'.) Check for updates

ocpglﬁesrer]é(t):lrnal For submission: https://mc.manuscriptcentral.com/cjoc concise Report
PO w....-,....‘WX.AO...”. For published articles: https://onlinelibrary.wiley.com/journal /16147065 P

Cite this paper: Chin. J. Chem. 2021, 39, 913—917. DOI: 10.1002/cjoc.202000579

Synthesis of Acrylonitriles via Mild Base Promoted Tandem
Nucleophilic Substitution-lsomerization of a-Cyanohydrin
Methanesulfonates

Shiwen Liu,’ Lingling Meng,” Xiaojun Zeng,” Gerald B. Hammond,** and Bo Xu*"

? College of Textiles and Clothing & Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province,
Yancheng Institute of Technology, Yancheng, Jiangsu 224003, China

b Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering
and Biotechnology, Donghua University, Shanghai 201620, China
“Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States

Keywords

Acrylonitriles | Nucleophilic substitution | Isomerization | a-Cyanohydrin methanesulfonates | Alkenyl boronic acids

Main observation and conclusion

We have developed an efficient synthesis of acrylonitriles via mild base promoted tandem nucleophilic substitution-isomerization of
a-cyanohydrin methanesulfonates with alkenylboronic acids. This transition metal-free protocol works under simple and mild condi-
tions and offers good chemical yields for a wide range of substrates and demonstrates good functional group tolerance.
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Background and Originality Content

Nitriles are important targets and highly useful building blocks
which can be transformed to many functionalities such as carbox-
ylic acids,m amines™ and aldehydes.B] More specifically, acryloni-
triles involved in various transformations, such as Michael addi-
tion,w Diels-Alder cycloadditions[S] and cross-couplings.[sl Besides,
acrylonitriles remain one of commonly used monomers for prep-
aration of plastics, acrylic fibers and polyacrylonitrile.m Moreover,
the acrylonitrile motif represents a common structural motif fre-
quently found in many pharmaceuticals and natural products such
as Entacapone (agent for Pakinson's disease), CC-5079 (antitumor
agent), Rilpivirine (reverse transcriptase inhibitor).[gl Thus, their
efficient synthesis has been a longstanding goal of organic synthe-
sis.

Traditional methods for the synthesis of acrylonitriles are
based on the classical Knoevenagel condensations,m Wittig-type
reactions™”! (Scheme 1a), Heck or oxidative Heck-type reactions™
(Scheme 1b), dehydration of acrylamides or conjugated oximes
(Scheme 1c),[12] cyanation of alkenyl halides (Scheme ld),m] cya-
nation of alkynes (Scheme 1e)[11°'14] and allylic cyanation.
However, these methods usually suffer from poor substrate scope
and/or low E/Z selectivity. Recently, Jiang and coworkers reported
an efficient base promoted addition of arylacetonitriles to termi-
nal aIkynes[w] (Scheme 1f), providing a straightforward and transi-
tion metal-free protocol for the preparation of acrylonitriles alt-
hough strong base (KOtBu) was needed. On the other hand, Pd
catalyzed Suzuki cross-coupling of organoboronic acids with
a-cyanohydrin triflates has been reported by Falck and coworkers
(Scheme 1g).[17] Also, metal-free Suzuki type cross—couplings”sl of
alkenyl or aryl boronic acids have been well explored by groups of
Tang,m] Wang,lzo] Huang,m] Ryum] and us™® (Scheme 1h).

Scheme 1 Literature background
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Based on these pioneering works, we envisioned a new syn-
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thesis of acrylonitriles via a tandem nucleophilic substitution-
isomerization protocol (Scheme 1i). First, a mild base promoted
nucleophilic substitution of a-cyanohydrin methanesulfonates by
alkenylboronic acids generates intermediate A, then a base pro-
moted isomerization of A leads to the formation of acrylonitriles 3.
Because only mild bases are needed, this tandem protocol may
offer wide substrates scope and good functional group tolerance.

Results and Discussion

As shown in Table 1, firstly, we investigated the reactions of
o-CN benzyl electrophiles (1a—1c) containing various leaving
groups with alkenylboronic acid 2a in the presence of weak base
K3PO,4 at room temperature. Both bromide 1a and tosylate 1b did
not give any product. To our delight, the coupling product 3a was
obtained in 89% yield when a-cyanohydrin methanesulfonate 1c
was used. On the other hand, no reaction occurred when less
reactive alkenylboronic ester 2b or potassium alkenyltrifluorobo-
rate 2c was used. Screening of bases of different strength re-
vealed that weaker bases (K,CO;, NaF, KF, KsPO,) could give mod-
erate to good yields and were better than stronger bases (tBuOK,
NaOMe) probably due to the strong binding effect to the cation.
Besides, comparison of different cations showed that the trans-
formation hardly proceeded when using LiF as base. Moreover,
changing the solvent from low polar solvents to more polar sol-
vents such as DMF, THF resulted in significant decrease of the
chemical yields.

Table 1 Optimization of reaction conditions’

CN CN

B] = B(OH),, 2a

Ph/kx " SZTVS:nt, Ph)vph {BLB(p“" )2’2"

1 2 60°C, air12h  3a [B]=BFK,  2¢

entry X 2 base solvent Yield®/%

1 Br 2a KsPO, toluene 0
2 OTs 2a KsPO, toluene 0
3 OMs 2a KsPO, toluene 89
4 OMs 2b KsPO, toluene 0
5 OMs 2c KsPO, toluene 0
6 OMs 2a K,COs toluene 76
7 OMs 2a LiF toluene 8
8 OMs 2a NaF toluene 59
9 OMs 2a KF toluene 79
10 OMs 2a CsF toluene 44
11 OMs 2a NaOH toluene 65
12 OMs 2a NaOMe toluene 33
13 OMs 2a KOtBu toluene 45
14 OMs 2a KsPO, DCE 67
15 OMs 2a KsPO, THF 32
16 OMs 2a KsPO, DMF 0

© 2021 SIOC, CAS, Shanghai, & WILEY-VCH GmbH

“Conditions: 1 (0.1 mmol), 2 (0.15 mmol), base (0.2 mmol) in solvent (1
mL), 60 °C, 12 h. LAl yields are determined by GC-MS.

With the optimized reaction conditions in hand, we examined
the substrate scope of acrylonitrile 3 synthesis (Table 2). Firstly,
we investigated the scope of alkenylboronic acids. Diverse
alkenylboronic acids could couple with a-cyanohydrin me-
thanesulfonate 1a smoothly in moderate to excellent yields (Table
2, 3a—3l). For substituents at the ortho, meta or para positions of

Chin. J. Chem. 2021, 39, 913—917
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Table 2 Scope for synthesis of acrylonitriles”
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Table 3 Scope for synthesis of a-alkenyl nitriles”
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@ Conditions: 1 (0.1 mmol), 2 (0.15 mmol), K3PO,4 (0.2 mmol) in toluene (1 mL),
60 °C, 12 h. All yields are isolated yields.

the phenyl ring in 2, including halides (F, Cl and Br) (Table 2,
3c—3d, 3h), alkyl (Table 2, 3b), high yields were obtained regard-
less. Besides, alkenyl boronic acids 2 containing a thiophene,
benzothiophene, benzofuran or fluorene moieties (Table 2, 3e, 3k,
3l, 3ad) all are suitable substrates. For electron-donating substit-
uents at the phenyl ring in 2 (Table 2, 3j, 3ae), good yields were
obtained, while electron-withdrawing substituents like COOMe or
CF; led to sluggish reactions due to their low nucleophilicity (Table
2, 3f, 3g). Next, we aimed to investigate the scope of a-cyano-
hydrin methanesulfonate 1. For halogen substituents (F, Cl and Br)
at para positions of the phenyl ring in 1 (Table 2, 3m—3o0), good
yield was obtained. Besides, the reaction system tolerated diverse
functional groups including methyl, allyl, benzyl, azide, tosylate,
benzoyl and silyl groups (Table 2, 3p—3w). Additionally, disubsti-
tuted a-cyanohydrin methanesulfonates were also suitable sub-
strates (Table 2, 3y—3ac). Moreover, even for 1 containing com-
plex natural product like skeleton (Table 2, 3ag), this protocol also
worked very well. However, aliphatic a-cyanohydrin methanesul-
fonates (Table 2, 3af) and alkyl alkenylboronic acid (Table 2, 3ah)
did not work under the same conditions due to less reactivity.
Remarkably, diverse coupling products 4 were obtained at
room temperature (Table 3). These results indicated that acryloni-
triles 3 were probably transformed from coupling products 4. It
should be also noted that our metal-free protocol is orthogonal

Chin. J. Chem. 2021, 39, 913—917
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@ Conditions: 1 (0.1 mmol), 2 (0.15 mmol), K3POy (0.2 mmol) in toluene (1 mL),
rt, 12 h. All yields are isolated yields.

towards the classic transitional metal catalyzed Suzuki reaction.
For example, reactive aryl bromides (Table 3, 4d, 4e) showed no
reactivity towards alkenylboronic acids in our conditions.

Then, we moved our focus to the investigation of possible re-
action pathway (Scheme 2). The reaction was not affected by both
TEMPO (2,2,6,6-tetramethyl-1-piperinedinyloxy, a radical quench-
er) and N-methylindole (an electron-rich aromatic) (Scheme 2,
a—b).19202%] Thage results indicated that both radical interme-
diate and cationic intermediate were not likely and the reaction
may not go through a radical mechanism or an Sy1 like mecha-
nism. Furthermore, only trace product was detected when using
K" chelator (18-crown-6) (Scheme 2, c), which indicated that K"
played an extremely important role, even participating in this
transformation. Besides, under the optimized conditions, com-
pound 4a can be converted into 3a in 60% yield, which suggested
that nucleophilic substitution product 4a was formed firstly in this
transformation, and then was transformed into more stable acry-
lonitriles 3a.

Scheme 2 Investigation of reaction pathways
Ph
a) Pr, * \/\B(OH)Z S T Ph/KA
toluene, K3PO, 3a, 88%
60°C, 12 h o%
CN CN
+ Pho - TEMPO, K3PO,
b) F’h/kOMs T B(OH), ————— Ph)vph
1a 2a toluene, 60 °C, 12 h 3a, 84%
CN CN
+ Ph_~ 18-Crown-6, K3zPO,
c) Ph/J\OMs 7 B(0H), oo 50 121 °c312‘:1 Ph/\ﬂph
1a 2a oluene, ’ 3a, trace
CN GN

KsPOy4

d) Ph/K/\Ph Ph)vPh
toluene, 60 °C, 12 h

4a 3a, 60%

Based on above experimental results, we propose a possible
mechanism (Scheme 3). Firstly, the base (K;PO,) attacks the or-
ganoboronic acid 2a to form an ate type complex A, whose anion-
ic nature leads to enhanced nucleophilicity.[24] In this process, K*
plays an important role in the formation of ion pair organic com-
pound intermediate A. On the other hand, formation of ion pair
organic compound intermediate A could enhance the nucleo-
philicity of alkenyl boronic acids. Then complex A reacting with
the spa-carbon electrophile 1a to give intermediate 4 via an Sy2
pathway. Then, in the presence of base, a deprotonation/iso-
merization/protonation of 4 gives the thermodynamic product 3a.
Remarkably, only (Z)-2,3-disubstituted acrylonitriles could be

www.cjc.wiley-vch.de 915



Concise Report

Scheme 3 Proposed mechanism

® cN
K PN
Ph_~ K3PO4 Ph ©.0 Py OMe
\2/\B(OH)2 \fgg" “POK,
a
OH
A
/Ti/\ CN CN proton )Ci/\
= - [S) A
Ar H) R—> Ar)e\/\R AN~ P e
4 a

K3POy,

obtained without any (E)-isomers, probably due to the steric ef-
fect of aromatics.

Additionally, our methodology can be used in larger scale
synthesis without complications (Scheme 4). Also, the obtained 3a
can be selectively reduced to give 6a in 79% yield using the simple
reductant — NaBH4.[25] Moreover, the epoxidation of 3a led to the
formation of an epoxide 5a in 65% yieId.lZG]

Scheme 4 Gram-scale synthesis and further synthetic manipulations
CN

+ Ph\/\
Ph)\OMs B(OH),

1a (5 mmol, 1.06 g) 2a (7.5 mmol, 1.11 g)

lK3PO4, toluene, 60 °C, 12 h

CN CN
m-CPBA CN
- NaBH

Ph)obAPh Ph)\/\Ph — Ph)\/\Ph

5a, 65% 3a (0.82 g, 75%) 6a, 79%
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Conclusions

In conclusion, we have developed an efficient cross-coupling
between alkenylboronic acids and a-cyanohydrin methanesul-
fonate. Acrylonitriles can be accessed under simple and mild con-
ditions with good chemical yields and good functional group tol-
erance for a wide range of substrates. Other transition metal-free
systems are currently being investigated in our laboratory and will
be communicated in due course.

Experimental

Procedure for cross-coupling reaction: An oven-dried vial was
charged with a-cyano methanesulfonate (0.1 mmol), alkenyl-
boronic acids (0.15 mmol), K3PO, (0.2 mmol). Tol (1 mL) was add-
ed and the mixture was stirred at 60 centigrade for 12 h under air.
After that, water was added and the aqueous phase was extracted
with ethyl acetate (3 x 3 mL). The combined organic layers were
dried over Na,SO, and then concentrated. The crude product was
purified by silica gel column chromatography.
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