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Center website (https://www.pwrc.usgs.gov/bbs/rawdata/). Vascular plant data from Alberta are

freely available for download from the ABMI website (https://abmi.ca/home/data-analytics/da-
top/da-product-overview/Species-Habitat-Data.html) by selecting "Vascular Plant" under
"Species Variables" within "Terrestrial Variables". Average temperature and precipitation data

are freely available at WorldClim (www.worldclim.org/version2) and can be found under

"Historical climate data" and "5 minutes". Armadillo movement data from Brazil is available for

download upon request at http://movebank.org. These data can be found under "Three banded

armadillo Attias Serra do Amolar (clean burrow)" and "Tree banded armadillo Attias Caceres

(clean burrow)".
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Abstract

Clustering is a ubiquitous task in ecological and environmental sciences and multiple
methods have been developed for this purpose. Because these clustering methods typically
require users to a priori specify the number of groups, the standard approach is to run the
algorithm for different numbers of groups and then choose the optimal number using a criterion
(e.g., AIC or BIC). The problem with this approach is that it can be computationally expensive to
run these clustering algorithms multiple times (i.e., for different numbers of groups) and some of
these information criteria can lead to an overestimation of the number of groups.

To address these concerns, we advocate for the use of sparsity-inducing priors within a
Bayesian clustering framework. In particular, we highlight how the truncated stick-breaking
(TSB) prior, a prior commonly adopted in Bayesian nonparametrics, can be used to
simultaneously determine the number of groups and estimate model parameters for a wide range
of Bayesian clustering models without requiring the fitting of multiple models. We illustrate the
ability of this prior to successfully recover the true number of groups for three clustering models
(two types of mixture models, applied to GPS movement data and species occurrence data, as
well as the Species Archetype model) using simulated data in the context of movement ecology
and community ecology. We then apply these models to armadillo movement data in Brazil,
plant occurrence data from Alberta (Canada), and bird occurrence data from North America.

We believe that many ecological and environmental sciences applications will benefit from
Bayesian clustering methods with sparsity-inducing priors given the ubiquity of clustering and

the associated challenge of determining the number of groups. Two R packages, EcoCluster and
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bayesmove, are provided that enable the straightforward fitting of these models with the TSB

prior.

Key-words: Bayesian nonparametrics, clustering, Biogeographic Region model, mixture model,

movement ecology, Species Archetype model
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Introduction

Clustering algorithms are commonly used across multiple disciplines to reduce data
dimensionality by grouping data items with similar features, enabling the identification of the
main latent structural characteristics of highly multivariate data (Berkhin, 2006; Jain et al., 1999;
Legendre and Legendre, 2012). In environmental sciences and ecology, clustering approaches
have been extensively used since at least the 1920’s (Legendre and Legendre, 2012). Examples
for biodiversity datasets include cluster analysis to define biogeographical regions (Azeria et al.,
2007; Foster et al., 2017; Kreft and Jetz, 2010; Lyons et al., 2017), identify indicator species by
grouping species that tend to co-occur (Azeria et al., 2009), identify microbial community
patterns associated with sample origin and/or sampling time (Ramette, 2007), and cluster species
that tend to have similar relationships with other species in food web studies (e.g., set of predator
species that feed on the same set of prey species) (Baskerville et al., 2011). Cluster analysis has
also been extensively used in other environmental science applications. For example, clustering
has been used to classify water catchments in data-scarce regions (Auerbach et al., 2016) and to
understand the spatial variation in the detection rate of pharmaceuticals in rivers across different
regions (Jameel et al., 2020).

Clustering is an important task across scientific fields and, as a result, a rich assortment of
methods and algorithms have been developed through time (Jain et al., 1999). These methods
can be classified based on several dichotomies, such as whether a single partition (partitional) or
a nested series of partitions (hierarchical) is created, if methods output hard (each data item can
only belong to a single group) or fuzzy (each data item can have varying degree of membership

to each group) groups, and if these methods are algorithmic or probabilistic (Berkhin, 2006;



91  Bouveyron and Brunet-Saumard, 2014; Jain et al., 1999; Legendre and Legendre, 2012; Saxena
92 etal., 2017). A long-term challenge when using clustering algorithms consists of defining the
93  appropriate number of clusters, which typically has to be a priori specified (Berkhin, 2006; Jain
94  etal., 1999; Legendre and Legendre, 2012; Saxena et al., 2017). The standard approach for this
95 task is to systematically vary the number of groups and run the algorithm once for each setting.
96  Then, the optimal number of groups is determined using a performance metric (e.g., AIC, BIC,
97  gap statistic, integrated classification likelihood, minimum message length) (Berkhin, 2006;

98  Biernacki et al., 2000; Charrad et al., 2014; Daudin et al., 2008; Depraetere and Vandebroek,

99  2014; Fraley and Raftery, 2007; Hui and Warton, 2015; Hui et al., 2013; Lyons et al., 2017; Ter
100  Braak et al., 2003; Tibshirani et al., 2001). This approach has been extensively used in the past
101  but it can be computationally expensive and time consuming for large datasets and/or complex
102 models. Importantly, large simulation studies have shown that no single performance metric is
103  consistently better than the others (Depraetere and Vandebroek, 2014) and that some of these
104  commonly adopted information criteria tend to favor models with a larger number of groups than
105  warranted (Casella et al., 2014), even if the model faithfully mirrors the data generating
106  mechanism (e.g., Pohle et al., 2017).

107 The generation of sparse solutions (i.e., where only a small fraction of the parameters are
108  non-zero) is highly desirable for a range of modeling applications. For example, regularization
109  (i.e., penalty terms added to the objective function) in statistical (e.g., regression) and machine
110 learning (e.g., support vector machines) models is key to avoid overfitting, increase predictive
111 skill, and improve interpretability of model results. Interestingly, many of the proposed

112 regularization approaches can be interpreted as Bayesian models with very specific types of

113 sparsity-inducing priors (Hahn and Carvalho, 2015; Hooten and Hobbs, 2015; Park and Casella,
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2008; Wood, 2017). Likewise, the challenge of determining the number of clusters can also be
tackled by defining Bayesian models with sparsity-inducing priors (i.e., priors that favor fewer
clusters). In this paper we describe how different types of Bayesian clustering methods applied to
ecological data, when used together with sparsity inducing priors, can automatically determine
the number of clusters without requiring fitting multiple models. In particular, we focus on a
specific type of sparsity-inducing prior, the truncated stick-breaking (TSB) prior (i.e., an
approximation of the Dirichlet Process), that has been extensively used in Bayesian
nonparametrics (Sethuraman, 1994) but that has seen relatively little application in ecological
and environmental sciences.

To illustrate how this approach can be used for a range of models, we rely on three Bayesian
clustering methods applied to ecological data: two types of mixture models, applied to movement
and species occurrence data, and the Species Archetype (SA) model (Dunstan et al., 2013). To
our knowledge, none of the three clustering methods with the TSB prior has been used in
ecological applications. We apply these three clustering methods to simulated data to showcase
the ability of the sparsity-inducing priors to successfully recover the true number of groups by
fitting the model just once. We then perform an exploratory data analysis with these methods to
reveal the latent structure in armadillo movements in the Pantanal wetlands (Brazil), plant
occurrence in Alberta (Canada), and breeding bird occurrence from United States and Canada.
We also provide two R packages (EcoCluster and bayesmove) that enable straight-forward fitting
of these clustering models, which we expect will be of broad use for ecological and

environmental science clustering tasks.

Material and methods
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1. Truncated stick-breaking prior
Clustering methods (also referred to as mixture models (McLachlan and Peel, 2000))
explicitly or implicitly contain multiple latent variables z;, i=1,...,n. The latent variable z;
indicates the cluster membership of unit i and can take on any integer value between 1 and K,
where K is the number of clusters defined a priori by the user. Depending on the specific
application, this unit can consist of individual forest plots, rivers, species, pharmaceuticals,
sampling points, etc. In probabilistic clustering approaches, it is typically assumed that the latent
variable z; follows a categorical distribution:
z;~Cat(0)

where the vector 0 is of size K (i.e., the number of clusters) and contains probabilities that sum
to one, indicating the likelihood that unit i is assigned to individual clusters. This categorical
distribution is used because it is assumed each unit can only belong to a single group.

Finding the optimal number of groups K by fitting the model multiple times (once for
each K value) and choosing K using a model selection criterion such as AIC or BIC can be a
prohibitive approach if fitting each model is computationally expensive. Furthermore, past
research has suggested that some of these information criteria tend to favor models with a larger
number of groups than warranted (Casella et al., 2014), even if the model faithfully mirrors the
data generating mechanism (e.g., Pohle et al., 2017). The approach proposed here avoids these
problems by relying on the truncated stick-breaking (TSB) prior, a particular type of prior for @
that favors sparseness (i.e., a smaller number of groups). With this prior, the user is only required
to specify the maximum number of groups K and the algorithm chooses the number of groups

(k < K) that best clusters the sample data.
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The stick-breaking prior has a long tradition in Bayesian nonparametric models. This prior
arises from the Dirichlet process (DP), which is arguably the most popular Bayesian
nonparametric model used for clustering applications (Ferguson, 1973). The distribution over
random partitions induced by the DP is commonly known in the machine learning community as
the Chinese restaurant process (CRP) (Teh, 2011) and is equivalent to the Ewens sampling
formula used to describe a distribution over partitions in population genetics that was introduced
before the DP (Crane, 2016; Ewens, 1972). Another definition of the DP is the Pélya urn
representation, which essentially describes the same distribution from the CRP (Blackwell and
MacQueen, 1973). Here, we focus on the alternative definition of the Dirichlet process known as
the “stick-breaking” construction (Sethuraman, 1994). This definition of the DP model is
considerably simpler and more general than the previously mentioned representations. This
approach has been extremely useful for the development of novel statistical models as well as
new Markov Chain Monte Carlo (MCMC) inference algorithms (Ishwaran and James, 2001).
Notice that, despite similar names, this “stick-breaking” prior is not associated with the “broken
stick model” for species abundance described in MacArthur (1957).

As commonly done in Bayesian nonparametrics (Ishwaran and James, 2001), we adopt a
truncated version of this prior by defining a maximum number of groups (hereafter referred to as
the Truncated Stick-Breaking [TSB] prior). To define the maximum number of groups, the
standard advice is to choose a truncation point such that the results would be indistinguishable
from what would have been obtained with a larger number of groups (Ishwaran and James,
2001). More practically, as long as most of the posterior mass is concentrated on the initial
components, then the actual value for the maximum number of groups should have no effect on

model results (Manrique-Vallier, 2016). On the other hand, if the maximum number of clusters is
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reached, then the standard advice is to increase the maximum number of possible groups to avoid
an incorrect approximation. Notice that, because the TSB prior is typically viewed as an
approximation to the DP, some researchers actually prefer to work directly with the DP to avoid
any potential approximation errors (e.g., MacEachern and Muller, 1998; Papaspiliopoulos and
Roberts, 2008).

Instead of viewing the TSB prior solely as an approximation to the DP, our perspective is
that the truncation in this prior is useful from a dimension reduction perspective because it
avoids the number of groups increasing with sample size (Murugiah and Sweeting, 2012).
Indeed, Casella et al. (2014) justified their use of a strong shrinkage prior by stating that, even
when the true number of cluster is large, cluster analysis "will only result in useful inference
when the answer contains a relatively small number of clusters". For the same reason, we
advocate for modelers interested in dimension reduction to carefully think about the maximum
number of groups that is still manageable/interpretable when defining where to truncate the
stick-breaking prior, this way limiting the complexity of the solution that is found by the
algorithm.

The truncated stick-breaking prior for @ is constructed indirectly by first defining

Vi~Beta(1,y)
for i=1,...,K-1 and Vy is set to one. The parameters Vj, ..., Vk are then used to calculate 6,

employing the following expressions:

0, = Vi [1521(1 — 13,) for k>1 [eqn. 1]
We use the following shorthand to denote this prior:

60~TSB(y)

10
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Notice that, according to this prior, the expected proportion of units assigned to cluster £ is

given by

E[6,] = E[Vi ] TTEZ1(1 — E[1,]) = —(1 ——)k_l = I:/;k for k<K; and

E[6,] = (1 — %y)k_l for k=K.

The depiction of this equation for 0 < y < 1 reveals an approximately exponential decay of
E[6;] with increasing k and that smaller y corresponds to faster decay and therefore sparser
results (i.e., fewer clusters).

To illustrate how this prior works, say we have a maximum of 6 groups (K=6) and V =
[V, ..., Vg] is equal to [0.19,0.33,0.27,0.95,0.47, 1]. Recall that, by definition, Vg is set to 1. As
illustrated in Table 1, these values for V imply that 8 = [0, ..., 8] is equal to
[0.19,0.27,0.15,0.38,0.01, 0.01]. Note that 85 and 6, are very small compared to 8y, ..., 8, and
that the four first groups account for 99% of all observations. These values suggest the presence
of 4 main groups, despite having allowed for up to 6 groups. These results arise because the TSB
prior shrinks 8}, to zero for large values of k. Similar to how the components that only explain a
small portion of the variation are typically ignored when conducting a Principal Component
Analysis (PCA), the remaining groups when using the TSB prior (i.e., groups 5 and 6) are also

typically ignored.
(insert Table 1)

An intuitive way of interpreting the expressions for 8, in Table 1 is to think about a

sequential process in which a sampling unit is eventually assigned to cluster £ after failing to be

11
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assigned to clusters 1, 2,..., k-1. For example, the expression for 85 can be interpreted as the
probability that a sampling unit is not assigned to group 1 (equal to 1 - 0.19) times the
probability that it is not assigned to group 2 (equal to 1 - 0.33) times the probability that it is
assigned to group 3 (equal to 0.27). The name “stick-breaking” originates from the metaphor of

sequentially breaking a stick of length 1 into smaller and smaller pieces, as illustrated in Fig. 1.

(insert Fig. 1)

Another benefit of using the TSB prior is that, by weakly identifying the labels of each
cluster, it can help to reduce the amount of label switching, a common problem for mixture
models which refers to the fact the group labels are unidentified parameters in these models. This
problem often leads to poor mixing of MCMC algorithms and generates potentially nonsensical
results if posterior distributions of parameters are summarized by their averages (Stephens,

2000).

2. Clustering models

To illustrate the wide applicability of the TSB prior, we describe three probabilistic partition
clustering methods that greatly benefit from this prior. All of these clustering models have an
observational model in which the response variable y;, conditioned on the latent cluster
membership variable z;, comes from a distribution that has some parameters indexed by z;. More

explicitly, we assume that:

vilzi = k~f (B )

12
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where B, is the set of cluster-specific parameters and ¢ is a vector containing the remaining
parameters that are not cluster specific. We specify f{) and the priors for 8} and ¢ in greater
detail when describing the individual models used to illustrate the TSB prior. In all models, we
assume that the latent cluster membership variable z; is given by:

z;~Cat(0)
and that

6~TSB(y).
A commonly used prior for y is a Gamma distribution (Dunson and Xing, 2009; Manrique-
Vallier, 2016; Si and Reiter, 2013). However, we decided to adopt a discrete uniform prior for y,
where this parameter can take any of the following values 0.1, 0.15, 0.2 ,..., 0.95, and 1 with
equal probability. This prior was chosen because it ensures y < 1, it is straight-forward to
implement, conforms to our prior belief of equal probability for all possible values of y, and
resulted in good mixing of our MCMC algorithms. Because of the truncation in the stick-
breaking prior, y < 1 ensures that the last group will be smaller than all the other groups (i.e.,
E[6;] > E[6k] for k=1,...,K-1). All models were fit using Gibbs samplers and detailed
information regarding the Full Conditional Distributions (FCDs) used by these algorithms is
given in Appendix S1.

Extensive simulations are used to show how the TSB prior can be used within these
models to successfully estimate the true number of groups without requiring the fitting of
multiple models with different numbers of groups. For all simulated datasets, we vary the true
number of groups K and set the parameters within the vector 8 to 1/K, resulting in clusters of
approximately equal size. We estimate the true number of groups by calculating the minimum

number of groups that together represent more than 99% of all observations. More specifically,

13
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we assumed that the estimated number of groups k is given by mkin(Z?=1 éj > 0.99), where 51 is

the posterior mean for group j. Finally, because of the large number of simulations and the large
number of parameters within any given model, we assessed convergence by examining trace-

plots of the log-likelihood instead of trace-plots of individual parameters.

3. Mixture model applied to movement ecology

3.1. Model description

Hidden Markov models (HMMs) have been extensively used to identify latent behavioral
states (e.g., encamped, area restricted search, and transit) based on metrics derived from GPS
location data, such as step lengths and turning angles (Morales et al., 2004). The estimation of
latent states is valuable to the understanding of animal movement patterns since these states can
be used to characterize the function of movements across a landscape when organisms are not
directly observable (McClintock et al., 2020; Patterson et al., 2017; Wittemyer et al., 2019). By
evaluating behavior-specific movements in relation to environmental covariates, mechanistic
drivers of movement and measures of habitat suitability can be discerned from a variety of
models, such as resource (Manly et al., 2002) or step-selection functions (Abrahms et al., 2016;
Fortin et al., 2005; Wilson et al., 2012; Wittemyer et al., 2019). These latent states can also be
used to infer activity budgets, providing a link to an animal’s relative energy expenditure (Attias
et al., 2018; Christiansen et al., 2013; McClintock et al., 2013; Wilmers et al., 2017; Wilson et
al., 2020).

Similar to HMMs, our model also identifies these latent behavioral states, but it does not rely
on a Markovian assumption or an underlying mechanistic movement process (e.g., correlated

random walk). As a result, our model is better described as a mixture model instead of a HMM.

14
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Furthermore, instead of using the probability density functions typically adopted to model step
lengths (e.g., gamma and Weibull) and turning angles (e.g., von Mises and wrapped Cauchy), we
discretize these data and use a conditional categorical distribution as the likelihood. While
discretizing the data arguably results in the loss of some information content, this approach has
the benefit of being able to represent standard and non-standard distributions. This is important
because parametric models can be prone to model misspecification (Diana et al., 2020) and it has
been shown that relatively minor discrepancies between the data and the standard distributions
often adopted within HMMs can lead to the identification of additional but superfluous latent
states (Pohle et al. 2017). We believe that the flexibility in representing the distributions of step
lengths and turning angles outweighs the relatively minor loss of information, particularly in the

context of the large number of observations that arise from these GPS sensors.

Let yl-(l) and yl-(z) denote the step length and turning angle bins, respectively, that observation

i falls into. We assume that:
vz = k~Cat(Pyr)

¥ 2|z = k~Cat(¢ua)
where z; = k is the latent cluster memberships of observation i for data type 1 and 2,
respectively. The vectors ¢y and ¢, contain the probability that step lengths and turning
angles, respectively, fall in each bin given that these observations were assigned to cluster £.
Finally, our priors are:
¢r1~Dirichlet(a)
¢i2~Dirichlet(a)

We assume a relatively sparse prior Dirichlet distribution for ¢pyq and ¢, by setting a to 0.1.

15
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3.2. Simulated movement data

We systematically varied the number of clusters K from 2 to 10 and simulated 10 datasets for
each setting. We assumed that both step lengths and turning angles were discretized into 15 bins.
Each simulated dataset contained 15,000 observations closely following the generative model
described above. To ensure that each cluster was sufficiently distinct from the other clusters, we
relied on a discretized normal distribution for ¢py; and ¢y,. We assumed that the means were
evenly distributed across the 15 bins and that the standard deviation was "4 of the distance
between means. For example, for 3 clusters, this discretized normal distribution peaked at the
Ist, 8th, and 15th bins, respectively, and the standard deviation was equal to (8-1)/4=1.75.
Finally, we set the maximum number of groups to 15 and ran the Gibbs samplers for 10,000

iterations for each simulated dataset.

3.3. Empirical movement data

We rely on GPS telemetry data from 20 individuals of the southern three-banded armadillo
(Tolypeutes matacus), a species classified as Near Threatened (A2cd) by the IUCN Red List of
Threatened Species and highly prioritized for conservation in Brazil (ICMBio, 2014). These data
were collected from two sites in the Pantanal wetlands of Brazil using a GPS tracking device
with approximately 5-min interval fixes. For each captured individual, age, sex, reproductive
status, and body mass were measured. Additional information regarding this system and data can
be found in Attias et al. (2020).

Location errors and missing location fixes are widely acknowledged problems with GPS
location data (Bjorneraas et al., 2010; Ranacher et al., 2016). To properly analyze these data, we

used a number of filtering steps. First, we excluded the data that were collected while armadillos
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were in their burrows, usually during the daytime, since no movements occurred during this
time. Second, we only retained measurements at 5+ 1 min intervals to ensure that the derived
speed and turning angles were comparable. Speed was calculated as step length divided by the
time interval (i.e., the amount of time between successive GPS fixes) and turning angle was
calculated as the change in direction between successive steps. Finally, we removed observations
for which speed was greater than the 99.9% percentile (equal to 0.71 m/s) to remove biologically
implausible movements. After all of these filtering steps, our final data set contained 13,671
observations from 20 individuals. Speed was discretized into bins of equal widths (0.1 m/s) up to
0.6 m/s with the final bin containing all observations > 0.6 m/s, resulting in 7 bins. Turning angle
was discretized into 10 evenly spaced bins between —m and 7.

We set the maximum number of groups to 15 and ran our Gibbs sampler for 20,000
iterations, discarding the first half of the iterations as burn-in. Besides identifying and
characterizing each behavioral state, the goal of this analysis was also to gain insights regarding
the basic ecology of this poorly known species. To this end, we explore how different factors
influence the probability of each behavioral state using a post-hoc generalized linear mixed
model (GLMM) with random effects for each individual using the R package ‘Ime4’ (Bates et
al., 2015). In addition to the individual level information from the armadillos, we include time of
day, ambient temperature, and precipitation as additional predictor variables. Temperature and
precipitation are based on daily averages obtained from automatic stations of the Brazilian
National Institute of Meteorology (INMET), located in the municipality of each study site.
Differently from the clustering process, in which a single model was fit to data from both sexes,
we fitted separate GLMM models for females and males. In these models, random effects were

included for each individual. It is important to note that uncertainty from the mixture model is
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not appropriately propagated to the GLMM parameter estimates. However, we believe that this

model can still be useful in helping to interpret the results from the mixture model.

4. Mixture model applied to species occurrence data (i.e., Biogeographic Region model)

4.1. Model description

In this section, we focus on the clustering of locations with similar species composition.
These locations are often spatially clustered, resulting in areas that have been variously called
biogeographical regions (BR), bioregions, regions of common profile, forest types, or bird
conservation regions in the literature. The delineation of these areas is a common task in ecology
because it has important implications for both basic and applied scientific questions, such as
those in historical biogeography, conservation, and natural resources management (Hill et al.,
2017; Kreft and Jetz, 2010; Vilhena and Antonelli, 2015). A review of methods to delineate these
areas is provided in Hill et al. (2020).

Let y;; denote the number of times that species s (s=1,...,S) was seen in location 7 (i=1,...,n).
We assume that y; arises from a Binomial distribution given by:

Yis|zi = k~Binomial(n;, ¢xs)
where z; is the latent group membership and n; is the number of observation opportunities in
location i. Notice that z; influences this Binomial distribution by determining the subscript of the
parameter ¢, where k=1,...,K. The parameter ¢, represents the presence probability of
species s if location i belongs to cluster k. Therefore, the vector [y, ..., Pxs] characterizes
cluster £ in relation to its species composition. Finally, we adopt the following priors:
¢rs~Beta(a, b)

We assume that a=b=1, resulting in a uniform prior for ¢;.
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4.2. Simulated biogeographic data

The true number of groups K was set to 2, 4, 8, 16 and 32 for this model. Ten datasets were
generated for each setting and all simulated datasets had 2679 locations and 443 species, similar
to the bird data set that was used for one of our case studies. We generated the simulated data
closely following the generative model described above. To retrieve the true number of groups,
we set the maximum number of groups to 50 and ran the Gibbs samplers for 1,000 — 5,000

iterations for each simulated dataset.

4.3. Empirical biogeographic data

The Alberta Biodiversity Monitoring Institute (ABMI) monitors large-scale responses of
biodiversity to environmental change in Alberta, Canada. The program reports on the status and
trends of species by establishing species-habitat relationships, determining species’ response to
various land-use changes, and producing predictive maps. The information on the trend and
status of biodiversity, derived from these species-specific results, is then used to support natural
resource and land-use decision making in Alberta. While species-specific models are typically
created, results are often summarized across species depending on their shared response to
natural or human disturbance (e.g., forestry, agriculture) to highlight major results that can be of

particular interest in a given region.

The goal of this analysis is to identify the major plant communities in the forested and prairie
regions of Alberta, enabling the characterization of biodiversity across large spatial-scales. These
results are useful in summarizing the response patterns to disturbances of a large number of

species, helping to convey the results (display, interpret, and explain) to land-use managers. We
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used presence/absence data on vascular plant species in Alberta collected by the Alberta
Biodiversity Monitoring Institute (ABMI). Sites surveyed by ABMI in terrestrial habitat were
spaced throughout Alberta using the 20 km National Forest Inventory grid. At each site, a 100m
x 100m survey area was established and each survey area was further divided into four 50m x
50m square plots. Because our model lumps these four square plots together, the number of
observation opportunities in survey area i (i.e., n;) is equal to 4 and the number of times species s
was seen in this survey area (i.e., ;) is an integer between 0 and 4. All vascular plant species in
these plots were identified and their presence/absence in each of these plots was recorded. We
focused on data from 2007 to 2018 because of the consistent data collection protocol from this
period of time. We also eliminated data from very rare species, defined as species that were
present in less than 1% of the sites, resulting in a final dataset with a total of 1,082 sites and 351

species. Details about data collection can be found in ABMI (2014).

The maximum number of groups was set to 50 and the Gibbs sampler was run for 10,000
iterations, discarding the first half of the iterations as burn-in. To enable the visualization of the
spatial distribution of the identified clusters, we fit post-hoc Bayesian logistic regressions to the
results from the BR model and then use these regression models to create spatial predictions.
Predictor variables for these logistic regressions included two climate variables (i.e., mean
annual temperature and precipitation) and percentage of land area covered by nine habitat types
(i.e., deciduous forest, pine forest, white spruce forest, mixed wood forest, black spruce forest,
fens with trees, swamps with trees, open wetland [fen/marsh], and grass/shrub), and five types of
anthropogenic landscapes (i.e., harvested forest stands, vegetated strips along linear features
[e.g., trails, roads, and railways], crops/pastures, urban industrial/mines, and paved and gravel

roads). We considered these variables because they are biologically meaningful and are available
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433 throughout the entire study area at the spatial scale of 1 km?. Similar to our analysis of the

434  mixture model results applied to the movement data, it is important to note that uncertainty from
435  the BR model is not appropriately propagated to the logistic regression parameter estimates.

436  However, we believe that the derived maps based on this logistic regression can still be useful in

437  helping to interpret the results from this mixture model.

438

439 5. Species Archetype models

440 5.1. Model description

441 Species Archetype (SA) models were originally developed by Dunstan et al. (2011) to cluster
442  species that responded similarly to environmental gradients (i.e., species that had similar

443  regression parameters). While the original model followed a relatively standard mixture of

444 regression models approach (Grun and Leisch, 2008), this model was subsequently improved by
445  allowing each species to have a separate intercept (Dunstan et al., 2013), enabling species-

446  specific differences in overall prevalence.

447 SA models have been put forward as a potentially effective strategy to group species,

448  resulting in species archetypes (i.e., groups of species that respond in a similar fashion to the
449  environment) (Dunstan et al., 2011; Dunstan et al., 2013; Hui et al., 2013). Furthermore, SA

450  model results can also simplify conservation management decision by enabling managers to

451  focus on a small set of species archetypes, instead of having to evaluate a multitude of species,
452  each with their own idiosyncratic response to the environment (Dunstan et al., 2011; Dunstan et
453  al., 2013; Hui et al., 2013).

454 Let y;s denote the presence (=1) or absence (=0) of species s (s=1,...,S) in location i

455  (i=1,...,n). Because this is a binary variable, we assume the following Bernoulli distribution:
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456 Vis|Zs = k~Bernoulli (d)(as + xiTﬁk))

457  where z, is the latent cluster membership of species s, @, is a species-specific intercept, x; is a
458  vector of location-specific covariates, ®() is the standard normal cumulative distribution

459  function, and B, is a vector containing the regression slopes for cluster &, where £=1,...,K.

460  Notice that the latent variable zg influences this Bernoulli distribution by determining the

461  subscript of the vector . In other words, species that belong to the same cluster £ have the

462  same slope parameters 8, essentially having identical responses to covariates. We adopt a

463  probit link (instead of the more common logit link) because it enables the straight-forward fitting
464  of the model using the data augmentation scheme described in Albert and Chib (1993). More

465  specifically, we assume the existence of another set of latent variables w; such that:

466 Vis = 1lifw;g >0

467 vis = 0 otherwise

468  where

469 wis~N (a5 + x{ Bx, 1)

470 For the remaining parameters, we adopt the following priors, given by:
471 as~N(0,10)

472 Bi~N(0,I)

473  where I is the identity matrix.

474 5.2. Simulated data

475 Similar to the BR model, the true number of groups K was set to 2, 4, 8, 16 and 32 for
476  this model. Ten datasets were generated for each setting and, similar to the empirical data, all
477  simulated datasets had 2679 locations and 443 species. We generated the simulated data closely

478  following the generative model described above. Furthermore, we simulated the slope
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parameters B from standard normal distributions. However, to simulate the species-specific
intercepts, we assumed that a;~N(0,0.42). The standard deviation for a was set to 0.4 to avoid
creating data in which certain species are almost always present or almost always absent. This is
important because it would be difficult for our models to assign these species to their correct
groups given that this assignment depends on the accurate estimation of the slope parameters .
We also assumed that six uncorrelated covariates were available, which were generated from
standard normal distributions. The maximum number of groups was set to 50 and the Gibbs

samplers were run for 1,000 — 5,000 iterations for each simulated dataset.

5.3. Empirical data

The Breeding Bird Survey (BBS) is a long-term program that monitors the status and trend of
bird populations in North America. In brief, data are collected annually in June by trained
participants along randomly established roadside routes approximately 39 km long with stops
0.8 km apart. At each stop, a 3-min point count is conducted (Pardieck et al., 2017).

The BBS actually records count data (rather than presence/absence) per stop in each route.
However, these counts may include the same individual observed multiple times and bird
detection may vary by species and environmental conditions (e.g., weather or traffic noise). To
avoid some of the issues with the count data and to be able to illustrate the use of the SA model
described previously, we convert these count data into presence/absence of each species in each
route. Furthermore, we subset the BBS data for the year of 2015 and eliminate data from very
rare species, defined here as species that were present in less than 10 routes. In total, the final
dataset used for analysis contained information on 443 species and 2679 routes, spread

throughout Canada and the United States.
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To understand how bird species are affected by climatic variables, we gathered average
temperature and precipitation for North America from 1970-2000 for the month of June from

WorldClim (www.worldclim.org/version2), with a spatial resolution of 5 arc-minutes (10 km

grid). Because each species archetype can potentially have non-linear associations with
precipitation and temperature, we relied on B-splines to capture the association between these
environmental variables and species presence. More specifically, B-spline basis functions were
included in the model for temperature and precipitation, where knots were a priori set to 10%,
20%, ..., 90% percentiles of the corresponding environmental variables. Additional information
regarding different types of splines and basis functions can be found in Wood (2017) and similar
functional clustering ideas can be found in Dunson (2010). By identifying the niche breadth in
relation to temperature and precipitation of the different species groups, this analysis is able to
identify which of these groups are more likely to be impacted by changes in precipitation,
changes in temperature, or changes in both variables. We set the maximum number of groups to
50 and ran our Gibbs sampler for 10,000 iterations, discarding the first half of the iterations as

burn-in.

6. Software

To enable readers to reproduce the results described in this article and to use the different
models highlighted here for their own data, we have created an R package called EcoCluster that
enables straight-forward fitting of the BR model and the SA model, both with the TSB prior. We
have also created an R package called bayesmove (Cullen et al., in review) that enables the
straight-forward fitting of the mixture model with the TSB prior used for the movement data.

These packages can be readily downloaded from our public GitHub account
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(https://github.com/drvalle1/EcoCluster) and CRAN (https://CRAN.R-

project.org/package=bayesmove). The vignettes accompanying these R packages illustrate how

to fit these models and interpret their results.

Results

1. Simulated data results

We find that the proposed models with the TSB prior are able to successfully recover the true
number of groups for all models, with a slight decrease in performance for the BR model when
the true number of groups is equal to 32 (top panels in Fig. 2). Importantly, we find that the data
contain substantial information on y (the parameter that governs the TSB prior), with posterior
means for y that are relatively small for sparse settings (i.e., when only few groups exist) versus
closer to 1 when many groups exist (bottom panels in Fig. 2). We also find that all of the
proposed algorithms were able to accurately retrieve the parameter values used to simulate the
data (i.e., ¢px1 and ¢, for the mixture model applied to the movement data; ¢, for the BR

model; and g, B}, for the SA model; data not shown).

(insert Fig. 2)

The standard approach of fitting models with different number of clusters and then selecting
the optimal number of clusters is much more computationally expensive. For example, using the

real datasets, we found that the time required to fit the mixture model with the TSB prior applied
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to movement data and a maximum of 15 groups was equal to 17% (25 min. vs. 149 min.) of the
time need to fit multiple mixture models, one for each number of clusters (2 to 15). Similarly,
fitting the BR model once with the TSB prior and a maximum of 50 groups corresponds to
approximately 6% (10 min. vs. 189 min.) of the total time required to vary the number of clusters
from 2 to 50 and fit individual BR models for each setting. Finally, fitting the SA model once
with the TSB prior and a maximum of 50 groups took 4% (40 min. vs. 990 min.) of the time

required to run multiple SA models, one for each pre-specified number of clusters (2 to 50).

2. Empirical results for the mixture model applied to movement data

Our model identified two behavioral states (out of a maximum of 15 possible states) that
together comprise 99% of all observations. The first state is comprised mostly of slower and
more tortuous movements (hereafter “foraging” state, Figs. 3a and 3b) while the second state
includes faster and more directed movements (hereafter “transit” state, Figs. 3c and 3d). When
exploring these results, we find that, while the daily number of observations assigned to the
foraging state is very similar between males and females (Fig. 3e), males tend to have a higher
number of observations assigned to the transit state (Fig. 3f). To determine how covariates
influence these behavioral states, we fit a post-hoc generalized linear mixed model (GLMM),
where the binary response variable was equal to 1 for the transit state and 0 otherwise. The larger
proportion of the transit state for males in comparison to females is evident by the much larger
intercept for males when compared to females (Table 2). Furthermore, we find a quadratic
relationship between the probability of exhibiting the transit state with time of night (see Fig.
3g). Finally, we do not find a strong influence of precipitation, temperature, or region, on the

proportion of the transit state (Table 2). These results suggest that armadillos from both regions
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behave similarly and that precipitation/temperature have no measurable effect on the proportion
of the transit state, despite the fact that decreased daily temperatures have been associated with

an overall lower duration of activity period (Attias et al., 2018).

(insert Fig. 3)

(insert Table 2)

3. Empirical results for the BR model applied to the vascular plant data from Alberta

The BR model identified 7 (out of 50) major groups, representing 99.5% of all locations.
This analysis resulted in substantial dimension reduction given that, instead of having to
separately examine the results for 351 species, the BR model enables us to focus just on the
results from these 7 groups. To simplify the interpretation and enable the spatial visualization of
the patterns identified by the BR model, we fitted a post-hoc logistic regression to the results
from this model. Predictions from these regression models reveal striking spatial patterns (Fig.
4). For example, group three had a strong association with temperature and precipitation, with
most species in this group being relatively rare species that are mainly restricted to the colder
Rocky Mountains, Upper Foothills, and Canadian shield natural regions (e.g., Engelmann Spruce
Picea engelmannii and Rocky Mountain alpine fir Abies bifolia). On the other hand, group two
had a positive association with most of the other remaining upland forest types (i.e., deciduous,
white spruce, mixed wood, and harvested stands). Groups 4 and 5 were mostly restricted to
lowland forest types (black spruce and fens with trees). Interestingly, group one was strongly
associated with the proportion of cultivated land (e.g., crop and pasture), agreeing with the fact

that many of the species that dominate this group are either introduced or cultivated species (e.g.,
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Canola Brassica napus and Barley Hordeum vulgare). Group seven, on the other hand, was
strongly associated with highly anthropogenic landscapes, with substantially increased presence
probabilities in regions with higher urban/industrial/mines areas and associated vegetated strips
along railways, roads and trails (soft-linear). The characteristic species in this group include
White Sweet Clover Melilotus albus, Yellow Sweet Clover M. officinalis, and Scentless

Chamomile Tripleurospermum inodorum.

(insert Fig. 4)

4. Empirical results for the SA model applied to the Breeding Bird survey data

All of the 50 species groups in the SA model had species in them but 95% of all the species
were contained in the first 40 of these groups. As expected, several groups were strongly
associated with temperature and/or precipitation, typically exhibiting unimodal relationships
between average prevalence and these environmental variables. An example of the results for 4
species groups are shown in Fig. 5. The results for all the other species groups are available in

Appendix S2.

(insert Fig. 5)

The line graphs in Fig. 5 illustrate how all the species within a species archetype respond
in a similar fashion to the environment. The heat maps of the predicted average prevalence for
different combinations of temperature and precipitation provide a depiction of the environmental

space occupied by these species groups (i.e., the realized niche, Fig. 5). These figures illustrate
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that some species archetypes are relatively insensitive to precipitation but very sensitive to
temperature (e.g., species archetype 31), some are relatively insensitive to temperature but very
sensitive to precipitation (e.g., species archetype 5), while finally some groups are sensitive to
both temperature and precipitation (e.g., species archetype 21). These results can potentially be
useful to highlight which sets of species are more likely to be impacted by different facets of
climate change (e.g., Tingley et al., 2012), enabling the prioritization of these species for

conservation purposes.

Discussion

Determining the number of clusters is a long-standing challenge for a range of clustering
algorithms. The standard approach to deal with this problem for model-based clustering consists
of fitting models with different number of groups and selecting the optimal number of groups
using indices such as AIC or BIC, an approach that can be very computationally intensive and
that has been reported to often overestimate the true number of groups. Here we show how
Bayesian clustering models, when used in conjunction with sparsity inducing priors such as the
TSB prior described here, can determine the number of clusters without requiring the fitting of
multiple models.

To illustrate how a wide range of Bayesian clustering models can benefit from sparsity-
inducing priors, we show with simulated data how the truncated-stick breaking (TSB) prior can
successfully estimate the true number of groups for three types of clustering models (i.e., two
mixture models, one applied to movement data and the other applied to species occurrence data,

and a SA model which clusters species according to how they respond to the environment).
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Nevertheless, we believe that the ability to identify the existing clusters is likely to depend on
several factors, including the type of model, how distinctive the clusters are from one another,
the size of each group, and the amount of available data. For example, additional simulations in
which groups were allowed to vary in size revealed that the BR model did not perform as well as
the other models in this setting (Appendix S3). A closer examination of the BR model results
revealed that this model had a challenging time correctly assigning some of the plots to the rare
groups (i.e., groups assigned to less than 10 plots) because these groups were rare and therefore
much harder to characterize. Additional research needs to be conducted to better characterize the
circumstances in which the TSB prior is likely to work well and when it is likely to fail.

We also show that the standard approach of varying the number of groups and fitting
multiple models is much more computationally expensive. Some might argue that using AIC or
BIC based on fitting multiple models is only computationally problematic if the algorithms used
to fit these models are slow (e.g., MCMC algorithms). Our experience has been that several of
the alternative clustering models that rely on optimization (e.g., SAM and HMM in the “ecomix”
and “momentuHMM” R packages, respectively) instead of MCMC algorithms are also relatively
slow because they often require multiple model fits for a given number of groups due to the
multimodality of the likelihood surface. This is further exacerbated if different numbers of
groups need to be tested and a bootstrapping approach is required to estimate parameter
uncertainty (e.g., as in SAM within the “ecomix” package). As a result, despite the intuition that
optimization algorithm will always be faster than MCMC algorithms, in practice this is not
always true because of the multiple model fits that are required by these optimization-based

methods.
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We demonstrate how these models can unveil important environmental management and
ecological insights. In the mixture model applied to the movement data from the three-banded
armadillos, we identified two latent behavioral states which were labeled foraging and transit.
Additionally, we found that males tend to exhibit a greater proportion of time in the transit state
than females and that the proportion of this state peaks midway through the night. These sexual
differences regarding the transit state are likely related to the species’ socio-biology, as the
increased transit state of the promiscuous males should increase their chances of encountering
receptive females. Indeed, males have been recently shown to have larger home ranges than
females (Attias et al., 2020) and, according to our results, this difference is unlikely to be related
to the acquisition of energetic resources by the larger males, as there were no noticeable
differences in the amount of foraging state between sexes (Fig. 3e).

The BR model enabled substantial dimension reduction by summarizing the results from 351
species into 7 major groups. Similar to forest types

(https://data.fs.usda.gov/geodata/rastergateway/forest type/) and Bird Conservation regions

(https://nabci-us.org/resources/bird-conservation-regions/), these results can be used for

conservation and management purposes. For example, our results have identified a plant
community that is heavily influenced by anthropogenic disturbance. By mapping the spatial
distribution of this group, our analysis can enable the spatial prioritization of restoration and
invasive species elimination initiatives. Furthermore, the monitoring of this group is likely to be
critical in identifying the main drivers of environmental change in the region and developing
effective mitigation strategies.

In relation to the SA model applied to the 2015 survey data on North American breeding

birds, we have identified species groups that respond similarly to temperature and precipitation.

31


https://data.fs.usda.gov/geodata/rastergateway/forest_type/
https://nabci-us.org/resources/bird-conservation-regions/

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

This enables the identification of sets of species that are likely to be more impacted by changes
in precipitation, by changes in temperature, or by both. Interestingly, differently from the other
two applications, the SA model still identified the existence of 50 groups, which was the
maximum number of groups allowed by our analysis. These results suggest that there are
probably more groups than what we have allowed for in this analysis. We believe that this might
be due to the flexibility of the environmental response curves and the relatively rigid structure of
SA models, which require species to have the same set of slope parameters. As a result,
relatively minor changes in how these species respond to their environment, particularly when
there are a lot of observations for any given species, can foster the creation of many small groups
instead of few large groups. Future research could devise a different formulation for the SA
model so that species can be grouped together even if they differ slightly in how they respond to
the environment. These results are also important to highlight that, despite the use of a sparsity-
inducing prior, the model might still reveal that a sparse solution (i.e., a few clusters) is not
supported by the data. In this situation, the modeler has to decide to either use the results as they
are, because a larger number of groups would be unmanageable, or re-run the analysis with a
larger number of groups.

An important limitation in our analysis of the armadillo movement data and the plant
occurrence data from Alberta is that we relied on post-hoc regression models to better interpret
our mixture model results. The problem with this two-stage approach is that it does not properly
propagate the uncertainty associated with the mixture model results, potentially leading to over-
confident inference and predictions. While this might not be too troublesome for exploratory
studies like ours, this is an important problem for more confirmatory analyses. There are

relatively few methods that have been developed that avoid these post-hoc analyses (see review
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in Hill et al. (2020)). Nevertheless, the few existing single-stage methods require multiple
models to be fit to determine both the optimal number of groups and the optimal set of
covariates. Properly propagating the uncertainty associated with all these decisions is an area of
active research even for these single-stage models.

It is important to note that, because our primary goal was to show the versatility of the TSB
prior, we have not provided a more in-depth comparison of the three example models to other
commonly used models. Such a model comparison could be useful future research. Furthermore,
we have focused on ecological clustering applications, but the TSB prior is likely to be useful for
a much broader range of applications (e.g., for use of the Dirichlet process for genetic clustering,
see Huelsenbeck and Andolfatto (2007) and references therein). Also, we have focused on
models where the primary interest is on the identified latent structure (i.e., the identified clusters)
because we believe that this is the type of dimension-reduction result that ecologists find more
revealing and insightful. Indeed, many of the ecological applications involving the Dirichlet
process and its extensions rely on the identified clusters to draw insights regarding, for example,
animal movement and migration patterns (Diana et al., 2020; Valle et al., 2017), temporal
dynamics of seal pup rookeries (Johnson et al., 2013), and spatial distribution of bird
communities (Valle et al., 2018). However, we acknowledge that the Dirichlet process has been
used for a much wider range of applications, some of which are not focused on identifying
clusters. For example, in ecology, the Dirichlet process has been used for density estimation
(Dorazio et al., 2008), to develop spatial models of the expected number of birds (Rodriguez and
Dunson, 2011), and to generate a more parsimonious description of the covariance matrix

between species in joint species distribution models (Taylor-Rodriguez et al., 2017).
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It is important to note that our approach does not apply to all clustering methods. For
instance, many clustering approaches are algorithmic and do not rely on an underlying statistical
model, precluding the use of our approach. Even among clustering approaches based on
statistical models, adopting a prior will only make sense for models fitted within a Bayesian
framework. Finally, attempts to fit models with the TSB prior using packages such as JAGS
(Plummer, 2003) and Stan (Stan Development Team, 2020) may result in label switching and
convergence problems (e.g., Sollmann et al., 2020). The reason for this is that we have observed
that a critical step for our customized MCMC algorithms to perform well is to order the
identified clusters (from largest to smallest) during the burn-in phase. While this ordering does
not change the likelihood (cluster labels are unidentified in standard mixture models), it does
influence the TSB prior. Mixture models often have multimodal posteriors/likelihood functions
(Scrucca et al., 2016; Stephens, 2000) and the ordering of clusters helps the model with the TSB
prior find the highest peak, this way reducing label switching and convergence issues.
Developing approaches for ordering clusters within packages, such as JAGS or Stan, is an
important area for future research.

Despite the limitations described above, it is likely that clustering approaches will greatly
benefit from sparsity-inducing approaches like the TSB prior in the same way that a wide range
of regression models has benefitted from sparsity-inducing approaches (e.g., regularization
penalties or strong priors) to improve predictions and identify the most important predictor
variables (Hooten and Hobbs, 2015). Several extensions to this prior, already developed in
Bayesian nonparametrics, may be profitably exploited in the future for clustering applications in
ecology and environmental science. For example, the Pitman-Yor process (also known as the

two-parameter Poisson Dirichlet process; Pitman, 1995; Pitman and Yor, 1997) is a
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generalization of the Dirichlet Process that offers more flexible clustering rates and cluster size
tail behaviors. Alternatively, a hierarchical Dirichlet process (Teh et al., 2006) could be used to
capture nested clusters. Finally, a truncated stick-breaking prior together with a kernel based
approach (Reich and Fuentes, 2007) could be used so that spatially proximate sites are more
likely to cluster together, or a probit stick-breaking process (Rodriguez and Dunson, 2011) could
be adopted to ensure that sites with similar environmental conditions and/or species with similar
trait values are more likely to be clustered together.

Despite the fact that the stick-breaking prior has a relatively long-history in statistics,
relatively few ecological modelers have used this prior, probably due to the general lack of
awareness among quantitative ecologists and environmental scientists regarding how this prior
can help a wide range of applied clustering problems. This is particularly surprising given the
prominent role of clustering methods in ecology and related disciplines (Legendre and Legendre,
2012). With this article, we hope to help remedy this situation by better characterizing the
benefits of this approach while at the same time providing R packages that implement these

methods, enabling the straight-forward fitting of these models by quantitative scientists.
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Tables

Table 1. Example of the calculations involved in the truncated stick-breaking (TSB) prior

assuming a maximum number of 6 cluster.

Cluster Vi O
1 0.19 0.19
2 0.33 0.33(1 - 0.19) = 0.27
3 0.27 0.27(1-0.33)(1 — 0.19) = 0.15
4 0.95 0.95(1-0.27)(1 - 0.33)(1 — 0.19) = 0.38
5 0.47 0.47(1 - 0.95)(1 - 0.27)(1 — 0.33)(1 — 0.19) = 0.01
6 1 (by definition) 1(1-0.47)(1 - 0.95)(1 - 0.27)(1 - 0.33)(1 — 0.19) = 0.01
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994  Table 2. GLMM regression coefficients. Statistically significant (p<<0.05) coefficients are

995  highlighted in bold.

Female Male
Parameters | Estimate | Pr(>|z|)* | Estimate | Pr(>|z|)*
Intercept -0.47 0.000 -0.03 0.803
Time -0.23 0.083 0.00 0.969
Time? -0.48 0.019 -0.49 0.030
Temperature 0.04 0.246 0.01 0.795
Precipitation 0.00 0.843 0.06 0.096
Region 0.25 0.063 0.03 0.872

996  * Note that p-values should be interpreted with care because a) the GLMM model assumes
997 temporal independence within each individual, which is unlikely to be a valid assumption given
998 that these data were collected every 5 minutes; and b) uncertainty from the first-stage mixture

999  model is not taken into account.
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Figure legends

Fig. 1. Visual representation of the stick-breaking metaphor. From top to bottom, one starts with
a stick of length 1, breaking it into two sticks of length 0.19 and 0.81 (black and red). This latter
piece (red) is then broken again into two sticks of length 0.27 and 0.54 (red and green). This
latter piece (green) is then broken into two sticks of length 0.15 and 0.39 (green and blue). This

process is reiterated multiple times until the maximum number of groups is reached.

Fig. 2. The use of the truncated stick-breaking prior in the different model enables the successful
uncovering of the true number of groups (top panels) and these simulated data contain
considerable information regarding the hyper-parameter of the TSB prior y (bottom panels). Left
to right panels show the estimated number of groups (top panels) and the estimated y (bottom
panels) for the mixture model applied to the movement data, the BR model and SA model,
respectively, based on ten simulated datasets for each value of the true number of groups. We
assumed a maximum of 15 groups for the mixture model applied to the movement data, and a
maximum of 50 groups for the BR and SA models. Notice that the x-coordinate of each point
was shifted slightly (i.e., jittered) on the top panels to enable the visualization of overlapping

circles.

Fig. 3. Results for the mixture model applied to movement data. Panels a-d depict the estimated
distributions for speed and turning angle for the two behavioral states identified by the mixture
model. The first state, henceforth “foraging”, is characterized by slower and more tortuous
movements (panels a and b) while the second state, henceforth “transit”, is characterized by

faster and more directed movements (panels c and d). Comparisons are made between females
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and males regarding the daily number of observations assigned to the foraging state (panel ¢),
and the daily number of observations assigned to the transit state (panel f), and the estimated

proportion of transit observations as a function of time of night (panel g).

Fig. 4. Spatial distribution of the groups identified by the Biogeographic Region model. Each
panel depicts the predicted presence probability of each group, where cyan to purple indicate
probabilities ranging from 0 to 1, respectively. Group numbers are given in the lower left corner

of each map.

Figure 5. Association between occurrence probability (prevalence) and precipitation and
temperature for a subset of the species archetypes identified by the SA model. Each panel
displays the results for a particular species archetype (numbers in the top left corner correspond
to the species archetype identifier). Individual lines in the line graphs depict the estimated
associations for each species within that archetype. For the precipitation line graphs, temperature
was set to its mean value. Similarly, for the temperature line graphs, precipitation was set to its
mean value. Heat maps show the environmental space of each species archetype by displaying
the average prevalence for each temperature and precipitation combination. In all panels, the
ranges for precipitation and temperature were limited to the 2.5 and 97.5 percentiles from the

original data. Cyan to purple indicate probabilities ranging from 0 to 1.
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