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 24 

Abstract 25 

Understanding and predicting the effect of global change phenomena on biodiversity is 26 

challenging given that biodiversity data are highly multivariate, containing information from tens 27 

to hundreds of species in any given location and time. The Latent Dirichlet Allocation (LDA) 28 

model has been recently proposed to decompose biodiversity data into latent communities. While 29 

LDA is a very useful exploratory tool and overcomes several limitations of earlier methods, it 30 

has limited inferential and predictive skill given that covariates cannot be included in the model.  31 

 32 

We introduce a modified LDA model (called LDAcov) which allows the incorporation of 33 

covariates, enabling inference on the drivers of change of latent communities, spatial 34 

interpolation of results, and prediction based on future environmental change scenarios.  We 35 

show with simulated data that our approach to fitting LDAcov is able to estimate well the 36 

number of groups and all model parameters. We illustrate LDAcov using data from two 37 

experimental studies on the long-term effects of fire on southeastern Amazonian forests in 38 

Brazil. Our results reveal that repeated fires can have a strong impact on plant assemblages, 39 

particularly if fuel is allowed to build up between consecutive fires. The effect of fire is 40 

exacerbated as distance to the edge of the forest decreases, with small-sized species and species 41 

with thin bark being impacted the most. These results highlight the compounding impacts of 42 

multiple fire events and fragmentation, a scenario commonly found across the southern edge of 43 

Amazon.  44 
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We believe that LDAcov will be of wide interest to scientists studying the effect of global 45 

change phenomena on biodiversity using high-dimensional datasets. Thus, we developed the R 46 

package LDAcov to enable the straight-forward use of this model. 47 

 48 

Key-words: multivariate statistics, biodiversity, forest fire, forest fragmentation, Amazon, 49 

mixed-membership model, community ecology 50 

 51 

  52 
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Introduction 53 

Understanding and predicting how species composition has been and will be altered by 54 

global change phenomena is key to sustaining biodiversity and ecosystem functioning. However, 55 

biodiversity data are highly multivariate, containing information on tens to hundreds of species 56 

in a given location and time (Ramette, 2007, Warton et al., 2015). Thus, dimension reduction 57 

techniques are required to generate interpretable findings from these data (McCune et al., 2002). 58 

Clustering and ordination have been the main approaches in ecology to reduce the 59 

dimensionality of biodiversity data (Legendre &  Legendre, 2012). Clustering approaches have 60 

been extensively used in Ecology since at least the 1920’s (Legendre &  Legendre, 2012). 61 

Although hard-clustering approaches have dominated the field, few ecological theories predict 62 

the sharp delineations implied by these methods (Legendre &  Legendre, 2012). Importantly, 63 

these hard-clustering methods will assign a given location to a single group, limiting the ability 64 

of these approaches in detecting gradual changes in species composition across environmental 65 

gradients.  66 

Differently from cluster analysis, ordination is typically the method of choice to identify 67 

general gradients in highly multivariate data (Legendre &  Legendre, 2012). Unconstrained 68 

ordination methods (e.g., principal component analysis [PCA], correspondence analysis [CA], 69 

principal coordinate analysis [PCoA], and nonmetric multidimensional scaling [NMDS]) enable 70 

the visualization of the variability in multivariate data in a space with reduced dimensionality 71 

(typically two; Hui et al., 2015), whereas constrained ordination methods (e.g., redundancy 72 

analysis [RDA] and canonical correspondence analysis [CCA]) allow for statistical testing of 73 

environment-species composition associations (Legendre &  Legendre, 2012, Ramette, 2007). 74 

The main limitations associated with these methods are the poor interpretability of their results 75 
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and lack of ability to make predictions. Because all the information from ecological data is 76 

typically condensed into a square dissimilarity matrix prior to the analysis, it is challenging to 77 

determine how individual species contribute to the final results, hampering the ability to interpret 78 

how the different axis scores relate to the observed species composition at each site. Finally, 79 

most cluster and ordination methods used for biodiversity research are algorithm-based 80 

techniques with no underlying statistical model. As a result, few of these methods can be used to 81 

make predictions and there is often no quantification of uncertainty associated with their results, 82 

a critical limitation for inference and prediction purposes (Hui et al., 2015). 83 

The Latent Dirichlet Allocation (LDA) model is a type of Bayesian mixed membership 84 

model that allows for realistic representation of both gradual and sharp changes in species 85 

compositions along environmental gradients (Valle et al., 2014). Instead of representing 86 

biogeographical regions with sharp boundaries, LDA can represent biome transition zones and 87 

ecotones as mixed membership areas. The ability of LDA to represent the blending of 88 

assemblages in these transition zones has been shown repeatedly in previous articles (Valle et al., 89 

2018, Valle et al., 2014). Importantly, LDA estimates the proportion of each group in each 90 

sampling unit, a much more straight-forward quantity to interpret than results from ordination 91 

methods (e.g., PCA or NMDS scores). LDA models have become increasingly popular, being 92 

used to model spatial and temporal change in communities for a wide range of taxa across a 93 

diverse set of systems (Christensen et al., 2018, Dietzel et al., 2019, Knott et al., 2019, Muhlfeld 94 

et al., 2020, Sommeria-Klein et al., 2019, Valle et al., 2018, Valle et al., 2014). Unfortunately, 95 

despite its usefulness for exploratory analysis, LDA is limited in its ability to make inference and 96 

predictions given that covariates are not included in the model.  97 
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The goal of this article is to introduce a modified LDA model that allows for inference and 98 

prediction on the abundance of individual groups. We first describe the model and then, using 99 

simulated data, we show that the model can retrieve well the true parameter values. Finally, we 100 

apply the developed model to two experimental studies on the long-term effects of fire on 101 

southeastern Amazonian forests in Brazil. These forests are located in the driest portion of the 102 

biome and are known to be relatively resistant to a single fire, but are dramatically impacted by 103 

repeated fires, especially under extreme climatic conditions (Balch et al., 2015). Several studies 104 

have shown that fires cause high tree mortality and significantly impact forest structure, diversity 105 

and function (Balch et al., 2015, Balch et al., 2011, Brando et al., 2014, Brando et al., 2016, 106 

Brando et al., 2019b, Nobrega et al., 2019). Furthermore, windstorms and drought often 107 

exacerbate fire and its effects on forests (Brando et al. 2014, Silvério et al. 2019). Acting 108 

synergistically, these processes induce changes that may ultimately lead to the “savannization” 109 

of parts of the Amazon (i.e., a collapse of tropical rainforests, transforming them into a low-110 

biomass savanna-like biome) (Nobre et al., 2016). Unfortunately, current understanding of the 111 

impact of fire on species composition is still limited, a gap that this study aims to help fill.  112 

  113 

Methods 114 

 115 

Model description 116 

 117 

The LDA model with covariates (LDAcov) embeds a Negative Binomial regression 118 

within LDA to determine how the number of individuals in each group is influenced by 119 

covariates. Let 𝑛𝑙𝑠𝑘 be the number of individuals in location l and group k from species s. We 120 
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assume that the number of individuals in location l assigned to group k (𝑛𝑙.𝑘) across all species 121 

(i.e., 𝑛𝑙.𝑘 = ∑ 𝑛𝑙𝑠𝑘
𝑆
𝑠=1 ) is given by a Negative Binomial regression: 122 

𝑛𝑙.𝑘~𝑁𝐵𝑖𝑛𝑜𝑚(exp(𝒙𝒍
𝑻𝜷𝒌) , 𝑁) 123 

where 𝐸[𝑛𝑙.𝑘] = exp(𝒙𝒍
𝑻𝜷𝒌) and N is a parameter that captures over-dispersion. Furthermore, 𝛽𝑘 124 

is a vector of group-specific regression parameters and 𝑥𝑙
𝑇 is the location-specific design vector 125 

containing a leading 1 (for the intercept) and the covariates for location l. Next, we assume that: 126 

[𝑛𝑙1𝑘 , … , 𝑛𝑙𝑆𝑘]~𝑀𝑢𝑙𝑡𝑖𝑛(𝑛𝑙.𝑘, 𝝓𝒌) 127 

In this expression, 𝝓𝒌 is a vector of group-specific probabilities that sum to one. Each element 128 

𝜙𝑘𝑠 within this vector describes the relative abundance of species s in group k, this way 129 

characterizing the species composition of this group. Notice that both 𝑛𝑙𝑠𝑘 and 𝑛𝑙.𝑘 are latent 130 

variables. The observations consist of the abundance of species s in location l (𝑛𝑙𝑠.) given by 131 

𝑛𝑙𝑠. = ∑𝑛𝑙𝑠𝑘

𝐾

𝑘=1

 132 

We finish specifying our model by adopting the following prior distributions for 𝑁,𝝓𝒌 and 𝜷𝒌: 133 

𝑁~𝑈𝑛𝑖𝑓(0,100) 134 

𝝓𝒌~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛾𝟏) 135 

𝜷𝒌~𝑁(𝟎, 𝚻) 136 

where T is a diagonal matrix and 0 < 𝛾 < 1. 137 

 138 

Gibbs sampler 139 

 140 
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Let 𝑧𝑖𝑙 denote the group membership of individual i in location l, where 𝑛𝑙𝑠𝑘 =141 

∑ 𝐼(𝑧𝑖𝑙 = 𝑘, 𝑦𝑖𝑙 = 𝑠)
𝑛𝑙..
𝑖=1 . To fit this model, we rely on a Gibbs sampler in which we iteratively 142 

sample each 𝜷𝒌, 𝝓𝒌, and 𝑧𝑖𝑙. Below we specify the full conditional distribution for each of these 143 

parameters. 144 

The full conditional distribution for 𝜷𝒌 is given by: 145 

𝑝(𝜷𝒌| … ) ∝ [∏𝑁𝐵𝑖𝑛𝑜𝑚(𝑛𝑙.𝑘| exp(𝒙𝒍
𝑻𝜷𝒌) , 𝑁)

𝑙

]𝑁(𝜷𝒌|𝟎, 𝑻) 146 

To sample this vector of parameters, we rely on a slice-sampler algorithm (Neal, 2003) applied 147 

sequentially to each element of this vector.  148 

The full conditional distribution for N is given by: 149 

𝑝(𝑁|… ) ∝ [∏∏𝑁𝐵𝑖𝑛𝑜𝑚(𝑛𝑙.𝑘| exp(𝒙𝒍
𝑻𝜷𝒌) , 𝑁)

𝑙𝑘

] 𝑈𝑛𝑖𝑓(𝑁|0,100) 150 

To sample this parameter, we also rely on a slice-sampler. 151 

Because of conditional conjugacy, the full conditional distribution for 𝝓𝒌 is a Dirichlet 152 

distribution, given by: 153 

𝑝(𝝓𝒌| … ) ∝ [∏𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚([𝑛𝑙1𝑘, … , 𝑛𝑙𝑆𝑘]|𝑛𝑙.𝑘, 𝝓𝒌)

𝑙

]𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝝓𝒌|𝛾) 154 

= 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡([𝑛.1𝑘 + 𝛾,… , 𝑛.𝑆𝑘 + 𝛾]) 155 

where 𝑛.𝑠𝑘 is the number of individuals from species s in group k across all locations (i.e., 𝑛.𝑠𝑘 =156 

∑ 𝑛𝑙𝑠𝑘𝑙 ).  157 

Finally, as detailed in Appendix 1, conditional on 𝑦𝑖𝑙 = 𝑠, 𝑧𝑖𝑙 is drawn from a categorical 158 

distribution with the following probability: 159 
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𝑝(𝑧𝑖𝑙 = 𝑘|𝑦𝑖𝑙 = 𝑠,… ) =

(𝑛l.𝑘
(−𝑖)

+ N)

(𝑛ls𝑘
(−𝑖) + 1)

𝜙ks(1 − 𝑝l𝑘)

∑
(𝑛l.c

(−𝑖) + N)

(𝑛lsc
(−𝑖) + 1)

𝜙cs(1 − 𝑝l𝑐)
𝐾
𝑐=1

 160 

where 𝑛l.𝑘
(−𝑖)

 is the number of individuals in location l and group k after removing the i-th 161 

individual. Similarly, 𝑛ls𝑘
(−𝑖)

 is the number of individuals in location l, group k, from species s 162 

after removing the i-th individual. Finally, 𝑝l𝑘 =
𝑁

𝑁+exp(𝒙𝒍
𝑻𝜷𝒌)

. 163 

 164 

Model fitting details 165 

 166 

To aid the convergence of this model, it is critical for it to be initialized with sensible 167 

starting values. Furthermore, this model requires that the number of groups be a priori specified.  168 

To obtain sensible starting values and to determine the optimal number of groups, we adopt a 169 

two-stage approach. We first fit the data using an unconstrained LDA model (i.e., a model that 170 

does not include covariates and that does not have an embedded regression structure). This 171 

model identifies the optimal number of groups using a Bayesian non-parametric prior (i.e., the 172 

truncated stick-breaking prior) and is described in detail in (Albuquerque et al., 2019). Notice 173 

that, differently from an intercept-only model, the unconstrained LDA model is very flexible 174 

because it estimates the proportion of each group at each location as separate parameters. 175 

Assuming the number of groups identified by the first model, we then use the 𝑛𝑙𝑠𝑘 values 176 

provided by the unconstrained LDA model to initialize our model. We also initialize the 177 

regression coefficients 𝜷𝒌 by fitting a separate Negative binomial regression for 𝑛𝑙.𝑘 from each 178 

group.  179 
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Differently from a standard regression in which the response variable is observed, fitting 180 

a regression model within an unsupervised method like LDA is challenging because the response 181 

variable is latent and has to be estimated together with the regression parameters. As a result, a 182 

misspecified regression model can negatively impact the (latent) response variable 𝑛𝑙.𝑘, 183 

potentially mischaracterizing the identified communities. For this reason, we decided to use the 184 

posterior distribution of 𝝓𝒌 from the unconstrained LDA model as the posterior distribution from 185 

the LDAcov model. This way, even if none of the covariates are informative or if the model is 186 

misspecified, the communities identified by the unconstrained LDA model would still be the 187 

same as those identified by the LDAcov model. However, notice that, despite not estimating 𝝓𝒌, 188 

LDAcov still has to estimate 𝑛𝑙𝑠𝑘 and all regression parameters. This two-stage approach to 189 

fitting LDAcov is illustrated in Fig. 1.  190 

Our simulation results indicate that this two-stage strategy is successful in retrieving the 191 

true values for 𝑛𝑙𝑠𝑘 and 𝜷𝒌 and that using the posterior distribution of 𝝓𝒌 from the unconstrained 192 

LDA model consistently leads to better results than estimating 𝝓𝒌 within LDAcov (see Results 193 

section). Nevertheless, our R package called LDAcov (available at 194 

https://github.com/gilsonshimizu/ldacov and described in detail in Appendix 2) enables the user 195 

to choose between estimating 𝝓𝒌 or relying on the posterior distribution of 𝝓𝒌 from the 196 

unconstrained LDA model. 197 

 198 

Simulations 199 

 200 

 We simulate data to evaluate the ability of LDAcov to estimate the number of individuals 201 

in each group k and location l (𝑛𝑙.𝑘), the species composition (𝝓𝒌) and the regression parameters 202 

https://github.com/gilsonshimizu/ldacov


11 
 

𝜷𝒌 of each group k. To illustrate how well the proposed method works in different settings, we 203 

varied the number of plots (set to 20, 40, 80, and 500) and the number of species (set to 80, 160, 204 

and 320), resulting in 12 scenarios. After removing rare species, the final number of species in 205 

these datasets was equal to 45, 65, and 92, respectively. To create the simulated datasets, we 206 

assumed that there were 3 groups and that each group was strongly influenced by just one out of 207 

the three covariates. To implement this assumption, the slope parameters for each group was 208 

equal to 2 for one covariate and 0 for the remaining covariates. Covariate values were simulated 209 

independently from a uniform distribution between -1 and 1.  210 

 211 

Field data 212 

 213 

We rely on datasets that arise from two experimental forest fires. Both experiments are 214 

located in a transitional forest in Mato Grosso, Brazil, in the southern part of the Amazon Basin 215 

(13o04’S,52o23’W). In the first experiment, three 50 ha (50 x 1000 m) plots bordering a crop 216 

field were established in 2004 (“Big-plot” experiment from hereafter). In each plot, transects of 217 

500 m in length and 20 m in width were created at 10, 30, 100, 250, 500, and 750 m from the 218 

forest edge and all trees with diameter at breast height (i.e., 1.3 m from the ground; dbh) greater 219 

than 20 cm were measured within these transects. One of these plots was left unburned (i.e., 220 

Control), one plot was burned thrice (2004, 2007, and 2010; hereafter “B3yr” treatment) and the 221 

remaining plot was burned yearly from 2004 to 2010, except in 2008 (hereafter “B1yr” 222 

treatment). Trees were measured in 2004, 2008, 2010, 2012 and 2016, always prior to the 223 

experimental fires. Additional details regarding this experiment are available in Balch et al. 224 

(2011).  225 
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The second experiment evaluated the effect of fuel addition and fire frequency on fire 226 

intensity and tree mortality. This experiment followed a randomized block design, with a total of 227 

6 blocks and 4 plots of 40 m x 40 m within each block (“Block” experiment from hereafter). All 228 

trees with dbh greater than 5 cm were measured within these plots. Treatments consisted of 229 

unburned plots (control area), plots burned once in 2016 under natural conditions (i.e., no fuel 230 

addition), plots burned twice (2013 and 2016) under natural conditions, and plots burned twice 231 

(2013 and 2016) with fuel addition (50% increase in fine fuel loads) only before the 2013 fire. In 232 

this experiment, trees were measured yearly from 2011 to 2018, except for 2017, always prior to 233 

the experimental fires. Additional details regarding this experiment are available in Brando et al. 234 

(2016).  235 

 236 

Data analysis for the fire experiments 237 

 238 

For the “Big-plot” experiment, we adopted the following regression structure for the 239 

number of individuals in each transect l, group k and year t (𝑛𝑙.𝑘
(𝑡)

): 240 

𝑛𝑙.𝑘
(𝑡)~𝑁𝐵𝑖𝑛𝑜𝑚(μlk

(𝑡), 𝑁) 241 

𝐸[𝑛𝑙.𝑘
(𝑡)] = μlk

(𝑡) = exp (𝛽0𝑝[𝑙]𝑘 + 𝛽1𝑘𝐵3𝑦𝑟𝑙𝑡 + 𝛽2𝑘𝐵1𝑦𝑟𝑙𝑡 + 𝛽3𝑘𝐷𝐸𝑙 + 𝛽4𝑘𝑌𝑡 + 𝛽5𝑘(𝑌𝑡 × 𝐵3𝑦𝑟𝑙𝑡)242 

+ 𝛽6𝑘(𝑌𝑡 × 𝐵1𝑦𝑟𝑙𝑡) + 𝛽7𝑘(𝐷𝐸𝑙 × 𝐵3𝑦𝑟𝑙𝑡) + 𝛽8𝑘(𝐷𝐸𝑙 × 𝐵1𝑦𝑟𝑙𝑡)) 243 

In this expression, 𝛽0𝑝[𝑙]𝑘 is a plot-specific intercept and 𝛽1𝑘, … , 𝛽8𝑘 are the regression slope 244 

parameters for group k. As for the covariates, 𝐵3𝑦𝑟𝑙𝑡 and 𝐵1𝑦𝑟𝑙𝑡 are binary variables denoting if 245 

transect l in year t received the low or high fire frequency treatments, respectively; 𝐷𝐸𝑙 is the 246 

distance of transect l to the edge of the forest and 𝑌𝑡 is the year at time t. Finally, 𝑌𝑡 × 𝐵3𝑦𝑟𝑙𝑡 and 247 
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𝑌𝑡 × 𝐵1𝑦𝑟𝑙𝑡 are interaction terms between year and treatments, allowing for the impact of fires to 248 

change with time. Similarly, 𝐷𝐸𝑙 × 𝐵3𝑦𝑟𝑙𝑡 and 𝐷𝐸𝑙 × 𝐵1𝑦𝑟𝑙𝑡 are interaction terms between 249 

distance to edge and treatments, allowing for the effect of fire to be different depending on the 250 

distance to the forest edge. 251 

 For the “Block” experiment, we adopted the following regression structure: 252 

𝑛𝑙.𝑘
(𝑡)~𝑁𝐵𝑖𝑛𝑜𝑚(μlk

(𝑡), 𝑁) 253 

𝐸[𝑛𝑙.𝑘
(𝑡)] = μlk

(𝑡) = exp(𝛽0𝑙 + 𝛽1𝐹𝑖𝑟𝑒1𝑙𝑡 + 𝛽2𝐹𝑖𝑟𝑒2𝑙𝑡 + 𝛽3𝐹𝐴𝑙𝑡) 254 

where 𝛽0𝑙 is a plot-specific intercept. In this expression, 𝐹𝑖𝑟𝑒1𝑙𝑡, 𝐹𝑖𝑟𝑒2𝑙𝑡, and 𝐹𝐴𝑙𝑡 are binary 255 

variables denoting if plot l in year t was burned once, was burned twice, and if fuel was added, 256 

respectively. 257 

For all models, slope parameters are deemed to be statistically significant and highly 258 

statistically significant if min (𝑝(𝛽𝑝 < 0), 𝑝(𝛽𝑝 > 0)) is smaller than 0.05 and 0.01, 259 

respectively. Finally, we define as the characteristic species in each group as those that are more 260 

than twice as abundant in the focus group when compared to the other groups. 261 

 262 

Results 263 

 264 

Simulation results 265 

 266 

We find that our first-stage model (i.e., the unconstrained LDA model) was able to 267 

correctly identify the existence of three groups (out of a maximum of 10 groups) of individuals 268 
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in all 12 scenarios (Appendix 3). Furthermore, the second-stage model (i.e., LDAcov) was able 269 

to estimate well all the parameters across all scenarios, including the number of individuals in 270 

each group and location 𝑛𝑙.𝑘 (Fig. 2) and the coefficients 𝜷𝒌 (Appendix 3). Importantly, our two-271 

stage approach consistently performed better than the approach that fits all parameters at once 272 

(Appendix 3).  273 

  274 

Big-plot experiment 275 

 276 

The first-stage model identified 5 main groups, representing approximately 97% of all the 277 

trees. Based on LDAcov with 5 groups, we found several of the covariates to be statistically 278 

significant (Table 1). For example, we found that as distance to edge increased, the abundance of 279 

groups 1, 2, 3, and 5 tended to increase whereas the abundance of group 4 decreased. These 280 

patterns suggest that group 4 is more characteristic of forest edges whereas the other groups are 281 

much more common in the forest interior. This is clearly depicted by comparing the control 282 

results for the forest edge to those from the forest interior (Fig. 3). 283 

The fire treatments tended to decrease the abundance of all groups (Table 1). The 284 

exception to this pattern was the weak effect of the annual fires (B1yr) on groups 1 and 2 (Table 285 

1). Parameter estimates for B3yr were larger in magnitude than those for B1yr, except for group 286 

3, indicating that fire in the B3yr treatment had a more severe negative impact on the abundance 287 

of groups when compared to B1yr, probably a consequence of substantial fuel buildup within 288 

these 3 years-time intervals.  289 

Whenever significant, the interaction between distance to forest edge and fire was 290 

positive, suggesting that the negative effects of fire were less pronounced the farther trees were 291 
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from the edge of the forest. These results reveal the synergistic effect between fragmentation and 292 

fire effects on tree mortality. Finally, the abundance of all groups was generally declining with 293 

time even in the control group but, as revealed by the significant interaction with fire for many of 294 

these groups, this decline with time was substantially exacerbated by fire. Interestingly, the 295 

parameters associated with the interaction between year and B3yr were consistently significant 296 

and greater in magnitude when compared to the equivalent parameters for B1yr, reinforcing the 297 

hypothesis that infrequent fires can be more damaging than annual fires (Balch et al., 2008). 298 

The characteristic species in each group conform to what we expected (see details in 299 

Appendix 4). For instance, among the characteristic species of each group, the highest proportion 300 

of pioneer species was found in the group that was more abundant at the edge of the forest (i.e., 301 

group 4). In particular, three of the characteristic species of group 4 were Mabea fistulifera, 302 

Cecropia palmate, and Schefflera morototoni, all of which are commonly found along forest 303 

edges, in early successional states or in open habitats (Lorenzi, 2000, Sposito &  Santos, 2001). 304 

Similarly, the characteristic species of groups 1 and 2 tended to have thicker bark than the 305 

characteristic species from groups 3-5 (see Appendix 4), potentially explaining why these two 306 

groups were more resistant to annual fires.  307 

 308 

“Block” experiment 309 

 310 

The model without any covariates also identified 5 main groups, representing 311 

approximately 95% of all the trees. Based on 5 groups, the LDAcov model revealed that, while 312 

the first fire seems to have decreased the abundance across all groups, these effects were not 313 

significant. On the other hand, the parameters associated with the second fire were generally 314 
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more negative than those from the first fire, with significant effects observed for groups 1, 2 and 315 

5 (Table 2). These results suggest that the second fire was substantially more severe than the first 316 

fire, perhaps as a result of trees already being weakened by the first fire. Finally, fuel addition 317 

generally tended to have a negative effect on abundance, but this effect was only statistically 318 

significant for group 5 (Fig. 4). 319 

The characteristic species in group 5 were all understory species (i.e., species that tended 320 

to have individuals with smaller diameter), which might explain why this was the only group that 321 

was affected by both the second fire and fuel addition (see details in Appendix 4). Furthermore, 322 

similar to the results found for the “Big-plot” experiment, the characteristic species of groups 3 323 

and 4 tended to have thicker bark when compared to the characteristic species of the other 324 

groups, helping to explain why these two groups were not significantly impacted by any of the 325 

fires or fuel addition (see Appendix 4). 326 

 327 

Discussion 328 

 329 

In this article, we have described LDAcov, a novel model that can provide inference and 330 

prediction by embedding a regression structure within the standard LDA model. We illustrate the 331 

use of this model on data from two fire experiments in the Brazilian Amazon, enabling inference 332 

on how fragmentation and fire jointly affect species composition of these forests. It is important 333 

to note that, because LDAcov is a type of unsupervised method, it is much more challenging to 334 

evaluate the quality of its results when compared to supervised methods (James et al., 2013). For 335 

this reason, we validate LDAcov by determining how well its results based on the fire 336 

experiments data are corroborated by earlier findings using different methods.  337 
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 338 

Fire effects on plant assemblages 339 

 340 

Based on the data from the “Big-plot” experiment, our finding of increased impact on 341 

species composition associated with B3yr when compared to B1yr is corroborated by two 342 

important processes studied at the same experiment. The longer intervals between fires in the 343 

B3yr treatment enabled fuel buildup (Balch et al., 2015) and two of the fire events on the B3yr 344 

coincided with drought years (2007 and 2010) (Brando et al., 2014). More fuel in drier 345 

conditions resulted in increased burned area and higher fire intensity, particularly along the forest 346 

edge neighboring an agricultural field, ultimately leading to higher post-fire tree mortality, 347 

higher losses in aboveground live biomass (Brando et al., 2014) and increased grass invasion 348 

(Silverio et al., 2013). Based on data from the “Block” experiment, we find that fuel addition 349 

tend to decrease the abundance of all groups, but that this effect was only significant for a single 350 

group with understory characteristic species. These results are corroborated by the finding that 351 

fuel addition resulted in increased burned area and flame height, but not fireline intensity 352 

(Brando et al., 2016; Paolucci et al., in prep.). Nevertheless, this experiment clearly reveals that, 353 

while a single understory fire might not substantially change species abundance, subsequent fires 354 

can have strong impact on plant assemblages, especially for small-sized species and species with 355 

thin bark. Taken together, these results reveal the compounding impacts of multiple fire events 356 

and fragmentation, a scenario commonly found across the southern edge of Amazon (Brando et 357 

al., 2019a). The burned area in the region is projected to double in the next three decades 358 

(Brando et al., 2020), and the differential impacts of fire along forest edges on forest species 359 

composition can contribute to the degradation of these forests.  360 
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 361 

Comparison to other methods 362 

 363 

One model that also incorporates covariates within LDA is called Structural Topic Model 364 

(STM). In STMs, a multinomial regression is embedded within LDA to enable the use of 365 

covariates (Mimno &  McCallum, 2008, Roberts et al., 2016). LDAcov differs from STM in that 366 

it is specifically focused on modeling the number of individuals in each group rather than the 367 

proportion/prevalence of individuals in each group. This is an important feature for two reasons. 368 

First, modeling the number of individuals in each group enables straight-forward interpretation 369 

of regression coefficients, an important characteristic for statistical inference. On the other hand, 370 

the coefficients from the multinomial logistic regression adopted by STMs are challenging to 371 

interpret as the relationship between the prevalence of a given group and a particular covariate 372 

depends on the slope parameter of all the other groups (see Appendix 5). Second, the number of 373 

individuals in each group is often the primary focus of ecological interest and can reveal effects 374 

that might be missed by modeling prevalence instead of abundance. For example, if fire reduces 375 

the abundance of trees in all groups equally, then the multinomial logistic regression described 376 

above would not detect a significant effect of fire because the prevalence of each group would 377 

remain the same. Similarly, if fire increases the prevalence of group 1 relative to group 2, it will 378 

not be clear if this happened because fire decreased the abundance of group 2 with no effect on 379 

group 1 or because fire increased the abundance of group 1 with no effect on group 2.  380 

Other methods also exist that cluster plots and allow for covariates (Hill et al., 2020, 381 

Woolley et al., 2019). For example, a model that is somewhat similar to LDAcov is called the 382 

Regions of Common Profile (RCP) (Foster et al., 2017, Lyons et al., 2017). This is a type of 383 
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mixture-of-regression model which groups sites that have similar species composition (hence the 384 

name regions of common profile). Within this model, a multinomial logistic regression enables 385 

covariates to influence the probability of each site being associated with a particular group. A 386 

key difference between LDAcov and RCP is that a site can only belong to a single group in RCP 387 

whereas LDAcov enables a plot to be comprised of multiple groups. This is important because, 388 

as illustrated in Valle et al. (2018), it implies that RCP will require more groups to fit the data 389 

equally well as LDA with fewer groups. Indeed, we have observed exactly this when we fitted 390 

RCP models (using the R package “RCPmod”) to our simulated data, regardless if the optimal 391 

number of groups was selected using AIC or BIC (see Appendix 3). Another important 392 

difference between LDAcov and RCP refers to the interpretability of the regression coefficients. 393 

The RCP model, similar to STM, relies on a multinomial logistic regression model and, as a 394 

result, its regression parameters are more challenging to interpret (see Appendix 5). 395 

Another promising dimension-reduction model is called Species Archetype Models 396 

(SAMs) (Dunstan et al., 2011, Dunstan et al., 2013). In these models, species are grouped 397 

according to how they respond to the covariates. We relied on the R package “ecomix” to fit 398 

SAMs. Within this package, first the optimal number of groups is identified using BIC and then 399 

uncertainty on regression parameters is estimated using a bootstrap approach based on the 400 

optimal model. Our experience has been that it can sometimes be challenging to fit these models. 401 

For example, to fit the “big plot” data, we varied the number of groups from 2 to 15 and we used 402 

the function “species_mix.multifit” to fit SAM 10 times for each number of groups. According to 403 

BIC, the optimal number of groups for these data was equal to 7. However, when examining 404 

more closely the results for the model fitted with 7 groups, we found that 3 groups were empty, 405 

suggesting that the algorithm did not find a good solution and resulting in numerical issues when 406 
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estimating the uncertainty in the regression coefficients (e.g., standard errors and p-values equal 407 

to zero).  408 

Our perspective is that the development of novel multi-species models is an area of active 409 

research and that many of the existing models (e.g., SAMs and RCPs) can generate valuable 410 

insights despite having limitations. Importantly, we believe that LDAcov will be a useful 411 

addition to toolkit of ecologists interested in making community-level inference. Future work on 412 

LDAcov could more explicitly incorporate spatial correlation, a feature that very few multi-413 

species models include (see review in Norberg et al., 2019). Furthermore, the addition of 414 

species-specific dispersion parameters in LDAcov (a feature that is implemented in a 415 

straightforward fashion in SAM) could be useful to allow for differences in spatial aggregation 416 

of different species. Finally, enabling LDAcov to accommodate for sampling artefacts (e.g. 417 

survey method, sampling effort, and season of data collection; similar to RCP) would probably 418 

be a very useful future extension for LDAcov.  419 

Determining how anthropogenic stressors (e.g., timber logging, fire, and hunting) impact 420 

biodiversity is critical for an accurate picture of ecosystems services (e.g., carbon storage and 421 

water provisioning). However, assessing these impacts is particularly challenging for 422 

biodiversity rich system because of the large number of species, requiring methods that can 423 

reduce the dimensionality of the data while also making statistically valid inference. The 424 

LDAcov was created to address this need. Together with an R package, we have added a tutorial 425 

providing step-by-step instructions regarding how to use LDAcov and interpret its results 426 

(Appendix 2). We believe that the proposed model will be useful for scientists interested in 427 

understanding and predicting how species composition of biodiversity rich ecosystems changes 428 
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along environmental gradients, particularly for gradients that arise from large-scale 429 

anthropogenic stressors (e.g., climate change, fire, forest fragmentation, and saltwater intrusion).  430 
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Figures and figure legends 545 

 546 

 547 

Fig. 1. Illustration of the two-stage approach to fitting LDAcov. First, an unconstrained LDA 548 

model is fit to abundance data 𝑛𝑙𝑠 . to estimate the optimal number of groups K and the species 549 

composition of each group 𝝓𝒌. Then, LDAcov is fitted using covariate information 𝒙𝒍 and 550 

abundance data 𝑛𝑙𝑠, yielding estimates of the regression coefficients 𝜷𝒌, the overdispersion 551 

parameter N, and the number of individuals in each species, location and group 𝑛𝑙𝑠𝑘. 552 

Descriptions for the data and parameters are displayed in blue and orange, respectively, and 553 

models have grey boxes. 554 

 555 
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 556 

Fig. 2. LDAcov is able to estimate well the number of individuals in each group and location 557 

(𝑛𝑙.𝑘) for different scenarios regarding number of species and locations. True and estimated 558 

values for 𝑛𝑙.𝑘 are displayed in the x and y axes, respectively. The 1:1 line is shown in red. Left 559 

to right panels display results of scenarios where the number of species is equal to 45, 65, and 560 

92, respectively. Top to bottom panels display results of scenarios where the number of sites is 561 

equal to 20, 40, 80 and 500 locations, respectively 562 
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 563 

Fig. 3. Model predictions of the number of trees per transect for each group and each treatment 564 

by the end of the “Big-plot” experiment (i.e., 2016). These predictions were made for the plot 565 

with B3yr. Left and right panels correspond to predictions for the forest edge and forest interior 566 

transects, respectively. Treatments refer to no fire (‘Control’), fire approx. every 3 years 567 

(‘B3yr’), and fire approx. every year (‘B1yr’). Error bars are 95% credible intervals. 568 
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 569 

Fig. 4. Predicted number of trees per plot for different numbers of fire (x-axis), with (red) and 570 

without fuel addition (green). Predictions were made for the baseline plot (i.e., plot 1). Error bars 571 

are 95% credible intervals. Notice that we assume that fuel addition does not alter the control 572 

treatment. For this reason, results for zero fires with and without fuel addition are identical.  573 
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Table 574 

Table 1. Estimated slope parameters for each group. The symbols * and ** represent significant 575 

and highly significant results, respectively.  576 

 

Group 

 Variable 1 2 3 4 5 

Distance to edge  0.19* 0.51** 0.33** -0.54** 0.38** 

B3yr (fire every 3 years) -0.41* -0.38* -0.58** -0.8** -0.69** 

B1yr (fire almost every year) -0.02 -0.08 -0.64** -0.64** -0.41* 

Year 0.52** 0.51** 0.29* 0.4* 0 

Interaction: Edge x B3yr 0.03 0.05 -0.21 0.07 -0.06 

Interaction: Edge x B1yr -0.59** -0.46** -0.67** -0.69** -0.78** 

Interaction: Year x B3yr -0.16 -0.28* -0.63** -0.3 -0.44* 

Interaction: Year x B1yr -0.23** -0.31** -0.28** -0.11 -0.19* 

 577 

  578 
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Table 2. Estimated slope parameters for each group. Significant and highly significant results are 579 

emphasized * and **, respectively. 580 

  Group 

 Parameter 1 2 3 4 5 

Intercept 4.53** 4.03** 3.31** 2.39** 2.85** 

First fire -0.13 -0.14 -0.06 -0.07 -0.15 

Second fire -0.31* -0.29* -0.28 -0.24 -0.37* 

Fuel addition -0.12 -0.01 0 -0.23 -0.45** 

 581 


