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Abstract:

1. LiDAR data are being increasingly used to provide a detailed characterization of the vertical profile
of forests. This characterization enables the generation of new insights on the influence of
environmental drivers and anthropogenic disturbances on forest structure as well as on how
forest structure influences important ecosystem functions and services. Unfortunately, extracting
information from LiDAR data in a way that enables the spatial visualization of forest structure, as
well as its temporal changes, is challenging due to the high-dimensionality of these data.

2. We show how the Latent Dirichlet Allocation model applied to LiDAR data (LidarLDA) can be used
to identify forest structural types and how the relative abundance of these forest types changes
throughout the landscape. The code to fit this model is made available through the open-source
R package LidarLDA in github. We illustrate the use of LidarLDA both with simulated data and data

from a large-scale fire experiment in the Brazilian Amazon region.
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Using simulated data, we demonstrate that LidarLDA accurately identifies the number of forest
types as well as their spatial distribution and absorptance probabilities. For the empirical data, we
found that LidarLDA detects both landscape-level patterns in forest structure as well as the strong
interacting effect of fire and forest fragmentation on forest structure based on the experimental
fire plots. More specifically, LidarLDA reveals that proximity to forest edge exacerbates the impact
of fires, and that burned forests remain structurally different from unburned areas for at least
seven years, even when burned only once. Importantly, LidarLDA generates insights on the 3D
structure of forest that cannot be obtained using more standard approaches that just focus on
top-of-the-canopy information (e.g., canopy height models based on LiDAR data).

By enabling the mapping of forest structure and its temporal changes, we believe that LidarLDA

will be of broad utility to the ecological research community.

Resumo:

Dados de LiDAR sao cada vez mais usados para caracterizar a estrutura vertical da floresta. Essa
caracterizagdo permite a geragao de novos insights em relagdo a influéncia de fatores ambientais
e disturbios antropogénicos na estrutura da floresta e insights em relagdo a como a estrutura da
floresta influencia importantes fungdes e servigos ecossistémicos. Infelizmente, a extragdo de
informacgdes de dados de LiDAR de uma maneira que permita a visualizagdo espacial da estrutura
da floresta, assim como as mudancgas temporais, tem sido desafiador por conta da alta
dimensionalidade destes dados.

Nds mostramos que o modelo Latent Dirichlet Allocation aplicado a dados de LiDAR (LidarLDA)
pode ser usado para identificar tipologias estruturais e para revelar como que a abundancia
relativa destas tipologias mudam ao longo da paisagem. O cédigo usado para ajustar o modelo se

encontra disponivel no pacote do R chamado LidarLDA no github. Nos ilustramos o uso do
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LidarLDA tanto com dados simulados quanto com dados empiricos de um experimento de fogo
de grande escala na Amazonia Brasileira.

Usando dados simulados, nés demonstramos que o LidaLDA identifica bem o numero de
tipologias florestais assim como sua distribuicdo espacial e as probabilidades de absorbancia. Em
relacdo aos dados empiricos, ndés mostramos que o LidarLDA detecta padrdes no nivel da
paisagem em relacdo a estrutura da floresta assim como um forte efeito da interacao entre fogo
e fragmentacao florestal na estrutura florestal nas parcelas queimadas experimentalmente. Mais
especificamente, LidarLDA revela que a proximidade com a borda da floresta aumenta o impacto
do fogo e que areas queimadas permanecem estruturalmente diferentes das areas nao
qgueimadas por pelo menos sete anos, mesmo se estas areas foram queimadas apenas uma vez.
E importante enfatizar que o LidarLDA gera insights na estrutura 3D da floresta que n3o sdo
obtidos usando abordagens mais comuns que focam apenas em informacdo oriunda do topo da
copa (e.g., modelos de altura de copa baseados em dados de LiDAR).

Nds acreditamos que a habilidade de mapear a estrutura da floresta e suas mudangas temporais
fard com que o modelo LidarLDA seja de grande utilidade para a comunidade de pesquisas

ecoldgicas.

Keywords: Latent Dirichlet Allocation (LDA), LiDAR, fire, forest fragmentation, Amazon, tropical forests
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1. Introduction

Forests provide a wide range of ecosystem services, such as nutrient cycling, flood control, wildlife
habitat, timber and non-timber forest products, and carbon sequestration (Jenkins & Schaap, 2018,
Mori et al., 2017). Forest structure is a key determinant of several of these ecosystem services (Felipe-
Lucia et al., 2018) and, as a result, there has been a long-standing interest in characterizing forest
structure, understanding how forest structure is influenced by environmental drivers and anthropogenic
activities, and how it in turn influences key ecosystem functions and services (Jucker et al., 2018, Longo
et al., 2020). Importantly, changes in forest structure associated with natural or anthropogenic
disturbances such as wind, fire, timber or wood fuel harvest, are widespread. For example, forest
degradation can account for a substantial fraction of the carbon emissions, sometimes even exceeding
the amount of emissions associated with deforestation (Pearson et al., 2017, Vancutsem et al., 2021).
Given that forest degradation is likely to increase even more in the future as climate change interacts to
exacerbate the effect of human activities (Alencar et al., 2015, Brando et al., 2020), accurate
characterization of forest structure and its temporal changes associated with different types of
disturbances will become increasingly important to improve the understanding and modeling of these
disturbances and their impacts.

A prominent source of high-resolution data of the three-dimensional structure of forests has been
airborne light detection and ranging (LiDAR). Unfortunately, efficiently summarizing and extracting all
the information on forest structure from LiDAR 3D point cloud data can be challenging. One approach is
to calculate summary statistics for grid cells at a given spatial resolution, such as mean and maximum
return height, standard deviation of the return heights, and height percentiles (Almeida et al., 2019a,
Andersen et al., 2013, Costa et al., 2021, Jucker et al., 2018, Rex et al., 2020, Silva et al., 2017). Another
approach consists of first characterizing the vertical structure of forests by calculating leaf area density
(LAD) to then describe the vertical and horizontal heterogeneity in LAD with summary statistics (e.g.,

4



93  Shannon and Simpson structural complexity indices and LAD for different height intervals) (Almeida et
94 al., 2019a, Almeida et al., 2019b, Carrasco et al., 2019). These LiDAR-derived metrics are then used for
95 multiple purposes. For example, one of the most common uses of these metrics in tropical forests is to
96  predict above-ground biomass (AGB) (Almeida et al., 2019a, Andersen et al., 2013, Costa et al., 2021,
97 d'Oliveira et al., 2012, Rex et al., 2020, Silva et al., 2017). These AGB predictions can be used, for
98 example, to identify areas subject to selective logging and quantify its impacts (Andersen et al., 2013,
99 d'Oliveira et al., 2012, Rex et al., 2020, Silva et al., 2017). Aside from predicting AGB, LiDAR-derived
100 metrics have also been used for predicting wildlife diversity (Carrasco et al., 2019), generating forest
101 parameters for fire behavior models (Riano et al., 2003), and understanding the synergistic effect of
102 proximity to forest edge, fire, and windstorms on tree mortality (Silverio et al., 2019). Unfortunately, the
103  visualization of spatial and temporal changes in forest structure with this plethora of LiDAR-derived
104  metrics is challenging.
105 One approach to more concisely characterize forest structure is to create forest types (e.g.,
106  floodplain and terra-firme forests) from the LiDAR-derived 3D point cloud. Indeed, given the importance
107  of forest structure for multiple ecosystem services and functions, several studies have attempted to
108  classify forest types to enable the development of tailored forest inventory and management strategies.
109 For example, Moran et al. (2018) described an approach where dissimilarity was calculated using a
110 random forest algorithm and, based on this dissimilarity metric, hierarchical clustering was used to
111  create groups. Ultimately, this data-driven classification approach led to the creation of 14 meta-classes
112  across approximately 170 thousand ha, enabling an intuitive comparison and assessment of forest
113 structure. Similarly, Adnan et al. (2019) developed a methodology that combined hierarchical clustering
114  and classification trees (CART) to create forest structural types and showed how this methodology can
115 be useful to compare forest structure across bioregions. These forest types can also be used to optimize

116 field data collection. For example, Papa et al. (2020) used a clustering approach to stratify the forest,
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demonstrating how this stratification can result in substantial reduction of the sampling effort required
for forest inventory.

Current approaches to creating forest types rely on hard clustering methods for dimension
reduction, resulting in a small set of relatively homogeneous clusters, hence simplifying the visualization
and interpretation of results. However, hard clustering methods assume that any given site can only
belong to a single forest type, thus neglecting that some forest areas can have characteristics that are
intermediary between two (or more) forest types. For example, areas along the slope between
floodplain and terra-firme forests in the Amazon region are likely to have intermediate forest structure,
species composition, and diversity, which may be quite different from the stereotypical floodplain or
terra-firme forest (Salm et al., 2015, Wittmann et al., 2006). However, hard classification schemes might
impose one of these classes. Indeed, although these hard-clustering approaches have been extensively
used by researchers across multiple environmental science fields, few ecological theories predict the
sharp delineations implied by these hard clustering methods (Legendre & Legendre, 2012). Importantly,
because each site can only belong to a single cluster, hard clustering approaches often have to create
many more groups to accommodate transition areas, limiting its ability to effectively reduce data
dimensionality, with important consequences for the visualization and interpretation of results (Valle et
al., 2018).

The Latent Dirichlet Allocation (LDA) model is a type of unsupervised mixed-membership model
(often called grade of membership model) that enables the characterization of sampling units as
comprised of a single forest structural type or as a combination of multiple forest types (hereafter just
forest type or cluster). This method was originally developed for text-mining applications (Blei et al.,
2003) but has since been used in a wide range of fields, such as fraud detection (Xing & Girolami, 2007),
extraction of semantic information from satellite imagery (Vaduva et al., 2013), bioinformatics (Liu et al.,

2010), microbiology (Hosoda et al., 2020), and ecology (Christensen et al., 2018, Dietzel et al., 2019,
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Knott et al., 2019, Mubhlfeld et al., 2020, Sommeria-Klein et al., 2019, Valle et al., 2018, Valle et al.,
2014). LDA has also been used to model LiDAR data in the past (e.g., Yang & Kang, 2018, Zhiqing et al.,
2020). However, differently from the model described here, this past work relied on a version of LDA
that does not account for occlusion (i.e., the partial or complete blockage of LiDAR light pulses by
different objects such as leaves and branches), a key characteristic for our task of identifying forest
types. Furthermore, in this past work, LDA was used only to extract features to help a subsequent
classification algorithm instead of using LDA results as the primary outcomes.

In this article, we present a modified version of LDA, called LidarLDA, and show how it can be used
to gain novel insights from LiDAR data regarding the vertical structure of forests while accounting for
occlusion. We start this article by providing an overview of the proposed methodology. We then
illustrate with simulated data how this model can estimate the true number of clusters and can recover
the spatial distribution of these clusters. Finally, we showcase the insights this model can generate by
applying it to LiDAR data from an area of approximately 1,000 ha in the Brazilian Amazon, part of which
was subject to a large-scale (i.e., 150 ha) fire experiment. We finalize this article by discussing potential

applications of this approach, current limitations, and priorities for future development of this approach.

2. Material and Methods

2.1.  Structure of the Latent Dirichlet Allocation model applied to LiDAR data

(LidarLDA)

The proposed model is based on the LDA model adapted for presence/absence biodiversity data
described in Valle et al. (2018) and Albuquerque et al. (2019). To use this model for LiDAR data, data

need to be discretized horizontally and vertically. More specifically, a systematic grid with a particular



163  spatial resolution is created within the area of interest (e.g., 50 x 50 m grid cells) and the height of the
164  returns is discretized by creating multiple vertical layers of constant depth (e.g., 1-m layers).

165 The data that LidarLDA relies on consist of the number of LiDAR returns within a vertical layer h (i.e.,
166  N;,) and the total number of pulses that reach this vertical layer (i.e., N;,) for each grid cell i. Because
167  airborne LiDAR light pulses originate from above the canopy, if we assume that light pulses are vertically
168  oriented, we can calculate Ny, as all returns in grid cell i between the ground and the top of layer h (i.e.,
169 N, = ZZ,=1 N,;;,). These data are stored into two matrices of same size, where rows correspond to

170  different grid cells and columns correspond to different vertical layers.

171 This model assumes that each light pulse j (j=1,...,N;;,) in grid cell i that reaches vertical layer h can
172 either be returned (x;;, = 1) or not (x;j, = 0). Because x;jy, is a binary variable, we relied on a Bernoulli
173 distribution and we assume that

174 Xijnlwijn = k~Bernoulli(¢yp)

175  where w;jj, is the corresponding latent cluster assignment variable and ¢y, is a probability parameter.
176  Notice that w;j, = k indicates that this particular light pulse was assigned to cluster k. Therefore, this
177  variable determines the subscript of the probability parameter ¢,. The vector of parameters ¢, =

178  [¢x1, Pi2, --- ] characterizes the vertical profile of cluster k and, together with the vectors for the other
179 clusters, form the rows of the ® matrix.

180 Because the latent cluster assignment variable w;j, has to be an integer between 1 and K (the

181 maximum number of clusters specified by the modeler), we assume a categorical distribution. This

182  distribution is a generalization of the Bernoulli distribution and is similar to a multinomial distribution
183  with just a single trial. The main difference is that the categorical distribution models numerical labels
184 (i.e., the latent cluster assignment) whereas a multinomial distribution models a vector full of zeroes
185  except for a single element which is equal to one. Our categorical distribution is given by

186 w;jp~Categorical(6;)
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where 0; is a vector of probabilities that sum to one. The vector 8; characterizes grid cell i with the
relative abundances of the different clusters.

Because this model is estimated in a Bayesian framework, we complete the specification of this
model by adopting the following semi-conjugate priors:

$rn~Beta(a,B)
and
0;~TSB(y)
where TSB stands for the Truncated Stick-Breaking prior. This prior is defined indirectly. First, we define
Vix~Beta(1,y)
for k=1,...,K-1 whereas Vi is set to one. The parameters V4, ..., Vi are then used to calculate 8;;, with
the following equations:
01 =V;
Ouc = Vi TT523(1 — Vi) for k>1

As described in detail in Valle et al. (2021a), the TSB prior enables the automatic selection of the
optimal number of clusters if this number is smaller than K. As a result, the use of the TSB prior avoids
the standard approach of having to run the model multiple times with different number of clusters to
then select the best number using an information criterion (e.g., AIC or BIC). The approach of using
information criterion to select the optimal number of clusters can be computationally expensive and has
been shown to often lead to an over-estimation of the number of clusters (Casella et al., 2014, Pohle et
al., 2017).

Finally, the parameters @ > 0 and 8 > 0 are specified by the modeler and describe the prior beliefs
regarding the absorptance probabilities. For example, @ = [ = 1 is a common choice because it

describes a uniform prior distribution for ¢, Similarly, the parameter 0 < y < 1 is also specified by
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the modeler and controls the amount of sparseness that is a priori expected (i.e., smaller y values

encourage the model to find fewer clusters) (Valle et al., 2021a).

2.2. Data decomposition implied by LidarLDA

One way to better understand this model is to realize that these assumptions are equivalent to:
Nih~Bin0mial(IVih, pih)
Notice that p;;, is the conditional probability of a return within vertical layer h given that the light pulse
has reached this layer. As a result, p;;, accounts for the occlusion of the LiDAR light pulses as they pass
through the canopy. It is important to also note that we exclude the vertical layer that is closest to the
ground because, by definition, N;; = Nj; for this layer and therefore p;; is always equal to one.

The probability p;;, is sometimes referred to as the absorptance probability (not to be confused
with absorbance) and is similar to the Leaf Area Density (LAD) definition used in Hosoi and Omasa
(2006), the vegetation density index used by d'Oliveira et al. (2012) to detect logging infrastructure, and
the canopy density metric described in Moran et al. (2018). We also note that p;;, = 1 — GF;(h), where

GF;(h) is the gap fraction from the top of the canopy to the top of vertical layer h. Therefore, one can

__In(1-p;p)

calculate the leaf area density at height h as LAD;(h) = Ry

, where Az is the height of each

vertical layer, assumed to be constant, and k is the extinction coefficient (Bouvier et al., 2015).
As explained in Albuquerque et al. (2019), LidarLDA decomposes p;p with the following
expression:
pin = 6] dp,
Recall that Bl-T is a size K vector that characterizes grid cell i by containing probabilities that sum to one,
representing the relative abundances of each of the K clusters. The vector ¢, = [1p, -, Prnl,
corresponding to a column of the ® matrix, is also a size K vector that contains the absorptance

probabilities associated with each of the K clusters for vertical layer h.
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To illustrate this decomposition, consider the following results for two hypothetical grid cells.
The first grid cell has a higher absorptance probability in the shorter vertical layers, suggesting a forest
with relatively open canopy and considerable amount of short vegetation (Fig. 1, “Data” panel). The
second grid cell has relatively high absorptance probabilities across several vertical layers, suggesting a
forest with vegetation of various heights. Based on these data, LidarLDA might identify clusters with
relatively distinct vertical profiles. This is captured by the vector ¢y for each cluster (Fig. 1, “dy” panel).
For example, cluster 1 could be characterized by low absorptance probabilities across all vertical layers,
indicating areas with bare soil. On the other hand, clusters 2 through 4 might be characterized by
probabilities that are increasingly concentrated on taller vertical layers, indicating increasingly taller
vegetation types.

Because of the characteristics of each cluster, LidarLDA might determine that cluster 1 is much
more common in grid cell 1 whereas clusters 3 and 4 are more common in grid cell 2. This is captured by
the vector 0; for each grid cell (Fig. 1, “0;” panel). Finally, the inner product of 8; and <T>h can be
calculated to recover the original LiDAR data, clarifying why LidarLDA can be viewed as a decomposition

approach for these data (Fig. 1, “Decomposition” panel).

Fig. 1. Schematic representation of how LidarLDA decomposes LiDAR data into cluster with distinct

vertical profiles. Panel A shows the original data together with the corresponding empirical absorptance

- N; . .
probabilities, calculated as N—‘h Panels in B shows the 0; and ¢y, parameter vectors estimated by
ih

LidarLDA. Finally, panel C shows how multiplying 6; and (T)h can recover the original vertical profiles.

2.3. LidarLDA algorithm implementation

We fit this LidarLDA using the Gibbs sampler algorithm originally described in Valle et al. (2018)

and Albuquerque et al. (2019). This algorithm iteratively samples each parameter from its full
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conditional distribution (FCD). These FCDs are all available in closed form and are described below.

We start by defining two key quantities that will be used throughout this section. The quantity
Nink1 is the number of returns in grid cell i and vertical layer h that were assigned to cluster k. This
quantity is calculated as n;1 = Zjl(wijh =k, xijp = 1). Similarly, let n;,10 be the number of light
pulses that are not returned, which can be calculated as n;u;g = Zjl(wijh =k, xijp = 0).

The FCD for Vi, (the parameter that implicitly defines the probability of each cluster in grid cell i

0,), is given by
p(Vikl ) X [Hl_[ Cat(wijh|0i) X Beta(Vl-kll,)/)
j h

= Beta(nig. + L1, +7),

K
where n; . = Yp Ninko + Nink1 aNd Ny (sk). = Xiger=k41 20 Nink’o + Mink'1-
Recall that the absorptance probability of cluster k in vertical layer h is given by ¢y,. The FCD for

this parameter is given by:
I(wi]-h=k)
p(pxnl -..) Bern(x;jn|$rn) X Beta(¢prnla, B)
i

= Beta(Mpg1 + @, Mpro + B),
where 1 o = X Ninko and Mpgr = X Ninkr-

Finally, the FCD for the vector containing njuq1, -.-, Nink1 is given by

[Min11, - Nink1]~Multinom(Nip, Pin1)
1 . N . .
where pjp1 = SeOadon [6i1P1n, - » Oik D] and Ny, is the number of returns in grid cell i at vertical

layer h. Similarly, the FCD for the vector containing 1,19, ---, Ninko IS given by

[Min10s - Ninkol~Multinom(Ni, — Nip, Pino)-

12
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where pipo = [0;:1(1 = Py, .., i (1 — )] and Ny, is the total number of light pulses

1
Yq0iq(1-dqn)

that reach grid cell i at vertical layer h. The detailed derivation of these FCDs is provided in Appendix 1.

The Gibbs sampler algorithm was implemented in R (R Core Team, 2020) and C++ (invoked from
R using the "Rcpp" package; Eddelbuettel, 2013, Eddelbuettel & Francois, 2011). To run this model, the
user has to specify the maximum number of groups K and the model, through a stick-breaking prior that
imposes sparsity (Valle et al., 2021a), will often find that only a subset of the specified groups are
needed to adequately represent most of the observations. We provided the code as an R package called
LidarLDA, freely available in github (https://github.com/drvallel/LidarLDA) and archived in Zenodo (DOI
10.5281/zen0do.5781482, https://zenodo.org/badge/latestdoi/390455503). This package comes with a
detailed tutorial explaining how to format LiDAR data for LidarLDA as well as how to fit the model,

interpret, and visualize its results based both on simulated and empirical data.

2.4. Assessing algorithm convergence

In relation to assessing the convergence of our Markov Chain Monte Carlo (MCMC) algorithm, it is
important to note that this is a very large model given the large number of parameters that are being
estimated. To be precise, focusing only on the top-most parameters, there are | x (K-1) parameters in
the @4k matrix (I is the number of grid cells, K is the number of clusters) and K x H parameters in the
Py g matrix (H is the number of vertical layers). For example, if there are 100,000 grid cells, 10 clusters,
and 35 vertical layers, on total there will be 100,000 x 9 =900,000 parameters and 10 x 35 = 350
parameters in the @ and ® matrices, respectively. For this reason, just storing posterior samples for
each parameter in these matrices can be a substantial challenge, particularly if many iterations are used
and no thinning is done, and it is not feasible to evaluate convergence by examining each parameter

individually. Therefore, we assess convergence solely based on trace-plots of the log-likelihood and
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running the Heidelberger and Welch's diagnostic test and Geweke's statistic on the MCMC samples of

the log-likelihood.

2.5. Simulated forest structure data

To evaluate the proposed methodology, we relied on simulated data of forest structure in a
landscape with an elevational gradient. We assumed that forest structure was strongly influenced by
slope and altitude such that forest types gradually changed with elevation, with increasingly shorter
trees as elevation increased. This landscape was divided into 2,601 grid cells and we assumed 30 1-m
vertical layers, resulting in 78,030 voxels. Furthermore, we assumed that 100 light pulses reached each
grid cell and vertical layer. Finally, two simulated datasets were created, one with three and the other
with five forest structural types. The parameters used for the @ matrix are given in Appendix 2 while the
parameters for the @ matrix are depicted in Fig. 3.

We fitted LidarLDA to these simulated datasets to determine if it was able to correctly determine
the true number of forest types, the spatial distribution of these forest types, and their vertical profiles.
We assumed a maximum of 10 clusters and we relied on the following prior parametersa = =1 (i.e,,
a uniform prior for ¢) and y = 0.1. We also compared the results from LidarLDA with those from
hierarchical clustering (HC), a commonly used approach to identify forest structural types (Adnan et al.,
2019, Moran et al., 2018, Papa et al., 2020). To this end, we relied on the function "agnes" from the R
package "cluster" (Maechler et al., 2021) to perform agglomerative hierarchical clustering and we used
the Kelley-Gardner-Sutcliffe penalty function (implemented using the function "kgs", also from the

"cluster" package) to determine the optimal number of groups.

2.6. Empirical data
2.5.1 Fire experiment

14
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We were interested in understanding the joint effect of fire and forest fragmentation on the vertical
structure of forests. For this reason, we focus on an area subjected to experimental fire, located in a
transitional forest in Mato Grosso, Brazil, in the southern part of the Amazon Basin (13°04’S,52°23’'W). In
this experiment, four 50 ha (50 x 1000 m) plots bordering a crop field were established in 2004 (red
plots in Fig. 2A). As shown in the timeline in Fig. 2B, one of these plots was left unburned (i.e., control
plot “C”), one plot was burned once in 2007 (i.e., “1x”), one plot was burned thrice (2004, 2007, and
2010; hereafter “3x”) and the remaining plot was burned yearly from 2004 to 2010, except in 2008
(hereafter “6x”). In the “C”, “3x”, and “6x” plots, transects of 500 m in length and 20 m in width were
created at 0, 10, 30, 100, 250, 500, and 750 m from the forest edge and all trees with diameter at breast
height (i.e., 1.3 m from the ground; dbh) greater than 20 cm were measured in 2014 within these

transects. Additional details regarding this experiment are available in Balch et al. (2011).

Fig. 2. Study area. In this figure, panel A shows a false-color Landsat 5 image of the study region from
June 27, 2011. Panel B shows the timeline of the experimental fires and LiDAR data collection for each
plot. The control plot is denoted by “C”, the plot burned once in 2007 is denoted by “1x”, the plot
burned 3 times between 2004-2010 (fire interval of 3 years) is denoted by “3x”, and the plot burned 6

times between 2004-2010 (i.e., fire interval of 1 year, except for 2008) is denoted by “6x”.

2.5.2 LiDAR data and pre-processing

Data were obtained from the Sustainable Landscapes Brazil project and are freely available online at
dos-Santos et al. (2019). We relied on LiDAR data for 2014 and 2018 from the Tanguro ranch in Mato
Grosso, Brazil, covering a landscape of approximately 1,000 hectares. LiDAR data were pre-processed by
subtracting the terrain elevation from the return height to account for topography. Returns with

negative height were relatively infrequent (i.e., the median percentage of negative heights per grid cell
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was equal to 4.7%) and were assigned to a height of 0. The return data were then grouped spatially into
50m x 50m grid cells and 1-m vertical layers. More than 99.9% of the returns were below 35 m, thus our
last vertical layer included all returns with height equal or greater than 35 m. Because the calculation of
absorptance probabilities p;;, assume approximately vertical light pulses, we eliminated all returns with
an absolute angle greater than 5 degrees off-nadir. Finally, to reduce data density while also ensuring an
adequate amount of data for each vertical layer, we subsampled the data so that there were at most
100 light pulses reaching each voxel (i.e., max(ﬁih) = 100). Ultimately, all these pre-processing steps

resulted in approximately 800,000 returns spread throughout ~110,000 - 135,000 voxels for each year.

2.5.3 Fitting the model and post-processing the results

We fit LidarLDA to data from 2014 to estimate the vectors ;3914 and ¢y. Similar to the settings for
the simulated data, to fit this model, we assumed a maximum of 10 clusters and we relied on the
following prior parameters @« = § = 1 (i.e., a uniform prior for ¢;) and y = 0.1. We ran the algorithm
for 200,000 iterations and assessed convergence by examining trace-plots of the log-likelihood. To
determine how the relative abundance of each cluster has changed with time, we relied on the folding-
in operation. In this operation, the characteristics of each cluster are kept fixed (i.e., ¢y is not re-
estimated) and only the relative abundance of each cluster in each location is re-estimated (i.e., 8; 2013
is estimated). A comparison between 6; ;914 and 6; 2913 enables the determination of how the spatial
distribution of these clusters have changed through time.

Because of changes in data acquisition strategies to reduce costs, the LiDAR data for 2018 had
considerably fewer returns with absolute off-nadir angle less than 5 degrees, and approximately 18% of
the grid cells did not have any return with these characteristics. Because it is hard to visualize the spatial
patterns of the clusters identified by LidarLDA if there are gaps in the resulting maps, we interpolated

the LidarLDA results for 2018 for each group using inverse distance weighting (idw function within the R
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package "gstat") (Pebesma, 2004). Finally, all maps were created using the R package "ggplot2"
(Wickham, 2009). All scripts and files required to reproduce our results were archived in Zenodo (DOI

10.5281/zen0do.5781488, https://zenodo.org/badge/latestdoi/433446658).

3. Results

3.1. Simulated forest structure data

We simulated data with 3 and 5 clusters in which the abundance of each cluster was a function of
elevation (Figs. 3A and 3B). Trace-plots and convergence tests suggest that our algorithm applied to
these simulated data sets has successfully converged (see details in Appendix 3). We found that
LidarLDA estimated well the number of groups given that the first 3 clusters (for the simulated data with
3 clusters) and the first 5 clusters (for the simulated data with 5 clusters) identified by the algorithm
accounted for >99% of all the returns on average (Appendix 2). Furthermore, we found that the
estimated spatial distribution of each cluster along the elevation gradient (captured by the matrix 9;
Figs. 3C and 3D) closely followed the true distribution of these clusters. Finally, a comparison between
the estimated and true absorptance probabilities of each cluster reveals that LidarLDA estimated well
the @ matrix, with a Pearson correlation coefficient greater than 0.99 (Appendix 2). Taken together,
these results reveal that LidarLDA did an excellent job grouping areas with similar 3D profiles and
characterizing transition areas comprised of more than one cluster.

Differently from LidarLDA, the agglomerative hierarchical clustering (HC) approach yields hard
clustering results (i.e., HC can only assign a single cluster to each grid cell). This is an important
limitation. For example, as illustrated in Fig. 3F, HC captures well the overall spatial pattern of the
simulated dataset with 5 clusters but fails to capture the transition areas between clusters that are

present in Fig. 3B. Importantly, HC found the optimal number of clusters to be 5 even for the data that
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was simulated with only 3 clusters (Fig. 3E). As discussed in Valle et al. (2018), the reason for this is that
hard clustering methods will often yield more clusters than are necessary, often representing transition

areas as additional clusters (e.g., yellow and grey clusters in Fig. 3E).

Fig. 3. The true spatial distribution of clusters based on the simulated data (panels A and B) is compared
with the spatial distribution estimated based on LidarLDA (panels E and F) and agglomerative
hierarchical clustering (HC; panels G and H) based on the simulated data with 3 and 5 clusters (left and
right panels, respectively). In these panels, each color represents a different cluster and opacity levels
depict the relative abundance of each cluster (transparent = 0 and completely opaque = 1). Elevation is

depicted with blue contour lines.

3.2. Empirical data

3.2.1 Number of clusters and their characteristics

Both visual assessment of the trace plot of the log-likelihood and diagnostic test results suggest that
our Gibbs sampler algorithm has converged (see details in Appendix 3). By examining the results in the
vectors 0;, we find that the first 4 clusters together represent, on average, over 99% of all points (Fig.
4A). As a result, from here onwards, we focus on these 4 main clusters. When examining the height
distribution of each of these cluster, we find relatively distinct vertical profiles despite significant overlap
between clusters (Fig. 4B). For example, cluster 1 has very low absorptance probabilities across almost
all vertical layers, suggesting that this cluster represents bare soil, grass or areas with very short
vegetation. On the other hand, clusters 2 to 4 represent a gradient from shorter to increasingly taller
vertical profiles, respectively. To simplify the reference to these clusters, we label clusters 1 to 4 as

"near surface", "short", "intermediate", and "tall", respectively. A schematic representation of these

clusters is provided in Fig. 4C.
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Fig. 4. Characteristics of the identified clusters. In this figure, panel A displays the distribution of relative
abundances of each cluster, as captured by the vector 8;. Panel B shows the vertical profile of each of
the four most important clusters, as captured by the vector ¢. Panel C provides a schematic
representation of these clusters. Figures within panels B and C are ordered from shortest (top) to tallest

(bottom) clusters.

Corroborating the schematic representation in Fig. 4C, we found a strong relationship between
the different clusters identified by LidarLDA based on the 2014 LiDAR data and the tree diameter
distribution for the same year. For example, as shown in Appendix 4, for the plot that was burned 3
times (3x), there is a clear pattern of relatively few and small trees for the transects that are closest to
the forest edge and greater abundance and bigger trees as one moves towards the interior of the forest.
The LidarLDA-based clusters capture well this pattern since the relative abundance of the near surface
cluster (i.e., cluster 1) decreases sharply from the forest edge to the forest interior whereas the relative
abundance of clusters 2-4 steadily increases along this gradient (Appendix 4). Similar patterns can be
seen for the other areas (i.e., the control area and the 6x plot; see Appendix 4). Furthermore, a
comparison of the spatial distribution of the near surface cluster with a map of grass invasion, created
based on field observations, supports cluster 4 representing bare soil, grasses and short vegetation (see

Appendix 5).

3.2.2 Spatial distribution of LidarLDA clusters in 2014
We found that the spatial distribution of clusters in 2014 was strongly linked to both landscape
features and disturbance history. For example, the near surface, short and intermediate clusters

(clusters 1 to 3, respectively) were much more common close to the river, whereas the tall cluster 1 was
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rare in this area (Fig. 5). In relation to the fire experiments, we can also see in Fig. 5 that the areas
burned multiple times had a high proportion of the near surface and short clusters (clusters 1 and 2)
whereas the intermediate and tall clusters (clusters 3 and 4) were relatively rare in these areas in 2014.
Importantly, the tall cluster was more common in the 6x area when compared to the 3x area, probably a
consequence of higher fire intensity in the 3x area due to the fuel buildup enabled by the lower fire
frequency (Balch et al., 2015). Furthermore, the area burned once (1x) was more similar to the control

area than the areas burned multiple times.

Fig. 5. Heatmaps showing the spatial distribution of each cluster in 2014. Relative abundance of each
cluster varies from 0 (cyan) to 1 (purple). Results are only shown for forested areas covered by LiDAR
but there is an agricultural field adjacent to the plots. Location of the river is highlighted with blue line
while experimental fire plots are outlined in black. The control plot is denoted by “C”, the plot burned
once in 2007 is denoted by “1x”, the plot burned 3 times between 2004-2010 (fire interval of 3 years) is
denoted by “3x”, and the plot burned 6 times between 2004-2010 (i.e., fire interval of 1 year, except for
2008) is denoted by “6x”. Top to bottom panels show the results for individual clusters (numbers in the

top left of each panel) and are ordered from low to high stature clusters.

3.2.4 Temporal changes

Assuming 4 main clusters, we use the folding-in operation to compare how the relative abundance
of each cluster changed through time by estimating 0; 915 and calculating 0; 29018 — 0; 2014 This
analysis reveals that there is substantial change between 2014 and 2018 at the landscape level, even in
areas that were not subject to experimental fire (Fig. 6A). The results for the experimental fire plots,
however, are substantially different from those at the landscape level. For instance, at the edge of the

forest in the areas burned multiple times, the relative abundance of the near surface cluster (cluster 1)
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468 decreased dramatically with a concurrent increase of the short cluster (cluster 2). In contrast, in the
469 interior of the forest for the areas that were burned multiple times, the short cluster (cluster 2) declined
470 but there was a strong increase in the intermediate cluster (cluster 3).

471 Another way of visualizing the recovery of the forest after fire at the forest edge and forest interior
472 is using barycentric coordinates, in which we simultaneously display the relative abundance of clusters
473 1, 2, 3+4 (Fig. 6B). In this figure, points closer to a particular vertex have higher relative abundance of
474  the corresponding cluster and arrows start in 2014 results and point to 2018 results. This figure reveals
475 that the areas burned multiple times (i.e., 3x and 6x) have a much larger fraction of the near surface
476  cluster (cluster 1) at the edge of the forest (i.e., grid cells within 500 m of the forest edge) when

477  compared to the control and 1x plots in 2014. On the other hand, these burned areas tended to have a
478 larger fraction of the short cluster (cluster 2) at the interior of the forest (i.e., grid cells >500 m away
479  from the forest edge). Importantly, only at the interior of the forest have these differences decreased
480  substantially in 2018, revealing a convergence to approximately the same forest structure, whereas
481  thereis much less convergence at the forest edge even 8 years after the last fire. Interestingly, the

482 length of these arrows reveals that all the burned areas, including the area burned only once in 2007
483 (i.e., 1x), are still undergoing large changes in forest structure while the control area has had

484  comparatively smaller changes during the same time period. Taken together, these results illustrate the
485 partial recovery of forest structure after fires stopped (2007 for the 1x plot; 2010 for the 3x and 6x plots)
486  and how distance to forest edge influences this recovery process.

487

488 Fig. 6. Recovery process of forest structure between 2014 and 2018 displayed with difference maps
489  (panel A) and barycentric coordinates (panel B). The difference maps were calculated as the relative
490  abundance in 2018 minus the relative abundance in 2014 for each cluster. Increases and decreases are

491  depicted in blue and red, respectively. For the barycentric coordinate figures, each arrow starts at the
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coordinates for 2014 and ends at the coordinates for 2018. Each color represents a different
experimental plot. Top and bottom panels display the results for the forest edge (defined as all grid cells
within 500 m of forest edge) and forest interior (defined as all grid cells more than 500 m away from the

forest edge), respectively.

Importantly, as described in detail in Appendix 6, differently from the LidarLDA results, Canopy
Height Model (CHM) results fail to identify differences in the forest interior between the burned plots
(1x, 3x, and 6x) and the control plot. Furthermore, in contrast to the results shown in Fig. 6, a temporal
comparison of CHM results suggest minimal change in canopy height in the interior of burned plots and
the control plot from 2014 to 2018. Taken together, these results suggest that LidarLDA can reveal much

more information regarding forest structure than CHMs.

4. Discussion

In this article, we have shown how a modified LDA model, called LidarLDA, can be used to
generate novel insights on forest structure based on LiDAR data. A key feature of this dimension
reduction approach is that it enables the spatial and temporal visualization of changes in forest structure
while at the same time appropriately accounting for occlusion of LiDAR light pulses. Using simulated
data, we illustrate how this model can recover the true number of clusters and the spatial distribution of
these clusters as a function of elevation. Furthermore, through our case study in the Amazon region, we
reveal landscape-level differences in forest structure associated with proximity to the river as well as the
long-term effects of fire and forest fragmentation on forest structure. Importantly, a comparison with
other types of LiDAR products that just focus on top-of-canopy information, such as a Canopy Height
Model, reveals how much more information can be extracted using LidarLDA regarding the impact of
fires and forest fragmentation on forest structure.
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Due to its unsupervised nature, our LidarLDA model is well suited for exploratory analysis,
potentially revealing novel spatial and temporal patterns of forest structure. Importantly, differently
from standard hard clustering approaches used to create forest structural types, the LidarLDA model is
able to capture gradual spatial and/or temporal changes in forest structure. For example, the analysis of
our simulated data reveals that LidarLDA can accurately capture the gradual spatial changes in forest
structure associated with elevation (Fig. 3). On the other hand, hard clustering approaches commonly
used to determine forest structural types (Adnan et al., 2019, Moran et al., 2018, Papa et al., 2020)
cannot capture these gradual changes because each grid cell can only be assigned to a single cluster.
Similarly, characterizing the gradual temporal changes (e.g., as depicted in Fig. 6) would be very
challenging with hard clustering approaches. Another important limitation associated with hard
clustering approaches is that they often have to create more clusters than warranted to be able to fit
the data well and represent these transition zones. This is illustrated with our simulations with 3 clusters
and is corroborated by past studies on the ability of hard clustering approaches in describing transition
zones (Valle et al., 2018).

In our case study, we characterized approximately 1,000 ha of this landscape and identified the
strong influence of distance to the river on forest structure. Furthermore, a comparison of field data and
LidarLDA results revealed that LidarLDA could capture well the gradual changes in the diameter
distribution of trees resulting from the synergistic effects of fire and distance to forest edge, providing
confidence that LidarLDA can be used over large areas to detect spatial and temporal changes in forest
structure. The comparison of LidarLDA results for the burned and control plots largely corroborated the
results from previous studies based on field measurements at the same site, an important result given
the unsupervised nature of LidarLDA. For example, the effect of fire on forest structure is strongest near
the forest edge and more pronounced in the 3x plot than on the 6x plot, probably due to the fuel build

up between years in the 3x plot (Balch et al., 2015). More fuel in drier conditions favors high-intensity
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fires, which can lead to increased postfire tree mortality, greater loss of aboveground live biomass
(Brando et al., 2014) and increased grass invasion (Silverio et al., 2013), with substantial change in
species composition (Valle et al., 2021b). Interestingly, the temporal comparison revealed substantial
changes in forest structure even after almost a decade after fires have ceased, capturing the ongoing
process of post-fire forest recovery. In contrast, the results from the canopy height model do not reveal
major differences between the forest interior of the control plots and the burned plots and fail to
capture the large temporal changes in forest structure (Appendix 6). Ultimately, by relying only on
information from the highest trees, CHMs miss other changes in the 3D structure of the forest. Finally,
we note that past studies focused on the Tanguro ranch have ignored the area that was burned just
once (1x) because no field data were collected for this site. LidarLDA results reveal that the short cluster
(cluster 2) is decreasing in this plot while the tall cluster (cluster 4) is increasing (Fig. 6), indicating
substantial change in forest structure between 2014 and 2018, even though this plot was burned just
once in 2007.

An important limitation of our methodology is the speed of our algorithm. Although our
algorithm leverages C++ within R to perform the most computationally intensive tasks, our model can
still be computationally intensive to fit because we rely on an iterative Markov Chain Monte Carlo
(MCMC) approach. This was not a problem when data were spatially discretized into 50 x 50 m grid cells
for a single region; it took approximately 1.6 hours to run LidarLDA for 20,000 iterations on the 2014
dataset containing approximately 3,900 grid cells and 35 height classes on an Intel Core i7 desktop with
3.4 GHz processor and 16 GB of RAM. This was done assuming a maximum of 10 clusters. On the other
hand, when the number of grid cells was increased by 10-fold while keeping all of the other
characteristics constant, our algorithm took 13.7 hours. Monitoring larger landscapes and/or using

smaller grid cells would likely require high performance computing. Exploring approaches to speeding
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up the fitting of LidarLDA (e.g., using variational Bayes methods; Blei et al., 2017) is likely to be a very
important topic for future research if larger datasets are to be analyzed.

To prepare the data for LidarLDA, we adopted 50 x 50 m grid cells and discretized height into
vertical layers of 1-m in width. These settings are relatively standard in LiDAR studies focused on forest
structure in this region (e.g., Andersen et al., 2013, Carrasco et al., 2019, Papa et al., 2020, Silva et al.,
2017) but it is important to acknowledge the tradeoffs associated with these choices. For example, while
choosing smaller grid cells can potentially represent spatial variation at a finer scale, two important
drawbacks of relying on smaller grid cells are that the number of light pulses per grid cell within the pre-
specified angle range can be relatively small, hampering inference, and the model is likely to take longer
to fit. Furthermore, a finer spatial scale may or may not be ecologically relevant depending on the size of
individual trees and their canopies. As a result, the decision regarding which grid cell size to adopt
requires one to consider the trade-off between algorithm speed and data availability versus the
ecological importance of fine scale spatial variation. A related concern is that of over-fitting the data
given that LidarLDA already contains a large number of parameters and the number of parameters
increases with the number of grid cells. The standard approach to determining if the data are being
over-fitted is to evaluate if out-of-sample predictions deteriorate as the number of parameters
increases. Unfortunately, this straight-forward approach does not work for LidarLDA because, like many
other LDA-type models, it does not include predictor variables and therefore predictions cannot be
made. While the use of the truncated stick-breaking prior helps in ensuring parsimony by limiting the
number of clusters, additional research is still needed to determine when overfitting is likely to be an
issue for models like LidarLDA. Finally, it is not clear what the minimum number of light pulses per grid
cell and vertical layer should be for LidarLDA to estimate well the absorptance probability of the

different clusters. We believe this is an important topic for future research.
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We have shown that LidarLDA enables the visualization of spatial and temporal patterns of
forest structure in a way that provides much more information than standard canopy height models. As
a result, we believe that LidarLDA will become an indispensable tool for scientists interested on how
large-scale phenomena (e.g., selective logging, climate change, and fire) and biophysical characteristics
(e.g., topography, soil fertility, and rainfall) influence forest structure and/or how forest structure
influences ecosystem services (e.g., erosion control, recreation, wildlife habitat, water supply and/or
regulation). For example, it is possible that LidarLDA could be used in the future to monitor forest
concessions, assessing the short-term structural damage associated with logging as well as how long it
takes for the forest to recover most of its structure after logging. Similarly, it is possible that LidarLDA
could be used to better determine emissions associated with understory fire by assessing changes in
structural biomass and the required time for forests to regain their original structure. Despite our focus
on forests, it is important to emphasize that LidarLDA is likely to also be useful to characterize the
structural complexity and answer similar questions for other types of vegetation. Given the increasing
availability of LIDAR data, collected from unmanned aerial vehicles (UAVs), planes (e.g., data from the
National Ecological Observatory Network [NEON]), or satellites (e.g., data collected by the NASA's Global
Ecosystem Dynamics Investigation [GEDI] mission), the time is ripe for ecological applications to use the

full potential of these high-dimensional datasets. We hope that LidarLDA can contribute to this effort.
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