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Abstract

Understanding and predicting the effect of global change phenomena on biodiversity is
challenging given that biodiversity data are highly multivariate, containing information from tens
to hundreds of species in any given location and time. The Latent Dirichlet Allocation (LDA)
model has been recently proposed to decompose biodiversity data into latent communities. While
LDA is a very useful exploratory tool and overcomes several limitations of earlier methods, it

has limited inferential and predictive skill given that covariates cannot be included in the model.

We introduce a modified LDA model (called LDAcov) which allows the incorporation of
covariates, enabling inference on the drivers of change of latent communities, spatial
interpolation of results, and prediction based on future environmental change scenarios. We
show with simulated data that our approach to fitting LDAcov is able to estimate well the
number of groups and all model parameters. We illustrate LDAcov using data from two
experimental studies on the long-term effects of fire on southeastern Amazonian forests in
Brazil. Our results reveal that repeated fires can have a strong impact on plant assemblages,
particularly if fuel is allowed to build up between consecutive fires. The effect of fire is
exacerbated as distance to the edge of the forest decreases, with small-sized species and species
with thin bark being impacted the most. These results highlight the compounding impacts of
multiple fire events and fragmentation, a scenario commonly found across the southern edge of

Amazon.
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We believe that LDAcov will be of wide interest to scientists studying the effect of global
change phenomena on biodiversity using high-dimensional datasets. Thus, we developed the R

package LDAcov to enable the straight-forward use of this model.

Key-words: multivariate statistics, biodiversity, forest fire, forest fragmentation, Amazon,

mixed-membership model, community ecology
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Introduction

Understanding and predicting how species composition has been and will be altered by
global change phenomena is key to sustaining biodiversity and ecosystem functioning. However,
biodiversity data are highly multivariate, containing information on tens to hundreds of species
in a given location and time (Ramette, 2007, Warton et al., 2015). Thus, dimension reduction
techniques are required to generate interpretable findings from these data (McCune et al., 2002).
Clustering and ordination have been the main approaches in ecology to reduce the
dimensionality of biodiversity data (Legendre & Legendre, 2012). Clustering approaches have
been extensively used in Ecology since at least the 1920°s (Legendre & Legendre, 2012).
Although hard-clustering approaches have dominated the field, few ecological theories predict
the sharp delineations implied by these methods (Legendre & Legendre, 2012). Importantly,
these hard-clustering methods will assign a given location to a single group, limiting the ability
of these approaches in detecting gradual changes in species composition across environmental
gradients.

Differently from cluster analysis, ordination is typically the method of choice to identify
general gradients in highly multivariate data (Legendre & Legendre, 2012). Unconstrained
ordination methods (e.g., principal component analysis [PCA], correspondence analysis [CA],
principal coordinate analysis [PCoA], and nonmetric multidimensional scaling [NMDS]) enable
the visualization of the variability in multivariate data in a space with reduced dimensionality
(typically two; Hui et al., 2015), whereas constrained ordination methods (e.g., redundancy
analysis [RDA] and canonical correspondence analysis [CCA]) allow for statistical testing of
environment-species composition associations (Legendre & Legendre, 2012, Ramette, 2007).

The main limitations associated with these methods are the poor interpretability of their results
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and lack of ability to make predictions. Because all the information from ecological data is
typically condensed into a square dissimilarity matrix prior to the analysis, it is challenging to
determine how individual species contribute to the final results, hampering the ability to interpret
how the different axis scores relate to the observed species composition at each site. Finally,
most cluster and ordination methods used for biodiversity research are algorithm-based
techniques with no underlying statistical model. As a result, few of these methods can be used to
make predictions and there is often no quantification of uncertainty associated with their results,
a critical limitation for inference and prediction purposes (Hui et al., 2015).

The Latent Dirichlet Allocation (LDA) model is a type of Bayesian mixed membership
model that allows for realistic representation of both gradual and sharp changes in species
compositions along environmental gradients (Valle et al., 2014). Instead of representing
biogeographical regions with sharp boundaries, LDA can represent biome transition zones and
ecotones as mixed membership areas. The ability of LDA to represent the blending of
assemblages in these transition zones has been shown repeatedly in previous articles (Valle et al.,
2018, Valle et al., 2014). Importantly, LDA estimates the proportion of each group in each
sampling unit, a much more straight-forward quantity to interpret than results from ordination
methods (e.g., PCA or NMDS scores). LDA models have become increasingly popular, being
used to model spatial and temporal change in communities for a wide range of taxa across a
diverse set of systems (Christensen et al., 2018, Dietzel et al., 2019, Knott ef al., 2019, Muhlfeld
et al., 2020, Sommeria-Klein et al., 2019, Valle et al., 2018, Valle et al., 2014). Unfortunately,
despite its usefulness for exploratory analysis, LDA is limited in its ability to make inference and

predictions given that covariates are not included in the model.



98 The goal of this article is to introduce a modified LDA model that allows for inference and
99  prediction on the abundance of individual groups. We first describe the model and then, using
100  simulated data, we show that the model can retrieve well the true parameter values. Finally, we

101  apply the developed model to two experimental studies on the long-term effects of fire on

102  southeastern Amazonian forests in Brazil. These forests are located in the driest portion of the
103  biome and are known to be relatively resistant to a single fire, but are dramatically impacted by
104  repeated fires, especially under extreme climatic conditions (Balch et al., 2015). Several studies
105  have shown that fires cause high tree mortality and significantly impact forest structure, diversity
106  and function (Balch et al., 2015, Balch et al., 2011, Brando et al., 2014, Brando et al., 2016,
107  Brando et al., 2019b, Nobrega et al., 2019). Furthermore, windstorms and drought often

108  exacerbate fire and its effects on forests (Brando et al. 2014, Silvério et al. 2019). Acting

109  synergistically, these processes induce changes that may ultimately lead to the “savannization”
110  of parts of the Amazon (i.e., a collapse of tropical rainforests, transforming them into a low-
111  biomass savanna-like biome) (Nobre et al., 2016). Unfortunately, current understanding of the
112 impact of fire on species composition is still limited, a gap that this study aims to help fill.

113

114  Methods

115

116  Model description

117

118 The LDA model with covariates (LDAcov) embeds a Negative Binomial regression

119  within LDA to determine how the number of individuals in each group is influenced by

120  covariates. Let n;g, be the number of individuals in location / and group k& from species s. We



121  assume that the number of individuals in location / assigned to group k (n; ) across all species
122 (i.e, nx = Ys5_; nyg) is given by a Negative Binomial regression:

123 nl_k~NBinom(exp(x{ﬁk) , N)

124  where E[n; ;] = exp (xlTﬁ k) and N is a parameter that captures over-dispersion. Furthermore, S},
125 s a vector of group-specific regression parameters and x; is the location-specific design vector
126  containing a leading 1 (for the intercept) and the covariates for location /. Next, we assume that:

127 [nllkl ...,n15k]~Multin(nl.k, ¢k)

128 In this expression, ¢ is a vector of group-specific probabilities that sum to one. Each element
129 ¢y, within this vector describes the relative abundance of species s in group £, this way
130  characterizing the species composition of this group. Notice that both n;, and n; , are latent

131 variables. The observations consist of the abundance of species s in location 1 (n; ) given by

Nk

132 Ny = Nisk

k=1

133 We finish specifying our model by adopting the following prior distributions for N, ¢, and B:

134 N~Unif(0,100)
135 ¢ ~Dirichlet(y1)
136 Bi~N(0,T)

137  where T is a diagonal matrix and 0 <y < 1.

138
139 Gibbs sampler

140
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Let z;; denote the group membership of individual 7 in location /, where n;g, =
Z?i"l 1(z;; = k,y;; = s). To fit this model, we rely on a Gibbs sampler in which we iteratively
sample each B, ¢y, and z;;. Below we specify the full conditional distribution for each of these
parameters.

The full conditional distribution for f, is given by:

P(Bril...) x N(Bl|0,T)

1—[ NBinom(nLk| exp(x,Tﬂk) , N)
l

To sample this vector of parameters, we rely on a slice-sampler algorithm (Neal, 2003) applied
sequentially to each element of this vector.

The full conditional distribution for N is given by:

Unif (N]0,100)

p(N|...) x [HﬂNBinom(nLk| exp(x,Tﬁk),N)
kKol

To sample this parameter, we also rely on a slice-sampler.
Because of conditional conjugacy, the full conditional distribution for ¢, is a Dirichlet

distribution, given by:

Dirichlet(¢y|y)

(Pl ...) x [1_[ Multinom([n1x, -, Nysk] [k, Pr)
!

= Dirichlet([n x + v, ..,ng + v1)
where n g, is the number of individuals from species s in group k across all locations (i.e., n g, =
21 Misk)-
Finally, as detailed in Appendix 1, conditional on y;; = s, z;; is drawn from a categorical

distribution with the following probability:



(=)
% brs(1 — pi)

nlsk

G
Ic{=1 % qbcs(l - plc)

Isc

160 p(zy =klyy=s,..) =

161  where nl(_;i) is the number of individuals in location / and group k after removing the i-th

162  individual. Similarly, nl(s_ kl ) is the number of individuals in location [, group k, from species s

163  after removing the i-th individual. Finally, py;, =

N-+exp(x] Bx)’
164
165  Model fitting details
166
167 To aid the convergence of this model, it is critical for it to be initialized with sensible

168  starting values. Furthermore, this model requires that the number of groups be a priori specified.
169  To obtain sensible starting values and to determine the optimal number of groups, we adopt a
170  two-stage approach. We first fit the data using an unconstrained LDA model (i.e., a model that
171  does not include covariates and that does not have an embedded regression structure). This

172 model identifies the optimal number of groups using a Bayesian non-parametric prior (i.e., the
173  truncated stick-breaking prior) and is described in detail in (Albuquerque et al., 2019). Notice
174  that, differently from an intercept-only model, the unconstrained LDA model is very flexible
175  because it estimates the proportion of each group at each location as separate parameters.

176  Assuming the number of groups identified by the first model, we then use the n;g;, values

177  provided by the unconstrained LDA model to initialize our model. We also initialize the

178  regression coefficients B, by fitting a separate Negative binomial regression for n; , from each

179  group.
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Differently from a standard regression in which the response variable is observed, fitting
a regression model within an unsupervised method like LDA 1is challenging because the response
variable is latent and has to be estimated together with the regression parameters. As a result, a
misspecified regression model can negatively impact the (latent) response variable n;,
potentially mischaracterizing the identified communities. For this reason, we decided to use the
posterior distribution of ¢, from the unconstrained LDA model as the posterior distribution from
the LDAcov model. This way, even if none of the covariates are informative or if the model is
misspecified, the communities identified by the unconstrained LDA model would still be the
same as those identified by the LDAcov model. However, notice that, despite not estimating ¢y,
LDAcov still has to estimate n;g, and all regression parameters. This two-stage approach to
fitting LDAcov is illustrated in Fig. 1.

Our simulation results indicate that this two-stage strategy is successful in retrieving the
true values for n;g, and B and that using the posterior distribution of ¢, from the unconstrained
LDA model consistently leads to better results than estimating ¢, within LDAcov (see Results
section). Nevertheless, our R package called LDAcov (available at

https://github.com/gilsonshimizu/ldacov and described in detail in Appendix 2) enables the user

to choose between estimating ¢, or relying on the posterior distribution of ¢, from the

unconstrained LDA model.

Simulations

We simulate data to evaluate the ability of LDAcov to estimate the number of individuals

in each group k and location I (n; ), the species composition (¢,) and the regression parameters

10
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B of each group k. To illustrate how well the proposed method works in different settings, we
varied the number of plots (set to 20, 40, 80, and 500) and the number of species (set to 80, 160,
and 320), resulting in 12 scenarios. After removing rare species, the final number of species in
these datasets was equal to 45, 65, and 92, respectively. To create the simulated datasets, we
assumed that there were 3 groups and that each group was strongly influenced by just one out of
the three covariates. To implement this assumption, the slope parameters for each group was
equal to 2 for one covariate and 0 for the remaining covariates. Covariate values were simulated

independently from a uniform distribution between -1 and 1.

Field data

We rely on datasets that arise from two experimental forest fires. Both experiments are
located in a transitional forest in Mato Grosso, Brazil, in the southern part of the Amazon Basin
(13°04°S,52°23°W). In the first experiment, three 50 ha (50 x 1000 m) plots bordering a crop
field were established in 2004 (“Big-plot” experiment from hereafter). In each plot, transects of
500 m in length and 20 m in width were created at 10, 30, 100, 250, 500, and 750 m from the
forest edge and all trees with diameter at breast height (i.e., 1.3 m from the ground; dbh) greater
than 20 cm were measured within these transects. One of these plots was left unburned (i.e.,
Control), one plot was burned thrice (2004, 2007, and 2010; hereafter “B3yr” treatment) and the
remaining plot was burned yearly from 2004 to 2010, except in 2008 (hereafter “Blyr”
treatment). Trees were measured in 2004, 2008, 2010, 2012 and 2016, always prior to the
experimental fires. Additional details regarding this experiment are available in Balch et al.

(2011).

11
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The second experiment evaluated the effect of fuel addition and fire frequency on fire
intensity and tree mortality. This experiment followed a randomized block design, with a total of
6 blocks and 4 plots of 40 m x 40 m within each block (“Block™ experiment from hereafter). All
trees with dbh greater than 5 cm were measured within these plots. Treatments consisted of
unburned plots (control area), plots burned once in 2016 under natural conditions (i.e., no fuel
addition), plots burned twice (2013 and 2016) under natural conditions, and plots burned twice
(2013 and 2016) with fuel addition (50% increase in fine fuel loads) only before the 2013 fire. In
this experiment, trees were measured yearly from 2011 to 2018, except for 2017, always prior to
the experimental fires. Additional details regarding this experiment are available in Brando ef al.

(2016).
Data analysis for the fire experiments

For the “Big-plot” experiment, we adopted the following regression structure for the

number of individuals in each transect /, group k and year ¢ (nl(_t,z):

nl(tk) ~NBin0m(ul(1?, N)

E[nz(tk) = Hl(l? = exp (ﬁOp[l]k + BueB3ynie + Bax Blyry + BakDEy + BarYe + Bsi(Ye X B3ymy,)

+ Bex (Yy X Blyry) + By (DE; X B3yry,) + Ber (DE; X Bl}”’lt))

In this expression, Bopik 1s @ plot-specific intercept and By, ..., Bgi are the regression slope
parameters for group k. As for the covariates, B3yr;; and B1lyr;; are binary variables denoting if
transect / in year ¢ received the low or high fire frequency treatments, respectively; DE] is the
distance of transect / to the edge of the forest and Y; is the year at time ¢. Finally, Y; X B3yr;; and

12
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Y; X Blyr;, are interaction terms between year and treatments, allowing for the impact of fires to
change with time. Similarly, DE; X B3yr;; and DE; X Blyr;, are interaction terms between
distance to edge and treatments, allowing for the effect of fire to be different depending on the

distance to the forest edge.

For the “Block™ experiment, we adopted the following regression structure:
nl(tlg ~N Binom(ul(l?, N )
E[n®] = = + ByFirely, + BoFire2; + fsFA
Nk Wi = exp(Bo; + BiFirely + ByFire2; + B3FAy)

where 3, is a plot-specific intercept. In this expression, Firely, Fire2;,, and F A;; are binary
variables denoting if plot / in year ¢ was burned once, was burned twice, and if fuel was added,
respectively.

For all models, slope parameters are deemed to be statistically significant and highly
statistically significant if min (p(ﬁp < O), p(ﬁp > O)) is smaller than 0.05 and 0.01,

respectively. Finally, we define as the characteristic species in each group as those that are more

than twice as abundant in the focus group when compared to the other groups.
Results
Simulation results

We find that our first-stage model (i.e., the unconstrained LDA model) was able to

correctly identify the existence of three groups (out of a maximum of 10 groups) of individuals

13
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in all 12 scenarios (Appendix 3). Furthermore, the second-stage model (i.e., LDAcov) was able
to estimate well all the parameters across all scenarios, including the number of individuals in
each group and location n;;, (Fig. 2) and the coefficients 8 (Appendix 3). Importantly, our two-
stage approach consistently performed better than the approach that fits all parameters at once

(Appendix 3).

Big-plot experiment

The first-stage model identified 5 main groups, representing approximately 97% of all the
trees. Based on LDAcov with 5 groups, we found several of the covariates to be statistically
significant (Table 1). For example, we found that as distance to edge increased, the abundance of
groups 1, 2, 3, and 5 tended to increase whereas the abundance of group 4 decreased. These
patterns suggest that group 4 is more characteristic of forest edges whereas the other groups are
much more common in the forest interior. This is clearly depicted by comparing the control

results for the forest edge to those from the forest interior (Fig. 3).

The fire treatments tended to decrease the abundance of all groups (Table 1). The
exception to this pattern was the weak effect of the annual fires (B1lyr) on groups 1 and 2 (Table
1). Parameter estimates for B3yr were larger in magnitude than those for Blyr, except for group
3, indicating that fire in the B3yr treatment had a more severe negative impact on the abundance
of groups when compared to Blyr, probably a consequence of substantial fuel buildup within

these 3 years-time intervals.

Whenever significant, the interaction between distance to forest edge and fire was

positive, suggesting that the negative effects of fire were less pronounced the farther trees were

14
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from the edge of the forest. These results reveal the synergistic effect between fragmentation and
fire effects on tree mortality. Finally, the abundance of all groups was generally declining with
time even in the control group but, as revealed by the significant interaction with fire for many of
these groups, this decline with time was substantially exacerbated by fire. Interestingly, the
parameters associated with the interaction between year and B3yr were consistently significant
and greater in magnitude when compared to the equivalent parameters for Blyr, reinforcing the

hypothesis that infrequent fires can be more damaging than annual fires (Balch ez al., 2008).

The characteristic species in each group conform to what we expected (see details in
Appendix 4). For instance, among the characteristic species of each group, the highest proportion
of pioneer species was found in the group that was more abundant at the edge of the forest (i.e.,
group 4). In particular, three of the characteristic species of group 4 were Mabea fistulifera,
Cecropia palmate, and Schefflera morototoni, all of which are commonly found along forest
edges, in early successional states or in open habitats (Lorenzi, 2000, Sposito & Santos, 2001).
Similarly, the characteristic species of groups 1 and 2 tended to have thicker bark than the
characteristic species from groups 3-5 (see Appendix 4), potentially explaining why these two

groups were more resistant to annual fires.

“Block” experiment

The model without any covariates also identified 5 main groups, representing
approximately 95% of all the trees. Based on 5 groups, the LDAcov model revealed that, while
the first fire seems to have decreased the abundance across all groups, these effects were not

significant. On the other hand, the parameters associated with the second fire were generally
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more negative than those from the first fire, with significant effects observed for groups 1, 2 and
5 (Table 2). These results suggest that the second fire was substantially more severe than the first
fire, perhaps as a result of trees already being weakened by the first fire. Finally, fuel addition
generally tended to have a negative effect on abundance, but this effect was only statistically

significant for group 5 (Fig. 4).

The characteristic species in group 5 were all understory species (i.e., species that tended
to have individuals with smaller diameter), which might explain why this was the only group that
was affected by both the second fire and fuel addition (see details in Appendix 4). Furthermore,
similar to the results found for the “Big-plot” experiment, the characteristic species of groups 3
and 4 tended to have thicker bark when compared to the characteristic species of the other
groups, helping to explain why these two groups were not significantly impacted by any of the

fires or fuel addition (see Appendix 4).

Discussion

In this article, we have described LDAcov, a novel model that can provide inference and
prediction by embedding a regression structure within the standard LDA model. We illustrate the
use of this model on data from two fire experiments in the Brazilian Amazon, enabling inference
on how fragmentation and fire jointly affect species composition of these forests. It is important
to note that, because LDAcov is a type of unsupervised method, it is much more challenging to
evaluate the quality of its results when compared to supervised methods (James ef al., 2013). For
this reason, we validate LDAcov by determining how well its results based on the fire

experiments data are corroborated by earlier findings using different methods.
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Fire effects on plant assemblages

Based on the data from the “Big-plot” experiment, our finding of increased impact on
species composition associated with B3yr when compared to Blyr is corroborated by two
important processes studied at the same experiment. The longer intervals between fires in the
B3yr treatment enabled fuel buildup (Balch et al., 2015) and two of the fire events on the B3yr
coincided with drought years (2007 and 2010) (Brando et al., 2014). More fuel in drier
conditions resulted in increased burned area and higher fire intensity, particularly along the forest
edge neighboring an agricultural field, ultimately leading to higher post-fire tree mortality,
higher losses in aboveground live biomass (Brando et al., 2014) and increased grass invasion
(Silverio et al., 2013). Based on data from the “Block” experiment, we find that fuel addition
tend to decrease the abundance of all groups, but that this effect was only significant for a single
group with understory characteristic species. These results are corroborated by the finding that
fuel addition resulted in increased burned area and flame height, but not fireline intensity
(Brando et al., 2016; Paolucci et al., in prep.). Nevertheless, this experiment clearly reveals that,
while a single understory fire might not substantially change species abundance, subsequent fires
can have strong impact on plant assemblages, especially for small-sized species and species with
thin bark. Taken together, these results reveal the compounding impacts of multiple fire events
and fragmentation, a scenario commonly found across the southern edge of Amazon (Brando et
al., 2019a). The burned area in the region is projected to double in the next three decades
(Brando et al., 2020), and the differential impacts of fire along forest edges on forest species

composition can contribute to the degradation of these forests.
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Comparison to other methods

One model that also incorporates covariates within LDA is called Structural Topic Model
(STM). In STMs, a multinomial regression is embedded within LDA to enable the use of
covariates (Mimno & McCallum, 2008, Roberts et al., 2016). LDAcov differs from STM in that
it is specifically focused on modeling the number of individuals in each group rather than the
proportion/prevalence of individuals in each group. This is an important feature for two reasons.
First, modeling the number of individuals in each group enables straight-forward interpretation
of regression coefficients, an important characteristic for statistical inference. On the other hand,
the coefficients from the multinomial logistic regression adopted by STMs are challenging to
interpret as the relationship between the prevalence of a given group and a particular covariate
depends on the slope parameter of all the other groups (see Appendix 5). Second, the number of
individuals in each group is often the primary focus of ecological interest and can reveal effects
that might be missed by modeling prevalence instead of abundance. For example, if fire reduces
the abundance of trees in all groups equally, then the multinomial logistic regression described
above would not detect a significant effect of fire because the prevalence of each group would
remain the same. Similarly, if fire increases the prevalence of group 1 relative to group 2, it will
not be clear if this happened because fire decreased the abundance of group 2 with no effect on
group 1 or because fire increased the abundance of group 1 with no effect on group 2.

Other methods also exist that cluster plots and allow for covariates (Hill ez al., 2020,
Woolley et al., 2019). For example, a model that is somewhat similar to LDAcov is called the

Regions of Common Profile (RCP) (Foster ef al., 2017, Lyons et al., 2017). This is a type of
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mixture-of-regression model which groups sites that have similar species composition (hence the
name regions of common profile). Within this model, a multinomial logistic regression enables
covariates to influence the probability of each site being associated with a particular group. A
key difference between LDAcov and RCP is that a site can only belong to a single group in RCP
whereas LDAcov enables a plot to be comprised of multiple groups. This is important because,
as illustrated in Valle et al. (2018), it implies that RCP will require more groups to fit the data
equally well as LDA with fewer groups. Indeed, we have observed exactly this when we fitted
RCP models (using the R package “RCPmod”) to our simulated data, regardless if the optimal
number of groups was selected using AIC or BIC (see Appendix 3). Another important
difference between LDAcov and RCP refers to the interpretability of the regression coefficients.
The RCP model, similar to STM, relies on a multinomial logistic regression model and, as a
result, its regression parameters are more challenging to interpret (see Appendix 5).

Another promising dimension-reduction model is called Species Archetype Models
(SAMs) (Dunstan ef al., 2011, Dunstan et al., 2013). In these models, species are grouped
according to how they respond to the covariates. We relied on the R package “ecomix” to fit
SAMs. Within this package, first the optimal number of groups is identified using BIC and then
uncertainty on regression parameters is estimated using a bootstrap approach based on the
optimal model. Our experience has been that it can sometimes be challenging to fit these models.
For example, to fit the “big plot” data, we varied the number of groups from 2 to 15 and we used
the function “species mix.multifit” to fit SAM 10 times for each number of groups. According to
BIC, the optimal number of groups for these data was equal to 7. However, when examining
more closely the results for the model fitted with 7 groups, we found that 3 groups were empty,

suggesting that the algorithm did not find a good solution and resulting in numerical issues when
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estimating the uncertainty in the regression coefficients (e.g., standard errors and p-values equal
to zero).

Our perspective is that the development of novel multi-species models is an area of active
research and that many of the existing models (e.g., SAMs and RCPs) can generate valuable
insights despite having limitations. Importantly, we believe that LDAcov will be a useful
addition to toolkit of ecologists interested in making community-level inference. Future work on
LDAcov could more explicitly incorporate spatial correlation, a feature that very few multi-
species models include (see review in Norberg et al., 2019). Furthermore, the addition of
species-specific dispersion parameters in LDAcov (a feature that is implemented in a
straightforward fashion in SAM) could be useful to allow for differences in spatial aggregation
of different species. Finally, enabling LDAcov to accommodate for sampling artefacts (e.g.
survey method, sampling effort, and season of data collection; similar to RCP) would probably
be a very useful future extension for LDAcov.

Determining how anthropogenic stressors (e.g., timber logging, fire, and hunting) impact
biodiversity is critical for an accurate picture of ecosystems services (e.g., carbon storage and
water provisioning). However, assessing these impacts is particularly challenging for
biodiversity rich system because of the large number of species, requiring methods that can
reduce the dimensionality of the data while also making statistically valid inference. The
LDAcov was created to address this need. Together with an R package, we have added a tutorial
providing step-by-step instructions regarding how to use LDAcov and interpret its results
(Appendix 2). We believe that the proposed model will be useful for scientists interested in

understanding and predicting how species composition of biodiversity rich ecosystems changes
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along environmental gradients, particularly for gradients that arise from large-scale

anthropogenic stressors (e.g., climate change, fire, forest fragmentation, and saltwater intrusion).
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545 Figures and figure legends
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548  Fig. 1. Illustration of the two-stage approach to fitting LDAcov. First, an unconstrained LDA
549  model is fit to abundance data n;,. to estimate the optimal number of groups K and the species
550  composition of each group ¢. Then, LDAcov is fitted using covariate information x; and
551  abundance data n;, yielding estimates of the regression coefficients 8, the overdispersion
552  parameter N, and the number of individuals in each species, location and group n;gy.

553  Descriptions for the data and parameters are displayed in blue and orange, respectively, and
554  models have grey boxes.

555
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Fig. 2. LDAcov is able to estimate well the number of individuals in each group and location
(n ) for different scenarios regarding number of species and locations. True and estimated
values for n;, are displayed in the x and y axes, respectively. The 1:1 line is shown in red. Left
to right panels display results of scenarios where the number of species is equal to 45, 65, and
92, respectively. Top to bottom panels display results of scenarios where the number of sites is

equal to 20, 40, 80 and 500 locations, respectively
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564  Fig. 3. Model predictions of the number of trees per transect for each group and each treatment
565 by the end of the “Big-plot” experiment (i.e., 2016). These predictions were made for the plot
566  with B3yr. Left and right panels correspond to predictions for the forest edge and forest interior
567 transects, respectively. Treatments refer to no fire (‘Control’), fire approx. every 3 years

568  (‘B3yr’), and fire approx. every year (‘Blyr’). Error bars are 95% credible intervals.
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without fuel addition (green). Predictions were made for the baseline plot (i.e., plot 1). Error bars
are 95% credible intervals. Notice that we assume that fuel addition does not alter the control

treatment. For this reason, results for zero fires with and without fuel addition are identical.



574  Table
575 Table 1. Estimated slope parameters for each group. The symbols * and ** represent significant

576 and highly significant results, respectively.

Group
Variable 1 2 3 4 5
Distance to edge 0.19% | 0.51** | 0.33** | -0.54%* | 0.38**
B3yr (fire every 3 years) -0.41* | -0.38*% | -0.58** | -0.8** | -0.69**
Blyr (fire almost every year) -0.02 -0.08 | -0.64** | -0.64%* | -0.41*
Year 0.52** | 0.51** | 0.29*% 0.4% 0
Interaction: Edge x B3yr 0.03 0.05 -0.21 0.07 -0.06
Interaction: Edge x Blyr -0.59%* | -0.46** | -0.67** | -0.69** | -0.78**
Interaction: Year x B3yr -0.16 -0.28* | -0.63** -0.3 -0.44*
Interaction: Year x Blyr -0.23%* | -0.31** | -0.28** | -0.11 -0.19*
577
578
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579  Table 2. Estimated slope parameters for each group. Significant and highly significant results are

580 emphasized * and **, respectively.

Group
Parameter 1 2 3 4 5
Intercept 4.53%* 4.03%* | 3.31%* | 2.30%* | 2.85%*
First fire -0.13 -0.14 -0.06 -0.07 -0.15
Second fire -0.31* -0.29* | -0.28 -0.24 | -0.37*
Fuel addition -0.12 -0.01 0 -0.23 | -0.45%**
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