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ARTICLE INFO ABSTRACT

Keywords: Background: Despite commercial airlines mandating masks, there have been multiple documented events of
SARS-CoV-2 COVID-19 superspreading on flights. Conventional models do not adequately explain superspreading patterns on
Aircraft

flights, with infection spread wider than expected from proximity based on passenger seating. An important
reason for this is that models typically do not consider the movement of passengers during the flight, boarding, or
deplaning. Understanding the risks for each of these aspects could provide insight into effective mitigation
measures.

Methods: We modeled infection risk from seating and fine-grained movement patterns — boarding, deplaning, and
inflight movement. We estimated infection model parameters from a prior superspreading event. We validated
the model and the impact of interventions using available data from three flights, including cabin layout and seat
locations of infected and uninfected passengers, to suggest interventions to mitigate COVID-19 superspreading
events during air travel. Specifically, we studied: 1) London to Hanoi with 201 passengers, including 13 sec-
ondary infections among passengers; 2) Singapore to Hangzhou with 321 passengers, including 12 to 14 sec-
ondary infections; 3) a non-superspreading event on a private jet in Japan with 9 passengers and no secondary
infections.

Results: Our results show that the inclusion of passenger movement better explains the infection spread patterns
than conventional models do. We also found that FFP2/N95 mask usage would have reduced infection by
95-100%, while cloth masks would have reduced it by only 40-80%. Results indicate that leaving the middle
seat vacant is effective in reducing infection, and the effectiveness increases when combined with good quality
masks. However, with a good mask, the risk is quite low even without the middle seats being empty.
Conclusions: Our results suggest the need for more stringent guidelines to reduce aviation-related superspreading
events of COVID-19.

Spatial interaction models
Infectious disease transmission
Masks

possibility.

There has been much concern about superspreading in airplanes,
because large numbers of passengers are brought into close proximity
there. While a lack of contact tracing has limited the availability of data
on the extent of superspreading in planes, there have been multiple in-
cidents recorded [3]. The Centers for Disease Control and Prevention

1. Introduction
1.1. Background

COVID-19 transmission is primarily driven by proximity between an
infective person and a susceptible person [1]. Superspreading events,

which involve the secondary infection of an unusually large number of
persons [2], often occur when groups of people are brought into close
proximity. However, crowded events do not necessarily lead to super-
spreading. While it is difficult to predict if an event would lead to
superspreading, it is possible to take preventive steps to reduce its
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(CDC) has, therefore, suggested guidelines, such as the use of masks, to
reduce the risk of COVID-19 spread on planes [4].

Mathematical models can provide insight into the mechanisms of
superspreading on planes and help evaluate the potential effectiveness
of mitigation measures in reducing the likelihood of such events.
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However, conventional models are unable to adequately explain
superspreading patterns on flights, with infection spread being wider
than would be expected from proximity based on passenger seating [5,
6]. An important reason for this is that models typically do not consider
the movement of passengers during the flight, boarding, or deplaning
[7]. Understanding the risks for each of these aspects could provide
insight into effective mitigation measures.

We have previously proposed an approach using pedestrian dy-
namics, a technique used to simulate the movement of individuals
[8-101, to identify infection risk arising from proximity during boarding
[11-14]. Here, we augment it with modeling of inflight transmission.
We also use a new infection spread model that accounts for varying
infection dose by distance to an infective person, and then include it in a
standard exponential dose-response relationship for infection risk. It is
difficult to identify model parameters a priori. Instead, we calibrate the
model against a different superspreading event and modify the model to
account for behavioral features such as mask wearing.

In this paper we: (1) explain the modeling methodology, which could
be adopted in a wide variety of contexts; (2) quantify the role of different
categories of passenger movements on infection transmission in air-
planes; and (3) identify the impact of mask type on reducing the like-
lihood of superspreading events.

We show that our modeling approach can explain the wider spread of
COVID-19 than expected in the superspreading examples considered.
Our model also shows that N95 masks would be around ten time more
effective than regular cloth masks in reducing superspreading.
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1.2. Flights studied

We studied three flights that had detailed information on in-flight
COVID-19 seating arrangements and infection profiles of the passen-
gers as shown in Fig. 1. A London flight is used to study the impact of
passenger movement on infection risk when masks are not used. A
Singapore flight examines the impact of mask wearing. We use a non-
superspreading event of a Japan flight to validate the insight from our
simulations that widespread use of N95 masks can greatly reduce the
risk of infection.

The London flight departed from London to Hanoi on March 1st, 2020
[5]. The 10-h flight had 16 crewmembers and 201 passengers onboard.
Twenty-one of these passengers were in the business class cabin, 35 in
premium economy, and 148 passengers were seated in the economy
cabin. One index passenger was located in the business class, resulting in
11 secondary infections in the first-class and two in the economy cabin.
Mask usage was not mandated on this flight, and its use was only
sporadic.

The Singapore flight departed Singapore on January 24th, 2020 and
landed in Hangzhou, China on January 25th [6,15]. The total flight
duration was 5 h, with 321 passengers on board. Mask usage was
mandatory for this flight. All infected cases were wearing the masks,
although the mask type is not known [6,15]. There were two index cases
on the plane, sitting far apart, with one sitting next to the window in the
aft-economy cabin and the other next to the aisle in the mid-economy
cabin. An additional 14 passengers tested positive within the 14 days
quarantine. Some of these passengers could have been exposed outside
of the flight [6], and the number of inflight infections is estimated as 12
[15].
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Fig. 1. Distribution of infections states on flights. Red denotes index cases, orange secondary infections, green PCR negative, and grey empty seats. (a) London flight,
(b) Singapore flight, and (c) Japan flight. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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The Japan flight, a private jet, flew for 13.5 h to Israel on Feb 20th,
2020 with 9 passengers, two of whom were infectious [16]. High quality
FFP2 masks were used on this flight. No secondary infections occurred.
We included this non-superspreading flight to increase the robustness of
our model by examining a “control” scenario where secondary infections
did not occur.

2. Methods

We use pedestrian dynamics to model the movement of passengers
during boarding and deplaning. and inflight movement. We use results
from existing literature to model inflight movement [19]. We then input
the passenger trajectories and seating arrangements into a fine-scaled
infection spread model to identify infection risk. We describe the
models and related parameter estimation below.

2.1. Infection risk model

The data-driven infection spread model developed here consists of
following two components: (i) quantification of the amount of patho-
gens ingested (infection dose) by a susceptible individual while in close
vicinity of an infectious individual, with the dose monotonically
decreasing with distance, and (ii) computation of the differential risk of
successful transmission during a certain event using infection dose. The
primary mechanisms captured in the model include the duration and
intensity of the effective contact with an infectious individual and the
temporal distribution of distance between individuals, which are ob-
tained from passenger seating and movement during air travel.

The model leverages the results of pedestrian dynamics that captures
population mixing behaviors that depend on the environment’s layout,
the behavioral preferences of people, and proxemic behavior of walking
groups, which determine an individual’s path of movement. Pedestrian
dynamics provides the trajectories of people by outputting the position
of each person every At seconds. If we know the positions of infective
and susceptible persons at a given time, then we can estimate the virus
dose that each susceptible person is exposed to in a small time-interval
using our new model.

We sum the virus dose over all time intervals to find a normalized,
unitless measure V,, of total dose received by the nth susceptible person
over the duration of the simulation. There are numerous dose-response
relationships available to estimate infection probability from the dose
[18,19]. The commonly used exponential model yields the infection
probability P, for the nth susceptible person as given in Eq. (1). P, is
summed over all passengers to yield the expected number of infections
over the flight.

P, =1 — exp(—V,) (@D)]

The viral load will decay with distance, and we assume a threshold dy
beyond which the viral load is zero. We note that the viral load decreases
with distance and that in a short time interval, the exposure is propor-
tional to the time of exposure. We incorporate these insights into a
functional form that gives the dose V,,; on susceptible person n from M
infective persons in the tth time step as:

M d a
Vi =x.At Z <1 - %) ~,dn.m < d() (2)

m=1

Here, d,, , is the distance between the nth and mth passengers at time
t. V is obtained by summing V;, ; over all the time steps. The parameter x
is a measure of the dose a person is exposed to per unit time while a
controls how quickly the virus concentration drops with distance. The
model parameters «, o, and d, are unknown. They are estimated by
fitting against a known superspreading event.
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2.2. Scenario to estimate infection model parameters

We fit parameters to the above model based on a superspreading
event in a restaurant in Guangzhou, China early in the pandemic [20].
This situation involves no movement, which makes parameter estima-
tion easier than it would be otherwise. We focus on one room with five
occupied tables where one infected person spread the infection to
several others belonging to three families. Further details on the
parameter estimation are provided in the appendix. Parameter values of
k= 0.15 rnin'l, o = 2.5, and dy = 3.5 m fit the data.

We next explain how we account for a counterfactual situation where
people wear masks. Masks act in two ways; first, they reduce the level of
contagion in the vicinity of the index case and second, they decrease the
distance threshold for viral activity. We vary the parameters x and dg to
account for these two factors. N95/FFP2 masks are roughly 97% effec-
tive in preventing leakage under normal fit [21]; therefore, we reduce
the k parameter to 3% of the no-mask case. For a regular mask, we use
the filtration efficiency of 50% for a cotton bandana “folded surgeon
general style” [22]. Another report indicates that the distance traveled
by the by respiratory droplets halves at any given time with surgical
mask usage [23]. So, we take dg as 1.7 m for all masks.

2.3. Pedestrian dynamics for boarding

Social force models for pedestrian dynamics model the pedestrians as
particles whose motion is determined by a balance of repulsive and
propelling forces [10]. While the agency of the pedestrians to reach a
specified target is described in propelling force, the tendency to avoid
collision and impenetrability with other individuals in high-density
crowds and immobile obstacles in the pedestrian’s path are repre-
sented by the repulsive terms. These repulsive and attractive forces are
summed to obtain the net force acting on ith pedestrian (or particle) as
shown in Eq. (3), with further details provided in Ref. [14].

F=2 0 =70) + Y Fy0 3)
J#i

The dynamics of pedestrian movement is accomplished by obtaining
the velocity and positions at next time steps through numerical inte-
gration. In prior work, this model has been validated and applied to
movement of people in airplanes and pedestrian queues, where the re-
sults from Eq. (3) are augmented by human behavior features, such as
time for stowing luggage and seat conflicts [11-13]. The pedestrian
model parameters are based on our previous study [14]. There is sto-
chasticity as to the order of boarding within each cabin. This is
accounted for by averaging the trajectories over 50 simulations.

2.4. Modeling inflight movement

Hertzberg et al. [17] indicate that about 62% of the passengers move
from their seat for a median duration of 5.4 min (167, in flights of
211-313 min duration. Due to the longer duration of the London flight,
we consider that all 56 passengers in business and premium economy
cabins move for an average of 5.4 min out of their seat and 24% of them
leave the seat more than once. The typical path of the passenger involves
movement to the closest restroom and back to the seat. To account for
stochasticity in pedestrian movement, we performed 50 simulations of
inflight pedestrian movement for each case analyzed.

Given the location of the index case in the business class cabin, the
in-flight movement of passengers in the economy cabin at the back of the
aircraft is not relevant, as it would not bring those passengers into
contact with the index case. Further, based on Eq. (1), we can combine
the dose due to the different processes (seated co-location, inflight
movement and, boarding/deplaning) and combine the resulting
probabilities.
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3. Results
3.1. Impact of passenger movement

We estimate infection risk in the London flight in order to (i) verify
that the model yields reasonable results in the absence of masks and (i)
to examine the role of passenger movement in explaining super-
spreading patterns. Table 1 shows that the expected number of cases
from the simulations — 12.86 — is close to the observed 13 cases. In
addition, it also explains the two cases observed in the economy section.
Fig. 2 illustrates the infection risk probabilities.

We next examine the impact of passenger movement by simulating
(i) no passenger movement, (ii) inflight movement without boarding/
deplaning, and (iii) only boarding/deplaning. Without passenger
movement, the simulations estimate around nine secondary infections in
the Business class cabin, which is not far off from the observed eleven
cases. But it yields no infections in the premium economy and economy
cabins. We next examine if inflight movement can explain these cases.
However, adding inflight movement results only in expected 0.4 cases in
the premium economy and economy cabins. Table 1 shows that the
boarding/deplaning processes contribute more to infection risk than
inflight movement does. Note that the combined expected number of
cases for the flight is less than for (i) and (iii) combined because the
infection from (ii) and (iii) are not mutually exclusive.

3.2. Impact of mask usage

We now examine the impact of different types of masks, using the
Singapore flight, where masks were mandated, as the example. The
specific type of masks used is not known. We assume a regular mask. The
estimated number of cases from the simulations, including passenger
movement, is 10.7. This matches well with the 12 secondary cases re-
ported to be from the flight [15]. Fig. 3 shows the risk profile as a
function of the seat.

We now examine the counterfactuals of N95/FFP2 mask use and no
mask use. If everyone had used FFP2 or N95 masks for the entire
duration of the flight, then the model indicates that there would be 2.3
secondary infections. If there had been no mask usage, then there would
be 55 secondary infections.

We next examine the impact of different mask leakages, varying from
3% (N95 with normal fit) to 100% (no mask) to provide insight on the
impact of different mask qualities. We also consider various distance
thresholds. These would be useful when the actual distance to which
droplets and aerosols travel is known for different airflow patterns and
masks. Fig. 4 presents these results, which could be used to estimate risk
when future empirical results identify suitable values for these two
parameters.

We finally examine if the different infection results from different
mask usages (no mask, regular mask, N95/FFP2) are statistically sig-
nificant. Table 2 presents the mean and 95% confidence intervals for the
three masking cases with 50 simulations each and found that none of the
upper or lower bounds overlap. Additionally, we performed paired two-

Table 1
Simulation results for secondary infection by passenger status during the London
flight.

Passenger status ~ Total Secondary Secondary infections

secondary infections in in the economy
infections business class cabins
Only seated 9.1 9.1 0
Seated + 9.8 9.4 0.4
inflight
movement
Boarding/ 4.4 3.3 1.1
deplaning
Complete flight 12.34 10.86 1.48

Travel Medicine and Infectious Disease 47 (2022) 102313

sample t-tests between various combinations of masking scenarios (No
mask vs Cloth, Cloth vs FFP2, No mask vs FFP2) for both full capacity
and middle seat vacant conditions. We also performed similar analyses
comparing full capacity and middle seat vacant conditions for identical
masking scenarios. The p-values reported in Table 3 and the confidence
intervals listed in Table 2 indicate that each masking scenario clearly has
a different impact.

3.3. Validating the impact of N95/FFP2 masks

To validate the impact of N95/FFP2 masks, we consider the Japan
flight, where all passengers used FFP2 masks. This was a long flight
(13.5 h), which we would expect to lead to high infection risk. Simu-
lations with parameters corresponding to FFP2 masks estimate 0.02 new
infections with the two index cases in this flight. This is a good estimate
of the zero observed cases. Our simulations showed that regular masks
would have resulted in 1.7 new infections, while no mask would lead to
2.8 new infections. Thus, N95/FFP2 masks conferred significant benefit.

3.4. Impact of vacant middle seats

In response to COVID-19, many airlines had adopted strategies to
lower density including keeping middle seats vacant [24]. Airlines have
discontinued such practices as air travel increased in recent months
[25]. A recent study suggested that keeping middle seats empty lowers
exposure (dose) significantly [26]. But it did not calculate the infection
risk, account for passenger movement, or study the impact of masks.

Here, we examine the impact of keeping middle seats vacant on
infection risk while account for passenger movement. We use the
Singapore flight as an example in the results presented in Fig. 5. The
same index cases, flight duration, boarding, deplaning and inflight
movement are considered, but the middle seats in the economy cabin are
unoccupied.

3.5. Sensitivity analysis

We carry out global parameter sensitivity analysis to evaluate the
robustness in model outcomes using the sampling based Partial Rank
Correlation Coefficients (PRCC) sensitivity analysis to evaluate vari-
ability in model predictions, using the method described in Refs. [27,
28]. We examined the effects of the uncertain parameters on the primary
outcome the number of new infections, for the Singapore flight with (i)
the original configuration, and (ii) with middle seat vacant. PRCCs are
used to identify the key parameters contributing to the imprecision in
predicting the future infection probability. Details are provided in the
appendix.

Our results shown in Fig. 6 indicate that both input parameters have
a positive PRCC. Both parameters have positive PRCC values and were
significantly different from 0 (p-value < 0.05). The results suggest that
for both outcome variables, infection distance parameter is most influ-
ential in determining the magnitude of outcome variable ([PRCC| > 0.9
at p < 0.05 significance level). However, the influence of both input
variables (k reduction and r,) is much higher for the middle seat vacant
case compared to the original seating configuration.

4. Discussion

Our method is able to explain the superspreading events on the
Hanoi and Singapore flights. Typical simulations and empirical studies
do not include movement and so cannot explain such spread [7,29].
Consequently, contact tracing is performed only for two rows in front
and back of the index cases [3]. We show that inclusion of passenger
movement can quantitatively explain the spread of infection far from the
index cases. Furthermore, boarding/deplaning has a greater impact than
inflight movement.

Empirical observation even from before the COVID-19 pandemic had
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Fig. 2. Model results of the distribution of secondary infections in the London flight for the duration of the flight.
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Fig. 3. Model results of the distribution of secondary infections in the Singapore flight for the duration of the flight.
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Fig. 4. Model results of the distribution of secondary infections in the Singapore flight for varying mask leakage and infectivity distance thresholds.

Table 2
Statistical analysis of the impact of masks.

Mask Middle seat Mean secondary Upper bound Lower bound
vacant infections —-95% - 95%
None No 55.03 55.30 54.76
Cloth No 10.46 10.48 10.44
N95/ No 2.32 2.39 2.33
FFP2
None Yes 29.75 29.93 29.58
Cloth Yes 5.72 5.74 5.71
N95/ Yes 0.99 0.99 0.99
FFP2

shown that infection can spread far from the index case and that such
cases can contribute significantly to the average number of secondary
infections during outbreaks on flights [30]. On one flight with distant
secondary transmission of COVID-19, the use of a common toilet was
suggested as the cause [31], although the general possibility from
boarding was also identified. The London flight had separate restrooms
for business and economy classes, and so this cannot explain the

Table 3
The p-values for various masking scenarios.
Full capacity ~ p- Middle Seat p- Full capacity vs p-
value Vacant value Middle seat value
vacant
No mask vs «10™®  No mask vs <«107®  No mask vs No <107°
Cloth Cloth mask
Cloth vs «107®  Cloth vs «107®  Cloth vs Cloth <«107°
NO95/FFP2 N95/FFP2
No mask vs «10® Nomaskvs <10  N95/FFP2 vs <10°°
NO95/FFP2 NO5/FFP2 NO95/FFP2

infection spread while boarding does.

We have also considered the impact of masking. Infection spread has
been observed on flights with passengers wearing surgical masks [32],
which are more effective than cloth masks. Our results suggest that FFP2
or equivalent masks can almost eliminate all risk of secondary infections
during a potential superspreading event, with 95-100% reduction on
the flights considered in this paper. Cloth masks are not as effective,
although they are considerably better than no mask, leading to 40-80%
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reduction in cases. Consequently, the number of cases with an N95/FFP2
would be a factor ten lower than with a cloth mask.

Keeping middle seats empty can reduce infection risk by (i) reducing
the number of people exposed and (ii) reducing exposure to the conta-
gion through distancing. In the Singapore flight, the number of pas-
sengers with this strategy is reduced from 321 to 222, a 30.8%
reduction. The reduction in the fraction of infections is greater than this,
showing the impact of reduced exposure. However, except for the lowest
distance threshold, the reduction in the number of persons plays a
greater role in the reduced risk. A reduction in the distance threshold
plays a greater role than mask efficiency in reducing infection risk.

Our results suggest the following. (i) Good quality masks ought to be
recommended; regular masks have significantly lower impact on long
flights. (ii) Leaving middle seat empty is effective and its effectiveness
increases when combined with good quality masks. However, with a
good mask, the risk is quite low even without middle seats empty.
Consequently, use of an N95 mask might be financially more viable than
keeping middle seats vacant. (iii) Effective boarding strategies could
mitigate the risk of a wide infection outbreak on flights [21,30]. It is not
the dominant factor, but it does play a noticeable role.

Our work has the following limitations. (i) We do not aim to predict
the risk of a superspreading event. Rather, we aim to obtain insight into
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superspreading events so that the risk of such events could be reduced.
(ii) We have not accounted for social interactions at the boarding gate or
during other aspects of air travel. (iii) We used empirical comparison
against the Japan flight to validate our model with FFP2 masks. How-
ever, there is a possibility that the index cases on that flight were not
superspreaders. Nevertheless, the relative impacts of the masks would
be accurately captured in the simulations. (iv) We did not consider the
characteristics of different variants of concern (VOC) of the virus.
Furthermore, the study only included small outbreaks in airplanes with a
small sample size. Thus, one needs to be careful while extrapolating the
current findings to other contexts. (v) We have not accounted for vac-
cinations. The number of secondary infections can be expected to
decrease, although the different strategies would have similar relative
benefits because the response would still be a monotonic function of the
dose. (vi) In future work, we intend generalizing the parameter esti-
mation so that results from the mechanisms of infection spread, such as
through computational fluid dynamics modeling along with knowledge
of virus shedding distributions, could be used to calibrate it for new
scenarios.

5. Conclusions

We developed a model that includes passenger movement in the
analysis of infection risk on flights. We validated it against observed
superspreading events on flights. Our results show that the inclusion of
passenger movement better explains the infection spread patterns than
conventional models do. We also found that FFP2/N95 mask usage
would have reduced infection by 95-100%, while cloth masks would

Appendix

A. Distance to the infective person

Travel Medicine and Infectious Disease 47 (2022) 102313

have reduced it by only 40-80%. This suggests the need for more
stringent guidelines to reduce aviation-related superspreading events of
COVID-19.
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The appendix to Ref. [19] includes detailed seating arrangements, from which we calculated the distance of each person to the infective person.
The superspreader belonged to the family in Table A, and so we exclude that family from the analysis, because they could have been infected through
contact elsewhere. We consider other tables, two of which yielded secondary infections — Tables B and C, and two of which did not — Tables E and F.
This study also gave the overlap between the infective person and Tables B and C as 53 min and 73 min for Tables B and C respectively. The number of
secondary infections was between four and five, because there was a possibility of one person being exposed to COVID-19 elsewhere. Information on

the exposure is provided in Table A1 below.

Table Al
Exposure distance and time to infective person.

Person Distance (m) Exposure time (minutes)* Secondary infection status
Bl 1.796 53 Infected

B2 0.998 53 Infected

B3 1.531 53 Infected

B4 2.117 53 Not infected
C1 2.833 73 Infected

C2 3.398 73 Possibly infected
C3 3.182 73 Not infected
C4 3.414 73 Not infected
C5 3.057 73 Not infected
C6 2.546 73 Not infected
Cc7 2.210 73 Not infected
El 3.675 20 Not infected
E2 3.145 20 Not infected
E3 2.566 20 Not infected
E4 2.114 20 Not infected
E5 2.105 20 Not infected
F1 3.986 20 Not infected
F2 4.694 20 Not infected
F3 4.700 20 Not infected
F4 4.175 20 Not infected
F5 2.984 20 Not infected

* The exposure time at Tables D and E was not available. We assumed a shorter exposure time of 20 min for those tables.
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B. Parameter estimation

We fit parameters to the infection model as follows. There is only one infected person; so, M = 1, r, , is independent of time, giving the distance
between the infective person and a susceptible person, At is taken as the exposure time in Eq. (2), and there is only one time step, giving V,,; = V,. We
substitute V;, into Eq. (1) to get the probability of infection for each susceptible person. We add the infection probabilities of all susceptible persons to
get the expected number of susceptible persons. We determine the range of parameters for which the number of infected persons is between 4 and 5.
We also required the parameter range to reflect the absence of secondary infections in Tables D and E by yielding the expected number of infections as
close to 0.

C. Sensitivity analysis procedure

Following PRCC methodology described in Refs. [26,27], we rank the uncertain parameters, « and dy, in the sampling matrix together with the
outcome measures. The PRCC measures the effect of each input parameter on outcome variable, assuming the parameters to be independent. A
positive PRCC value indicates that an increase in that parameter leads to an increase in an outcome variable, while a negative value shows that
increasing that parameter decreases the outcome variable. Two linear regression models are generated in response to each parameter and outcome
measure. A Pearson rank correlation coefficient for the residuals from the two regression models gives the PRCC values for that specific parameter. We
consider a uniform distribution for all model parameters. PRCC and p-value of the data are computed using 100 runs of sampling from input pa-
rameters distribution.
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