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Abstract 37 

 38 

Clustering is a ubiquitous task in ecological and environmental sciences and multiple 39 

methods have been developed for this purpose. Because these clustering methods typically 40 

require users to a priori specify the number of groups, the standard approach is to run the 41 

algorithm for different numbers of groups and then choose the optimal number using a criterion 42 

(e.g., AIC or BIC). The problem with this approach is that it can be computationally expensive to 43 

run these clustering algorithms multiple times (i.e., for different numbers of groups) and some of 44 

these information criteria can lead to an overestimation of the number of groups.  45 

To address these concerns, we advocate for the use of sparsity-inducing priors within a 46 

Bayesian clustering framework. In particular, we highlight how the truncated stick-breaking 47 

(TSB) prior, a prior commonly adopted in Bayesian nonparametrics, can be used to 48 

simultaneously determine the number of groups and estimate model parameters for a wide range 49 

of Bayesian clustering models without requiring the fitting of multiple models. We illustrate the 50 

ability of this prior to successfully recover the true number of groups for three clustering models 51 

(two types of mixture models, applied to GPS movement data and species occurrence data, as 52 

well as the Species Archetype model) using simulated data in the context of movement ecology 53 

and community ecology. We then apply these models to armadillo movement data in Brazil, 54 

plant occurrence data from Alberta (Canada), and bird occurrence data from North America. 55 

We believe that many ecological and environmental sciences applications will benefit from 56 

Bayesian clustering methods with sparsity-inducing priors given the ubiquity of clustering and 57 

the associated challenge of determining the number of groups. Two R packages, EcoCluster and 58 
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bayesmove, are provided that enable the straightforward fitting of these models with the TSB 59 

prior. 60 

 61 

Key-words: Bayesian nonparametrics, clustering, Biogeographic Region model, mixture model, 62 

movement ecology, Species Archetype model 63 

 64 

 65 

 66 
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Introduction 68 

 69 

Clustering algorithms are commonly used across multiple disciplines to reduce data 70 

dimensionality by grouping data items with similar features, enabling the identification of the 71 

main latent structural characteristics of highly multivariate data (Berkhin, 2006; Jain et al., 1999; 72 

Legendre and Legendre, 2012). In environmental sciences and ecology, clustering approaches 73 

have been extensively used since at least the 1920’s (Legendre and Legendre, 2012). Examples 74 

for biodiversity datasets include cluster analysis to define biogeographical regions (Azeria et al., 75 

2007; Foster et al., 2017; Kreft and Jetz, 2010; Lyons et al., 2017), identify indicator species by 76 

grouping species that tend to co-occur (Azeria et al., 2009), identify microbial community 77 

patterns associated with sample origin and/or sampling time (Ramette, 2007), and cluster species 78 

that tend to have similar relationships with other species in food web studies (e.g., set of predator 79 

species that feed on the same set of prey species) (Baskerville et al., 2011). Cluster analysis has 80 

also been extensively used in other environmental science applications. For example, clustering 81 

has been used to classify water catchments in data-scarce regions (Auerbach et al., 2016) and to 82 

understand the spatial variation in the detection rate of pharmaceuticals in rivers across different 83 

regions (Jameel et al., 2020).  84 

Clustering is an important task across scientific fields and, as a result, a rich assortment of 85 

methods and algorithms have been developed through time (Jain et al., 1999). These methods 86 

can be classified based on several dichotomies, such as whether a single partition (partitional) or 87 

a nested series of partitions (hierarchical) is created, if methods output hard (each data item can 88 

only belong to a single group) or fuzzy (each data item can have varying degree of membership 89 

to each group) groups, and if these methods are algorithmic or probabilistic (Berkhin, 2006; 90 
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Bouveyron and Brunet-Saumard, 2014; Jain et al., 1999; Legendre and Legendre, 2012; Saxena 91 

et al., 2017). A long-term challenge when using clustering algorithms consists of defining the 92 

appropriate number of clusters, which typically has to be a priori specified (Berkhin, 2006; Jain 93 

et al., 1999; Legendre and Legendre, 2012; Saxena et al., 2017). The standard approach for this 94 

task is to systematically vary the number of groups and run the algorithm once for each setting. 95 

Then, the optimal number of groups is determined using a performance metric (e.g., AIC, BIC, 96 

gap statistic, integrated classification likelihood, minimum message length) (Berkhin, 2006; 97 

Biernacki et al., 2000; Charrad et al., 2014; Daudin et al., 2008; Depraetere and Vandebroek, 98 

2014; Fraley and Raftery, 2007; Hui and Warton, 2015; Hui et al., 2013; Lyons et al., 2017; Ter 99 

Braak et al., 2003; Tibshirani et al., 2001). This approach has been extensively used in the past 100 

but it can be computationally expensive and time consuming for large datasets and/or complex 101 

models. Importantly, large simulation studies have shown that no single performance metric is 102 

consistently better than the others (Depraetere and Vandebroek, 2014) and that some of these 103 

commonly adopted information criteria tend to favor models with a larger number of groups than 104 

warranted (Casella et al., 2014), even if the model faithfully mirrors the data generating 105 

mechanism (e.g., Pohle et al., 2017). 106 

The generation of sparse solutions (i.e., where only a small fraction of the parameters are 107 

non-zero) is highly desirable for a range of modeling applications. For example, regularization 108 

(i.e., penalty terms added to the objective function) in statistical (e.g., regression) and machine 109 

learning (e.g., support vector machines) models is key to avoid overfitting, increase predictive 110 

skill, and improve interpretability of model results. Interestingly, many of the proposed 111 

regularization approaches can be interpreted as Bayesian models with very specific types of 112 

sparsity-inducing priors (Hahn and Carvalho, 2015; Hooten and Hobbs, 2015; Park and Casella, 113 
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2008; Wood, 2017). Likewise, the challenge of determining the number of clusters can also be 114 

tackled by defining Bayesian models with sparsity-inducing priors (i.e., priors that favor fewer 115 

clusters). In this paper we describe how different types of Bayesian clustering methods applied to 116 

ecological data, when used together with sparsity inducing priors, can automatically determine 117 

the number of clusters without requiring fitting multiple models. In particular, we focus on a 118 

specific type of sparsity-inducing prior, the truncated stick-breaking (TSB) prior (i.e., an 119 

approximation of the Dirichlet Process), that has been extensively used in Bayesian 120 

nonparametrics (Sethuraman, 1994) but that has seen relatively little application in ecological 121 

and environmental sciences.  122 

To illustrate how this approach can be used for a range of models, we rely on three Bayesian 123 

clustering methods applied to ecological data: two types of mixture models, applied to movement 124 

and species occurrence data, and the Species Archetype (SA) model (Dunstan et al., 2013). To 125 

our knowledge, none of the three clustering methods with the TSB prior has been used in 126 

ecological applications. We apply these three clustering methods to simulated data to showcase 127 

the ability of the sparsity-inducing priors to successfully recover the true number of groups by 128 

fitting the model just once. We then perform an exploratory data analysis with these methods to 129 

reveal the latent structure in armadillo movements in the Pantanal wetlands (Brazil), plant 130 

occurrence in Alberta (Canada), and breeding bird occurrence from United States and Canada. 131 

We also provide two R packages (EcoCluster and bayesmove) that enable straight-forward fitting 132 

of these clustering models, which we expect will be of broad use for ecological and 133 

environmental science clustering tasks.  134 

 135 

Material and methods 136 
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1. Truncated stick-breaking prior 137 

Clustering methods (also referred to as mixture models (McLachlan and Peel, 2000)) 138 

explicitly or implicitly contain multiple latent variables 𝑧𝑖, i=1,…,n. The latent variable 𝑧𝑖 139 

indicates the cluster membership of unit i and can take on any integer value between 1 and K, 140 

where K is the number of clusters defined a priori by the user. Depending on the specific 141 

application, this unit can consist of individual forest plots, rivers, species, pharmaceuticals, 142 

sampling points, etc. In probabilistic clustering approaches, it is typically assumed that the latent 143 

variable 𝑧𝑖 follows a categorical distribution: 144 

𝑧𝑖~𝐶𝑎𝑡(𝜽) 145 

where the vector 𝜽 is of size K (i.e., the number of clusters) and contains probabilities that sum 146 

to one, indicating the likelihood that unit i is assigned to individual clusters. This categorical 147 

distribution is used because it is assumed each unit can only belong to a single group.  148 

Finding the optimal number of groups K by fitting the model multiple times (once for 149 

each K value) and choosing K using a model selection criterion such as AIC or BIC can be a 150 

prohibitive approach if fitting each model is computationally expensive. Furthermore, past 151 

research has suggested that some of these information criteria tend to favor models with a larger 152 

number of groups than warranted (Casella et al., 2014), even if the model faithfully mirrors the 153 

data generating mechanism (e.g., Pohle et al., 2017). The approach proposed here avoids these 154 

problems by relying on the truncated stick-breaking (TSB) prior, a particular type of prior for 𝜽 155 

that favors sparseness (i.e., a smaller number of groups). With this prior, the user is only required 156 

to specify the maximum number of groups K and the algorithm chooses the number of groups 157 

(𝑘 ≤ 𝐾) that best clusters the sample data. 158 
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The stick-breaking prior has a long tradition in Bayesian nonparametric models. This prior 159 

arises from the Dirichlet process (DP), which is arguably the most popular Bayesian 160 

nonparametric model used for clustering applications (Ferguson, 1973). The distribution over 161 

random partitions induced by the DP is commonly known in the machine learning community as 162 

the Chinese restaurant process (CRP) (Teh, 2011) and is equivalent to the Ewens sampling 163 

formula used to describe a distribution over partitions in population genetics that was introduced 164 

before the DP (Crane, 2016; Ewens, 1972). Another definition of the DP is the Pólya urn 165 

representation, which essentially describes the same distribution from the CRP (Blackwell and 166 

MacQueen, 1973). Here, we focus on the alternative definition of the Dirichlet process known as 167 

the “stick-breaking” construction (Sethuraman, 1994). This definition of the DP model is 168 

considerably simpler and more general than the previously mentioned representations. This 169 

approach has been extremely useful for the development of novel statistical models as well as 170 

new Markov Chain Monte Carlo (MCMC) inference algorithms (Ishwaran and James, 2001). 171 

Notice that, despite similar names, this “stick-breaking” prior is not associated with the “broken 172 

stick model” for species abundance described in MacArthur (1957). 173 

As commonly done in Bayesian nonparametrics (Ishwaran and James, 2001), we adopt a 174 

truncated version of this prior by defining a maximum number of groups (hereafter referred to as 175 

the Truncated Stick-Breaking [TSB] prior). To define the maximum number of groups, the 176 

standard advice is to choose a truncation point such that the results would be indistinguishable 177 

from what would have been obtained with a larger number of groups (Ishwaran and James, 178 

2001). More practically, as long as most of the posterior mass is concentrated on the initial 179 

components, then the actual value for the maximum number of groups should have no effect on 180 

model results (Manrique-Vallier, 2016). On the other hand, if the maximum number of clusters is 181 
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reached, then the standard advice is to increase the maximum number of possible groups to avoid 182 

an incorrect approximation. Notice that, because the TSB prior is typically viewed as an 183 

approximation to the DP, some researchers actually prefer to work directly with the DP to avoid 184 

any potential approximation errors (e.g., MacEachern and Muller, 1998; Papaspiliopoulos and 185 

Roberts, 2008). 186 

Instead of viewing the TSB prior solely as an approximation to the DP, our perspective is 187 

that the truncation in this prior is useful from a dimension reduction perspective because it 188 

avoids the number of groups increasing with sample size (Murugiah and Sweeting, 2012). 189 

Indeed, Casella et al. (2014) justified their use of a strong shrinkage prior by stating that, even 190 

when the true number of cluster is large, cluster analysis "will only result in useful inference 191 

when the answer contains a relatively small number of clusters". For the same reason, we 192 

advocate for modelers interested in dimension reduction to carefully think about the maximum 193 

number of groups that is still manageable/interpretable when defining where to truncate the 194 

stick-breaking prior, this way limiting the complexity of the solution that is found by the 195 

algorithm. 196 

The truncated stick-breaking prior for 𝜽 is constructed indirectly by first defining 197 

𝑉𝑘~𝐵𝑒𝑡𝑎(1, 𝛾) 198 

for k=1,…,K-1 and 𝑉𝐾 is set to one. The parameters 𝑉1, … , 𝑉𝐾 are then used to calculate 𝜃𝑘, 199 

employing the following expressions: 200 

𝜃1 = 𝑉1 201 

                                                                𝜃𝑘 = 𝑉𝑘 ∏ (1 − 𝑉𝑝)𝑘−1
𝑝=1  for k>1                        [eqn. 1] 202 

We use the following shorthand to denote this prior: 203 

𝜽~𝑇𝑆𝐵(𝛾) 204 
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Notice that, according to this prior, the expected proportion of units assigned to cluster k is 205 

given by 206 

𝐸[𝜃𝑘] = E[𝑉𝑘] ∏ (1 − E[𝑉𝑝])𝑘−1
𝑝=1 =

1

1+𝛾
(1 −

1

1+𝛾
)

𝑘−1

=
𝛾𝑘−1

(1+𝛾)𝑘
 for k<K; and  207 

𝐸[𝜃𝑘] = (1 −
1

1+𝛾
)

𝑘−1

 for k=K. 208 

The depiction of this equation for 0 < 𝛾 < 1 reveals an approximately exponential decay of 209 

𝐸[𝜃𝑘] with increasing k and that smaller 𝛾 corresponds to faster decay and therefore sparser 210 

results (i.e., fewer clusters).  211 

To illustrate how this prior works, say we have a maximum of 6 groups (K=6) and 𝑽 =212 

[𝑉1, … , V6] is equal to [0.19, 0.33, 0.27, 0.95, 0.47, 1]. Recall that, by definition, 𝑉6 is set to 1. As 213 

illustrated in Table 1, these values for 𝑽 imply that 𝜽 = [θ1, … , 𝜃6] is equal to 214 

[0.19, 0.27, 0.15, 0.38, 0.01, 0.01]. Note that 𝜃5 and 𝜃6 are very small compared to 𝜃1, … , 𝜃4 and 215 

that the four first groups account for 99% of all observations. These values suggest the presence 216 

of 4 main groups, despite having allowed for up to 6 groups. These results arise because the TSB 217 

prior shrinks 𝜃𝑘 to zero for large values of k. Similar to how the components that only explain a 218 

small portion of the variation are typically ignored when conducting a Principal Component 219 

Analysis (PCA), the remaining groups when using the TSB prior (i.e., groups 5 and 6) are also 220 

typically ignored.  221 

 222 

(insert Table 1) 223 

 224 

An intuitive way of interpreting the expressions for 𝜃𝑘 in Table 1 is to think about a 225 

sequential process in which a sampling unit is eventually assigned to cluster k after failing to be 226 
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assigned to clusters 1, 2,…, k-1. For example, the expression for 𝜃3 can be interpreted as the 227 

probability that a sampling unit is not assigned to group 1 (equal to 1 - 0.19) times the 228 

probability that it is not assigned to group 2 (equal to 1 - 0.33) times the probability that it is 229 

assigned to group 3 (equal to 0.27). The name “stick-breaking” originates from the metaphor of 230 

sequentially breaking a stick of length 1 into smaller and smaller pieces, as illustrated in Fig. 1. 231 

 232 

(insert Fig. 1) 233 

 234 

Another benefit of using the TSB prior is that, by weakly identifying the labels of each 235 

cluster, it can help to reduce the amount of label switching, a common problem for mixture 236 

models which refers to the fact the group labels are unidentified parameters in these models. This 237 

problem often leads to poor mixing of MCMC algorithms and generates potentially nonsensical 238 

results if posterior distributions of parameters are summarized by their averages (Stephens, 239 

2000).  240 

 241 

2. Clustering models 242 

To illustrate the wide applicability of the TSB prior, we describe three probabilistic partition 243 

clustering methods that greatly benefit from this prior. All of these clustering models have an 244 

observational model in which the response variable 𝑦𝑖, conditioned on the latent cluster 245 

membership variable 𝑧𝑖, comes from a distribution that has some parameters indexed by 𝑧𝑖. More 246 

explicitly, we assume that: 247 

𝑦𝑖|𝑧𝑖 = 𝑘~𝑓(𝜷𝒌, 𝝓) 248 
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where 𝜷𝒌 is the set of cluster-specific parameters and 𝝓 is a vector containing the remaining 249 

parameters that are not cluster specific. We specify f() and the priors for 𝜷𝒌 and 𝝓 in greater 250 

detail when describing the individual models used to illustrate the TSB prior. In all models, we 251 

assume that the latent cluster membership variable 𝑧𝑖 is given by: 252 

𝑧𝑖~𝐶𝑎𝑡(𝜽) 253 

and that 254 

𝜽~𝑇𝑆𝐵(𝛾). 255 

A commonly used prior for 𝛾 is a Gamma distribution (Dunson and Xing, 2009; Manrique-256 

Vallier, 2016; Si and Reiter, 2013). However, we decided to adopt a discrete uniform prior for 𝛾, 257 

where this parameter can take any of the following values 0.1, 0.15, 0.2 ,…, 0.95, and 1 with 258 

equal probability. This prior was chosen because it ensures 𝛾 ≤ 1, it is straight-forward to 259 

implement, conforms to our prior belief of equal probability for all possible values of 𝛾, and 260 

resulted in good mixing of our MCMC algorithms. Because of the truncation in the stick-261 

breaking prior, 𝛾 ≤ 1 ensures that the last group will be smaller than all the other groups (i.e., 262 

𝐸[𝜃𝑘] > 𝐸[𝜃𝐾] for k=1,…,K-1). All models were fit using Gibbs samplers and detailed 263 

information regarding the Full Conditional Distributions (FCDs) used by these algorithms is 264 

given in Appendix S1.  265 

Extensive simulations are used to show how the TSB prior can be used within these 266 

models to successfully estimate the true number of groups without requiring the fitting of 267 

multiple models with different numbers of groups. For all simulated datasets, we vary the true 268 

number of groups K and set the parameters within the vector 𝜽 to 1/K, resulting in clusters of 269 

approximately equal size. We estimate the true number of groups by calculating the minimum 270 

number of groups that together represent more than 99% of all observations. More specifically, 271 
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we assumed that the estimated number of groups 𝑘̂ is given by min
𝑘

(∑ 𝜃𝑗
𝑘
𝑗=1 > 0.99), where 𝜃𝑗  is 272 

the posterior mean for group j. Finally, because of the large number of simulations and the large 273 

number of parameters within any given model, we assessed convergence by examining trace-274 

plots of the log-likelihood instead of trace-plots of individual parameters.  275 

 276 

3. Mixture model applied to movement ecology 277 

3.1. Model description 278 

Hidden Markov models (HMMs) have been extensively used to identify latent behavioral 279 

states (e.g., encamped, area restricted search, and transit) based on metrics derived from GPS 280 

location data, such as step lengths and turning angles (Morales et al., 2004). The estimation of 281 

latent states is valuable to the understanding of animal movement patterns since these states can 282 

be used to characterize the function of movements across a landscape when organisms are not 283 

directly observable (McClintock et al., 2020; Patterson et al., 2017; Wittemyer et al., 2019). By 284 

evaluating behavior-specific movements in relation to environmental covariates, mechanistic 285 

drivers of movement and measures of habitat suitability can be discerned from a variety of 286 

models, such as resource (Manly et al., 2002) or step-selection functions (Abrahms et al., 2016; 287 

Fortin et al., 2005; Wilson et al., 2012; Wittemyer et al., 2019). These latent states can also be 288 

used to infer activity budgets, providing a link to an animal’s relative energy expenditure (Attias 289 

et al., 2018; Christiansen et al., 2013; McClintock et al., 2013; Wilmers et al., 2017; Wilson et 290 

al., 2020). 291 

Similar to HMMs, our model also identifies these latent behavioral states, but it does not rely 292 

on a Markovian assumption or an underlying mechanistic movement process (e.g., correlated 293 

random walk). As a result, our model is better described as a mixture model instead of a HMM. 294 
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Furthermore, instead of using the probability density functions typically adopted to model step 295 

lengths (e.g., gamma and Weibull) and turning angles (e.g., von Mises and wrapped Cauchy), we 296 

discretize these data and use a conditional categorical distribution as the likelihood. While 297 

discretizing the data arguably results in the loss of some information content, this approach has 298 

the benefit of being able to represent standard and non-standard distributions. This is important 299 

because parametric models can be prone to model misspecification (Diana et al., 2020) and it has 300 

been shown that relatively minor discrepancies between the data and the standard distributions 301 

often adopted within HMMs can lead to the identification of additional but superfluous latent 302 

states (Pohle et al. 2017). We believe that the flexibility in representing the distributions of step 303 

lengths and turning angles outweighs the relatively minor loss of information, particularly in the 304 

context of the large number of observations that arise from these GPS sensors. 305 

Let 𝑦𝑖
(1)

 and 𝑦𝑖
(2)

 denote the step length and turning angle bins, respectively, that observation 306 

i falls into. We assume that: 307 

𝑦𝑖
(1)

|𝑧𝑖 = 𝑘~𝐶𝑎𝑡(𝝓𝒌𝟏) 308 

𝑦𝑖
(2)

|𝑧𝑖 = 𝑘~𝐶𝑎𝑡(𝝓𝒌𝟐) 309 

where 𝑧𝑖 = 𝑘 is the latent cluster memberships of observation i for data type 1 and 2, 310 

respectively. The vectors 𝝓𝒌𝟏 and 𝝓𝒌𝟐 contain the probability that step lengths and turning 311 

angles, respectively, fall in each bin given that these observations were assigned to cluster k. 312 

Finally, our priors are: 313 

𝝓𝒌𝟏~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝑎) 314 

𝝓𝒌𝟐~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝑎) 315 

We assume a relatively sparse prior Dirichlet distribution for 𝝓𝒌𝟏 and 𝝓𝒌𝟐 by setting 𝑎 to 0.1. 316 

 317 
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3.2. Simulated movement data 318 

We systematically varied the number of clusters K from 2 to 10 and simulated 10 datasets for 319 

each setting. We assumed that both step lengths and turning angles were discretized into 15 bins. 320 

Each simulated dataset contained 15,000 observations closely following the generative model 321 

described above. To ensure that each cluster was sufficiently distinct from the other clusters, we 322 

relied on a discretized normal distribution for 𝝓𝒌𝟏 and 𝝓𝒌𝟐. We assumed that the means were 323 

evenly distributed across the 15 bins and that the standard deviation was ¼ of the distance 324 

between means. For example, for 3 clusters, this discretized normal distribution peaked at the 325 

1st, 8th, and 15th bins, respectively, and the standard deviation was equal to (8-1)/4=1.75. 326 

Finally, we set the maximum number of groups to 15 and ran the Gibbs samplers for 10,000 327 

iterations for each simulated dataset. 328 

 329 

3.3. Empirical movement data 330 

We rely on GPS telemetry data from 20 individuals of the southern three-banded armadillo 331 

(Tolypeutes matacus), a species classified as Near Threatened (A2cd) by the IUCN Red List of 332 

Threatened Species and highly prioritized for conservation in Brazil (ICMBio, 2014). These data 333 

were collected from two sites in the Pantanal wetlands of Brazil using a GPS tracking device 334 

with approximately 5-min interval fixes. For each captured individual, age, sex, reproductive 335 

status, and body mass were measured. Additional information regarding this system and data can 336 

be found in Attias et al. (2020). 337 

Location errors and missing location fixes are widely acknowledged problems with GPS 338 

location data (Bjorneraas et al., 2010; Ranacher et al., 2016). To properly analyze these data, we 339 

used a number of filtering steps. First, we excluded the data that were collected while armadillos 340 
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were in their burrows, usually during the daytime, since no movements occurred during this 341 

time. Second, we only retained measurements at 5±1 min intervals to ensure that the derived 342 

speed and turning angles were comparable. Speed was calculated as step length divided by the 343 

time interval (i.e., the amount of time between successive GPS fixes) and turning angle was 344 

calculated as the change in direction between successive steps. Finally, we removed observations 345 

for which speed was greater than the 99.9% percentile (equal to 0.71 m/s) to remove biologically 346 

implausible movements. After all of these filtering steps, our final data set contained 13,671 347 

observations from 20 individuals. Speed was discretized into bins of equal widths (0.1 m/s) up to 348 

0.6 m/s with the final bin containing all observations > 0.6 m/s, resulting in 7 bins. Turning angle 349 

was discretized into 10 evenly spaced bins between −𝜋 and 𝜋.  350 

We set the maximum number of groups to 15 and ran our Gibbs sampler for 20,000 351 

iterations, discarding the first half of the iterations as burn-in. Besides identifying and 352 

characterizing each behavioral state, the goal of this analysis was also to gain insights regarding 353 

the basic ecology of this poorly known species. To this end, we explore how different factors 354 

influence the probability of each behavioral state using a post-hoc generalized linear mixed 355 

model (GLMM) with random effects for each individual using the R package ‘lme4’ (Bates et 356 

al., 2015). In addition to the individual level information from the armadillos, we include time of 357 

day, ambient temperature, and precipitation as additional predictor variables. Temperature and 358 

precipitation are based on daily averages obtained from automatic stations of the Brazilian 359 

National Institute of Meteorology (INMET), located in the municipality of each study site. 360 

Differently from the clustering process, in which a single model was fit to data from both sexes, 361 

we fitted separate GLMM models for females and males. In these models, random effects were 362 

included for each individual. It is important to note that uncertainty from the mixture model is 363 
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not appropriately propagated to the GLMM parameter estimates. However, we believe that this 364 

model can still be useful in helping to interpret the results from the mixture model. 365 

 366 

4. Mixture model applied to species occurrence data (i.e., Biogeographic Region model) 367 

4.1. Model description 368 

In this section, we focus on the clustering of locations with similar species composition. 369 

These locations are often spatially clustered, resulting in areas that have been variously called 370 

biogeographical regions (BR), bioregions, regions of common profile, forest types, or bird 371 

conservation regions in the literature. The delineation of these areas is a common task in ecology 372 

because it has important implications for both basic and applied scientific questions, such as 373 

those in historical biogeography, conservation, and natural resources management (Hill et al., 374 

2017; Kreft and Jetz, 2010; Vilhena and Antonelli, 2015). A review of methods to delineate these 375 

areas is provided in Hill et al. (2020). 376 

Let 𝑦𝑖𝑠 denote the number of times that species s (s=1,…,S) was seen in location i (i=1,…,n). 377 

We assume that 𝑦𝑖𝑠 arises from a Binomial distribution given by: 378 

𝑦𝑖𝑠|𝑧𝑖 = 𝑘~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖, 𝜙𝑘𝑠) 379 

where 𝑧𝑖 is the latent group membership and 𝑛𝑖 is the number of observation opportunities in 380 

location i. Notice that 𝑧𝑖 influences this Binomial distribution by determining the subscript of the 381 

parameter 𝜙𝑘𝑠, where k=1,…,K. The parameter 𝜙𝑘𝑠 represents the presence probability of 382 

species s if location i belongs to cluster k. Therefore, the vector [𝜙𝑘1, … , 𝜙𝑘𝑆] characterizes 383 

cluster k in relation to its species composition. Finally, we adopt the following priors: 384 

𝜙𝑘𝑠~𝐵𝑒𝑡𝑎(𝑎, 𝑏) 385 

We assume that a=b=1, resulting in a uniform prior for 𝜙𝑘𝑠. 386 
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 387 

4.2. Simulated biogeographic data 388 

The true number of groups K was set to 2, 4, 8, 16 and 32 for this model. Ten datasets were 389 

generated for each setting and all simulated datasets had 2679 locations and 443 species, similar 390 

to the bird data set that was used for one of our case studies. We generated the simulated data 391 

closely following the generative model described above. To retrieve the true number of groups, 392 

we set the maximum number of groups to 50 and ran the Gibbs samplers for 1,000 – 5,000 393 

iterations for each simulated dataset. 394 

 395 

4.3. Empirical biogeographic data 396 

The Alberta Biodiversity Monitoring Institute (ABMI) monitors large-scale responses of 397 

biodiversity to environmental change in Alberta, Canada. The program reports on the status and 398 

trends of species by establishing species-habitat relationships, determining species’ response to 399 

various land-use changes, and producing predictive maps. The information on the trend and 400 

status of biodiversity, derived from these species-specific results, is then used to support natural 401 

resource and land-use decision making in Alberta. While species-specific models are typically 402 

created, results are often summarized across species depending on their shared response to 403 

natural or human disturbance (e.g., forestry, agriculture) to highlight major results that can be of 404 

particular interest in a given region.  405 

The goal of this analysis is to identify the major plant communities in the forested and prairie 406 

regions of Alberta, enabling the characterization of biodiversity across large spatial-scales. These 407 

results are useful in summarizing the response patterns to disturbances of a large number of 408 

species, helping to convey the results (display, interpret, and explain) to land-use managers. We 409 
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used presence/absence data on vascular plant species in Alberta collected by the Alberta 410 

Biodiversity Monitoring Institute (ABMI). Sites surveyed by ABMI in terrestrial habitat were 411 

spaced throughout Alberta using the 20 km National Forest Inventory grid. At each site, a 100m 412 

× 100m survey area was established and each survey area was further divided into four 50m × 413 

50m square plots. Because our model lumps these four square plots together, the number of 414 

observation opportunities in survey area i (i.e., 𝑛𝑖) is equal to 4 and the number of times species s 415 

was seen in this survey area (i.e., 𝑦𝑖𝑠) is an integer between 0 and 4. All vascular plant species in 416 

these plots were identified and their presence/absence in each of these plots was recorded. We 417 

focused on data from 2007 to 2018 because of the consistent data collection protocol from this 418 

period of time. We also eliminated data from very rare species, defined as species that were 419 

present in less than 1% of the sites, resulting in a final dataset with a total of 1,082 sites and 351 420 

species. Details about data collection can be found in ABMI (2014). 421 

The maximum number of groups was set to 50 and the Gibbs sampler was run for 10,000 422 

iterations, discarding the first half of the iterations as burn-in. To enable the visualization of the 423 

spatial distribution of the identified clusters, we fit post-hoc Bayesian logistic regressions to the 424 

results from the BR model and then use these regression models to create spatial predictions. 425 

Predictor variables for these logistic regressions included two climate variables (i.e., mean 426 

annual temperature and precipitation) and percentage of land area covered by nine habitat types 427 

(i.e., deciduous forest, pine forest, white spruce forest, mixed wood forest, black spruce forest, 428 

fens with trees, swamps with trees, open wetland [fen/marsh], and grass/shrub), and five types of 429 

anthropogenic landscapes (i.e., harvested forest stands, vegetated strips along linear features 430 

[e.g., trails, roads, and railways], crops/pastures, urban industrial/mines, and paved and gravel 431 

roads). We considered these variables because they are biologically meaningful and are available 432 
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throughout the entire study area at the spatial scale of 1 km2. Similar to our analysis of the 433 

mixture model results applied to the movement data, it is important to note that uncertainty from 434 

the BR model is not appropriately propagated to the logistic regression parameter estimates. 435 

However, we believe that the derived maps based on this logistic regression can still be useful in 436 

helping to interpret the results from this mixture model. 437 

 438 

5. Species Archetype models 439 

5.1. Model description 440 

Species Archetype (SA) models were originally developed by Dunstan et al. (2011) to cluster 441 

species that responded similarly to environmental gradients (i.e., species that had similar 442 

regression parameters). While the original model followed a relatively standard mixture of 443 

regression models approach (Grun and Leisch, 2008), this model was subsequently improved by 444 

allowing each species to have a separate intercept (Dunstan et al., 2013), enabling species-445 

specific differences in overall prevalence.  446 

SA models have been put forward as a potentially effective strategy to group species, 447 

resulting in species archetypes (i.e., groups of species that respond in a similar fashion to the 448 

environment) (Dunstan et al., 2011; Dunstan et al., 2013; Hui et al., 2013). Furthermore, SA 449 

model results can also simplify conservation management decision by enabling managers to 450 

focus on a small set of species archetypes, instead of having to evaluate a multitude of species, 451 

each with their own idiosyncratic response to the environment (Dunstan et al., 2011; Dunstan et 452 

al., 2013; Hui et al., 2013). 453 

Let 𝑦𝑖𝑠 denote the presence (=1) or absence (=0) of species s (s=1,…,S) in location i 454 

(i=1,…,n). Because this is a binary variable, we assume the following Bernoulli distribution: 455 
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𝑦𝑖𝑠|𝑧𝑠 = 𝑘~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (Φ(𝛼𝑠 + 𝒙𝒊
𝑇𝜷𝑘)) 456 

where 𝑧𝑠 is the latent cluster membership of species s, 𝛼𝑠 is a species-specific intercept, 𝒙𝒊
𝑇 is a 457 

vector of location-specific covariates, Φ() is the standard normal cumulative distribution 458 

function, and 𝜷𝑘 is a vector containing the regression slopes for cluster k, where k=1,…,K. 459 

Notice that the latent variable 𝑧𝑠 influences this Bernoulli distribution by determining the 460 

subscript of the vector 𝜷𝑘. In other words, species that belong to the same cluster k have the 461 

same slope parameters 𝜷𝑘, essentially having identical responses to covariates. We adopt a 462 

probit link (instead of the more common logit link) because it enables the straight-forward fitting 463 

of the model using the data augmentation scheme described in Albert and Chib (1993). More 464 

specifically, we assume the existence of another set of latent variables 𝜔𝑖𝑠 such that: 465 

𝑦𝑖𝑠 = 1 if 𝜔𝑖𝑠 > 0 466 

𝑦𝑖𝑠 = 0 otherwise 467 

where 468 

𝜔𝑖𝑠~𝑁(𝛼𝑠 + 𝒙𝒊
𝑇𝜷𝑘, 1) 469 

For the remaining parameters, we adopt the following priors, given by:  470 

𝛼𝑠~𝑁(0,10) 471 

𝜷𝑘~𝑁(𝟎, 𝐈) 472 

where 𝐈 is the identity matrix. 473 

5.2. Simulated data 474 

Similar to the BR model, the true number of groups K was set to 2, 4, 8, 16 and 32 for 475 

this model. Ten datasets were generated for each setting and, similar to the empirical data, all 476 

simulated datasets had 2679 locations and 443 species. We generated the simulated data closely 477 

following the generative model described above. Furthermore, we simulated the slope 478 
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parameters 𝜷𝑘 from standard normal distributions. However, to simulate the species-specific 479 

intercepts, we assumed that 𝛼𝑠~𝑁(0,0.42). The standard deviation for 𝛼𝑠 was set to 0.4 to avoid 480 

creating data in which certain species are almost always present or almost always absent. This is 481 

important because it would be difficult for our models to assign these species to their correct 482 

groups given that this assignment depends on the accurate estimation of the slope parameters 𝜷𝑘. 483 

We also assumed that six uncorrelated covariates were available, which were generated from 484 

standard normal distributions. The maximum number of groups was set to 50 and the Gibbs 485 

samplers were run for 1,000 – 5,000 iterations for each simulated dataset. 486 

 487 

5.3. Empirical data 488 

The Breeding Bird Survey (BBS) is a long‐term program that monitors the status and trend of 489 

bird populations in North America. In brief, data are collected annually in June by trained 490 

participants along randomly established roadside routes approximately 39 km long with stops 491 

0.8 km apart. At each stop, a 3‐min point count is conducted (Pardieck et al., 2017). 492 

The BBS actually records count data (rather than presence/absence) per stop in each route. 493 

However, these counts may include the same individual observed multiple times and bird 494 

detection may vary by species and environmental conditions (e.g., weather or traffic noise). To 495 

avoid some of the issues with the count data and to be able to illustrate the use of the SA model 496 

described previously, we convert these count data into presence/absence of each species in each 497 

route. Furthermore, we subset the BBS data for the year of 2015 and eliminate data from very 498 

rare species, defined here as species that were present in less than 10 routes. In total, the final 499 

dataset used for analysis contained information on 443 species and 2679 routes, spread 500 

throughout Canada and the United States.  501 
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To understand how bird species are affected by climatic variables, we gathered average 502 

temperature and precipitation for North America from 1970-2000 for the month of June from 503 

WorldClim (www.worldclim.org/version2), with a spatial resolution of 5 arc-minutes (10 km 504 

grid). Because each species archetype can potentially have non-linear associations with 505 

precipitation and temperature, we relied on B-splines to capture the association between these 506 

environmental variables and species presence. More specifically, B-spline basis functions were 507 

included in the model for temperature and precipitation, where knots were a priori set to 10%, 508 

20%, …, 90% percentiles of the corresponding environmental variables. Additional information 509 

regarding different types of splines and basis functions can be found in Wood (2017) and similar 510 

functional clustering ideas can be found in Dunson (2010). By identifying the niche breadth in 511 

relation to temperature and precipitation of the different species groups, this analysis is able to 512 

identify which of these groups are more likely to be impacted by changes in precipitation, 513 

changes in temperature, or changes in both variables. We set the maximum number of groups to 514 

50 and ran our Gibbs sampler for 10,000 iterations, discarding the first half of the iterations as 515 

burn-in. 516 

 517 

6. Software 518 

To enable readers to reproduce the results described in this article and to use the different 519 

models highlighted here for their own data, we have created an R package called EcoCluster that 520 

enables straight-forward fitting of the BR model and the SA model, both with the TSB prior. We 521 

have also created an R package called bayesmove (Cullen et al., in review) that enables the 522 

straight-forward fitting of the mixture model with the TSB prior used for the movement data. 523 

These packages can be readily downloaded from our public GitHub account 524 

http://www.worldclim.org/version2
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(https://github.com/drvalle1/EcoCluster) and CRAN (https://CRAN.R-525 

project.org/package=bayesmove). The vignettes accompanying these R packages illustrate how 526 

to fit these models and interpret their results.  527 

 528 

Results 529 

 530 

1. Simulated data results 531 

We find that the proposed models with the TSB prior are able to successfully recover the true 532 

number of groups for all models, with a slight decrease in performance for the BR model when 533 

the true number of groups is equal to 32 (top panels in Fig. 2). Importantly, we find that the data 534 

contain substantial information on 𝛾 (the parameter that governs the TSB prior), with posterior 535 

means for 𝛾 that are relatively small for sparse settings (i.e., when only few groups exist) versus 536 

closer to 1 when many groups exist (bottom panels in Fig. 2). We also find that all of the 537 

proposed algorithms were able to accurately retrieve the parameter values used to simulate the 538 

data (i.e., 𝝓𝒌𝟏 and 𝝓𝒌𝟐 for the mixture model applied to the movement data; 𝜙𝑘𝑠 for the BR 539 

model; and 𝛼𝑠, 𝜷𝑘 for the SA model; data not shown).  540 

 541 

(insert Fig. 2) 542 

 543 

The standard approach of fitting models with different number of clusters and then selecting 544 

the optimal number of clusters is much more computationally expensive. For example, using the 545 

real datasets, we found that the time required to fit the mixture model with the TSB prior applied 546 

https://github.com/drvalle1/EcoCluster
https://cran.r-project.org/package=bayesmove
https://cran.r-project.org/package=bayesmove
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to movement data and a maximum of 15 groups was equal to 17% (25 min. vs. 149 min.) of the 547 

time need to fit multiple mixture models, one for each number of clusters (2 to 15). Similarly, 548 

fitting the BR model once with the TSB prior and a maximum of 50 groups corresponds to 549 

approximately 6% (10 min. vs. 189 min.) of the total time required to vary the number of clusters 550 

from 2 to 50 and fit individual BR models for each setting. Finally, fitting the SA model once 551 

with the TSB prior and a maximum of 50 groups took 4% (40 min. vs. 990 min.) of the time 552 

required to run multiple SA models, one for each pre-specified number of clusters (2 to 50).  553 

 554 

2. Empirical results for the mixture model applied to movement data 555 

Our model identified two behavioral states (out of a maximum of 15 possible states) that 556 

together comprise 99% of all observations. The first state is comprised mostly of slower and 557 

more tortuous movements (hereafter “foraging” state, Figs. 3a and 3b) while the second state 558 

includes faster and more directed movements (hereafter “transit” state, Figs. 3c and 3d). When 559 

exploring these results, we find that, while the daily number of observations assigned to the 560 

foraging state is very similar between males and females (Fig. 3e), males tend to have a higher 561 

number of observations assigned to the transit state (Fig. 3f). To determine how covariates 562 

influence these behavioral states, we fit a post-hoc generalized linear mixed model (GLMM), 563 

where the binary response variable was equal to 1 for the transit state and 0 otherwise. The larger 564 

proportion of the transit state for males in comparison to females is evident by the much larger 565 

intercept for males when compared to females (Table 2). Furthermore, we find a quadratic 566 

relationship between the probability of exhibiting the transit state with time of night (see Fig. 567 

3g). Finally, we do not find a strong influence of precipitation, temperature, or region, on the 568 

proportion of the transit state (Table 2). These results suggest that armadillos from both regions 569 
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behave similarly and that precipitation/temperature have no measurable effect on the proportion 570 

of the transit state, despite the fact that decreased daily temperatures have been associated with 571 

an overall lower duration of activity period (Attias et al., 2018).  572 

 573 

(insert Fig. 3) 574 

(insert Table 2) 575 

 576 

3. Empirical results for the BR model applied to the vascular plant data from Alberta 577 

The BR model identified 7 (out of 50) major groups, representing 99.5% of all locations. 578 

This analysis resulted in substantial dimension reduction given that, instead of having to 579 

separately examine the results for 351 species, the BR model enables us to focus just on the 580 

results from these 7 groups. To simplify the interpretation and enable the spatial visualization of 581 

the patterns identified by the BR model, we fitted a post-hoc logistic regression to the results 582 

from this model. Predictions from these regression models reveal striking spatial patterns (Fig. 583 

4). For example, group three had a strong association with temperature and precipitation, with 584 

most species in this group being relatively rare species that are mainly restricted to the colder 585 

Rocky Mountains, Upper Foothills, and Canadian shield natural regions (e.g., Engelmann Spruce 586 

Picea engelmannii and Rocky Mountain alpine fir Abies bifolia). On the other hand, group two 587 

had a positive association with most of the other remaining upland forest types (i.e., deciduous, 588 

white spruce, mixed wood, and harvested stands). Groups 4 and 5 were mostly restricted to 589 

lowland forest types (black spruce and fens with trees). Interestingly, group one was strongly 590 

associated with the proportion of cultivated land (e.g., crop and pasture), agreeing with the fact 591 

that many of the species that dominate this group are either introduced or cultivated species (e.g., 592 
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Canola Brassica napus and Barley Hordeum vulgare). Group seven, on the other hand, was 593 

strongly associated with highly anthropogenic landscapes, with substantially increased presence 594 

probabilities in regions with higher urban/industrial/mines areas and associated vegetated strips 595 

along railways, roads and trails (soft-linear). The characteristic species in this group include 596 

White Sweet Clover Melilotus albus, Yellow Sweet Clover M. officinalis, and Scentless 597 

Chamomile Tripleurospermum inodorum. 598 

 599 

(insert Fig. 4) 600 

 601 

4. Empirical results for the SA model applied to the Breeding Bird survey data 602 

All of the 50 species groups in the SA model had species in them but 95% of all the species 603 

were contained in the first 40 of these groups. As expected, several groups were strongly 604 

associated with temperature and/or precipitation, typically exhibiting unimodal relationships 605 

between average prevalence and these environmental variables. An example of the results for 4 606 

species groups are shown in Fig. 5. The results for all the other species groups are available in 607 

Appendix S2. 608 

 609 

(insert Fig. 5) 610 

 611 

The line graphs in Fig. 5 illustrate how all the species within a species archetype respond 612 

in a similar fashion to the environment. The heat maps of the predicted average prevalence for 613 

different combinations of temperature and precipitation provide a depiction of the environmental 614 

space occupied by these species groups (i.e., the realized niche, Fig. 5). These figures illustrate 615 
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that some species archetypes are relatively insensitive to precipitation but very sensitive to 616 

temperature (e.g., species archetype 31), some are relatively insensitive to temperature but very 617 

sensitive to precipitation (e.g., species archetype 5), while finally some groups are sensitive to 618 

both temperature and precipitation (e.g., species archetype 21). These results can potentially be 619 

useful to highlight which sets of species are more likely to be impacted by different facets of 620 

climate change (e.g., Tingley et al., 2012), enabling the prioritization of these species for 621 

conservation purposes.  622 

 623 

Discussion 624 

Determining the number of clusters is a long-standing challenge for a range of clustering 625 

algorithms. The standard approach to deal with this problem for model-based clustering consists 626 

of fitting models with different number of groups and selecting the optimal number of groups 627 

using indices such as AIC or BIC, an approach that can be very computationally intensive and 628 

that has been reported to often overestimate the true number of groups. Here we show how 629 

Bayesian clustering models, when used in conjunction with sparsity inducing priors such as the 630 

TSB prior described here, can determine the number of clusters without requiring the fitting of 631 

multiple models.  632 

To illustrate how a wide range of Bayesian clustering models can benefit from sparsity-633 

inducing priors, we show with simulated data how the truncated-stick breaking (TSB) prior can 634 

successfully estimate the true number of groups for three types of clustering models (i.e., two 635 

mixture models, one applied to movement data and the other applied to species occurrence data, 636 

and a SA model which clusters species according to how they respond to the environment). 637 
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Nevertheless, we believe that the ability to identify the existing clusters is likely to depend on 638 

several factors, including the type of model, how distinctive the clusters are from one another, 639 

the size of each group, and the amount of available data. For example, additional simulations in 640 

which groups were allowed to vary in size revealed that the BR model did not perform as well as 641 

the other models in this setting (Appendix S3). A closer examination of the BR model results 642 

revealed that this model had a challenging time correctly assigning some of the plots to the rare 643 

groups (i.e., groups assigned to less than 10 plots) because these groups were rare and therefore 644 

much harder to characterize. Additional research needs to be conducted to better characterize the 645 

circumstances in which the TSB prior is likely to work well and when it is likely to fail. 646 

We also show that the standard approach of varying the number of groups and fitting 647 

multiple models is much more computationally expensive. Some might argue that using AIC or 648 

BIC based on fitting multiple models is only computationally problematic if the algorithms used 649 

to fit these models are slow (e.g., MCMC algorithms). Our experience has been that several of 650 

the alternative clustering models that rely on optimization (e.g., SAM and HMM in the “ecomix” 651 

and “momentuHMM” R packages, respectively) instead of MCMC algorithms are also relatively 652 

slow because they often require multiple model fits for a given number of groups due to the 653 

multimodality of the likelihood surface. This is further exacerbated if different numbers of 654 

groups need to be tested and a bootstrapping approach is required to estimate parameter 655 

uncertainty (e.g., as in SAM within the “ecomix” package). As a result, despite the intuition that 656 

optimization algorithm will always be faster than MCMC algorithms, in practice this is not 657 

always true because of the multiple model fits that are required by these optimization-based 658 

methods.  659 
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We demonstrate how these models can unveil important environmental management and 660 

ecological insights. In the mixture model applied to the movement data from the three-banded 661 

armadillos, we identified two latent behavioral states which were labeled foraging and transit. 662 

Additionally, we found that males tend to exhibit a greater proportion of time in the transit state 663 

than females and that the proportion of this state peaks midway through the night. These sexual 664 

differences regarding the transit state are likely related to the species’ socio-biology, as the 665 

increased transit state of the promiscuous males should increase their chances of encountering 666 

receptive females. Indeed, males have been recently shown to have larger home ranges than 667 

females (Attias et al., 2020) and, according to our results, this difference is unlikely to be related 668 

to the acquisition of energetic resources by the larger males, as there were no noticeable 669 

differences in the amount of foraging state between sexes (Fig. 3e).  670 

The BR model enabled substantial dimension reduction by summarizing the results from 351 671 

species into 7 major groups. Similar to forest types 672 

(https://data.fs.usda.gov/geodata/rastergateway/forest_type/) and Bird Conservation regions 673 

(https://nabci-us.org/resources/bird-conservation-regions/), these results can be used for 674 

conservation and management purposes. For example, our results have identified a plant 675 

community that is heavily influenced by anthropogenic disturbance. By mapping the spatial 676 

distribution of this group, our analysis can enable the spatial prioritization of restoration and 677 

invasive species elimination initiatives. Furthermore, the monitoring of this group is likely to be 678 

critical in identifying the main drivers of environmental change in the region and developing 679 

effective mitigation strategies. 680 

In relation to the SA model applied to the 2015 survey data on North American breeding 681 

birds, we have identified species groups that respond similarly to temperature and precipitation. 682 

https://data.fs.usda.gov/geodata/rastergateway/forest_type/
https://nabci-us.org/resources/bird-conservation-regions/
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This enables the identification of sets of species that are likely to be more impacted by changes 683 

in precipitation, by changes in temperature, or by both. Interestingly, differently from the other 684 

two applications, the SA model still identified the existence of 50 groups, which was the 685 

maximum number of groups allowed by our analysis. These results suggest that there are 686 

probably more groups than what we have allowed for in this analysis. We believe that this might 687 

be due to the flexibility of the environmental response curves and the relatively rigid structure of 688 

SA models, which require species to have the same set of slope parameters. As a result, 689 

relatively minor changes in how these species respond to their environment, particularly when 690 

there are a lot of observations for any given species, can foster the creation of many small groups 691 

instead of few large groups. Future research could devise a different formulation for the SA 692 

model so that species can be grouped together even if they differ slightly in how they respond to 693 

the environment. These results are also important to highlight that, despite the use of a sparsity-694 

inducing prior, the model might still reveal that a sparse solution (i.e., a few clusters) is not 695 

supported by the data. In this situation, the modeler has to decide to either use the results as they 696 

are, because a larger number of groups would be unmanageable, or re-run the analysis with a 697 

larger number of groups. 698 

An important limitation in our analysis of the armadillo movement data and the plant 699 

occurrence data from Alberta is that we relied on post-hoc regression models to better interpret 700 

our mixture model results. The problem with this two-stage approach is that it does not properly 701 

propagate the uncertainty associated with the mixture model results, potentially leading to over-702 

confident inference and predictions. While this might not be too troublesome for exploratory 703 

studies like ours, this is an important problem for more confirmatory analyses. There are 704 

relatively few methods that have been developed that avoid these post-hoc analyses (see review 705 
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in Hill et al. (2020)). Nevertheless, the few existing single-stage methods require multiple 706 

models to be fit to determine both the optimal number of groups and the optimal set of 707 

covariates. Properly propagating the uncertainty associated with all these decisions is an area of 708 

active research even for these single-stage models. 709 

It is important to note that, because our primary goal was to show the versatility of the TSB 710 

prior, we have not provided a more in-depth comparison of the three example models to other 711 

commonly used models. Such a model comparison could be useful future research. Furthermore, 712 

we have focused on ecological clustering applications, but the TSB prior is likely to be useful for 713 

a much broader range of applications (e.g., for use of the Dirichlet process for genetic clustering, 714 

see Huelsenbeck and Andolfatto (2007) and references therein). Also, we have focused on 715 

models where the primary interest is on the identified latent structure (i.e., the identified clusters) 716 

because we believe that this is the type of dimension-reduction result that ecologists find more 717 

revealing and insightful. Indeed, many of the ecological applications involving the Dirichlet 718 

process and its extensions rely on the identified clusters to draw insights regarding, for example, 719 

animal movement and migration patterns (Diana et al., 2020; Valle et al., 2017), temporal 720 

dynamics of seal pup rookeries (Johnson et al., 2013), and spatial distribution of bird 721 

communities (Valle et al., 2018). However, we acknowledge that the Dirichlet process has been 722 

used for a much wider range of applications, some of which are not focused on identifying 723 

clusters. For example, in ecology, the Dirichlet process has been used for density estimation 724 

(Dorazio et al., 2008), to develop spatial models of the expected number of birds (Rodriguez and 725 

Dunson, 2011), and to generate a more parsimonious description of the covariance matrix 726 

between species in joint species distribution models (Taylor-Rodriguez et al., 2017).  727 
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It is important to note that our approach does not apply to all clustering methods. For 728 

instance, many clustering approaches are algorithmic and do not rely on an underlying statistical 729 

model, precluding the use of our approach. Even among clustering approaches based on 730 

statistical models, adopting a prior will only make sense for models fitted within a Bayesian 731 

framework. Finally, attempts to fit models with the TSB prior using packages such as JAGS 732 

(Plummer, 2003) and Stan (Stan Development Team, 2020) may result in label switching and 733 

convergence problems (e.g., Sollmann et al., 2020). The reason for this is that we have observed 734 

that a critical step for our customized MCMC algorithms to perform well is to order the 735 

identified clusters (from largest to smallest) during the burn-in phase. While this ordering does 736 

not change the likelihood (cluster labels are unidentified in standard mixture models), it does 737 

influence the TSB prior. Mixture models often have multimodal posteriors/likelihood functions 738 

(Scrucca et al., 2016; Stephens, 2000) and the ordering of clusters helps the model with the TSB 739 

prior find the highest peak, this way reducing label switching and convergence issues. 740 

Developing approaches for ordering clusters within packages, such as JAGS or Stan, is an 741 

important area for future research. 742 

Despite the limitations described above, it is likely that clustering approaches will greatly 743 

benefit from sparsity-inducing approaches like the TSB prior in the same way that a wide range 744 

of regression models has benefitted from sparsity-inducing approaches (e.g., regularization 745 

penalties or strong priors) to improve predictions and identify the most important predictor 746 

variables (Hooten and Hobbs, 2015). Several extensions to this prior, already developed in 747 

Bayesian nonparametrics, may be profitably exploited in the future for clustering applications in 748 

ecology and environmental science. For example, the Pitman-Yor process (also known as the 749 

two-parameter Poisson Dirichlet process; Pitman, 1995; Pitman and Yor, 1997) is a 750 



35 
 

generalization of the Dirichlet Process that offers more flexible clustering rates and cluster size 751 

tail behaviors. Alternatively, a hierarchical Dirichlet process (Teh et al., 2006) could be used to 752 

capture nested clusters. Finally, a truncated stick-breaking prior together with a kernel based 753 

approach (Reich and Fuentes, 2007) could be used so that spatially proximate sites are more 754 

likely to cluster together, or a probit stick-breaking process (Rodriguez and Dunson, 2011) could 755 

be adopted to ensure that sites with similar environmental conditions and/or species with similar 756 

trait values are more likely to be clustered together.  757 

Despite the fact that the stick-breaking prior has a relatively long-history in statistics, 758 

relatively few ecological modelers have used this prior, probably due to the general lack of 759 

awareness among quantitative ecologists and environmental scientists regarding how this prior 760 

can help a wide range of applied clustering problems. This is particularly surprising given the 761 

prominent role of clustering methods in ecology and related disciplines (Legendre and Legendre, 762 

2012). With this article, we hope to help remedy this situation by better characterizing the 763 

benefits of this approach while at the same time providing R packages that implement these 764 

methods, enabling the straight-forward fitting of these models by quantitative scientists. 765 
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Tables 989 

Table 1. Example of the calculations involved in the truncated stick-breaking (TSB) prior 990 

assuming a maximum number of 6 cluster. 991 

Cluster 𝑉𝑘 𝜃𝑘 

1 0.19 0.19  

2 0.33 0.33(1 − 0.19) = 0.27  

3 0.27 0.27(1 − 0.33)(1 − 0.19) = 0.15  

4 0.95 0.95(1 − 0.27)(1 − 0.33)(1 − 0.19) = 0.38  

5 0.47 0.47(1 − 0.95)(1 − 0.27)(1 − 0.33)(1 − 0.19) = 0.01  

6 1 (by definition) 1(1 − 0.47)(1 − 0.95)(1 − 0.27)(1 − 0.33)(1 − 0.19) = 0.01  

 992 

  993 



47 
 

Table 2. GLMM regression coefficients. Statistically significant (p<0.05) coefficients are 994 

highlighted in bold. 995 

  Female Male 

 Parameters Estimate Pr(>|z|)* Estimate Pr(>|z|)* 

Intercept -0.47 0.000 -0.03 0.803 

Time -0.23 0.083 0.00 0.969 

Time2 -0.48 0.019 -0.49 0.030 

Temperature 0.04 0.246 0.01 0.795 

Precipitation 0.00 0.843 0.06 0.096 

Region 0.25 0.063 0.03 0.872 

* Note that p-values should be interpreted with care because a) the GLMM model assumes 996 

temporal independence within each individual, which is unlikely to be a valid assumption given 997 

that these data were collected every 5 minutes; and b) uncertainty from the first-stage mixture 998 

model is not taken into account. 999 
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Figure legends 1001 

Fig. 1. Visual representation of the stick-breaking metaphor. From top to bottom, one starts with 1002 

a stick of length 1, breaking it into two sticks of length 0.19 and 0.81 (black and red). This latter 1003 

piece (red) is then broken again into two sticks of length 0.27 and 0.54 (red and green). This 1004 

latter piece (green) is then broken into two sticks of length 0.15 and 0.39 (green and blue). This 1005 

process is reiterated multiple times until the maximum number of groups is reached. 1006 

 1007 

Fig. 2. The use of the truncated stick-breaking prior in the different model enables the successful 1008 

uncovering of the true number of groups (top panels) and these simulated data contain 1009 

considerable information regarding the hyper-parameter of the TSB prior 𝛾 (bottom panels). Left 1010 

to right panels show the estimated number of groups (top panels) and the estimated 𝛾 (bottom 1011 

panels) for the mixture model applied to the movement data, the BR model and SA model, 1012 

respectively, based on ten simulated datasets for each value of the true number of groups. We 1013 

assumed a maximum of 15 groups for the mixture model applied to the movement data, and a 1014 

maximum of 50 groups for the BR and SA models. Notice that the x-coordinate of each point 1015 

was shifted slightly (i.e., jittered) on the top panels to enable the visualization of overlapping 1016 

circles. 1017 

 1018 

Fig. 3. Results for the mixture model applied to movement data. Panels a-d depict the estimated 1019 

distributions for speed and turning angle for the two behavioral states identified by the mixture 1020 

model. The first state, henceforth “foraging”, is characterized by slower and more tortuous 1021 

movements (panels a and b) while the second state, henceforth “transit”, is characterized by 1022 

faster and more directed movements (panels c and d). Comparisons are made between females 1023 
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and males regarding the daily number of observations assigned to the foraging state (panel e), 1024 

and the daily number of observations assigned to the transit state (panel f), and the estimated 1025 

proportion of transit observations as a function of time of night (panel g). 1026 

 1027 

Fig. 4. Spatial distribution of the groups identified by the Biogeographic Region model. Each 1028 

panel depicts the predicted presence probability of each group, where cyan to purple indicate 1029 

probabilities ranging from 0 to 1, respectively. Group numbers are given in the lower left corner 1030 

of each map. 1031 

 1032 

Figure 5. Association between occurrence probability (prevalence) and precipitation and 1033 

temperature for a subset of the species archetypes identified by the SA model. Each panel 1034 

displays the results for a particular species archetype (numbers in the top left corner correspond 1035 

to the species archetype identifier). Individual lines in the line graphs depict the estimated 1036 

associations for each species within that archetype. For the precipitation line graphs, temperature 1037 

was set to its mean value. Similarly, for the temperature line graphs, precipitation was set to its 1038 

mean value. Heat maps show the environmental space of each species archetype by displaying 1039 

the average prevalence for each temperature and precipitation combination. In all panels, the 1040 

ranges for precipitation and temperature were limited to the 2.5 and 97.5 percentiles from the 1041 

original data. Cyan to purple indicate probabilities ranging from 0 to 1.  1042 
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