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We measure the free decay of a spatially periodic density profile in a normal fluid strongly interacting
Fermi gas, which is confined in a box potential. This spatial profile is initially created in thermal
equilibrium by a perturbing potential. After the perturbation is abruptly extinguished, the dominant spatial
Fourier component exhibits an exponentially decaying (thermally diffusive) mode and a decaying
oscillatory (first sound) mode, enabling independent measurement of the thermal conductivity and the
shear viscosity directly from the time-dependent evolution.
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Studies of thermodynamics and hydrodynamic transport
in strongly correlated Fermi gases connect widely different
forms of matter across vast energy scales [1–3]. Strongly
interacting Fermi gases are created by tuning a trapped,
two-component cloud near a collisional (Feshbach) reso-
nance [4]. A resonantly interacting or unitary Fermi gas is
of special interest, as it is a scale-invariant, strongly
interacting quantum many-body system, with thermody-
namic and transport properties that are universal functions
of the density and temperature [5], permitting parameter-
free comparisons with predictions.
However, the behavior of the shear viscosity η and the

thermal conductivity κT of a unitary Fermi gas is not yet
established. Measurement of hydrodynamic flow in freely
expanding clouds [6,7] enables extraction of η in the
normal fluid regime, but requires a second order hydro-
dynamics model to properly account for ballistic flow in
the dilute edges [8,9]. Recent measurements of the sound
diffusivity [10], by sound attenuation in a driven, uniform
density, unitary Fermi gas, constrain η and κT , but they are
not independently determined [11].
In this Letter, we report new time-domain, free evolution

methods for measuring hydrodynamic transport coeffi-
cients in a normal fluid unitary Fermi gas. We confine a
cloud of 6Li atoms in a repulsive box potential, producing a
sample of nearly uniform density. A density perturbation
is then created, Fig. 1, by applying a small static optical
potential that is spatially periodic along one axis. After
equilibrium is established, the perturbing potential is
abruptly extinguished. We measure the time dependence
of the dominant spatial Fourier component of the density,
δnðq; tÞ, Fig. 2, which exhibits an exponentially decaying
mode that measures the thermal conductivity and a
decaying oscillatory mode that determines the sound speed
and the sound diffusivity. The data are well fit by a linear
hydrodynamics analytic model, enabling measurement of
both the shear viscosity η and the thermal conductivity κT.

The experiments employ ultracold 6Li atoms in a bal-
anced mixture of the two lowest hyperfine states, which are
evaporatively cooled in a CO2 laser trap and loaded into
a box potential. The box comprises six sheets of blue-
detuned light, created by two digital micromirror devices
(DMDs) [12]. The top and bottom sheets employ a 669 nm
beam. The four vertically propagating sheets are produced
by a 532 nm beam, which passes through a diffractive
optical element and an imaging lens to produce a “top-hat”
shaped intensity profile on the surface of the DMD array.
The box potentialU0ðrÞ yields a rectangular density profile
with typical dimensions ðx; y; zÞ ¼ ð52 × 50 × 150Þ μm.
The density varies slowly in the direction of the long (z)
axis, due to the harmonic confining potential ∝ z2 arising
from the curvature of the bias magnetic field, which has
little effect on the shorter x and y axes. The typical total
central density is n0 ¼ 4.5 × 1011 atoms=cm3, with the
Fermi energy ϵF0 ≡ kBTF ¼ kB × 0.22 μK and Fermi
speed vF ≃ 2.5 cm=s. The box depth U0 ≃ 1.1 μK [13].
Once the cloud is loaded into the box potential, we

employ the 532 nm DMD to slowly ramp up an additional
small optical potential δUðzÞ, which is spatially periodic
along the z axis. After thermal equilibrium is established,
the cloud profile exhibits a periodic spatial modulation,
δnðz; 0Þ, Fig. 1. The measurements employ modulation
amplitudes δn=n0 from 7% to 19%, yielding consistent data
within our error bars.
After the periodic potential is abruptly extinguished,

we measure the oscillatory decay of the density change
δnðz; tÞ ¼ nðz; tÞ − n0ðzÞ. For each image, the signal n and
subtracted background n0ðzÞ densities are scaled to their
respective total atom number to suppress noise arising from
shot to shot atom number variation. We perform a fast
Fourier transform (FFT) of δnðz; tÞ at each time, in a region
containing an integer number (typically 3–4) of spatial
periods near the peak density, minimizing the imaginary
component to obtain a real transform, δnðq; tÞ, Fig. 2.
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To model the data, where the initial conditions are
isothermal, it is convenient to construct the coupled
equations for the changes in the density δnðz; tÞ and
temperature δTðz; tÞ. We use the continuity equation to
eliminate the velocity field. For experiments in the linear
response regime [13],

δ  n ¼ c2T∂2
zðδnþ δT̃Þ þ

4
3
ηþ ξB
n0m

∂2
zδ _n

þ 1

m
∂z½n0ðzÞ∂zδU þ δn∂zU0ðzÞ�; ð1Þ

with cT the isothermal sound speed and m the atom
mass. Here, δT̃ ¼ n0βδT has dimension of density, with
β ¼ −1=nð∂n=∂TÞP the thermal expansivity [13] and

δ _̃T ¼ ϵLP δ _nþ κT
n0 cV1

∂2
zδT̃; ð2Þ

with ϵLP ≡ cP1
=cV1

− 1 the Landau-Placzek parameter. The
heat capacities per particle at constant volume cV1

and at
constant pressure cP1

can be determined from the measured
equation of state [13,14].
Equations (1) and (2) have simple physical interpreta-

tions. The c2T terms on the right-hand side of Eq. (1)
correspond to the pressure change [13]. A viscous damping
force arises from the shear viscosity, η≡ αηℏn0, while the
bulk viscosity ξB vanishes for a unitary Fermi gas [15]. The
final terms in Eq. (1) arise from the perturbing and box
potentials, where ∂zU0ðzÞ is found from the slowly varying
background density n0ðzÞ [13] and δUðz; t > 0Þ ¼ 0 for
our experiments. The first term on the right-hand side of
Eq. (2) describes the adiabatic change in the temperature
due to the change in density. The last term describes
temperature relaxation at constant density due to the heat
flux, which is proportional to the thermal conductivity
κT ≡ ακℏn0kB=m. Equations (1) and (2) can be solved
numerically for δnðz; tÞ, with the initial conditions δnðz; 0Þ
(measured), δ _nðz; 0Þ ¼ 0, and δT̃ðz; 0Þ ¼ 0.

We find that a perturbation wavelength λ ≃ 23 μm yields
good dynamic range for decay measurements over time
scales that avoid perturbing δnðz; tÞ in the measured central
region by reflections from the walls of box potential, which
then can be neglected. Since δU ¼ 0, a spatial Fourier
transform of Eqs. (1) and (2) yields coupled equations for

δ  nðq; tÞ and δ _̃Tðq; tÞ. These determine the analytic fit
function [13],

δnðq; tÞ ¼ A0e−Γt þ e−at½A1 cosðbtÞ þ A2 sinðbtÞ�; ð3Þ

where A1 ¼ A − A0 and A2 ¼ ½ðΓ − aÞA0 þ aA�=b satisfy
two of the initial conditions δnðq; 0Þ ¼ A and δ _nðq; 0Þ ¼ 0.
The third initial condition δ  nðq; 0Þ ¼ −c2Tq2A [13] deter-
mines A0 ¼ Aða2 þ b2 − c2Tq

2Þ=½ðΓ − aÞ2 þ b2�.
We see that the solution consists of two independent

modes, Fig. 2 (inset). One mode is exponentially decaying
and determines the thermal diffusivity as discussed below.
The other is a decaying, oscillating first sound mode, which
determines the sound diffusivity. Together, the decay rates
of these two distinct modes determine both the thermal
conductivity and the shear viscosity.

FIG. 2. Real part of the Fourier transform of the density
perturbation δnðq; tÞ for q ¼ 2π=λ with λ ¼ 22.7 μm. The
reduced temperature T=TF ¼ 0.46. Blue dots (data); Red curve:
analytic hydrodynamics model, Eq. (3). Inset shows contributions
of thermal diffusion (orange exponential) and first sound (blue).
The error bars are the standard deviation of the mean of δnðq; tÞ
for 5–8 runs, taken in random time order.

FIG. 1. A unitary Fermi gas is loaded into a box potential with a
small static spatially periodic perturbation δU, creating a spatially
periodic 1D density profile. After δU is abruptly extinguished,
the dominant Fourier component exhibits a two-mode oscillatory
decay (see Fig. 2).
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The frequencies Γ, a, and b in Eq. (3) are related to the
frequencies γη ≡ 4ηq2=ð3n0mÞ, γκ ≡ κTq2=ðn0cV1

Þ, and
cTq by [13]

Γþ 2a ¼ γκ þ γη ð4Þ

a2 þ b2 þ 2aΓ ¼ c2Sq
2 þ γηγκ ð5Þ

Γða2 þ b2Þ ¼ c2Tq
2γκ: ð6Þ

Here, cS and cT are the adiabatic and isothermal sound
speeds, which obey c2S=c

2
T ¼ cP1

=cV1
¼ 1þ ϵLPðT=TFÞ.

Fitting Eq. (3) to the data yields the red curve in Fig. 2,
with the three frequencies cTq; γη; γκ, and the amplitude A
as free parameters. We find that fitting the data with A0 ¼ 0

increases the χ2 per degree of freedom from ≃1 to ≃20,
demonstrating the importance of the thermal diffusion
mode, which determines the thermal conductivity in our
measurements.
The reduced temperature T=TF ¼ θðcT=vFÞ in

Eqs. (4)–(6) is self-consistently determined from cT by
the equation of state [13,14], with vF given for the average
central density n0 [13]. The fits determine the frequency
cTq within 2%, enabling in situ thermometry [19].

We note that in the long wavelength (LW) limit, where
cSq ≫ γκ; γη, Eq. (5) requires b=q ≃ cS, the first sound
speed. Then Eq. (6) reduces to Γ=q2 ≃ κT=ðn0cP1

Þ ¼ DT ,
the thermal diffusivity, and Eq. (4) yields 2a=q2≃
γη=q2 þ γκ=q2 − Γ=q2 ¼ D1, the usual first sound diffu-
sivity [13,20]. In our experiments, where λ ≃ 23 μm, we
find that b=q is smaller than cS by 2.2%, 4.3%, and 5.7%
for T=TF ¼ 0.28, 0.46, and 0.63, respectively, close to the
LW limit.
Further, the LW limit requires A0=A ¼ 1 − cV1

=cP1
,

which is ≃0.3 for our T=TF range and within 10% of
the measured values. As a cross-check, we fit the data with
Eq. (3), letting both A and A0 be free parameters, and obtain
consistent results for A0=A.
We also estimate the change in the energy per particleW1

that arises from the energy stored in the initial spatially
periodic density profile. Assuming adiabatic compression,
we find [13],

W1 ¼
mc2S
2

��
δn
n0

�
2
�
: ð7Þ

For δn=n0 ≃ 0.2 cosðqzÞ, we have W1 ≃ 0.01mc2S. As
mc2S ¼ 10=9E1, with E1 the energy per particle [10,13],
the change in E1, and hence in θ ¼ T=TF, is negligible.
Our measured shear viscosity, Fig. 3, can be compared to

the high temperature diluteness expansion of Bluhm et al.,
[9], ηexpðθÞ ¼ ðα0θ3=2 þ α2Þℏn, where α0 ¼ 2.77ð21Þ and
α2 ¼ 0.25ð08Þ are measured by using a second order
hydrodynamics model to fit aspect ratio data for freely
expanding clouds [7]. Here, the first term is the high
temperature limit, where θ3=2n ∝ T3=2 depends only on the
temperature. The extracted α0 is in excellent agreement
with a variational calculation based on the two-body
Boltzmann equation for a unitary gas [9,21]. The leading
correction from α2 depends only on the density. The red
curve in Fig. 3 shows that ηexpðT=TFÞ is in agreement with
the measurements in the box potential for T=TF ≥ 0.45.
For comparison, the red-dashed curve shows the high
temperature limit, where α2 ¼ 0. The top purple-dashed
curve is the T-matrix theory prediction of Enss et al., [22],
in reasonable agreement with the data.
In all of the figures, we compare data for λ ≃ 23 μm to

data points with λ ¼ 18.2 μm, 18.9 μm, 32.3 μm (three-
spatial periods), and 41.7 μm (two-spatial periods). These
measurements show that there are no large systematic shifts
with wavelength.
Our measured thermal conductivity, Fig. 4, can be com-

pared with variational calculations for a unitary Fermi gas in
the high temperature, two-body Boltzmann equation limit
[24], where κTðθÞ ¼ 15=4α0θ3=2ℏn kB=m, with kB the
Boltzmann constant. The red-dashed line in Fig. 4 shows
that the high temperature prediction is in reasonable agreement
with measurements in the box potential for T=TF ≥ 0.45,

FIG. 3. Shear viscosity η in units of ℏn versus reduced temper-
ature T=TF. Blue dots: λ ≃ 23 μm. Orange dots: left (right)
λ ¼ 18.2ð18.9Þ μm. Pink dots: left (right) λ ¼ 32.3ð41.7Þ μm.
Red solid curve: fit to cloud expansion data, α0θ3=2 þ α2 (Bluhm
et al., [9], see text). Shaded region denotes the standard deviation
of the fit. Upper purple-dashed curve: prediction of Enss et al.,
[22]. Lower red-dashed curve: high temperature limit, α0θ3=2. Data
error bars are statistical [23]. (color online).
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without a temperature-independent correction, but the data are
significantly smaller than predicted [25,26].
The sound diffusivity D1 ¼ 2a=q2, in units of ℏ=m,

Fig. 5, is determined by Eqs. (4)–(6) from the fit parameters
cTq, γη, and γκ. We obtain the same results within our error
bars, by directly fitting Γ, a, and b in Eq. (3), constraining
A0=A using the LW limit, where b ≃ cSq determines T=TF.
The red-dashed curve shows the predicted LW D1, using the
high temperature limits for both the shear visco-
sity and the thermal conductivity, with cP1

¼ 5=2kB and
cV1

¼ 3=2kB. For the red solid curve, the high temperature
shear viscosity term in D1 is replaced with the measured
viscosity for the expanding gas, ηexpðθÞ, yielding a good fit
for the higher temperature measurements, consistent with
our measured η and κT . Our diffusivity data can be compared
to that of Patel et al., [10], which are shifted upward relative
to that of Fig. 5, but exhibit nearly identical scaling with
T=TF, as discussed in the Supplemental Material [13].
In conclusion, we have independently determined the

shear viscosity and thermal conductivity of a normal-fluid
unitary Fermi gas in a box potential, directly from the two-
mode oscillatory decay of a spatially periodic density
perturbation. For the isothermal static initial conditions
employed in the experiments, the thermally diffusive mode
comprises≃30% of the initial total amplitude of the dominant
Fourier component, which is readily apparent in the free
hydrodynamic relaxation. This method is complementary to
frequency domain techniques, where transport properties of
quantum fluids have been determined by measuring the

hydrodynamic linear susceptibility [27–29]. For reduced
temperatures T=TF > 0.45, we find that the shear viscosity
measured by free hydrodynamic relaxation in a box potential
is consistent with that extracted from data on expanding
clouds [8,9], which includes a significant density-dependent
contribution. At lower temperatures, T=TF < 0.4, the shear
viscosity measured in the box is consistently larger than that
of the expanding cloud. The thermal conductivity for
T=TF > 0.45 is close to the high temperature limit. In
contrast to the shear viscosity, the pure density dependent
contribution to the high temperature thermal conductivity
appears to be quite small. These results emphasize the need
for rigorous calculations of the leading density-dependent
corrections to the two-body high temperature limits. Finally,
we expect that in the superfluid regime, the exponentially
decaying mode will evolve into an oscillating second sound
mode, which we hope to study in future experiments.

We thank Thomas Schäfer for stimulating discussions
and Parth Patel and Martin Zwierlein for providing their
sound diffusivity data in table form. Primary support for
this research is provided by the Physics Divisions of the
National Science Foundation (PHY-2006234) and the Air
Force Office of Scientific Research (FA9550-16-1-0378).

Note added in the proof.—Recently a related study has
appeared [30].

FIG. 4. Thermal conductivity κT in units of ℏnkB=m versus
reduced temperature T=TF. Blue dots: λ ≃ 23 μm. Orange
dots: left (right) λ ¼ 18.2ð18.9Þ μm. Pink dots: left (right) λ ¼
32.3ð41.7Þ μm. Red-dashed curve: high temperature limit,
15=4α0θ3=2. Error bars are statistical [23]. (color online).

FIG. 5. Sound diffusivity D1 ¼ 2a=q2, in units of ℏ=m versus
reduced temperature T=TF. Blue dots: λ ≃ 23 μm. Orange
dots: left (right) λ ¼ 18.2ð18.9Þ μm. Pink dots: left (right)
λ ¼ 32.3ð41.7Þ μm. Red-dashed curve: long wavelength, high
temperature limit, D1 ¼ 7=3 α0 θ3=2. Red solid curve: D1 ¼
4=3ðα0θ3=2 þ α2Þ þ α0θ

3=2. Error bars are statistical [23]. (color
online).

PHYSICAL REVIEW LETTERS 128, 090402 (2022)

090402-4



*Corresponding author.
jethoma7@ncsu.edu

[1] A. Adams, L. D. Carr, T. Schäfer, P. Steinberg, and J. E.
Thomas, Strongly correlated quantum fluids: Ultracold
quantum gases, quantum chromodynamic plasmas and
holographic duality, New J. Phys. 14, 115009 (2012).

[2] G. C. Strinati, P. Pieri, G. Röpke, P. Schuck, and M. Urban,
The BCS-BEC crossover: From ultra-cold Fermi gases to
nuclear systems, Phys. Rep. 738, 1 (2018).

[3] I. Bloch, J.Dalibard, andS.Nascimbène,Quantum simulations
with ultracold quantum gases, Nat. Phys. 8, 267 (2012).

[4] K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade,
and J. E. Thomas, Observation of a strongly interacting
degenerate Fermi gas of atoms, Science 298, 2179 (2002).

[5] T.-L. Ho, Universal Thermodynamics of Degenerate Quan-
tum Gases in the Unitarity Limit, Phys. Rev. Lett. 92,
090402 (2004).

[6] C. Cao, E. Elliott, J. Joseph, H. Wu, J. Petricka, T. Schäfer,
and J. E. Thomas, Universal quantum viscosity in a unitary
Fermi gas, Science 331, 58 (2011).

[7] J. A. Joseph, E. Elliott, and J. E. Thomas, Shear Viscosity of
a Unitary Fermi Gas Near the Superfluid Phase Transition,
Phys. Rev. Lett. 115, 020401 (2015).

[8] M. Bluhm and T. Schäfer, Model-Independent Determina-
tion of the Shear Viscosity of a Trapped Unitary Fermi Gas:
Application to High-Temperature Data, Phys. Rev. Lett.
116, 115301 (2016).

[9] M. Bluhm, J. Hou, and T. Schäfer, Determination of the
Density and Temperature Dependence of the Shear Viscos-
ity of a Unitary Fermi Gas based on Hydrodynamic Flow,
Phys. Rev. Lett. 119, 065302 (2017).

[10] P. B. Patel, Z. Yan, B. Mukherjee, R. J. Fletcher, J. Struck,
and M.W. Zwierlein, Universal sound diffusion in a
strongly interacting Fermi gas, Science 370, 1222 (2020).

[11] A newmethod for directly measuring temperature waves has
been reported recently, accessing second sound and thermal
diffusion in a unitary Fermi gas. See Z. Yan, P. B. Patel, B.
Mukherjee, R. Fletcher, and M.W. Zwierlein, DAMOP21/
Session/U07.2.

[12] L. Baird, X. Wang, S. Roof, and J. E. Thomas, Measuring
the Hydrodynamic Linear Response of a Unitary Fermi Gas,
Phys. Rev. Lett. 123, 160402 (2019).

[13] See the Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.128.090402 for discus-
sions of the linearized hydrodynamic equations, the analytic
solution, the sound diffusivity, the forces arising from the
box potential, the determination of the density, and the
systematic error arising from the density variation.

[14] M. J. Ku, A. T. Sommer, L. W. Cheuk, and M.W. Zwierlein,
Revealing the superfluid lambda transition in the universal
thermodynamics of a unitary Fermi gas, Science 335, 563
(2012).

[15] For a unitary Fermi gas, the bulk viscosity ξB has been
measured [16] and found to be negligible compared to the
shear viscosity, consistent with predictions that ξB ¼ 0 for
scale invariant systems [17,18].

[16] E. Elliott, J. A. Joseph, and J. E. Thomas, Observation of
Conformal Symmetry Breaking and Scale Invariance in
Expanding Fermi Gases, Phys. Rev. Lett. 112, 040405
(2014).

[17] D. T. Son, Vanishing Bulk Viscosities and Conformal
Invariance of the Unitary Fermi Gas, Phys. Rev. Lett. 98,
020604 (2007).

[18] Y.-H. Hou, L. P. Pitaevskii, and S. Stringari, Scaling
solutions of the two-fluid hydrodynamic equations in a
harmonically trapped gas at unitarity, Phys. Rev. A 87,
033620 (2013).

[19] We give θ ¼ T=TF for the average central density n0 [13].
[20] L. D. Landau and E. M. Lifshitz, Fluid Dynamics, Course of

Theoretical Physics Vol. VI (Pergamon Press, Oxford,
1959).

[21] G. M. Bruun and H. Smith, Shear viscosity and damping for
a Fermi gas in the unitary limit, Phys. Rev. A 75, 043612
(2007).

[22] T. Enss, R. Haussmann, and W. Zwerger, Viscosity and
scale invariance in the unitary Fermi gas, Ann. Phys.
(Amsterdam) 326, 770 (2011).

[23] The vertical error bars in Figs. 3 and 4 denote � ffiffiffiffiffiffiffi
2ϵii

p
,

where ϵij is the error matrix obtained from χ2ðγη; γκÞ with A
and cT fixed. For the diffusivity in Fig. 5, ϵaa is found from
χ2ða; bÞ, minimizing with respect to A and Γ, holding cT
fixed in Eq. (3). We estimate a systematic downward shift of
≤ 5%, arising from the density variation [13].

[24] M. Braby, J. Chao, and T. Schäfer, Thermal conductivity
and sound attenuation in dilute atomic Fermi gases, Phys.
Rev. A 82, 033619 (2010).

[25] B. Frank, W. Zwerger, and T. Enss, Quantum critical
thermal transport in the unitary Fermi gas, Phys. Rev.
Research 2, 023301 (2020).

[26] H. Zhou and Y. Ma, Thermal conductivity of an ultracold
Fermi gas in the BCS-BEC crossover, Sci. Rep. 11, 1228
(2021).

[27] P. C. Hohenberg and P. C. Martin, Microscopic theory of
superfluid helium, Ann. Phys. (N.Y.) 34, 291 (1965).

[28] H. Hu, P. Zou, and X.-J. Liu, Low-momentum dynamic
structure factor of a strongly interacting Fermi gas at finite
temperature: A two-fluid hydrodynamic description, Phys.
Rev. A 97, 023615 (2018).

[29] P. Zhang and Z. Yu, Energy-absorption spectroscopy of
unitary Fermi gases in a uniform potential, Phys. Rev. A 97,
041601(R) (2018).

[30] X. Li, X. Luo, S. Wang, K. Xie, X.-P. Liu, H. Hu,
Y.-A. Chen, X.-C. Yao, and J.-W. Pan, Second sound
attenuation near quantum criticality, Science 375, 528
(2022).

PHYSICAL REVIEW LETTERS 128, 090402 (2022)

090402-5

https://doi.org/10.1088/1367-2630/14/11/115009
https://doi.org/10.1016/j.physrep.2018.02.004
https://doi.org/10.1038/nphys2259
https://doi.org/10.1126/science.1079107
https://doi.org/10.1103/PhysRevLett.92.090402
https://doi.org/10.1103/PhysRevLett.92.090402
https://doi.org/10.1126/science.1195219
https://doi.org/10.1103/PhysRevLett.115.020401
https://doi.org/10.1103/PhysRevLett.116.115301
https://doi.org/10.1103/PhysRevLett.116.115301
https://doi.org/10.1103/PhysRevLett.119.065302
https://doi.org/10.1126/science.aaz5756
https://doi.org/10.1103/PhysRevLett.123.160402
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.090402
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.090402
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.090402
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.090402
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.090402
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.090402
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.090402
https://doi.org/10.1126/science.1214987
https://doi.org/10.1126/science.1214987
https://doi.org/10.1103/PhysRevLett.112.040405
https://doi.org/10.1103/PhysRevLett.112.040405
https://doi.org/10.1103/PhysRevLett.98.020604
https://doi.org/10.1103/PhysRevLett.98.020604
https://doi.org/10.1103/PhysRevA.87.033620
https://doi.org/10.1103/PhysRevA.87.033620
https://doi.org/10.1103/PhysRevA.75.043612
https://doi.org/10.1103/PhysRevA.75.043612
https://doi.org/10.1016/j.aop.2010.10.002
https://doi.org/10.1016/j.aop.2010.10.002
https://doi.org/10.1103/PhysRevA.82.033619
https://doi.org/10.1103/PhysRevA.82.033619
https://doi.org/10.1103/PhysRevResearch.2.023301
https://doi.org/10.1103/PhysRevResearch.2.023301
https://doi.org/10.1038/s41598-020-79010-w
https://doi.org/10.1038/s41598-020-79010-w
https://doi.org/10.1016/0003-4916(65)90280-0
https://doi.org/10.1103/PhysRevA.97.023615
https://doi.org/10.1103/PhysRevA.97.023615
https://doi.org/10.1103/PhysRevA.97.041601
https://doi.org/10.1103/PhysRevA.97.041601
https://doi.org/10.1126/science.abi4480
https://doi.org/10.1126/science.abi4480

