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Abstract:  12 

1. LiDAR data are being increasingly used to provide a detailed characterization of the vertical profile 13 

of forests. This characterization enables the generation of new insights on the influence of 14 

environmental drivers and anthropogenic disturbances on forest structure as well as on how 15 

forest structure influences important ecosystem functions and services. Unfortunately, extracting 16 

information from LiDAR data in a way that enables the spatial visualization of forest structure, as 17 

well as its temporal changes, is challenging due to the high-dimensionality of these data.  18 

2. We show how the Latent Dirichlet Allocation model applied to LiDAR data (LidarLDA) can be used 19 

to identify forest structural types and how the relative abundance of these forest types changes 20 

throughout the landscape. The code to fit this model is made available through the open-source 21 

R package LidarLDA in github. We illustrate the use of LidarLDA both with simulated data and data 22 

from a large-scale fire experiment in the Brazilian Amazon region.  23 
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3. Using simulated data, we demonstrate that LidarLDA accurately identifies the number of forest 24 

types as well as their spatial distribution and absorptance probabilities. For the empirical data, we 25 

found that LidarLDA detects both landscape-level patterns in forest structure as well as the strong 26 

interacting effect of fire and forest fragmentation on forest structure based on the experimental 27 

fire plots. More specifically, LidarLDA reveals that proximity to forest edge exacerbates the impact 28 

of fires, and that burned forests remain structurally different from unburned areas for at least 29 

seven years, even when burned only once. Importantly, LidarLDA generates insights on the 3D 30 

structure of forest that cannot be obtained using more standard approaches that just focus on 31 

top-of-the-canopy information (e.g., canopy height models based on LiDAR data).  32 

4. By enabling the mapping of forest structure and its temporal changes, we believe that LidarLDA 33 

will be of broad utility to the ecological research community. 34 

 35 

Resumo:  36 

1. Dados de LiDAR sao cada vez mais usados para caracterizar a estrutura vertical da floresta. Essa 37 

caracterização permite a geração de novos insights em relação a influência de fatores ambientais 38 

e distúrbios antropogênicos na estrutura da floresta e insights em relação a como a estrutura da 39 

floresta influencia importantes funções e serviços ecossistêmicos. Infelizmente, a extração de 40 

informações de dados de LiDAR de uma maneira que permita a visualização espacial da estrutura 41 

da floresta, assim como as mudanças temporais, tem sido desafiador por conta da alta 42 

dimensionalidade destes dados. 43 

2. Nós mostramos que o modelo Latent Dirichlet Allocation aplicado a dados de LiDAR (LidarLDA) 44 

pode ser usado para identificar tipologias estruturais e para revelar como que a abundancia 45 

relativa destas tipologias mudam ao longo da paisagem. O código usado para ajustar o modelo se 46 

encontra disponível no pacote do R chamado LidarLDA no github. Nós ilustramos o uso do 47 
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LidarLDA tanto com dados simulados quanto com dados empíricos de um experimento de fogo 48 

de grande escala na Amazônia Brasileira. 49 

3. Usando dados simulados, nós demonstramos que o LidaLDA identifica bem o número de 50 

tipologias florestais assim como sua distribuição espacial e as probabilidades de absorbância. Em 51 

relação aos dados empíricos, nós mostramos que o LidarLDA detecta padrões no nível da 52 

paisagem em relação a estrutura da floresta assim como um forte efeito da interação entre fogo 53 

e fragmentação florestal na estrutura florestal nas parcelas queimadas experimentalmente. Mais 54 

especificamente, LidarLDA revela que a proximidade com a borda da floresta aumenta o impacto 55 

do fogo e que áreas queimadas permanecem estruturalmente diferentes das áreas não 56 

queimadas por pelo menos sete anos, mesmo se estas áreas foram queimadas apenas uma vez. 57 

É importante enfatizar que o LidarLDA gera insights na estrutura 3D da floresta que não são 58 

obtidos usando abordagens mais comuns que focam apenas em informação oriunda do topo da 59 

copa (e.g., modelos de altura de copa baseados em dados de LiDAR).  60 

4. Nós acreditamos que a habilidade de mapear a estrutura da floresta e suas mudanças temporais 61 

fará com que o modelo LidarLDA seja de grande utilidade para a comunidade de pesquisas 62 

ecológicas.  63 

 64 
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1. Introduction 69 

Forests provide a wide range of ecosystem services, such as nutrient cycling, flood control, wildlife 70 

habitat, timber and non-timber forest products, and carbon sequestration (Jenkins &  Schaap, 2018, 71 

Mori et al., 2017). Forest structure is a key determinant of several of these ecosystem services (Felipe-72 

Lucia et al., 2018) and, as a result, there has been a long-standing interest in characterizing forest 73 

structure, understanding how forest structure is influenced by environmental drivers and anthropogenic 74 

activities, and how it in turn influences key ecosystem functions and services (Jucker et al., 2018, Longo 75 

et al., 2020). Importantly, changes in forest structure associated with natural or anthropogenic 76 

disturbances such as wind, fire, timber or wood fuel harvest, are widespread. For example, forest 77 

degradation can account for a substantial fraction of the carbon emissions, sometimes even exceeding 78 

the amount of emissions associated with deforestation (Pearson et al., 2017, Vancutsem et al., 2021). 79 

Given that forest degradation is likely to increase even more in the future as climate change interacts to 80 

exacerbate the effect of human activities (Alencar et al., 2015, Brando et al., 2020), accurate 81 

characterization of forest structure and its temporal changes associated with different types of 82 

disturbances will become increasingly important to improve the understanding and modeling of these 83 

disturbances and their impacts.  84 

A prominent source of high-resolution data of the three-dimensional structure of forests has been 85 

airborne light detection and ranging (LiDAR). Unfortunately, efficiently summarizing and extracting all 86 

the information on forest structure from LiDAR 3D point cloud data can be challenging. One approach is 87 

to calculate summary statistics for grid cells at a given spatial resolution, such as mean and maximum 88 

return height, standard deviation of the return heights, and height percentiles (Almeida et al., 2019a, 89 

Andersen et al., 2013, Costa et al., 2021, Jucker et al., 2018, Rex et al., 2020, Silva et al., 2017). Another 90 

approach consists of first characterizing the vertical structure of forests by calculating leaf area density 91 

(LAD) to then describe the vertical and horizontal heterogeneity in LAD with summary statistics (e.g., 92 
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Shannon and Simpson structural complexity indices and LAD for different height intervals) (Almeida et 93 

al., 2019a, Almeida et al., 2019b, Carrasco et al., 2019). These LiDAR-derived metrics are then used for 94 

multiple purposes. For example, one of the most common uses of these metrics in tropical forests is to 95 

predict above-ground biomass (AGB) (Almeida et al., 2019a, Andersen et al., 2013, Costa et al., 2021, 96 

d'Oliveira et al., 2012, Rex et al., 2020, Silva et al., 2017). These AGB predictions can be used, for 97 

example, to identify areas subject to selective logging and quantify its impacts (Andersen et al., 2013, 98 

d'Oliveira et al., 2012, Rex et al., 2020, Silva et al., 2017). Aside from predicting AGB, LiDAR-derived 99 

metrics have also been used for predicting wildlife diversity (Carrasco et al., 2019), generating forest 100 

parameters for fire behavior models (Riano et al., 2003), and understanding the synergistic effect of 101 

proximity to forest edge, fire, and windstorms on tree mortality (Silverio et al., 2019). Unfortunately, the 102 

visualization of spatial and temporal changes in forest structure with this plethora of LiDAR-derived 103 

metrics is challenging. 104 

One approach to more concisely characterize forest structure is to create forest types (e.g., 105 

floodplain and terra-firme forests) from the LiDAR-derived 3D point cloud. Indeed, given the importance 106 

of forest structure for multiple ecosystem services and functions, several studies have attempted to 107 

classify forest types to enable the development of tailored forest inventory and management strategies. 108 

For example, Moran et al. (2018) described an approach where dissimilarity was calculated using a 109 

random forest algorithm and, based on this dissimilarity metric, hierarchical clustering was used to 110 

create groups. Ultimately, this data-driven classification approach led to the creation of 14 meta-classes 111 

across approximately 170 thousand ha, enabling an intuitive comparison and assessment of forest 112 

structure. Similarly, Adnan et al. (2019) developed a methodology that combined hierarchical clustering 113 

and classification trees (CART) to create forest structural types and showed how this methodology can 114 

be useful to compare forest structure across bioregions. These forest types can also be used to optimize 115 

field data collection. For example, Papa et al. (2020) used a clustering approach to stratify the forest, 116 
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demonstrating how this stratification can result in substantial reduction of the sampling effort required 117 

for forest inventory.  118 

Current approaches to creating forest types rely on hard clustering methods for dimension 119 

reduction, resulting in a small set of relatively homogeneous clusters, hence simplifying the visualization 120 

and interpretation of results. However, hard clustering methods assume that any given site can only 121 

belong to a single forest type, thus neglecting that some forest areas can have characteristics that are 122 

intermediary between two (or more) forest types. For example, areas along the slope between 123 

floodplain and terra-firme forests in the Amazon region are likely to have intermediate forest structure, 124 

species composition, and diversity, which may be quite different from the stereotypical floodplain or 125 

terra-firme forest (Salm et al., 2015, Wittmann et al., 2006). However, hard classification schemes might 126 

impose one of these classes. Indeed, although these hard-clustering approaches have been extensively 127 

used by researchers across multiple environmental science fields, few ecological theories predict the 128 

sharp delineations implied by these hard clustering methods (Legendre &  Legendre, 2012). Importantly, 129 

because each site can only belong to a single cluster, hard clustering approaches often have to create 130 

many more groups to accommodate transition areas, limiting its ability to effectively reduce data 131 

dimensionality, with important consequences for the visualization and interpretation of results (Valle et 132 

al., 2018). 133 

The Latent Dirichlet Allocation (LDA) model is a type of unsupervised mixed-membership model 134 

(often called grade of membership model) that enables the characterization of sampling units as 135 

comprised of a single forest structural type or as a combination of multiple forest types (hereafter just 136 

forest type or cluster). This method was originally developed for text-mining applications (Blei et al., 137 

2003) but has since been used in a wide range of fields, such as fraud detection (Xing &  Girolami, 2007), 138 

extraction of semantic information from satellite imagery (Vaduva et al., 2013), bioinformatics (Liu et al., 139 

2010), microbiology (Hosoda et al., 2020), and ecology (Christensen et al., 2018, Dietzel et al., 2019, 140 
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Knott et al., 2019, Muhlfeld et al., 2020, Sommeria-Klein et al., 2019, Valle et al., 2018, Valle et al., 141 

2014). LDA has also been used to model LiDAR data in the past (e.g., Yang &  Kang, 2018, Zhiqing et al., 142 

2020). However, differently from the model described here, this past work relied on a version of LDA 143 

that does not account for occlusion (i.e., the partial or complete blockage of LiDAR light pulses by 144 

different objects such as leaves and branches), a key characteristic for our task of identifying forest 145 

types. Furthermore, in this past work, LDA was used only to extract features to help a subsequent 146 

classification algorithm instead of using LDA results as the primary outcomes.  147 

In this article, we present a modified version of LDA, called LidarLDA, and show how it can be used 148 

to gain novel insights from LiDAR data regarding the vertical structure of forests while accounting for 149 

occlusion. We start this article by providing an overview of the proposed methodology. We then 150 

illustrate with simulated data how this model can estimate the true number of clusters and can recover 151 

the spatial distribution of these clusters. Finally, we showcase the insights this model can generate by 152 

applying it to LiDAR data from an area of approximately 1,000 ha in the Brazilian Amazon, part of which 153 

was subject to a large-scale (i.e., 150 ha) fire experiment. We finalize this article by discussing potential 154 

applications of this approach, current limitations, and priorities for future development of this approach. 155 

 156 

2. Material and Methods 157 

2.1. Structure of the Latent Dirichlet Allocation model applied to LiDAR data 158 

(LidarLDA) 159 

The proposed model is based on the LDA model adapted for presence/absence biodiversity data 160 

described in Valle et al. (2018) and Albuquerque et al. (2019). To use this model for LiDAR data, data 161 

need to be discretized horizontally and vertically. More specifically, a systematic grid with a particular 162 
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spatial resolution is created within the area of interest (e.g., 50 x 50 m grid cells) and the height of the 163 

returns is discretized by creating multiple vertical layers of constant depth (e.g., 1-m layers).  164 

The data that LidarLDA relies on consist of the number of LiDAR returns within a vertical layer h (i.e., 165 

𝑁𝑖ℎ) and the total number of pulses that reach this vertical layer (i.e., 𝑁̃𝑖ℎ) for each grid cell i. Because 166 

airborne LiDAR light pulses originate from above the canopy, if we assume that light pulses are vertically 167 

oriented, we can calculate 𝑁̃𝑖ℎ as all returns in grid cell i between the ground and the top of layer h (i.e., 168 

𝑁̃𝑖ℎ = ∑ 𝑁𝑖ℎ′
ℎ
ℎ′=1 ). These data are stored into two matrices of same size, where rows correspond to 169 

different grid cells and columns correspond to different vertical layers. 170 

This model assumes that each light pulse j (j=1,…,𝑁̃𝑖ℎ) in grid cell i that reaches vertical layer h can 171 

either be returned (𝑥𝑖𝑗ℎ = 1) or not (𝑥𝑖𝑗ℎ = 0). Because 𝑥𝑖𝑗ℎ is a binary variable, we relied on a Bernoulli 172 

distribution and we assume that 173 

𝑥𝑖𝑗ℎ|𝜔𝑖𝑗ℎ = 𝑘~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜙𝑘ℎ) 174 

where 𝜔𝑖𝑗ℎ is the corresponding latent cluster assignment variable and 𝜙𝑘ℎ is a probability parameter. 175 

Notice that 𝜔𝑖𝑗ℎ = 𝑘 indicates that this particular light pulse was assigned to cluster k. Therefore, this 176 

variable determines the subscript of the probability parameter 𝜙𝑘ℎ. The vector of parameters 𝝓𝒌 =177 

[𝜙𝑘1, 𝜙𝑘2, … ] characterizes the vertical profile of cluster k and, together with the vectors for the other 178 

clusters, form the rows of the 𝚽 matrix.  179 

Because the latent cluster assignment variable 𝜔𝑖𝑗ℎ has to be an integer between 1 and K (the 180 

maximum number of clusters specified by the modeler), we assume a categorical distribution. This 181 

distribution is a generalization of the Bernoulli distribution and is similar to a multinomial distribution 182 

with just a single trial. The main difference is that the categorical distribution models numerical labels 183 

(i.e., the latent cluster assignment) whereas a multinomial distribution models a vector full of zeroes 184 

except for a single element which is equal to one. Our categorical distribution is given by 185 

𝜔𝑖𝑗ℎ~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝜽𝒊) 186 
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where 𝜽𝒊 is a vector of probabilities that sum to one. The vector 𝜽𝒊 characterizes grid cell i with the 187 

relative abundances of the different clusters.  188 

Because this model is estimated in a Bayesian framework, we complete the specification of this 189 

model by adopting the following semi-conjugate priors: 190 

𝜙𝑘ℎ~𝐵𝑒𝑡𝑎(𝛼, 𝛽) 191 

and 192 

𝜽𝒊~𝑇𝑆𝐵(𝛾) 193 

where TSB stands for the Truncated Stick-Breaking prior. This prior is defined indirectly. First, we define  194 

𝑉𝑖𝑘~𝐵𝑒𝑡𝑎(1, 𝛾) 195 

for k=1,…,K-1 whereas 𝑉𝑖𝐾 is set to one. The parameters 𝑉𝑖1, … , 𝑉𝑖𝐾 are then used to calculate 𝜃𝑖𝑘 with 196 

the following equations: 197 

𝜃𝑖1 = 𝑉𝑖1 198 

𝜃𝑖𝑘 = 𝑉𝑖𝑘∏ (1 − 𝑉𝑖𝑝)
𝑘−1
𝑝=1  for k>1 199 

As described in detail in Valle et al. (2021a), the TSB prior enables the automatic selection of the 200 

optimal number of clusters if this number is smaller than K. As a result, the use of the TSB prior avoids 201 

the standard approach of having to run the model multiple times with different number of clusters to 202 

then select the best number using an information criterion (e.g., AIC or BIC). The approach of using 203 

information criterion to select the optimal number of clusters can be computationally expensive and has 204 

been shown to often lead to an over-estimation of the number of clusters (Casella et al., 2014, Pohle et 205 

al., 2017).  206 

Finally, the parameters 𝛼 > 0 and 𝛽 > 0 are specified by the modeler and describe the prior beliefs 207 

regarding the absorptance probabilities. For example, 𝛼 = 𝛽 = 1 is a common choice because it 208 

describes a uniform prior distribution for 𝜙𝑘ℎ. Similarly, the parameter 0 < 𝛾 < 1 is also specified by 209 
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the modeler and controls the amount of sparseness that is a priori expected (i.e., smaller 𝛾 values 210 

encourage the model to find fewer clusters) (Valle et al., 2021a).  211 

 212 

2.2. Data decomposition implied by LidarLDA 213 

One way to better understand this model is to realize that these assumptions are equivalent to: 214 

𝑁𝑖ℎ~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁̃𝑖ℎ , 𝑝𝑖ℎ) 215 

Notice that 𝑝𝑖ℎ  is the conditional probability of a return within vertical layer h given that the light pulse 216 

has reached this layer. As a result, 𝑝𝑖ℎ  accounts for the occlusion of the LiDAR light pulses as they pass 217 

through the canopy. It is important to also note that we exclude the vertical layer that is closest to the 218 

ground because, by definition, 𝑁𝑖1 = 𝑁̃𝑖1 for this layer and therefore 𝑝𝑖1 is always equal to one. 219 

The probability 𝑝𝑖ℎ  is sometimes referred to as the absorptance probability (not to be confused 220 

with absorbance) and is similar to the Leaf Area Density (LAD) definition used in Hosoi and  Omasa 221 

(2006), the vegetation density index used by d'Oliveira et al. (2012) to detect logging infrastructure, and 222 

the canopy density metric described in Moran et al. (2018). We also note that 𝑝𝑖ℎ = 1 − 𝐺𝐹𝑖(ℎ), where  223 

𝐺𝐹𝑖(ℎ) is the gap fraction from the top of the canopy to the top of vertical layer h. Therefore, one can 224 

calculate the leaf area density at height h as 𝐿𝐴𝐷𝑖(ℎ) = −
ln(1−𝑝𝑖ℎ)

𝑘×𝛥𝑧
, where 𝛥𝑧 is the height of each 225 

vertical layer, assumed to be constant, and k is the extinction coefficient (Bouvier et al., 2015).  226 

As explained in Albuquerque et al. (2019), LidarLDA decomposes 𝑝𝑖ℎ  with the following 227 

expression: 228 

𝑝𝑖ℎ = 𝜽𝒊
𝑻𝛟̃ℎ 229 

Recall that 𝜽𝒊
𝑻 is a size K vector that characterizes grid cell i by containing probabilities that sum to one, 230 

representing the relative abundances of each of the K clusters. The vector 𝛟̃ℎ = [𝜙1ℎ, … , 𝜙𝐾ℎ], 231 

corresponding to a column of the 𝚽 matrix, is also a size K vector that contains the absorptance 232 

probabilities associated with each of the K clusters for vertical layer h.  233 
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To illustrate this decomposition, consider the following results for two hypothetical grid cells. 234 

The first grid cell has a higher absorptance probability in the shorter vertical layers, suggesting a forest 235 

with relatively open canopy and considerable amount of short vegetation (Fig. 1, “Data” panel). The 236 

second grid cell has relatively high absorptance probabilities across several vertical layers, suggesting a 237 

forest with vegetation of various heights. Based on these data, LidarLDA might identify clusters with 238 

relatively distinct vertical profiles. This is captured by the vector 𝛟𝐤 for each cluster (Fig. 1, “𝛟𝐤” panel). 239 

For example, cluster 1 could be characterized by low absorptance probabilities across all vertical layers, 240 

indicating areas with bare soil. On the other hand, clusters 2 through 4 might be characterized by 241 

probabilities that are increasingly concentrated on taller vertical layers, indicating increasingly taller 242 

vegetation types.  243 

Because of the characteristics of each cluster, LidarLDA might determine that cluster 1 is much 244 

more common in grid cell 1 whereas clusters 3 and 4 are more common in grid cell 2. This is captured by 245 

the vector 𝜽𝒊 for each grid cell (Fig. 1, “𝛉𝐢” panel). Finally, the inner product of 𝜽𝒊 and 𝛟̃ℎ can be 246 

calculated to recover the original LiDAR data, clarifying why LidarLDA can be viewed as a decomposition 247 

approach for these data (Fig. 1, “Decomposition” panel).  248 

 249 

Fig. 1. Schematic representation of how LidarLDA decomposes LiDAR data into cluster with distinct 250 

vertical profiles. Panel A shows the original data together with the corresponding empirical absorptance 251 

probabilities, calculated as 
𝑁𝑖ℎ

𝑁̃𝑖ℎ
. Panels in B shows the 𝛉𝐢 and 𝛟𝐤 parameter vectors estimated by 252 

LidarLDA. Finally, panel C shows how multiplying 𝛉𝐢 and 𝛟̃𝒉 can recover the original vertical profiles. 253 

 254 

2.3. LidarLDA algorithm implementation 255 

We fit this LidarLDA using the Gibbs sampler algorithm originally described in Valle et al. (2018) 256 

and Albuquerque et al. (2019). This algorithm iteratively samples each parameter from its full 257 
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conditional distribution (FCD). These FCDs are all available in closed form and are described below. 258 

 We start by defining two key quantities that will be used throughout this section. The quantity 259 

𝑛𝑖ℎ𝑘1 is the number of returns in grid cell i and vertical layer h that were assigned to cluster k. This 260 

quantity is calculated as 𝑛𝑖ℎ𝑘1 = ∑ 𝐼(𝜔𝑖𝑗ℎ = 𝑘, 𝑥𝑖𝑗ℎ = 1)𝑗 . Similarly, let 𝑛𝑖ℎ𝑘0 be the number of light 261 

pulses that are not returned, which can be calculated as 𝑛𝑖ℎ𝑘0 = ∑ 𝐼(𝜔𝑖𝑗ℎ = 𝑘, 𝑥𝑖𝑗ℎ = 0)𝑗 . 262 

The FCD for Vik (the parameter that implicitly defines the probability of each cluster in grid cell i 263 

𝜽𝒊), is given by 264 

𝑝(Vik| … ) ∝ [∏∏𝐶𝑎𝑡(𝜔𝑖𝑗ℎ|𝜽𝒊)

ℎ𝑗

] × 𝐵𝑒𝑡𝑎(𝑉𝑖𝑘|1, 𝛾) 265 

= 𝐵𝑒𝑡𝑎(𝑛𝑖.𝑘. + 1, 𝑛𝑖.(>𝑘). + 𝛾), 266 

where 𝑛𝑖.𝑘. = ∑ 𝑛𝑖ℎ𝑘0 + 𝑛𝑖ℎ𝑘1ℎ  and 𝑛𝑖.(>𝑘). = ∑ ∑ 𝑛𝑖ℎ𝑘′0 + 𝑛𝑖ℎ𝑘′1ℎ
𝐾
𝑘′=𝑘+1 . 267 

 Recall that the absorptance probability of cluster k in vertical layer h is given by ϕkh. The FCD for 268 

this parameter is given by: 269 

𝑝(ϕkh| … ) ∝ [∏∏𝐵𝑒𝑟𝑛(𝑥𝑖𝑗ℎ|𝜙𝑘ℎ)
𝐼(𝜔𝑖𝑗ℎ=𝑘)

𝑖𝑗

] × 𝐵𝑒𝑡𝑎(𝜙𝑘ℎ|𝛼, 𝛽) 270 

= 𝐵𝑒𝑡𝑎(𝑛.ℎ𝑘1 + 𝛼, 𝑛.ℎ𝑘0 + 𝛽), 271 

where 𝑛.ℎ𝑘0 = ∑ 𝑛𝑖ℎ𝑘0𝑖  and 𝑛.ℎ𝑘1 = ∑ 𝑛𝑖ℎ𝑘1𝑖 . 272 

 Finally, the FCD for the vector containing 𝑛𝑖ℎ11, … , 𝑛𝑖ℎ𝐾1 is given by 273 

[𝑛𝑖ℎ11, … , 𝑛𝑖ℎ𝐾1]~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚(𝑁𝑖ℎ , 𝒑𝒊𝒉𝟏) 274 

where 𝒑𝒊𝒉𝟏 =
1

∑ 𝜃𝑖𝑞𝜙𝑞ℎ𝑞
[𝜃𝑖1𝜙1ℎ, … , 𝜃𝑖𝐾𝜙𝐾ℎ] and 𝑁𝑖ℎ  is the number of returns in grid cell i at vertical 275 

layer h. Similarly, the FCD for the vector containing 𝑛𝑖ℎ10, … , 𝑛𝑖ℎ𝐾0 is given by 276 

[𝑛𝑖ℎ10, … , 𝑛𝑖ℎ𝐾0]~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚(𝑁̃𝑖ℎ −𝑁𝑖ℎ , 𝒑𝒊𝒉𝟎). 277 
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where 𝒑𝒊𝒉𝟎 =
1

∑ 𝜃𝑖𝑞(1−𝜙𝑞ℎ)𝑞
[𝜃𝑖1(1 − 𝜙1ℎ),… , 𝜃𝑖𝐾(1 − 𝜙𝐾ℎ)] and 𝑁̃𝑖ℎ  is the total number of light pulses 278 

that reach grid cell i at vertical layer h. The detailed derivation of these FCDs is provided in Appendix 1.  279 

The Gibbs sampler algorithm was implemented in R (R Core Team, 2020) and C++ (invoked from 280 

R using the "Rcpp" package; Eddelbuettel, 2013, Eddelbuettel &  Francois, 2011). To run this model, the 281 

user has to specify the maximum number of groups K and the model, through a stick-breaking prior that 282 

imposes sparsity (Valle et al., 2021a), will often find that only a subset of the specified groups are 283 

needed to adequately represent most of the observations. We provided the code as an R package called 284 

LidarLDA, freely available in github (https://github.com/drvalle1/LidarLDA) and archived in Zenodo (DOI 285 

10.5281/zenodo.5781482, https://zenodo.org/badge/latestdoi/390455503). This package comes with a 286 

detailed tutorial explaining how to format LiDAR data for LidarLDA as well as how to fit the model, 287 

interpret, and visualize its results based both on simulated and empirical data. 288 

 289 

2.4. Assessing algorithm convergence 290 

In relation to assessing the convergence of our Markov Chain Monte Carlo (MCMC) algorithm, it is 291 

important to note that this is a very large model given the large number of parameters that are being 292 

estimated. To be precise, focusing only on the top-most parameters, there are I x (K-1) parameters in 293 

the 𝚯I×K matrix (I is the number of grid cells, K is the number of clusters) and K x H parameters in the 294 

𝚽K×H matrix (H is the number of vertical layers). For example, if there are 100,000 grid cells, 10 clusters, 295 

and 35 vertical layers, on total there will be 100,000 x 9 =900,000 parameters and 10 x 35 = 350 296 

parameters in the 𝛉 and 𝚽 matrices, respectively. For this reason, just storing posterior samples for 297 

each parameter in these matrices can be a substantial challenge, particularly if many iterations are used 298 

and no thinning is done, and it is not feasible to evaluate convergence by examining each parameter 299 

individually. Therefore, we assess convergence solely based on trace-plots of the log-likelihood and 300 



14 
 

running the Heidelberger and Welch's diagnostic test and Geweke's statistic on the MCMC samples of 301 

the log-likelihood. 302 

 303 

2.5. Simulated forest structure data 304 

To evaluate the proposed methodology, we relied on simulated data of forest structure in a 305 

landscape with an elevational gradient. We assumed that forest structure was strongly influenced by 306 

slope and altitude such that forest types gradually changed with elevation, with increasingly shorter 307 

trees as elevation increased. This landscape was divided into 2,601 grid cells and we assumed 30 1-m 308 

vertical layers, resulting in 78,030 voxels. Furthermore, we assumed that 100 light pulses reached each 309 

grid cell and vertical layer. Finally, two simulated datasets were created, one with three and the other 310 

with five forest structural types. The parameters used for the 𝚽 matrix are given in Appendix 2 while the 311 

parameters for the 𝚯 matrix are depicted in Fig. 3. 312 

We fitted LidarLDA to these simulated datasets to determine if it was able to correctly determine 313 

the true number of forest types, the spatial distribution of these forest types, and their vertical profiles. 314 

We assumed a maximum of 10 clusters and we relied on the following prior parameters 𝛼 = 𝛽 = 1 (i.e., 315 

a uniform prior for 𝜙𝑘ℎ) and 𝛾 = 0.1. We also compared the results from LidarLDA with those from 316 

hierarchical clustering (HC), a commonly used approach to identify forest structural types (Adnan et al., 317 

2019, Moran et al., 2018, Papa et al., 2020). To this end, we relied on the function "agnes" from the R 318 

package "cluster" (Maechler et al., 2021) to perform agglomerative hierarchical clustering and we used 319 

the Kelley-Gardner-Sutcliffe penalty function (implemented using the function "kgs", also from the 320 

"cluster" package) to determine the optimal number of groups.  321 

 322 

2.6. Empirical data 323 

2.5.1 Fire experiment 324 
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We were interested in understanding the joint effect of fire and forest fragmentation on the vertical 325 

structure of forests. For this reason, we focus on an area subjected to experimental fire, located in a 326 

transitional forest in Mato Grosso, Brazil, in the southern part of the Amazon Basin (13o04’S,52o23’W). In 327 

this experiment, four 50 ha (50 x 1000 m) plots bordering a crop field were established in 2004 (red 328 

plots in Fig. 2A). As shown in the timeline in Fig. 2B, one of these plots was left unburned (i.e., control 329 

plot “C”), one plot was burned once in 2007 (i.e., “1x”), one plot was burned thrice (2004, 2007, and 330 

2010; hereafter “3x”) and the remaining plot was burned yearly from 2004 to 2010, except in 2008 331 

(hereafter “6x”). In the “C”, “3x”, and “6x” plots, transects of 500 m in length and 20 m in width were 332 

created at 0, 10, 30, 100, 250, 500, and 750 m from the forest edge and all trees with diameter at breast 333 

height (i.e., 1.3 m from the ground; dbh) greater than 20 cm were measured in 2014 within these 334 

transects. Additional details regarding this experiment are available in Balch et al. (2011).  335 

 336 

Fig. 2. Study area. In this figure, panel A shows a false-color Landsat 5 image of the study region from 337 

June 27, 2011. Panel B shows the timeline of the experimental fires and LiDAR data collection for each 338 

plot. The control plot is denoted by “C”, the plot burned once in 2007 is denoted by “1x”, the plot 339 

burned 3 times between 2004-2010 (fire interval of 3 years) is denoted by “3x”, and the plot burned 6 340 

times between 2004-2010 (i.e., fire interval of 1 year, except for 2008) is denoted by “6x”. 341 

 342 

2.5.2 LiDAR data and pre-processing 343 

Data were obtained from the Sustainable Landscapes Brazil project and are freely available online at 344 

dos-Santos et al. (2019). We relied on LiDAR data for 2014 and 2018 from the Tanguro ranch in Mato 345 

Grosso, Brazil, covering a landscape of approximately 1,000 hectares. LiDAR data were pre-processed by 346 

subtracting the terrain elevation from the return height to account for topography. Returns with 347 

negative height were relatively infrequent (i.e., the median percentage of negative heights per grid cell 348 
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was equal to 4.7%) and were assigned to a height of 0. The return data were then grouped spatially into 349 

50m x 50m grid cells and 1-m vertical layers. More than 99.9% of the returns were below 35 m, thus our 350 

last vertical layer included all returns with height equal or greater than 35 m. Because the calculation of 351 

absorptance probabilities 𝑝𝑖ℎ  assume approximately vertical light pulses, we eliminated all returns with 352 

an absolute angle greater than 5 degrees off-nadir. Finally, to reduce data density while also ensuring an 353 

adequate amount of data for each vertical layer, we subsampled the data so that there were at most 354 

100 light pulses reaching each voxel (i.e., max(𝑁̃𝑖ℎ) = 100). Ultimately, all these pre-processing steps 355 

resulted in approximately 800,000 returns spread throughout ~110,000 - 135,000 voxels for each year. 356 

 357 

2.5.3 Fitting the model and post-processing the results 358 

We fit LidarLDA to data from 2014 to estimate the vectors 𝜽𝒊,𝟐𝟎𝟏𝟒 and 𝛟𝐤. Similar to the settings for 359 

the simulated data, to fit this model, we assumed a maximum of 10 clusters and we relied on the 360 

following prior parameters 𝛼 = 𝛽 = 1 (i.e., a uniform prior for 𝜙𝑘ℎ) and 𝛾 = 0.1. We ran the algorithm 361 

for 200,000 iterations and assessed convergence by examining trace-plots of the log-likelihood. To 362 

determine how the relative abundance of each cluster has changed with time, we relied on the folding-363 

in operation. In this operation, the characteristics of each cluster are kept fixed (i.e., 𝛟𝐤 is not re-364 

estimated) and only the relative abundance of each cluster in each location is re-estimated (i.e., 𝜽𝒊,𝟐𝟎𝟏𝟖 365 

is estimated). A comparison between 𝜽𝒊,𝟐𝟎𝟏𝟒 and 𝜽𝒊,𝟐𝟎𝟏𝟖 enables the determination of how the spatial 366 

distribution of these clusters have changed through time. 367 

Because of changes in data acquisition strategies to reduce costs, the LiDAR data for 2018 had 368 

considerably fewer returns with absolute off-nadir angle less than 5 degrees, and approximately 18% of 369 

the grid cells did not have any return with these characteristics. Because it is hard to visualize the spatial 370 

patterns of the clusters identified by LidarLDA if there are gaps in the resulting maps, we interpolated 371 

the LidarLDA results for 2018 for each group using inverse distance weighting (idw function within the R 372 
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package "gstat") (Pebesma, 2004). Finally, all maps were created using the R package "ggplot2" 373 

(Wickham, 2009). All scripts and files required to reproduce our results were archived in Zenodo (DOI 374 

10.5281/zenodo.5781488, https://zenodo.org/badge/latestdoi/433446658). 375 

 376 

3. Results 377 

3.1. Simulated forest structure data 378 

We simulated data with 3 and 5 clusters in which the abundance of each cluster was a function of 379 

elevation (Figs. 3A and 3B). Trace-plots and convergence tests suggest that our algorithm applied to 380 

these simulated data sets has successfully converged (see details in Appendix 3). We found that 381 

LidarLDA estimated well the number of groups given that the first 3 clusters (for the simulated data with 382 

3 clusters) and the first 5 clusters (for the simulated data with 5 clusters) identified by the algorithm 383 

accounted for >99% of all the returns on average (Appendix 2). Furthermore, we found that the 384 

estimated spatial distribution of each cluster along the elevation gradient (captured by the matrix 𝚯; 385 

Figs. 3C and 3D) closely followed the true distribution of these clusters. Finally, a comparison between 386 

the estimated and true absorptance probabilities of each cluster reveals that LidarLDA estimated well 387 

the 𝚽 matrix, with a Pearson correlation coefficient greater than 0.99 (Appendix 2). Taken together, 388 

these results reveal that LidarLDA did an excellent job grouping areas with similar 3D profiles and 389 

characterizing transition areas comprised of more than one cluster.  390 

Differently from LidarLDA, the agglomerative hierarchical clustering (HC) approach yields hard 391 

clustering results (i.e., HC can only assign a single cluster to each grid cell). This is an important 392 

limitation. For example, as illustrated in Fig. 3F, HC captures well the overall spatial pattern of the 393 

simulated dataset with 5 clusters but fails to capture the transition areas between clusters that are 394 

present in Fig. 3B. Importantly, HC found the optimal number of clusters to be 5 even for the data that 395 
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was simulated with only 3 clusters (Fig. 3E). As discussed in Valle et al. (2018), the reason for this is that 396 

hard clustering methods will often yield more clusters than are necessary, often representing transition 397 

areas as additional clusters (e.g., yellow and grey clusters in Fig. 3E). 398 

 399 

Fig. 3. The true spatial distribution of clusters based on the simulated data (panels A and B) is compared 400 

with the spatial distribution estimated based on LidarLDA (panels E and F) and agglomerative 401 

hierarchical clustering (HC; panels G and H) based on the simulated data with 3 and 5 clusters (left and 402 

right panels, respectively). In these panels, each color represents a different cluster and opacity levels 403 

depict the relative abundance of each cluster (transparent = 0 and completely opaque = 1). Elevation is 404 

depicted with blue contour lines. 405 

 406 

3.2. Empirical data 407 

3.2.1 Number of clusters and their characteristics 408 

Both visual assessment of the trace plot of the log-likelihood and diagnostic test results suggest that 409 

our Gibbs sampler algorithm has converged (see details in Appendix 3). By examining the results in the 410 

vectors 𝛉𝐢, we find that the first 4 clusters together represent, on average, over 99% of all points (Fig. 411 

4A). As a result, from here onwards, we focus on these 4 main clusters. When examining the height 412 

distribution of each of these cluster, we find relatively distinct vertical profiles despite significant overlap 413 

between clusters (Fig. 4B). For example, cluster 1 has very low absorptance probabilities across almost 414 

all vertical layers, suggesting that this cluster represents bare soil, grass or areas with very short 415 

vegetation. On the other hand, clusters 2 to 4 represent a gradient from shorter to increasingly taller 416 

vertical profiles, respectively. To simplify the reference to these clusters, we label clusters 1 to 4 as 417 

"near surface", "short", "intermediate", and "tall", respectively. A schematic representation of these 418 

clusters is provided in Fig. 4C. 419 
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 420 

Fig. 4. Characteristics of the identified clusters. In this figure, panel A displays the distribution of relative 421 

abundances of each cluster, as captured by the vector 𝜽𝒊. Panel B shows the vertical profile of each of 422 

the four most important clusters, as captured by the vector 𝝓𝒌. Panel C provides a schematic 423 

representation of these clusters. Figures within panels B and C are ordered from shortest (top) to tallest 424 

(bottom) clusters.  425 

 426 

Corroborating the schematic representation in Fig. 4C, we found a strong relationship between 427 

the different clusters identified by LidarLDA based on the 2014 LiDAR data and the tree diameter 428 

distribution for the same year. For example, as shown in Appendix 4, for the plot that was burned 3 429 

times (3x), there is a clear pattern of relatively few and small trees for the transects that are closest to 430 

the forest edge and greater abundance and bigger trees as one moves towards the interior of the forest. 431 

The LidarLDA-based clusters capture well this pattern since the relative abundance of the near surface 432 

cluster (i.e., cluster 1) decreases sharply from the forest edge to the forest interior whereas the relative 433 

abundance of clusters 2-4 steadily increases along this gradient (Appendix 4). Similar patterns can be 434 

seen for the other areas (i.e., the control area and the 6x plot; see Appendix 4). Furthermore, a 435 

comparison of the spatial distribution of the near surface cluster with a map of grass invasion, created 436 

based on field observations, supports cluster 4 representing bare soil, grasses and short vegetation (see 437 

Appendix 5). 438 

 439 

3.2.2 Spatial distribution of LidarLDA clusters in 2014 440 

We found that the spatial distribution of clusters in 2014 was strongly linked to both landscape 441 

features and disturbance history. For example, the near surface, short and intermediate clusters 442 

(clusters 1 to 3, respectively) were much more common close to the river, whereas the tall cluster 1 was 443 
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rare in this area (Fig. 5). In relation to the fire experiments, we can also see in Fig. 5 that the areas 444 

burned multiple times had a high proportion of the near surface and short clusters (clusters 1 and 2) 445 

whereas the intermediate and tall clusters (clusters 3 and 4) were relatively rare in these areas in 2014. 446 

Importantly, the tall cluster was more common in the 6x area when compared to the 3x area, probably a 447 

consequence of higher fire intensity in the 3x area due to the fuel buildup enabled by the lower fire 448 

frequency (Balch et al., 2015). Furthermore, the area burned once (1x) was more similar to the control 449 

area than the areas burned multiple times.  450 

 451 

Fig. 5. Heatmaps showing the spatial distribution of each cluster in 2014. Relative abundance of each 452 

cluster varies from 0 (cyan) to 1 (purple). Results are only shown for forested areas covered by LiDAR 453 

but there is an agricultural field adjacent to the plots. Location of the river is highlighted with blue line 454 

while experimental fire plots are outlined in black. The control plot is denoted by “C”, the plot burned 455 

once in 2007 is denoted by “1x”, the plot burned 3 times between 2004-2010 (fire interval of 3 years) is 456 

denoted by “3x”, and the plot burned 6 times between 2004-2010 (i.e., fire interval of 1 year, except for 457 

2008) is denoted by “6x”. Top to bottom panels show the results for individual clusters (numbers in the 458 

top left of each panel) and are ordered from low to high stature clusters.  459 

 460 

3.2.4 Temporal changes 461 

Assuming 4 main clusters, we use the folding-in operation to compare how the relative abundance 462 

of each cluster changed through time by estimating 𝛉𝒊,𝟐𝟎𝟏𝟖 and calculating 𝛉𝒊,𝟐𝟎𝟏𝟖 − 𝛉𝒊,𝟐𝟎𝟏𝟒. This 463 

analysis reveals that there is substantial change between 2014 and 2018 at the landscape level, even in 464 

areas that were not subject to experimental fire (Fig. 6A). The results for the experimental fire plots, 465 

however, are substantially different from those at the landscape level. For instance, at the edge of the 466 

forest in the areas burned multiple times, the relative abundance of the near surface cluster (cluster 1) 467 
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decreased dramatically with a concurrent increase of the short cluster (cluster 2). In contrast, in the 468 

interior of the forest for the areas that were burned multiple times, the short cluster (cluster 2) declined 469 

but there was a strong increase in the intermediate cluster (cluster 3).  470 

Another way of visualizing the recovery of the forest after fire at the forest edge and forest interior 471 

is using barycentric coordinates, in which we simultaneously display the relative abundance of clusters 472 

1, 2, 3+4 (Fig. 6B). In this figure, points closer to a particular vertex have higher relative abundance of 473 

the corresponding cluster and arrows start in 2014 results and point to 2018 results. This figure reveals 474 

that the areas burned multiple times (i.e., 3x and 6x) have a much larger fraction of the near surface 475 

cluster (cluster 1) at the edge of the forest (i.e., grid cells within 500 m of the forest edge) when 476 

compared to the control and 1x plots in 2014. On the other hand, these burned areas tended to have a 477 

larger fraction of the short cluster (cluster 2) at the interior of the forest (i.e., grid cells >500 m away 478 

from the forest edge). Importantly, only at the interior of the forest have these differences decreased 479 

substantially in 2018, revealing a convergence to approximately the same forest structure, whereas 480 

there is much less convergence at the forest edge even 8 years after the last fire. Interestingly, the 481 

length of these arrows reveals that all the burned areas, including the area burned only once in 2007 482 

(i.e., 1x), are still undergoing large changes in forest structure while the control area has had 483 

comparatively smaller changes during the same time period. Taken together, these results illustrate the 484 

partial recovery of forest structure after fires stopped (2007 for the 1x plot; 2010 for the 3x and 6x plots) 485 

and how distance to forest edge influences this recovery process. 486 

 487 

Fig. 6. Recovery process of forest structure between 2014 and 2018 displayed with difference maps 488 

(panel A) and barycentric coordinates (panel B). The difference maps were calculated as the relative 489 

abundance in 2018 minus the relative abundance in 2014 for each cluster. Increases and decreases are 490 

depicted in blue and red, respectively. For the barycentric coordinate figures, each arrow starts at the 491 
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coordinates for 2014 and ends at the coordinates for 2018. Each color represents a different 492 

experimental plot. Top and bottom panels display the results for the forest edge (defined as all grid cells 493 

within 500 m of forest edge) and forest interior (defined as all grid cells more than 500 m away from the 494 

forest edge), respectively.  495 

 496 

Importantly, as described in detail in Appendix 6, differently from the LidarLDA results, Canopy 497 

Height Model (CHM) results fail to identify differences in the forest interior between the burned plots 498 

(1x, 3x, and 6x) and the control plot. Furthermore, in contrast to the results shown in Fig. 6, a temporal 499 

comparison of CHM results suggest minimal change in canopy height in the interior of burned plots and 500 

the control plot from 2014 to 2018. Taken together, these results suggest that LidarLDA can reveal much 501 

more information regarding forest structure than CHMs. 502 

 503 

4. Discussion 504 

In this article, we have shown how a modified LDA model, called LidarLDA, can be used to 505 

generate novel insights on forest structure based on LiDAR data. A key feature of this dimension 506 

reduction approach is that it enables the spatial and temporal visualization of changes in forest structure 507 

while at the same time appropriately accounting for occlusion of LiDAR light pulses. Using simulated 508 

data, we illustrate how this model can recover the true number of clusters and the spatial distribution of 509 

these clusters as a function of elevation. Furthermore, through our case study in the Amazon region, we 510 

reveal landscape-level differences in forest structure associated with proximity to the river as well as the 511 

long-term effects of fire and forest fragmentation on forest structure. Importantly, a comparison with 512 

other types of LiDAR products that just focus on top-of-canopy information, such as a Canopy Height 513 

Model, reveals how much more information can be extracted using LidarLDA regarding the impact of 514 

fires and forest fragmentation on forest structure. 515 
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Due to its unsupervised nature, our LidarLDA model is well suited for exploratory analysis, 516 

potentially revealing novel spatial and temporal patterns of forest structure. Importantly, differently 517 

from standard hard clustering approaches used to create forest structural types, the LidarLDA model is 518 

able to capture gradual spatial and/or temporal changes in forest structure. For example, the analysis of 519 

our simulated data reveals that LidarLDA can accurately capture the gradual spatial changes in forest 520 

structure associated with elevation (Fig. 3). On the other hand, hard clustering approaches commonly 521 

used to determine forest structural types (Adnan et al., 2019, Moran et al., 2018, Papa et al., 2020) 522 

cannot capture these gradual changes because each grid cell can only be assigned to a single cluster. 523 

Similarly, characterizing the gradual temporal changes (e.g., as depicted in Fig. 6) would be very 524 

challenging with hard clustering approaches. Another important limitation associated with hard 525 

clustering approaches is that they often have to create more clusters than warranted to be able to fit 526 

the data well and represent these transition zones. This is illustrated with our simulations with 3 clusters 527 

and is corroborated by past studies on the ability of hard clustering approaches in describing transition 528 

zones (Valle et al., 2018).  529 

In our case study, we characterized approximately 1,000 ha of this landscape and identified the 530 

strong influence of distance to the river on forest structure. Furthermore, a comparison of field data and 531 

LidarLDA results revealed that LidarLDA could capture well the gradual changes in the diameter 532 

distribution of trees resulting from the synergistic effects of fire and distance to forest edge, providing 533 

confidence that LidarLDA can be used over large areas to detect spatial and temporal changes in forest 534 

structure. The comparison of LidarLDA results for the burned and control plots largely corroborated the 535 

results from previous studies based on field measurements at the same site, an important result given 536 

the unsupervised nature of LidarLDA. For example, the effect of fire on forest structure is strongest near 537 

the forest edge and more pronounced in the 3x plot than on the 6x plot, probably due to the fuel build 538 

up between years in the 3x plot (Balch et al., 2015). More fuel in drier conditions favors high-intensity 539 
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fires, which can lead to increased postfire tree mortality, greater loss of aboveground live biomass 540 

(Brando et al., 2014) and increased grass invasion (Silverio et al., 2013), with substantial change in 541 

species composition (Valle et al., 2021b). Interestingly, the temporal comparison revealed substantial 542 

changes in forest structure even after almost a decade after fires have ceased, capturing the ongoing 543 

process of post-fire forest recovery. In contrast, the results from the canopy height model do not reveal 544 

major differences between the forest interior of the control plots and the burned plots and fail to 545 

capture the large temporal changes in forest structure (Appendix 6). Ultimately, by relying only on 546 

information from the highest trees, CHMs miss other changes in the 3D structure of the forest. Finally, 547 

we note that past studies focused on the Tanguro ranch have ignored the area that was burned just 548 

once (1x) because no field data were collected for this site. LidarLDA results reveal that the short cluster 549 

(cluster 2) is decreasing in this plot while the tall cluster (cluster 4) is increasing (Fig. 6), indicating 550 

substantial change in forest structure between 2014 and 2018, even though this plot was burned just 551 

once in 2007.  552 

An important limitation of our methodology is the speed of our algorithm. Although our 553 

algorithm leverages C++ within R to perform the most computationally intensive tasks, our model can 554 

still be computationally intensive to fit because we rely on an iterative Markov Chain Monte Carlo 555 

(MCMC) approach. This was not a problem when data were spatially discretized into 50 x 50 m grid cells 556 

for a single region; it took approximately 1.6 hours to run LidarLDA for 20,000 iterations on the 2014 557 

dataset containing approximately 3,900 grid cells and 35 height classes on an Intel Core i7 desktop with 558 

3.4 GHz processor and 16 GB of RAM. This was done assuming a maximum of 10 clusters. On the other 559 

hand, when the number of grid cells was increased by 10-fold while keeping all of the other 560 

characteristics constant, our algorithm took 13.7 hours. Monitoring larger landscapes and/or using 561 

smaller grid cells would likely require high performance computing. Exploring approaches to speeding 562 
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up the fitting of LidarLDA (e.g., using variational Bayes methods; Blei et al., 2017) is likely to be a very 563 

important topic for future research if larger datasets are to be analyzed.  564 

To prepare the data for LidarLDA, we adopted 50 x 50 m grid cells and discretized height into 565 

vertical layers of 1-m in width. These settings are relatively standard in LiDAR studies focused on forest 566 

structure in this region (e.g., Andersen et al., 2013, Carrasco et al., 2019, Papa et al., 2020, Silva et al., 567 

2017) but it is important to acknowledge the tradeoffs associated with these choices. For example, while 568 

choosing smaller grid cells can potentially represent spatial variation at a finer scale, two important 569 

drawbacks of relying on smaller grid cells are that the number of light pulses per grid cell within the pre-570 

specified angle range can be relatively small, hampering inference, and the model is likely to take longer 571 

to fit. Furthermore, a finer spatial scale may or may not be ecologically relevant depending on the size of 572 

individual trees and their canopies. As a result, the decision regarding which grid cell size to adopt 573 

requires one to consider the trade-off between algorithm speed and data availability versus the 574 

ecological importance of fine scale spatial variation. A related concern is that of over-fitting the data 575 

given that LidarLDA already contains a large number of parameters and the number of parameters 576 

increases with the number of grid cells. The standard approach to determining if the data are being 577 

over-fitted is to evaluate if out-of-sample predictions deteriorate as the number of parameters 578 

increases. Unfortunately, this straight-forward approach does not work for LidarLDA because, like many 579 

other LDA-type models, it does not include predictor variables and therefore predictions cannot be 580 

made. While the use of the truncated stick-breaking prior helps in ensuring parsimony by limiting the 581 

number of clusters, additional research is still needed to determine when overfitting is likely to be an 582 

issue for models like LidarLDA. Finally, it is not clear what the minimum number of light pulses per grid 583 

cell and vertical layer should be for LidarLDA to estimate well the absorptance probability of the 584 

different clusters. We believe this is an important topic for future research.  585 
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 We have shown that LidarLDA enables the visualization of spatial and temporal patterns of 586 

forest structure in a way that provides much more information than standard canopy height models. As 587 

a result, we believe that LidarLDA will become an indispensable tool for scientists interested on how 588 

large-scale phenomena (e.g., selective logging, climate change, and fire) and biophysical characteristics 589 

(e.g., topography, soil fertility, and rainfall) influence forest structure and/or how forest structure 590 

influences ecosystem services (e.g., erosion control, recreation, wildlife habitat, water supply and/or 591 

regulation). For example, it is possible that LidarLDA could be used in the future to monitor forest 592 

concessions, assessing the short-term structural damage associated with logging as well as how long it 593 

takes for the forest to recover most of its structure after logging. Similarly, it is possible that LidarLDA 594 

could be used to better determine emissions associated with understory fire by assessing changes in 595 

structural biomass and the required time for forests to regain their original structure. Despite our focus 596 

on forests, it is important to emphasize that LidarLDA is likely to also be useful to characterize the 597 

structural complexity and answer similar questions for other types of vegetation. Given the increasing 598 

availability of LiDAR data, collected from unmanned aerial vehicles (UAVs), planes (e.g., data from the 599 

National Ecological Observatory Network [NEON]), or satellites (e.g., data collected by the NASA's Global 600 

Ecosystem Dynamics Investigation [GEDI] mission), the time is ripe for ecological applications to use the 601 

full potential of these high-dimensional datasets. We hope that LidarLDA can contribute to this effort. 602 
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