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The physics that determines the line shape of the 1S-2S transition in magnetically trapped H is
explored. Besides obtaining an understanding of the line shape, one goal is to replace the dependence
on large scale simulations of H with a simpler integration over well defined functions. For limiting
cases, analytic formulas are obtained. Example calculations are performed to illustrate the limits of
simplifying assumptions. We also describe a x? method for choosing experimental parameters that
can lead to the most accurate determination of the transition frequency.

I. INTRODUCTION

One of the main goals of the ALPHA collaboration has
been to measure the 1S-2S transition in antimatter hy-
drogen, H,[1, 2] with an accuracy comparable to that in
normal matter H.[3] The motivation is to compare these
two values as a test of the CPT theorem[4]; one conse-
quence of the CPT theorem is that the transition fre-
quencies of H and normal hydrogen should be identical.
The frequency in normal matter H is known to an accu-
racy of a few Hz.[3] Currently, this transition frequency
is known to an accuracy of a few kHz in H[2] which is an
excellent achievement considering the few number of H
in the experiment and the fact that the transitions occur
in a magnetic trap which shifts the H energies.

The transition frequency in the ALPHA experiments
is obtained by comparing the measured line shape to that
obtained from a large scale simulation of the H trajecto-
ries in the modeled magnetic fields. The trajectories are
needed to understand the positions where the Hs cross
the 243 nm beam and their velocities when crossing. This
information is used to solve for the time dependence of
the H electronic states which is used to compute the tran-
sition probability for each crossing. A Monte Carlo sam-
pling of the trajectories then gives the transition proba-
bility and the probability the transition can be detected.
This simulation is a necessary, but somewhat opaque,
step in the comparison of the measured 1S-2S line shape
to what is expected assuming CPT. It is likely that the
next generation of experiments will lead to data giving an
accuracy of a few 100 Hz or better. A few obvious changes
will lead to this improved accuracy: smaller power for the
243 nm laser to reduce the AC Stark shift, larger 243 nm
waist to decrease transit broadening, colder H5| 6] to
decrease transit broadening, and more H to decrease the
statistical error bars on the line.

The purpose of this paper is to examine the physics
that determines the line shape of the 1S-2S transition in
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magnetically trapped H. One of the goals is to clarify the
role different properties of the H play in the line shape.
Another goal is to explain most aspects of the line shape
using analytic formulas that arise in simplified limits and
to show how the large scale simulations approach these
analytic formulas. A final goal is to explore a x? method
for predicting how choices for experimental parameters
affect the uncertainty in the frequency measurement.

This paper is organized as: Sec. [[] contains a de-
scription of the basic physics determining the line shape,
Sec. [[I] contains a description of how to calculate the
transition probability for one H crossing of the 243 nm
beam, Secs. contain descriptions for the line shape
when the shifts of the frequency due to a change in the
magnetic field are not (are) included, Sec. [VI| contains a
description of a method for using x2 to choose the exper-
imental parameters that would give the most accurate
frequency determination, and Sec. [VII] contains a sum-
mary of the results.

II. BASIC PHYSICS OF THE 1S-2S
TRANSITION

A. Excitation

The two photon absorption from counter-propagating
laser beams gives a transition from the 1S to the 2S state
with no first order Doppler shift. Because the lifetime
of the 2S state in zero electric and magnetic fields is
1/8.2 s, external factors (e.g. laser waist and power, H
temperature, magnetic fields, etc) mainly determine the
line shape of the 1S-2S transition. This section sketches
how to incorporate these effects.

We assume that a Gaussian beam well approximates
the light in the trap. If this assumption is violated, most
of the analytic results below will no longer be accurate,
but the results from solving the optical Bloch equations
can incorporate different laser shapes. For a description
of a Gaussian beam, we will take the z direction to be
along the beam with the x,y directions perpendicular to
the beam. The intensity at the center of one beam is


mailto:robichf@purdue.edu

Iy = 2Py /(7mw3) where Py is the power in the beam and
wp is the beam waist. The position dependent intensity
for a single Gaussian beam is

I(r,2) = Io[wo/w(2)]* exp[—2r? Jw?(2)] (1)
w?(2) = wy(1+ 2%/Z3) (2)

where r? = 22 +y? and the Rayleigh range Zr = 7w /.
For the 1S-2S transition, A = 243 nm. For counter-
propagating beams, the electric field at a position 7, z is
E = Eo[wo/w(2)] exp[—1? /w?(2)] cos[é(r, 2)+ 6] cos(wt)
which has the form of a standing wave; the spatial phase
dependence, ¢(r, z), is not relevant for our results. The
relationship between Ey and the one beam maximum in-
tensity is E2 = 81p/(goc).

The theory for this transition has been discussed in
several places; we will follow the treatment in Ref. [7].
The coupling of the 1S and 2S states proceeds through
a virtual transition to the bound nP and continuum Ep-
states. After adiabatically eliminating the p-states, the
equations governing the two-photon coupling between the
1S and 2S states are

dCis  ¢g2u? 6727’2(t)/w2efi(5257£1572th)t/h02S (3)

dt —  ihw?
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where wy, = 27 fr is the angular frequency of the laser
with fr the laser frequency. and &g — £15 is the energy
difference between the 1S and 2S states at the position
of the crossing. We will use f in all expressions for fre-
quency. Instead of computing & by summing over the
infinite number of nP states and integrating over the
continuum Ep-states, we perform the calculation with
the atom inside a spherical box so that the number of
negative energy states is finite and the continuum is dis-
cretized. If the radius of the box is sufficiently large, £ is
independent of the value of the radius. The parameter &
is
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2
e
=—— ~ 12.3¢0a
$=7% ; Eur — E15 — g~ 1230000, (5)

where aog is the Bohr radius, DasnpDppis =
Yom(28|FInPm) - (nPm|7]1S), with m the azimuthal
quantum number, and e is the electric charge. The nu-
merical value was obtained by performing the sum using
nP states whose radial wave function is zero at 30 ag.

There are several effects that are missing from these
equations which will be added or discussed below. The
main missing effects are: the AC Stark shift which arises
because the 1S and 2S states have different AC polariz-
abilities, the second order Doppler shift proportional to
the kinetic energy over the rest energy of the H, ioniza-
tion of the 2S state by a third photon, radiative decay
from the 2S state, mixing of the 2S and 2P states due to
the v x B effective electric field, etc.

The transition frequency depends on the spin coupling
of the positron and antiproton and the magnetic field.

The 1Sc,2Sc states have total angular momentum 0 in
the B-field direction while the 1Sd,2Sd states have the
two spins antiparallel to the B-field direction. Because
the 1Sc—2Sc transition has a ~ 10x larger variation with
B when B ~ 1 T, we will restrict the examples to the
15d—28d transition. The change in frequency with B is
given by[7]

d &s—&s
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for B in Tesla. The second term is from the diamagnetic
term in the Hamiltonian and causes, at larger B, a larger
variation of the transition frequency with B.

Another shift can occur due to a v x B effective electric
field causing an interaction of the 2S with the 2P states.
Using Eq. (43) of Ref. [7], this shift is

A&ys/h ~ 0.041 v Hz (7)

when B ~ 1 T and the perpendicular velocity, v, is
in m/s. For a H with a perpendicular kinetic energy of
50 mK, this shift corresponds to ~ 40 Hz which is negligi-
ble for the next level of accuracy in ALPHA experiments.
This shift can be decreased by cooling the Hs.

B. Detection

There are several processes that lead to transitions out
of the 28 state which can be used to detect the excitation.
Ordinary matter experiments|3] detect photons emitted
after excitation to the 2S state. Detecting emitted pho-
tons is probably unfeasible for H which is trapped in a
long tube. Therefore, other processes are important for
detection of the 1S5-2S transition in the ALPHA experi-
ments.

Two processes are presumed to dominate the detec-
tion in experiments reported previously.[I, [2] The first
is ionization of the 2S state by a third 243 nm pho-
ton. This can occur during the excitation process itself
or when an excited H recrosses the 243 nm beam at a
later time. The second is when the v x B effective electric
field causes mixing with 2P states where the positron has
the untrapped spin orientation. This allows a one pho-
ton emission back to the ground state into magnetically
untrapped 1S states. Both of these processes result in
annihilation on the trap wall as the detection step. Un-
fortunately, both depend on the perpendicular speed of
the H to some extent which affects the measurement of
the transition line shape. However, we will argue below
that future experiments should use substantially lower
243 nm laser power and colder Hs to achieve higher pre-
cision in the frequency measurement. In this case, nei-
ther of these mechanisms will be effective: the ionization
is proportional to the laser power and the spin flip is
proportional to the temperature.

One possibility is to impose a weak electric field which
would cause mixing between the 2S and 2P states. This



can lead to a spin flip after a one photon decay back to
the ground state. If the electric field were larger than
|v x B|, then the decay would be relatively independent
of the H position and velocity distribution. Another pos-
sibility is to stimulate transitions from the 2S to the 2Pf
state using microwaves. The 2Pf state has a large prob-
ability to decay to untrapped 1S states which lead to
annihilation on the trap walls. Microwave intensity of
~0.01 — 0.1 mW /cm? would be sufficient to make it the
dominant decay process. More importantly, the transi-
tion rate will be nearly independent of the H velocity and
position distribution. Only when the H travels to regions
of higher B-field will the transition rate change because
the frequency of the microwave transition depends on B.
However, most of the H trap has nearly the same B-field
which is why this transition will not strongly depend on
the H distribution. Thus, a benefit of both detection
methods is that the transition line shape is not distorted
by the detection process.

III. TRANSITION PROBABILITY FOR ONE
BEAM CROSSING

In this section, we give the expressions for the probabil-
ity for a transition into the 2S state when the H crosses a
Gaussian beam of intensity I(z). Because the beam has
a finite width, there is a finite time for the H to cross
the beam, leading to a line width (transit broadening)
roughly the inverse of the time to cross the beam. The
material in this section briefly summarizes the derivation
in Ref. [7].

A. Perturbative expression

When the laser is weak enough, saturation of the tran-
sition, the AC Stark shift, and ionization out of the 2S
state are negligible effects. If the atom crosses the laser
beam quickly enough, the radiative decay of the 2S state
can also be neglected. In this case, setting Cig = 1 in
Eq. is a good approximation and an integral over time
will give the amplitude to transition to the 2S state.

We are interested in the case where the beam waist
is much smaller than the scale over which the magnetic
and electric fields vary substantially. This will lead to
a position dependent detuning which we define through
hA = 2hwy, — (€35 — E15) with the 1S and 2S energies
evaluated at the point where the H crosses the beam.
Given these conditions, the H will have nearly constant
velocity so that r2(t) = b + v 2 with b the distance of
closest approach to the beam axis and v, the magnitude
of the velocity perpendicular to the beam axis. The re-
sulting integral is the Fourier transform of a Gaussian
which leads to the probability for a transition:
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Figure 1. Schematic of the excitation out of the trappable
1S-state |1) into the trappable 2S-state |4). The 2S-state pop-
ulation can decay by photon emission into the 1S-states and
by absorption of a third 243 nm photon into the p-continuum,
13).

where Af = fr, — fo with fo = (€25 — £15)/(2h) and the
waist, w, evaluated at the distance of closest approach.
In all expressions, the z dependence of the intensity and
waist, I(z), w(z) in Egs. (1)) and (2)), will not be explicitly
written for notational convenience. If the laser has a sub-
stantial linewidth, this expression needs to be convolved
with the frequency distribution of the laser as in Eq. (32)
of Ref. [7]. We will assume this is a small fraction of the
width due to the finite crossing time and not include the
linewidth of the laser below.

B. Optical Bloch equation

In the previous section, we made several assumptions
that could affect the line shape. This section will give
the equations that can be solved for a more accurate
calculation of the transition probability. We follow the
derivation of Ref. [7] by using the density matrix formal-
ism to describe the evolution of the electronic states of
the H, Fig.[1l We only include 4 states in this treatment:
|1) is the low field (trappable) 1S state which initially
has 100% of the population, |2) is a high field (untrap-
pable) 1S state which can be produced in decays from
the 2S state, |3) represents photo-ionization which re-
sults when the 2S state absorbs a third photon, and |4)
is the low field (trappable) 2S state which is reached in
the two photon transition from the 1S state. Properly
speaking, |3) is not a state but a continuum of states,
Ep; approximating photoionization as decay to a single
state can be used because we are only interested in the
total population of ionized atoms and it only enters the
density matrix equation through decay terms.

The density matrix equations are written in Lindblad
form

dp 1.~
L= —[H,0] + £(5) (9)

which leads to the following equations for the non-zero



matrix elements of p:
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where Agc = A — 2nrAfac(t) and py = p}, determines
the last non-zero element. The I'y; are the decay rates to
the different final states, I" is the sum of these rates, and
Q14 is the two-photon Rabi frequency. The two beam AC
Stark shift frequency for the 1S-2S transition is

Afac(t) = 2Te 2" /w1 67 Hy (11)

where [ is the intensity of one beam at z and r = 0 in
W /cm? and the factor 1.67 Hz is from Ref. [8]. For two
counterpropagating 1 W beams with 200 ym waist, the
Afac = 5 kHz. The two photon Rabi frequency is

16&1
Qua(t) = ?ﬁce—%ﬁ(t)/wz. (12

The total decay rate of the 2S stateis I' = I'y; +T40+T'43
where I'y1,4o is the radiative decay rate into the tra-
pable and untrapable 1S states, respectively; see Ref. [7]
for these decay rates. If a microwave or static electric
field is causing transitions from the 2S to the 2P states,
then the I'4;, 'y will be increased by factors depending
on the strength and detuning of the microwaves or the
strength and direction of the electric field. Finally, the
ionization rate out of the 2S state is

T3 = Te 2 (/w7 57 51 (13)

where I is in W/cm? and the 7.57 was determined by
numerically solving for the photo-ionization cross sec-
tion out of the 2S state from 243 nm photons. For two
counterpropagating 1 W beams with 200 ym waist, the
P43 ~ 27 4 kHz.

In the calculations below, we numerically solve the den-
sity matrix equations using I(t) and r(¢) for individual
atom trajectories.

IV. LINE SHAPE: NO MAGNETIC OR
ELECTRIC FIELDS

In this section, we give results when the shifts in tran-
sition frequency due to external E- and B-fields are ig-
nored. The perturbative transition rate can be analyti-
cally calculated for a thermal distribution of H velocity
as well as for an equal distribution of velocities within a
sphere in velocity space. The perturbative transition rate
can be reduced to a single integral when the distribution
only depends on the H kinetic energy.

A. Perturbative result

For this section, we use the perturbative calculation of
the transition probability for one beam crossing, Eq. ,
as the starting point. We then average over the H posi-
tions and velocities to get the rate for transition into the
2S state. To simplify the notation, we will combine the
terms in the probability that do not contain v, or b into
e ul

h2e2c? w?’ (14)

A=327

The rate that Hs pass the beam with a distance be-
tween b and b+ db is

F = pQDUleb (15)

where the pop is the two-dimensional H density and the
2 arises because the H can pass on either side of the beam
for a given direction ¢, . The probability distribution for
finding an H with a perpendicular speed between v, and
vy + dvg will be called v D(v, )dv, .

The rate of Hs transitioning from the 1S to the 2S state
divided by the two-dimensional H density is

G= 2A/DO e‘4b2/w2db/oo D(v, e 2mwAf /vl gy
0 0
A 20 ;
= w2ﬁ/0 D(vy e RBrwAl/vil gy (16)

Note that the G has units of area/time.

We note that this expression is somewhat problem-
atic for small A f because the perturbation calculation of
the transition probability has a factor of 1/v? which can
cause |Cag|? to be larger than 1 for small Af which is
impossible. Thus, the perturbative calculation of the line
shape will be inaccurate for small detuning. The range
of detuning where the line shape is inaccurate decreases
as the intensity decreases.

1. Thermal distribution

The results in this section reproduce those in Ref. [9]
for the special case of equal intensity in the counter-
propagating beams. The distribution of v, for a ther-
mal distribution is Dy, = (2/v3,)exp(—v? /v3,) with
v} = 2kpT/M with T the temperature and M the mass
of the H. The thermal transition rate into the 2S state is

Aw/m [ v2 2rwA f)?
Gin = T\f exp {_zl - # dvy
Uth 0 Uth vy
— 7TAweﬂfL*fo\/d’ (17)

2'Uth

where ¢ = w4, /(4mw) which gives a linewidth propor-
tional to vy, /w as expected (although the exponential of
the absolute value of the detuning is an interesting func-
tional form).



Because the perturbative calculation is problematic for
small detuning, we expect the transition rate to be mod-
ified for fr ~ fy. Therefore, the discontinuous change in
slope of Gy, (f1.) with respect to the laser frequency will
be modified for the actual transition.

When the Hs are in a trap, the v, distribution, D(v, ),
must exactly go to zero for energies that can escape the
trap. Therefore, the thermal distribution will only be
relevant for kpT much less than the trap energy. For the
reported ALPHA experimental results, the H trap depth
is E/kg ~1/2 K.

2.  Energy dependent distribution

The next case we consider is when the v distribution
arises from a distribution with respect to energy in 3D
with the velocity in the z-direction averaged out. In this
case, the D(v ) will be a function of v3. For a general
case, the integral in Eq. needs to be performed nu-
merically. Although the essential singularity at v, = 0
looks bad, the integrals over one parameter can be eval-
uated by simply increasing the number of points.

As an example that can be done analytically, consider
the early ALPHA experiments where the distribution of
Hs could be considered as the low energy portion of a
high temperature distribution. As an extreme example,
we consider the case where the velocity distribution is flat
in v, vy, v, up to the condition v > 02+ ’UZ +v2; this is
a flat distribution within a sphere in velocity space. This
gives D, = 3/v2, — 02 /v3,. Using this distribution, the
transition rate in units of area/time is

1
G = SOV [T e
Um 0

— % {(2772 + erfe(|n|) — f';;r'e"? (18)

where n = 27w (fr, — fo)/vm. As with the previous sec-
tion, this expression will be least accurate for f; ~ fy
but will become accurate over a larger range as the laser
intensity decreases.

B. Optical Bloch result

Because this section only investigates the excitation
of the 2S state, we will set the branching ratio of the
radiative decay to be 100% into the untrapped 1S state.
With this condition, the excitation rate divided by the
two-dimensional H density is

Gop = / / 203 D(v,)(1 — pr)dbdo,  (19)
0 0

where the density matrix element, p;; is evaluated at
large time for parameters b and v .
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Figure 2. The thermally averaged 1S—2S transition rate. All
results use a beam waist of 200 ym and don’t include magnetic
and electric field shifts versus detuning of the two photon
transition. The results are all scaled by a factor of 1/P§
with Py the power in one beam so that the lines are on the
same scale for different powers. The perturbative treatment,
Eq. (I7), (red solid line) does not change with intensity. The
optical Bloch results change with power: 1 W (blue dashed),
0.5 W (orange short dash), 0.2 W (green dotted), and 0.1
W (purple dash-dot). (a) and (c) are for 10 mK thermal
distribution (b) and (d) are for 50 mK thermal distribution.
Plots (c) and (d) include the AC Stark shift in the optical
Bloch equations while (a) and (b) do not.

1.  Thermal distribution

In this section, we present results from numerically
solving the optical Bloch equations and using the result
to calculate the rate, G. We solved the optical Bloch
equations, Eq. 7 using equal steps in db to sample
the crossing distance, b, and equal steps in dv, to sam-
ple the perpendicular speeds, v, . From above, the ther-
mal distribution gives D(v ) = (2/v3,) exp(—v? /v3,) in
Eq. . We performed calculations for two tempera-
tures, 10 and 50 mK, and laser powers from 0.1 to 1 W
to illustrate the limitation of the perturbative line shape,
Eq. .

In order to more easily compare the results for different
laser powers, we scaled the G by dividing by the squared
laser power. The calculations were done for a 200 pym
waist and do not include shifts from the electric or mag-
netic field in order to emphasize the effects from the AC
Stark shift and the saturation of the transition. Calcu-
lations were done for 0.1, 0.2, 0.5, and 1.0 W of power
in each beam. The results are shown in Fig. |2| where we
have suppressed the AC Stark shift in (a) and (b) but
shown the full results in (¢) and (d).

There are a few important trends that are worth not-
ing. For the calculations that suppressed AC Stark shift,
Figs.[2(a) and (b), only saturation of the 1S-2S is chang-
ing the results from perturbation theory, Eq. . The
decay of the atom while crossing the beam has a minor



02 Fre
E (b) 500 mK3
@ z | ?
o [aV) C
£ £ 01 [
8 K-
o o E
0‘07\\\ Ll Ll Ll Ll Ll
60 —40 -20 0 20 40 60
Af (kHz)
0.2 T
£ (d) 500 mK1
— — E AC E
0 Q) F
o (aY] r
£ £ 01fF
) S E
> o E
e

0.0 - —
60 -40 -20 0 20 40 60
Af (kHz)

Af (kHz)

Figure 3. Same as Fig.[2]except for a flat velocity distribution
up to the limit || = vy, with (1/2)Mv2,/kp = 100 mK for
(a) and (c) and 500 mK for (b) and (d).

effect for the parameters of these calculations. As fore-
shadowed above, saturation is more important for slowly
moving atoms which are the ones that mainly contribute
to the signal near zero detuning. The region of detun-
ing where the optical Bloch differs from the perturbative
results decreases with decreasing laser power. Unsurpris-
ingly, saturation is more important for the 10 mK Hs
than for those at 50 mK due to the larger fraction of
slow atoms. The AC Stark shift in Figs. Jc) and (d)
is the other important effect in these calculations. The
size of the shift is approximately the same for the two
temperatures because it depends on the path through
the laser beam and not the time in it. However, the size
of the shift is a factor of ~ 3.5 smaller than the esti-
mate from Eq. . For example, at 1 W, the peak in
Figs. 2c) and (d) are shifted by 1.5 kHz compared to
5.3 kHz from Eq. . The actual shift is smaller be-
cause the 5.3 kHz is the shift at the intensity maximum
whereas the Hs travel through the beam, experiencing
both large and small intensity, and they always miss the
exact center when they cross the beam so the peak inten-
sity on a particular crossing is less than the maximum.

2. Energy dependent distribution

The results in this section are for the case where there
is a flat velocity distribution within a sphere in veloc-
ity space of radius v,, and zero otherwise. This gives
D = (3/v3,)\/v2, —v? as discussed above. As with the
previous section, we numerically solve the optical Bloch
equations to obtain p;; and use Eq. to calculate the
rate.

These results are compared to the analytic, perturba-
tive expression, Eq. (18), in Fig. For this case, we
have somewhat higher H energies than the previous sec-
tion because previous experiments, Ref. [I} 2], have a trap

depth of ~ 1/2 K which matches Figs. [3[b) and (d). The
shape of the rate versus frequency is qualitatively similar
to the previous results. There is a similar cusp feature
for the calculations that do not include the AC Stark
shift, Figs. [3{a) and (b). As with the previous section,
the AC Stark shift, Figs. [3{(c) and (d), gives a &~ 1.5 kHz
displacement of the peak position for 1 W power in one
beam.

The width for the 100 mK case in Fig. [3] has approx-
imately the same width as the 50 mK in Fig. 2] within
10%. This is because the flat distribution within a sphere
is missing the higher energy H’s which broaden the line.
Although the line shapes are similar, the thermal distri-
bution falls faster at smaller detunings and then slower
at larger detuning reflecting the difference in shape of a
thermal and a flat distribution with respect to speed.

V. LINE SHAPE: NONZERO MAGNETIC
SHIFT

In this section, we give results when the shifts in tran-
sition frequency due to magnetic fields are included. The
perturbative transition rate can be calculated analyti-
cally for a thermal distribution and power law potential
and reduced to a single integral for a distribution which
is equally likely for energy less than a limit. If the dis-
tribution only depends on the energy, the perturbative
transition rate can be reduced to a two dimensional in-
tegral.

The main idea in this section is that the probability
for crossing the beam at a position, z, depends on the
trapping fields and will be represented by a probability
distribution of the H’s, P(z). The shift in the transition
frequency depends on the magnetic field at the position
z as well. By convolving these effects with the transition
rate as a function of z, the overall transition rate, J, can
be calculated. As with the previous section, the J will
have units of area/time.

If the v, distribution does not depend on z, then the
transition rate only has a z dependence through the tran-
sition frequency, fo(z): G(fr — fo(z)). There are distri-
butions where the v, distribution does depend on z in
which case we will indicate the extra parametric depen-
dence as G(fr, — fo(2), z). An example of this is a distri-
bution which is flat in velocities and z for F < FE,, and
zero for £ > FE,,. The overall transition rate is then

J = /g(fL — fo(2),2)P(2)dz (20)

where the integral is over the region where P(z) is
nonzero.

A. Perturbative result

For weak lasers where the perturbative result is ac-
curate, the rate can be calculated from Eq. when



given the v, distribution, D(v, ), at the position z. For
the two special cases treated in the figures above, ana-
lytic expressions, Egs. and , are available. For
a general position distribution, P(z), and magnetic field,
B(z), the overall transition rate will result from a one-
dimensional integration, Eq. .

For the next two subsections, we assume that the mag-
netic field has a simple form

B(z) = By + B,z (21)

with v an even integer to give an effective potential en-
ergy that traps the H in z. In Sec. we discuss more
physical magnetic fields.

1. Thermal distribution: power law potential and shift

In this section, we assume the H distribution is from
a thermal distribution in velocity and position. In this
case, the v, distribution is independent of z resulting in
the transition rate in Eq. . The position distribution
is

Pun(2) = CePrbes" (22)

where p is the magnetic dipole moment of the 1Sd state,
C = v(BuB,)"/[2'(1/v)], B = 1/(kgT) and T(z) is
the Gamma function. Because p will always be multi-
plied by 3, which typically won’t be very well known,
the magnetic dipole moment of the electron can be used.
The constant in front of the exponential gives a normal-
ized position distribution. In terms of z, the transition
frequency versus z can be found from Eq. @ to give

fo(z) = fO(O) + fuz” + f21/22u (23)

where fy(0) is the frequency evaluated at B = By, f, =
(93.035 + 387.678By) B,, kHz, and fy, = 193.839B2 kHz
where By is in Tesla and B, is in Tesla/meter” (to avoid
the symbol T which could be confused with tempera-
ture). Putting together with Eq. 7 the overall transi-
tion rate is

o0
/ we—|AF—fuz" =222 /6~ BuBL2" g
— 00

(24)
where ¢ = vy, /(drw), Af = fr — fo(0), and the z-
dependence of the waist, w(z), is from Eq. . For
the typical cases in the ALPHA experiment, the waist
is 200 pum giving Zr = 0.52 m. The z-dependence in
the waist will lead to errors of ~1% in J and, therefore,
we will ignore this dependence. Even with this approx-
imation, we have not found an analytic expression for
Eq. and evaluated it numerically.
For low temperatures, the H can not reach magnetic
fields substantially larger than By. In this case, the con-
tribution from fs, 22" is negligible and the integral can

be evaluated analytically. For fs, =0,

woA 1/,
jth(Af<O):L 0 741_/ eAT/¢
2uyy,

mwoA 1, T(1/v,t

Tala] > 0) = T8 (F(/l/y)*)eﬂf/m
Twod 1/, Y(1/Vt2) _Af/e
2um -~ L(/v) 25)

where 7+ = BuB,/[BuB, £ (f./9)], t+ = [BuB, £
(fu/®)]28, and f,z8§ = Af = fr — fo(0) defines the posi-
tion where the detuning is zero. The incomplete gamma
functions are defined as

I‘(s,x):/ tstetdt (26)

while the possibility for {_ < 0 leads to the generalized
definition

F(1/v,t- > 0) = /t tAM=te=tgt = T(1/v) = T(1/v,t_)
0

/v

A1 /v,t- <0) = 1//0 e du

s ()"

= vt Z nl(nv+1) @7

where the 1/(BuB, — (f,/¢))*" in Eq. from the 7_

cancels the same term in the t/* from Eq. when
t_ <O.

2. Energy dependent distribution: power law potential and
shift

In this section, we examine the case where there is a
flat distribution in vs,vy,v;,2 with the condition that
E < E,,. This is similar to the condition in Sec. [VAZ]
but accounting for the potential energy along z. For this
case, we can use the result in Eq. that analytically
includes the averaging over impact parameter and v in
the z-convolution, Eq. . In this case, the v, depends
on z: Mv? (2)/2 = E,, — u[B(2) — By]. The probability
distribution is

zf -1
P(2) = 03 (2) {/ vfn(z’)dz/} for zop < z < z¢

(28)
where the v, (20) = vm(zy) = 0. Using the simplified
B(2) from above gives zf = —zy = [E,,/(1B,)]'/* and

1
2z oF (=3, 114151

= 2F(% + %) v13/2
T 3yar(1+ L)z, [1—(2/2¢)"] (29)

Pon(2) [ (2/2p)"?
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Figure 4. Similar to Fig. except for Eq. which includes
the frequency shifts due to a magnetic field of the form B(z) =
Bo + Bgz%. The red solid line does not include the AC Stark
shift and was computed using Eq. (24). The other line types
match the laser powers in Fig. The By = 1.0 Tesla are
plotted in (a) and (b) while the 0.1 Tesla are in (c) and (d).
The T' = 10 mK are in (a) and (c) while the 50 mK are in (b)
and (d). All calculations include the AC Stark shift.

Unfortunately, we have not found an analytic expression
for the convolution

T =2 / L Gl — fo(2), 2)Pu(2)dz (30)

However, the average rate can be easily evaluated numer-
ically because it is a one dimensional integral.

B. Optical Bloch result

As with Sec. [VB] the full calculation of the line
shape uses the G, from Eq. in the convolution of
Eq. . The AC Stark shift is included in all of the
calculations in this section. For all calculations, we use
Eq. with By = 0.1 or 1 Tesla and v = 6 with
Bg = 0.5/0.125 Tesla/mS. This gives a variation in z very
similar to that in the ALPHA trap along the beam axis.
To date, the ALPHA experiments have By &~ 1 Tesla.

1. Thermal distribution

We present results, in Fig. 4l from numerically solving
the optical Bloch equations for different H temperatures
and laser powers. In addition, we changed the value of
By from 1.0 Tesla in Figs. [f{a) and (b) to 0.1 Tesla in (c)
and (d). These calculations illustrated a few trends that
will be important for future measurements.

The frequency shift from the magnetic field breaks the
symmetry of the line so that the decrease with positive
detuning is slower than for negative detuning. This ef-
fect increases with By because the frequency shift with
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Figure 5. Similar to Fig. except for Eq. which includes
the frequency shifts due to a magnetic field of the form B(z) =
Bo + Bgz%. The red solid line does not include the AC Stark
shift and was computed using Eqs. . The other line types
match the powers in Fig. The By = 1.0 Tesla are plotted
in (a) and (b) while the 0.1 Tesla are in (c) and (d). The
E,, =100 mK are in (a) and (c) while the E,, = 500 mK are
in (b) and (d). All calculations include the AC Stark shift.

magnetic field, Eq. @, increases with By. This leads to
larger width for larger By. The increase of dAE/dB with
B is due to the diamagnetic term in the Hamiltonian for
the 1Sd-2Sd transition. The dAFE/dB is roughly four
times larger for 1.0 Tesla compared to 0.1 Tesla. De-
creasing the magnetic field further gives some decrease
in dAE/dB, but the effect is not so large: only ~30%
change going from 0.1 Tesla to 0 Tesla. As with the cal-
culations in Fig. [2] saturation of the transition and AC
Stark shift plays an increasing role in going from 0.1 W to
1.0 W. The saturation causes a suppression in the region
of the peak which leads to a more rounded maximum
for the line shape at higher power. The AC Stark shift
moves the peak position by a somewhat larger amount,
~ 1.9 kHz, possibly due to the slower decrease for posi-
tive detuning. Lastly, the fo, term in the frequency shift,
Eq. , did not contribute a noticeable effect to the line
shape because the largest effect is for large z where the
detuning is large and the transition rate varies slowly
with Af. Thus, the approximation Eq. works well
for these cases at small power.

2. Energy dependent distribution

Similar to the previous section, we present results, in
Fig. |5l from numerically solving the optical Bloch equa-
tions for different H cutoff energies and laser powers. In
addition, we changed the value of By from 1.0 Tesla in
Figs. [5(a) and (b) to 0.1 Tesla in (c) and (d).

The results in this section hold similar lessons as the
previous sections. For example, the magnetic field leads
to an asymmetry in the line with the asymmetry increas-



ing with increasing By. The AC Stark shift is somewhat
larger than the case for no shift with B-field: ~ 2 kHz
for 1 W of power. Also, a larger cutoff energy leads to a
broader linewidth with the effect somewhat smaller for a
thermal distribution at the temperature.

3. More complex cases

For the ALPHA experiment, the magnetic field does
not have the simple power law dependence of the previous
sections. Thus, there aren’t simple analytic formulas that
can be developed for ALPHA. However, the results in the
previous sections point to the possibility that the exten-
sive numerical simulations used in previous studies[T], 2]
are not necessary. When three conditions are satisfied,
the line shape can be determined by integration: 1) the
distribution of trajectories is approximately known, 2)
the laser is sufficiently weak that AC Stark shifts and
depletion of atoms are negligible, and 3) the detection of
H’s do not depend on the frequency, Af. The Eqs. (16))
and are used with the known spatial dependence of
the magnetic field to obtain the line shape. If the AC
Stark shifts are non-negligible but there is little deple-
tion of atoms, then the optical Bloch equation can be
used so that Egs. and will give the line shape.

In fact, the Fig. b) is for similar parameters for the
ALPHA experiment.[I, 2] A comparison with the figures
from these papers shows a strong similarity with the 1 W
example.

We carried out a calculation for a 50 mK thermal dis-
tribution of Hs in the actual ALPHA magnetic fields. We
simulated their motion as in Refs. [T, 2] and their tran-
sition using the optical Bloch equations. The only dif-
ference with the usual calculation was artificially setting
the detection efficiency to be independent of the H posi-
tion and velocity. We also assumed the H population was
not depleted which isn’t the case in the experiments. We
compared this result to that using the G, from Eq.
in the convolution of Eq. . We found perfect agree-
ment in this case. This comparison shows our results can
be extended to more complex magnetic fields.

VI. OPTIMUM PARAMETERS

In this section, we discuss how various parameters af-
fect the accuracy of the 1Sd—2Sd frequency measurement.
We will first address some of the more obvious parame-
ters (e.g. laser power and waist, uniform B-field value,
etc.) by discussing the trends in the line width. We will
then show that the predicted x2 is useful for assessing
less obvious parameters (e.g. the number of frequencies
and their values in a measurement).

To orient the discussion, note the current uncertainty
of the H 1Sd-2Sd measurement is at the few kHz level.
Clearly, the immediate goal is to improve this to the few

100 Hz level with a long term goal to reach the few Hz
level.

Laser power: In H experiments, the AC Stark shift
for 243 nm laser at ~ 1 W is 1-2 kHz and is not cur-
rently the controlling factor in the uncertainty. To reach
uncertainties that are at the few 100 Hz level, the laser
power should be decreased by at least an order of mag-
nitude since the AC Stark shift is proportional to the
laser power. Also important, high laser power leads to
a large fraction of the atoms transitioning to the 2Sd
state. Because the transition is detected by H that are
ejected from the trap, the characteristics of the H pop-
ulation (i.e. position and velocity distribution) changes
when there is a large probability for a transition. This
is problematic because detailed modeling of the popula-
tion becomes necessary when a substantial fraction of the
atoms are ejected.

Laser waist: The line width is mainly from the finite
time for an H to cross the laser beam, i.e. transit broad-
ening. By doubling the waist, this contribution to the
line width will decrease by a factor of 2. This leads to a
more accurate determination of the transition frequency.

H temperature: At lower temperature, the H requires
more time to cross the laser beam leading to smaller con-
tribution to the line width from transit broadening. Also,
at lower temperature, the H can not reach as large B-
field which also decreases that contribution to the line
width. Finally, shifts from the v x B effective electric
field, are proportional to the temperature. Laser cooling
of H has been demonstrated[6] as well as the effect on the
line width. After laser cooling, trap depths of ~ 1/2 K
are not necessary. This would allow for a controlled de-
crease in the depth of the trap. A slowly decreased trap
depth leads to adiabatic cooling which further improves
the measurements.

Uniform B-field: The size of By affects the line width
through the diamagnetic term in the 1S and 2S energies.
For larger By, the change in frequency with changing B-
field is larger which leads to a larger line width. The cur-
rent experiments typically occur with By ~ 1 T because
the plasmas used to make H are colder, more stable, and
easier to diagnose at large By. It is possible to form H at
~ 1T and later ramp By to lower values. The difficulty
with ramping the magnetic field is to precisely know the
final value due to persistent currents. Thus, there is in-
centive to keep By ~ 1 T. Fortunately, from Fig. [4] and
[l although there is a change in the line width in going
from By =1 to 0.1 T, the change is less than a factor of
2. Thus, from the perspective of line width, there may
not be enough gained by decreasing By.

x? treatment: There are other parameters that affect
the accuracy of the measured 1Sd-2Sd transition fre-
quency but are not as obvious. For example, given 9
frequencies to measure the transition, which frequencies
should be chosen? Or, would it be better to use 9 or 17
frequencies to measure the line? How does the presence
of background atoms affect the accuracy of the frequency
determination? In these cases, we propose to use the x?
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Figure 6. Calculations with 9 frequencies are (red solid) for
spacing 1 and (blue dashed) for spacing 1/2. Calculations
with 17 frequencies are (orange short dash) for spacing 1 and
(green dotted) for spacing 1/2. All calculations were for N =
1000 transitions.

of a calculated line shape to guide these choices.

For this discussion, we will use the form in Eq.
with the parameters of Fig. b) as the exact transition
and will briefly investigate the role played by the fre-
quencies chosen in the measurement. We will have ny
frequencies with A f;. We will also include the possibil-
ity that all transitions are shifted by J f. We can compute
a synthetic line by using Monte Carlo to randomly deter-
mine the number of atoms, N;(df), to make a transition
at frequency Af; for a fixed total number N. On av-
erage, this leads to N;(Jf) atoms making the transition
with

N;(6f) = NTn(Af; + 1)/ > Tn(Af; +6f)  (31)

J

with IV the total number of atoms making the transition.
We computed a x? by averaging over many different re-
alizations of the Monte Carlo simulation

K = (321N, (0) = N5 (0)1%)/N,(0)
=g =14 3 IN(0) = NyGHIP/N;0) - (32)

where the (...) on the first line means to average over the
different realizations and the second line is from Poisson
statistics. Because we fix N, the number of degrees of
freedom is ny — 1.

In Fig. @ we use the x? to see how choices for the fre-
quencies can affect the accuracy for which the transition
is determined. Instead of allowing all detunings to be
freely varied, we started with a symmetric choice simi-
lar to that used in an ALPHA experiment. We did four
choices for the frequencies. Spacing 1 for ny = 9 were the
frequencies Af; = 0,£5,£10, 420,450 kHz while spac-
ing 1/2 divided every frequency by 1/2. Spacing 1 and
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1/2 for ny = 17 also used the frequencies halfway between
those for ny = 9, i.e. Af; = 0,£2.5,£5,£7.5,... kHz.
For 8 degrees of freedom, x? ~ 20 corresponds to a p-
value of 0.01 while this corresponds to x? ~ 32 for 16
degrees of freedom. Visually, it is clear that the spacing
1 calculations give slightly greater curvature and there-
fore modestly better bounds on the uncertainty in the
frequency. To compare 9 versus 17 points, the p-value
of ~ 0.01 corresponds to 6f ~ —1.5,1.6 for ny = 9 and
0f ~ —1.8,1.8 for ny = 17 which means the ny = 9
will give a somewhat better bound on the transition fre-
quency. More importantly, this suggests using x? as a
metric for choosing the number and values for the fre-
quency.

As a simple extension, we use the ideas of this section
to estimate parameters needed to get to few 100 Hz accu-
racy. If the laser waist is increased from 200 to 400 pm,
the uncertainty decreases by a factor of 2. Increasing the
number of detected H’s from 1,000 to 4,000 decreases the
uncertainty by another factor of 2. These two improve-
ments with the estimate from the previous paragraph
leads to a few 100 Hz accuracy.

This example is somewhat artificial because the H tem-
perature may not be well known even if the distribu-
tion is approximately thermal. In this case, the x2? can
be calculated versus T" and §f. We have done this for
the ny = 9, spacing 1 case and found that the X2 gave
30 < T < 80 mK (compared to 50 mK of the actual
distribution) with the range of §f similar to that found
above. This showed that a simultaneous fit could give
reasonable results. The example is also artificial in that
we did not include the effect of frequency independent
background atoms; the background atoms will somewhat
increase the uncertainty in the frequency but should not
skew the results. Finally, in the real experiment, the
detection efficiency could depend on the frequency of ex-
citation, Af;, which would skew the results. We have
not treated the change in line shape due to detection ef-
ficiency but it can be incorporated into our treatment
if it is known. These artificial conditions can be eas-
ily removed in the numerical implementation of the x?
method. We have not done so here because they depend
on specific aspects of future experiments.

VII. SUMMARY

We have examined some of the physics that determines
the line shape of the 1Sd-2Sd transition in magnetically
trapped H. Under three assumptions (the distribution
of trajectories is approximately known, the laser is suffi-
ciently weak that AC Stark shifts and depletion of atoms
are negligible, and the detection of H’s do not depend
on the frequency, Af), the line shape can be calculated
as an integral over a few degrees of freedom. If the AC
Stark shift is not negligible, solutions from optical Bloch
equations can be used in these integrals. In either case,
large scale, detailed simulations of the trajectories would



not be needed to obtain the line shape. We presented
analytic expressions for the transition rates for special
cases of the H distribution and magnetic field.

We discussed several of the trends that control the ac-
curacy with which the transition frequency can be deter-
mined. These include parameters such as H distribution,
laser waist and intensity, uniform B-field, number and
choice of frequencies sampled, and others. We also pro-
pose the use of a x? test to optimize the choices for these
parameters. From the discussions above, it seems that
modest improvements in the ALPHA experiment could
increase the accuracy of the 1S-2S transition by an order
of magnitude.

Further exploration is needed to project the best path
to reach accuracy comparable to that in experiments on
normal matter H. Table 3 of Ref. [2] gives the sizes of
various sources of uncertainties in the 1S-2S transition
frequency. Statistical uncertainties (Poisson errors and
curve fitting) and modeling uncertainties were the largest
sources at 3.8 and 3 kHz respectively; these were ad-
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dressed above. The next largest uncertainty was laser
frequency stability at 2 kHz; this can be decreased to the
several Hz level by using a different stabilization method.
The next largest uncertainty was the absolute magnetic
field measurement at 0.6 kHz; this can be decreased by
decreasing the size of the magnetic field, Eq. @, or
through a more accurate determination of B. The next
largest uncertainty is from the discrete choice of frequen-
cies at 0.36 kHz; this was addressed in Sec. [VI} The next
largest uncertainties were DC-Stark shift, at 0.15 kHz,
and second order Doppler shift at 0.08 kHz; these can
be decreased by using colder Hs since they both are pro-
portional to the kinetic energy, in fact, using Ref. [6] we
estimate these will decrease by a factor of ~ 10 with
already demonstrated laser cooling. Of these, the most
problematic uncertainty could be from Poisson errors be-
cause it will require a couple order of magnitude increase
in the number of Hs to decrease the Poisson errors to the
several Hz level.

Data used in this publication is available at [I0].
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