that an isolated leaf of either lamination might
contribute such a degenerate rectangle and that the components of h(Q)NQ’ might
degenerate to points. In general, we allow Markov families to have some rectangles
that degenerate to a point. The reader should keep such possible degeneracies in
mind throughout the following discussion.

B 5

RT R

7 3

Ficure 23. Contiguous rectangles

Corollary 9.8. If Rj € M* is a component of h(Q) N Q’, then R completely
crosses Q' in the positive direction.

Proposition 9.9. The family M* has the property that I"L(R;F)HRJ-+ 1s either empty
or h(R;r) completely crosses R;r in the positive direction and their intersection has
a single component, 1 <1i,7 <mn. Consequently, M* is a Markov family.

Proof. Suppose that R; is a component of h(Q)NQ’ with @, Q" € QF and suppose
R} € M*. Since the sets in QF are disjoint, if h(R;") C h(Q') meets R € M,
it follows from the definition of M™ that R;r is a component of hA(Q') N Q" some
Q" € Q*. By Corollary 9.8, R; completely crosses Q' in the positive sense so
h(R;) completely crosses R;' exactly once in the positive sense. “Exactly once”
is due to the fact that R;r is not Q”, but a component of h(Q') N Q" and also
h(R) C h(Q"). O

Let {R1, Rz, ..., R,} be a Markov family. One sets up an n x n Markov matrix
A with entries

AL EROK(R) 0,
Y00, if RyNh(R;) = 0.
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The corresponding set 8§ of symbols consists of all bi-infinite sequences
L= (oeyigy ey i1,00, 01, ipy ... ) € {1,2,..., 0}

such that A =1, —co< k < 0.

Tk yTh+1
Remark. There are always periodic symbols in 8, usually a countable infinity of
them.

For each bi-infinite sequence in the symbol set 8 for M+ (and only for such),
—k(p+ —1/p+ + + k(p+ _
cNRTYRT )N hT (RS )N R NR(RE) NN AY (R )N =( #£ D

We would like to have that {, ranges exactly over K as ¢ ranges over §, in which
case the right-shift operator o : § — 8§ will be exactly conjugate to h : K — K. This
will be true if there are no principal regions, but generally many (, may be whole
arcs of intersection of A with arms of negative principal regions. We will leave it
to the reader to see this, remarking only that it is due to a basic asymmetry in the
definition of M* which favors the role of A ;. In studying particular examples, and
even for the applications of symbolic dynamics in [12, 16], it is always adequate to
use MT. The following discussion, which does not explicitly mention the principal
regions, is motivated partly by aesthetics, but is also useful.

Example 9.10. We first define the negative pre-Markov rectangles. Let Qf ¢ K
be the extreme rectangle (Definition 6.2) with two edges d¢t, 7t that are extreme
arcs of A_ N K in their isotopy class. The other two edges ag+, B+ of Q' are arcs
in negative junctures in K. Let Q C Q' be the largest rectangular subset of Qf
with two edges subsets of dgt,7ot C [A_| and the other two edges subsets of leaves
of A;. The finite set of all such rectangles will be denoted by Q™. Define

M~ = {components of hH(Q)NQ’ | Q,Q € Q" }={R;,...,R,}.
In analogy with M™, this is shown to be a Markov family.

Remark. If there are no principal regions one expects M~ to be closely related to
M. For example, in Examples 4.13 and 4.35, if one takes the core K to be as in
Figure 12, then M+ = h(M™).

Example 9.11. The symmetric family of Markov rectangles is given by,
M = {components of R; N R} | Rl € MJF,RJ-_ eM™}={Ry,..., Ry}

The top and bottom edges of R, will be arcs in A_ and the left and right edges
will be arcs in Ay. The family M (again Markov) satisfies Property V and will be
used to prove Theorem 9.2.

It should be remarked that some of these new Markov rectangles might degen-
erate to a point, a component of intersection of a degenerate rectangle Ri+ with a
degenerate R; . This finite set of points will be permuted by h. There may also be
arcs from one or another of the laminations among these rectangles.

As we will see, the symbol set for this Markov family will exactly encode X and
provide the desired conjugacy of h|X to the resulting shift map.

We will leave it to the reader to check that M is again a Markov family for h.

Remark. Our situation in which distinct Markov rectangles cannot be contiguous
is a bit stronger than the usual requirement that they merely not overlap. This
eliminates the usual ambiguity in the coding, insuring that ¢ : 8 — § is conjugate
to h : X — K and not merely semi-conjugate.
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We are ready to prove the key result.

Proposition 9.12. If 1 = (... i j, ... i 1,00,01,-0p,---) € {1,2,...,¢}* is a
symbol for M, then the infinite intersection

I" = Ry, Nh(R;,) Nh*(Ry,) N ---NR* (R )N -+
is an arc of Ay N R;, and
I" =Ry, Nnh YR )Nh2(R;_,)N---Nh ®R;_)N---

is an arc of A_ N R;,. Furthermore, all such arcs are obtained in this way. Con-
sequently, ¢, = I, NI;" € K and every point of X is of the form ¢, for a unique
symbol ¢.

Proof. One easily sees that M and M~ each covers X, hence so does M. Con-
sequently, the assertions about I;* and I, imply the assertion about ¢,. In fact,
¢, = I, NI} will be one point as the intersection of two arcs, one in a leaf A\_ € A_
joining a pair of opposite edges of R;, and the other in a leaf Ay € A, joining the
other pair of opposite edges of R;,. As remarked above, the fact that each point
of K uniquely determines its symbol is due to the fact that our Markov rectangles
are disjoint. Thus, it remains to prove the assertions about I;" and I,.

If I¥ is not as asserted, it must be a rectangle with nonempty interior. Assume
this and deduce a contradiction as follows. By the construction of M, the sides of
R;, in Ay extend to the sides in Ay of a rectangle C;, C K, the other two sides of
which are arcs dg, 7y, in positive junctures in 9K . Consider the set

P, = h*(C; ) Y, )N -
By our hypothesis, Py is a nondegenerate rectangle with two sides 0j,~, subarcs

of h¥(8;) and h¥(vy), respectively. Thus &},, are subarcs of positive junctures in
fundamental neighborhoods of positive ends. Furthermore,

PhchC---CP,C---

k+1)

and the edges in A4 of each Py are subarcs of the corresponding sides of Py41,
0 < k < 00. The increasing union of these rectangles is an infinite strip P bounded
by distinct leaves A, € A;. Any lift of this strip to the universal cover is a strip
with distinct boundary components X, RS /N\Jr covering A, u € Ay and limiting on
two pairs {x,y}, {z,w} C SL. The notation is chosen so that the lifts 5;6 lying in
this strip have endpoints xy,yx on X and I, respectively, and {zy}r>0 converges
to « and {yitr>o to y. If © # y, then {g;ﬁ}kzo converges to the geodesic in L
with endpoints  and y. Consequently the sequence {0} }r>0 accumulates locally
uniformly on a geodesic in L. But by Theorem 4.24, this sequence escapes, hence
x = y. Similarly, z = w, hence A = pi. This is the desired contradiction.

The assertion about I, is proven in the same way. Finally, the fact that M
covers K implies that the union of all I;"’s also covers K, as does the union of all
I;7’s. Thus, all arcs of AL N R;, and all arcs of A_ N R;, are obtained as asserted,
io=12,...,q. O

Remark. It is possible to use the pre-Markov family Ot = {Q1,Q2,...Q,} of
rectangles to produce projectively invariant measures for h on A (and A_) much
as in the case of pseudo-Anosov automorphisms of compact surfaces. The following
sketch follows the lead of [19, pages 95-102] and we refer the reader there for more
details.



80 J. CANTWELL, L. CONLON, AND S. FENLEY

Let B = (By,;) be the incidence matrix, where By, ; is the number of components
of h(Qr) NQ;. By the Brouwer fixed point theorem, this matrix has an eigenvector
y # 0 with all entries nonnegative and with eigenvalue x > 1. In the (typical) case
that x > 1, one obtains a transverse, projectively invariant measure p4 for h on
A with projective constant k.

Now Q% is also pre-Markov for A~! with intersection matrix the transpose BT
and (left) eigenvector yT. This gives a transverse, projectively invariant measure
p_ for h=! on A_ with projective constant x. Viewed as a projectively invariant
measure for h, it has projective constant =% < 1.

Since the eigenvectors y and y* may have some zero entries, these measures will
not generally have full support. See [24] for a simple example. If, however, A} is a
minimal A-invariant lamination, the measures will evidently have full support.

10. PSEUDO-GEODESIC LAMINATIONS AND THE ISOTOPY THEOREM

The theory developed so far is for geodesic laminations, but for applications to
foliation theory this is much too restrictive. In this section we give an axiomatic
approach to endperiodic automorphisms using pseudo-geodesic laminations.

10.1. The axioms. We fix a choice of standard hyperbolic metric g on the admis-
sible surface L.

Lemma 10.1. Any two standard hyperbolic metrics on L have the same pseudo-
geodesics.

Proof. Assume first that 0L = () and let g and ¢’ be two standard hyperbolic metrics
on L. Let mg : A — L and m; : A — L be the universal covers corresponding to
these respective metrics. It is well known that there is a commutative diagram

A —2 A

ﬂol lm

LT)L

where ¢ is a homeomorphism completely determined by its value on a single point
xo € A. Since the hyperbolic metrics are standard, as in the proof of [15, The-
orem 2|, ¢ extends canonically to a homeomorphism @ : D? — D? which clearly

takes geodesics to pseudo-geodesics.
If OL # (), the proof is similar. O

Remark. Since L has a standard hyperbolic metric, [15, Corollary 4] implies
that an arbitrary homeomorphism ¢ : L — L takes pseudo-geodesics to pseudo-
geodesics.

Recall from Definition 4.19 that, if v is a pseudo-geodesic, then & denotes
its geodesic tightening, the unique geodesic the lifts of which have the same ideal
endpoints as the corresponding lifts of «v. Note that 48 C L since 0L, hence 9L, is
geodesic. If we allow the metric g to vary, we will refer to the g-geodesic tightening.

Beginning with an endperiodic automorphism f : L — L, we want to define an
associated pair of pseudo-geodesic laminations satisfying four axioms.

The notations A+ and J4, which have been used up to now for the geodesic
Handel-Miller laminations and the geodesic juncture components, will from now on
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be used for the pseudo-geodesic laminations and juncture components given in the
axioms.

Axiom 1. (A;,A_) is a bilamination, A, and A_ being closed, pseudo-geodesic
laminations with all leaves disjoint from OL.

Hereafter, for the sake of economy, every assertion about “the lamination A”
is really two assertions, one about A, and one about A_.

Axiom 2. A leaf of /~\i can meet a leaf of /LF in at most one point.

Equivalently, the leaves of A, cannot intersect the leaves of A_ so as to form
digons.

Definition 10.2 (endpoint correspondence property). The pseudo-geodesic lami-
nation A4 has the endpoint correspondence property with respect to f if the cor-
respondence A — A& sends AL one-one onto the positive/negative geodesic Handel-
Miller laminations associated to f (Definition 4.30).

When the context makes it clear, we sometimes shorten the language, saying that
A4 has the endpoint correspondence property. We also say that the bilamination
has the endpoint correspondence property (with respect to f).

The final two axioms will tie (A4, A_) to the endperiodic automorphism f.

Axiom 3. The bilamination (A4, A_) has the endpoint correspondence property
with respect to f.

Notation. If X is a set of pseudo-goedesics, we use the notation
Xt ={+*|ryeX}

Remark. By Axiom 3, (A%, A%) are the Handel-Miller geodesic bilamination as-
sociated to f.

The next two lemmas follow immediately from Axiom 3 since A% has the same
properties.

Lemma 10.3. Every leaf of A+ meets at least one leaf of A.

Lemma 10.4. Fach leaf of the lifted lamination Ki of L is determined by its
endpoints in S .

Fix a set of f-junctures and corresponding set N of f-juncture components (Def-
inition 4.17). We define a set of pseudo-geodesic junctures and corresponding set
d of juncture components in analogy to the sets of geodesic junctures and juncture
components we introduced in Definition 4.21.

Definition 10.5 (junctures, J, J+, J—, ¢). A set J of juncture components associ-
ated to a set N of f-juncture components is a set of compact, properly embedded
arcs and circles in L such that

(1) there is a bijection ¢ : N — J;

(2) for each v € N, ¢(v) is homotopic to v with endpoints (if any) fixed;

(3) if v # +" are both in N or both in N_, then ¢(vy) is disjoint from ¢(v/).
The set Jy = «(N) is called the set of positive juncture components. The set
J— = t(N_) is called the set of negative juncture components. Further the map
¢ extends in a natural way to the set of fixed f-junctures to define a fixed set of
junctures of the form J = ¢(NN) where N is one of the fixed f-junctures.
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The map ¢ : N — J serves the role of the geodesic tightening map of Defi-
nition 4.20 and can be extended to a map ¢ : NT — J where Nt is the set of
pseudo-geodesics 7 such that there exists an f-juncture component o € N whose
lifts have the same endpoints on S, as the lifts of 4. Then define «(y) = (o).
This definition then extends in a natural way to a function ¢ with domain the finite
unions of elements of NT. Then the last equality in the following definition makes
sense. Compare this definition with Definition 4.22.

Remark. Notice that, by item (3) in Definition 10.5, the set of junctures has the
juncture intersection property.

Definition 10.6 (J,,). Given a juncture J = ¢(N), let J,, = «(f™(N)) = o(f™(J)),
n € Z.

In what follows, we assume a choice of N and J, f-juncture components and
juncture components, and thus a choice of set of f-junctures and set of junctures.
Axiom 4 will then claim the existence of choices with suitable properties.

Axiom 4. There is a choice of the families N1 of positive/negative f-juncture
components and J+ = ¢«(Ny) of positive/negative juncture components such that:
(1) Ay UJ- and A_ U g, are each sets of disjoint pseudo-geodesics;
(2) Ay is transverse to J4 and A_ is transverse to J_;
(3) no leaf of Ay can meet an element of J+ so as to form digons.

This completes the list of axioms.

Definition 10.7 (Handel-Miller pseudo-geodesic bilamination associated to f). If
(A4, A_) satisfies the four axioms, it will be called a Handel-Miller pseudo-geodesic
bilamination associated to f. The individual laminations AL will be called Handel-
Miller pseudo-geodesic laminations associated to f.

Remark. The image of a Handel-Miller pseudo-geodesic bilamination associated
to f under an isotopy of L will be a Handel-Miller pseudo-geodesic bilamination
associated to f. Thus, a Handel-Miller pseudo-geodesic bilamination associated to
f is not unique but, by Theorem 10.13, is unique up to isotopy.

Lemma 10.8. The Handel-Miller pseudo-geodesic laminations associated to f are
transversely totally disconnected (Definition 4.4).

Proof. We will show that A, is transversely totally disconnected. The proof that
A_is transversely totally disconnected is similar. Suppose that |A| has nonempty
interior. Then |A+| has nonempty interior. Let x € A} € A+ have a neighborhood
contained in |A+| Then there exists a leaf A_ € A_ and a point y € A N A_ such
that y has a neighborhood V' C |A+| which is an open disk. This follows since one
can find a bilamination chart of the form P x (—¢,¢) with x € P x {0} and P C A+
as long as desired (see Remark page 24) and since, by Lemma 10.3, every leaf in
A meets some leaf in A_. Here, of necessity, € > 0 will be small.

Thus, there exists an arc [a,b] C A_ N |[Ay| with y € (a,b). Let Ag, Ay € Ay be
such that A, NA_ = {a} and \yNA_ = {b}. Consider the geodesics A8, A&, A& in L
with the same endpoints on SL, as A, Ap, A respectively. By Axiom 3, A8, A} € /NXf_
and A% € A%, Let {a®} = A8NA%, {b8} = APNA%, and [a®,b8] C A%, Since the semi-
proper leaves are dense in Af_, there exists a pair of semi-proper leaves A\, A5 € Ki
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meeting the interval [a®,b8] at a pair of points 2%, 2§ with (z%,28) N |A%| = 0. Let
AL, A2 € /~X+ have the same endpoints on S1 as A$, A§ respectively (Axiom 3). By
Axiom 3, if z; = \;NA_, i = 1,2, then (z1,z2) N |/~\+\ = () which is a contradiction.
Thus, int |A| = 0. The lemma follows. O

Corollary 10.9. The union of the semi-isolated leaves of Ay is dense in |Ay|.
Lemma 10.10. No leaf A € Ay is contained in a bounded region of L.

Proof. Let Xo C X1 C --- C X; C --- be an exhaustion of L by compact subsets.
Without loss we can assume Fr X; is a geodesic 1-manifold. By Lemma 4.46, A&
meets Fr X;, for i sufficiently large. Suppose «a is a geodesic component of Fr X;
with a A9 # 0. Let & and X8 be lifts of o and A¢ with &N X8 # 0. If X is lift of A
sharing endpoints with A&, then ANa # . Thus, ANFr X; # ), for all 7 sufficiently
large, and the lemma follows. ([

Corollary 10.11. No neighborhood of any end of a leaf of Ay is contained in a
bounded region of L.

Proof. If a neighborhood of an end ¢ of a leaf of A is contained in a bounded region
of L, then the asymptote of € (see definition in the proof of Lemma 4.50) would
contain a leaf of Ay in a bounded region of L which contradicts the lemma. O

In particular, the leaves are noncompact and one-one immersions of R in int L.
The endpoints of the lifted leaves are ideal. That is they are in E.

Theorem 10.12. The Handel-Miller geodesic bilamination (A%, A% ) associated to
f satisfies the four azioms, where v : N — J8 is defined by 1(y) = &, Vy € N.

Proof. Axiom 1. By Proposition 4.28, (A%, A%) are bilaminations. By construc-
tion they are closed. Clearly every geodesic is a pseudo-geodesic. If & € JL, then
x can not lie in either A% or A% because {h™(x)}nez escapes if z € L but not if
z e A%

Axiom 2. Since there cannot be geodesic digons in hyperbolic geometry, this
axiom is immediate.

Axiom 3. This axiom is tautologically true.

Axiom 4. This follows from Proposition 4.28 and the fact that, in hyperbolic
surfaces, there are no geodesic digons. [

10.2. Uniqueness. An axiomatization needs to satisfy two conditions, consistency
and completeness. The consistency of our axioms is given by Theorem 10.12. For
completeness, one needs to show that the system defined by the axioms is unique
up to a reasonable equivalence relation. In this section we will prove the following.

Theorem 10.13 (Uniqueness Theorem). The Handel-Miller pseudo-geodesic bil-
amination associated to an endperiodic automorphism f is uniquely determined by
f up to ambient isotopy.

This is an immediate consequence of Theorem 10.15. The following is useful in
applications.

Corollary 10.14. The core dynamical system h : KX — K is uniquely determined
by the endperiodic automorphism f up to topological conjugacy 1) o h|K o=t by a
homeomorphsim v : L — L isotopic to the identity.
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Theorem 10.15 (Isotopy Theorem). If (A, A_) is a bilamination satisfing the az-
ioms, then there is a homeomorphism 1 : L — L, isotopic to the identity by an iso-
topy fizing OL pointwise, such that ¥(X) = A8, for each A € Ay and (Y(Ay),¥(A-))
is the Handel-Miller geodesic bilamination.

Corollary 10.16. If f : L — L is an endperiodic automorphism, the geodesic
bilamination (A%, A%) associated to f is independent, up to ambient isotopy, of the
choice of standard hyperbolic metric g.

Proof. Let g and g’ be two standard hyperbolic metrics on L and let (A5, A%) be
the Handel-Miller geodesic bilamination associated to f and corresponding to g,
(Af_/,Ag_/ ) the one corresponding to g’. Relative to the metric g, the lamination
Ai is pseudo-geodesic (Lemma 10.1). The pair (Af_/ , A¥ ) forms a pseudo-geodesic
bilamination which clearly satisfies Axioms 1, 2, and 4 as these are metric indepen-
dent. By Corollary 4.72, we can assume we are using the same choice of set N of
f-junctures in Axiom 4 for both laminations A% and Ai/.

It remains to prove Axiom 3. Assume that L = (). The proof in the case L # ()
is similar. As in the proof of Lemma 10.1, the identity map id : L — L lifts to a
map ¢ : A — A uniquely determined by its value at one point which extends to a
map @ : D? — D2 Axiom 3 follows immediately since the endpoints on SL of the
leaves of N and of 3~ (J/\\f) coincide. O

10.3. Proof of Theorem 10.15. We will prove Theorem 10.15 in a sequence of
steps, noting that by Corollary 10.9, we only need to straighten the semi-isolated
leaves. At each step we will modify the laminations AL by an isotopy. That is we
will replace the laminations AL by ¢(A+) where ¢ is a homeomorphsm isotopic to
the identity. We do not apply the homeomorphism ¢ to A% which is to be thought
of simply as the target of the whole process.

10.3.1. A preliminary isotopy to set up the tiling. We use the tiling T8 defined in
Section 4.6.2.

Lemma 10.17. Suppose the juncture J. = Fr V., where V. is a closed neighborhood
of the end e € E(L). Then there exists a homeomorphism ., isotopic to the
identity, such that v¥.(7) = 78 for every juncture component T C V.

Proof. Enumerate the juncture components in V. as {7;}52,. Let ¢y = id. Using
Theorem 3.1, Theorem 3.2 and the remark after Theorem 3.3, inductively find
sequences ®; of isotopies and 1; of homeomorphisms isotopic to the identity with
P, = ®loep;_q, i > 1, fixing OL and 77, ..., 75, pointwise with ®; moving ;1 (7;)
to its geodesic tightening. That is, 1;(r;) = ®}(i—1(r;)) = 7F. Then, by the
remark after Theroem 3.3, the supports of at most finitely many ®; meet any
compact set so that ¥; — 1, a well defined homeomorphism isotopic to the identity
and e (1) = i(m;) = 78,1 > 1. O

Corollary 10.18. Suppose the juncture J, = FrV, is chosen, each e € E(L), such
that the V. are disjoint. Then there exists a homeomorphism 1, isotopic to the
identity, such that (1) = 78 for every juncture component T C Ule Ve,.

Proof. Take 1 to be the composition of the . each e € E(L). a
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Note that the homeomorhism ¢ is such that ¢ (J.) = J& and (V) = U, where
J& =FrU,, e € &(L), and the U, are disjoint. As usual L =W~ UK UW™T where,

W = U U, and WT = U U..
e€€_(L) €€ (L)

The set J§, consists of all components of negative geodesic junctures in W~ and
all components of positive geodesic junctures in W+ (Definition 4.42). Cutting L
apart along the geodesic juncture components in J%, decomposes L into a set T8
of “tiles” (Definition 4.58).

Lemma 10.19. The laminations (A1) are transverse to the geodesic junctures
in J5, .

Proof. This follows immediately from the fact that the laminations AL were trans-
verse to the junctures in J+. O

We replace the laminations Ay by the laminations ¢ (AL). This is our first step
in straightening the laminations A1 to the laminations A% .

10.3.2. Preliminary isotopies in the core and the laminations G5 . As above, Fry K =
Ue€8+(L) Jg and Fr_ K = Uees,(L) JE.
Notation. Denote by
S+ = ALK
5% = MK,
the laminations induced on K by Ay and A%.

A leaf o = [z1.23] € G4 is contained in a leaf 7, € Ay and has endpoints z;
in geodesic juncture components o; C Fry K, ¢ = 1,2. Let a = [¥1,72] C Ya
be lifts of a = [x1,23] C o with Z; in the lift 5; of 0y, ¢ = 1,2. The geodesic
tightening & of v, has lift v§ sharing endpoints on S with 7,. There is a unique

arc a& = [2%, 28] C 7§ with 2% € 5;, i = 1,2.

Notation. The covering projection of the arc a2 is in % and will be denoted
a8 = [z%,25]. The correspondence o <« o induces a one-one correspondence

between G4 and G%.

Recall from Lemma 4.53 that each isotopy class of leaves of G% contains two
extremal leaves (in the degenerate case where the isotopy class has one leaf we
consider that leaf to be an extremal leaf). For reasons that will become obvious,
we will refer to a leaf & € G4 as an extremal leaf if the corresponding geodesic
segment a8 € G4 is an extremal leaf of G .

By Lemma 4.52, the leaves of G& fall into finitely many isotopy classes. Thus,
G+ has finitely many extremal leaves.

Proposition 10.20. There is a preliminary isotopy, supported arbitrarily near K
and leaving that surface invariant, that straightens each extremal leaf o € G4 to its
corresponding leaf & € G&.

Proof. Each of the finitely many extremal leaves in G, has its endpoints in two
(not necessarily distinct) geodesic juncture components in Fry K. An application
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of Lemma 4.57 to each of these in turn will straighten each of them in turn as
required.

Each of the finitely many extremal leaves in §G_ has its endpoints in two (not
necessarily distinct) geodesic juncture components in Fr_ K and will possibly be
divided into finitely many segments by the geodesics containing the already straight-
ened extremal leaves in G, . Finitely many applications of Lemma 4.57 to each of
these segments in turn will staighten each of the extremal leaves in §_ in turn
without moving the already straightened extremal leaves of G . (I

Thus, it can be assumed that each of the extremal leaves a € G is identical
with its corresponding leaf o8 € G%. They each lie in the geodesic 7€, the lifts of
which have the same endpoints as the lifts of the leaf v, of AL containing . Note
that at this stage it is not yet true that vy, = 78, only that oo = a®.

Looking in the universal cover we see that,

Corollary 10.21. Each leaf of G4 (respectively G_) lies in a rectangle R with a
pair of opposite edges extremal leaves of G4 (respectively G_) and a pair of opposite
edges contained in Fry K (respectively Fr_ K) .

Notation. The set of rectangles R C K bounded by extremal leaves of G, will be
denoted by R,. The analogous set of rectangles bounded by extremal leaves of G_
will be denoted by R_. Let R =Ry UR_.

Lemma 10.22. If Ry € R4 and R_ € R_, then the components of Ry N R_ are
rectangles with one pair of opposite sides in opposite sides of Ry and the other pair
in opposite sides of R_.

Proof. This follows from Axiom 2 which implies that a side of R, and a side of R_
cannot intersect so as to form one or more digons. O

If o is a leaf of G (respectively of §_) lying in R € R, then « connects two
positive (respectively negative) juncture components lying in Fr, K (respectively
Fr_ K). Let R € R. The geodesic arcs R N Fr K, taken in either order, will be
called the bottom and top edges of R and the extremal geodesic arcs will be called
the left and right edges. Fix these choices.

Notice that |R| has both concave and convex corners. Of course a given R_ € R_
can cross an Ry € Ry more than once. Since the extremals have already been
straightened, both G+ and Si can be viewed as laminations of |R|. If some of the
rectangles R degenerate to arcs, this language is a bit unorthodox, but harmlessly
S0.

Notation. Denote by 9,R the closure of Fr R \ Fr K.

In other words, 9,R is the part of OR lying in |A4| U |A_].

The leaves of G are properly embedded arcs having both endpoints in Fry K.
All isotopies of these leaves are to fix 9y K UFr_ K pointwise where 0 K = KNJL.
As already indicated, the isotopies leave Fry K componentwise invariant, but not
pointwise. Similar remarks apply to §_.

The leaves of G4 fall into finitely many isotopy classes. There are extremal
leaves in each isotopy class which, together with arcs in Fry K cut off rectangles
containing all the leaves in that isotopy class. If the isotopy class has only one leaf,
we consider that leaf as a degenerate rectangle.
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10.3.3. Straightening all leaves of G4. This is the delicate part of the argument.

By Corollary 10.9, we only need to straighten the semi-isolated leaves of AL. In
this subsection, we will construct a sequence {®;}7°, of ambient isotopies which
progressively “locally straighten” each leaf o € G+ which is a segment of a semi-
isolated leaf A € AL U A_ to the corresponding geodesic segment a8 € G4, taking
care that once a leaf segment has been straightened by ®;, it remains invariant
under ®;, j > i.

We will need to prove that the infinite composition ¢ = --- 0 ®l o .- 0 &l o ®1
is a well defined homeomorphism, isotopic to the identity. This is a delicate point
since we cannot ensure that the supports of these isotopies form a locally finite
family of sets. But then, since the semi-isolated leaves have been straightened, the
homeomorphism ¢ performs as advertised.

Throughout this process the homeomorphism ; = ®} o---0®} o ®{ distorts the
laminations A1 to laminations A%

The goal of this section is to construct an isotopy straightening all the leaves
of G1. Note that |G4| C |R|. Recall that there is a canonical correspondence
between the leaves a of G4 and leaves a8 of §%, We will progressively “tighten” a
countable dense set of leaves a € G one at a time to their corresponding geodesic
leaves a® € G& by ambient isotopies compactly supported in a neighborhood of K.
Already tightened leaves of G+ and components of 0, K UFr+ K are pointwise fixed
under the ambient isotopy where 0, K = K N dL. The components of Fr. K and
already tightened leaves of G+ will be invariant but generally not fixed pointwise
by the isotopy.

Lemma 10.23. There are mutually transverse C° foliations F+ of |R| such that
9+ CFrand §_ C F_.

Proof. By Axiom 1, (Ay,A_) is a bilamination. By Lemma 4.8, applied to this
bilamination, each of the rectangles making up |Ry| N |R_| can be bifoliated as
required. The rest of |R| consists of rectangles that can be bifoliated as laminated
charts for either Ay or A_. The usual process of gluing foliations along trans-
verse and tangential boundary components allows the foliations in these various
rectangles to be matched up. O

Lemma 10.24. There are mutually transverse C° foliations F& of |R| by geodesic
arcs such that G5 C F5 and G& C F%.

Proof. In each rectangle R making up |R.|, the geodesic lamination induced by

£ extends to a geodesic foliation F% by the method of proof of Proposition 4.28.
Similarly, we extend G2 to a geodesic foliation F8 of |R_|. On the intersection
|R4| N|R_| these foliations, being geodesic, are necessarily transverse. F% is easily
extended to the remaining subrectangles of |R4| to be transverse to ?i there. O

Lemma 10.25. There exists a natural map p: (F,F_) — (F&,F8). The map p
takes leaves o € G to their corresponding geodesic leaves o € % and gaps of G+
to the corresponding gaps of G%..

Proof. We define the map p on F,. The definition of p on F_ is analogous. One
first defines pu(¢) = ¢8 for ¢ € G and then extends p over the gaps of §;. There
are two types of gaps to consider. First let V' be a gap of G4 lying in a rectangle
R € R, o the bottom edge of V and 7 the bottom edge of the corresponding gap
W of G&. There is a map v : ¢ — 7, linear in the hyperbolic metric. If A C V is a
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leaf of I and ANo = {p}, let u(A) C W be the leaf of F§ with u(X) N7 = {v(p)}.
Next, let V' be a gap of G lying entirely in a rectangle R € R_, crossing it from
left edge to right edge, o the left edge of V', and 7 the left edge of the corresponding
gap W of G§. As in the first case, there is a map v : o — 7, linear in the hyperbolic
metric. If A C V is a leaf of ¥ and AN o = {p}, let u(A\) C W be the leaf of F&
with p(A) N7 = {v(p)}. O

For A € F1, we will denote p()\) by A8 € F&. The following lemma is clear.

Lemma 10.26. The map p induces a homeomorphism we will denote by
|l = 1R = [R].

Lemma 10.27. There exist countable sublaminations Hy C Fy and HE C F§
that correspond under the map p and such that |Hy| and |H%| are each dense in
|R|. The set Hy contains all the semi-isolated leaves of G+. The rest of the leaves
of Hy lie in gaps of G+. .

Proof. We first construct H . The construction of H_ is similar. Start by putting
the semi-isolated leaves of G4 into H . Then for each gap V of G4, choose a
countable subset of F; with union dense in V. Since there are countably many
gaps, each bounded by two semi-isolated leaves, the set I, is countable. Define
the sets HE = {u(\) | A € Hy}. O

Enumerate the elements of the set H UH_ as ¢1,¢s,.... Note that we are not
distinguishing whether ¢;, lies in H; or H_. Working in the rectangle R € R which
contains ¢1, we produce an isotopy ®;, compactly supported in R and leaving 9,R
fixed pointwise, which carries ¢; to ¢f. As usual, this is a sliding isotopy along the
bottom and top of R and then an application of Theorem 3.2. Let 1y = id and
P = ¢l
Proposition 10.28. For n = 1,2,..., there exist isotopies ®, and homeomor-
phisms 1, defined on |R|, fizing 0.R pointwise, such that,

(1> wn = CI)}l o ¢n71-

(2) Yn—1 takes by to 03,1 <k <n-—1.

(3) @, straightens 1n_1(£y) to €8 while leaving the already straightened (5 in-
variant, 1 <k <n—1.

Proof. We proceed inductively. The assertions of the proposition for n = 1 are
satisfied tautologically or vacuously. Inductively, suppose ®,,, v, and ¥, _1 have
been defined satisfying the conditions of the proposition, for some n > 1. The next
leaf to be straightened is ¢,,+1. To simplify the discussion, assume ¢, 11 € G;. Let
R € R, be the rectangle containing ¢, 1 and let f,..., 3, be the other already
straightened leaves of G4 in R. Let X be the rectangular component of R~ J!_; f;
that contains 9, (¢,4+1). Then EE;L_H C X and the support of &1 will be X. Let
o1,...,0q be the arcs crossing X in which the already straightened leaves of G_
meet X. Note that the endpoints of ¢, (¢,,+1) lie in two geodesic segments X NFr K
which we denote ag, og41. The segments o, ..., a4 divide X into subrectangles X;
with two opposite edges «;, a;11, 0 <7 < gq.

The isotopy ®,,4+1 is defined as a composition of the following very straightfor-
ward isotopies. One first defines isotopies supported in small neighborhoods of the
a;, 0 < i < g+ 1, that slides the point of intersection of ¥, (¢,+1) with «; along
the arc o; until it coincides with the point of intersection of 5, with ;. Then
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Theorem 3.2 is used to define isotopies supported on the X;, 0 < i < g, to move the
image of the arc ¢, (¢,+1) under the first set of sliding isotopies to the arc £5 41
Composing these finitely many isotopies defines an isotopy ®,,41, straightening
Un(lyy1) to 02 41 while leaving the already straightened leaves £% invariant, 1 <
k <n. Set Yny1 = Py 0 Y. d

Remark. We emphasize that, if ¢, € G5, then ¢ € G% is the corresponding
geodesic tightening of ¢,,. Also, v, (H4) is transverse to i, (Hs). By abuse of
notation, we denote this lamination again by H.

Let W,, = {¢,...,£8}. Then |R|\|W,,| consists of finitely many rectangles. Let
p: L x L —[0,00) denote the (complete) hyperbolic metric.

Definition 10.29 (mesh). The quantity mesh(W,,) is the diameter of the largest
rectangular component of |R| \ |W,,|, measured in the hyperbolic metric p.

Let 6,, denote mesh(W,,). Then, by compactness and the fact that |H% | is dense
in R we have,

Lemma 10.30. §; > 9 > --- > 6, — 0.

Let {1,}22, and {®,}52, be the sequences of homeomorphisms and isotopies
as in Proposition 10.28. On the space € of continuous functions s : R — R we
define a metric d by setting

d(s,r) = max p(s(z),r(x)).

As is well known, the topology associated to this metric is the compact-open topol-
ogy. The group H C € of homeomorphisms h : |R| — |R| is a topological group
under the metric d.

Lemma 10.31. Relative to the metric d, the sequence {®,, , , o®L , jo---0®L}>
converges to the identity uniformly for k > 0 and the sequence {1}, is Cauchy.

Proof. By (3) of Proposition 10.28, (I)}z-s-k o <I>}H_k_1 o---0®. sends the rectangles
of |R| \ [W,,_1] into themselves. Therefore, by Lemma 10.30,
p((p’}L-i-k? © (I>717,+k—1 o0 ®(x),x) <01 — 0,
uniformly in & > 0 and = € |R| as n — oo. Since
Yngr =Pp g 0Py iy 0 0D 0, 1,

it follows immediately that the sequence {v,}22 is Cauchy. O
By a standard argument, we get the following.

Corollary 10.32. The pointwise limit 1) = lim,, o ¥, exists and equals the home-
omorphism |p|.

Recall that the group H of homeomorphisms of |R| is a topological group under
the metric d. The homeomorphism 1 will be isotopic to the identity if there is a
continuous path s in H starting at id and ending at v. We construct such a path.
It will be convenient to parametrize it on the one point compactification [1, 0]
of [1,00). The isotopies ®%, 0 < ¢ < 1, send the rectangles of |R| \ |W,,_1| into

themselves and ®° = id. Recall that 1)y = id. Define s : [1,00] — H by

Sl "oh, 1, n<t<n+1l, 1<n<oo
s(t) =
P, t = oo.
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Lemma 10.33. The path s : [1,00] — H is continuous, hence v is isotopic to the
identity.

Proof. Continuity of s(t) for 1 <t < oo is clear. Since ®! o Pl . o 0d)
sends the rectangles of |R| ~\ |W,_1| into themselves, 0 < ¢t < 1 and k£ > 0, we
see by Lemma 10.30 that d(s(t1),s(t2)) is uniformly as small as desired, for all
t1,ta € [n,00) and n sufficiently large. Since lim, o $(n) = % in the metric d, it
follows that lim;—, o $(¢t) = % in that metric, proving continuity at ¢ = co. |

Since the homeomorphism 1 isotopic to the identity is pointwise fixed on 0.,
it can be extended to a homeomorphism isotopic to the identity, again denoted by
1, which is the identity on K ~ R. We then have,

Proposition 10.34. The homeomorphism v of K, isotopic to the identity, sends
each leaf of £ € G to its corrponding geodesic tightening in (8 € G%.

10.3.4. Eaztending the isotopy to L. Since ¢ (Fry K) = Fry K and v is isotopic
to the identity there, it is easy to extend 1 into a small collar of Fry K on the
side facing away from K, damping the extension off to the identity in this collar.
One then extends by the identity over the rest of L, obtaining a homeomorphism
Y L — L isotopic to the identity by an isotopy compactly supported as near
to K as desired. Since ¢ |K = v, Proposition 10.34 implies that ¥k (7,) and 8
cross Fry K in exactly the same points.

Enumerate the tiles of T8 in any convenient way as Py, P1, Ps,..., P,,.... We
can take Py = K and assume that, for each n > 1, P, has at least one edge in
common with at least one tile P;, 0 < i < n.

Next proceed to P, and produce the homeomorphism % p,, isotopic to the iden-
tity, in the same way as above, noting that the isotopy will fix pointwise the interface
of P; with K. Remark that the procedure is easier here since, if P, lies in a neigh-
borhood of a positive end, there will only be rectangles R € R4 in P, and if P,
lies in a neighborhood of a negative end, there will only be rectangles R € R_ in
P;. One obtains a compactly supported homeomorphism ¢¥p, : L — L isotopic
to the identity by an isotopy which is the identity on K and outside a neighbor-
hood of P; which is only slightly larger than P;. Proceed in this way with each P;
is turn.The supports of the homeomorphisms i, ¥p,, ..., ¥pn, ... and associated
isotopies form a locally finite family of compact sets. Thus, the infinite composition

Y =---0vp, oYp, _,0--Yp oY

is a well defined homeomorphism on L, isotopic to the identity, which carries AL
to A%. The proof of Theorem 10.15 is complete.

10.4. Good choice of junctures. In Section 10.1 we axiomatize a system consist-
ing of five elements (f,N,J, Ay, A_) where f : L — L is an endperiodic automor-
phism, N is a set of f-juncture components chosen as in Definition 4.17, J is a set of
juncture components associated to N (Definition 10.5), and A are pseudo-geodesic
laminations.

The Isotopy Theorem (Theorem 10.15) provides a homeomorphism 1 of L, iso-
topic to the identity, so that ¢¥(AL) = A§.

Theorem 10.35. If the system (f,N,J, Ay, A_) satisfies the axioms, the entire
theory for the Handel-Miller geodesic laminations developed in Sections 4 - 9 carries
over verbatim to the system (f,N,d" =y~1(3%), A, A_).
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Denote by & the geodesic tightening map of Definition 4.20.
Definition 10.36 (¢/). Define the map /' : N — J by ¢/ = ¢~ 1 08 01).

The map ¢/ : N — J serves the role of the map ¢ : N — J of Definition 10.5 for
the sytem (f,N,d" = ¢~1(38), Ay, A_) and as such replaces the geodesic tightening
map of Definition 4.20. It can be extended to a map ¢/ : NT — J where NT is the set
of pseudo-geodesics 7y such that there exists an f-juncture component o € N whose
lifts have the same endpoints on S, as the lifts of v. Then define J/(y) = (o).
This definition then extends in a natural way to a function +/ with domain the finite
unions of elements of NT.

Proof of Theorem 10.35. First, consider the endperiodic automorphism f* = v o
foy~™': L — L with set of f*-juncture components N* = {¢(v) | v € N}. Since
v € N and 9(y) € N* have the same endpoints on S, they have the same geodesic
tightenings. Thus, J& is both the set of geodesic tightenings of the set N of f-
juncture components and the set N* of f*-juncture components. Thus, the entire
theory for the Handel-Miller geodesic laminations developed in Sections 4 - 9 is true
for the system (f*,N*, g8, A%, A%).

Further, 1)~! carries the bilamination (A%, A%) = ((A4),¥(A_)) to the bilam-
ination (A4, A_), the set of geodesic junctures g8 to the set §’ = ¢)=1(J#) of junc-
tures, and the set N* of f*-junctures to the set N of f-junctures as well as all state-
ments for the theory developed in Sections 4 - 9 for the system (f*, N*, g%, A%, A®)
to the system (f,N,J',A;,A_). The truth of each statements for the system
(f,N,d,Ay,A_) then follows from the truth of the statement for the system
(f*,N*, 38, A%, A%) since ¥~ is a homeomorphism, isotopic to the identity (see
examples below). O

Example 10.37. By Theorem 6.5, A% and A% each have only finitely many semi-
isolated leaves. Since ¢! is a homeomorphism, A, = ¢~!1(A%) and A_ = ¢~ 1(A%)
each have finitely many semi-isolated leaves. Thus, Theorem 6.5 is valid in the

system (f,N,3' = 4 1(3%), A1, A_).

Example 10.38. By Lemma 4.34, the laminations I'§ and A% are strongly closed.
Since 9! is a homeomorphism, it follows immediately that the laminations I'y =
p~H(%) and Ax = ¢~ 1(A%) are strongly closed. Thus, Lemma 4.34 is valid in the
system (f,N,d" = ~1(3%), A, A_). Tt is much more difficult to prove Lemma 4.34
for the system (f,N,d" = ~1(38), Ay, A_) directly from the axioms.

Example 10.39. By Theorem 4.54, there exists an endperiodic automorphism h,
isotopic to f* and permuting the elements of each of the sets A%, A%, 7%, and
J%. That is h = ¢ o f* with ¢ a homeomorphism isotopic to the identity and
h(A%) = A%, h(A2) =A%, h(3%) =J5, and h(J%) = J%. Then,
hl _ wfl ° h o 'l/)

= ¢ lopofroy

— Y lopovofoy oy

= ¢ lopouof
is an endperiodic automporphism isotopic to f and h'(Ay) = ¢~ tohoyp(¢p 1 (AS)) =
wil(Ai) = A,. Thus A’ permutes the elements of A, . Similarly, »’ permutes the
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elements of A_, g, , and J’ . Thus, Theorem 4.54 is valid in the system (f,N,J’ =
wil(ag),AwL»A*)'

Remark. We think of J’ as a “good” choice of juncture components in the sense
that Theorem 10.35 holds. The good choice is not always preferrable when one
is trying to verify the axioms. Thus, in the proof of the transfer theorem (Theo-
rem 12.7), the set J of junctures that we will construct for the transferred lamina-
tions is definitely not “good”, but satisfies Axiom 4.

11. SMOOTHING h AND THE LAMINATIONS
The goal of this section is to prove the following.

Theorem 11.1. Given an endperiodic automorphism f, there exists a smooth
Handel-Miller pseudo-geodesic bilamination (Ay, A_) associated to f and a smooth
endperiodic automorphism h isotopic to f and preserving (A, A_).

Recall that the bilamination (A4, A_) is called a Handel-Miller pseudo-geodesic
bilamination (A4, A_) associated to f if it satisfies the four axioms (Definitions 10.7).

Remark. Geodesic laminations A% associated to f and satisfying the axioms are
probably not generally smooth. In fact, geodesic laminations may not even be
C! or, if C! they may fail to be C? (Example 4.11). The problem is that if, in
local laminated charts, there are infinitely many gaps clustering on plaques of the
lamination, the mean value theorem generally obstructs attempts to extend the
lamination to a C' foliation across these gaps and there are similar higher order
obstructions to C" smoothness, » > 1. Furthermore, as in the Nielsen-Thurston
theory, there seem to be obstacles to choosing the endperiodic automorphism h#,
isotopic to f and preserving (A%, A%), to be a diffeomorphism.

We first prove Theorem 11.1 for the case in which there are no principal regions.
The changes that have to be made to handle the case in which there are principal
regions are not substantive and are outlined in Section 11.5.

Temporary Hypothesis. Until Section 11.5, we assume there are no prin-
cipal regions.

Strategy. We give a heuristic sketch of the proof. One begins with a Handel-Miller
geodesic bilamination (A%, A% ) associated to f and an endperiodic automorphism
h#, isotopic to f and preserving (A%, A%). We produce a Markov partition for h®
by geodesic quadrilaterals, somewhat different from the ones described in Section 9,
and define a diffeomorphism on the union of these rectangles. Using standard tech-
niques in differential topology, we extend this to an endperiodic diffeomorphism
h : L — L which is isotopic to h®. Positive iterates of h “stretch” the Markov
quadrilaterals deeper and deeper into the positive ends, limiting in a natural way
on a smooth lamination Ay in L. Similarly, negative iteration produces a smooth
bilamination A_, (A4, A_) being an h-invariant bilamination. We verify the ax-
ioms, thereby proving Theorem 11.1 for the case that there are no principal regions.
We then give a detailed outline of how to modify this construction to accomodate
the presence of principal regions.

Fix a set N of f-juncture components as in Definition 4.17. This determines a
set of geodesic juncture components J&.
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To begin with, since the intersection points of junctures with dL do not cluster
except at ends of L, the construction of h® in Section 4.6 can be carried out so that
the following holds.

Lemma 11.2. The automorphism h8 : L — L is a diffeomorphism in a neighbor-
hood of OL.

Fix a core K. Let J; C J% be the set of juncture components comprising Fr_ K
and J3 C J% be the set of juncture components comprising Fry K. Recall the
decomposition L = W~ UK UW™. Then |J;| = W™ NK =Fr W~ and |J]]| =
WHNK=FWT. Let J;, = (h®)"(dy), It = (h&)"(3F), and W,, = (h&)" (W),
n € Z.

The following is clear.

Lemma 11.3. 1) U 3, =7%;

(2) Unz oo 8 = 355
(3) e W, = |9;]-

Definition 11.4 (quadrilateral and geodesic quadrilateral). We will call a geodesi-
cally convex figure with four edges that are geodesics a geodesic quadrilateral. When
h has been defined, the images of a geodesic quadrilateral under applications of h
and its powers will be called quadrilaterals.

Remark. We defined a rectangle (Definition 6.1) to have a pair of opposite edges
in I'_ and a pair of opposite edges in I';. In a geodesic quadrilateral, the edges
may be, but need not be, in I'y.

Lemma 11.5. Forn > 0 large enough, the set of components of K \int W,, consists
of a finite family {Ry,..., Ry} of geodesic quadrilaterals with one pair of opposite
edges in Fry K and the other pair of opposite edges components of |3, N K in
XK.

Proof. By Lemma 4.52 the leaves of Ai N K are properly embedded, boundary
incompressible arcs with endpoints in Fr; K which fall into finitely many isotopy
classes. By Lemma 4.53 each of these isotopy classes has two extreme arcs which
together with two arcs on Fry K bound rectangles {Rj, ..., R} } such that Ule R, >
|A%| N K. Since there are no principal regions, both edges of R} in [A%|N K are
approached outside of R/ by arcs of |X% | N K. Since the negative junctures can
only cluster on |A% |, the strongly closed property implies that there are only finitely
many components of [~ ,|J; | N K that do not lie in one of these isotopy classes
and that R, C R/, a geodesic quadrilateral with a pair of opposite edges in Fri K
and a pair of opposite edges in (J7°, |95 |N K such that |J'_, R} contains every arc
of ;" 13, | N K that lies in the same isotopy class as an arc of [A%|N K.

If n is large enough, then the components of Fr W,, N K all lie in one of the isotopy
classes and all are components of |X& | N K. Thus, the components of K \ int W,

are geodesic quadrilaterals {R1, ..., R} that are subquadrilaterals of the geodesic
quadrilaterals {RY, ..., R} }. O

Remark. By choosing n > 0 large enough, as in Lemma 11.5, we guarantee that
the set {R1,..., Ry} of components of K ~\ int W,, has the property that the geo-
desic quadrilateral h8(R;) completely crosses any R; that it meets, 1 < j < k. The
components of the h8(R;) N R; are the components of K ~\ int W,, 1. Now take
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the R; to be the components of K \ int W,, ;. As in the proof of Proposition 9.9,
any h&(R;) meets any R; at most once. Thus, the set of geodesic quadrilaterals
{R1,..., R;} making up K ~ int W, satisfy Properties II, ITI, and IV of Defini-
tion 9.6 but is not a Markov system as defined there because the edges of R; are
not subarcs of leaves of the laminations A%.

Notation. From now on in Section 11 we denote by N > 0 this integer n + 1.
Definition 11.6 (Markov chain). A sequence
L= (io,il,ig,...,in,..

)
in which 4,, € {1,2,...,k} and R;, Nh&(R;,,,) # 0, n > 0, will be called a Markov
chain.

This language is borrowed from symbolic dynamics. Our system of geodesic
quadrilaterals is a Markov partition as commonly defined in dynamics, but differ-
ent from that defined in Section 9. The following statement and proof are closely
analogous to those of Proposition 9.12. Since our construction of the smooth bil-
amination is modelled on this, we give details.

Proposition 11.7. If ¢ is a Markov chain, then there is a unique leaf (8 € A%
such that if
8 = (h&)"(R;,) N (&))" Ry, )N+, n>0

Ln n Tn41

o]
g — g
ZL - U El,n?
n=0

an increasing union of compact arcs.

Proof. Choose a lift C§ = ﬁio of R;, to L C A. This lift determines lifts C8 of
(h&8)"(R;.) for all n > 0. For n > 0, let A3,/ € X& contain opposite sides of
these lifts C& of (h8)"(R,). The sequences {X%}, {[i8} converge monotonically to
X fi8 € A®. Let 68 be an edge of Ry, contained in Fry K. Let 62 C h&(Fr, K)
be the edge of h8(R;,) bordering the piece of h8(R;,) that exits R;, through Jf.
Inductively, let 68 C (h&)"™(Fry K) be the edge of (h®)™(R;, ) bordering the piece of
(h&)™(R;,) that exits R;, , through 65 ;. For n > 0, let 8% be the edge of the lift
Cg of (h®)™(R;,) that covers d% and let o8 be the geodesic in L that contains 08.
Note that the o8 are lifts of components of (h8)"(Fry K). By Theorem 4.24, the
& nest on a point a € S which is a common endpoint of A& and ji#. Similarly,
starting with the other edge 7§ of R;, which lies in Fr} K, one gets a family of
geodesics in L that nest on a point b € S1 which is the other common endpoint of

A& and 18. It follows that X8 = 1% which projects to £8. O

then

Remark. For a similar characterization of the leaves (& € A% | first note that apply-
ing (k&)™ to the geodesic quadrilaterals R;, gives similar geodesic quadrilaterals
R} with a pair of opposite edges in Fr_ K and the other pair of edges components
of |37 x| N K. We use sequences

R = (...,i,n,...,i,Q,Z’,hio)

in which R N(h&)"'(R; ) # 0. It is actually unnecessary to go to the geodesic

—1

quadrilateralé R} since one gets the same result by interchanging the roles of R;
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R/

FI1GURE 24. Compatible grids

and h#(R;) and using negative powers of h2. Notice that this would not work if an
edge of R; bordered a principal region.

As remarked earlier, our approach to the proof of Theorem 11.1 in the case that

there are no principal regions will be to isotope h® to an endperiodic diffeomorphism
h such that h(R;) = h8(R;), 1 < i < k, and define the new smooth bilamination
(A4, A_) by a construction analogous to the above, defining X in a fairly obvious
way. Verifying the axioms will complete the proof. The proof in the presence of
principal regions is similar, but notationally more complicated.
11.1. Geodesic grids. Given a geodesic quadrilateral R, let af and of be one
pair of opposite sides, 85 and S the other. Orient the of from 5 to 8§ and the
B from af to of. Let ¢ : af — of and ¢ : 8§ — B§ be orientation preserving
diffeomorphisms. Thus ¢ pairs the endpoints of 3§ and 5§ and v likewise pairs the
endpoints of af and of of. Since R is geodesically convex, the geodesics joining
t € af to p(t) € af liein R, for all t € af. Since the geodesic quadrilateral is simply
connected, we may as well be working in the hyperbolic plane where geodesic arcs
depend smoothly on their endpoints. Thus, our geodesics depend smoothly on
t,p(t) and cannot intersect each other. Indeed, since ¢ is orientation preserving,
any proper intersections would produce geodesic digons. Thus these geodesic arcs
are the leaves of a smooth foliation F, of R such that g% € F,, i = 0,1. Similarly,
use 1 to obtain a smooth, geodesic foliation J, of R, necessarily transverse to JF
and incorporating the of as leaves. We call this a “geodesic grid”.

Typically, we will have one geodesic quadrilateral completely crossing another
once as in Figure 24. We can put geodesic grids on each which agree on the
intersection. In Figure 24, define the “vertical” geodesic foliation JF first on the
tall geodesic quadrilateral R and the “horizontal” geodesic foliation J}, on the wide
one R'. In order to extend F,| RNR’ across the unfoliated geodesic subquadrilaterals
of R, one needs to choose diffeomorphisms from the left side to the right that match
smoothly at the common endpoints of domains with the ones already defined by
Fn|/RN R’. This is a matter of making the two oco-jets coincide and is standard.
Similarly, F, is extended smoothly.

Another situation is that the quadrilateral R with the geodesic grid may be
contained in a slightly larger quadrilateral A as in Figure 25. We will leave it to
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Ficure 25. Expanded geodesic quadrilateral

FiGURE 26. Compatible grids

the reader to adapt the previous discussion to extend the geodesic grid on R to a
geodesic grid on A.

In the remark preceding Definition 11.6, we constructed families {R,..., Rx}
and {h8(Ry),...,h8(Ry)}of pairwise disjoint geodesic quadrilaterals. Furthermore,
h&(R;) will completely cross some of the R;’s, but never more than once (cf. Def-
inition 9.4). As above, we define smooth geodesic grids on R = {Ry,...,Rx} U
{h&(R1),...,h8(Rk)} which are compatible on overlaps. In Figure 26, the vertical
lines are to be leaves of F,, the horizontal ones leaves of F},. Note that the foliation
F}, incorporates as leaves the edges of R; which are subarcs of Fry K, while F,
incorporates the other pair of opposite edges.

Remark. Ultimately, the smooth bilamination (A4, A_) that we are going to con-
struct will be such that F,|R; is an extension of A;|R; and J}, is an extension of
A_|R;. This will establish the smoothness of the laminations in each R; and will
extend to global smoothness by iteration of the diffeomorphism h that we are going
to construct.
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Remark. If finitely many geodesic leaves are preassigned in any of the geodesic
quadrilaterals, there is no problem choosing the foliations to incorporate them.
If one wants to preassign infinitely many geodesic leaves, say arcs of A%, serious
smoothness issues arise. This is exactly why, in producing the smooth laminations
A+ and diffeomorphism h out of the geodesic data we will not generally get back
the geodesic laminations.

11.2. Smoothing in the geodesic quadrilaterals. Let R = Ule R;. In order
to smooth h® on R, we first thicken each R; to a slightly larger quadrilateral A;
(see Figure 27). We can do this so that the A4;’s are pairwise disjoint.

We want to extend the geodesic grids of Section 11.1 to a neighborhood of
R U h8(R) of the form

V:AlU"'UAkUhg(/h)U“-hg(Ak).

The problem is that h8(A;) will not generally be a geodesic quadrilateral, the edges
failing to be geodesics. To correct this, we perform a small isotopy of h&.

Lemma 11.8. If A; approximates R; sufficiently well, there is a homeomorphism
@i, isotopic to the identity by an isotopy supported near h8(A;) and away from
h&(A;), j # i, taking h8(Fry K) to itself componentwise, fizing h8(R;) pointwise,
fizing the vertices of h8(A;), and such that ;(h8(A;)) is a geodesic quadrilateral.

Proof. Let D C L be a smoothly embedded disk containing h&(A;), having the
four vertices of that image on its boundary, but such that the edges of h8(A;) are
properly embedded in D. If the vertices of A; have been chosen sufficienly near
the corresponding vertices of R;, D can be chosen so that the geodesic arcs joining
the vertices of h&(A4;) to form a geodesic quadrilateral are also properly embedded
in D. Also, choose D so that it meets no h&(A;), j # i. By our usual application
of Theorem 3.2, we can find an ambient isotopy ® supported in D, such that ®
fixes h8(R;) pointwise and takes the bottom two edges of h8(9A4;) to the geodesics
joining the corresponding pairs of vertices. For the remaining two edges, simple
sliding isotopies along the components of Fr . K crossed by these edges must first
be performed and the Theorem 3.2 completes the isotopy. Take ¢ = ®!. (Il

We can assume that the homeomorphisms ¢; are isotopic to the identity by
isotopies which have pairwise disjoint supports and set ¢ = ¢ o --- o ¢. Thus,
replacing h® by ¢ o h® we can assume that h8(A;) is a slightly larger geodesic
quadrilateral than h8(R;), 1 <i < k.

We construct the geodesic grid on V' as above so that it restricts to the geodesic
grid already constructed on R. The extended foliations are again denoted by JFy
and JF,.

These foliations have trivial holonomy, so it is easy to construct a smooth, trans-
verse invariant measure uy for ¥, on V' and another u, for ¥, on V. The measure
un can be viewed as a smooth measure on the leaves of JF, invariant by holonomy
translations along the leaves of J}, and, similarly, p. is such a measure on the leaves
of 97h~

Remark. By a smooth measure p on a smooth 1-manifold B, we mean that if ¢
is Lebesgue measure on B, then the Radon-Nikodym derivative du/df = f is a
smooth function on B. Thus, for any Borel set X C B, u(X) = fX fdo.
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On each A;, using the above measures, we define smooth coordinates (x,y) such
that the leaves of F}, are the level sets of y and the leaves of &, are the level sets
of . Simply designate the coordinates at one point pg, say by (a,b), designate an
orientation of the leaves of F,|A; and of the leaves of F},|A; and use the holonomy
invariant measures to define the desired smooth coordinates on A;. More precisely,
using the designated orientation of the leaf of F}, through pg, each point p in that
leaf to the right of py defines a subarc [po, p] and we define z(p) = a + py[po,p]. If
p is to the left of pg, set z(p) = a — py[p, po]. By translation along the leaves of F,
we extend the x coordinate to all of A;. The y coordinate is defined analogously
using the measure py. These do not give global coordinates on V', but the above
construction makes the following clear.

Lemma 11.9. On overlaps A;Nh8(A;), the induced coordinates (x,y) coming from
A; and (2',y") coming from h&(A;) are related by
= e1x +c¢
Y =e2y+d,
where e;, = 1, 1= 1,2, and ¢,d are constants.
The sign is due to the choices of orientation and the additive constants are due

to the fact that the coordinates are well defined up to translation.
Thus the Jacobian matrix for this coordinate change is

(+) dd = {601 502] .

Normalize the measures uy, tty so that the “width” of each A;, measured by p.
is 1 and similarly, the “height” of each h&(A4;) is 1.

We now choose diffeomorphisms h; : A; — h'(A;) which preserve the smooth
geodesic grids, 1 < i < k. In the smooth local coordinates (z,y) on V' we have,

hi(z,y) = (&(x), Gi(y))-
For technical reasons, choose h; to satisfy,
0<|d&/dx| <a< 1, |d¢i/dy| > b> 1,

for suitable constants @ and b. This is possible since the width of each A; and the
height of each h&(A4;) is 1 and h&(A;) intersects A;, if at all, in a proper geodesic

FIGURE 27. Geodesic quadrilaterals R; and A; (dotted)
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subquadrilateral of both A; and h&(A;). Hence h; strictly diminishes width and
increases height. We summarize.

Proposition 11.10. For 1 < i < k there are diffeomorphisms
hi = (&, G) « Ay — h8(Ay),
preserving the geodesic grid and such that
0 < |d&/da] <a<1, |d¢i/dy|l >b>1
in the coordinates on A; U h8(A;).

Remark. Because of (), these inequalities hold for any of our choices of local
coordinates.

We begin the modification of h® to an isotopic diffeomorphism A by replacing
h8|R; by hi|R;, 1 <i < k. The fact that these maps extend to diffeomorphisms on
the slightly larger geodesic quadrilaterals A; will be useful in extending these local
definitions to the global h.

11.3. Smoothing outside R. We first need to “blend” h® with the diffeomor-
phisms h; so that they agree on a neighborhood of R;. Fix a smooth, embedded
disk D; C V with R; C int D; and set 9D; = S;. Choose these so that D; N.D; = 0,
i # j. Note that h8|S; and h;|S; are homotopic. By Theorem 3.1, there is a home-
omorphism ¢;, isotopic to the identity by an isotopy compactly supported outside
of R; and inside of V, such that ¢; o h8|S; = h;|S;. (Note that we are working in
the complement of R; where S; is essential.) Again, we can assume the ¢; and ¢;,
1 # 7, are isitopic to the identity by isotopies which have disjoint supports. In this
way, we isotope h® by a compactly supported isotopy to a homeomorphism h” that
agrees with h; on S;, 1 <14 < k. Use Alexander’s trick to isotope h” o h;l\Dl— to the
identity by an isotopy that fixes S; pointwise. This shows that h”|D; is isotopic to
h;|D; by an isotopy throuhout which they continue to agree on S;, 1 < i < k. We
summarize.

Lemma 11.11. After a compactly supported isotopy, we can assume that h® agrees
with h; on a neighborhood of R;, 1 <1 < k.

Let L’ denote the complement in L of the union of the open geodesic quadri-
laterals int R;. Similarly, Let L"” = h&(L’) be the complement in L of the union
of the open geodesic quadrilaterals h8(int R;). We work completely in L’. By the
above lemma and Lemma 11.2, h8|L’ is a diffeomorphism in a neighborhood in L’
of OL'. Tt is well known that h8|L’ : L' — L” is arbitrarily well approximated
by a diffeomorphism h#, isotopic to h%|L’ by an isotopy that is fixed in a smaller
neighborhood in L’ of dL'. For a particularly nice proof of this which does not use
the Schonflies theorem, see A. Hatcher’s unpublished note [30] which is available
on the author’s website.

Since h# agrees with h; in a one-sided neighborhood of OR;, on the side outside
R;, 1 < i <k, and the isotopy was constant in such a neighborhood, h# and the h;
combine to give a diffeomorphism which we again denote by h# : L — L, isotopic
to h& and agreeing with h; in a neighborhood of each R;. Since h* agrees with h®
in a neighborhood of AL’ and is isotopic to h8, we can apply the smooth versions of
Theorems 3.1 and 3.2 (cf. Theorem 3.3) to smoothly isotope h# to a diffeomorphism
h that agrees with the permutation induced by h# on the components of |J; |, < N,
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and of |J], i > 0 thus preserving the structure we set up in Lemma 11.5. Again
we work in L' and the isotopies are supported away from OL’. Evidently, h is
endperiodic and the h8-junctures making up Fr K propagate under applications of
h'™, n € Z. In Section 11.4 we will take these to be the set of all h-junctures. We
summarize.

Lemma 11.12. The diffeomorphism h : L — L is endperiodic, isotopic to h®
and agrees with h; on a neighborhood of R;, 1 < i < k. Furthermore, if 78 is a
component of |3;|, i < N, or of ||, i > 0, then h(78) = h&(78).

Remark. In particular, since h|R; = h;, we have guaranteed that h satisfies the
inequalities of Proposition 11.10 on R;, 1 <i < k.

11.4. Proof of Theorem 11.1 in the case of no principal regions. We define
the sets of positive/negative juncture components Ji. Let J+ be the set of arcs
and circles h*(v), k € Z, v € 30i_ Let X4+ C J+ be the set of nonescaping juncture
components. Since the components of the junctures are either essential circles or
properly embedded arcs, the following is evident.

Lemma 11.13. The components of the junctures are pseudo-geodesics.

Since the juncture components in J are isotopic to the corresponding geodesic
juncture components in J& the following is evident.

Lemma 11.14. There is a bijection ¢ : N — J where N is the set of f-juncture
components fixed on page 92.

It is now necessary to construct the smooth, hA-invariant laminations and verify
the axioms. Remark that

Rin n hg(R ) = Rin n h(Rin+1), n Z 0.

Thus h and h® define the same Markov chains ¢ = (ig, 41,42, ...,in,...). In analogy
with the construction of ¢8 (Proposition 11.7), replacing h® with h, we define ¢, by
a Markov chain ¢. That this is a curve requires proof.

Mi41

Lemma 11.15. The set £, is a one-one immersed smooth curve in L for each
Markov chain .

Proof. Set
Rigiy-in, = Rig N h(Ri) N h*(Ri,) N - N W™ (R;,).
Iterated applications of the first inequality in Proposition 11.10to h : R;, — h(R;,)
show that the (geodesic) quadrilaterals in the nested sequence
Rio D Rioh DD Rioilu.in DR
have widths decreasing monotonically to 0. Thus, the intersection of this nested
sequence is a single leaf ¢;, of F,|R;,. Likewise, the Markov chain (i1,42,...)
defines a leaf ¢;, of F,|R;, and the smooth, embedded arc h(¢;,) C L contains ¢;,
as a proper subarc. Set
Ein, = Rin, n h(RinJrl) n---

and obtain a strictly increasing nest

iy Ch(€;,) Ch*(Liy,) C - Ch™(¢,) C ...
of smoothly embedded curves. Since h is endperiodic, the two sequences of bottom
and top edges of the quadrilaterals {h"(R;,)}n>0 both escape and the union ¢, of
these arcs is a one-one, smoothly immersed copy of R. ([
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Remark. Since h is only a diffeomorphism, not a hyperbolic isometry, ¢, is not
generally a geodesic, although it will repeatedly cross the quadrilaterals R; and
h(R;)) in geodesic arcs which are leaves of J.

Remark. The curves £, are in one-one correspondence with the curves £8 € A% of
Proposition 11.7, each being uniquely determined by the Markov chain ¢. This is
crucial for proving that the bilamination (A;, A_) that we construct satisfies the
axioms. Note that, despite the notation ¢%, we have not yet proven that this curve
is the geodesic tightening of ¢,. This will be proven in Lemma 11.23. Meanwhile,
the correspondence is via the index ¢.

Let Ty = AL UX4 .
Lemma 11.16. (A, A_) and (U, T'_) are smooth bilaminations.

Proof. Let v = (ig,%1,...,%n,...) be a sequence with each i,, € {1,2,...,k} and
with the property that R; Nh(R;, ) # 0, for all n > 0. Since h : R — h(R)
is a diffeomorphism and preserves the smooth foliations (Fy,, ), every leaf £, of
A intersects a geodesic quadrilateral R;, if at all, in plaques of F,. Via h, we
define (F}",Fin) on each h™(R;,), n > 0, and remark that ¢, N h"(R;,) is a set of
plaques of Fi» in h"(R;,). Since Fi» and &"fl" are transverse smooth foliations of
h™(R;, ), we see that the interiors of the sets h"(R;,) are laminated charts for Ay
belonging to the maximal smooth atlas of L. That is, we have produced a smooth
partial laminated atlas for A, . Similarly, we produce a smooth partial laminated
atlas for A_. Since the smooth foliations in each of our charts are transverse, one
containing all plaques of A, meeting the chart and the other containing all plaques
of A_ meeting the chart, we have produced a smooth partial bilaminated atlas 2
for (A4, A_).

By the definition of X1 we see that the intersection of any of its leaves with
a chart in % is also a plaque of the appropriate foliation. That is, 2 consists of
smooth bilaminated charts for (I';.,I'_), but does not cover |I';.|U|T'_|. Any point
of [I'y|U[T'_| outside of (J;;cq U either lies on a unique leaf of X1 or on a unique
leaf of X_ or is a point of intersection of a leaf of X; and a leaf of X_. In all of
these cases, constructing a smooth, bilaminated chart about x for (I'y., ') is easy
since the leaves of X1 are isolated from each other and from |Ay|U|A_]|. This gives
a smooth, partial bilaminated atlas for (I'y,T'_). O

The pair (A; UJ_, Ay UJy) may not be a bilamination. In fact, an escaping
component of a positive juncture, if any, would coincide with an escaping component
of a negative juncture. However, the following is an obvious corollary.

Corollary 11.17. AL UJ_ and A_ U J are each smooth laminations.

Let Uy (respectively U_) denote the positive (respectively negative) escaping
set for h. That is, x € Uy if and only if {h™(z)},>0 escapes and = € U_ if and
only if {h"(x)}n<o escapes. These sets are open and each component of X4 lies in
U+. In what follows, we use CX to denote the complement in L of a subset X.

Lemma 11.18. CU4 = |A¢].

Proof. We prove that CU_ = |A;|. The proof that CU; = |A_| is similar. Let
x € CU_. Then no point in the orbit of = is in U_ and, by applying a large enough
negative power of h, we can assume that x € K. For alln >0, © ¢ W4, C U_.
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(Recall the definition of the sets W,, just before Definition 11.4.) Thus, for each
n > 0, there is a unique 1 < 4,, < k such that x € h"(R;,) N K. Consequently,
x € l, € Ay where v = (ig,%1,...,%n,...). Thus, CU_ C |A;| and the reverse
inclusion is obvious. ([l

Lemma 11.19. The frontier of U is exactly [A+| and |X+| \ | Xx| = [Ax].

Proof. By Lemma 11.18, U_N|A,| = @. On the other hand, if z € |A,|, then it lies
in a segment of a leaf ¢, in h¥(R;,) for arbitrarily large values of k. Consequently,
every neighborhood of z meets a leaf of X_, hence meets U_. Thus |[Ay| C FrU_.
By Lemma 11.18, it follows that |A;| = FrU_. A similar argument proves that
|A_| = FrU,. For the second assertion, the definition of A, makes it clear that
|Ay| C]X_[~ |X_]|. For the reverse inclusion, let {z,,}5, be a sequence of points
in distinct leaves of X_ converging to a point x € L. Since the negative h-junctures
do not accumulate in U_, z ¢ U_ and so x € FrU_ = |A4|. O

Corollary 11.20. The laminations Ay and 'y are closed.

Proof. Since the frontier of a set is a closed set it follows that the laminations A4
are closed laminations. Further, the closure of |X| is exactly [A4|U [Xx| = |T'4|
so the lamination I'y is a closed lamination.

By construction, each leaf of X1 is homotopic to a unique leaf of X%. In fact,
the components of junctures in distinguished neighborhoods of ends are the same.

Lemma 11.21. The leaves of A4 cannot intersect those of J so as to form digons.
The leaves of A_ cannot intersect those of J_ so as to form digons.

Proof. First note that, if a leaf of A, intersects a leaf of J; so as to form a digon,
then a leaf of A, intersects Fry K so as to form a digon. Just apply a suitable power
of h. But this would imply that an edge of OR; or of Oh(R;) would intersect Fry K
so as to form a digon, some i € {1,2,...,k}. Since these geodesic quadrilaterals are
the same as the ones for the geodesic laminations, this would contradict Axiom 4
for the geodesic laminations. A similar proof works for the laminations A_ and
J_. O

Corollary 11.22. The leaves of Ay cannot intersect those of A_ so as to form
digons.

Proof. If a leaf £4 of AL intersects a leaf /_ of A_ so as to form a digon, then a
suitable locally uniform approximation of £, by leaves of X_ will give a leaf of X_
that intersects /_ so as to form a digon. O

The leaves of AL correspond one-one with the leaves of A% by ¢, <+ £ and the
leaves of X4 correspond one-one to those of X% by homotopy. This establishes
a canonical one-one correspondence 'y <+ I'f.. Denote this correspondence by
v > 8. The following shows that, in conformity with the notation of Section 10,
~8 is the geodesic tightening of ~.

Lemma 11.23. The laminations I'+ are pseudo-geodesic and, under the correspon-
dence v <> 8, the completed lifts ¥ and 48 have the same endpoints on S .

Proof. By Lemma 11.13, the leaves of X1 are pseudo-geodesics. Let

L:(i07i1;i27"',inv"')
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be a Markov chain. Let dy = 6§ and inductively define the edge 8,, C h"(Fry K) of
h™(R;, ) exactly as the edge 08 was defined in the proof of Proposition 11.7. The
lift Cp = C§ = Eio of R;, to L determine the lifts C,, of A" (R;,) with edge 5~n a lift
of 6,. In fact d,, and 6¢ are in the same lift 78 of a component of A" (Fry K) from
which it follows that ¢, and ¢% share the endpoint a. Similarly, starting with the
other edge 70 = 7§ C Fry K of R;, one shows that £, and ¢% share the endpoint b.
Thus ¢, is a pseudo-geodesic sharing endpoints with ¢5. O

At this point we have verified that (I',I'_) is a smooth bilamination preserved
by the smooth endperiodic diffeomorphism h. It remains to verify that (A4, A_)
is a Handel-Miller pseudo-geodesic bilamination associated to h (and, thus, to hg),
that is that (A, A_) satisfies the axioms:

Axiom 1. By Lemma 11.16, (A;+,A_) is a bilamination. By Corollary 11.20,
(A4, A_) is closed. By Lemma 11.23, the elements of A1 are pseudo-geodesics. The
fact that the leaves of AL are disjoint from 9L is obvious from the construction.
Axiom 2. By Corollary 11.22; the leaves of 1~\+ and A_ can only intersect in a
single point.

Axiom 3. By Lemma 11.23, the bilamination (Ay,A_) has the endpoint corre-
spondence property with respect to f.

Axiom 4. By Lemma 11.14 there exists a set N of f-juncture components and
bijection ¢ : Nx — J+. By Lemmas 11.13 and 11.23, A4 U J+ are sets of pseudo-
geodesics. By Corollary 11.17, the elements of each of the sets A+ UJ+ are disjoint.
Item (1) follows. Item (2) follows since, by construction, the elements of AL are
transverse to the elements of J-. By Lemma 11.21, no element of J4 meets an
element of Ay to form a digon. Thus, item (3) is true.

11.5. Proving Theorem 11.1 if there are principal regions. We will sketch
the way the previous argument needs to be modified, leaving many details for the
reader.

Let P denote the union of the positive principal regions. For N > 1 large enough,
the components of K \ (Wy U P) are geodesic quadrilaterals, each having a pair
of opposite edges that are subarcs of Fry K. But the other pair of opposite edges
are either both subarcs of gy or one is a subarc of g, and the other a subarc of a
border leaf of a positive principal region. For the structure of principal regions and
their nuclei, the reader may wish to review Section 6.4.

Let P be a positive principal region. It has a dual negative principal region P’
which shares a compact nucleus Np = Np: with P. See Figure 28 where the dashed
curves are border curves of P’, the solid ones border curves of P.

Actually, Figure 28 depicts only the parts of P and P’ including one boundary
curve v of Np. There may be finitely many distinct components of 9Np. The curve
7 is made up alternately of n. subarcs of §P and n, subarcs of §P’, n, being a
positive integer depending on «y, not on P alone. In the figure we draw the case
n, = 3. Out of ~y there radiate n. simply connected “arms” of P and n., such arms
of P’. Since we are in the case of geodesic laminations, the lifts of these arms to L
are cusps.

The set (P \ int Np) N K may have infinitely many components, all but finitely
many of which are geodesic quadrilateral components of the intersection of arms of
P with K. The nonquadrilateral components of (P \ int Np) N K are each equal
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I
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1

FIGURE 28. The dual principal regions P and P’.

to the union of one of the components v of ONp and the “stumps” of the n, arms
(cf. Definition 11.24). In Figure 29, we have drawn the nucleus Np (shaded) and
stumps of P cut off by one of the curves v with n, = 3. The boundary curve v of
Np is drawn in boldface.

Fr, K Fry K

Fr+ K

FiGUrE 29. The nucleus and stumps of a crown set.

Definition 11.24 (stump). If P is a positive principal region, we will call the
rectangular portion of an arm of P that is between the nucleus and Fri K the
stump of the arm. The stump is bounded by the arc of |A_| separating the stump
from the nucleus, two arcs of |A |, and an arc of Fry K. Tt is simply connected. The
stumps of the arms of the dual negative principal region P’ are defined similarly.

In Figure 30, we have attached the n, = 3 geodesic quadrilaterals R, each
with one edge in one of the three depicted border leaves of P, the opposite edges
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being arcs in J5. The other pair of opposite edges lie in Fry K. These geodesic
quadrilaterals and the stumps unite to produce an annulus A, which we have
shaded. With dotted lines representing arcs in the border of P’ we have cut off
three other geodesic subquadrilaterals of A, which will be denoted as Q;’ Note
that the R]’s are pairwise disjoint, as are the Q]’s, but each R} overlaps two Q]’s.

Fri K

FIGURE 30. The annulus A,

As ~y varies over boundary components of the nuclei of the finitely many principal
regions in P, we get a family of geodesic quadrilaterals R}, 1 < i < n.. There are
also the “normal” geodesic quadrilateral components of K ~ (Wx U P) with a pair
of opposite edges in ;. These latter are simply indexed R;, 1 < i < k as before.
The geodesic quadrilaterals of both types have a pair of opposite edges that are
subarcs of Fry K. As before, if N has been chosen large enough, the h&-images
of these geodesic quadrilaterals have connected intersection (possibly empty) with
each of R; and R, completely crossing any of these latter geodesic quadrilaterals

7

that they meet.

Remark. The reader should give some thought to the family of geodesic quadri-
laterals consisting of Q;, 1<j<n,and Rj,1 < j <k. These are pairwise disjoint
and each has connected intersection with the geodesic quadrilaterals h8(Q]) and
h&(R;), completely crossing whichever of the latter that it meets. This is entirely
analogous to the situation without principal regions and will be used to generate
the lamination A_.

While it is clear how the h&-images of geodesic quadrilaterals intersect geodesic
quadrilaterals, one also should note that there is often an annular component of
A, N h&(A,), for boundary circles v and " of nuclei, as indicated in Figure 31,
where the dotted lines together with v = h&(y") bound h&(A,).

Set R equal to the union of all R; and all A,. In analogy with the former
construction, we define a pair of transverse, smooth geodesic foliations J}, and JF
on RUAKE(R). The foliation F, incorporates the edges in Fry K and their h8-images
as leaves. The foliation F, incorporates the edges in J and in §P and their h®-
images. Furthermore, the geodesic quadrilaterals and annuli and their h8-images
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FIGURE 31. An annular component of A, N h&(A,/).

can be fattened to obtain a neighborhood V' of RUAS(R) over which the foliations are
extended. Details, which are analogous to the case in which there are no principal
regions, are left to the reader. Figure 32 depicts the foliated neighborhood of one
of the annuli.

FIGURE 32. Geodesic foliations of a neighborhood of A,.

This smooth geodesic grid is again used to define a diffeomorphism which we
will denote by hg : R — h8(R) and will extend over an open neighborhood of R.
Notice that the geodesic quadrilaterals Q;’ are also in the domain of hy. If R is any
of the geodesic quadrilaterals R;, R], or @], the grid defines smooth coordinates
(z,y) on R. Here, the leaves of J}, are level sets of x and the leaves of F, are level
sets of y. On overlapping geodesic quadrilaterals of R U h8(R) we can again choose
the coordinates so that the first derivatives of the change of coordinate functions
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are =1. The diffeomorphism hx|R has the form hg(z,y) = (£(z),{(y)). As in
Proposition 11.10, £ and ¢ can be chosen so that the following are true.

Proposition 11.25. On R=R;, 1 <i <k,
0<|d¢/dx| < e< 1, |[d¢/dy| > b > 1.
On R = R}, the first of these inequalities holds and on R = Q] the second holds.

Lemma 11.26. The homeomorphism h& is isotopic to a homeomorphism which
agrees with h® outside a neighborhood of R and with hg inside that neighborhood.

Proof. For each geodesic quadrilateral R;, 1 < i < k, and R] this is proven exactly
as before. On A, there remain geodesic quadrilaterals D in each stump where
the isotopy has not been defined. Looking carefully at Figure 32, one sees that
an application of Theorem 3.2 isotopes h® to agree with hg on the boundary of
a geodesic quadrilateral in V' which covers D, this without affecting the isotopies
already performed. An application of Alexander’s trick completes the isotopy. [J

We therefore assume that h® agrees with the diffeomorphism hg in a neighbor-
hood of R. One now proceeds exactly as before, using [30] and the smooth versions
of Theorem 3.1 and 3.2, to prove the following.

Lemma 11.27. There is an isotopy of h®, which is constant in a neighborhood of
R and on OL, to a diffeomorphism h : L — L such that h|T8 = h8|78, where 78 is
a component of J;, i < N, or of Hj', i > 0. In particular, h is endperiodic.

At this point all of the machinery has been set up for defining A, using the
geodesic quadrilaterals R, and R; and positive powers of h. One similarly produces
A_ using the geodesic quadrilaterals R; and Q] and negative powers of h. Throwing
in the nonescaping components of junctures gives the smooth laminations I'1 and
verification of the axioms proceeds essentially as before. Theorem 11.1 is proven.

12. THE TRANSFER THEOREM

The principal applications of Handel-Miller theory are to the endperiodic au-
tomorphisms that arise in foliations of 3-manifolds by surfaces. See, for exam-
ple, [22, 24]. We introduce here the basics, setting the stage for such applications
as in [12, 16]. The main new result in this section will be Theorem 12.7, the
“transfer theorem”, which is absolutely fundamental to [12, 16].

12.1. Depth one foliations. Let M be a compact, connected sutured 3-manifold
with boundary. We do not require M to be orientable, but we will only be consid-
ering smooth, codimension 1 foliations F of M which are transversely orientable.
The boundary of M will decompose into

OM = 0;M U In M,

where the components of 0,M (the tangential boundary) are compact leaves of
F and Oy M (the transverse boundary) is transverse to F. The components of
OnM must be annuli, tori and/or Klein bottles. Mobius strips are ruled out by
the transverse orientability of F. The annuli will meet 9, M along corners that are
convex with respect to the foliation.

Definition 12.1 (taut foliation). The foliation ¥F is taut if each leaf meets either
a closed transversal to F or an arc transverse to F with endpoints in 0, M.
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Taut foliations are very important in the theory of 3-manifold topology. For
instance, the foliation can have no Reeb components, hence well known theorems
of S. P. Novikov [35] imply that the leaves are mi-injective and no closed transversal
to F is null homotopic. It follows easily that the lift F of F to the universal cover M
has all leaves simply connected and, unless M = S 2 % S' with the product foliation,
that M itself is contractible.

The foliation F induces foliations of the components of 94 M. Even when F is
taut, F|0n M might have 2-dimensional Reeb components. We need to rule this out
also.

Set M° =M \ 0. M.

Definition 12.2 (depth one foliation). The foliation F is depth one if F|M° is a
fibration of M° over S*.

Here it is possible that M = F x [—o00, 00] and the foliation is transverse to the
compact interval fibers. Such foliations, called foliated products of depth one, are
well understood and easily classified.

Remark. Since F is transversely oriented, some of the components of 9, M are
oriented transversely into M and some out of M. The annular components of 0y M
separate inwardly oriented components of 0, M from outwardly oriented ones. As
JF varies, we keep the transverse orientations of the components of 0, M fixed. This
then is a constraint on the transverse orientations of these foliations. In the case
that M is orientable, the structure (M,d.M,04M) is a sutured manifold in the
sense of D. Gabai [26]. In Gabai’s notation, the sutured manifold is denoted by
(M,7), 0nM =~ = A(y) UT(y) and 0 M = R(7) = Ry (y) U R_(y). Here, A(y)
is the union of the annular components of dnM, T(v) the union of the toroidal
components, Ry () is the union of the outwardly oriented components of 9, M and
R_(7) the union of the inwardly oriented ones.

12.2. Monodromy. It is possible to find a 1-dimensional foliation £ transverse to
F. For instance, construct a smooth, nowhere zero vector field v on M, transverse
to the leaves of F, tangent to 04 M and oriented coherently with the transverse
orientation of F. This is easily done locally and the local fields are assembled
into a global one by a suitable smooth partition of unity. The integral curves to
v are the leaves of £. This transverse foliation is smooth. It is also possible to
construct transverse foliations £ that are only C°. In any event, £ is oriented by
the transverse orientation of &F.

If 04 M has no 2-dimensional Reeb components, the foliation £|A induced on
annular components A of 9y M can always be taken to be the product foliation by
compact intervals.

Suppose F is a depth one foliation of M (Definition 12.2) and let L be a non-
compact leaf of F. That is, L is a fiber of the fibration M° — S induced by F. For
each point = € L, let £, be the leaf of £ through x. Follow ¢, starting at = in the
direction given by its orientation until the first time a point y € L is encountered.
The fact that such a point y € L exists for each x € L follows from the compactness
of M [23, Lemma 4.2]. The map x — y defines the first return map

f:L— L.

If £ is smooth, f is a diffeomorphism. If £ is only C°, f is a homeomorphism.
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Definition 12.3 (monodromy). The automorphism f : L — L is called the mon-
odromy induced by L.

Sometimes we will denote £ by L¢. One should note, however, that while f
is determined by Ly, distinct transverse foliations may determine the same mon-
odromy.

12.2.1. Endperiodic monodromy.

Lemma 12.4. Let M be a compact, connected sutured 3-manifold and F a taut,
transversely oriented, depth one foliation of M which induces no 2-dimensional
Reeb components on OnM. A leaf L of F|M® has only finitely many ends and the
monodromy f : L — L, defined by any transverse, 1-dimensional foliation L, is an
endperiodic automorphism.

To prove Lemma 12.4, for any end e € (L), one constructs the neighborhood
U, of e exactly as in the proof of Proposition 2.12 in Section 2.1.

12.2.2. Realizing endperiodic monodromy.

Lemma 12.5. Given an endperiodic automorphism f : L — L of a surface with
finitely many ends, there exists a compact 3-manifold M, a depth one foliation F
of M and a transverse, 1-dimensional foliation L such that L is homeomorphic
to each noncompact leaf of F and f is the monodromy induced by L. If f is a
diffeomorphism, M, F and L are smooth. If f is only a homeomorphism, M and
F are smooth, but generally £ is not.

The proof of Lemma 12.5 is standard. One first constructs the suspension of f,

M® = L x[0,1]/{(z,1) = (f(z),0)}.
The fact that f is endperiodic, then enables one to glue on the compact leaves that
form 0, M.

The annular components of M can arise in two ways. There might be an
infinite sequence of compact components of L contained in U permuted simply
transitively by f or a finite set of compact components of L contained in the set
of principal regions permuted cyclically by f. The L-saturation of any one of these
circles contains the others and is an annular component of 94 M. There might be
a necessarily finite set of noncompact components of L permuted cyclically by
f- The L-saturation of any of these contains the others and again, since there
are no periodic points on such a component, we obtain an annular component of
OnM. In these annuli, the leaves of £ are compact intervals, hence F induces no
2-dimensional Reeb components. The tori and/or Klein bottles in 94 M are induced
similarly by finite f-cycles of compact components of OL.

If F induces no 2-dimensional Reeb components on 0 M, each noncompact com-
ponent of JL joins a negative end to a positive end and the monodromy of F has no
fixed points on OL. If every component of 9, M has negative Euler characteristic,
L is an admissible surface. If ¥ is not a foliated product, the monodromy of F
is not isotopic to a translation. Thus the theory of Sections 2 - 11 applies to the
monodromy of a depth one leaf of a foliation satisfying Hypothesis 7.

Hypothesis 7. Hereafter, unless we explicitly state otherwise, M is a
compact, connected sutured 3-manifold with boundary, the foliation ¥ is
smooth, transversely oriented, taut, depth one, not a foliated product,
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induces no 2-dimensional Reeb components on d;M, and every compo-
nent of 0. M has negative Euler characteristic.

12.3. The Transfer Theorem. We now turn to the main goal of Section 12.
Suppose M and JF satisfies Hypothesis 7.

Let f : L — L be the monodromy associated to a transverse, 1-dimensional
foliation £ . Fix any standard hyperbolic metric g on L and recall that, if (A4, A_)
is a Handel-Miller pseudo-geodesic bilamination of L associated to f relative to this
metric, it is Handel-Miller associated to f relative to any other choice of standard
hyperbolic metric (Corollary 10.16). Thus the following definition is independent
of the choice of g.

Definition 12.6 (Handel-Miller monodromy). Suppose that £ is a 1-dimensional
foliation transverse to F which induces endperiodic monodromy h : L — L, iso-
topic to f and preserving a Handel-Miller pseudo-geodesic bilamination (A4, A_)
associated to f. Then we say that h is a Handel-Miller monodromy for the depth
one foliation F.

Recall that the bilamination (A4, A_) is called a Handel-Miller pseudo-geodesic
bilamination (A4, A_) associated to f if it satisfies the four axioms (Definitions 10.7).

The following is analogous to a result of Fried [21, p. 261] for pseudo-Anosov mon-
odromy in fibrations of hyperbolic 3-manifolds and is key to proving the maximality
of foliation cones defined by Handel-Miller monodromy (see Proposition 13.12).

Theorem 12.7 (Transfer Theorem). Let £ be a 1-dimensional foliation transverse
to F and inducing Handel-Miller monodromy h : L — L on a depth one leaf L. If
F' is another depth one foliation transverse to L and satisfying Hypothesis 7, then
L induces Handel-Miller monodromy I/ : L' — L' on any depth one leaf L' of F'.

The proof of the transfer theorem is now our goal. We first note that by
Lemma 12.4, the monodromy h' : L’ — L’ is an endperiodic automorphism. We
show how to produce an h’-invariant bilamination (A’,, A’ ) by transferring the bil-
amination (Ay,A_) from L to L’ along £ and then verify that this satisfies the
axioms for a Handel-Miller pseudo-geodesic bilamination associated to h'.

12.4. Transferring paths. Given a parametrized path s : [a,b] — L, there are
countably many “transferred” parametrized paths s" : [a,b] — L’ which are uniquely
determined by s'(a) and are obtained by projecting locally along the leaves of L.
This is a standard sort of local continuation process. Likewise, a parametrized
path s : (—o0,00) — L transfers to parametrized paths s’ : (—o0,00) — L/, each
uniquely determined by any one of its values. All of this works equally well for
transfers of paths from L’ to L and transfers of paths from L to L and from L'
to L’. A choice of parametrization is convenient in defining the transferred paths,
but the unparametrized paths underlying the parametrized transferred paths are
independent of the choice. Thus, we will normally view the transfer operation as
having to do with unparametrized paths.

Remark. If s is a loop it is quite possible that some or all of its transferred paths
open up.

Definition 12.8 (transfer of a path). The set of paths obtained by transferring a
path s in L to L' will be called simply the transfer of s to L’. Similarly, one defines
the transfer of a path s in L’ to L, of a path in L to L and of a path in L’ to L'.
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We will distinguish the transfer of s, which is a set of paths, from a transfer of s,
which is a single path in the transfer of s.

Remark. The union of the paths in the transfer of s to L’ is exactly the set of
points of intersections of L’ with leaves of £ which meet s. Similar remarks hold
for the other three types of transfer.

Lemma 12.9. The set of paths in the transfer of a path s on L to L' is permuted
transitively by the map h' : L' — L'. Similar assertions hold for the other three
types of transfer.

Indeed, h' and h are defined by flowing along L.

Remark. The transfer operation on a parametrized path is a continuation process
using a parametrization of s and gives a parametrization of s’. Thus, a choice of
orientation of s induces canonically an orientation of any transfer s’.

Lemma 12.10. Let s be a loop on L and s’ a transferred path on L'. Then s’ is a
nullhomotopic loop on L' if and only if s is a nullhomotopic loop on L. A similar
assertion holds for the other three types of transfer.

Proof. Suppose that s is nullhomotopic on L. If s’ opens, a classical construction
(cf. [4, Lemma 3.3.7]) gives a closed transversal to ¥ which is homotopic in M®°
to s. By tautness, such a loop must be essential in M and so s is essential on L.
This contradiction shows that s’ is a closed loop. Thus s’ is homotopic to s in M
along the projecting arcs of £ and, again by tautness, it is nullhomotopic on L’.
The converse has the same proof. ([

Definition 12.11 (transfer of a set of curves). Given a set A of curves on L, the
union of the transfers of the elements of A will be called the transfer A’ of A.

Remark. Be careful of the logic here. The transfer of a path is a set of paths.
The union of the transfer of a set of paths is the union of sets of paths, hence is a
set of paths. As usual, we can define the transfer of a set of curves on L to L, etc.

12.4.1. The transferred laminations. We define laminations A/, on L’ as the trans-
fers of the Handel-Miller pseudo-geodesic laminations A4 on L (forgetting parame-
trizations). There are problems here as it is not generally true that the transfer of
a lamination is a lamination. It turns out that the h-invariance of A4 saves the
day.

Lemma 12.12. Let A be an h-invariant family of pairwise disjoint, one-one im-
mersed, nonparametrized curves. Then the transfer A" of A to L' is an h'-invariant
family of pairwise disjoint, one-one immersed, nonparametrized curves.

Proof. Let M\, \; € A’ and suppose there is a point € A] N A, such that, for
every simply connected neighborhood V of x in L', the connected component of
x in VN (A] UAN,) is not an embedded curve. (It is possible that A\ = A, and
self intersects nontrivially.) By the h-invariance of A, every transfer of A, to L
is an element of A, ¢ = 1,2. Since a small enough choice of V projects along £
homeomorphically into L, we obtain A, Ay € A intersecting nontrivially. ]

Lemma 12.13. For A’ and A as in Lemma 12.12, A is the transfer of A’ to L.

This is an easy exercise.
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Lemma 12.14. If A is an h-invariant lamination of L and A’ is its transfer to L/,
then A’ is an h'-invariant lamination of L’.

Proof. By Lemma 12.12, we only need to show that there is a laminated partial
atlas for A’. Let N € A’ and let 2 € X. There is A € A such that X is in the
transfer of A and so there is x € A that is carried by the transfer operation to z’.
Let (U,Y, ¢) be a laminated chart associated to A, containing  and small enough
that U projects along £ homeomorphically onto a neighborhood U’ of x’. Let
7 : U — U’ be this projection. Then (U’,Y,p o7~ !) is a laminated chart about
z'. Tt is clear that the plaques in this chart are exactly the path components of
the intersections of the curves in A’ with U’. Since 2’ € |A’| is arbitrary, we have
constructed a laminated partial atlas for A’, hence A’ is a lamination. ([

Lemma 12.15. If A is a closed, h-invariant lamination of L, then A’ is a closed,
b -invariant lamination of L'.

Indeed, a point 2’ € L'\ |A’| transfers to a point € L\ |A|. But 2 has an open
neighborhood U in L ~ |A| which is small enough to project along £ to an open
neighborhood U’ of 2’. Lemma 12.13 implies that U’ misses |A’|.

Corollary 12.16. The transferred laminations A, are closed, disjoint from OL’,
h'-invariant and (A, A”) is a bilamination.

Indeed, the bilaminated charts are produced exactly as the laminated charts.

12.4.2. Behavior of the transferred laminations at the ideal boundary E. Since there
are only thirteen nonstandard surfaces [15, Theorem 8], all of which are easily
ruled out under our hypotheses as leaves of ¥ and ¥, L and L’ can each be given
a standard hyperbolic metric (cf. Definition 3.5 and the following remarks). Fix
a choice of such metrics. By Corollary 10.16, the laminations satisfy the axioms
relative to one choice of standard metric if and only if they do so relative to any
choice of standard metric.

Remark. It is not necessary to make all of the leaves of either foliation simultane-
ously hyperbolic. By a well known theorem of A. Candel [3], it is possible to find a
metric on M which makes all of the leaves of F hyperbolic and another that makes
the leaves of ' hyperbolic, but nothing so sophisticated is needed here.

Let M° be the universal cover of M°. Let £ be the lift of L|M° to M°. Fix a

lift L C M° of the leaf L € F. Similarly, fix a lift L' C M° of the leaf L' € F".
Because the foliations F and F’ are taut, these lifts are the universal covers of L
and L', respectively, and we view L, L' C A.

Lemma 12.17. Fach of the surfaces L and L' meets each leaf of Lina single
point.

Proof. The fibration m : M° — S! defined by F lifts to a (necessarily trivial)
fibration 7 : M° — R with fibers the leaves of F. The leaves of £ are cross-sections
of this bundle. Indeed, if £ is a leaf of £, 7 : £ — R is easily seen to be a surjective
immersion, hence a diffeomorphism (by the classificatiion of 1-manifolds). The

assertion for the leaves L of F follow and the same proof works for the leaves L' of
F'. a
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Corollary 12.18. Projection along the leaves on defines v : L— Z’, a homeo-
morphism which carries Ay onto A/ .

Proof. Indeed, the fact that projection defines a homeomorphism v is an obvious
consequence of Lemma 12.17. Given a path o on L and a lift & on Z, it is ev-
ident that v(5) is a lift of a transfer of o to L'. Thus, v(Ax) C A.. For the
reverse inclusion, note that the argument just given works equally well to prove
that v~1(A’) C Ax. Thus,

v(Ay) Dv(v (ML) = AL

Remark. Note that v generally is not the lift of a map from L to L’.
The main result of Section 12.4.2 is,
Proposition 12.19. The map v extends to a homeomorphism U : LI

The proof of Proposition 12.19 will be modelled on that of [15, Theorem 2], but
there are important differences. Note that doubling M along 04 M gives rise to
foliations 2F and 2F’ having 2L and 2L/, respectively, as leaves. By this device, we
can reduce the proof of Proposition 12.19 to the case that L and L’ have empty
boundary. Thus L and L’ can be identified with A and v : A — A is a homeomor-
phism. The real reason for doubling, however, is to assure that the components of
0r M are closed surfaces, thereby eliminating finitely many counterexamples to the
conclusion of Lemma 12.21.

Remark. This doubling is only a temporary device. It will end when the proof of
Proposition 12.19 is complete and nowhere during this period will it be assumed that
the doubled laminations satisfy the axioms. Generally they do not, as Example 4.36
shows. We will explain shortly why this doubling is necessary.

Definition 12.20 (essentially intersecting loops). Two (parametrized) loops o1, o2
in a surface essentially intersect if, whenever a loop 7y is freely homotopic to o
and a loop 73 is freely homotopic to oo, then 7 and 7 have nonempty intersection.

In particular, loops that essentially intersect must intersect.

Lemma 12.21. If F is a closed, connected surface other than the sphere, projective
plane, or torus, it contains a pair of essentially intersecting loops each of which
separates F.

For the case of the connected sum of n > 4 tori or n > 4 projective planes,
this is easy. The remaining cases are left as an exercise, but see Figure 33 for the
connected sum of two tori.

Lemma 12.22. There is a pair of essentially intersecting loops p and ps in L such
that,
(1) Ewery transfer of p to L' is a loop p/,
(2) Given a transfer p’ as above, there exists a transfer ply of pn to L' which is
a loop essentially intersecting p'.

Proof. Let F be a component of ;M and consider ends e and e’ of L and L/,
respectively, which are asymptotic to F. Fix an h-neighborhood U, C L of e and
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4

i)

FI1GURE 33. Separating loops which essentially intersect

an h’-neighborhood U, C L’ of ¢’ which spiral on F. As in Section 2.1, let N, N’
be smoothly embedded, transversely oriented 1-manifolds in F' which define the
respective cohomology classes corresponding to these semi-coverings. It is worth
noting that, as in the cited section, these semicoverings are the restrictions of honest
coverings p: U — F and p’ : W — F, where U C L is open and h-invariant and
W C L' is open and h’-invariant. The deck transformation groups are infinite cyclic,
generated by h and A’ respectively.

By Lemma 12.21, we can choose a pair of essentially intersecting simple closed
curves o and o4 on F which each separate F. Let © € F' be a point of intersection.
Since ¢ and o4 are separating, the homological intersection number of each of N
and N’ with each of o and o4, is zero. Thus, the curves o and oy lift along £ to
essential loops p and pg in U (and therefore L) with p N pg containing a point y
which is a lift of . Then p and pg intersect essentially. Similarly, the curves o
and oy lift along £ to essentially intersecting loops p’ and pl, in L' with p' N pfy
containing a point z which is a lift of z. The curves p and p’ and the curves p4, and
pl,, are obviously transfers of each other. O

Notation. Denote by R the set of loops p on L such that,

(1) there is a loop pg essentially intersecting p;

(2) the transfers of p and p to L’ are sets of loops;

(3) for each transfer p’ of p, there exists a transfer p} of py which is a loop
essentially intersecting p’.

Let R’ denote the union of all transfers p’ of loops p € R.

By Lemma 12.22, both R and R’ are nonempty. Further, R’ is the transfer of R
and vice versa. Let R be the set of lifts to L of elements of R and R’ the set of lifts
to L' of elements of R'.

Lemma 12.23. (1) R is invariant under the group of deck transformations of
L and R is invariant under the deck transformations of L.
(2) v induces a bijection R — R’ which will again be denoted by v.
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(3) Finally, every p € R admits an essentially transverse closed loop pa such
that some transfer of pl, is a closed loop essentially transverse to a given
transfer p’ of p.

Indeed, (1) and (3) are clear and (2) is proven exactly as Corollary 12.18.
Notation. Let,
2 ={z € S. |z is an ideal endpoint of o € R},
2/ ={z € S. | z is an ideal endpoint of T € R'}.

Remark. The standard counterclockwise orientation of S1, induces a cyclic order
on Z and on Z'.

Lemma 12.24. The homeomorphism v : A — A induces a bijection v : Z — Z/
which either preserves or reverses the cyclic order.

Proof. The bijection v : R — R induces a bijection 7 between their sets of end-
points. If v : A — A is an orientation preserving (respectively reversing) homeo-
morphism, it is clear that T preserves (respectively reverses) cyclic order. (I

Evidently Z and 2’ are invariant under (the extensions to S of) deck transfor-
mations for the respective covering spaces. Since L and L’ have no simply connected
ends, we can apply [15, Corollary 1] to obtain the following.

Lemma 12.25. The sets Z and 2/ are dense in SL .
Corollary 12.26. The mapv : Z — 2/ extends to a homeomorphismv : SL, — SL .

We now define 7 : D? — D? to be the bijection such that |A = v and D|SL, = 7.
We need to prove it is a homeomorphism. Since D? is a compact Hausdorff space
and 7 is bijective, it will be enough to prove that 7 is continuous. It is only necessary
to prove this at points z € SL .

Notation. Denote by G (respectively §’) the set of lifts of pseudo-geodesics v in L
(respectively L) such that some, hence every, completed lift 5 has both endpoints
in Z (respectively in Z').

Lemma 12.27. The homeomorphism v defines a bijection v : G — §'.

Proof. If 4 has an endpoint z € Z, we will show that v(¥) limits on the point
7(z) € Z'. Applying this to both endpoints of 7, 7 € G, will prove that v(G) C §'.
The proof for »~! is completely similar, proving the lemma.

Fix a choice of s € R with a lift having z as an ideal endpoint and let o be the
closed geodesic homotopic to s. Let sy € R intersect s essentially and 7 be the
closed geodesic homotopic to st. Then 7 intersects o essentially and, since these
loops are geodesics, the intersection is transverse. Let a be one of these intersection
points. Let & be the lift of o with z as an ideal endpoint. Let {ay, },ez be the lifts of
a in o, indexed so that lim,,_,~, a, = z monotonically along o. Let 7,, be the lift of 7
through a,,. Each 7, has endpoints u,,, w, bounding a subarc «,, C S;o containing
the point z. The sequences u,, — u monotonically and and w,, — w monotonically
as n — oo. We claim that u = z = w. Otherwise, the closed geodesic 7 in L
accumulates locally uniformly on a geodesic which is impossible. The sets V;, C D?,
n > 0, bounded by 7, U a;, form a fundamental system of closed neighborhoods of
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z. Since z is an ideal endpoint of ¥, it follows that, for each n > 0, there is a ray
n C 7 such that 7, C V.

The sets V,, N A are nested with empty intersection. Thus, the homeomorphism
v carries them to a nested sequence of sets with empty intersection. Furthermore,
the homeomorphism 7 carries the sequences u, and w, to sequences converging
monotonically from opposite sides to 7(z). By the definition of 7, it carries the ideal
endpoints of 7,, to the ideal endpoints of v(7,). It clearly follows that {D(V;,)}>2
is a fundamental system of neighborhoods of 7(z). Furthermore, v(7,) C U(V,,) for
n >0, so v(¥) has U(z) as an ideal endpoint. O

Remark. The existence of 7 in the above proof depends on p being nonperipheral,
that is, on o not being a component of L. By doubling we have assured that
OL = (). Actually, we would be fine without doubling except for a few pesky cases.
For example, if each of the components F' of 0.M is either a torus with an open
disk deleted or a pair of pants, then, in the proof of Lemma 12.21, it would not
be possible to find a simple separating loop ¢ C F' which is not peripheral and the
proof of Lemma 12.22 would fail. Hence, in this case, we cannot construct p to be
nonperipheral. Doubling is not necessary for the application of [15, Corollary 1]
in proving Lemma 12.25 since the leaves L and L’ are admissible, hence have no
simply connected ends.

Proof of Proposition 12.19. We want to show that 7 : D? — D? is continuous
at z € D?. This is clear if 2 € A, so we assume z € SL. Let U be an open
neighborhood of 7(z). Since Z' is dense in S, we can choose an arc a C U N S,
with endpoints a,b € Z' such that U(z) € a. Let 5 be any curve in U with endpoints
a and b and v the projection of N A to L. Then 7 € §' so by Lemma 12.27,
v~1(¥) € G and has endpoints 7" '(a),7 ' (b) € Z. Then the subset V of D?
bounded by 771(3) and 771 («) is a closed neighborhood of z in D? and D(V) C U.
This proves continuity at arbitrary z € S. . Finally, in the general case before
doubling, v restricts to the desired homeomorphism of L onto L'. O

Because of the final statement in the above proof, we no longer work in the
double and will not do so again. Here are two corollaries of Proposition 12.19.

Corollary 12.28. Any transfer of a pseudo-geodesic on L to a curve on L' is a
pseudo-geodesic (and vice versa).

Proof. Let A be a pseudo-geodesic on L and let X be a lift of A to L. By the
definition of v, it is clear that v(X) = X' is a lift of some transfer X' of A to L’. Since
X has two well defined endpoints, U carries those endpoints to well defined endpoints
of X. The transfer of X is the h/-orbit of . Since any lift i’ extends canonically
to OL' , we see that the transfer of A consists entirely of pseudo-geodesics. ([l

Corollary 12.29. The laminations A/y are strongly closed.

Proof. The corollary follows since 7 is a homeomorphism and the laminations A4
are strongly closed. ([

12.5. Proofs of Axioms 1 and 2. The positive/negative escaping sets. We
fix choices of L € FIM*° and L' € F'|M° and transfer the laminations Ay on L to
laminations A’ on L'.
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By Corollary 12.28, the leaves of A/, are pseudo-geodesics. By Corollary 12.16,
we obtain the following.

Lemma 12.30. Axiom 1 holds for A/_.

Since we have identified the lifts of A4 with those of A, via the homeomorphism
v (Corollary 12.18), it follows that,

Lemma 12.31. Axiom 2 holds for A/..

12.5.1. The positive/negative escaping sets U, . By Lemma 12.4, ' : L' — L' is an
endperiodic automorphism. Even though we have not verified all the axioms for A/,
we can still define the positive and negative escaping sets U/, as in Definition 4.64.
That is for ¢’ an end of L, choose an h/-neighborhood U/, of ¢’ (Definition 2.3) and
define W, = J,;2__ (R/)™<'(U.,). The union of the sets U., as ¢’ ranges over the
positive (respectively negative) ends will be denoted by U/, (respectively U’ ). We
will call U’ the positive escaping set and U’ the negative escaping set.

Clearly,

Lemma 12.32. The set W, (respectively U’ ) consists of the set of points v € L'
such that the sequence {(h')™(z)}n>0 (respectively {(h')"(x)}n<o) escapes (Defini-
tion 3.7).

Lemma 12.33. The point x € L' belongs to U, if and only if the leaf £, of £
through x satisfies €, N L C UL.

Proof. The negative ends of L and L are exactly the ones that wind in on inwardly
oriented components of OM as semi-coverings, the positive ends likewise winding in
on the outwardly oriented components of M. Thus, the points x € U, are char-
acterized by the fact that flowing them forward along £ causes them to approach
the outwardly oriented components of M, the points of U_ being characterized
analogously. Since the same characterizations hold for U/, the claim follows. O

Since all axioms hold in L and since projections along £ define local homeomor-
phisms of L to L', Lemma 4.71 for Ay C L now implies:

Corollary 12.34. The frontier of U'jF is |A/L| and, consequently, the border leaves
of UQF accumulate locally uniformly exactly on the leaves of A/, .

Likewise, Corollary 4.69 for AL C L implies:
Corollary 12.35. No leaf of A, (respectively, A’ ) meets UW_ (respectively, W, ).

12.6. Semi-isolated leaves and escaping ends in A’,. Let ¢’ be an end of L’
and denote its full h'-cycle by ¢’ = {e’ =€}, e5,... €}, }. Set

Uy = |J ()"(U) =y, vy u--- oy,

Remark that U/, is an open, h/-invariant set with no periodic points. The con-
nected components U/, of U/, are permuted cyclically by h’. In M, the ends

e = e}, e,...,¢, , are exactly the ends of L' asymptotic to a compact leaf ' =

F., C 0;M. There is an h-cycle ¢ of ends of L asymptotic to this same compact
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leaf F' = F, and one similarly defines an open h-invariant subset U, C L. As in
Section 2.1, one has infinite cyclic coverings

g U, —-F
q:U.— F.

Here, these coverings are defined by projection along the compact subarcs of leaves
of £ issuing from points of U, and of U, respectively, and terminating on F.

The group of deck transformations for ¢’ is generated by h'|U. and for ¢ by
h|U.. Thus,

Lemma 12.36. We can identify the surface F (which is a leaf of the foliation of
M) with the surface F' of Section 2.1.

For definiteness, we consider the case that ¢’ is an h/-cycle of negative ends of
L', ¢ the corresponding h-cycle of negative ends of L, with F = F., = F,.. Since
U/, and A" (respectively U, and A_) are h'-invariant (respectively h-invariant), it
follows that the induced lamination A’ |U, (respectively A_|U.) is invariant under
the group of deck transformations of ¢’ : U, — F (respectively ¢ : U, — F). As
in Section 6.7, the laminations A’ |U/, and A_|U. descend to closed laminations of
F. Since A" |U/, and A_|U, are transfers of each other, they descend to the same

lamination of F. We have,

Lemma 12.37. The laminations A”_|U, and A_|U. descend to the same well de-
fined closed lamination A of F.

In Section 6.7, we analyzed the structure of Ar and the traintrack 7" that carries
it using well understood properties of semi-isolated leaves in A, and escaping ends
in A_. By Lemma 12.37, the same lamination Ar and traintrack are induced by
the laminations A’ and the covering map ¢’ : U, — F. Hence it is reasonable to
expect that these properties of semi-isolated leaves also hold for A, and that these
properties of escaping ends also hold for A’ . Since the axioms have not all been
verified for A’,, this requires proof which we now provide.

Remark that the negative escaping set U C L’ is the disjoint union of the U.,’s
corresponding to h’-cycles ¢’ of negative ends, with the parallel assertion about
W, C L'. The following discussion will be carried out for the negative escaping sets
and the cycles of negative ends, the positive case being entirely parallel.

Proposition 12.38. The laminations A/, of L' have only finitely many semi-
isolated leaves. They are periodic under h' and each contains either one h'-periodic
point or one nondegenerate, compact h' periodic subarc. In the case of one h'-
periodic point, it is repelling on both sides. In the case of a compact, nondegenerate
h'-periodic subarc A’, the endpoints of A’ are repelling on the sides not containing
A’. Furthermore, int A’ meets no leaves of A’_.

Proof. Because the transfer operation is locally a homeomorphism, it is clear that
the semi-isolated leaves of A/, are exactly the transfers of the semi-isolated leaves
of Ay. Since any of these latter contains at least one h-periodic point y, the leaf of
L through vy is closed and can only intersect L’ in finitely many points. Thus the
laminations A’ have only finitely many semi-isolated leaves and they each contain
h'-periodic points.

If A € Ay is semi-isolated and contains exactly one h-periodic point ¥, then the
leaves of £ passing through A are asymptotic (in backward time) in the L-saturation
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of A exactly to the closed leaf ¢ through y. Remark that ¢ meets A only in the point
y. If X is a transfer of A\, we claim that £ can only meet \ in a single point 3’.
Otherwise, a transfer back to A would send a subarc of X with distinct endpoints
onto a nontrivial, compact curve lying in A and having the same endpoints. This
would imply that A is compact, contrary to Axiom 1. Thus, the leaves of £ passing
through )\ are asymptotic to £ in the L-saturation of A’. Since A borders U_, y is
a repelling periodic point of h on A and is the only periodic point (cf. Section 6.2).
Consequently 4/ is a repelling periodic point of A’ on X. It is the only one as a
second would would generate another fixed point in A.

In a similar way, the compact, nondegenerate, h-periodic subarc A of a semi-
isolated leaf A\ € Ay determines a corresponding h'-periodic subarc A’ on any
transfer \' of A\, the endpoints of which are both h'-repelling on the sides not
containing A’, and A’ is the only h’-periodic subarc of \.

The final assertion transfers from the corresponding fact for A, where the leaves
of A_ passing through the endpoints of A lie in the arms of principal regions. [

The following is an easy consequence of the above and Lemma 12.33.

Corollary 12.39. If ¢’ is a cycle of negative ends of L', then the border U, has
finitely many components consisting of h'-cycles of semi-isolated leaves of A/, .

Proposition 12.40. The ends represented by rays of leaves of A issuing from
oW into W_, either from a unique h'-periodic point on a semi-isolated leaf N of
A/, or from the endpoints of a unique nondegenerate, compact, h'-periodic subarc
of such a leaf are exactly the escaping ends (Definition 6.19) of leaves of A’_. Only
finitely many leaves of A’ have an escaping end.

Proof. Such a ray r’ = [a’,00) is clearly the transfer of such a ray r in L. In
particular, int 7’ = (a’,00) lies in the negative h'-escaping set. We will suppose it
lies in U, for a negative end ¢ € E(L'). As the transfer of an h-periodic ray, /
is h'-periodic. Let p be an h'-period of »'. (If (A')? is orientation reversing on A,
replace p by 2p.)

Let z € (a/,00) and consider the compact arc o C (a’,00) bounded by x and
(h')~P(x). Let U be an h'-neighborhood of €’ for the automorphism A’ which by
Lemma 12.4 is endperiodic. Since each point y € a converges to €/ under negative
iterations of (h')?, the compactness of « implies that there is a sufficiently large
integer n > 1 such that (h/)*?(a) C Uer, all k > n. Thus, -, (R') 7" (a) C U.
Therefore, the ray r’ represents an escaping end as asserted.

Conversely, if the ray ' = [a/,00) represents an escaping end, then 7’ is the
transfer of a ray r = [a,00) with (a,00) C U_ and a € |§U_|. By Lemma 6.42,
the ray r represents an escaping end so by Lemma 6.26 a is h-periodic. Thus, a’ is
h'-periodic and the converse is proven.

Proposition 12.38 now implies that only finitely many leaves of A’ have an
escaping end. (Il

By transferring from L’ to L, we obtain the following.

Proposition 12.41. The completions of the leaves of A_|UL, are all compact arcs
with endpoints in U, except for the rays [a,c0) corresponding to escaping ends.
The compact completions fall into parallel packets permuted by h' and there are only
finitely many h'-orbits of parallel packets.
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We repeat that the analogous statements for A/ |U/,, where ¢’ is an h'-cycle of
positive ends of L, are true and have completely parallel proofs.

Thus, we see exactly how A/, |U., descends via the covering map ¢’ to Ap.

For future reference, we also note the following.

Proposition 12.42. The union of the border components of U is dense in [Al,].

Proof. Equivalently, the border components of UQF accumulate locally uniformly on
every leaf of AL. Since the border leaves are the transfers of the border leaves of
Uz, this will be true if the corresponding assertion is true for Uy and A4 in L.
Since the axioms are satisfied for Ay, this is given by Proposition 5.12. O

12.7. The h/-junctures. In this subsection we choose and fix a countable set of
h/-junctures.

Let ¢’ denote an h’-cycle of positive or negative ends of L’. The covering projec-
tion ¢’ : U, — F defines a cohomology class k on F exactly as in Section 2.1 which
we represent by a compact, properly embedded, transversely oriented 1-manifold
J which is “weakly groomed” (Definition 2.16). Thus, as a cocycle, we can re-
place J, with a transversely oriented 1-manifold |J,| to which each component is
assigned a positive weight. Each component o of |Ji| is a properly embedded,
transversely oriented arc or circle, with a positive integral weight w,, representing
a “packet” of w, parallel arcs or parallel circles, coherently transversely oriented.
By an abuse of notation, we generally use J,; to signify this weighted 1-manifold
also. For certain purposes, especially lifting J,, to define a system of h'-juncture
components in U/, it is best to view J,; in this way, but for other purposes, such as
“tunneling” (Section 2.4), it is better to view J,; as the honest 1-manifold produced
as in Lemma 2.14. For details, consult Sections 2.1 and 2.4.

Regard T as a finite, nonorientable 1-complex having as vertices the switches.
Its structure is identical with that of the traintrack for Ag. In particular, it has no
“Reeb annuli” (see the remark on page 60), although this is not essential for the
following application of standard general position arguments. Clearly,

Lemma 12.43. An isotopy of |J.| guarantees that |J;| is transverse to the 1-
complex T, meets no vertex of T and intersects T so as to form no digons.

Corollary 12.44. The isotopy of |Jx| can be chosen so that this properly embedded
1-manifold meets the leaves of Ap transversely and so as to form no digons.

Proof. Wherever |J,;| crosses T, put a laminated chart for Ap. An isotopy makes
|J| cross the chart in a transversal without introducing digons. O

Since every escaping ray must cross junctures, we have the following.
Lemma 12.45. Each circle in T crosses at least one component of Jy.

Lemma 12.46. The juncture J.; can be chosen so that each oriented circle leaf C
of Ap crosses J,; only in the positive sense.

Proof. By Proposition 2.32, one rechooses Jy, if necessary, so that each C either
crosses it everywhere in the positive sense, or everywhere in the negative sense.
This introduces no new intersections, hence does not undo any features we have
established. But the transverse orientation of the negative h'-junctures in U, are
into the neighborhood of the end of L’ or L that they cut off. The orientation of an
escaping ray is toward that end. Since juncture and ray will have all intersections
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positive or all negative, they must have all intersections positive. Down in F'| this
means that all circle leaves of Ar have positive intersections with J,. [l

We fix these properties of J,.

As in Section 2.1, we now lift J,, to a set {(h')*(N.) | n € Z} of h'-juncture
components in U,,. Letting ¢’ vary over all h'-cycles of negative (respectively pos-
itive) ends of L', we obtain a countable set of h/-junctures in U’ (respectively in
W, ) which we fix. As in Definition 4.17, we define N”_ to be the set of components
of these negative h’-junctures, N, to be the set of components of these positive
h/-junctures, and N = N U N’

We define the set of juncture components J’ accociated to N' by ' = N’ and the
map ¢ : N’ — 7’ to be the identity (see Definition 10.5). Thus the set of junctures
is identical to the set of h’-junctures.

By Corollary 12.34, an element of J’° h'-escapes if and only if it is disjoint from
|A”_|, with a similar statement for the elements of J’, .

Lemma 12.47. A component of a negative juncture intersects a negative escaping
end [a,00) in at most one point.

Proof. Indeed, the intersection must be a singleton because, by Lemma 12.46, an
escaping ray can only meet a given juncture in positive intersections, hence only
once. (]

Definition 12.48 (Y.). The set Y/, consists of the nonescaping components of the
elements of N, .

Note that Y/, is a discrete, nonclosed lamination.

Lemma 12.49. If a sequence {y,};21 of points in distinct leaves of Y~ converges
to a point y € L', theny € A/,.

Proof. Evidently, y € E;F and, by Corollary 12.34, ﬂ; =ULUAL. Ify e UL,
all but finitely many terms of the sequence lie in U/, for an h'-cycle of ends. The
covering projection ¢’ : U, — F,. would then carry y to a point ¢'(y) =y’ € F. such
that infinitely many strands of J,, pass through a neigborhood of y'. Since J, is a
compact 1-manifold, this is impossible. (I

12.8. The last two axioms. It remains that we verify Axiom 3 and Axiom 4.

Let N’ denote the set of A’-juncture components just constructed and let the set
J’ of juncture components be the same set, taking for  : N* — J’ the identity map.
Then, the condition that ¢(IN) be homotopic to N for each N € N is tautological.
By our construction, the following has already been proven.

Lemma 12.50. Axiom 4 holds for A/y, with J. = N',.
It remains to check Axiom 3, the endpoint correspondence property.

12.8.1. Convergence properties of Y',. We work explicitly with the set Y’ in U,
but everything carries through for the positive case in a completely parallel way.
Let A be a border leaf of UL, where e is a negative end of L', and let [a,00) be an
escaping end issuing from a € A\. There may or may not be a second escaping end
[a', 00) issuing from o’ € A. Let {0, }5° __ be an enumeration of the elements of Y
intersecting [a, 00). By Lemma 12.47, o, N[a, o0) is a singleton, z,, —00 < n < 0o.
The indexing is chosen so that {Z, }—coc<n<oo 1S monotonically increasing in [a, 00).
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Definition 12.51 (assemblage). The connected set

AU [a,00) U U op C L'
n=—00

will be called an assemblage.

Remark. We can also view an assemblage as contained in the internal completion
W._ and define similar assemblages in U’+ For an end e of L, there are finitely
many assemblages in U/, hence in W,. An assemblage in U’ may be called a
negative assemblage and one in U’+ a positive assemblage. As mentioned above, we
are explicitly considering the negative ones, but will mention the minor adjustment
necessary in the positive case.

Let p be the least positive integer such that (h')P carries A to itself, preserving
orientation. Thus (h')? carries [a,00) to itself and permutes the set {x,} so as to
preserve the order. The sequence {x,}>2 _ _ falls into finitely many (h')P-orbits.
The point a is (h')P-contracting in [a, 00). If it is an isolated fixed point in A, then
a is (h')P-expanding in A on both sides. Otherwise, there is an invariant subinterval
[a',a] C A and a and o' are both (h')P-expanding in A on the sides not containing
[a',a]. All of this is easily deduced from the corresponding properties in L, being
known there since the axioms are satisfied in L.

Lemma 12.52. Ife is the end of L' to which [a,00) escapes, then lim, o , =€
and lim,,—y oo T_p, = Q.

Proof. The first equality is due to the fact that the z,,’s lie in the component U
of the negative h'-escaping set. The second sequence is monotonically decreasing
in [a,c0), hence converges to a point b in that ray. Clearly b is h'-periodic, hence
cannot lie in U . Therefore, b = a. Alternatively, b = a is a consequence of
Lemma 12.49. (|

Let -
AU [a,00) U U onp C L'

be an assemblage. A choice of lift A gives a lift @ of a, hence a lift [a, 00) of [a, 00),
hence lifts z,, € [a,c0) and lifts 7,, through Z,,, —co < n < co. This defines a lifted
assemblage

o0
AUfEo0)U | Fnc
n=—oo
of which there are a countable infinity. An application of v~ (Corollary 12.18)
transfers this assemblage to

Ub,co)u |J 7L,

a lift of a particular transfer of the assemblage in L’ to L. In this transfer,

U[b,OO)U U TnCL»

n=—oo

the respective transfers of the points z,, € [a,00) will be denoted by y,, € [b, c0).
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\ATA
o s

FIGURE 34. Case of juncture components meeting one or two es-
caping ends of a leaf of A_.

Remark. There is a possible surprise here. Examples show that the curves o,, may
be loops that open up under transfer. As nonparametrized curves, there may be
only finitely many distinct transferred curves 7,,, each meeting [b, c0) in a bi-infinite
sequence of points each. By parametrizing these transfers so that 7,,(0) = y,,, we
view {7, }nez as an infinite family of distinct parametrized curves.

There is a smallest positive integer ¢ such that h? carries v U [b, 00) to itself,
preserving orientation of 7. It is not necessarily true that ¢ = p.

Lemma 12.53. the map h? permutes the set {y,} and also the set {7, } of paramet-
rized curves, having finitely many distinct orbits in each.

Proof. Denote by u : [a,00) — [b,00) the transfer such that u(x,) = y,, —o0o <
n < oo. Then u=toh%op: [a,00) — [a,0) is a transfer operation, hence is of the
form (h')¥P, for some integer k. That is, h% o u = po (h')*P. Thus, for each n € Z,
there is m € Z such that

h(yn) = h?(p(xn)) = (W) (20)) = 1(@m) = ym.
That is, h? maps the set {y,} into itself. The same argument applies to h~%, hence

h? maps {y,} bijectively to itself. Evidently, the same argument applies to {7,}.
That there are only finitely many h?-orbits is evident. O

Since the laminations on L satisfy the axioms, Proposition 6.9 applies. In Fig-
ure 34 we reproduce the pertinent two cases of Figure 13, relabeling with the current
notation. The arrows indicate the action on S., of the completion g of a suitable
lift g of A9 (one which fixes the ideal endpoints of 7). Since the curves 7,, are per-
muted by g, they have endpoints (finite or ideal) converging to the ideal endpoint
of [g, o0) as n — 0o and to the ideal endpoints of 7 as n — —oo. Under application
of U (Proposition 12.19), the same convergence property holds for the lifted set in
L’. This establishes the following.

Proposition 12.54. Given an assemblage
oo
AU [a,00) U U o, C L,
n=—oo

and a lift of this assemblage to Z, the endpoints of o, in Ss converge to the ideal
endpoints of A as n — —oo and to the ideal endpoint of [a,o0) as n — co.
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Remark. The above discussion was for a negative assemblage. In the positive case,
g should be a suitable lift of h~9. This gives Proposition 12.54 in both the positive
and the negative case.

12.8.2. Verifying the endpoint correspondence property. Let J& be the set of geo-
desic juncture componentss obtained as the geodesic tightening of the elements of
J’. Let U% denote the negative escaping set for (A%, A%), the geodesic Handel-
Miller bilamination associated to h’. The set H%F consists of the geodesic tightening
of the elements of ‘A’;.

In order to verify Axiom 3 for (A’,,A” ), we must show that A is exactly the
set of geodesic tightenings of the elements of A’,.

Lemma 12.55. A component of J' escapes if and only if its geodesic tightening
escapes. Equivalently, the set H%F s exactly the set of nonescaping components of
the geodesic junctures.

Proof. “Only if” is given by Theorem 3.11. Since there are no digon intersections
of elements of J/, with leaves of A/;, any such intersection is essential, hence the
same is true of the geodesic tightenings of such juncture components. That is,
nonescaping elements of J’ tighten to nonescaping elements of J&, proving the “if”
assertion. (]

By the construction of the Handel-Miller geodesic bilamination in Section 4, we
have the following.

Corollary 12.56. The geodesic laminations and nonescaping juncture components
satisfy the following:

(1) TE = AL UYS;

(2) T% is a closed geodesic lamination;

(3) Y& is dense in |TL|.
Notation. Let X§ denote the set of pairs {z,y} C SL such that there exists
A € A% having a lift A with endpoints z, y.

Proposition 12.57. The following two statements are equivalent,
(1) There ezists a sequence {o,}n>1 C ‘é'jF and lifts o,, having endpoints x,,y, €
Seo such that ©, — x and Yy, = Yy as n — o;
(2) {=,y} € XE.
Proof. This follows immediately from the facts that lifts of o,, € %F and o8 € ‘éi

have the same endpoints on S, and that the geodesic laminations I' have the
strongly closed property (Definition 4.33). O

Notation. Let X/, C denote the set of pairs {z,y} C S such that there exists
A € A, having a lift A with endpoints z,y. We have,

Proposition 12.58. (1) For every pair {z,y} € X, there exists a sequence
{ontn>1 C Y% and lifts 7, having endpoints vy, yn € Seo such that x, — x
and Yy, — Yy as n — o0;

(2) X, C X%.

Proof. By Proposition 12.57, (1) = (2). To prove (1), we prove that for every
{z,y} € X' there exists a sequence {o,} C Y and lifts o, having endpoints
T, Yn € Soo such that z, — = and y, — y as n — oco. The other case is analogous.
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If ,y are the endpoints of the lift of a border leaf of U’ in A/, then such a
sequence exists by Proposition 12.54.

If z,y are the endpoints of X, where A € A/, is not a border leaf of U, then
Proposition 12.42 implies that there is a sequence {Xn} of lifts of border leaves that
strongly converges to X. Since A/, is strongly closed (Corollary 12.29), the lifts An
have endpoints a,, b, € S., such that a, — = and b,, — y. By Proposition 12.54,
there exists a sequence {o,} C Y" and lifts 7,, having endpoints z,,, y, € S such
that d(zy,a,) < 1/n and d(yn,by) < 1/n. Here the distance is Euclidean distance
on the closed unit disk. Thus, z,, — « and y,, — ¥ as required. (I

Corollary 12.59. If { € /~\’i is the leaf with endpoints {x,y} and a side of £ is
specified, the lifts o, in part (1) of Proposition 12.58 can be chosen to lie on that
side unless € is a lift of a border leaf of a positive principal region P and the side
in question borders a lift P.

Proof. If the specified side of the leaf ¢ is not isolated, the argument in the proof
of (1) of Proposition 12.58 goes through on that side of £. If the specified side of
¢ is isolated and borders U on that side, we explicitly handled that case in the
proof of (1) of Proposition 12.58. If the side of ¢ is isolated and the leaf £ borders
a positive principal region P on that side, there are no negative junctures meeting
P, by definition. O

Proposition 12.60. X§ C X/,.

Proof. We prove that X% C X/ . The proof that X® C X’ is analogous. Suppose
that {x,y} € X%. By Proposition 12.57, there exists a sequence {o,} C Y and
lifts 7,, having endpoints x,,,y, € S such that z,, — = and y,, — y as n — 00.
By definition, {z,y} € X§ implies that there exists A\® € A% having a lift A\® with
endpoints z,y. Since z, — z and y, — y as n — o0, it follows that the sequence
of hyperbolic geodesics o converges strongly to the hyperbolic geodesic A%. In
particular, the sequence {9} does not escape so, by Theorem 3.11, the sequence
{on} does not escape.

Remark that the points z,y ¢ 85’, hence lie in F. Let By C B, C --- C B; C
.-+ be an exhaustion of L’ by compact sets homeomorphic to disks. Since the
sequence {0, }n>1 does not escape, for some jo > 1 and all large enough values of
n, o, NBj, # 0. Thus, there exists points z, € ¢, N Bj,. These points cluster on at
least one point z € Bj,. By passing to a subsequence, we can assume that z, — z.
The point z projects to a point w € L’ on which the sequence of negative juncture
components {0, } accumulates. By Lemma 12.49, there is a leaf £ € A/, containing
w. Thus, there is a lift /e /N\’Jr containing z. Let a,b € S1 be the endpoints of /.

Without loss we can assume that the &, all lie on the same side of ‘. By
Corollary 12.59, there exists a sequence {7 }x>1 C Y" and lifts 73, having endpoints
ak,br € Soo SECh that ay — a and by — b as k — oo with the 7 all lying on the
same side of ¢ as the 7,,’s. For each k > 1, the lifts o, must be caught between
T and Z, for all large enough values of n. This implies that the endpoints x,,.y,

converge to the endpoints a, b of {. Choose notation so that Zp — a and y, — b as
k — oco. Therefore {x,y} = {a,b} € X/,. O

By Propositions 12.58 and 12.60, X% = X,. Thus, the laminations A/, satisfy
the endpoint correspondence property and we have,
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Corollary 12.61. Axiom 3 holds for A/,

All four axioms have been verified for (A’,, A’ ), hence the proof of Theorem 12.7
is complete.

13. FOLIATIONS

In Section 13.2, we give a heuristic, detailed outline of the first two authors’
theory of “foliation cones” [12, 16] for taut, depth one foliations of compact 3-
manifolds. More generally, the monodromy of a proper leaf in an open saturated
foliated subset of a C? foliation of a compact 3-manifold M is an endperiodic
automorphism. If such a leaf is not at depth one it will have infinite endset. In
Section 13.3, we give a sketch of the structure of open saturated foliated sets and in
Section 13.4 we show how the theory of endperiodic automorphisms can be extended
to surfaces with infinite endset.

13.1. A technical result about isotopic monodromies. Let (M, F) = (Mo, Fo)
be a depth one (Definition 12.2), compact, foliated 3-manifold with 0,M as sole
compact leaves. As usual we set M° = M N 0, M. Let f = fo : L — L be a
monodromy for this foliation and let f; : L — L be an endperiodic automorphism
isotopic to fp by an isotopy fi, 0 <t < 1. If fy and f; are diffeomorphisms, the
isotopy can be taken to be smooth. It will not be necessary to assume that f;
is endperiodic, 0 < t < 1. Let (My, ;) be the depth one foliated manifold with
monodromy f; given by Lemma 12.5.

We are going to realize M° = M§ as L x [-1,1]/{(x,1) = (fo(z),—1) | x € L}.
The factors {z} x [—1,1] hook together to form a one dimensional foliation £
transverse to F|M° inducing the monodromy f = fo on L x {0}. We modify L¢
on L x [—1,0] by replacing the segment (fo(z),t), —1 < t < 0, with the segment
(fi+1(x),t), for all x € L. Denote the new transverse foliation by £1 and note that
it induces monodromy f; on L x {0}. In the smooth case, £1 may have corners
at L x {—1} and L x {0}, but these can be smoothed by standard techniques.
Thus, in constructing (M, F;) by Lemma 12.5, we can assume that M° = M§ =
M? canonically. Since the inclusions M° — My and M° — M; are homotopy
equivalences, we obtain the following result.

Lemma 13.1. If fo,f1 : L — L are isotopic endperiodic automorphisms and
(Mo, Fo), (My,F1) are the corresponding depth one foliated 3-manifolds given by
Lemma 12.5, Then there is a canonical identification Mg = M7, Fo|M§ = F1| M7
and a canonical homotopy equivalence of My to M.

In particular, My and M; have the same homology and cohomology. This will
be critical in what follows.

Remark. It seems certain that My = M; by a canonical homeomorphism (diffeo-
morphism if fy and f; are diffeomorphisms), but a proof seems surprisingly delicate.
Lemma 13.1 is adequate for our current purposes.

13.2. Foliation cones. We give a brief synopsis of the results of [12, 16], indicating
how Handel-Miller theory plays a key role in the proofs.

Remark. The theory of endperiodic automorphisms is basic to our theory of folia-
tion cones. The development in [12, Section 5], particularly the proof of the transfer
theorem [12, Theorem 5.8], is not adequate. We have rectified these problems in
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this paper and [16]. In addition we have replaced the proof of [12, Lemma 4.10] by
an elementary proof of [16, Theorem 4.1].

Let (M,%F) be a depth one foliated 3-manifold satisfying Hypothesis 7. That
is, M is a compact connected 3-manifold that is not a product such that every
component of 9; M has negative Euler characteristic and the foliation F is smooth,
transversely oriented, taut, depth one, and induces no 2-dimensional Reeb compo-
nents on Oy M.

Remark. If M has a tangential boundary component that is a toral leaf 7', then
each end of a leaf of F that approaches T has a neighborhood of the form S* x [0, co)
which spirals in on T'. The torus T C M has a neighborhood of the form T x [0, 1]
with Tx{0} = T and Tx {1} = 7", a torus tansverse to F. Then M’ = M~Tx[0,1)
has T" as transverse boundary and F|T” is a foliation of 7" by circles. The 3-manifold
M has at most finitely many tangential toral boundary components all of which
can be converted to transverse toral boundary components in this way to yield a
3-manifold M’ that is either fibered by F|M’ or is such that F|M' is a depth one
foliation satisfying Hypothesis 7.

Since (M, F) can be assumed to be of class C*°, we will carry out all of our con-
structions in the smooth category. Let £; be a smooth, transverse, 1-dimensional
foliation inducing an endperiodic diffeomorphism f : L — L on a depth one leaf.
Let X denote the compact sublamination of £ consisting of the leaves that do not
meet 0. M. This is the £-saturation of the maximal compact f-invariant subset
Xy C L. That is, X is the union of the leaves of £y which intersect L in points of
Xy. Since we assume that f is not a translation, Xy # 0.

Definition 13.2. The lamination X; will be called the core (sub)lamination of £ .

The Schwartzmann-Sullivan theory of asymptotic cycles [41, 39] associates to
the core lamination X; a closed convex cone with compact base in the infinite
dimensional space of closed de Rham 1-currents. For example, every closed leaf
of Xy is a homology cycle asymptotic to X;. More generally, any leaf ¢ € Xy
defines “long almost closed orbits” which converge to asymptotic cycles. One takes
a sequence of longer and longer subarcs Py of £, divides by the length || P of the
subarc, obtaining a sequence of de Rham 1-currents containing subsequences that
converge to asymptotic cycles called “homology directions”. All asymptotic cycles
are limits of sequences of linear combinations of homology directions with positive
coeflicients. One also allows 0 to be considered an asymptotic cycle so that the
cone has a vertex. The cone of asymptotic cycles passes to a closed convex cone
¢ C H1(M;R) with compact base. The dual cone €7 C HY(M;R) consists of
exactly those classes which take all values > 0 on C'f. This cone is closed and
convex, has nonempty interior, but does not necessarily have a compact base.

Remark. There are extreme cases in which Qi’f reduces to a single ray issuing from
the origin, in which case € is an entire half space.

Definition 13.3 (foliated form). A 1-form n € A'(M°) is a foliated form if it is
closed, nowhere vanishing and becomes unbounded at 9 M in such a way that the
corresponding foliation F) that it defines on M® extends by adjunction of 9; M to
a transversely oriented C'*° foliation J, of M, C*°-flat at 0. M.

The following is a compilation of [16, Theorem 4.9 and Theorem 7.1], the last
assertion about the structure of the foliations being rather elementary.
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Proposition 13.4. The open cone int €5 consists of classes in H' (M) that can be
represented by foliated forms transverse to Ly|M°. The ray (n) issuing from the
origin through any of these classes [n] (called a foliated ray) determines the folia-
tion I, uniquely up to a C° ambient isotopy. Those foliated rays passing through
nontrivial elements of the integer lattice H*(M;Z) (called rational rays) determine
foliations of depth one, while the irrational foliated rays define foliations which, in
M?®, are dense leaved without holonomy.

Definition 13.5. If § = F,, for a foliated form 7, we denote the foliated ray (n) by

(9)-

Definition 13.6. The cones €y, obtained from smooth, one dimensional foliations
L ¢ transverse to JF, are called the foliation cones associated to J.

One wants to find a monodromy h for F with “tightest” dynamics in the sense
that the cone €} is contained in every cone (‘:; as g varies over the smooth mon-
odromies for . Equivalently, €, will contain every €,. As the reader will have
guessed, h will be a Handel-Miller monodromy (Definition 12.6). We are going to
sketch the proof after some preliminary considerations.

To begin with, by Theorem 11.1, there is a smooth Handel-Miller automorphism
h, that is a smooth endperiodic automorphism A : L — L isotopic to a monodromy
automorphism f : L — L for F and preserving a Handel-Miller pseudo-geodesic
bilamination (A4, A_) associated to f. Using Lemma 12.5, construct a depth one
foliated manifold (M}, Fp,) with monodromy h. By Lemma 13.1, we have M° = Mp.
Given any smooth one dimensional foliation £ transverse to F, its core sublamina-
tion X lives in M° = My The restriction of £ to My is integral to a smooth vector
field which, near 0, M}, and outside a neighborhood of X can be smoothly modified
so as to be defined and nonsingular on M} and transverse to F, there. This pro-
vides a one dimensional foliation £’ of My, transverse to Fj and having X as its
core sublamination. By the equalities Hy(M) = Hy(Mp) and H' (M) = H'(My),
we see that every foliation cone associated to F is identical with a foliation cone
associated to Fj,. Reasoning similarly, every foliation cone associated to Fy, is also
a foliation cone associated to F. We summarize.

Lemma 13.7. Let h be a smooth Handel-Miller automorphism isotopic to a mon-
odromy of F. Then, under the canonical identification H'(M;R) = H'(M;R), the
foliation cones associated to F are identical with those associated with Fp,.

Temporary Hypothesis. From now on in Section 13.2, we assume that F
itself has a smooth Handel-Miller monodromy h.

Let £}, be a smooth, transverse, 1-dimensional foliation defining h, X} the com-
pact sublamination of £, which is the Lj-saturation of the maximal, compact,
h-invariant subset X; C L. In general, X} consists of |A4| N |A_| U N, where N
is a compact surface, generally not connected, which is the union of the nuclei of
principal regions. The components of N are permuted by h. An isotopy of h sup-
ported in N puts h|N in Nielsen-Thurston canonical form [21] without destroying
the fact that h leaves the laminations invariant. This means that IV is partitioned
into connected subsurfaces IV;, each of which is invariant under AP, some p > 1,
such that hP|N; is either pseudo-Anosov or periodic. These subsurfaces are bor-
dered by annuli in N and hP|N is smooth except at finitely many multi-pronged
singularities.
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Definition 13.8. If h is Handel-Miller and h|N is in Nielsen-Thurston canonical
form, h is said to be a tight Handel-Miller monodromy automorphism for .

Remark. The transfer theorem (Theorem 12.7) easily extends to show that tight
Handel-Miller monodromy h on L transfers to tight Handel-Miller monodromy A’
on L’ [16, Theorem 6.20]. Since Xj, = Xj/, we see that €, = €.

Remark that h is not uniquely determined by its isotopy class. We state without
proof Theorem 6.18 of [16].

Proposition 13.9. The cone ¢, C HY(M) is independent of the choice of the
representative h of tight Handel-Miller monodromy automorphism for F.

Because of this proposition, we will often denote €, by €.

Definition 13.10 (Handel-Miller foliation cone). The cone €, = €5 is called the
Handel-Miller foliation cone associated to F.

The Handel-Miller foliation cones have a nice geometric structure which often
makes explicit computations possible.

Proposition 13.11. Each Handel-Miller foliation cone €5 C H'(M;R) is polyhe-
dral.

Outline of the proof. Let X; = |Ay|N|A_], called the meager invariant set, and let
X}, denote the £,-saturation of the meager invariant set. For each Nielsen-Thurston
component N;, let Xy, denote the Lp-saturation. If A is the union of annuli
bordering these components, as well as any annular or Mobius nuclei of principal
regions, let X 4 denote the L£j-saturation of A. We can ignore nuclei that are disks
since their Lp-saturations contribute no asymptotic cycles not already contributed
by X7 . The Markov partition of Section 9 determines finitely many minimal period
h-orbits in X} which correspond to minimal loops in X} . Homologically, all loops in
X} are linear combinations of minimal loops with coefficients nonnegative integers.
In turn, homology directions corresponding to leaves of X} are limits, homologically,
of sequences of nonnegative linear combinations of loops, while every asymptotic
cycle for Xj is in the closure of the linear span with nonnegative coefficients of
the homology directions. Bottom line, the finitely many minimal loops span the
homology cone represented by asymptotic cycles of Xj. Similarly, if N; is a pseudo-
Anosov component of the Nielsen-Thurston decomposition of IV, invariant under
h?, there is a Markov partition for hP|N; and the same reasoning shows that the
homology cone represented by asymptotic cycles of X, is spanned by finitely many
minimal loops. If NN, is a periodic component, Xy, is a compact 3-manifold which
is Seifert fibered by £,. The cone has a single generator. It is elementary that X4
has finitely many generating cycles, at most 2 for each annulus or Mobius strip.
All of this gives a finite spanning set, with possible redundancies, for &} . It follows
easily that ¢} and €;, = €5 are polyhedral. O

Proposition 13.12. Let h be a tight Handel-Miller monodromy for F. Then €, is
the mazimal foliation cone €, as u ranges over the (smooth) monodromies for F.

Sketch of the proof. If not, one easily finds a rational foliated ray (SG) lying in the
boundary of €. Let g be a tight Handel-Miller monodromy for §. Then () C int €,
and so int €5, and int €, intersect. Let () be a rational foliated ray in the interior
of both cones. By Proposition 13.4, this ray is represented by a foliated form
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7 transverse to L£p|M°. By [10], it follows that JH is isotopic to a foliation H’
transverse to £y, by an ambient isotopy that is smooth in M°. By Theorem 12.7, £,
induces tight Handel-Miller monodromy A’ on the depth one leaves of H'. Similarly,
H is isotopic to a foliation H" transverse to £, which induces tight Handel-Miller
monodromy on the depth one leaves of H”. An ambient isotopy of H" to H’,
applied to § and £, allows us to assume that H' is transverse to both £ and
L4, each inducing tight Handel-Miller monodromy A’ and ¢’, respectively, on the
depth one leaves of H'. By Proposition 13.9, €, = €, = €}, = €, contrary to the
assumption that (G) lies on the boundary of &j,. O

Remark. The use of the transfer theorem in the above argument is critical. We
know of no other way to prove the maximality of the Handel-Miller foliation cones.

Finally, there are only finitely many Handel-Miller foliation cones by [12, Theo-
rem 6.4] or [16, Theorem 6.25], hence we have classified all depth one foliations of
M up to isotopy by a finite set of combinatorial data. Explicit computations of the
cones for some knot complements have been made. For instance, cf. [12, Section 7].

Remark. This theory is closely analogous to the classification of smooth foliations
without holonomy transverse to M. These foliations are either fibrations of M
over St or they are dense leaved. A well known theorem of W. Thurston [42] shows
that, if M has any such foliations, certain top dimensional faces of the “Thurston
ball” (a convex polyhedron which is the unit ball of the Thurston norm) subtend
polyhedral cones €1, s, ..., ¢, C H'(M;R) such that the rational rays in the inte-
rior of these cones correspond one-to-one to the smooth isotopy classes of fibrations.
Furthermore, combining the Laudenbach-Blank theorem [32] with a theorem of the
first two authors [13], the irrational rays in the interiors of the Thurston cones
correspond one-to-one to the C isotopy classes of dense leaved foliations without
holonomy.

Remark. Recently, I. Altman [1] has shown that, with some important restric-
tions on the sutured manifold (M, ), our maximal foliation cones are subtended
by certain top dimensional faces of the dual Juhdsz polytope [31], the unit ball
for a nonsymmetric norm defined via sutured Floer homology. For these sutured
manifolds, the nonsymmetry of the norm implies that our cones are not permuted
under multiplication by —1. In the general case, this is a consequence of the fact
that, as part of the definition of a sutured manifold, there is a given transverse
orientation on the boundary leaves. This poses a restraint on which transversely
oriented foliations are allowed. Reversing the boundary orientations changes the
set of maximal foliation cones by multiplication by —1.

13.3. Open foliated sets of relative depth one. In this subsection, we shetch
how the relation between depth one foliations and endperiodic automorphisms can
be extended to open foliated sets without holonomy in compact 3-manifolds. See [4,
Section 5.2] for a treatment of open foliated sets without holonomy. In [17] we begin
a theory of foliation cones for open foliated sets without holonomy.

13.3.1. The C? case. Let T be a C? foliation of a compact 3-manifold M. We
continue to require F to be transversely oriented, taut and without 2-dimensional
Reeb components in 9 M. We also require that every compact leaf of I has strictly
negative Euler characteristic and that no noncompact leaf is a plane, open annulus
or open Mobius strip. We fix a transverse, 1-dimensional foliation £.
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Let W C M be an open, connected F-saturated set (i.e., an open, connected
union of leaves). There is a notion of “transverse completion” W [4, Page 130] of
such a set, analogous to the notion “internal completion” (Definition 5.1). Essen-
tially, it is a generally noncompact, foliated 3-manifold with finitely many boundary
leaves and perhaps infinitely many transverse boundary components. We continue
to write OW = 6TW U amW. Some or all of the finitely many boundary leaves may
be noncompact and some or all of the components of 8m/V[7 may be noncompact.
Again, we require that the induced foliation of am/w? contain no Reeb components.
Also, 8Tﬁ/\ and 6mﬁ/\ are separated by convex corners wherever they meet. The
natural inclusion ¢ : W < M extends to a natural immersion 7 : W & M which
may identify some boundary leaves pairwise. We set F = 7719), and L= THL),
the foliations induced on W by F and £, respectively. These foliations are C2.

Definition 13.13 (relative depth one). The foliation F has relative depth one if
FIW (= F|W) fibers W over S*.

Remark. If W is an open saturated set without holonomy in a foliation F with
W not foliated as a product, then F has relative depth one.

In order to properly visualize these foliations, we need the notion of an “octopus
decomposition” [4, Definition 5.2.13] of W=KuU Ay U---UA,.. Here, Kis a
compact, connected 3-manifold with boundary and corners, foliated by F | K, the
corners dividing 0; K = KN 5‘TW from O K. We call K the nucleus of the octopus
decomposition and A; the arms. The arms are of the form A; = L; x I, the I-fibers
being leaves of Z|Al and L; a noncompact, connected surface with boundary. The
arms attach to K along annular components of 94K and/or rectangular subsets of
onK.

As a consequence of the Generalized Kopell Lemma [4, Lemma 8.1. 24], one
proves that, when F has relative depth one, the junctures in 0, W are compactly
supported cohomology classes . This requires differentiability of class at least C2.
This is a special case of [4, Theorem 8.1.26]. The following is an easy consequence.

Proposition 13.14. If§ has relative depth one, the nucleus of the octopus decom-
position can be chosen large enough that, in the arms A;, F is the product foliation
with leaves L; x {t}.

Thus, everything interesting happens in §"|K , which is an honest depth one
foliation. Since 0, K C 8TW, we can assume that every component F' of 0,K has
negative Euler characteristic. Indeed, either F' is a full component of 87/1/17, in which
case it is a compact leaf of F and has negative Euler characteristic by hypothesis,
or F/h\as nonempty boundary and is contained in a noncompact component N
of 0.W. By hypothesis, N is not a plane, open annulus or open Mobius strip.
Thus, choosing K large enough guarantees that F' is not a dislj, closed annulus or
closed Mobius strip. This shows that the depth one foliation F|K of the compact
3-manilold K satisfies all the requirements of our previous discussicin.

Let L be a leaf of F|W and L' = L N K. Since the leaves of F|A; are of the
form L; x {t} € L; x I, 1 < i < r, the fact that L is connected implies that L’
is connected. By Lemma 12.4, the monodromy of L’ is endperiodic and so the
monodromy of L is endperiodic (in the sense of Definition 2.4) if infinite endsets
are allowed.
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Remark. In Section 13.4 we show how the theory of endperiodic automorphisms
can be extended to surfaces with infinite endset.

Proposition 13.15. If f : L — L is the monodromy of a leaf of F|W, where F is
C? and T has relative depth one, then f is endperiodic.

Remark. We refer to L’ as the soul of L (Definition 13.31). The above construction
provides motivation for the construction of the soul (Proposition 13.30) in the
general situation of an endperiodic automorphism of a surface with infinite endset.
In the construction of Proposition 13.30, the ends that are not periodic are pared
off to obtain the soul. In the above construction these ends that are pared off of L
to obtain the soul L’ are the surfaces L; x {t}, 1 <14 < r, which attach to L’. In
the above construction the choice of L’ is not unique but clearly depends on how
large we choose K. In the construction of Proposition 13.30 the soul also depends
on choices.

13.3.2. Finite depth foliations. One says that a leaf of F has depth 0 if it is compact.
Inductively, a leaf L has depth > 1 if L~ L is a union of leaves of depths < r —1,
at least one of which has depth » — 1. It is possible that a leaf has no well defined
depth (for example, a leaf that is dense in M).

Definition 13.16 (depth r). The foliation F has depth r if all leaves have finite
depth and r is the least upper bound of the depths.

The leaves at depth r of a depth r foliation unite to form an open saturated set
and one can establish the following.

Proposition 13.17. IfF isa depth r folzatwn and W is a component of the union
of depth r leaves, then the foliation F ofW has relative depth one.

It is easy to construct C'>° depth r foliations with all leaves proper for arbitrary
r > 1. For examples, see [6, Theorems 2, 3]. These examples have leaves of type
r — 1 (Definition 13.18) and thus monodromy an endperiodic automorphism of a
surface with infinite endset.

In many of the examples of finite depth foliations constructed by Gabai’ [26], it is
possible to choose all the junctures to be compact. If all junctures are compact, [11,
Main Theorem] implies that the finite depth foliation can be C* smoothed giving
many examples of C*° finite depth foliations.

13.3.3. Leaves at relative depth one with a Cantor set of ends. Let X C M be an
exceptional minimal set of a C? foliation F of M. This is a compact, nonempty,
saturated set which does not properly contain another such and does not reduce to
a single compact leaf nor to M itself. Such a set is transversely Cantor. A theorem
of G. Duminy (unpublished, but cf. [14]) asserts that the semi-proper leaves in X
(i.e., those which border a gap in the Cantor set) have a Cantor set of ends. If W
isa connected component of M ~ X and T is of relative depth one in W then the
leaves of F|WW will have a Cantor set of ends.

There are many examples of exceptional minimal sets. See, for example, Ray-
mond’s example [5, Corollary 8.4.2]. In these examples the leaves will have mon-
odromy which is a normal endperiodic automorphism (Definition 13.21) and thus,
by Propositions 13.23 and 13.25, finitely many of the ends will be attracting and
finitely many will be repelling.
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13.3.4. Hyperbolic knots and the C°F case. A C° foliation is COF it its leaves are
integrable to a C° 2-plane field. If v C S® is a hyperbolic knot, then M = S3 \ ~
is a cusped hyperbolic 3-manifold. In general, a cusped hyperbolic 3-manifold has
finitely many cusps which are topologically of the form T2 x [0,00). Amputating
these cusps along T2 x {0} leaves behind a compact 3-manifold M’ with finitely
many new boundary components, all tori, A finite depth foliation F of a cusped
3-manifold is to be a product foliation in each cusp T2 x [0,0), the leaves there
being of the form C x [0,00) where C ranges over a family of circles in 7% which
fiber that torus. The foliation F|M’ will be finite depth in the usual sense, meeting
the new tori in M’ in circles that fiber those tori and in general are only known
to be COF. If F|M' is C?, then the monodromy of the leaves of an open saturated
set without holonomy will be endperiodic and the methods of Section 13.3.2 apply.
If F|M’ can not be C? smoothed, then some junctures will not be compact ([11,
Main Theorem]) and the mondromy of the leaves of an open saturated set without
holonomy will not be endperiodic. An approach to the type of monodromy that
occurs in these C°F foliations that can not be C? smoothed is given in [17].

D. Gabai [28, Theorem 3.1] shows how to construct taut, finite depth foliations
of a knot complements in S? which meet the boundary of the knot complement in
circles. The construction of these foliations is intrinsically C°* and not all of these
foliations can be smoothed. In fact, In [9, Theorem III] the first two authors give
an example of a knot in S that has no taut, finite depth, C? foliation which meets
the boundary of the knot complement in circles.

13.4. Endperiodic automorphisms of surfaces with infinite endsets. In this
subsection we treat endperiodic automorphisms of surfaces with infinite endset. The
definitions and results here are all exemplified by the foliations F of W of relative
depth one of Section 13.3.

Recall that (L) is a totally disconnected separable metric space. Define the
0 derived endset to be €0 (L) = &(L). Tf, for an ordinal o > 0, the o derived
endset €(®)(L) has been defined and is a compact subset of (L), then the (a+ 1)t
derived set €@tV (L) is the set of cluster points in €(®)(L). If 3 is a limit ordinal
and €(® (L) has been defined for all & < 3, we define the 3" derived set to be
eBN(L) = ﬂa<ﬁ8(a)(L). It can be shown that, for a first countable ordinal =,
either £ (L) is finite and nonempty, or £ (L) = £ (L) is a Cantor set, where
) is the first uncountable ordinal [36].

The following terminology has been used by the first two authors elsewhere and
will also be found in [4, Section 4.1], but may not be considered standard.

Definition 13.18 (type of surface). Let v > 0 be the first countable ordinal such
that € (L) is either finite or a Cantor set. If £ (L) is finite and nonempty,
the surface L has topological type . Otherwise, L has topological type 2. If L is
compact it is said to have topological type —1.

Definition 13.19 (type of end). An end of L is of type « if it is isolated in the
o™ derived endset. If the end lies in () (L), it has type Q.

Remark. In C? foliations, leaves at finite depth k have topological type k — 1 and
growth type exactly polynomial of degree k [7, Theorem 6.0]. This was one of the
first theorems relating the topology of a leaf and its volume growth function. It is
valid for codimension 1 foliations of compact n-manifolds, n > 3.
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In what follows L is allowed to have any topological type < Q.

Lemma 13.20. If f : L — L is endperiodic, then a neighborhood of a periodic end
e’ cannot lie in an f-neighborhood U, for another periodic end e.

Proof. For then the iterates f*(e’) would all have to be distinct, contradicting the
fact that €’ is periodic. O

In our applications to foliations in Section 13.3, it was necessary to consider
endperiodic automorphisms f : L — L where L has topological type Q (cf. Sec-
tion 13.3.3). Without some added hypothesis, examples show that some very un-
desirable bizarre behavior can arise. The following condition will always be verified
in the foliation setting.

Definition 13.21 (normal endperiodic automorphism). An endperiodic automor-
phism f : L — L is normal if the f-minimal sets in (L) are the finite periodic
orbits of prime period.

Of course, the finite periodic orbits of prime period are f-minimal. By the
standard Zorn’s Lemma argument, there are f-minimal sets. By the following,
normality only becomes a restriction if L has type (.

Lemma 13.22. If f : L — L is endperiodic and L has topological type v < €1, then
f is normal.

Proof. Let X C &(L) be an f-minimal set. Let e € X. If this is not a periodic
end, then {f*(e)}rez is infinite and clusters at every point of X, including e itself.
If e has type a, then o < v < Q and every element of X must have type > «,
contradicting the fact that e has type a. This contradiction means that the end e
is periodic, so f is normal. O

Remark. Further, if L with topological type € is a leaf of a C? foliation of an open
saturated set W of relative depth one as in Section 13.3.1, then the monodromy
map f: L — L is a normal endperiodic automorphism.

Proposition 13.23. If f : L — L is endperiodic and normal, there are only finitely
many periodic ends.

Proof. Let P(L) C E(L) be the set of periodic ends. If this set is infinite, the set
Q(L) C &(L) of cluster points of P(L) must be compact, f-invariant and nonempty.
Thus, Q(L) contains an f-minimal set. Since f is normal, this is a finite periodic
orbit on which P(L) accumulates, contradicting Lemma 13.20. g

Example 13.24. The methods of [18, Section 5] can be used to give an example
of an endperiodic automorphism f : L — L in which the endset of L is the union of
one negative, isolated, nonplanar end and a Cantor set of nonplanar ends containing
a countable infinite set of positive ends and no other periodic ends. Thus, Proposi-
tion 13.23 is not true without the assumption that the endperiodic automorphism
is normal.

Proposition 13.25. If L has topological type o« > 1, a normal endperiodic auto-
morphism f : L — L has both positive and negative ends.

Proof. There will be finitely many periodic ends of type «, each necessarily negative
or positive. If there are no positive ends of type a replace f by f~! in the following
proof. Therefore we can assume there is a positive end e of type a.
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The fact that o > 1 implies that (L) is infinite. Hence Proposition 13.23
implies that there are nonperiodic ends. Let U, be an f-neighborhood of e and let
eg € U, be an end with ey # e. Then by Definition 2.2, e is a nonperiodic end.
If e; = fi<(eg), the set of accumulation points of {e;};_% contains a minimal set
which is a finite periodic orbit since f is normal. Clearly this orbit cannot contain
e. By Lemma 2.6, the ends in this orbit cannot be positive ends since each end in
the orbit has an f-neighborhood meeting an f-neighborhood of the positive end e.

Thus, the set of negative ends is nonempty. ([l

Example 13.26. In [18, Section 5], we give an example of an endperiodic auto-
morphism f : L — L in which the endset of L is the union of one negative, isolated,
nonplanar end and a Cantor set of nonplanar ends, none of which are periodic.
Thus, Proposition 13.25 is not true without the assumption that the endperiodic
automorphism is normal.

Example 13.27. Let C C S? be a Cantor set, L = S2 ~. C be an the open, planar
surface with &(L) = C, and v : C — C be the homeomorphism without periodic
points given in [18, Proposition 2]. Then it is easy to define a homeomorphism of S2
which induces the homeomorphism v on C and thus restricts to a homeomorphism
f L = L which has no periodic ends. Thus f is an endperiodic automorphism by
default and has no positive nor negative ends. The endperiodic automorphism f
obviously cannot be normal.

Remark. Examples 13.24, 13.26, 13.27, Lemma 13.22, and the remark following it,
indicate that the concept “normal endperiodic automorphism” is a natural concept.

Definition 13.28 (escaping end of surface). An end e of L is escaping if { f¥(e)}rez
accumulates exactly on an f-cycle of positive periodic ends as k — oo and on an
f-cycle of negative ones as k — —oo.

Lemma 13.29. If f : L — L is a normal endperiodic automorphism, every mon-
periodic end of L is escaping.

Proof. If e € &(L) is nonperiodic, the set Q (e) of accumulation points of { f*(e) }r>0
is compact, nonempty and f-invariant. It contains a periodic point € such that ev-
ery f-neighborhood U of € in L is a neighborhood of some f*(e), k > 0. Since
this is true as k — 0o, € must be a positive end. But once f¥(e) € U, then
frne(e) € UITP, for all p > 0. It follows that Q. (e) is exactly the finite orbit of e.
In a similar way, define Q_(e) and prove that it is exactly the f-cycle of a negative
end. (]

Finally, we turn to the process of “paring off” the nonperiodic ends of L to
reduce the “interesting” dynamics of f to its action on an f-invariant subsurface
L' C L with finite endset, the Handel-Miller situation.

Proposition 13.30. If f : L — L is a normal endperiodic automorphism, then
there exists a subsurface L' C L with finite endset such that,

(1) fIL' : L' = L' is endperiodic;

(2) Fr L' in L has only compact components;

(3) The components of L\ L' are neighborhoods of all the escaping ends of L.

Proof. Let eg be a negative end and consider the cycle

c= {607f(60)3f2(60)a . '7fp6071(60)}'
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of negative ends. Let U, be an f-neighborhood of g and let X, = U, \int fPeo (U,.).
Let €. C E(L) consists of the ends of L contained in X..

For each e € €. choose an open neighborhood V, of e such that {f"(V.)}nez
escapes, OV, consists of one simple closed geodesic, and V. C int X,. The set
{V. | e € €.} is an open cover of the compact set €. so there exists a finite subcover
{Veys--s Ve, }. Then O, = Uf;l Ve, has finitely many piecewise geodesic boundary
components 71, . . ., e, the set {f™(O0,.)}nez escapes, and O, C int X..

Construct such an O, for every cycle ¢ of negative ends. Then L' = L \ |, O,
where the union is over all cycles of negative ends, is a standard surface, satisfying
(1), (2), and (3) of the proposition and thus having no escaping ends. By Propsi-
tion 13.23, L has finitely many periodic ends. Thus, L’ has finite endset and the
proposition is proven. ([

Definition 13.31 (soul). The f-invariant, type 0 subsurface L’ C L will be called
the soul of L.

Of course, the soul is not unique.
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