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We have developed an efficient synthesis of acrylonitriles via mild base promoted tandem nucleophilic substitution-isomerization of 
α-cyanohydrin methanesulfonates with alkenylboronic acids. This transition metal-free protocol works under simple and mild condi-
tions and offers good chemical yields for a wide range of substrates and demonstrates good functional group tolerance. 
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Background and Originality Content 

Nitriles are important targets and highly useful building blocks 
which can be transformed to many functionalities such as carbox-
ylic acids,

[1]
 amines

[2]
 and aldehydes.

[3]
 More specifically, acryloni-

triles involved in various transformations, such as Michael addi-
tion,

[4]
 Diels-Alder cycloadditions

[5]
 and cross-couplings.

[6]
 Besides, 

acrylonitriles remain one of commonly used monomers for prep-
aration of plastics, acrylic fibers and polyacrylonitrile.

[7]
 Moreover, 

the acrylonitrile motif represents a common structural motif fre-
quently found in many pharmaceuticals and natural products such 
as Entacapone (agent for Pakinson's disease), CC-5079 (antitumor 
agent), Rilpivirine (reverse transcriptase inhibitor).

[8]
 Thus, their 

efficient synthesis has been a longstanding goal of organic synthe-
sis. 

Traditional methods for the synthesis of acrylonitriles are 
based on the classical Knoevenagel condensations,

[9]
 Wittig-type 

reactions
[10]

 (Scheme 1a), Heck or oxidative Heck-type reactions
[11]

 
(Scheme 1b), dehydration of acrylamides or conjugated oximes 
(Scheme 1c),

[12]
 cyanation of alkenyl halides (Scheme 1d),

[13]
 cya-

nation of alkynes (Scheme 1e)
[11c,14]

 and allylic cyanation.
[15]

 
However, these methods usually suffer from poor substrate scope 
and/or low E/Z selectivity. Recently, Jiang and coworkers reported 
an efficient base promoted addition of arylacetonitriles to termi-
nal alkynes

[16]
 (Scheme 1f), providing a straightforward and transi-

tion metal-free protocol for the preparation of acrylonitriles alt-
hough strong base (KOtBu) was needed. On the other hand, Pd 
catalyzed Suzuki cross-coupling of organoboronic acids with 
α-cyanohydrin triflates has been reported by Falck and coworkers 
(Scheme 1g).

[17]
 Also, metal-free Suzuki type cross-couplings

[18]
 of 

alkenyl or aryl boronic acids have been well explored by groups of 
Tang,

[19]
 Wang,

[20]
 Huang,

[21]
 Ryu

[22]
 and us

[23]
 (Scheme 1h). 

Scheme 1  Literature background 

 

Based on these pioneering works, we envisioned a new syn-

thesis of acrylonitriles via a tandem nucleophilic substitution- 
isomerization protocol (Scheme 1i). First, a mild base promoted 
nucleophilic substitution of α-cyanohydrin methanesulfonates by 
alkenylboronic acids generates intermediate A, then a base pro-
moted isomerization of A leads to the formation of acrylonitriles 3. 
Because only mild bases are needed, this tandem protocol may 
offer wide substrates scope and good functional group tolerance. 

Results and Discussion 

As shown in Table 1, firstly, we investigated the reactions of 
α-CN benzyl electrophiles (1a—1c) containing various leaving 
groups with alkenylboronic acid 2a in the presence of weak base 
K3PO4 at room temperature. Both bromide 1a and tosylate 1b did 
not give any product. To our delight, the coupling product 3a was 
obtained in 89% yield when α-cyanohydrin methanesulfonate 1c 
was used. On the other hand, no reaction occurred when less 
reactive alkenylboronic ester 2b or potassium alkenyltrifluorobo-
rate 2c was used. Screening of bases of different strength re-
vealed that weaker bases (K2CO3, NaF, KF, K3PO4) could give mod-
erate to good yields and were better than stronger bases (tBuOK, 
NaOMe) probably due to the strong binding effect to the cation. 
Besides, comparison of different cations showed that the trans-
formation hardly proceeded when using LiF as base. Moreover, 
changing the solvent from low polar solvents to more polar sol-
vents such as DMF, THF resulted in significant decrease of the 
chemical yields. 

Table 1  Optimization of reaction conditionsa 

 

entry X 2 base solvent Yieldb/% 

1 Br 2a K3PO4 toluene 0 

2 OTs 2a K3PO4 toluene 0 

3 OMs 2a K3PO4 toluene 89 

4 OMs 2b K3PO4 toluene 0 

5 OMs 2c K3PO4 toluene 0 

6 OMs 2a K2CO3 toluene 76 

7 OMs 2a LiF toluene 8 

8 OMs 2a NaF toluene 59 

9 OMs 2a KF toluene 79 

10 OMs 2a CsF toluene 44 

11 OMs 2a NaOH toluene 65 

12 OMs 2a NaOMe toluene 33 

13 OMs 2a KOtBu toluene 45 

14 OMs 2a K3PO4 DCE 67 

15 OMs 2a K3PO4 THF 32 

16 OMs 2a K3PO4 DMF 0 

a Conditions: 1 (0.1 mmol), 2 (0.15 mmol), base (0.2 mmol) in solvent (1 

mL), 60 °C, 12 h. b All yields are determined by GC-MS. 

With the optimized reaction conditions in hand, we examined 
the substrate scope of acrylonitrile 3 synthesis (Table 2). Firstly, 
we investigated the scope of alkenylboronic acids. Diverse 
alkenylboronic acids could couple with α-cyanohydrin me-
thanesulfonate 1a smoothly in moderate to excellent yields (Table 
2, 3a—3l). For substituents at the ortho, meta or para positions of 
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Table 2  Scope for synthesis of acrylonitrilesa 

 

the phenyl ring in 2, including halides (F, Cl and Br) (Table 2, 
3c—3d, 3h), alkyl (Table 2, 3b), high yields were obtained regard-
less. Besides, alkenyl boronic acids 2 containing a thiophene, 
benzothiophene, benzofuran or fluorene moieties (Table 2, 3e, 3k, 
3l, 3ad) all are suitable substrates. For electron-donating substit-
uents at the phenyl ring in 2 (Table 2, 3j, 3ae), good yields were 
obtained, while electron-withdrawing substituents like COOMe or 
CF3 led to sluggish reactions due to their low nucleophilicity (Table 
2, 3f, 3g). Next, we aimed to investigate the scope of α-cyano-
hydrin methanesulfonate 1. For halogen substituents (F, Cl and Br) 
at para positions of the phenyl ring in 1 (Table 2, 3m—3o), good 
yield was obtained. Besides, the reaction system tolerated diverse 
functional groups including methyl, allyl, benzyl, azide, tosylate, 
benzoyl and silyl groups (Table 2, 3p—3w). Additionally, disubsti-
tuted α-cyanohydrin methanesulfonates were also suitable sub-
strates (Table 2, 3y—3ac). Moreover, even for 1 containing com-
plex natural product like skeleton (Table 2, 3ag), this protocol also 
worked very well. However, aliphatic α-cyanohydrin methanesul-
fonates (Table 2, 3af) and alkyl alkenylboronic acid (Table 2, 3ah) 
did not work under the same conditions due to less reactivity.  

Remarkably, diverse coupling products 4 were obtained at 
room temperature (Table 3). These results indicated that acryloni-
triles 3 were probably transformed from coupling products 4. It 
should be also noted that our metal-free protocol is orthogonal  

Table 3  Scope for synthesis of α-alkenyl nitrilesa 

 

towards the classic transitional metal catalyzed Suzuki reaction. 
For example, reactive aryl bromides (Table 3, 4d, 4e) showed no 
reactivity towards alkenylboronic acids in our conditions. 

Then, we moved our focus to the investigation of possible re-
action pathway (Scheme 2). The reaction was not affected by both 
TEMPO (2,2,6,6-tetramethyl-1-piperinedinyloxy, a radical quench-
er) and N-methylindole (an electron-rich aromatic) (Scheme 2, 
a—b).

[19a,20,22a]
 These results indicated that both radical interme-

diate and cationic intermediate were not likely and the reaction 
may not go through a radical mechanism or an SN1 like mecha-
nism. Furthermore, only trace product was detected when using 
K

+
 chelator (18-crown-6) (Scheme 2, c), which indicated that K

+
 

played an extremely important role, even participating in this 
transformation. Besides, under the optimized conditions, com-
pound 4a can be converted into 3a in 60% yield, which suggested 
that nucleophilic substitution product 4a was formed firstly in this 
transformation, and then was transformed into more stable acry-
lonitriles 3a. 

Scheme 2  Investigation of reaction pathways 

 

Based on above experimental results, we propose a possible 
mechanism (Scheme 3). Firstly, the base (K3PO4) attacks the or-
ganoboronic acid 2a to form an ate type complex A, whose anion-
ic nature leads to enhanced nucleophilicity.

[24]
 In this process, K

+ 

plays an important role in the formation of ion pair organic com-
pound intermediate A. On the other hand, formation of ion pair 
organic compound intermediate A could enhance the nucleo-
philicity of alkenyl boronic acids. Then complex A reacting with 
the sp

3
-carbon electrophile 1a to give intermediate 4 via an SN2 

pathway. Then, in the presence of base, a deprotonation/iso-
merization/protonation of 4 gives the thermodynamic product 3a. 
Remarkably, only (Z)-2,3-disubstituted acrylonitriles could be 



 

 
916 www.cjc.wiley-vch.de ©  2021 SIOC, CAS, Shanghai, & WILEY-VCH GmbH Chin. J. Chem. 2021, 39, 913－917 

Concise Report Liu et al. 

Scheme 3  Proposed mechanism 

 

obtained without any (E)-isomers, probably due to the steric ef-
fect of aromatics. 

Additionally, our methodology can be used in larger scale 
synthesis without complications (Scheme 4). Also, the obtained 3a 
can be selectively reduced to give 6a in 79% yield using the simple 
reductant – NaBH4.

[25]
 Moreover, the epoxidation of 3a led to the 

formation of an epoxide 5a in 65% yield.
[26]

 

Scheme 4  Gram-scale synthesis and further synthetic manipulations 

 

Conclusions 

In conclusion, we have developed an efficient cross-coupling 
between alkenylboronic acids and α-cyanohydrin methanesul-
fonate. Acrylonitriles can be accessed under simple and mild con-
ditions with good chemical yields and good functional group tol-
erance for a wide range of substrates. Other transition metal-free 
systems are currently being investigated in our laboratory and will 
be communicated in due course. 

Experimental 

Procedure for cross-coupling reaction: An oven-dried vial was 
charged with α-cyano methanesulfonate (0.1 mmol), alkenyl-
boronic acids (0.15 mmol), K3PO4 (0.2 mmol). Tol (1 mL) was add-
ed and the mixture was stirred at 60 centigrade for 12 h under air. 
After that, water was added and the aqueous phase was extracted 
with ethyl acetate (3 × 3 mL). The combined organic layers were 
dried over Na2SO4 and then concentrated. The crude product was 
purified by silica gel column chromatography. 
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