

1 **Sympathetic cooling of positrons to cryogenic temperatures for antihydrogen**
2 **production**

4 C.J. Baker¹, W. Bertsche^{2,3}, A. Capra⁴, C.L. Cesar⁵, M. Charlton¹, A. Cridland Mathad¹, S. Eriksson¹, A. Evans⁶,
5 N. Evetts⁷, S. Fabbri², J. Fajans⁸, T. Friesen⁶, M.C. Fujiwara⁴, P. Grandemange⁴, P. Granum⁹, J.S. Hangst⁹, M.E.
6 Hayden¹⁰, D. Hodgkinson², C.A. Isaac¹, M.A. Johnson², J.M. Jones¹, S.A. Jones⁹, S. Jonsell¹¹, L. Kurchaninov⁴,
7 N. Madsen¹, D. Maxwell¹, J.T.K. McKenna⁹, S. Menary¹², T. Momose⁷, P. Mullan¹, K. Olchanski⁴, A. Olin⁴, J.
8 Peszka¹, A. Powell⁶, P. Pusa¹¹, C.Ø. Rasmussen¹⁴, F. Robicheaux¹⁵, R.L. Sacramento⁵, M. Sameed², E. Sarid¹⁶,
9 D.M. Silveira⁵, G. Stutter⁹, C. So⁶, T.D. Tharp¹⁷, R.I. Thompson⁶, D.P. van der Werf¹ and J.S. Wurtele⁸ (The
10 ALPHA Collaboration)

12 ¹ Department of Physics, College of Science, Swansea University, Swansea SA2 8PP, UK.

13 ² School of Physics and Astronomy, University of Manchester, Manchester M12 9PL, UK.

14 ³ Cockcroft Institute, Sci-Tech Daresbury, Warrington WA4 4AD, UK.

15 ⁴ TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada V6T 2A3.

16 ⁵ Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972, Brazil.

17 ⁶ Department of Physics and Astronomy, University of Calgary, Calgary AB, Canada T2N 1N4.

18 ⁷ Department of Physics and Astronomy, University of British Columbia, Vancouver BC, Canada V6T 1Z1.

19 ⁸ Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300, USA.

20 ⁹ Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark.

21 ¹⁰ Department of Physics, Simon Fraser University, Burnaby BC, Canada V5A 1S6.

22 ¹¹ Department of Physics, Stockholm University, SE-10691, Stockholm, Sweden.

23 ¹² Department of Physics and Astronomy, York University, Toronto, ON M3J 1P3, Canada.

24 ¹³ Department of Physics, University of Liverpool, Liverpool L69 7ZE, UK.

25 ¹⁴ Experimental Physics Department, CERN, Geneva 1211, Switzerland.

26 ¹⁵ Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA.

27 ¹⁶ Soreq NRC, Yavne, 81800, Israel, and Department of Physics, Ben Gurion University, Beer Sheva
28 8410501, Israel.

29 ¹⁷ Physics Department, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA.

30 **Abstract:**

33 **The positron, the antiparticle of the electron, predicted by Dirac in 1931 and
34 discovered by Anderson in 1933, plays a key role in many scientific and everyday
35 endeavours. Notably, the positron is a constituent of antihydrogen, the only long-
36 lived neutral antimatter bound state that can currently be synthesised at low
37 energy, presenting a prominent system for testing fundamental symmetries with
38 high precision. Here, we report on the use of laser cooled Be⁺ ions to
39 sympathetically cool a large and dense plasma of positrons to directly measured
40 temperatures below 7 K in a Penning trap for antihydrogen synthesis. This will
41 likely herald a significant increase in the amount of antihydrogen available for
42 experimentation, thus facilitating further improvements in studies of
43 fundamental symmetries.**

45 The positron (e⁺) plays a unique role in physics. As the most readily available
46 antiparticle, it had a significant role in the development of relativistic quantum
47 mechanics. Its discovery¹ confirmed the landmark predictions made by Dirac². Its
48 availability from radioactive sources meant that it quickly entered the laboratory,
49 where tools such as positron annihilation spectroscopy are used for studies of materials
50 and defects^{3,4}. Positrons also play a key role in medical physics, *e.g.*, positron emission
51 tomography can be used to study biological processes *in vivo*⁵. A positron can form

52 positronium, a short-lived hydrogen-like bound state with an electron, with annihilation
53 limiting the lifetime⁶. This system is a unique, purely leptonic bound state that can be
54 used for tests of fundamental symmetries⁷ and is also vital in the study of materials. The
55 key motivation for the study presented here is that positrons and antiprotons can form
56 antihydrogen, either via charge exchange from positronium or via a three-body
57 reaction^{8,9,10}. Antihydrogen, which does not appear to occur naturally, is a powerful tool
58 for studying fundamental physics¹¹. As an example, we recently found that the 1S-2S
59 transition energy in antihydrogen agrees with that in hydrogen to a level of 2×10^{-12} , the
60 most precise and accurate comparison of hydrogen and antihydrogen to date¹².

61

62 A cold, non-neutral plasma of positrons is a crucial ingredient in the only successfully
63 demonstrated method for producing trappable antihydrogen. Synthesis occurs by
64 merging a cold (< 20 K) cloud of positrons with a cold cloud of antiprotons¹³. For
65 merging, both species are confined in a cryogenic (~ 7 K) Penning-Malmberg trap, where
66 radial confinement is secured by an axial magnetic field, and axial electric fields are
67 used to confine and manipulate the charged particles along the length of the trap (Figure
68 1). Experimental and theoretical evidence^{13,14} suggests that in the parameter range of
69 current experiments, as opposed to previous ones¹⁵, antiprotons tend to thermally
70 equilibrate with the positrons before antihydrogen is formed during this merging. A
71 consequence is that the temperature of the nascent antihydrogen will be that of the
72 positron plasma. Since, typically, only the tail of the thermal distribution of the formed
73 antihydrogen has low enough energy to be trapped ($\lesssim 0.5$ K), achieving a lower positron
74 temperature becomes the cornerstone of improving antihydrogen synthesis and
75 trapping. Here, we report on the use of laser cooled Be^+ ions to sympathetically cool a
76 positron plasma to cryogenic temperatures (~ 7 K) below those achievable by cyclotron
77 cooling in our trap (~ 17 K). The resulting positron density and number are comparable
78 to those used for antihydrogen synthesis, and our result thus paves the way for a
79 significant increase in the number of trappable antihydrogen atoms.

80

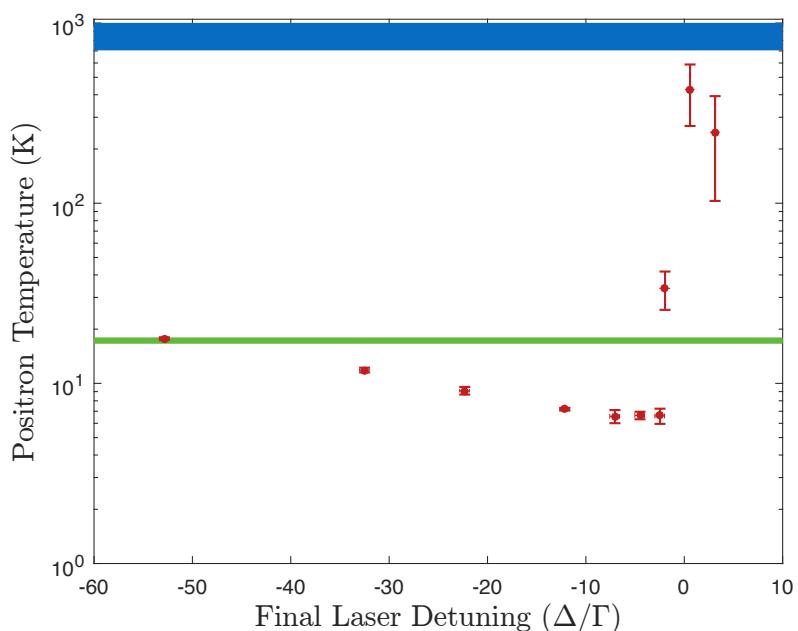
81 Be^+ is the lowest mass ion that is laser-coolable from the ground state, and is therefore
82 widely used for sympathetic cooling (e.g. Refs. 16 and 17). Experiments in 2002
83 demonstrated sympathetic cooling of a small quantity of positrons ($\sim 5 \times 10^3$) by laser
84 cooled Be^+ ions in a 6 T Penning trap¹⁸ in which the ratio of ions to positrons was
85 1000:1. For antihydrogen formation and capture in our apparatus, millions of positrons
86 and lower magnetic fields (~ 1 T) are needed, and antiproton capture by Be^+ ions needs
87 to be minimised, such that a realistic Be^+/e^+ ratio has been estimated¹⁹ to be 1:10.
88 Additionally, the geometry and cryogenic nature of the antihydrogen trap require that a
89 Be^+ ion source cannot be placed closer than about 1.2 m from the trap centre, and that
90 laser access is limited to be essentially on-axis and in one dimension (Figure 1). These
91 constraints currently also limit our solid angle for observing laser-induced fluorescence
92 from trapped ions to be $\sim 10^{-6}$ Sr.


93

94 Figure 1 shows the layout of the experiment. The Be^+ ions are produced by ablation of Be
95 metal using a 355nm, pulsed (6.3 ns) laser having $\sim 75 \mu\text{J}$ per pulse (fluence $\sim 3 \text{ J cm}^{-2}$)²⁰.
96 The resulting pulse of Be^+ ions is dynamically captured in the left part of the trap system
97 (Figure 1) by using a blocking potential around the centre of the trap and rapidly
98 switching the potential on the first (left-most) electrode. Subsequently, the ions are
99 moved to the axial central region, where there is optimal physical overlap with the
100 313nm cooling laser. The system for laser cooling is a Toptica TA-FHG pro, frequency
101 locked to a HighFinesse WS8-2 wavemeter. The laser beam is transported through air
102 from a nearby laboratory and injected into the apparatus along a path that is at 2.3° to
103 the central axis. Typically, 6 mW is injected. The beam radius (waist) is about 1.2 mm at
104 the location of the ions. Fluorescence from the ions can be observed along a similar path
105 that is azimuthally rotated by 180° with respect to the laser path (Figure 1). Be^+ is laser
106 cooled using a laser beam, red detuned from the $2s\ ^2\text{S}_{1/2}$ ($m_J=1/2, m_l=3/2$) – $2p\ ^2\text{P}_{3/2}$
107 ($m_J=3/2, m_l=3/2$) transition. We rely on off-resonant optical pumping to transfer
108 population into the lower level. The magnetic field in the central region is $\sim 1 \text{ T}$ ²¹.
109 Positrons are transferred ballistically from a positron accumulator²² through a magnetic
110 beamline and dynamically trapped in the positron preparation region (Figure 1). After
111 selecting the number of positrons²³, we merge them with the Be^+ ions and the mixture is
112 subsequently compressed using the rotating wall technique (RW)²⁴, similar to the
113 procedures we have developed for antiproton/electron mixtures²⁵. Compression occurs
114 in the positron preparation section, where an azimuthally split electrode is located. For
115 improved compression, the axial B-field is first increased to 3T, using a short solenoid
116 (Figure 1). The mixture is subsequently moved to the central region where the Be^+ can
117 be laser-cooled. Following an experiment, the mixture can be ejected onto a
118 Microchannel Plate/Phosphor (MCP/Phosphor) imaging detector that can also be used
119 as a Faraday Cup. This allows measurement of the radial distribution of the plasmas²⁶,
120 their axial temperature²⁷ or their total charge. The axial temperature is extracted by
121 assuming that the cloud is in thermal equilibrium such that the initially released
122 particles originate from the exponential tail of a Boltzmann distribution^{27,28}. This also
123 works when the plasma is a mixture of Be^+ and e^+ , since the positron-induced signal on
124 the MCP is more than an order of magnitude larger than that of the Be^+ , and the Be^+
125 strike the MCP later due to their larger mass. The axial temperature diagnostic suffers
126 from systematic effects that include plasma cooling as the positron plasma expands in
127 the process of being released, possible radial variation in the length and temperature of
128 the plasma, and systematic errors in fitting the history of the released positrons to the
129 theoretically expected curve. As we are not concerned with absolute comparisons here,
130 we ensure relative consistency by always using the same potential well manipulations
131 for the measurements. The errors on the positron temperatures quoted here are thus
132 based on statistical variations only. The systematic effects may be as large as 50% on the
133 absolute temperature determination^{27,28,29}.

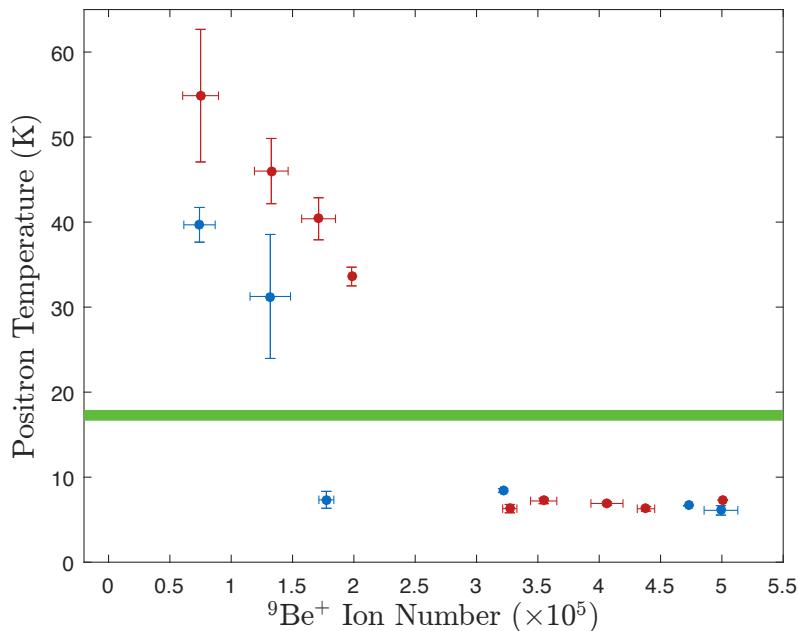
134

135


136

137
138
139
140
141

Figure 1 ALPHA trap setup with Be^+ source and cooling laser. The main solenoid supplying a 1T axial field throughout the center is not shown. The cylindrical electrodes (yellow/orange) can be individually charged to provide the axial electric fields for confinement. The central part is to scale. The short solenoids on either end can increase the axial field to 3T in those regions. The positron source and MCP/Phosphor assembly are to the right of the figure but not shown.


142 In a first set of experiments we prepared a sample of 2.6×10^6 positrons with a radius (in 1T) of 0.54 mm, representative of samples used in our antihydrogen experiments. This sample was merged with 3.8×10^5 Be^+ . The Be^+/e^+ mixture was held in the central region in a single-electrode well having an on-axis depth of 70 V. In order to efficiently cool the whole population of Be^+ , the laser was initially detuned 104Γ below the cooling transition ($\Gamma = 2\pi \times 19.6$ MHz is the natural linewidth of the transition), and then scanned in 40 s to a final detuning that was varied. The frequency scan time was optimized experimentally to obtain the lowest e^+ temperatures. Figure 2 shows the temperature of the e^+ plasma measured as a function of the final detuning. Between -7Γ and -2Γ , the e^+ temperature reaches a minimum of 6.6 ± 0.5 K, which is a factor ~ 2.6 below that reported (using an identical temperature diagnostic) for e^+ in synthesis of antihydrogen. For comparison, a Doppler dominated width (HWHM) of $7\Gamma = 140$ MHz (the detuning for onset of the temperature minima) would correspond to a Be^+ temperature of 1.5 K.

155
156
157
158
159
160
161

Figure 2 Axial e^+ temperature in a mixed Be^+/e^+ plasma measured as a function of the final detuning of the Be^+ cooling laser. The mixed plasma consisted of 2.6×10^6 e^+ , with an initial radius and density of 0.64 mm and $3 \times 10^8 \text{ cm}^{-3}$ respectively, and $3.8 \pm 0.1 \times 10^5$ Be^+ ions. The laser frequency was swept from an initial detuning of -104Γ to the final laser detuning in approximately 40 s. The error bars give the standard error of multiple measurements at each setting. The green line shows the e^+ temperature in the absence of any Be^+ ions (17.3 ± 0.5 K), and the blue line shows the e^+ temperature when the laser is blocked and the Be^+ ions are not laser-cooled. The shading around these lines indicates the standard error.

162 The measured minimum e^+ temperature is lower with laser cooled Be^+ present than it is in
 163 the absence of either Be^+ or the cooling laser, and the temperature depends on the laser
 164 detuning. Thus, Figure 2 clearly shows a sympathetic cooling effect. However, the flat
 165 minimum, and the fact that the e^+ temperature is higher than the expected ion temperature
 166 for these detunings, indicate that the sympathetic cooling saturates. We cannot exclude
 167 that we have reached the lower limit of our temperature diagnostic, but, as we discuss
 168 below, centrifugal separation of the two species at these low temperatures likely leads to
 169 the observed saturation. The temperatures extracted from those independent
 170 measurements are in agreement with those measured here. In addition, the temperature of
 171 the mixed plasma without laser cooling is significantly above those typical for e^+ in our
 172 apparatus. We believe that the higher than expected temperatures can be attributed to
 173 increased heating due to the presence of Be^+ . In equilibrium, a strongly coupled, non-
 174 neutral plasma rotates rigidly around the axis of the trap with a constant frequency³⁰. In a
 175 mixed species, non-neutral plasma the species centrifugally separate, with the more
 176 massive species accumulating at larger radius³¹. Ion plasmas are, due to their larger mass
 177 and lower axial bounce frequencies, more susceptible to field inhomogeneities and expand
 178 faster than similar lepton plasmas, the expansion being accompanied by heating [c.f. Ref.
 179 32]. In a mixed plasma, friction between the species drives the accompanying e^+ expansion.
 180 We measured the different expansion rates in independent tests (see supplementary
 181 material) and found that both Be^+ -only and mixed samples expand radially almost two
 182 orders of magnitude faster than e^+ -only samples in our parameter range.

183
 184 *Figure 3 Positron temperature as a function of the number of Be^+ ions used for sympathetic cooling. The ion number has*
 185 *been binned with the horizontal error bars representing the standard deviation of the mean ion number within each bin.*
 186 *The vertical error bars correspond to the standard error on the mean temperature within each bin. The ion number was*
 187 *varied by changing the number of ablation pulses used for loading, and also by splitting the ion plasma using axial potential*
 188 *manipulations. We used 1.4×10^6 positrons (blue points) and 2.6×10^6 positrons (red points) with initial densities of $1 \times 10^8 \text{ cm}^{-3}$*
 189 *and $3 \times 10^8 \text{ cm}^{-3}$ respectively. The cooling laser frequency was swept from an initial detuning of -129 \Gamma to a final detuning of -7 \Gamma in approximately 40 s for sympathetic cooling of the positrons. The positron temperature for 2.6×10^6 positrons with no*
 190 *ions present (green line) is shown for comparison. The shading around this line indicates the standard error. Note that the*
 191 *positron only temperature for 1.4×10^6 positrons is consistent with this temperature.*

193 As positrons are cooled through collisions with laser-cooled Be^+ ions, increasing the Be^+ to e^+
194 number ratio could improve sympathetic cooling. To investigate this, we used a fixed final
195 detuning of -7Γ while varying the Be^+ number over a large range, at fixed positron number.
196 Figure 3 shows the final e^+ temperature as a function of the number of Be^+ ions for two
197 different e^+ numbers. What we observe is that in both cases, when the Be^+ number is above
198 a threshold the sympathetic cooling is efficient, yielding a low e^+ temperature that is
199 independent of Be^+ number and consistent with the lowest in Figure 2. The threshold is
200 roughly consistent with a Be^+ to e^+ number ratio of 1:10. When the Be^+ number is too low
201 we measure e^+ temperatures above those observed without ions. The threshold behavior is
202 consistent with the simulations in Ref. 19, where it was determined that strong centrifugal
203 separation at low temperatures caused diminishing returns of further ion number increases;
204 additional ions end up at higher radii and do not contribute to cooling the e^+ . The higher
205 than expected temperatures observed with too few Be^+ indicate, as discussed previously,
206 additional heating in the presence of ions.
207

208 To investigate the Be^+ radial distribution and thus the centrifugal separation, we first eject
209 the e^+ by lowering the confining potential in the direction opposite to the MCP for ~ 100 ns,
210 short enough to prevent Be^+ ions from escaping the trap. This is followed almost
211 immediately (~ 5 μs) by the ejection of the Be^+ towards the MCP for imaging. The delay is
212 minimized to prevent the collapse of the hollow Be^+ distribution³³. We remove the e^+ first
213 because the e^+ signal overwhelms that of the Be^+ on the MCP. For these measurements we
214 use 2×10^5 Be^+ and 1.2×10^5 e^+ . Fewer particles were used in this study to ensure that we
215 could correctly image the entire radial extent of the plasma on the MCP after laser cooling.
216 Figure 4 shows MCP images and extracted radial distributions of the Be^+ plasmas ejected in
217 this way for three different final laser detunings. We fitted the measured radial distributions
218 to distributions extracted from self-consistent e^+/Be^+ thermal equilibrium calculations using
219 the N2DEC code from Ref. 33. We find, for the coldest plasma, a temperature of 6.2 ± 0.6 K
220 (Figure 4a), in good agreement with the measured longitudinal e^+ temperature of 7.1 ± 0.5 K.
221 We thus conclude that we have sympathetically cooled the e^+ plasmas in three dimensions
222 to cryogenic temperatures. We also observe, as expected^{31,19}, that the amount of
223 separation of the two species increases as the temperature drops, thus reducing the inter-
224 species interactions. While the positron numbers were lower in this part of the experiment,
225 the good agreement with the equilibrium calculations means that centrifugal separation is
226 likely also a key factor in causing the cooling saturation shown in Figure 2.

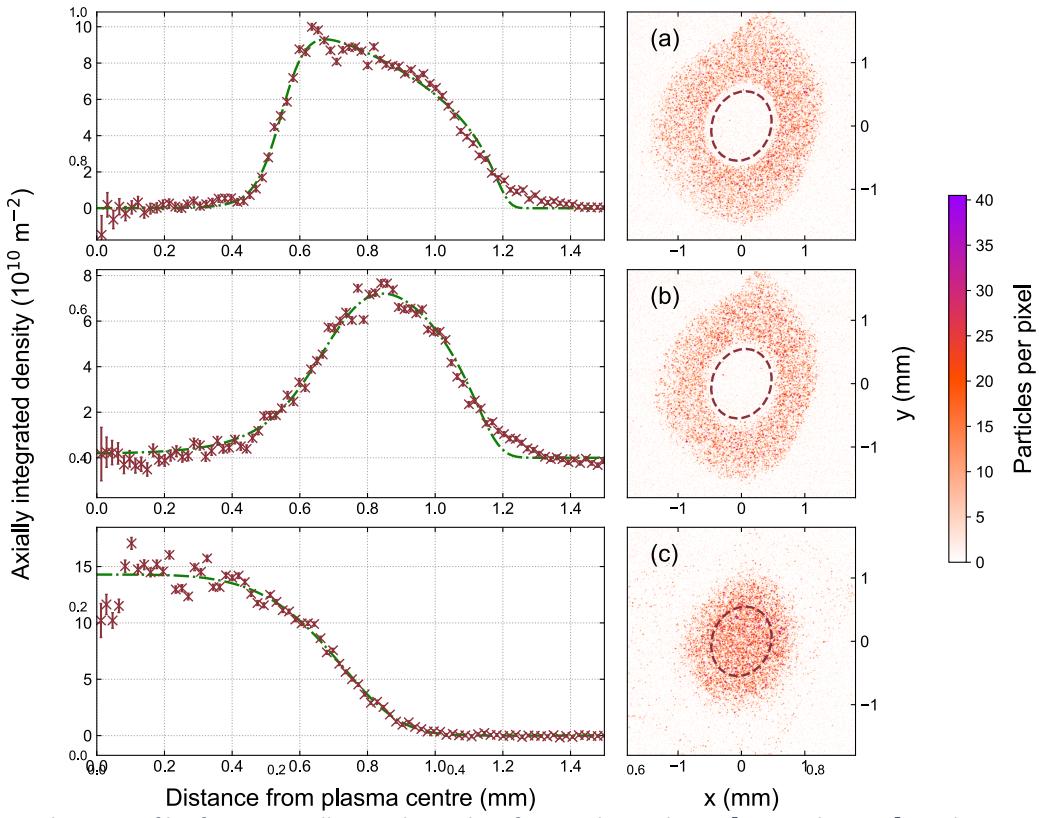
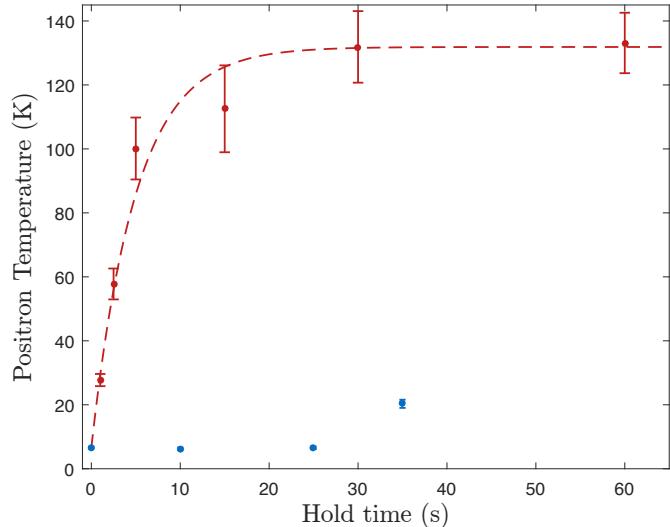



Figure 4 Be^+ density profiles from originally mixed samples of Be^+ and e^+ with $2 \times 10^5 \text{ Be}^+$ and $1.2 \times 10^5 e^+$. The images (right) show Be^+ ejected to the MCP/Phosphor imaging assembly 5 μs after the ejection of e^+ in the opposite direction immediately following the laser-cooling of the Be^+ . (a) Laser detuning -20Γ (b) Detuning -36Γ (c) Detuning -128Γ . The measured axial temperatures were (a) $7.1 \pm 0.5 \text{ K}$, (b) $10.1 \pm 0.2 \text{ K}$ and (c) $370 \pm 100 \text{ K}$ respectively. To the left of each image is a plot of the extracted axially integrated radial density profile, over-laid with the best fit distribution from calculations assuming thermal equilibrium at the temperatures stated. The fit results were (a) $6.2 \pm 0.6 \text{ K}$, (b) $19 \pm 2 \text{ K}$ and (c) $253 \pm 54 \text{ K}$. The corresponding e^+ densities were (a,b) $6.2 \pm 0.1 \times 10^7 \text{ cm}^{-3}$ and (c) $1.2 \pm 0.2 \times 10^8 \text{ cm}^{-3}$. The calculations were done using the N2DEC code in Ref. [33] where thermal equilibrium of the two species is assumed. Note that due to the distortion in the imaging, the plasma image is elliptical; the extraction of the radial profile took this into account. Additionally, at higher radii ($>1.25 \text{ mm}$) the images are distorted by stray electric fields near the MCP as well as physical aperture effects.

Our current fluorescence detection capability is limited to Be^+ temperatures below $\sim 500 \text{ mK}$ and cannot be used to determine the temperature of Be^+/e^+ mixtures (see methods). From fluorescence detection we find a typical longitudinal temperature of 200 mK for 10^6 laser-cooled Be^+ ions in our system. This is well below the lowest temperature of our sympathetically cooled e^+ . To look for additional heating that may explain this, we examined the e^+ temperature evolution in the mixture with or without sustained laser-cooling. The measurements are shown in Figure 5, where we find that the heating rate is initially 25 K/s for the coldest sympathetically cooled e^+ . Such temperatures can be maintained for over 20 seconds when laser-cooling remains active, which is much longer than the typically 1 second used for antihydrogen formation in our experiment. In contrast, e^+ prepared alone heat from an initial temperature of $\sim 18 \text{ K}$ at a rate below 1.5 K/s . The measured mixed plasma heating rate is similar to the rate used in simulations that achieved a low temperature limit of $\sim 5 \text{ K}$ ¹⁹, in good agreement with the limits observed experimentally. The e^+ temperature increase observed after prolonged sympathetic cooling (Figure 5) is likely due to radial expansion eventually reducing the Be^+ overlap with the cooling laser.

255
256
257
258
259

Figure 5 Evolution of the e^+ temperature following the laser cooling frequency sweep for $1.4 \times 10^6 e^+$ and $4.7 \pm 0.1 \times 10^5 Be^+$ ions. Turning the cooling laser off (red points) results in the e^+ heating at a rate of approximately $25 K s^{-1}$, before their temperature saturates at around $125 K$. If, however, the cooling laser is kept on at a fixed detuning of -7Γ , the final detuning in the frequency sweep, the e^+ can be kept at $6.7 \pm 0.3 K$ for over $20 s$ (blue points).

260 We conclude that the observed low temperature limit for sympathetically cooled e^+ is given
261 by the combination of additional heating caused by the presence of Be^+ and the reduced
262 sympathetic cooling as the species centrifugally separate at low temperatures. As discussed
263 previously this heating is likely caused by the Be^+ plasmas rapid expansion, and may, in part
264 be overcome by, e.g., working in higher magnetic fields (like in Ref. 18), or by using shorter
265 potential wells. Higher fields would reduce the depth of the antihydrogen trap, but are only
266 available in the positron and antiproton preparation sections of our trap, where laser-access
267 is foreseen but not currently available. Shorter potential wells can also (currently) only be
268 achieved in the side sections.

269

270 Finally, we address the question of the method's compatibility with the inhomogeneous
271 magnetic field of the antihydrogen atom trap. To remain compatible the plasmas must be
272 kept radially small at all times to avoid adverse effects from the transverse octupole
273 magnetic fields of the atom trap^{34,35}. To investigate this, we sympathetically cooled $10^5 e^+$
274 with a radial extent of $0.6 mm$ using $10^5 Be^+$ to a temperature of $6.8 \pm 0.5 K$ in the magnetic
275 field used for trapping antihydrogen, thereby demonstrating the feasibility. Unfortunately,
276 the setup currently does not allow laser-cooling while applying the RW compression. We
277 were therefore unable to perform this test on larger e^+ samples, as their radii were too large
278 to avoid the detrimental effects of the non-uniform magnetic fields. Modification of the
279 apparatus to allow laser-cooling during RW and several other improvements are under way
280 to make the system fully compatible with antihydrogen accumulation once antiprotons
281 return to the Antiproton Decelerator at CERN in 2021.

282

283 In conclusion, we have demonstrated, by direct measurement of e^+ temperatures and Be^+
284 radial density distributions, sympathetic cooling of plasmas of millions of e^+ to temperatures
285 below $7 K$ in three dimensions using laser cooled Be^+ ions. The density and size of the e^+
286 plasmas as well as the magnetic fields used are commensurate with those used for
287 antihydrogen synthesis and trapping. Efficient sympathetic cooling was also demonstrated
288 in the inhomogeneous fields used to confine antihydrogen. The lowest temperatures are

289 almost a factor of three lower than the lowest currently used for antihydrogen formation,
290 leading us to expect an improvement in the amount of trapped antihydrogen per mixing
291 attempt of up to a factor of five, thus paving the way for faster and more precise
292 measurements on antihydrogen.

293

294 **Acknowledgements** This work was supported by: CNPq, FAPERJ, RENAAE (Brazil); NSERC, NRC/TRIUMF,
295 EHPDS/EHDRS, FQRNT (Canada); FNU (NICE Centre), Carlsberg Foundation (Denmark); ISF (Israel); STFC, EPSRC
296 (UK); DOE, NSF (USA); and VR (Sweden).

297

298 **Author Contributions** This experiment was based on data collected using the ALPHA-2 antihydrogen trapping
299 apparatus. The ALPHA-2 apparatus was designed and constructed by the ALPHA Collaboration using methods
300 developed by the entire collaboration. All authors contributed to this work as members of the ALPHA
301 antihydrogen collaboration. The experiment was first suggested by NM. The Beryllium setup was designed and
302 implemented by JMJ, NM and DM. The ion source was developed by DM, NM and MS. The Be^+ experimental
303 protocols and analysis were conceived and executed by JMJ, NM, DM, JP and GS. The manuscript was written
304 by NM with assistance from DM, JMJ and JP. The manuscript was then edited and improved by the entire
305 collaboration.

306

307 **Reprints and permissions** information is available online at www.nature.com/reprints. Readers are welcome to
308 comment on the online version of the paper. Correspondence and requests for materials should be addressed
309 to NM and DM (Niels.Madsen@cern.ch , daniel.maxwell87@gmail.com).

310

311 **Data availability statement** The datasets generated during and/or analysed during the current study are
312 available from NM and JSH (niels.madsen@cern.ch, jeffrey.hangst@cern.ch) on reasonable request.

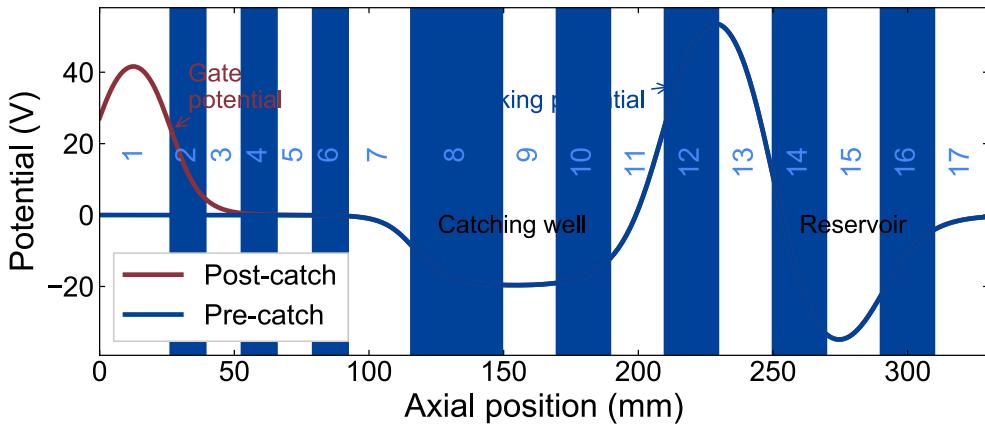
313

314 **Competing financial interests** The authors declare no competing financial interests.

315

316 **Methods / Supplementary Material:**

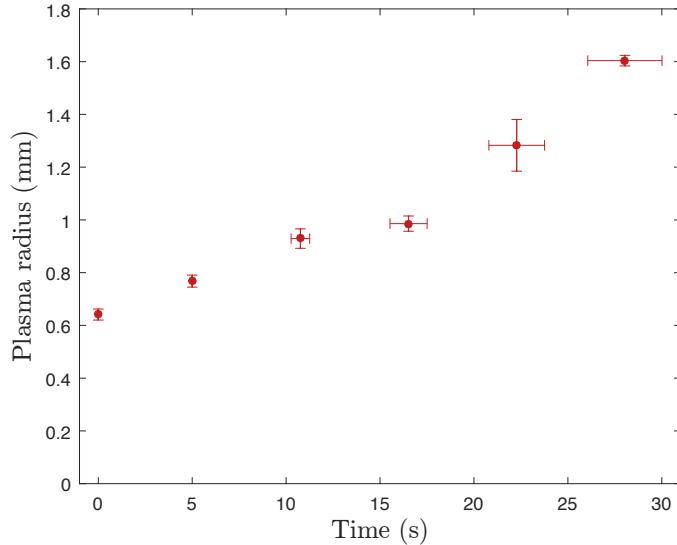
317


318 **Plasma parameter control and measurement**

319

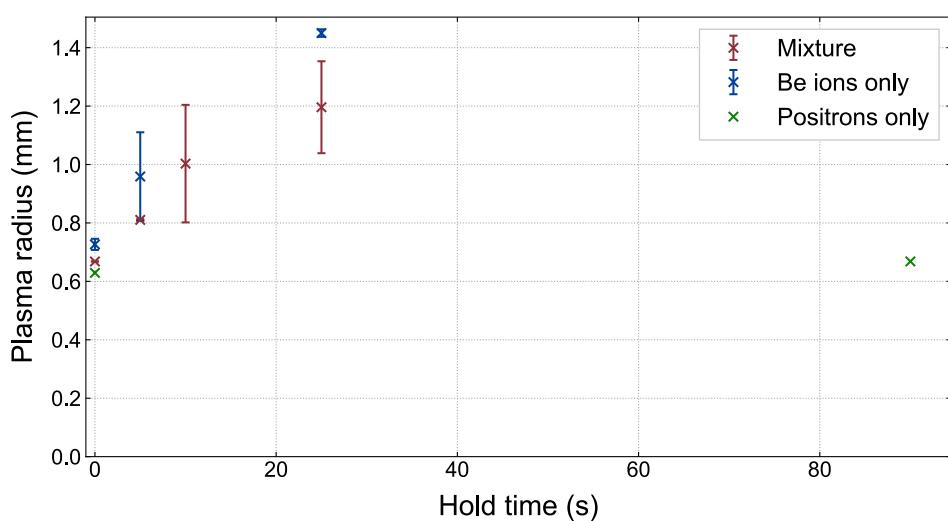
320 Positrons are accumulated from a radioactive source based beam using a Surko-type three
321 stage accumulator, where a buffer gas provides the cooling³⁶. Subsequently, they are
322 transferred ballistically to the main apparatus through a magnetic beamline, where they are
323 captured using a fast switching gate electrode. The transfer efficiency was around 16% in
324 these experiments, and the number of positrons captured typically fluctuates by more than
325 10%. To reduce these fluctuations to below 1% we used a combination of a Strong Drive
326 Regime Rotating Wall (SDR) and evaporative cooling (EVC) that we have developed
327 previously²³.

328


329 Beryllium is loaded in a similar fashion in the opposite end of the apparatus (Figure 6). Be^+
 330 ions are emitted directly from our ablation target²⁰ located on the axis of the setup (Figure
 331 1) and subsequently, after they have had time to arrive in the main trap system, dynamically
 332 captured using the gate electrode. The mean energy of the Be^+ from ablation is around 20
 333 eV for our ablation laser fluence of 3 Jcm^{-2} . A single capture results in $10^5\text{-}10^6$ ions. To better
 334 control the number of ions we capture multiple batches by repeating the above process
 335 several times. The previously captured Be^+ ions are laser cooled with a fixed detuning of -
 336 129Γ between batches by moving them to the centre of the trap system (c.f. Figure 6). The
 337 large detuning reflects the large energy spread of the captured ions (~ 20 eV). The number of
 338 ions captured in this way fluctuates about 30% between identical runs.

339
 340 *Figure 6 Potentials on axis for Be^+ capture and stacking. Shaded and numbered regions represent electrode positions. Ions*
 341 *enter from the left into the blue potential. Subsequently the gate electrode (E1) is raised to 40 V (red potential) to capture*
 342 *them. Ions are then moved to the reservoir where they are combined with previous loads and laser-cooled until the desired*
 343 *number of stacks have been accumulated.*

344 The radial size of the plasmas is controlled by the application of strong-drive regime rotating
 345 wall (RW) where a rotating dipolar electric field exerts a torque on the plasma causing it to
 346 rotate faster or slower, and thereby compress or expand³⁷. In our setup we have two
 347 locations where we have the azimuthally split electrodes allowing this, one in the antiproton
 348 capture section and one in the positron capture section as indicated on Figure 1. The
 349 principle of the RW requires there to be a slight slip between the rotating electric dipole
 350 field and the plasmas self-rotation to transfer torque. This slip results in heating of the
 351 plasma, and the RW can therefore only be applied effectively for a short while without
 352 cooling. Positrons cool through the emission of cyclotron radiation in our 1-3 Tesla fields,
 353 but for Be^+ ions we need laser-cooling. As the laser only overlaps in the central part of the
 354 apparatus we implemented an arrested procedure where we move the Be^+ plasma between
 355 a laser-cooling region, where it is cooled with a fixed detuning at -129Γ , and a RW region
 356 multiple times until the desired radial extent is achieved.


357

358
359
360
361
362

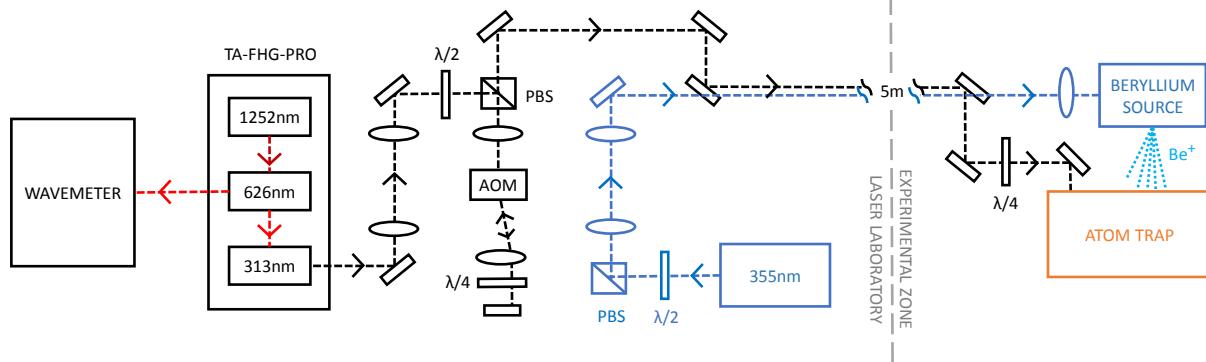
Figure 7 Evolution of the radius of the positron plasma as a function of time during the laser cooling frequency sweep for a mixture of $2.6 \times 10^6 e^+$ and approximately $4-5 \times 10^5 Be^+$ ions. Time zero is when the frequency sweep begins. The total sweep time we use to sympathetically cool the positrons to their lowest temperatures is 40 s. It is not possible to measure plasma radii greater than around 1.6 mm with our current MCP imaging diagnostic.

363 Figure 7 shows measurements of the radial size of the positrons in a mixed plasma during
364 laser-cooling. As discussed in the paper, the mixed plasma also expands during cooling. As
365 shown in Figure 8 this expansion is not observed when only e^+ are present, but it is also
366 present for a pure Be^+ -only sample. The total time needed for cooling is therefore an
367 important factor in determining the final radial extent of the positron plasma and therefore
368 its density.
369

370

371 Figure 8 Evolution of the radius of three different plasmas as a function of time without laser-cooling in a 1T field. The
372 mixture (red) consists of $2.6 \times 10^6 e^+$ and $4 \times 10^5 Be^+$. The Be^+ only plasmas contained $4 \times 10^5 Be^+$. The positrons only plasma
373 contained $2.6 \times 10^6 e^+$.

374 As the ion to positron ratio is important for the sympathetic cooling, and only the positron
375 number is stable, we implemented a technique whereby we could measure both the
376 positron temperature and the Be^+ number in each run (except for the special runs where we
377 image the Be^+ plasma to measure the centrifugal separation, as explained in the main part
378 of paper). When measuring axial temperatures by slowly ejecting particles from a well the


379 temperature information is in the initial exponential tail of particles being ejected²⁷. There is
 380 thus no reason to eject all the e^+ to measure the temperature. Since Be^+ is centrifugally
 381 separated from the e^+ and the potential is the lowest in the center, Be^+ will not be ejected if
 382 the well depth is only reduced slightly below the threshold of the first particles escaping.
 383 We therefore perform the temperature measurement using a partial ejection by reducing
 384 the well to about 60% of the potential where particles first appear (recall, that the e^+
 385 number is reproducible to 1%). Subsequently we close the well and eject the remaining
 386 positrons using a 100 ns opening of the well, which is too short for any Be^+ to escape.
 387 Finally, we eject the Be^+ ions to the MCP for counting (at this point any original radial extent
 388 information will be lost).

389

390 **Laser setup for ablation and cooling**

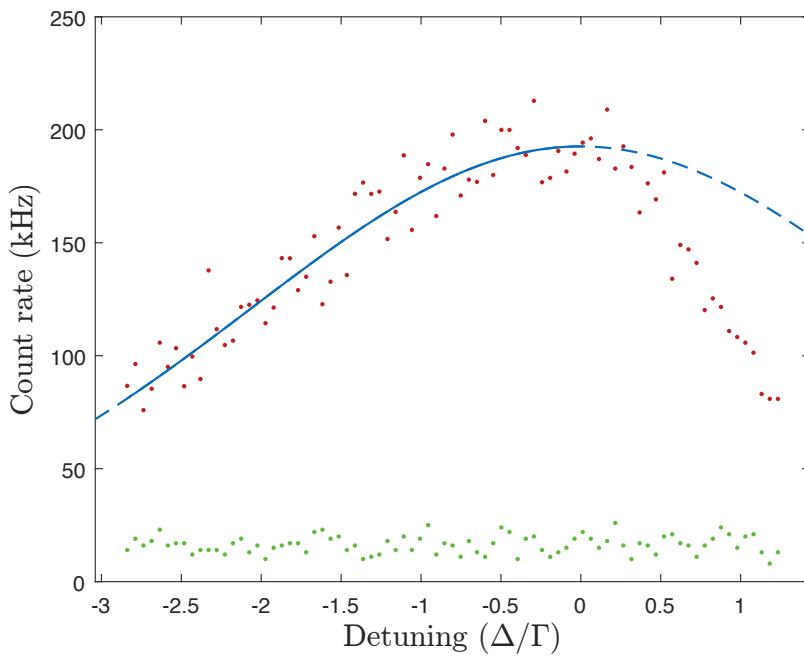
391

392 Two separate laser systems were used for these experiments. Both were located in a laser
 393 laboratory adjacent to the main experimental setup. Figure 9 shows a schematic of the
 394 setup of the two laser systems. We used a pulsed Nd:YAG laser (Quantel Ultra 20) operating
 395 on the 3rd harmonic at 355 nm delivering 6.3 ns long pulses with $\sim 75 \mu J$ per pulse. The
 396 pulses are focussed with a $f=25$ cm convex lens, resulting in a fluence of $\sim 3 \text{ Jcm}^{-2}$ on the
 397 beryllium metal target to generate Be^+ ions via laser ablation. The ion source is aligned with
 398 the beam axis of the main apparatus using a linear translator (c.f. Figure 1). The Toptica TA
 399 FHG-PRO system generates 313 nm light for laser cooling by twice doubling the light from a
 400 1252 nm amplified laser diode. A fraction of the 626 nm light from the first doubling stage is
 401 sent to a HighFinesse WS8-2 wavemeter for locking the laser frequency. The 313 nm light is
 402 circularly polarized with a quarter-wave plate before entering the apparatus.

403

404 *Figure 9 Laser-setup for ablation (blue) and laser-cooling (black). The TA-FHG PRO from Toptica generates 313 nm by two*
 405 *doubling stages of a 1252 nm amplified diode laser. The second harmonic light at 626 nm is sent to a wavemeter for*
 406 *frequency control (see below). The double-pass AOM setup is used to sweep the laser for fluorescence-based detection (the*
 407 *detection geometry was indicated in Figure 1). The polarisation beam splitters (PBS) for both lasers serve, through changes*
 408 *of polarisation to control the power delivered to the experiment. Both lasers are passed through a periscope setup from the*
 409 *laser-room to the experiment. The quarter-wave plate on the 313 nm path before it enters the Atom Trap serves to tune*
 410 *the polarization.*

411


412 **Fluorescence detection**

413

414 As mentioned in the article the solid angle for observing fluorescing ions is currently limited
 415 to about 10^{-6} Sr . In order to measure a Be^+ temperature we can use the AOM (see Figure 9)
 416 to chirp the laser-light across the resonance and measure the Doppler-broadened linewidth
 417 and thereby the temperature. The AOM has a sweep range of 0-80 MHz ($\sim 4\Gamma$). Taken
 418 together this allows us only to measure the temperature of Be^+ samples colder than ~ 500
 mK. Figure 10 shows an example of a measurement of $\sim 1M$ Be^+ ions laser-cooled with a final

419 detuning of -3Γ . To extract the Be^+ temperature we fit the left hand side of the fluorescence
 420 peak with a Voigt function. The asymmetry resulting from heating of the ions when the laser
 421 is on the high frequency side of the resonance means that the right hand side of the peak is
 422 ignored in the analysis. In order to extract a temperature the Voigt function is deconvolved
 423 into its Lorentzian and Gaussian components. From the Gaussian full width at half maximum
 424 the ion temperature can then be calculated. Due to limitations in the AOM frequency range
 425 and the small solid angle we cannot currently conduct fluorescence based temperature
 426 diagnostics of Be^+ in mixed samples of Be^+ and e^+ where the Be^+ number is much lower and
 427 the temperature higher than in the example measurement in Figure 10.

428

429

430 *Figure 10 Fluorescence signal from a pure Be^+ plasma as the frequency of the cooling laser is scanned across the laser*
 431 *cooling transition. The background corrected signal (red points) has been fit with a Voigt function (blue solid line) on the*
 432 *left-hand side of the peak. It is clear that the function fits poorly if it is continued onto the right-hand side of the peak (blue*
 433 *dashed line) where the fluorescence signal drops off rapidly. This sharp decay in signal is attributed to heating of the ions*
 434 *when the laser detuning is on the blue side of the resonance. The Voigt profile corresponds to an ion temperature of*
 435 *approximately 150 mK. The background signal on the detector when no ions are loaded, which comes mainly from scatter*
 436 *of the laser beam within the apparatus, is shown for reference (green points).*

437 **Be^+ laser frequency control**

438

439 The frequency of the 313 nm cooling laser is regulated via modulation of the master laser
 440 diode current in a PID loop. The modulation signal is provided by a wavemeter which is
 441 continuously measuring the frequency of the second harmonic (at 626 nm) of the master
 442 laser. The wavemeter is calibrated at the beginning of every experimental run using a stable
 443 He-Ne laser as a frequency reference. When sweeping the frequency to laser cool the Be^+
 444 ions, and sympathetically cool positrons, we discretely step the frequency setpoint such that
 445 the laser frequency changes at an average rate of approximately 70 MHz/s between
 446 setpoints. Discrete steps in the setpoint were used to ensure that the PID loop changed the
 447 frequency of the laser smoothly, and slowly enough such that the ions are continuously
 448 cooled from their initial high temperature. Unfortunately, due to hardware resources
 449 shared with other aspects of the ALPHA apparatus, the wavemeter was not fully integrated
 450 with the control system managing sympathetic cooling, which resulted in latency and jitter

451 when requesting changes to the laser frequency. The relatively large horizontal error bars in
452 Figure 7 are a result of this jitter. Another consequence of this uncertainty is that we could
453 not use this method of frequency modulation when measuring fluorescence spectra. Faster,
454 deterministic frequency sweeps were performed when measuring the Doppler broadened
455 fluorescence spectra of the Be^+ ions. In this case we used an AOM to sweep the frequency
456 of the light by 80 MHz in 80 ms (Figure 9). By performing several fluorescence
457 measurements over different days, we have determined that the location of the laser-
458 cooling resonance is consistent to within 9 MHz (standard deviation), corresponding to $\sim\Gamma/2$.
459 The apparent fluctuation in the resonance location is most likely due to a combination of
460 the imperfect laser frequency lock, the calibration and precision of the wavemeter, and our
461 ability to locate the resonance of the strongly asymmetric line shape.
462

¹ C. D. Anderson, The Positive Electron, *Phys. Rev.* **43**, 491 (1933)

² P. A. M. Dirac, A theory of electrons and protons, *Proc. Roy. Soc. A* **126**, 360 (1930)

³ F. Tuomisto and I. Makkonen, Defect identification in semiconductors with positron annihilation: Experiment and theory, *Rev. Mod. Phys.* **85**, 1583 (2013)

⁴ C. Hugenschmidt, Positrons in surface physics, *Surf. Sci. Rep.* **71**, 547 (2016)

⁵ D. L. Bailey, *et al.*, *Positron Emission Tomography*, (Springer London Ltd), ISBN 978-1-85233-798-8, (2005)

⁶ M. Deutsch, Evidence for the Formation of Positronium in Gases, *Phys. Rev.* **82**, 455 (1951)

⁷ S. G. Karshenboim, Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants, *Phys. Rep.* **422**, 1 (2005)

⁸ G. Baur, *et al.*, Production of Antihydrogen, *Phys. Lett. B* **368**, 251 (1996)

⁹ M. Amoretti, *et al.*, Production and detection of cold antihydrogen atoms, *Nature* **419**, 456 (2002)

¹⁰ C. H. Storry, *et al.*, First laser-controlled antihydrogen production, *Phys. Rev. Lett.* **93**, 263401 (2004)

¹¹ V. A. Kostelecky and A. J. Vargas, Lorentz and CPT tests with hydrogen, antihydrogen and related systems, *Phys. Rev. D* **92**, 056002 (2015)

¹² M. Ahmadi, *et al.* Characterization of the 1S-2S transition in antihydrogen, *Nature* **557**, 71 (2018)

¹³ M. Ahmadi, *et al.*, Antihydrogen accumulation for fundamental symmetry tests, *Nat. Comm.* **8**, 681 (2017)

¹⁴ S. Jonsell and M. Charlton, On the formation of trappable antihydrogen, *N. J. Phys.* **20**, 043049 (2018)

¹⁵ N. Madsen, *et al.*, Spatial Distribution of Cold Antihydrogen Formation, *Phys. Rev. Lett.* **94**, 033403 (2005)

¹⁶ L. Schmöger, *et al.*, Coulomb crystallization of highly charged ions, *Science* **347**, 1233 (2015)

¹⁷ M. D. Barrett *et al.*, Sympathetic cooling of $^9\text{Be}^+$ and $^{24}\text{Mg}^+$ for quantum logic, *Phys. Rev. A* **68**, 042302 (2003)

¹⁸ B. M. Jelenkovic *et al.*, Sympathetically cooled and compressed positron plasma, *Phys. Rev. A* **67**, 063406 (2003)

¹⁹ N. Madsen, F. Robicheaux and S. Jonsell, Antihydrogen trapping assisted by sympathetically cooled positrons, *New. J. Phys.* **16**, 063046 (2014)

²⁰ M. Sameed, D. Maxwell and N. Madsen, Ion generation and loading of a Penning trap using pulsed laser ablation, *New J. Phys.* **22**, 013009 (2020)

²¹ C. Amole, *et al.*, In situ electromagnetic field diagnostics with an electron plasma in a Penning-Malmberg trap, *New. J. Phys.* **16**, 013037 (2014)

²² C. Amole *et al.*, The ALPHA antihydrogen trapping apparatus, *Nucl. Instr. and Meth. A* **735**, 319 (2014)

²³ M. Ahmadi, *et al.*, Enhanced Control and Reproducibility of Non-Neutral Plasmas, *Phys. Rev. Lett.* **120**, 025001 (2018)

²⁴ X. P. Huang, *et al.*, Steady-State Confinement of Non-neutral Plasmas by Rotating Electric Fields, *Phys. Rev. Lett.* **78**, 875 (1997)

²⁵ G. B. Andresen, *et al.*, Compression of Antiproton Clouds for Antihydrogen Trapping, *Phys. Rev. Lett.* **100**, 203401 (2008)

²⁶ G. B. Andresen, *et al.*, Antiproton, positron and electron imaging with a microchannel plate/phosphor detector, *Rev. Sci. Inst.* **80**, 123701 (2009)

²⁷ D. L. Eggelston, *et al.*, Parallel energy analyzer for pure electron plasma devices, *Phys. Fluids B: Plas. Phys.* **4**, 3432 (1992)

²⁸ G. B. Andresen, *et al.*, Evaporative cooling of antiprotons to cryogenic temperatures, *Phys. Rev. Lett.* **105**, 013003 (2010)

²⁹ E.D. Hunter *et al.*, Plasma temperature measurement with a silicon photomultiplier (SiPM), *Rev. Sci. Inst.* **91**, 103502 (2020)

³⁰ D. H. E. Dubin and T.M. O'Neil, Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states), *Rev. Mod. Phys.* **17**, 87 (1999)

³¹ T. M. O'Neil, Centrifugal separation of a multispecies pure ion plasma, *Phys. Fluids* **24**, 1447 (1981)

³² A.A. Kabantsev, J.H. Yu, R.B. Lynch and C.F. Driscoll, Trapped particles and asymmetry-induced transport, *Phys. Plas.* **10**, 1628 (2003)

³³ G.B. Andresen *et al.*, Centrifugal separation and equilibration dynamics in an electron-antiproton plasma, *Phys. Rev. Lett.* **106**, 145001 (2011)

³⁴ J. Fajans *et al.*, Effects of Extreme Magnetic Quadrupole Fields on Penning Traps and the Consequences for Antihydrogen Trapping, *Phys. Rev. Lett.* **95**, 155001 (2005)

³⁵ E. Butler, PhD Thesis, Antihydrogen Formation, Dynamics and Trapping, Sec 3.5, Swansea University (2011)

³⁶ T.J. Murphy and C.M. Surko, Positron trapping in an electrostatic well by inelastic collisions with nitrogen molecules, *Phys. Rev. A* **46**, 5695 (1992)

³⁷ J. R. Danielson and C.M. Surko, Torque-Balanced High-Density Steady States of Single-Component Plasmas, *Phys. Rev. Lett.* **94**, 035001 (2005)